Lesson 2 - Hardly fields

Definition
A Hardy field is a subfield of \mathscr{G}^{1} that is closed under derivation.

Definition
A Hardy field is a subfield of \mathscr{G}^{1} that is closed under derivation.

Examples

Definition

A Hardy field is a subfield of \mathscr{G}^{1} that is closed under derivation.

Examples

- Any subfield of \mathbb{R}.

Definition

A Hardy field is a subfield of \mathscr{G}^{1} that is closed under derivation.

Examples

- Any subfield of \mathbb{R}.
- The fields $\mathbb{R}(x)$ and $\mathbb{R}\left(x, \mathrm{e}^{x}\right)$.

Hardy fields

Definition

A Hardy field is a subfield of \mathscr{G}^{1} that is closed under derivation.

Examples

- Any subfield of \mathbb{R}.
- The fields $\mathbb{R}(x)$ and $\mathbb{R}\left(x, \mathrm{e}^{x}\right)$.
- The field $\mathbb{R}\left(g_{1}, \ldots, g_{n}\right)$, for any germs $g_{1} \ll \cdots \ll g_{n}$ in \mathscr{G}^{1}, such that $g_{1}^{\prime}, \ldots, g_{n}^{\prime} \in \mathbb{R}\left(g_{1}, \ldots, g_{n}\right)$.

Hardy fields

Definition

A Hardy field is a subfield of \mathscr{G}^{1} that is closed under derivation.

Examples

- Any subfield of \mathbb{R}.
- The fields $\mathbb{R}(x)$ and $\mathbb{R}\left(x, \mathrm{e}^{x}\right)$.
- The field $\mathbb{R}\left(g_{1}, \ldots, g_{n}\right)$, for any germs $g_{1} \ll \cdots \ll g_{n}$ in \mathscr{G}^{1}, such that $g_{1}^{\prime}, \ldots, g_{n}^{\prime} \in \mathbb{R}\left(g_{1}, \ldots, g_{n}\right)$.
- If K is a Hardy field and $g \in \mathscr{G}$ is such that $g^{\prime} \circ g^{\text {inv }} \in K$, then $K \circ g$ is a Hardy field.

Hardy fields

Definition

A Hardy field is a subfield of \mathscr{G}^{1} that is closed under derivation.

Examples

- Any subfield of \mathbb{R}.
- The fields $\mathbb{R}(x)$ and $\mathbb{R}\left(x, \mathrm{e}^{x}\right)$.
- The field $\mathbb{R}\left(g_{1}, \ldots, g_{n}\right)$, for any germs $g_{1} \ll \cdots \ll g_{n}$ in \mathscr{G}^{1}, such that $g_{1}^{\prime}, \ldots, g_{n}^{\prime} \in \mathbb{R}\left(g_{1}, \ldots, g_{n}\right)$.
- If K is a Hardy field and $g \in \mathscr{G}$ is such that $g^{\prime} \circ g^{\text {inv }} \in K$, then $K \circ g$ is a Hardy field.
- If K is a Hardy field, then its real closure K^{rc} is a Hardy field.

Hardy fields

Definition

A Hardy field is a subfield of \mathscr{G}^{1} that is closed under derivation.

Examples

- Any subfield of \mathbb{R}.
- The fields $\mathbb{R}(x)$ and $\mathbb{R}\left(x, \mathrm{e}^{x}\right)$.
- The field $\mathbb{R}\left(g_{1}, \ldots, g_{n}\right)$, for any germs $g_{1} \ll \cdots \ll g_{n}$ in \mathscr{G}^{1}, such that $g_{1}^{\prime}, \ldots, g_{n}^{\prime} \in \mathbb{R}\left(g_{1}, \ldots, g_{n}\right)$.
- If K is a Hardy field and $g \in \mathscr{G}$ is such that $g^{\prime} \circ g^{\text {inv }} \in K$, then $K \circ g$ is a Hardy field.
- If K is a Hardy field, then its real closure K^{rc} is a Hardy field. Indeed, if $P(y)=0$ for $P \in K[Y]$ and $y \in K^{\mathrm{rc}}$, then $y^{\prime}=-\frac{\partial P}{\partial X}(y) / \frac{\partial P}{\partial Y}(y) \in K(y) \subseteq K^{\mathrm{rc}}$

Remark. If $K \subseteq \mathscr{G}^{1}$ is a Hardy field, then actually $K \subseteq \mathscr{G}^{<\infty}:=\bigcap_{k \in \mathbb{N}} \mathscr{G}^{k}$.

Remark. If $K \subseteq \mathscr{G}^{1}$ is a Hardy field, then actually $K \subseteq \mathscr{G}^{<\infty}:=\bigcap_{k \in \mathbb{N}} \mathscr{G}^{k}$.

Definition

A germ $\mathscr{G}^{<\infty}$ is Hardian if it lies in some Hardy field K.

Remark. If $K \subseteq \mathscr{G}^{1}$ is a Hardy field, then actually $K \subseteq \mathscr{G}^{<\infty}:=\bigcap_{k \in \mathbb{N}} \mathscr{G}^{k}$.

Definition

A germ $\mathscr{G}^{<\infty}$ is Hardian if it lies in some Hardy field K.
Remark. $y \in \mathscr{G}^{<\infty}$ is Hardian \Longleftrightarrow for any $P \in \mathbb{R}\left[Y, Y^{\prime}, Y^{\prime \prime}, \ldots\right]$, the sign of $P\left(y, y^{\prime}, \ldots, y^{(r)}\right)$ is eventually constant.

Remark. If $K \subseteq \mathscr{G}^{1}$ is a Hardy field, then actually $K \subseteq \mathscr{G}^{<\infty}:=\bigcap_{k \in \mathbb{N}} \mathscr{G}^{k}$.

Definition

A germ $\mathscr{G}^{<\infty}$ is Hardian if it lies in some Hardy field K.
Remark. $y \in \mathscr{G}^{<\infty}$ is Hardian \Longleftrightarrow for any $P \in \mathbb{R}\left[Y, Y^{\prime}, Y^{\prime \prime}, \ldots\right]$, the sign of $P\left(y, y^{\prime}, \ldots, y^{(r)}\right)$ is eventually constant.

Definition

Let $k \in\{\infty, \omega\} . A \mathscr{C}^{k}$-Hardy field is a subfield of \mathscr{G}^{k} that is closed under derivation.

Remark. If $K \subseteq \mathscr{G}^{1}$ is a Hardy field, then actually $K \subseteq \mathscr{G}^{<\infty}:=\bigcap_{k \in \mathbb{N}} \mathscr{G}^{k}$.

Definition

A germ $\mathscr{G}^{<\infty}$ is Hardian if it lies in some Hardy field K.
Remark. $y \in \mathscr{G}^{<\infty}$ is Hardian \Longleftrightarrow for any $P \in \mathbb{R}\left[Y, Y^{\prime}, Y^{\prime \prime}, \ldots\right]$, the sign of $P\left(y, y^{\prime}, \ldots, y^{(r)}\right)$ is eventually constant.

Definition

Let $k \in\{\infty, \omega\}$. $A \mathscr{C}^{k}$-Hardy field is a subfield of \mathscr{G}^{k} that is closed under derivation.
Remark. There exist Hardy fields that are not \mathscr{C}^{∞}-Hardy fields.

Remark. If $K \subseteq \mathscr{G}^{1}$ is a Hardy field, then actually $K \subseteq \mathscr{G}^{<\infty}:=\bigcap_{k \in \mathbb{N}} \mathscr{G}^{k}$.

Definition

A germ $\mathscr{G}^{<\infty}$ is Hardian if it lies in some Hardy field K.
Remark. $y \in \mathscr{G}^{<\infty}$ is Hardian \Longleftrightarrow for any $P \in \mathbb{R}\left[Y, Y^{\prime}, Y^{\prime \prime}, \ldots\right]$, the sign of $P\left(y, y^{\prime}, \ldots, y^{(r)}\right)$ is eventually constant.

Definition

Let $k \in\{\infty, \omega\}$. $A \mathscr{C}^{k}$-Hardy field is a subfield of \mathscr{G}^{k} that is closed under derivation.
Remark. There exist Hardy fields that are not \mathscr{C}^{∞}-Hardy fields.
Remark. Let $y=\frac{1}{x}+\frac{1}{\mathrm{e}^{x}}+\frac{1}{\mathrm{e}^{e^{x}}}+\cdots$.
Then $\mathbb{R}\left(y, y^{\prime}, \ldots\right)$ is a \mathscr{C}^{∞}-Hardy field, but not a \mathscr{C}^{ω}-Hardy field.

Theorem (Cauchy, Lipschitu, Picard, Lindeloff, ...)

Let $U \subseteq \mathbb{R}^{n}$ and open set, and $f: U \rightarrow \mathbb{R}^{n}$ a \mathscr{C}^{1} function. Then the differential equation

$$
y^{\prime}(x)=f(y(x))
$$

with initial condition $y(0)=y_{0} \in U$ has a unique solution $y:[-\varepsilon, \varepsilon] \rightarrow U$ for some $\varepsilon>0$.

Theorem (Cauchy, Lipschitu, Picard, Lindeloff, ...)

Let $U \subseteq \mathbb{R}^{n}$ and open set, and $f: U \rightarrow \mathbb{R}^{n}$ a \mathscr{C}^{1} function. Then the differential equation

$$
y^{\prime}(x)=f(y(x))
$$

with initial condition $y(0)=y_{0} \in U$ has a unique solution $y:[-\varepsilon, \varepsilon] \rightarrow U$ for some $\varepsilon>0$.
Proof. Given $\varepsilon>0$, let \mathscr{F} be the Banach space of \mathscr{C}^{0} functions $[-\varepsilon, \varepsilon] \rightarrow \mathbb{R}^{n}$. Given $\delta>0$, let $\mathscr{B} \subseteq \mathscr{F}$ be the ball with center y_{0} and radius δ.

Theorem (Cauchy, Lipschite, Picard, Lindelöf, ...)

Let $U \subseteq \mathbb{R}^{n}$ and open set, and $f: U \rightarrow \mathbb{R}^{n}$ a \mathscr{C}^{1} function. Then the differential equation

$$
y^{\prime}(x)=f(y(x))
$$

with initial condition $y(0)=y_{0} \in U$ has a unique solution $y:[-\varepsilon, \varepsilon] \rightarrow U$ for some $\varepsilon>0$.
Proof. Given $\varepsilon>0$, let \mathscr{F} be the Banach space of \mathscr{C}^{0} functions $[-\varepsilon, \varepsilon] \rightarrow \mathbb{R}^{n}$. Given $\delta>0$, let $\mathscr{B} \subseteq \mathscr{F}$ be the ball with center y_{0} and radius δ.
Taking δ and ε sufficiently small, we have a contracting functional

$$
\begin{aligned}
\Phi: \mathscr{B} & \longrightarrow \mathscr{B} \\
y & \longmapsto y_{0}+\int_{0}^{x} f(y(t)) \mathrm{d} t .
\end{aligned}
$$

Its unique fixed point is the desired solution.

Initial value problems - continued

Proof. [...] Taking δ and ε sufficiently small, we have a contracting functional

$$
\begin{aligned}
\Phi: \mathscr{B} & \longrightarrow \mathscr{B} \\
y & \longmapsto y_{0}+\int_{0}^{x} f(y(t)) \mathrm{d} t .
\end{aligned}
$$

Indeed,

$$
\begin{aligned}
\left\|\Phi\left(y_{2}\right)-\Phi\left(y_{1}\right)\right\| & =\left\|\int_{0}^{x}\left(f\left(y_{2}(t)\right)-f\left(y_{1}(t)\right)\right) \mathrm{d} t\right\| \\
& \leqslant \int_{0}^{x}\left\|f\left(y_{2}(t)\right)-f\left(y_{1}(t)\right)\right\| \mathrm{d} t \\
& \leqslant \varepsilon\left\|f \circ y_{2}-f \circ y_{1}\right\| \\
& \leqslant \varepsilon\left\|J_{f}\right\|\left\|_{\mathfrak{B}}\right\| y_{2}-y_{1} \| .
\end{aligned}
$$

Take δ, ε with $\varepsilon\left\|J_{f}\right\|_{\mathscr{B}}<1$. [...]

Theorem (Hardy, Bourbaki, Singer, Rosenlicht)

Let K be a Hardy field and let $f \in K(Y)^{\neq 0}$. Let $y \in \mathscr{G}^{1}$ be a solution of

$$
y^{\prime}(x)=f(y(x)) .
$$

Then $K(y)$ is a Hardy field.

Theorem (Hardy, Bourbaki, Singer, Rosenlicht)

Let K be a Hardy field and let $f \in K(Y)^{\neq 0}$. Let $y \in \mathscr{G}^{1}$ be a solution of

$$
y^{\prime}(x)=f(y(x)) .
$$

Then $K(y)$ is a Hardy field.
Proof. Without loss of generality, we may assume that K is real closed.

Theorem (Hardy, Bourbaki, Singer, Rosenlicht)

Let K be a Hardy field and let $f \in K(Y)^{\neq 0}$. Let $y \in \mathscr{G}^{1}$ be a solution of

$$
y^{\prime}(x)=f(y(x)) .
$$

Then $K(y)$ is a Hardy field.
Proof. Without loss of generality, we may assume that K is real closed. Given $P \in K[Y]$, we have to show that $\operatorname{sign} P(y)$ is constant, eventually.

Theorem (Hardy, Bourbaki, Singer, Rosenlicht)

Let K be a Hardy field and let $f \in K(Y)^{\neq 0}$. Let $y \in \mathscr{G}^{1}$ be a solution of

$$
y^{\prime}(x)=f(y(x)) .
$$

Then $K(y)$ is a Hardy field.
Proof. Without loss of generality, we may assume that K is real closed. Given $P \in K[Y]$, we have to show that $\operatorname{sign} P(y)$ is constant, eventually. Without loss of generality, we may assume that P is monic, irreducible.

Theorem (Hardy, Bourbaki, Singer, Rosenlicht)

Let K be a Hardy field and let $f \in K(Y)^{\neq 0}$. Let $y \in \mathscr{G}^{1}$ be a solution of

$$
y^{\prime}(x)=f(y(x)) .
$$

Then $K(y)$ is a Hardy field.
Proof. Without loss of generality, we may assume that K is real closed. Given $P \in K[Y]$, we have to show that $\operatorname{sign} P(y)$ is constant, eventually. Without loss of generality, we may assume that P is monic, irreducible. K real closed $\Longrightarrow \operatorname{deg} P=1$ or $\operatorname{deg} P=2$.

Theorem (Hardy, Bourbaki, Singer, Rosenlicht)

Let K be a Hardy field and let $f \in K(Y)^{\neq 0}$. Let $y \in \mathscr{G}^{1}$ be a solution of

$$
y^{\prime}(x)=f(y(x)) .
$$

Then $K(y)$ is a Hardy field.
Proof. Without loss of generality, we may assume that K is real closed. Given $P \in K[Y]$, we have to show that $\operatorname{sign} P(y)$ is constant, eventually. Without loss of generality, we may assume that P is monic, irreducible. K real closed $\Longrightarrow \operatorname{deg} P=1$ or $\operatorname{deg} P=2$.

Case 1. $\operatorname{deg} P=2$, so $P=(Y-g)^{2}+h$ with $g \in K$ and $h \in K^{>0}$.

Theorem (Hardy, Bourbaki, Singer, Rosenlicht)

Let K be a Hardy field and let $f \in K(Y)^{\neq 0}$. Let $y \in \mathscr{G}^{1}$ be a solution of

$$
y^{\prime}(x)=f(y(x)) .
$$

Then $K(y)$ is a Hardy field.
Proof. Without loss of generality, we may assume that K is real closed. Given $P \in K[Y]$, we have to show that $\operatorname{sign} P(y)$ is constant, eventually. Without loss of generality, we may assume that P is monic, irreducible. K real closed $\Longrightarrow \operatorname{deg} P=1$ or $\operatorname{deg} P=2$.

Case 1. $\operatorname{deg} P=2$, so $P=(Y-g)^{2}+h$ with $g \in K$ and $h \in K^{>0}$. Then $P(y(x))=(y(x)-g(x))^{2}+h(x)>0$, eventually.

Theorem (Hardy, Bourbaki, Singer, Rosenlicht)

Let K be a Hardy field and let $f \in K(Y)^{\neq 0}$. Let $y \in \mathscr{G}^{1}$ be a solution of

$$
y^{\prime}(x)=f(y(x)) .
$$

Then $K(y)$ is a Hardy field.
Case 2. $\operatorname{deg} P=1$, so $P=Y-g$ with $g \in K$.

Theorem (Hardy, Bourbaki, Singer, Rosenlicht)

Let K be a Hardy field and let $f \in K(Y)^{\neq 0}$. Let $y \in \mathscr{G}^{1}$ be a solution of

$$
y^{\prime}(x)=f(y(x)) .
$$

Then $K(y)$ is a Hardy field.
Case 2. $\operatorname{deg} P=1$, so $P=Y-g$ with $g \in K$.
Modulo a shift $Y \rightarrow Y+g$, we may assume without loss of generality that $g=0$.

Theorem (Hardy, Bourbaki, Singer, Rosenlicht)

Let K be a Hardy field and let $f \in K(Y)^{\neq 0}$. Let $y \in \mathscr{G}^{1}$ be a solution of

$$
y^{\prime}(x)=f(y(x)) .
$$

Then $K(y)$ is a Hardy field.
Case 2. $\operatorname{deg} P=1$, so $P=Y-g$ with $g \in K$.
Modulo a shift $Y \rightarrow Y+g$, we may assume without loss of generality that $g=0$. Write $f=Y^{r} A / B$ with $r \in \mathbb{Z}, A, B \in K[Y]$, where $A_{0}=A(0) \neq 0$ and $B_{0}=B(0) \neq 0$.

Theorem (Hardy, Bourbaki, Singer, Rosenlicht)

Let K be a Hardy field and let $f \in K(Y)^{\neq 0}$. Let $y \in \mathscr{G}^{1}$ be a solution of

$$
y^{\prime}(x)=f(y(x)) .
$$

Then $K(y)$ is a Hardy field.
Case 2. $\operatorname{deg} P=1$, so $P=Y-g$ with $g \in K$.
Modulo a shift $Y \rightarrow Y+g$, we may assume without loss of generality that $g=0$. Write $f=Y^{r} A / B$ with $r \in \mathbb{Z}, A, B \in K[Y]$, where $A_{0}=A(0) \neq 0$ and $B_{0}=B(0) \neq 0$. Let $a \in \mathbb{R}$ be such that $f(y(x))$ is defined and $A_{0}(x), B_{0}(x)$ have constant sign on $[a, \infty)$.

Theorem (Hardy, Bourbaki, Singer, Rosenlicht)

Let K be a Hardy field and let $f \in K(Y)^{\neq 0}$. Let $y \in \mathscr{G}^{1}$ be a solution of

$$
y^{\prime}(x)=f(y(x)) .
$$

Then $K(y)$ is a Hardy field.
Case 2. $\operatorname{deg} P=1$, so $P=Y-g$ with $g \in K$.
Modulo a shift $Y \rightarrow Y+g$, we may assume without loss of generality that $g=0$. Write $f=Y^{r} A / B$ with $r \in \mathbb{Z}, A, B \in K[Y]$, where $A_{0}=A(0) \neq 0$ and $B_{0}=B(0) \neq 0$. Let $a \in \mathbb{R}$ be such that $f(y(x))$ is defined and $A_{0}(x), B_{0}(x)$ have constant sign on $[a, \infty)$. Assume for contraduction that y has arbitrarily large zeros on $[a, \infty)$.

Theorem (Hardy, Bourbaki, Singer, Rosenlicht)

Let K be a Hardy field and let $f \in K(Y)^{\neq 0}$. Let $y \in \mathscr{G}^{1}$ be a solution of

$$
y^{\prime}(x)=f(y(x)) .
$$

Then $K(y)$ is a Hardy field.
Case 2. $\operatorname{deg} P=1$, so $P=Y-g$ with $g \in K$.
Modulo a shift $Y \rightarrow Y+g$, we may assume without loss of generality that $g=0$. Write $f=Y^{r} A / B$ with $r \in \mathbb{Z}, A, B \in K[Y]$, where $A_{0}=A(0) \neq 0$ and $B_{0}=B(0) \neq 0$. Let $a \in \mathbb{R}$ be such that $f(y(x))$ is defined and $A_{0}(x), B_{0}(x)$ have constant sign on $[a, \infty)$. Assume for contraduction that y has arbitrarily large zeros on $[a, \infty)$.

Let $x_{1}<x_{2}<\cdots$ be those zeros.

Case 2. $\operatorname{deg} P=1$, so $P=Y-g$ with $g \in K$.
Modulo a shift $Y \rightarrow Y+g$, we may assume without loss of generality that $g=0$. Write $f=Y^{r} A / B$ with $r \in \mathbb{Z}, A, B \in K[Y]$, where $A_{0}=A(0) \neq 0$ and $B_{0}=B(0) \neq 0$.
Let $a \in \mathbb{R}$ be such that $f(y(x))$ is defined and $A_{0}(x), B_{0}(x)$ have constant sign on $[a, \infty)$ Assume for contraduction that y has arbitrarily large zeros on $[a, \infty)$.

Let $x_{1}<x_{2}<\cdots$ be those zeros.

Case 2. $\operatorname{deg} P=1$, so $P=Y-g$ with $g \in K$.
Modulo a shift $Y \rightarrow Y+g$, we may assume without loss of generality that $g=0$. Write $f=Y^{r} A / B$ with $r \in \mathbb{Z}, A, B \in K[Y]$, where $A_{0}=A(0) \neq 0$ and $B_{0}=B(0) \neq 0$.
Let $a \in \mathbb{R}$ be such that $f(y(x))$ is defined and $A_{0}(x), B_{0}(x)$ have constant sign on $[a, \infty)$ Assume for contraduction that y has arbitrarily large zeros on $[a, \infty)$.

Let $x_{1}<x_{2}<\cdots$ be those zeros.
Since $f\left(y\left(x_{1}\right)\right)=f(0)$ is defined, we must have $r \geqslant 0$.

Case 2. $\operatorname{deg} P=1$, so $P=Y-g$ with $g \in K$.
Modulo a shift $Y \rightarrow Y+g$, we may assume without loss of generality that $g=0$.
Write $f=Y^{r} A / B$ with $r \in \mathbb{Z}, A, B \in K[Y]$, where $A_{0}=A(0) \neq 0$ and $B_{0}=B(0) \neq 0$.
Let $a \in \mathbb{R}$ be such that $f(y(x))$ is defined and $A_{0}(x), B_{0}(x)$ have constant sign on $[a, \infty)$ Assume for contraduction that y has arbitrarily large zeros on $[a, \infty)$.

Let $x_{1}<x_{2}<\cdots$ be those zeros.
Since $f\left(y\left(x_{1}\right)\right)=f(0)$ is defined, we must have $r \geqslant 0$.
If $r>0$, then $y^{\prime}=y^{r} A / B$ with $y\left(x_{1}\right)=0$ has $y=0$ as its unique solution: contradiction.

Case 2. $\operatorname{deg} P=1$, so $P=Y-g$ with $g \in K$.
Modulo a shift $Y \rightarrow Y+g$, we may assume without loss of generality that $g=0$.
Write $f=Y^{r} A / B$ with $r \in \mathbb{Z}, A, B \in K[Y]$, where $A_{0}=A(0) \neq 0$ and $B_{0}=B(0) \neq 0$.
Let $a \in \mathbb{R}$ be such that $f(y(x))$ is defined and $A_{0}(x), B_{0}(x)$ have constant sign on $[a, \infty)$
Assume for contraduction that y has arbitrarily large zeros on $[a, \infty)$.
Let $x_{1}<x_{2}<\cdots$ be those zeros.
Since $f\left(y\left(x_{1}\right)\right)=f(0)$ is defined, we must have $r \geqslant 0$.
If $r>0$, then $y^{\prime}=y^{r} A / B$ with $y\left(x_{1}\right)=0$ has $y=0$ as its unique solution: contradiction. Hence $r=0$ and $\operatorname{sign} y^{\prime}\left(x_{1}\right)=\operatorname{sign} A_{0}\left(x_{1}\right) / B_{0}\left(x_{1}\right)=\operatorname{sign} A_{0}\left(x_{2}\right) / B_{0}\left(x_{2}\right)=\operatorname{sign} y^{\prime}\left(x_{2}\right)$.

Case 2. $\operatorname{deg} P=1$, so $P=Y-g$ with $g \in K$.
Modulo a shift $Y \rightarrow Y+g$, we may assume without loss of generality that $g=0$.
Write $f=Y^{r} A / B$ with $r \in \mathbb{Z}, A, B \in K[Y]$, where $A_{0}=A(0) \neq 0$ and $B_{0}=B(0) \neq 0$.
Let $a \in \mathbb{R}$ be such that $f(y(x))$ is defined and $A_{0}(x), B_{0}(x)$ have constant sign on $[a, \infty)$
Assume for contraduction that y has arbitrarily large zeros on $[a, \infty)$.
Let $x_{1}<x_{2}<\cdots$ be those zeros.
Since $f\left(y\left(x_{1}\right)\right)=f(0)$ is defined, we must have $r \geqslant 0$.
If $r>0$, then $y^{\prime}=y^{r} A / B$ with $y\left(x_{1}\right)=0$ has $y=0$ as its unique solution: contradiction. Hence $r=0$ and $\operatorname{sign} y^{\prime}\left(x_{1}\right)=\operatorname{sign} A_{0}\left(x_{1}\right) / B_{0}\left(x_{1}\right)=\operatorname{sign} A_{0}\left(x_{2}\right) / B_{0}\left(x_{2}\right)=\operatorname{sign} y^{\prime}\left(x_{2}\right)$. So $y\left(x_{1}\right)=y\left(x_{2}\right)=0, y$ has constant sign on $\left(x_{1}, x_{2}\right)$, but $\operatorname{sign} y^{\prime}\left(x_{1}\right)=\operatorname{sign} y^{\prime}\left(x_{2}\right)$.

Case 2. $\operatorname{deg} P=1$, so $P=Y-g$ with $g \in K$.
Modulo a shift $Y \rightarrow Y+g$, we may assume without loss of generality that $g=0$.
Write $f=Y^{r} A / B$ with $r \in \mathbb{Z}, A, B \in K[Y]$, where $A_{0}=A(0) \neq 0$ and $B_{0}=B(0) \neq 0$.
Let $a \in \mathbb{R}$ be such that $f(y(x))$ is defined and $A_{0}(x), B_{0}(x)$ have constant sign on $[a, \infty)$
Assume for contraduction that y has arbitrarily large zeros on $[a, \infty)$.
Let $x_{1}<x_{2}<\cdots$ be those zeros.
Since $f\left(y\left(x_{1}\right)\right)=f(0)$ is defined, we must have $r \geqslant 0$.
If $r>0$, then $y^{\prime}=y^{r} A / B$ with $y\left(x_{1}\right)=0$ has $y=0$ as its unique solution: contradiction. Hence $r=0$ and $\operatorname{sign} y^{\prime}\left(x_{1}\right)=\operatorname{sign} A_{0}\left(x_{1}\right) / B_{0}\left(x_{1}\right)=\operatorname{sign} A_{0}\left(x_{2}\right) / B_{0}\left(x_{2}\right)=\operatorname{sign} y^{\prime}\left(x_{2}\right)$. So $y\left(x_{1}\right)=y\left(x_{2}\right)=0, y$ has constant sign on $\left(x_{1}, x_{2}\right)$, but $\operatorname{sign} y^{\prime}\left(x_{1}\right)=\operatorname{sign} y^{\prime}\left(x_{2}\right)$.
Contradiction.

Corollary

Let K be a Hardy field and let $\varphi \in K$. Then

- $K\left(\int \varphi\right)$ is a Hardy field.
- $K\left(\mathrm{e}^{\varphi}\right)$ is a Hardy field.
- $K(\log \varphi)$ is a Hardy field, whenever $\varphi>0$.

Corollary

Let K be a Hardy field and let $\varphi \in K$. Then

- $K\left(\int \varphi\right)$ is a Hardy field.

$$
\begin{array}{r}
y^{\prime}=\varphi \\
y^{\prime}=\varphi^{\prime} y \\
y^{\prime}=\varphi^{\prime} / \varphi
\end{array}
$$

- $K\left(\mathrm{e}^{\varphi}\right)$ is a Hardy field.
- K $(\log \varphi)$ is a Hardy field, whenever $\varphi>0$.

Corollary

Let K be a Hardy field and let $\varphi \in K$. Then

- $K\left(\int \varphi\right)$ is a Hardy field.

$$
\begin{array}{r}
y^{\prime}=\varphi \\
y^{\prime}=\varphi^{\prime} y \\
y^{\prime}=\varphi^{\prime} / \varphi
\end{array}
$$

- $K\left(\mathrm{e}^{\varphi}\right)$ is a Hardy field.
- $K(\log \varphi)$ is a Hardy field, whenever $\varphi>0$.

Definition

A Hardy field is Liouville closed if it is real closed and closed under \int and exp.

Corollary

Let K be a Hardy field and let $\varphi \in K$. Then

- $K\left(\int \varphi\right)$ is a Hardy field.

$$
\begin{array}{r}
y^{\prime}=\varphi \\
y^{\prime}=\varphi^{\prime} y \\
y^{\prime}=\varphi^{\prime} / \varphi
\end{array}
$$

- $K\left(\mathrm{e}^{\varphi}\right)$ is a Hardy field.
- $K(\log \varphi)$ is a Hardy field, whenever $\varphi>0$.

Definition

A Hardy field is Liouville closed if it is real closed and closed under \int and exp.

Corollary

Given a Hardy field K, the smallest real closed field $K^{\text {lc }} \subseteq \mathscr{G}^{<\infty}$ which contains K and which is closed under \int and \exp is a Hardy field, called the Liouville closure of K.

Definition

An exp-log function (or L-function) is any function constructed from the real numbers and an indeterminate x, using the field operations, exponention, and the logarithm.

Corollary

Let $\mathscr{E} \subseteq \mathscr{G}^{<\infty}$ be the set of germs of exp-log functions that are eventually defined. Then \mathscr{E} is a Hardy field.

Maximal and perfect Hardy fields

Definition

A Hardy field K is maximal if there is no Hardy field L with $L \supsetneq K$. We define

$$
\mathrm{E}(K):=\bigcap_{L \supseteq K, L \text { is maximal }} L .
$$

We call $\mathrm{E}(K)$ the perfect hull of K and say that K is perfect if $\mathrm{E}(K)=K$.

Maximal and perfect Hardy fields

Definition

A Hardy field K is maximal if there is no Hardy field L with $L \supsetneq K$. We define

$$
\mathrm{E}(\mathrm{~K}):=\bigcap_{L \supseteq K, L \text { is maximal }} L .
$$

We call $\mathrm{E}(K)$ the perfect hull of K and say that K is perfect if $\mathrm{E}(K)=K$.

Corollary

Maximal Hardy fields are Liouville closed and so are perfect Hardy fields.

Definition

A Hardy field K is maximal if there is no Hardy field L with $L \supsetneq K$. We define

$$
\mathrm{E}(\mathrm{~K}):=\bigcap_{L \supseteq K, L \text { is maximal }} L .
$$

We call $\mathrm{E}(K)$ the perfect hull of K and say that K is perfect if $\mathrm{E}(K)=K$.

Corollary

Maximal Hardy fields are Liouville closed and so are perfect Hardy fields.

Questions

- First order axiomatization of the theory of maximal Hardy fields?
- First order characterization of perfect hulls?

$$
y^{\prime \prime}+y=\mathrm{e}^{x^{2}}
$$

An example by Boshernitran

$$
y^{\prime \prime}+y=\mathrm{e}^{x^{2}}
$$

Consider two solutions $y_{1} \neq y_{2}$ of (\star)

$$
y^{\prime \prime}+y=\mathrm{e}^{x^{2}}
$$

Consider two solutions $y_{1} \neq y_{2}$ of (\star)

$$
\left(y_{2}-y_{1}\right)^{\prime \prime}+\left(y_{2}-y_{1}\right)=0
$$

$$
y^{\prime \prime}+y=\mathrm{e}^{x^{2}}
$$

Consider two solutions $y_{1} \neq y_{2}$ of (\star)

$$
\begin{gathered}
\left(y_{2}-y_{1}\right)^{\prime \prime}+\left(y_{2}-y_{1}\right)=0 \\
y_{2}-y_{1}=a \sin (x+b), \quad a, b \in \mathbb{R}
\end{gathered}
$$

An example by Boshernitran

$$
y^{\prime \prime}+y=\mathrm{e}^{x^{2}}
$$

Consider two solutions $y_{1} \neq y_{2}$ of (\star)

$$
\begin{gathered}
\left(y_{2}-y_{1}\right)^{\prime \prime}+\left(y_{2}-y_{1}\right)=0 \\
y_{2}-y_{1}=a \sin (x+b), \quad a, b \in \mathbb{R} .
\end{gathered}
$$

There exists no Hardy field that contains both y_{1} and y_{2}

An example by Boshernitran

$$
y^{\prime \prime}+y=\mathrm{e}^{x^{2}}
$$

Consider two solutions $y_{1} \neq y_{2}$ of (\star)

$$
\begin{gathered}
\left(y_{2}-y_{1}\right)^{\prime \prime}+\left(y_{2}-y_{1}\right)=0 \\
y_{2}-y_{1}=a \sin (x+b), \quad a, b \in \mathbb{R} .
\end{gathered}
$$

There exists no Hardy field that contains both y_{1} and y_{2}

Theorem (Boshernitran)

Any maximal Hardy field contains exactly one solution of (*).

Problems with traditional techniques

- Analytic aspects become difficult for differential equations of order $\geqslant 2$.

Problems with traditional techniques

- Analytic aspects become difficult for differential equations of order $\geqslant 2$.
- Class \mathscr{E} not closed under natural operations, such as functional inversion.

