Lesson 4 - Newton polygon method

Definition

A support type for a monomial monoid \mathfrak{M} is a subset $\mathscr{S}(\mathfrak{M}) \subseteq \mathscr{P}(\mathfrak{M})$ such that T1. Every $\mathfrak{S} \in \mathscr{S}(\mathfrak{M})$ is well-based.
T2. If $\mathfrak{m} \in \mathfrak{M}$, then $\{\mathfrak{m}\} \in \mathscr{S}(\mathfrak{M})$.
T3. If $\mathfrak{S} \in \mathscr{S}(\mathfrak{M})$ and $\mathfrak{T} \subseteq \mathfrak{S}$, then $\mathfrak{T} \in \mathscr{S}(\mathfrak{M})$.
T4. If $\mathfrak{S}, \mathfrak{T} \in \mathscr{S}(\mathfrak{M})$, then $\mathfrak{S} \cup \mathfrak{T} \in \mathscr{S}(\mathfrak{M})$.
T5. If $\mathfrak{S}, \mathfrak{T} \in \mathscr{S}(\mathfrak{M})$, then $\mathfrak{S} \mathfrak{T}:=\{\mathfrak{m} \mathfrak{n}: \mathfrak{m} \in \mathfrak{S}, \mathfrak{n} \in \mathfrak{T}\} \in \mathscr{S}(\mathfrak{M})$.
T6. If $\mathfrak{S} \in \mathscr{S}(\mathfrak{M})$ and $\mathscr{S}<1$, then $\mathfrak{S}^{*}:=\left\{\mathfrak{m}_{1} \cdots \mathfrak{m}_{n}: \mathfrak{m}_{1}, \ldots, \mathfrak{m}_{n} \in \mathfrak{S}\right\} \in \mathscr{S}(\mathfrak{M})$.

Definition

A support type for a monomial monoid \mathfrak{M} is a subset $\mathscr{S}(\mathfrak{M}) \subseteq \mathscr{P}(\mathfrak{M})$ such that
T1. Every $\mathfrak{S} \in \mathscr{S}(\mathfrak{M})$ is well-based.
T2. If $\mathfrak{m} \in \mathfrak{M}$, then $\{\mathfrak{m}\} \in \mathscr{S}(\mathfrak{M})$.
T3. If $\mathfrak{S} \in \mathscr{S}(\mathfrak{M})$ and $\mathfrak{T} \subseteq \mathfrak{S}$, then $\mathfrak{T} \in \mathscr{S}(\mathfrak{M})$.
T4. If $\mathfrak{S}, \mathfrak{T} \in \mathscr{S}(\mathfrak{M})$, then $\mathfrak{S} \cup \mathfrak{T} \in \mathscr{S}(\mathfrak{M})$.
T5. If $\mathfrak{S}, \mathfrak{T} \in \mathscr{S}(\mathfrak{M})$, then $\mathfrak{S} \mathfrak{T}:=\{\mathfrak{m} \mathfrak{n}: \mathfrak{m} \in \mathfrak{S}, \mathfrak{n} \in \mathfrak{T}\} \in \mathscr{S}(\mathfrak{M})$.
T6. If $\mathfrak{S} \in \mathscr{S}(\mathfrak{M})$ and $\mathscr{S}<1$, then $\mathfrak{S}^{*}:=\left\{\mathfrak{m}_{1} \cdots \mathfrak{m}_{n}: \mathfrak{m}_{1}, \ldots, \mathfrak{m}_{n} \in \mathfrak{S}\right\} \in \mathscr{S}(\mathfrak{M})$.
Let \mathscr{S} be a map that associates a support type $\mathscr{S}(\mathfrak{M})$ for \mathfrak{M} to any monomial monoid \mathfrak{M}. We say that \mathscr{S} is a support type if:
ST. For every strictly increasing morphism $\varphi: \mathfrak{M} \rightarrow \mathfrak{N}$ and $\mathfrak{S} \in \mathscr{S}(\mathfrak{M})$, we have $\varphi(\mathfrak{S}) \in \mathscr{S}(\mathfrak{N})$.
\mathscr{S} : support type $\quad R$: coefficient ring, $\quad \mathfrak{M}:$ monomial ring
\mathscr{S} : support type $\quad R$:coefficient ring, $\quad \mathfrak{M}$: monomial ring

Definition

A series $f \in R[[\mathfrak{M}]]$ is \mathscr{S}-based if $\operatorname{supp} f \in \mathscr{S}(\mathfrak{M})$.
We denote by $R[[\mathfrak{M}]]_{\mathscr{S}}$ the set of all such series.

\mathscr{P}-based series

\mathscr{S} : support type $\quad R$: coefficient ring, $\quad \mathfrak{M}:$ monomial ring

Definition

A series $f \in R[[\mathfrak{M}]]$ is \mathscr{P}-based if $\operatorname{supp} f \in \mathscr{S}(\mathfrak{M})$.
We denote by $R[[\mathfrak{M}]]_{\mathscr{S}}$ the set of all such series.

Definition

A well-based family $\left(f_{i}\right)_{i \in \mathfrak{M}} \in R[[\mathfrak{M}]]_{\mathscr{S}}$ is \mathscr{S}-based if $\bigcup_{i \in I} \operatorname{supp} f_{i} \in \mathscr{S}(\mathfrak{M})$.
Then $\sum_{i \in I} f_{i} \in R[[\mathfrak{M}]]_{\varphi}$. This defines "the natural" strong summation on $R[[\mathfrak{M}]]_{\mathscr{\varphi}}$.

\mathscr{S} : support type, $\quad R$:coefficient ring, $\quad \mathfrak{M}:$ monomial ring

Definition

A series $f \in R[[\mathfrak{M}]]$ is \mathscr{P}-based if $\operatorname{supp} f \in \mathscr{S}(\mathfrak{M})$.
We denote by $R[[\mathfrak{M}]]_{\mathscr{S}}$ the set of all such series.

Definition

A well-based family $\left(f_{i}\right)_{i \in \mathfrak{M}} \in R[[\mathfrak{M}]]_{\mathscr{S}}$ is $\mathscr{\mathscr { S }}$-based if $\bigcup_{i \in I} \operatorname{supp} f_{i} \in \mathscr{S}(\mathfrak{M})$.
Then $\sum_{i \in I} f_{i} \in R[[\mathfrak{M}]]_{\varphi}$. This defines "the natural" strong summation on $R[[\mathfrak{M}]]_{\mathscr{\varphi}}$.

Proposition

a) $R[[\mathfrak{M}]]_{\mathscr{P}}$ is a ring.
b) If R is a field and \mathfrak{M} a totally ordered group, then $R[[\mathfrak{M}]]_{\mathscr{S}}$ is a field.

Well-based supports.

$$
\mathscr{S}(\mathfrak{M})=\{\mathfrak{S} \subseteq \mathfrak{M}: \mathfrak{S} \text { is well-based }\} .
$$

Well-based supports.

$$
\mathscr{S}(\mathfrak{M})=\{\mathfrak{S} \subseteq \mathfrak{M}: \mathfrak{S} \text { is well-based }\} .
$$

Countable supports.

$$
\mathscr{S}(\mathfrak{M})=\{\mathfrak{S} \subseteq \mathfrak{M}: \mathfrak{S} \text { is countable, } \mathfrak{S} \text { is well-based }\} .
$$

Well-based supports.

$$
\mathscr{S}(\mathfrak{M})=\{\mathfrak{S} \subseteq \mathfrak{M}: \mathfrak{S} \text { is well-based }\} .
$$

Countable supports.

$$
\mathscr{S}(\mathfrak{M})=\{\mathfrak{S} \subseteq \mathfrak{M}: \mathfrak{S} \text { is countable, } \mathfrak{S} \text { is well-based }\} .
$$

Finitely generated supports.

$$
\mathscr{S}(\mathfrak{M})=\left\{\mathfrak{S} \subseteq \mathfrak{F}^{*}: \mathfrak{F} \text { is finite, } \mathfrak{S} \text { is well-based }\right\} .
$$

Well-based supports.

$$
\mathscr{S}(\mathfrak{M})=\{\mathfrak{S} \subseteq \mathfrak{M}: \mathfrak{S} \text { is well-based }\} .
$$

Countable supports.

$$
\mathscr{S}(\mathfrak{M})=\{\mathfrak{S} \subseteq \mathfrak{M}: \mathfrak{S} \text { is countable, } \mathfrak{S} \text { is well-based }\} .
$$

Finitely generated supports.

$$
\begin{gathered}
\mathscr{S}(\mathfrak{M})=\left\{\mathfrak{S} \subseteq \mathfrak{F}^{*}: \mathfrak{F} \text { is finite, } \mathfrak{S} \text { is well-based }\right\} \\
\zeta(x)=1+2^{-x}+3^{-x}+\cdots=1+\mathrm{e}^{-(\log 2) x}+\mathrm{e}^{-(\log 3) x}+\cdots \notin \mathbb{R}\left[\left[\mathrm{e}^{-\mathbb{R} x}\right]\right]_{\mathscr{\mathscr { L }}} .
\end{gathered}
$$

Well-based supports.

$$
\mathscr{S}(\mathfrak{M})=\{\mathfrak{S} \subseteq \mathfrak{M}: \mathfrak{S} \text { is well-based }\} .
$$

Countable supports.

$$
\mathscr{S}(\mathfrak{M})=\{\mathfrak{S} \subseteq \mathfrak{M}: \mathfrak{S} \text { is countable, } \mathfrak{S} \text { is well-based }\} .
$$

Finitely generated supports.

$$
\begin{gathered}
\mathscr{S}(\mathfrak{M})=\left\{\mathfrak{S} \subseteq \mathfrak{F}^{*}: \mathfrak{F} \text { is finite, } \mathfrak{S} \text { is well-based }\right\} \\
\zeta(x)=1+2^{-x}+3^{-x}+\cdots=1+\mathrm{e}^{-(\log 2) x}+\mathrm{e}^{-(\log 3) x}+\cdots \notin \mathbb{R}\left[\left[\mathrm{e}^{-\mathbb{R} x}\right]\right]_{\mathscr{S}} .
\end{gathered}
$$

Intersections. Let \mathscr{S} and \mathscr{T} be support types.

$$
(\mathscr{S} \cap \mathscr{T})(\mathfrak{M})=\mathscr{S}(\mathfrak{M}) \cap \mathscr{T}(\mathfrak{M}) .
$$

Definition

 $\mathfrak{S} \subseteq \mathfrak{F} \mathfrak{E}^{*}$.

Definition

$$
\mathfrak{S} \subseteq \mathfrak{F} \mathfrak{E}^{*}
$$

Note. By Dickson's lemma, \mathfrak{E}^{*} and therefore \mathfrak{S} are well-based.

Definition

$$
\mathfrak{S} \subseteq \mathfrak{F} \mathfrak{E}^{*}
$$

Note. By Dickson's lemma, \mathfrak{E}^{*} and therefore \mathfrak{S} are well-based.
Note. If \mathfrak{M} is a totally ordered group, then \mathfrak{F} can be taken to be a singleton.

Definition

We say that $\mathfrak{S \subseteq} \mathfrak{M}$ is grid-based if there exist finite sets $\mathfrak{F} \subseteq \mathfrak{M}$ and $\mathfrak{E} \subseteq \mathfrak{M}^{<1}$ with $\mathfrak{S} \subseteq \mathfrak{F} \mathfrak{E}^{*}$.

Proposition

The map $\mathscr{G}: \mathfrak{M} \longmapsto\{\mathfrak{S} \subseteq \mathfrak{M}: \mathfrak{S}$ is grid-based $\}$ is a support type.

Definition

$$
\mathfrak{S} \subseteq \mathfrak{F} \mathfrak{E}^{*}
$$

Proposition

The map $\mathscr{G}: \mathfrak{M} \longmapsto\{\mathfrak{S} \subseteq \mathfrak{M}: \mathfrak{S}$ is grid-based $\}$ is a support type.

Lemma

If $\mathfrak{S \subseteq} \subseteq \mathfrak{M}^{<1}$ is grid-based, then there is a finite $\mathfrak{E} \subseteq \mathfrak{M}^{<1}$ with $\mathfrak{S} \subseteq \mathfrak{E}^{*}$ (whence $\left.\mathfrak{S}^{*} \subseteq \mathfrak{E}^{*}\right)$.

Definition

$$
\mathfrak{S} \subseteq \mathfrak{F} \mathfrak{E}^{*}
$$

Proposition

The map $\mathscr{G}: \mathfrak{M} \longmapsto\{\mathfrak{S} \subseteq \mathfrak{M}: \mathfrak{S}$ is grid-based $\}$ is a support type.

Lemma

If $\mathfrak{S} \subseteq \mathfrak{M}^{<1}$ is grid-based, then there is a finite $\mathfrak{E} \subseteq \mathfrak{M}^{<1}$ with $\mathfrak{S} \subseteq \mathfrak{E}^{*}$ (whence $\left.\mathfrak{S}^{*} \subseteq \mathfrak{E}^{*}\right)$.
Proof. Let $\mathfrak{F} \subseteq \mathfrak{M}$ and $\mathfrak{G} \subseteq \mathfrak{M}^{<1}$ be finite with $\mathfrak{S} \subseteq \mathfrak{F} \mathfrak{G}^{*}$.

Definition

$$
\mathfrak{S} \subseteq \mathfrak{F} \mathfrak{E}^{*}
$$

Proposition

The map $\mathscr{G}: \mathfrak{M} \longmapsto\{\mathfrak{S} \subseteq \mathfrak{M}: \mathfrak{S}$ is grid-based $\}$ is a support type.

Lemma

If $\mathfrak{S} \subseteq \mathfrak{M}^{<1}$ is grid-based, then there is a finite $\mathfrak{E} \subseteq \mathfrak{M}^{<1}$ with $\mathfrak{S} \subseteq \mathfrak{E}^{*}$ (whence $\left.\mathfrak{S}^{*} \subseteq \mathfrak{E}^{*}\right)$.
 Given $\mathfrak{f} \in \mathfrak{F}$, the $\operatorname{set}\left(\mathfrak{f} \mathfrak{G}^{*}\right) \cap \mathfrak{M}^{<1}$ is a final segment of $\mathfrak{f} \mathfrak{G}^{*}$ for \geqslant !.

Definition

$$
\mathfrak{S} \subseteq \mathfrak{F} \mathfrak{E}^{*} .
$$

Proposition

The map $\mathscr{G}: \mathfrak{M} \longmapsto\{\mathfrak{S} \subseteq \mathfrak{M}: \mathfrak{S}$ is grid-based $\}$ is a support type.

Lemma

If $\mathfrak{S} \subseteq \mathfrak{M}^{<1}$ is grid-based, then there is a finite $\mathfrak{E} \subseteq \mathfrak{M}^{<1}$ with $\mathfrak{S} \subseteq \mathfrak{E}^{*}$ (whence $\left.\mathfrak{S}^{*} \subseteq \mathfrak{E}^{*}\right)$.
Proof. Let $\mathfrak{F} \subseteq \mathfrak{M}$ and $\mathfrak{G} \subseteq \mathfrak{M}^{<1}$ be finite with $\mathfrak{S} \subseteq \mathfrak{F} \mathfrak{G}^{*}$.
Given $\mathfrak{f} \in \mathfrak{F}$, the set $\left(\mathfrak{f} \mathfrak{G}^{*}\right) \cap \mathfrak{M}^{<1}$ is a final segment of $\mathfrak{f} \mathfrak{G}^{*}$ for \geqslant !.
Let $\mathfrak{H}_{\mathfrak{f}} \subseteq \mathfrak{M}^{<1}$ be a finite set of generators. Note that $\left(\mathfrak{f} \mathfrak{G}^{*}\right) \cap \mathfrak{M}^{<1} \subseteq \mathfrak{H}_{\mathfrak{f}} \mathfrak{G}^{*}$.

Definition

$$
\mathfrak{S} \subseteq \mathfrak{F} \mathfrak{E}^{*} .
$$

Proposition

The map $\mathscr{G}: \mathfrak{M} \longmapsto\{\mathfrak{S} \subseteq \mathfrak{M}: \mathfrak{S}$ is grid-based $\}$ is a support type.

Lemma

Proof. Let $\mathfrak{F} \subseteq \mathfrak{M}$ and $\mathfrak{G} \subseteq \mathfrak{M}^{<1}$ be finite with $\mathfrak{S} \subseteq \mathfrak{F} \mathfrak{G}^{*}$.
Given $\mathfrak{f} \in \mathfrak{F}$, the set $\left(\mathfrak{f} \mathfrak{G}^{*}\right) \cap \mathfrak{M}^{<1}$ is a final segment of $\mathfrak{f} \mathfrak{G}^{*}$ for $\succcurlyeq^{!}$.
Let $\mathfrak{H}_{\mathfrak{f}} \subseteq \mathfrak{M}^{<1}$ be a finite set of generators. Note that $\left(\mathfrak{f} \mathfrak{G}^{*}\right) \cap \mathfrak{M}^{<1} \subseteq \mathfrak{H}_{\mathfrak{f}} \mathfrak{G}^{*}$.
Now it suffices to take $\mathfrak{E}:=\mathfrak{G} \cup \bigcup_{\mathfrak{f} \in \mathfrak{F}} \mathfrak{H}_{\mathfrak{f}}$.

Proposition

The map $\mathscr{G}: \mathfrak{M} \longmapsto\{\mathfrak{S} \subseteq \mathfrak{M}: \mathfrak{S}$ is grid-based $\}$ is a support type.

Proposition

The map $\mathscr{G}: \mathfrak{M} \longmapsto\{\mathfrak{S} \subseteq \mathfrak{M}: \mathfrak{S}$ is grid-based $\}$ is a support type.
Remark. For any other support type \mathscr{S}, we have $\mathscr{S}(\mathfrak{M}) \supseteq \mathscr{G}(\mathfrak{M})$, for all \mathfrak{M}.

Proposition

The map $\mathscr{G}: \mathfrak{M} \longmapsto\{\mathfrak{S} \subseteq \mathfrak{M}: \mathfrak{S}$ is grid-based $\}$ is a support type.
Remark. For any other support type \mathscr{S}, we have $\mathscr{S}(\mathfrak{M}) \supseteq \mathscr{G}(\mathfrak{M})$, for all \mathfrak{M}.
We denote $R[\mathfrak{M}]:=R[[\mathfrak{M}]]_{\mathscr{G}}$.

Proposition

The map $\mathscr{G}: \mathfrak{M} \longmapsto\{\mathfrak{S} \subseteq \mathfrak{M}: \mathfrak{S}$ is grid-based $\}$ is a support type.
Remark. For any other support type \mathscr{S}, we have $\mathscr{S}(\mathfrak{M}) \supseteq \mathscr{G}(\mathfrak{M})$, for all \mathfrak{M}.
We denote $R[\mathfrak{M}\rceil]:=R[[\mathfrak{M}]]]_{\mathscr{c}}$.
Elements of $R \llbracket \mathfrak{M} \rrbracket$ are called grid-based series.

Proposition

The map $\mathscr{G}: \mathfrak{M} \longmapsto\{\mathfrak{S} \subseteq \mathfrak{M}: \mathfrak{S}$ is grid-based $\}$ is a support type.
Remark. For any other support type \mathscr{S}, we have $\mathscr{S}(\mathfrak{M}) \supseteq \mathscr{G}(\mathfrak{M})$, for all \mathfrak{M}.
We denote $R[\mathfrak{M}]]:=R[[\mathfrak{M}]] \varsigma$.
Elements of $R \llbracket \mathfrak{M} \rrbracket$ are called grid-based series.
\mathscr{G}-based families are called grid-based families. Etc.

Cartesian representations

Proposition

For any $f \in R[\mathfrak{M}]]$, there exist power series $\check{f}_{1}, \ldots, \check{f}_{l} \in R\left[\left[z_{1}, \ldots, z_{k}\right]\right]$, monomials $\mathfrak{f}_{1}, \ldots, \mathfrak{f}_{l} \in \mathfrak{M}$ and $\mathfrak{e}_{1}, \ldots, \mathfrak{e}_{k} \in \mathfrak{M}^{<1}$ with

$$
f=\sum_{1 \leqslant i \leqslant l}\left(\check{f}_{i} \circ\left(\mathfrak{e}_{1}, \ldots, \mathfrak{e}_{k}\right)\right) \mathfrak{f}_{i} .
$$

Proposition

Assume that \mathfrak{M} is a totally ordered group.
For any $f \in R \llbracket \mathfrak{M} \rrbracket$, there exists a Laurent series $\check{f} \in R\left(\left(z_{1}, \ldots, z_{k}\right)\right)$ and $\mathfrak{e}_{1}, \ldots, \mathfrak{e}_{k} \in \mathfrak{M}^{<1}$ with

$$
f=\check{f} \circ\left(\mathfrak{e}_{1}, \ldots, \mathfrak{e}_{k}\right) .
$$

Here $\left(g z_{1}^{i_{1}} \cdots z_{k}^{i_{k}}\right) \circ\left(\mathfrak{e}_{1}, \ldots, \mathfrak{e}_{k}\right):=\left(g \circ\left(\mathfrak{e}_{1}, \ldots, \mathfrak{e}_{k}\right)\right) \mathfrak{e}_{1}^{i_{1}} \cdots \mathfrak{e}_{k}^{i_{k}}$ for any $g \in R\left[\left[z_{1}, \ldots, z_{k}\right]\right], i_{1}, \ldots, i_{k} \in \mathbb{Z}$.

Cartesian representations

Proposition

For any $f \in R[\mathfrak{M}]]$, there exist power series $\check{f}_{1}, \ldots, \check{f}_{l} \in R\left[\left[z_{1}, \ldots, z_{k}\right]\right]$, monomials $\mathfrak{f}_{1}, \ldots, \mathfrak{f}_{l} \in \mathfrak{M}$ and $\mathfrak{e}_{1}, \ldots, \mathfrak{e}_{k} \in \mathfrak{M}^{<1}$ with

$$
f=\sum_{1 \leqslant i \leqslant l}\left(\check{f}_{i} \circ\left(\mathfrak{e}_{1}, \ldots, \mathfrak{e}_{k}\right)\right) \mathfrak{f}_{i} .
$$

Proposition

Assume that \mathfrak{M} is a totally ordered group.
For any $f \in R \llbracket \mathfrak{M} \rrbracket$, there exists a Laurent series $\check{f} \in R\left(\left(z_{1}, \ldots, z_{k}\right)\right)$ and $\mathfrak{e}_{1}, \ldots, \mathfrak{e}_{k} \in \mathfrak{M}^{<1}$ with

$$
f=\check{f} \circ\left(\mathfrak{e}_{1}, \ldots, \mathfrak{e}_{k}\right)
$$

We call (\star) a Cartesian representation off.

Digression - local communities

Definition

Let \mathscr{L} be a collection of subsets $\mathscr{L}_{k} \subseteq R\left[\left[z_{1}, \ldots, z_{k}\right]\right]$ for $k \in \mathbb{N}$, such that
L1. $z_{i} \in \mathscr{L}_{k}$ for $i=1, \ldots, k$.
L2. \mathscr{L}_{k} is an R-subalgebra of $R\left[\left[z_{1}, \ldots, z_{k}\right]\right]$.
L3. For any $f \in \mathscr{L}_{k}$ with $z_{1} \mid f$, we have $z^{-1} f \in \mathscr{L}_{k}$.
L4. Given $f \in \mathscr{L}_{k}$ and $g_{1}, \ldots, g_{k} \in \mathscr{L}_{l}^{<1}$, we have $f \circ\left(g_{1}, \ldots, g_{k}\right) \in \mathscr{L}_{l}$.
L5. Given $f \in \mathscr{L}_{k+1}$ with $f(0, \ldots, 0)=0$ and $\left(\partial f / \partial z_{k+1}\right)(0, \ldots, 0)=1$, the unique $\varphi \in R\left[\left[z_{1}, \ldots, z_{k}\right]\right]$ with $f \circ\left(z_{1}, \ldots, z_{k}, \varphi\right)=0$ is in \mathscr{L}_{k}.

Digression - local communities

Definition

Let \mathscr{L} be a collection of subsets $\mathscr{L}_{k} \subseteq R\left[\left[z_{1}, \ldots, z_{k}\right]\right]$ for $k \in \mathbb{N}$, such that
L1. $z_{i} \in \mathscr{L}_{k}$ for $i=1, \ldots, k$.
L2. \mathscr{L}_{k} is an R-subalgebra of $R\left[\left[z_{1}, \ldots, z_{k}\right]\right]$.
L3. For any $f \in \mathscr{L}_{k}$ with $z_{1} \mid f$, we have $z^{-1} f \in \mathscr{L}_{k}$.
L4. Given $f \in \mathscr{L}_{k}$ and $g_{1}, \ldots, g_{k} \in \mathscr{L}_{l}^{<1}$, we have $f \circ\left(g_{1}, \ldots, g_{k}\right) \in \mathscr{L}_{l}$.
L5. Given $f \in \mathscr{L}_{k+1}$ with $f(0, \ldots, 0)=0$ and $\left(\partial f / \partial z_{k+1}\right)(0, \ldots, 0)=1$, the unique $\varphi \in R\left[\left[z_{1}, \ldots, z_{k}\right]\right]$ with $f \circ\left(z_{1}, \ldots, z_{k}, \varphi\right)=0$ is in \mathscr{L}_{k}.

Examples.

Digression - local communities

Definition

Let \mathscr{L} be a collection of subsets $\mathscr{L}_{k} \subseteq R\left[\left[z_{1}, \ldots, z_{k}\right]\right]$ for $k \in \mathbb{N}$, such that
L1. $z_{i} \in \mathscr{L}_{k}$ for $i=1, \ldots, k$.
L2. \mathscr{L}_{k} is an R-subalgebra of $R\left[\left[z_{1}, \ldots, z_{k}\right]\right]$.
L3. For any $f \in \mathscr{L}_{k}$ with $z_{1} \mid f$, we have $z^{-1} f \in \mathscr{L}_{k}$.
L4. Given $f \in \mathscr{L}_{k}$ and $g_{1}, \ldots, g_{k} \in \mathscr{L}_{l}^{<1}$, we have $f \circ\left(g_{1}, \ldots, g_{k}\right) \in \mathscr{L}_{l}$.
L5. Given $f \in \mathscr{L}_{k+1}$ with $f(0, \ldots, 0)=0$ and $\left(\partial f / \partial z_{k+1}\right)(0, \ldots, 0)=1$, the unique $\varphi \in R\left[\left[z_{1}, \ldots, z_{k}\right]\right]$ with $f \circ\left(z_{1}, \ldots, z_{k}, \varphi\right)=0$ is in \mathscr{L}_{k}.

Examples.

- $\mathscr{L}_{k}=\mathbb{K}\left\{\left\{z_{1}, \ldots, z_{k}\right\}\right\}$, convergent power series, $\mathbb{K} \subseteq \mathbb{C}$.

Digression - local communities

Definition

Let \mathscr{L} be a collection of subsets $\mathscr{L}_{k} \subseteq R\left[\left[z_{1}, \ldots, z_{k}\right]\right]$ for $k \in \mathbb{N}$, such that
L1. $z_{i} \in \mathscr{L}_{k}$ for $i=1, \ldots, k$.
L2. \mathscr{L}_{k} is an R-subalgebra of $R\left[\left[z_{1}, \ldots, z_{k}\right]\right]$.
L3. For any $f \in \mathscr{L}_{k}$ with $z_{1} \mid f$, we have $z^{-1} f \in \mathscr{L}_{k}$.
L4. Given $f \in \mathscr{L}_{k}$ and $g_{1}, \ldots, g_{k} \in \mathscr{L}_{l}^{<1}$, we have $f \circ\left(g_{1}, \ldots, g_{k}\right) \in \mathscr{L}_{l}$.
L5. Given $f \in \mathscr{L}_{k+1}$ with $f(0, \ldots, 0)=0$ and $\left(\partial f / \partial z_{k+1}\right)(0, \ldots, 0)=1$,
the unique $\varphi \in R\left[\left[z_{1}, \ldots, z_{k}\right]\right]$ with $f \circ\left(z_{1}, \ldots, z_{k}, \varphi\right)=0$ is in \mathscr{L}_{k}.

Examples.

- $\mathscr{L}_{k}=\mathbb{K}\left\{\left\{z_{1}, \ldots, z_{k}\right\}\right\}$, convergent power series, $\mathbb{K} \subseteq \mathbb{C}$.
- $\mathscr{L}_{k}=K\left[\left[z_{1}, \ldots, z_{k}\right]\right]^{\text {alg }}$, algebraic power series, K any field.

Definition

Let \mathscr{L} be a collection of subsets $\mathscr{L}_{k} \subseteq R\left[\left[z_{1}, \ldots, z_{k}\right]\right]$ for $k \in \mathbb{N}$, such that
L1. $z_{i} \in \mathscr{L}_{k}$ for $i=1, \ldots, k$.
L2. \mathscr{L}_{k} is an R-subalgebra of $R\left[\left[z_{1}, \ldots, z_{k}\right]\right]$.
L3. For any $f \in \mathscr{L}_{k}$ with $z_{1} \mid f$, we have $z^{-1} f \in \mathscr{L}_{k}$.
L4. Given $f \in \mathscr{L}_{k}$ and $g_{1}, \ldots, g_{k} \in \mathscr{L}_{l}^{<1}$, we have $f \circ\left(g_{1}, \ldots, g_{k}\right) \in \mathscr{L}_{l}$.
L5. Given $f \in \mathscr{L}_{k+1}$ with $f(0, \ldots, 0)=0$ and $\left(\partial f / \partial z_{k+1}\right)(0, \ldots, 0)=1$, the unique $\varphi \in R\left[\left[z_{1}, \ldots, z_{k}\right]\right]$ with $f \circ\left(z_{1}, \ldots, z_{k}, \varphi\right)=0$ is in \mathscr{L}_{k}.

Examples.

- $\mathscr{L}_{k}=\mathbb{K}\left\{\left\{z_{1}, \ldots, z_{k}\right\}\right\}$, convergent power series, $\mathbb{K} \subseteq \mathbb{C}$.
- $\mathscr{L}_{k}=K\left[\left[z_{1}, \ldots, z_{k}\right]\right]^{\text {alg }}$, algebraic power series, K any field.
- $\mathscr{L}_{k}=K\left[\left[z_{1}, \ldots, z_{k}\right]\right]^{\text {dalg }}$, d-algebraic power series, K any field with char $K=0$.

Digression — local communities

\mathfrak{M} totally ordered monomial group
\mathscr{L} local community

Digression - local communities

\mathfrak{M} totally ordered monomial group
\mathscr{L} local community

Definition

We define $R \llbracket \mathfrak{M} \rrbracket_{\mathscr{L}}$ to be the set of $f \in R \llbracket \mathfrak{M} \rrbracket$ with

$$
f=\check{f} \circ\left(\mathfrak{e}_{1}, \ldots, \mathfrak{e}_{k}\right),
$$

for some $\check{f} \in \mathscr{L}_{k} z_{1}^{Z} \cdots z_{k}^{Z}$ and $\mathfrak{e}_{1}, \ldots, \mathfrak{e}_{k} \in \mathfrak{M}^{<1}$.

Digression — local communities

\mathfrak{M} totally ordered monomial group
\mathscr{L} local community

Definition

We define $R \llbracket \mathfrak{M} \rrbracket_{\mathscr{B}}$ to be the set of $f \in R \llbracket \mathfrak{M} \rrbracket$ with

$$
f=\check{f} \circ\left(\mathfrak{e}_{1}, \ldots, \mathfrak{e}_{k}\right),
$$

for some $\check{f} \in \mathscr{L}_{k} z_{1}^{Z} \cdots z_{k}^{Z}$ and $\mathfrak{e}_{1}, \ldots, \mathfrak{e}_{k} \in \mathfrak{M}^{<1}$.

Theorem

If K is a field, then so is $K \llbracket \mathfrak{M} \rrbracket_{\mathscr{S}}$ is a field. Moreover, if \mathfrak{M} has \mathbb{Q}-powers, then
a) If K is algebraically closed and of characteristic zero, then so is $K \llbracket \mathfrak{M} \rrbracket_{\mathscr{L}}$.
b) If K is real closed, then so is $K \llbracket \mathfrak{M} \rrbracket_{g}$.

K algebraically closed field
$\Gamma \quad$ divisible totally ordered abelian group: $(\forall \gamma \in \Gamma)\left(\forall n \in \mathbb{N}^{>0}\right)(\exists \alpha \in \Gamma) n \alpha=\gamma$ corresponding monomial group, $z^{\alpha} \leqslant z^{\beta} \Leftrightarrow \alpha \geqslant \beta$.

K algebraically closed field
$\Gamma \quad$ divisible totally ordered abelian group: $(\forall \gamma \in \Gamma)\left(\forall n \in \mathbb{N}^{>0}\right)(\exists \alpha \in \Gamma) n \alpha=\gamma$ corresponding monomial group, $z^{\alpha} \leqslant z^{\beta} \Leftrightarrow \alpha \geqslant \beta$.

Our goal

Given $P \in K\left[\left[z^{\Gamma}\right]\right][Y] \backslash K\left[\left[z^{\Gamma}\right]\right]$, compute the solutions in $K\left[\left[z^{\Gamma}\right]\right]$ of

$$
P(y)=0 .
$$

K algebraically closed field
$\Gamma \quad$ divisible totally ordered abelian group: $(\forall \gamma \in \Gamma)\left(\forall n \in \mathbb{N}^{>0}\right)(\exists \alpha \in \Gamma) n \alpha=\gamma$ corresponding monomial group, $z^{\alpha} \leqslant z^{\beta} \Leftrightarrow \alpha \geqslant \beta$.

Our goal

Given $P \in K\left[\left[z^{\Gamma}\right]\right][Y] \backslash K\left[\left[z^{\Gamma}\right]\right]$ and $\gamma \in \Gamma$, compute the solutions in $K\left[\left[z^{\Gamma}\right]\right]$ of

$$
P(y)=0, \quad\left(y<z^{\eta}\right) .
$$

K algebraically closed field
$\Gamma \quad$ divisible totally ordered abelian group: $(\forall \gamma \in \Gamma)\left(\forall n \in \mathbb{N}^{>0}\right)(\exists \alpha \in \Gamma) n \alpha=\gamma$ corresponding monomial group, $z^{\alpha} \leqslant z^{\beta} \Leftrightarrow \alpha \geqslant \beta$.

Our goal

Given $P \in K\left[\left[z^{\Gamma}\right]\right][Y] \backslash K\left[\left[z^{\Gamma}\right]\right]$ and $\gamma \in \Gamma$, compute the solutions in $K\left[\left[z^{\Gamma}\right]\right]$ of

$$
P(y)=0, \quad\left(y<z^{\eta}\right) .
$$

We may replace $K\left[\left[z^{\Gamma}\right]\right]$ by $K\left[\left[z^{\Gamma}\right]\right]_{\mathscr{L}}$ or $K \llbracket\left[z^{\Gamma}\right]_{\mathscr{L}}$.

$$
P_{d} y^{d}+\cdots+P_{0}=0, \quad\left(y<z^{\gamma}\right)
$$

$$
P_{d} y^{d}+\cdots+P_{0}=0, \quad\left(y<z^{\gamma}\right)
$$

Consider some $y \in K\left[\left[z^{\Gamma}\right]\right]^{\neq 0}$ with $y<z^{\gamma}$.

$$
P_{d} y^{d}+\cdots+P_{0}=0, \quad\left(y<z^{\gamma}\right)
$$

Consider some $y \in K\left[\left[z^{\Gamma}\right]\right]^{\neq 0}$ with $y<z^{\gamma}$.
Let i be an index for which $P_{i} y^{i}$ is $\preccurlyeq-$ maximal.

$$
\begin{equation*}
P_{d} y^{d}+\cdots+P_{0}=0, \quad\left(y<z^{\gamma}\right) \tag{*}
\end{equation*}
$$

Consider some $y \in K\left[\left[z^{\Gamma}\right]\right]^{\neq 0}$ with $y<z^{\gamma}$.
Let i be an index for which $P_{i} y^{i}$ is $\leqslant-$ maximal.
If $P_{j} y^{j}<P_{i} y^{i}$ for all $j \neq i$, then $P_{d} y^{d}+\cdots+P_{0} \sim P_{i} y^{i} \neq 0$.

$$
P_{d} y^{d}+\cdots+P_{0}=0, \quad\left(y<z^{\gamma}\right)
$$

Consider some $y \in K\left[\left[z^{\Gamma}\right]\right]^{\neq 0}$ with $y<z^{\gamma}$.
Let i be an index for which $P_{i} y^{i}$ is $\preccurlyeq-$ maximal.
If $P_{j} y^{j}<P_{i} y^{i}$ for all $j \neq i$, then $P_{d} y^{d}+\cdots+P_{0} \sim P_{i} y^{i} \neq 0$.
If y satisfies ($*$), it follows that there exists a $j \neq i$ with

$$
P_{i} y^{i}=P_{j} y^{j} \geqslant P_{k} y^{k}, \quad \text { for all } k .
$$

$$
P_{d} y^{d}+\cdots+P_{0}=0, \quad\left(y<z^{\gamma}\right)
$$

Consider some $y \in K\left[\left[z^{\Gamma}\right]\right]^{\neq 0}$ with $y<z^{\gamma}$.
Let i be an index for which $P_{i} y^{i}$ is \leqslant-maximal.
If $P_{j} y^{j}<P_{i} y^{i}$ for all $j \neq i$, then $P_{d} y^{d}+\cdots+P_{0} \sim P_{i} y^{i} \neq 0$.
If y satisfies ($*$), it follows that there exists a $j \neq i$ with

$$
P_{i} y^{i}=P_{j} y^{j} \geqslant P_{k} y^{k}, \quad \text { for all } k .
$$

Setting $z^{\pi_{k}}:=\mathfrak{d}_{P_{k}}$ for $k=0, \ldots, d$, and $z^{\nu}:=\mathfrak{d}_{y}$, this means that there exist $i \neq j$ with

$$
v>\gamma, \quad \pi_{i}+i v=\pi_{j}+j v \leqslant \pi_{k}+k v, \quad \text { for all } k .
$$

$$
P_{d} y^{d}+\cdots+P_{0}=0, \quad\left(y<z^{\gamma}\right)
$$

Consider some $y \in K\left[\left[z^{\Gamma}\right]\right]^{\neq 0}$ with $y<z^{\gamma}$.
Let i be an index for which $P_{i} y^{i}$ is \preccurlyeq-maximal.
If $P_{j} y^{j}<P_{i} y^{i}$ for all $j \neq i$, then $P_{d} y^{d}+\cdots+P_{0} \sim P_{i} y^{i} \neq 0$.
If y satisfies (\star), it follows that there exists a $j \neq i$ with

$$
P_{i} y^{i} \asymp P_{j} y^{j} \geqslant P_{k} y^{k}, \quad \text { for all } k
$$

Setting $z^{\pi_{k}}:=\mathfrak{d}_{P_{k}}$ for $k=0, \ldots, d$, and $z^{\nu}:=\mathfrak{d}_{y}$, this means that there exist $i \neq j$ with

$$
v>\gamma, \quad \pi_{i}+i v=\pi_{j}+j v \leqslant \pi_{k}+k v, \quad \text { for all } k
$$

We call z^{v} a starting monomial for the equation (\star).

$$
5 z^{2} y^{3}+y^{2}+3 z^{3} y-\frac{z}{1-z}=0
$$

$$
5 z^{2} y^{3}+y^{2}+3 z^{3} y-\frac{z}{1-z}=0
$$

$$
5 z^{2} y^{3}+y^{2}+3 z^{3} y-\frac{z}{1-z}=0
$$

$$
5 z^{2} y^{3}+y^{2}+3 z^{3} y-\frac{z}{1-z}=0
$$

Starting monomials $z^{\nu}=y$?

$$
5 z^{2} y^{3}+y^{2}+3 z^{3} y-\frac{z}{1-z}=0
$$

Starting monomials $z^{v}=y$?

- $P_{0}=P_{1} y \Longrightarrow z=z^{3+v} \Longrightarrow v=-2$

$$
5 z^{2} y^{3}+y^{2}+3 z^{3} y-\frac{z}{1-z}=0
$$

Starting monomials $z^{\nu}=y$?

- $P_{0}=P_{1} y \Longrightarrow z=z^{3+v} \Longrightarrow v=-2$ But then $P_{2} y^{2} \asymp z^{0+2 v}=z^{-4}>z \asymp P_{0}$

$$
5 z^{2} y^{3}+y^{2}+3 z^{3} y-\frac{z}{1-z}=0
$$

Starting monomials $z^{v}=y$?

- $P_{0}=P_{1} y \Longrightarrow z=z^{3+v} \Longrightarrow v=-2$ Not OK, since $P_{2} y^{2}>P_{0}$

$$
5 z^{2} y^{3}+y^{2}+3 z^{3} y-\frac{z}{1-z}=0
$$

Starting monomials $z^{v}=y$?

- $P_{0}=P_{1} y \Longrightarrow z=z^{3+v} \Longrightarrow v=-2$

Not OK, since $P_{2} y^{2}>P_{0}$

- $P_{0}=P_{2} y^{2} \Longrightarrow z=z^{0+2 v} \Longrightarrow v=1 / 2$

$$
5 z^{2} y^{3}+y^{2}+3 z^{3} y-\frac{z}{1-z}=0
$$

Starting monomials $z^{v}=y$?

- $P_{0}=P_{1} y \Longrightarrow z=z^{3+v} \Longrightarrow v=-2$

Not OK, since $P_{2} y^{2}>P_{0}$

- $P_{0}=P_{2} y^{2} \Longrightarrow z=z^{0+2 v} \Longrightarrow \quad v=1 / 2$

OK, since $P_{1} y=z^{3+v}=z^{3^{1 / 2}} \leqslant z=P_{0}$

$$
P_{3} y^{3} \asymp z^{2+3 v}=z^{3^{1 / 2}} \leqslant z \asymp P_{0}
$$

$$
5 z^{2} y^{3}+y^{2}+3 z^{3} y-\frac{z}{1-z}=0
$$

Starting monomials $z^{v}=y$?

- $P_{0}=P_{1} y \Longrightarrow z=z^{3+v} \Longrightarrow v=-2$

Not OK, since $P_{2} y^{2}>P_{0}$

- $P_{0} \asymp P_{2} y^{2} \Longrightarrow z=z^{0+2 v} \Longrightarrow \quad v=1 / 2$ OK, since $P_{1} y, P_{3} y^{2} \leqslant P_{0}$
- $P_{0}=P_{3} y^{3} \Longrightarrow z=z^{2+3 v} \Longrightarrow v=-1 / 3$ Not OK, since $P_{2} y^{2}>P_{0}$

$$
5 z^{2} y^{3}+y^{2}+3 z^{3} y-\frac{z}{1-z}=0
$$

Starting monomials $z^{v}=y$?

- $P_{0}=P_{1} y \Longrightarrow z=z^{3+v} \Longrightarrow v=-2$

Not OK, since $P_{2} y^{2}>P_{0}$

- $P_{0}=P_{2} y^{2} \Longrightarrow z=z^{0+2 v} \Longrightarrow \quad \nu=1 / 2$ OK, since $P_{1} y, P_{3} y^{2} \leqslant P_{0}$
- $P_{0}=P_{3} y^{3} \Longrightarrow z=z^{2+3 v} \Longrightarrow v=-1 / 3$ Not OK, since $P_{2} y^{2}>P_{0}$
- $P_{2} y^{2} \asymp P_{3} y^{3} \Longrightarrow z^{0+2 v}=z^{2+3 v} \Longrightarrow v=-2$
 OK, since $P_{0}, P_{1} y>P_{2} y^{2}$

$$
5 z^{2} y^{3}+y^{2}+3 z^{3} y-\frac{z}{1-z}=0
$$

Starting monomials $z^{\nu}=y$?

- $v=1 / 2$
- $v=-2$

$$
5 z^{2} y^{3}+y^{2}+3 z^{3} y-\frac{z}{1-z}=0
$$

Consider the starting monomial $z^{1 / 2}$.

$$
5 z^{2} y^{3}+y^{2}+3 z^{3} y-\frac{z}{1-z}=0
$$

Consider the starting monomial $z^{1 / 2}$.
If $y \sim c z^{1 / 2}$, then

$$
\begin{aligned}
5 z^{2} y^{3} & <z \\
y^{2} & \sim c^{2} z \\
3 z^{2} y & <z \\
-\frac{z}{1-z} & \sim-z
\end{aligned}
$$

$$
5 z^{2} y^{3}+y^{2}+3 z^{3} y-\frac{z}{1-z}=0
$$

Consider the starting monomial $z^{1 / 2}$.
If $y \sim c z^{1 / 2}$, then

$$
\begin{aligned}
5 z^{2} y^{3} & \prec z \\
y^{2} & \sim c^{2} z \\
3 z^{2} y & <z \\
-\frac{z}{1-z} & \sim-z \\
5 z^{2} y^{3}+y^{2}+3 z^{3} y-\frac{z}{1-z} & =\left(c^{2}-1\right) z+o(z)
\end{aligned}
$$

$$
5 z^{2} y^{3}+y^{2}+3 z^{3} y-\frac{z}{1-z}=0
$$

If $y \sim c z^{1 / 2}$, then

$$
5 z^{2} y^{3}+y^{2}+3 z^{3} y-\frac{z}{1-z}=\left(c^{2}-1\right) z+o(z)
$$

$$
5 z^{2} y^{3}+y^{2}+3 z^{3} y-\frac{z}{1-z}=0
$$

If $y \sim c z^{1 / 2}$, then

$$
5 z^{2} y^{3}+y^{2}+3 z^{3} y-\frac{z}{1-z}=\left(c^{2}-1\right) z+o(z)
$$

If the right-hand side vanishes, then

$$
c^{2}-1=0
$$

whence

$$
c=1 \vee c=-1
$$

$$
5 z^{2} y^{3}+y^{2}+3 z^{3} y-\frac{z}{1-z}=0
$$

If $y \sim c z^{1 / 2}$, then

$$
5 z^{2} y^{3}+y^{2}+3 z^{3} y-\frac{z}{1-z}=\left(c^{2}-1\right) z+o(z)
$$

If the right-hand side vanishes, then

$$
c^{2}-1=0
$$

whence

$$
c=1 \vee c=-1
$$

We call $z^{1 / 2}$ and $-z^{1 / 2}$ starting terms for the equation.

$$
5 z^{2} y^{3}+y^{2}+3 z^{3} y-\frac{z}{1-z}=0
$$

If $y \sim c z^{1 / 2}$, then

$$
5 z^{2} y^{3}+y^{2}+3 z^{3} y-\frac{z}{1-z}=\left(c^{2}-1\right) z+o(z)
$$

If the right-hand side vanishes, then

$$
c^{2}-1=0
$$

$$
5 z^{2} y^{3}+y^{2}+3 z^{3} y-\frac{z}{1-z}=0
$$

If $y \sim c z^{1 / 2}$, then

$$
5 z^{2} y^{3}+y^{2}+3 z^{3} y-\frac{z}{1-z}=\left(c^{2}-1\right) z+o(z)
$$

If the right-hand side vanishes, then

$$
c^{2}-1=0
$$

$N(c)=c^{2}-1$ is the Newton polynomial for $z^{1 / 2}$.

$$
5 z^{2} y^{3}+y^{2}+3 z^{3} y-\frac{z}{1-z}=0
$$

If $y \sim c z^{-2}$, then $c \neq 0$ and

$$
5 z^{2} y^{3}+y^{2}+3 z^{3} y-\frac{z}{1-z}=\left(5 c^{3}+c^{2}\right) z^{-4}+o\left(z^{-4}\right)
$$

If the right-hand side vanishes, then

$$
5 c^{3}+c^{2}=0
$$

$N(c)=5 c^{3}+c^{2}$ is the Newton polynomial for z^{-2}.

$$
5 z^{2} y^{3}+y^{2}+3 z^{3} y-\frac{z}{1-z}=0
$$

If $y \sim c z^{-2}$, then $c \neq 0$ and

$$
5 z^{2} y^{3}+y^{2}+3 z^{3} y-\frac{z}{1-z}=\left(5 c^{3}+c^{2}\right) z^{-4}+o\left(z^{-4}\right)
$$

If the right-hand side vanishes, then

$$
5 c^{3}+c^{2}=0
$$

$N(c)=5 c^{3}+c^{2}$ is the Newton polynomial for z^{-2}. $-1 / 5 z^{-2}$ is a starting term for the equation.

$$
5 z^{2} y^{3}+y^{2}+3 z^{3} y-\frac{z}{1-z}=0
$$

The starting terms for the equation are:

- $z^{1 / 2}$
- $-z^{1 / 2}$
- $-1 / 5 z^{-2}$

$$
5 z^{2} y^{3}+y^{2}+3 z^{3} y-\frac{z}{1-z}=0
$$

Assume $y \sim z^{1 / 2}$ and peform the change of variables

$$
y=z^{1 / 2}+\tilde{y}
$$

$$
5 z^{2} y^{3}+y^{2}+3 z^{3} y-\frac{z}{1-z}=0
$$

Assume $y \sim z^{1 / 2}$ and consider

$$
y=z^{1 / 2}+\tilde{y} \quad\left(\tilde{y}<z^{1 / 2}\right)
$$

Refinement := change of variable

$$
+
$$

asymptotic constraint

$$
5 z^{2} y^{3}+y^{2}+3 z^{3} y-\frac{z}{1-z}=0
$$

The refinement

$$
y=z^{1 / 2}+\tilde{y} \quad\left(\tilde{y}<z^{1 / 2}\right)
$$

yields

$$
\begin{gathered}
5 z^{2} \tilde{y}^{3} \\
+\left(1+15 z^{21 / 2}\right) \tilde{y}^{2} \\
+\left(2 z^{1 / 2}+18 z^{2^{1 / 2}}\right) \tilde{y} \\
-z^{2}-z^{3}+8 z^{31 / 2}-z^{4}-\cdots=0, \quad\left(\tilde{y}<z^{1 / 2}\right) .
\end{gathered}
$$

$$
5 z^{2} y^{3}+y^{2}+3 z^{3} y-\frac{z}{1-z}=0
$$

The refinement

$$
y=z^{1 / 2}+\tilde{y} \quad\left(\tilde{y}<z^{1 / 2}\right)
$$

yields

$$
\begin{array}{r}
5 z^{2} \tilde{y}^{3} \\
+\left(1+15 z^{2^{1 / 2}}\right) \tilde{y}^{2} \\
+\left(2 z^{1 / 2}+18 z^{2^{1 / 2}}\right) \tilde{y} \\
-z^{2}-z^{3}+8 z^{31 / 2}-z^{4}-\cdots=0, \quad\left(\tilde{y}<z^{1 / 2}\right)
\end{array}
$$

$$
5 z^{2} y^{3}+y^{2}+3 z^{3} y-\frac{z}{1-z}=0
$$

The refinement

$$
y=z^{1 / 2}+\tilde{y} \quad\left(\tilde{y}<z^{1 / 2}\right)
$$

yields

$$
\begin{gathered}
5 z^{2} \tilde{y}^{3} \\
+\left(1+15 z^{2^{1 / 2}}\right) \tilde{y}^{2} \\
+\left(2 z^{1 / 2}+18 z^{2^{1 / 2}}\right) \tilde{y} \\
-z^{2}-z^{3}+8 z^{3^{1 / 2}}-z^{4}-\cdots=0, \quad\left(\tilde{y}<z^{1 / 2}\right) .
\end{gathered}
$$

Only new starting monomial: $\tilde{y}=z^{3 / 2}$.

$$
5 z^{2} y^{3}+y^{2}+3 z^{3} y-\frac{z}{1-z}=0
$$

The refinement

$$
y=z^{1 / 2}+\tilde{y} \quad\left(\tilde{y}<z^{1 / 2}\right)
$$

yields

$$
\begin{array}{r}
5 z^{2} \tilde{y}^{3} \\
+\left(1+15 z^{2^{1 / 2}}\right) \tilde{y}^{2} \\
+\left(2 z^{1 / 2}+18 z^{2^{1 / 2}}\right) \tilde{y} \\
-z^{2}-z^{3}+8 z^{3^{1 / 2}}-z^{4}-\cdots=0, \quad\left(\tilde{y}<z^{1 / 2}\right) .
\end{array}
$$

Only new starting monomial: $\tilde{y}=z^{3 / 2}$.

Only new starting monomial: $\tilde{y} \simeq 1 / 2 z^{3 / 2}$.

$$
5 z^{2} y^{3}+y^{2}+3 z^{3} y-\frac{z}{1-z}=0
$$

Continued refinement process

$$
\begin{array}{ll}
y=z^{1 / 2}+\tilde{y} & \left(\tilde{y}<z^{1 / 2}\right) \\
\tilde{y}=1 / 2 z^{3 / 2}+\tilde{\tilde{y}} & \left(\tilde{\tilde{y}}<z^{3 / 2}\right)
\end{array}
$$

$$
5 z^{2} y^{3}+y^{2}+3 z^{3} y-\frac{z}{1-z}=0
$$

Continued refinement process

$$
\begin{array}{ll}
y=z^{1 / 2}+\tilde{y} & \left(\tilde{y}<z^{1 / 2}\right) \\
\tilde{y}=1 / 2 z^{3 / 2}+\tilde{y} & \left(\tilde{\tilde{y}}<z^{3 / 2}\right)
\end{array}
$$

yields asymptotic expansion

$$
y \approx z^{1 / 2}+1 / 2 z^{3 / 2}+\cdots
$$

$$
5 z^{2} y^{3}+y^{2}+3 z^{3} y-\frac{z}{1-z}=0
$$

Continued refinement process

$$
\begin{array}{ll}
y=z^{1 / 2}+\tilde{y} & \left(\tilde{y}<z^{1 / 2}\right) \\
\tilde{y}=1 / 2 z^{3 / 2}+\tilde{y} & \left(\tilde{\tilde{y}}<z^{3 / 2}\right)
\end{array}
$$

yields asymptotic solution

$$
y=z^{1 / 2}+1 / 2 z^{3 / 2}+\cdots ?
$$

Multiplicative conjugations

$$
P(y)=5 z^{2} y^{3}+y^{2}+3 z^{3} y-\frac{z}{1-z}
$$

Multiplicative conjugate by $z^{1 / 2}$

$$
\begin{aligned}
P_{x z^{1 / 2}}(y) & :=P\left(z^{1 / 2} y\right) \\
& =5 z^{3^{1 / 2}} y^{3}+z y^{2}+3 z^{3^{1 / 2}} y-\frac{z}{1-z}
\end{aligned}
$$

Multiplicative conjugations

$z^{1 / 2}$ is a starting monomial for

$$
P(y)=5 z^{2} y^{3}+y^{2}+3 z^{3} y-\frac{z}{1-z}=0
$$

$\Leftrightarrow 1$ is a starting monomial for

$$
P_{x z^{1 / 2}}(y)=5 z^{3^{1 / 2}} y^{3}+z y^{2}+3 z^{3^{1 / 2}} y-\frac{z}{1-z}=0 .
$$

Multiplicative conjugations

$z^{1 / 2}$ is a starting monomial for

$$
P(y)=5 z^{2} y^{3}+y^{2}+3 z^{3} y-\frac{z}{1-z}=0
$$

$\Leftrightarrow 1$ is a starting monomial for

$$
P_{x z^{1 / 2}}(y)=5 z^{3^{1 / 2}} y^{3}+z y^{2}+3 z^{3^{1 / 2}} y-\frac{z}{1-z}=0 .
$$

Multiplicative conjugations

$z^{1 / 2}$ is a starting monomial for

$$
P(y)=5 z^{2} y^{3}+y^{2}+3 z^{3} y-\frac{z}{1-z}=0
$$

$\Leftrightarrow 1$ is a starting monomial for

$$
P_{x z^{1 / 2}}(y)=5 z^{3^{1 / 2}} y^{3}+z y^{2}+3 z^{3^{1 / 2}} y-\frac{z}{1-z}=0 .
$$

$\left.K\left[z^{\mathrm{T}}\right]\right][Y] \subseteq K[Y]\left[\left[z^{\mathrm{r}}\right]\right]$

$$
K\left[\left[z^{\Gamma}\right]\right][Y] \subseteq K[Y]\left[\left[z^{\Gamma}\right]\right]
$$

We define $D_{P} \in K[Y]$ to be the dominant coefficient of $P \in K\left[\left[z^{\Gamma}\right]\right][Y]^{\neq 0}$ as a series in z :

$$
P=D_{P} \mathfrak{d}_{P}+o\left(\mathfrak{d}_{P}\right) .
$$

$$
K\left[\left[z^{\Gamma}\right]\right][Y] \subseteq K[Y]\left[\left[z^{\Gamma}\right]\right]
$$

We define $D_{P} \in K[Y]$ to be the dominant coefficient of $P \in K\left[\left[z^{\Gamma}\right]\right][Y]^{\neq 0}$ as a series in z :

$$
P=D_{P} \mathfrak{d}_{P}+o\left(\mathfrak{d}_{P}\right)
$$

Characterization of starting monomials

z^{v} is a starting monomial for $P(y)=0 \quad \Longleftrightarrow \quad D_{P_{x^{2}}}$ is not homogeneous.

$$
K\left[\left[z^{\Gamma}\right]\right][Y] \subseteq K[Y]\left[\left[z^{\Gamma}\right]\right]
$$

We define $D_{P} \in K[Y]$ to be the dominant coefficient of $P \in K\left[\left[z^{\Gamma}\right]\right][Y]^{\neq 0}$ as a series in z :

$$
P=D_{P} \mathfrak{d}_{P}+o\left(\mathfrak{d}_{P}\right)
$$

Characterization of starting monomials

z^{v} is a starting monomial for $P(y)=0 \quad \Longleftrightarrow \quad D_{P_{x^{\nu}}}$ is not homogeneous.

Newton polynomials

$N_{P_{x z} z^{2}}:=D_{P_{x z^{\nu}}}$ is the Newton polynomial associated to z^{ν}.

$$
K\left[\left[z^{\Gamma}\right]\right][Y] \subseteq K[Y]\left[\left[z^{\Gamma}\right]\right]
$$

We define $D_{P} \in K[Y]$ to be the dominant coefficient of $P \in K\left[\left[z^{\Gamma}\right]\right][Y]^{\neq 0}$ as a series in z :

$$
P=D_{P} \mathfrak{d}_{P}+o\left(\mathfrak{d}_{P}\right)
$$

Characterization of starting monomials

z^{v} is a starting monomial for $P(y)=0 \quad \Longleftrightarrow \quad D_{P_{x z}}$ is not homogeneous.

Newton polynomials

$N_{P_{x z}}:=D_{P_{x z^{\nu}}}$ is the Newton polynomial associated to z^{ν}.
Characterization of starting terms

$$
c z^{v} \text { is a starting term for } P(y)=0 \quad \Longleftrightarrow \quad N_{P_{x z}}(c)=0 . \quad(c \neq 0)
$$

$$
P(y)=0 \quad\left(y<z^{\gamma}\right)
$$

$$
(\star)
$$

Newton degree of (\star)

$$
\operatorname{deg}_{<z^{\gamma}} P:=\operatorname{val} N_{P_{x z^{2}} \gamma}
$$

$$
P(y)=0 \quad\left(y<z^{\gamma}\right)
$$

Newton degree of (*)

$$
\operatorname{deg}_{<z^{\gamma}} P:=\operatorname{val} N_{P_{x z} r}
$$

Example:

$$
\begin{aligned}
P(y) & =0 \quad\left(y<z^{-2}\right) \\
\operatorname{deg}_{<z^{-2}} P & =\operatorname{val}\left(5 Y^{3}+Y^{2}\right)=2
\end{aligned}
$$

$$
P(y)=0 \quad\left(y<z^{\gamma}\right)
$$

Newton degree of (\star)

$$
\begin{aligned}
\operatorname{deg}_{<z^{\gamma}} P & :=\operatorname{val} N_{P_{x z} \gamma} \\
& =\max _{z^{v}<z^{\gamma}} \operatorname{deg} N_{P_{x_{z}}}
\end{aligned}
$$

Example:

$$
\begin{aligned}
P(y) & =0 \quad\left(y<z^{-2}\right) \\
\operatorname{deg}_{<z^{-2}} P & =\operatorname{val}\left(5 Y^{3}+Y^{2}\right) \\
& =\operatorname{deg} Y^{2}=2
\end{aligned}
$$

$$
P(y)=0 \quad\left(y<z^{\gamma}\right)
$$

Newton degree of (\star)

$$
\begin{aligned}
\operatorname{deg}_{<z^{\gamma}} P & :=\operatorname{val} N_{P_{x z} \gamma} \\
& =\max _{z^{v}<z^{\gamma}} \operatorname{deg} N_{P_{x_{z}}}
\end{aligned}
$$

Example:

$$
\begin{aligned}
P(y) & =0 \quad\left(y<z^{-2}\right) \\
\operatorname{deg}_{<z^{-2}} P & =\operatorname{val}\left(5 Y^{3}+Y^{2}\right) \\
& =\operatorname{deg} Y^{2}=2
\end{aligned}
$$

$$
P(y)=0 \quad\left(y<z^{\gamma}\right) .
$$

Newton degree of (\star)
(if $\operatorname{val}_{Y} P<\operatorname{deg}_{<z^{\gamma}} P$)

$$
\begin{aligned}
\operatorname{deg}_{<z^{\gamma}} P & :=\operatorname{val} N_{P_{x_{z} \gamma}} \\
& =\max _{z^{v}<z^{v}} \max _{P_{x^{\prime} v^{v}}} \\
& ={\operatorname{starting~monomial~} z^{v}<z^{\gamma}}^{\operatorname{deg} N_{P_{x z^{v}}}}
\end{aligned}
$$

Example:

$$
\begin{aligned}
P(y) & =0 \quad\left(y<z^{-2}\right) . \\
\operatorname{deg}_{<z^{-2}} P & =\operatorname{val}\left(5 Y^{3}+Y^{2}\right) \\
& =\operatorname{deg} Y^{2} \\
& =\operatorname{deg}\left(Y^{2}+2 Y\right)=2
\end{aligned}
$$

$$
P(y)=0 \quad\left(y<z^{\gamma}\right) .
$$

Newton degree of (\star)
(if $\operatorname{val}_{Y} P<\operatorname{deg}_{<z^{\gamma}} P$)

$$
\begin{aligned}
\operatorname{deg}_{<z^{\gamma}} P & :=\operatorname{val} N_{P_{x_{z} \gamma}} \\
& =\max _{z^{v}<z^{v}} \max _{P_{x^{\prime} v^{v}}} \\
& ={\operatorname{starting~monomial~} z^{v}<z^{\gamma}}^{\operatorname{deg} N_{P_{x z^{v}}}}
\end{aligned}
$$

Example:

$$
\begin{aligned}
P(y) & =0 \quad\left(y<z^{-2}\right) . \\
\operatorname{deg}_{<z^{-2}} P & =\operatorname{val}\left(5 Y^{3}+Y^{2}\right) \\
& =\operatorname{deg} Y^{2} \\
& =\operatorname{deg}\left(Y^{2}+2 Y\right)=2
\end{aligned}
$$

Given $P \in K\left[\left[z^{\Gamma}\right]\right][Y]$ and $\varphi \in K\left[\left[z^{\Gamma}\right]\right]$, the additive conjugate of P by φ is

$$
P_{+\varphi}(y):=P(\varphi+y)
$$

Let $N \in K[Y]^{\neq 0}$ and let $c \in K$. Then

$$
\text { val } N_{+c}=\text { multiplicity of } c \text { as a root of } N
$$

Let $c_{1}, \ldots, c_{\ell} \in K$ be the roots of N. Since K is algebraically closed, we have

$$
\operatorname{deg} N=\operatorname{val} N_{+c_{1}}+\cdots+\operatorname{val} N_{+c_{\epsilon}} .
$$

Consider an equation $P(y)=0, y<z^{\gamma}$ of Newton degree d :

$$
d=\operatorname{deg}_{<z^{r}} P .
$$

Consider an equation $P(y)=0, y<z^{\gamma}$ of Newton degree d :

$$
d=\operatorname{deg}_{<z^{r}} P .
$$

If $\operatorname{val}_{Y} P=d$, then $y=0$ is a solution of multiplicity d.

Consider an equation $P(y)=0, y<z^{\gamma}$ of Newton degree d :

$$
d=\operatorname{deg}_{<z^{r}} P .
$$

Assume that $\operatorname{val}_{Y} P<d$ and let z^{ν} be the largest starting monomial. We have

$$
d=\operatorname{deg} N, \quad N:=N_{P_{x<2}} .
$$

Consider an equation $P(y)=0, y<z^{\gamma}$ of Newton degree d :

$$
d=\operatorname{deg}_{<z^{r}} P .
$$

Assume that $\operatorname{val}_{Y} P<d$ and let z^{ν} be the largest starting monomial. We have

$$
d=\operatorname{deg} N, \quad N:=N_{P_{x_{2}}} .
$$

Let $c_{1}, \ldots, c_{\ell} \in K$ be the roots of N. Then

$$
d=\operatorname{deg} N=\operatorname{val} N_{+c_{1}}+\cdots+\operatorname{val} N_{+c_{c}} .
$$

Consider an equation $P(y)=0, y<z^{\gamma}$ of Newton degree d :

$$
d=\operatorname{deg}_{<z^{7}} P .
$$

Assume that $\operatorname{val}_{\gamma} P<d$ and let z^{ν} be the largest starting monomial. We have

$$
d=\operatorname{deg} N, \quad N:=N_{P_{x 2} \nu^{*}} .
$$

Let $c_{1}, \ldots, c_{\ell} \in K$ be the roots of N. Then

$$
d=\operatorname{deg} N=\operatorname{val} N_{+c_{1}}+\cdots+\operatorname{val} N_{+c_{c}} .
$$

For any $\alpha \in K$, we have $P_{x z^{\nu},+\alpha}=P_{+\alpha z^{\nu}, x z^{v}}$ and $N_{P_{+\alpha}}=N_{P,+\alpha}$, whence

$$
\operatorname{val} N_{+c_{i}}=\operatorname{val} N_{P_{+c i^{\prime}}{ }^{\nu} \times x^{v}}=\operatorname{deg}_{\left\langle z^{v}\right.} P_{+c_{z} z^{v}} .
$$

Consider an equation $P(y)=0, y<z^{\gamma}$ of Newton degree d :

$$
d=\operatorname{deg}_{<z^{7}} P .
$$

Assume that $\operatorname{val}_{\gamma} P<d$ and let z^{ν} be the largest starting monomial. We have

$$
d=\operatorname{deg} N, \quad N:=N_{P_{x 2} \nu^{*}} .
$$

Let $c_{1}, \ldots, c_{\ell} \in K$ be the roots of N. Then

$$
d=\operatorname{deg} N=\operatorname{val} N_{+c_{1}}+\cdots+\operatorname{val} N_{+c_{c}} .
$$

For any $\alpha \in K$, we have $P_{x z^{\nu},+\alpha}=P_{+\alpha z^{\nu}, x z^{v}}$ and $N_{P_{+\alpha}}=N_{P,+\alpha}$, whence

$$
\operatorname{val} N_{+c_{i}}=\operatorname{val} N_{P_{+c i^{\prime}}{ }^{\nu} \times x^{v}}=\operatorname{deg}_{\left\langle z^{v}\right.} P_{+c_{z} z^{v}} .
$$

Hence

$$
d=\operatorname{deg}_{\left\langle z^{u}\right.} P_{+c_{1} z^{u}}+\cdots+\operatorname{deg}_{\left\langle z^{u}\right.} P_{+c_{z} z^{\nu}} .
$$

Conservation of Newton degree

Consider an asymptotic algebraic equation

$$
P(y)=0 \quad\left(y<z^{\gamma}\right)
$$

with $\operatorname{val}_{Y} P<\operatorname{deg}_{\left\langle z^{\gamma}\right.} P$ and let z^{ν} be the largest starting monomial. Let c_{1}, \ldots, c_{ℓ} be the roots of $N:=N_{P_{x} z^{\prime}}$, so that each c_{i} determines a refined equation

$$
P_{+c_{i} z^{v}}(\tilde{y})=0 \quad\left(\tilde{y}<z^{v}\right)
$$

If K is algebraically closed, then

$$
\operatorname{deg}_{<z^{\nu}} P=\operatorname{deg}_{<z^{\nu}} P_{+c_{1} z^{\nu}}+\cdots+\operatorname{deg}_{<z^{\nu}} P_{+c_{l} z^{v}}
$$

Quasi-linear equations

Definition

The equation

$$
P(y)=0 \quad\left(y<z^{\gamma}\right)
$$

is quasi-linear if $\operatorname{deg}_{<z^{\gamma}} P=1$.

Quasi-linear equations

Consider a quasi-linear equation

$$
P(y)=0 \quad\left(y<z^{\gamma}\right)
$$

Quasi-linear equations

Consider a quasi-linear equation

$$
P(y)=0 \quad\left(y<z^{2}\right)
$$

Without loss of generality, we may arrange that

$$
\operatorname{val} N_{\times z^{\gamma}}=\operatorname{deg} N_{\times z^{\gamma}}=1 .
$$

Quasi-linear equations

Consider a quasi-linear equation

$$
P(y)=0 \quad\left(y<z^{\gamma}\right)
$$

Quasi-linear equations

Consider a quasi-linear equation

$$
P(y)=0 \quad\left(y<z^{\gamma}\right)
$$

Let

$$
\begin{aligned}
& y:=z^{\gamma} u \\
& Q:=P_{x z} .
\end{aligned}
$$

Then (\star) is equivalent to

$$
Q(u)=0 \quad(u<1)
$$

We have $\operatorname{deg}_{<1} Q=\operatorname{val} N_{Q}=\operatorname{deg} N_{Q}=1$.

Quasi-linear equations

Consider a quasi-linear equation

$$
P(y)=0 \quad\left(y<z^{\gamma}\right)
$$

Let

$$
\begin{aligned}
& y:=z^{\gamma} u \\
& Q:=P_{x z} .
\end{aligned}
$$

Then (\star) is equivalent to

$$
Q(u)=0 \quad(u<1)
$$

We have $\operatorname{deg}_{<1} Q=\operatorname{val} N_{Q}=\operatorname{deg} N_{Q}=1$.

Quasi-linear equations

Consider a quasi-linear equation

$$
P(y)=0 \quad\left(y<z^{\gamma}\right)
$$

Let

$$
\begin{aligned}
y & :=z^{\gamma} u \\
Q & :=P_{x z^{\gamma}} \\
R & :=\mathfrak{d}_{Q}^{-1} Q .
\end{aligned}
$$

Then (\star) is equivalent to

$$
R(u)=0 \quad(u<1)
$$

We have $\operatorname{deg}_{<1} R=\operatorname{val} N_{R}=\operatorname{deg} N_{R}=1$ and $\mathfrak{d}_{R}=1$.

Quasi-linear equations

Consider a quasi-linear equation

$$
P(y)=0 \quad\left(y<z^{\gamma}\right)
$$

$$
(\star) \uparrow \Gamma
$$

Let

$$
\begin{aligned}
y & :=z^{\gamma} u \\
Q & :=P_{x z^{\gamma}} \\
R & :=\mathfrak{d}_{Q}^{-1} Q .
\end{aligned}
$$

Then (\star) is equivalent to

$$
R(u)=0 \quad(u<1)
$$

We have $\operatorname{deg}_{<1} R=\operatorname{val} N_{R}=\operatorname{deg} N_{R}=1$ and $\mathfrak{d}_{R}=1$.
The polynomial R is in Hensel position.

Quasi-linear equations

Consider a quasi-linear equation

$$
P(y)=0 \quad\left(y<z^{\gamma}\right)
$$

Let

$$
\begin{aligned}
& y:=z^{\gamma} u \\
& Q:=P_{x z^{\gamma}} \\
& R:=\mathfrak{d}_{Q}^{-1} Q \\
& S:=N_{R, 1}^{-1} R .
\end{aligned}
$$

Then (\star) is equivalent to

$$
S(u)=0 \quad(u<1)
$$

We have val $N_{S}=\operatorname{deg} N_{S}=1, \mathfrak{d}_{S}=1$, and $N_{S, 1}=1$.

Quasi-linear equations

Consider a quasi-linear equation

$$
P(y)=0 \quad\left(y<z^{\gamma}\right)
$$

We have $T<1$. $u=-3 z+2 z u^{3}+O\left(z^{2}\right)$

Fixed point theorem

Theorem

Let $P \in K\left[\left[z^{\Gamma}\right]\right][Y]$ be such that $P<1$. Then

$$
y=P(y) \quad(y<1)
$$

has a unique solution $y \in K\left[\left[z^{\Gamma}\right]\right]$.

Theorem

Let $P \in K\left[\left[z^{\Gamma}\right]\right][Y]$ be such that $P<1$. Then

$$
y=P(y) \quad(y<1)
$$

has a unique solution $y \in K\left[\left[z^{\Gamma}\right]\right]$.
Uniqueness proof. Clear from the following lemma.

Theorem

Let $P \in K\left[\left[z^{\Gamma}\right]\right][Y]$ be such that $P<1$. Then

$$
y=P(y) \quad(y<1)
$$

has a unique solution $y \in K\left[\left[z^{\Gamma}\right]\right]$.
Uniqueness proof. Clear from the following lemma.

Lemma

Given $\varphi, \varepsilon<1$ in $K\left[\left[z^{\gamma}\right]\right]$, we have

$$
P(\varphi+\varepsilon)-P(\varphi) \prec \varepsilon
$$

Theorem

Let $P \in K\left[\left[z^{\Gamma}\right]\right][Y]$ be such that $P<1$. Then

$$
y=P(y) \quad(y<1)
$$

has a unique solution $y \in K\left[\left[z^{\Gamma}\right]\right]$.
Uniqueness proof. Clear from the following lemma.

Lemma

Given $\varphi, \varepsilon<1$ in $K\left[\left[z^{\gamma}\right]\right]$, we have

$$
P(\varphi+\varepsilon)-P(\varphi) \prec \varepsilon .
$$

$$
P(\varphi+\varepsilon)-P(\varphi)=P^{\prime}(\varphi) \varepsilon+\frac{1}{2} P^{\prime \prime}(\varphi) \varepsilon^{2}+\cdots \prec \varepsilon
$$

Fixed point theorem

Theorem

Let $P \in K\left[\left[z^{\Gamma}\right]\right][Y]$ be such that $P<1$. Then

$$
y=P(y) \quad(y<1)
$$

has a unique solution $y \in K\left[\left[z^{\Gamma}\right]\right]$.

Theorem

Let $P \in K\left[\left[z^{\Gamma}\right]\right][Y]$ be such that $P<1$. Then

$$
y=P(y) \quad(y<1)
$$

has a unique solution $y \in K\left[\left[z^{\Gamma}\right]\right]$.
Existence proof. Let $\mathfrak{S}:=(\operatorname{supp} P)^{*}=\left(\operatorname{supp} P_{0} \cup \cdots \cup \operatorname{supp} P_{\operatorname{deg} P}\right)^{*}$.

Theorem

Let $P \in K\left[\left[z^{\Gamma}\right]\right][Y]$ be such that $P<1$. Then

$$
y=P(y) \quad(y<1)
$$

has a unique solution $y \in K\left[\left[z^{\Gamma}\right]\right]$.
Existence proof. Let $\mathfrak{S}:=(\operatorname{supp} P)^{*}=\left(\operatorname{supp} P_{0} \cup \cdots \cup \operatorname{supp} P_{\operatorname{deg} P}\right)^{*}$.
For each $\mathfrak{m} \in \mathfrak{S}$, let us construct $y_{\mathfrak{m}} \in K$ and $y_{\geqslant \mathfrak{m}}:=\sum_{\mathfrak{n} \geqslant \mathfrak{m}} y_{\mathfrak{n}} \mathfrak{n}$ with $y_{\geqslant \mathfrak{m}}-P\left(y_{\geqslant \mathfrak{m}}\right)<\mathfrak{m}$.

Theorem

Let $P \in K\left[\left[z^{\Gamma}\right]\right][Y]$ be such that $P<1$. Then

$$
y=P(y) \quad(y<1)
$$

has a unique solution $y \in K\left[\left[z^{\Gamma}\right]\right]$.
Existence proof. Let $\mathfrak{S}:=(\operatorname{supp} P)^{*}=\left(\operatorname{supp} P_{0} \cup \cdots \cup \operatorname{supp} P_{\operatorname{deg} P}\right)^{*}$.
For each $\mathfrak{m} \in \mathfrak{S}$, let us construct $y_{\mathfrak{m}} \in K$ and $y_{\geqslant \mathfrak{m}}:=\sum_{\mathfrak{n} \geqslant \mathfrak{m}} y_{\mathfrak{n}} \mathfrak{n}$ with $y_{\geqslant \mathfrak{m}}-P\left(y_{\geqslant \mathfrak{m}}\right)<\mathfrak{m}$. We proceed by transfinite induction.

Theorem

Let $P \in K\left[\left[z^{\Gamma}\right]\right][Y]$ be such that $P<1$. Then $y=P(y)$ has a unique solution in $K\left[\left[z^{\Gamma}\right]\right]^{<1}$.
Existence proof. Let $\mathfrak{S}:=(\operatorname{supp} P)^{*}=\left(\operatorname{supp} P_{0} \cup \cdots \cup \operatorname{supp} P_{\operatorname{deg} P}\right)^{*}$.
For each $\mathfrak{m} \in \mathfrak{S}$, let us construct $y_{\mathfrak{m}} \in K$ and $y_{\geqslant \mathfrak{m}}:=\sum_{\mathfrak{n} \geqslant \mathfrak{m}} y_{\mathfrak{n}} \mathfrak{n}$ with $y_{\geqslant \mathfrak{m}}-P\left(y_{\geqslant \mathfrak{m}}\right)<\mathfrak{m}$. We proceed by transfinite induction.

Theorem

Let $P \in K\left[\left[z^{\Gamma}\right]\right][Y]$ be such that $P<1$. Then $y=P(y)$ has a unique solution in $K\left[\left[z^{\Gamma}\right]\right]^{<1}$.
Existence proof. Let $\mathfrak{S}:=(\operatorname{supp} P)^{*}=\left(\operatorname{supp} P_{0} \cup \cdots \cup \operatorname{supp} P_{\operatorname{deg} P}\right)^{*}$.
For each $\mathfrak{m} \in \mathfrak{S}$, let us construct $y_{\mathfrak{m}} \in K$ and $y_{\geqslant \boldsymbol{m}}:=\sum_{\mathfrak{n} \geqslant \mathfrak{m}} y_{\mathfrak{n}} \mathfrak{n}$ with $y_{\geqslant \mathfrak{m}}-P\left(y_{\geqslant \mathfrak{m}}\right)<\mathfrak{m}$. We proceed by transfinite induction.

Assume that $y_{\geqslant \mathfrak{n}}-P\left(y_{\geqslant \mathfrak{n}}\right)<\mathfrak{n}$ for all $\mathfrak{n} \in \mathfrak{S}$ with $\mathfrak{n} \geqslant \mathfrak{m}$.

Theorem

Let $P \in K\left[\left[z^{\Gamma}\right]\right][Y]$ be such that $P<1$. Then $y=P(y)$ has a unique solution in $K\left[\left[z^{\Gamma}\right]\right]^{<1}$.
Existence proof. Let $\mathfrak{S}:=(\operatorname{supp} P)^{*}=\left(\operatorname{supp} P_{0} \cup \cdots \cup \operatorname{supp} P_{\operatorname{deg} P}\right)^{*}$.
For each $\mathfrak{m} \in \mathfrak{S}$, let us construct $y_{\mathfrak{m}} \in K$ and $y_{\geqslant \mathfrak{m}}:=\sum_{\mathfrak{n} \geqslant \mathfrak{m}} y_{\mathfrak{n}} \mathfrak{n}$ with $y_{\geqslant \mathfrak{m}}-P\left(y_{\geqslant \mathfrak{m}}\right)<\mathfrak{m}$. We proceed by transfinite induction.

Assume that $y_{\geqslant \mathfrak{n}}-P\left(y_{\geqslant \mathfrak{n}}\right)<\mathfrak{n}$ for all $\mathfrak{n} \in \mathfrak{S}$ with $\mathfrak{n} \geqslant \mathfrak{m}$.
We claim that $y_{>\mathfrak{m}}:=\sum_{\mathfrak{n}>\mathfrak{m}} y_{\mathfrak{n}} \mathfrak{n}$ satisfies $y_{>\mathfrak{m}}-P\left(y_{>\mathfrak{m}}\right) \leqslant \mathfrak{m}$.

Theorem

Let $P \in K\left[\left[z^{\Gamma}\right]\right][Y]$ be such that $P<1$. Then $y=P(y)$ has a unique solution in $K\left[\left[z^{\Gamma}\right]\right]^{<1}$.
Existence proof. Let $\mathfrak{S}:=(\operatorname{supp} P)^{*}=\left(\operatorname{supp} P_{0} \cup \cdots \cup \operatorname{supp} P_{\operatorname{deg} P}\right)^{*}$.
For each $\mathfrak{m} \in \mathfrak{S}$, let us construct $y_{\mathfrak{m}} \in K$ and $y_{\geqslant \mathfrak{m}}:=\sum_{\mathfrak{n} \geqslant \mathfrak{m}} y_{\mathfrak{n}} \mathfrak{n}$ with $y_{\geqslant \mathfrak{m}}-P\left(y_{\geqslant \mathfrak{m}}\right)<\mathfrak{m}$.
We proceed by transfinite induction.
Assume that $y_{\geqslant \mathfrak{n}}-P\left(y_{\geqslant \mathfrak{n}}\right)<\mathfrak{n}$ for all $\mathfrak{n} \in \mathfrak{S}$ with $\mathfrak{n} \geqslant \mathfrak{m}$.
We claim that $y_{>\mathfrak{m}}:=\sum_{\mathfrak{n}>\mathfrak{m}} y_{\mathfrak{n}} \mathfrak{n}$ satisfies $y_{>\mathfrak{m}}-P\left(y_{>\mathfrak{m}}\right) \leqslant \mathfrak{m}$.
Note that supp $y_{>\mathfrak{m}} \subseteq \mathfrak{S}$ and $\operatorname{supp}\left(y_{>\mathfrak{m}}-P\left(y_{>\mathfrak{m}}\right)\right) \subseteq \mathfrak{S}$.

Theorem

Let $P \in K\left[\left[z^{\Gamma}\right]\right][Y]$ be such that $P<1$. Then $y=P(y)$ has a unique solution in $K\left[\left[z^{\Gamma}\right]\right]^{<1}$.
Existence proof. Let $\mathfrak{S}:=(\operatorname{supp} P)^{*}=\left(\operatorname{supp} P_{0} \cup \cdots \cup \operatorname{supp} P_{\operatorname{deg} P}\right)^{*}$.
For each $\mathfrak{m} \in \mathfrak{S}$, let us construct $y_{\mathfrak{m}} \in K$ and $y_{\geqslant \mathfrak{m}}:=\sum_{\mathfrak{n} \geqslant \mathfrak{m}} y_{\mathfrak{n}} \mathfrak{n}$ with $y_{\geqslant \mathfrak{m}}-P\left(y_{\geqslant \mathfrak{m}}\right)<\mathfrak{m}$.
We proceed by transfinite induction.
Assume that $y_{\geqslant \mathfrak{n}}-P\left(y_{\geqslant \mathfrak{n}}\right)<\mathfrak{n}$ for all $\mathfrak{n} \in \mathfrak{S}$ with $\mathfrak{n} \geqslant \mathfrak{m}$.
We claim that $y_{>\mathfrak{m}}:=\sum_{\mathfrak{n}>\mathfrak{m}} y_{\mathfrak{n}} \mathfrak{n}$ satisfies $y_{>\mathfrak{m}}-P\left(y_{>\mathfrak{m}}\right) \leqslant \mathfrak{m}$.
Note that supp $y_{>\mathfrak{m}} \subseteq \mathfrak{S}$ and $\operatorname{supp}\left(y_{>\mathfrak{m}}-P\left(y_{>\mathfrak{m}}\right)\right) \subseteq \mathfrak{S}$.
Given $\mathfrak{n} \in \mathfrak{S}$ with $\mathfrak{n}>\mathfrak{m}$, we have $y_{>\mathfrak{m}}-P\left(y_{>\mathfrak{m}}\right)=y_{\geqslant \mathfrak{n}}-P\left(y_{>\mathfrak{n}}\right)+o(\mathfrak{n})<\mathfrak{n}$.

Theorem

Let $P \in K\left[\left[z^{\Gamma}\right]\right][Y]$ be such that $P<1$. Then $y=P(y)$ has a unique solution in $K\left[\left[z^{\Gamma}\right]\right]^{<1}$.
Existence proof. Let $\mathfrak{S}:=(\operatorname{supp} P)^{*}=\left(\operatorname{supp} P_{0} \cup \cdots \cup \operatorname{supp} P_{\operatorname{deg} P}\right)^{*}$.
For each $\mathfrak{m} \in \mathfrak{S}$, let us construct $y_{\mathfrak{m}} \in K$ and $y_{\geqslant \mathfrak{m}}:=\sum_{\mathfrak{n} \geqslant \mathfrak{m}} y_{\mathfrak{n}} \mathfrak{n}$ with $y_{\geqslant \mathfrak{m}}-P\left(y_{\geqslant \mathfrak{m}}\right)<\mathfrak{m}$. We proceed by transfinite induction.

Assume that $y_{\geqslant \mathfrak{n}}-P\left(y_{\geqslant \mathfrak{n}}\right)<\mathfrak{n}$ for all $\mathfrak{n} \in \mathfrak{S}$ with $\mathfrak{n} \geqslant \mathfrak{m}$.
Then $y_{>\mathfrak{m}}:=\sum_{\mathfrak{n}>\mathfrak{m}} y_{\mathfrak{n}} \mathfrak{n}$ satisfies $y_{>\mathfrak{m}}-P\left(y_{>\mathfrak{m}}\right) \leqslant \mathfrak{m}$.

Theorem

Let $P \in K\left[\left[z^{\Gamma}\right]\right][Y]$ be such that $P<1$. Then $y=P(y)$ has a unique solution in $K\left[\left[z^{\Gamma}\right]\right]^{<1}$.
Existence proof. Let $\mathfrak{S}:=(\operatorname{supp} P)^{*}=\left(\operatorname{supp} P_{0} \cup \cdots \cup \operatorname{supp} P_{\operatorname{deg} P}\right)^{*}$.
For each $\mathfrak{m} \in \mathfrak{S}$, let us construct $y_{\mathfrak{m}} \in K$ and $y_{\geqslant \mathfrak{m}}:=\sum_{\mathfrak{n} \geqslant \mathfrak{m}} y_{\mathfrak{n}} \mathfrak{n}$ with $y_{\geqslant \mathfrak{m}}-P\left(y_{\geqslant \mathfrak{m}}\right)<\mathfrak{m}$.
We proceed by transfinite induction.
Assume that $y_{\geqslant \mathfrak{n}}-P\left(y_{\geqslant \mathfrak{n}}\right)<\mathfrak{n}$ for all $\mathfrak{n} \in \mathfrak{S}$ with $\mathfrak{n} \geqslant \mathfrak{m}$.
Then $y_{>\mathfrak{m}}:=\sum_{\mathfrak{n}>\mathfrak{m}} y_{\mathfrak{n}} \mathfrak{n}$ satisfies $y_{>\mathfrak{m}}-P\left(y_{>\mathfrak{m}}\right) \preccurlyeq \mathfrak{m}$.
Take $y_{\mathfrak{m}}:=P\left(y_{>\mathfrak{m}}\right)_{\mathfrak{m}}$.

Theorem

Let $P \in K\left[\left[z^{\Gamma}\right]\right][Y]$ be such that $P<1$. Then $y=P(y)$ has a unique solution in $K\left[\left[z^{\Gamma}\right]\right]^{<1}$.
Existence proof. Let $\mathfrak{S}:=(\operatorname{supp} P)^{*}=\left(\operatorname{supp} P_{0} \cup \cdots \cup \operatorname{supp} P_{\operatorname{deg} P}\right)^{*}$.
For each $\mathfrak{m} \in \mathfrak{S}$, let us construct $y_{\mathfrak{m}} \in K$ and $y_{\geqslant \mathfrak{m}}:=\sum_{\mathfrak{n} \geqslant \mathfrak{m}} y_{\mathfrak{n}} \mathfrak{n}$ with $y_{\geqslant \mathfrak{m}}-P\left(y_{\geqslant \mathfrak{m}}\right)<\mathfrak{m}$.
We proceed by transfinite induction.
Assume that $y_{\geqslant \mathfrak{n}}-P\left(y_{\geqslant \mathfrak{n}}\right)<\mathfrak{n}$ for all $\mathfrak{n} \in \mathfrak{S}$ with $\mathfrak{n} \geqslant \mathfrak{m}$.
Then $y_{>\mathfrak{m}}:=\sum_{\mathfrak{n}>\mathfrak{m}} y_{\mathfrak{n}} \mathfrak{n}$ satisfies $y_{>\mathfrak{m}}-P\left(y_{>\mathfrak{m}}\right) \preccurlyeq \mathfrak{m}$.
Take $y_{\mathfrak{m}}:=P\left(y_{>\mathfrak{m}}\right)_{\mathfrak{m}}$.
Then $y_{>\mathfrak{m}}=y_{>\mathfrak{m}}+y_{\mathfrak{m}} \mathfrak{m}$, whence $P\left(y_{>\mathfrak{m}}\right)=P\left(y_{>\mathfrak{m}}\right)+o(\mathfrak{m})$.

Theorem

Let $P \in K\left[\left[z^{\Gamma}\right]\right][Y]$ be such that $P<1$. Then $y=P(y)$ has a unique solution in $K\left[\left[z^{\Gamma}\right]\right]^{<1}$.
Existence proof. Let $\mathfrak{S}:=(\operatorname{supp} P)^{*}=\left(\operatorname{supp} P_{0} \cup \cdots \cup \operatorname{supp} P_{\operatorname{deg} P}\right)^{*}$.
For each $\mathfrak{m} \in \mathfrak{S}$, let us construct $y_{\mathfrak{m}} \in K$ and $y_{\geqslant \mathfrak{m}}:=\sum_{\mathfrak{n} \geqslant \mathfrak{m}} y_{\mathfrak{n}} \mathfrak{n}$ with $y_{\geqslant \mathfrak{m}}-P\left(y_{\geqslant \mathfrak{m}}\right)<\mathfrak{m}$.
We proceed by transfinite induction.
Assume that $y_{\geqslant \mathfrak{n}}-P\left(y_{\geqslant \mathfrak{n}}\right)<\mathfrak{n}$ for all $\mathfrak{n} \in \mathfrak{S}$ with $\mathfrak{n} \geqslant \mathfrak{m}$.
Then $y_{>\mathfrak{m}}:=\sum_{\mathfrak{n}>\mathfrak{m}} y_{\mathfrak{n}} \mathfrak{n}$ satisfies $y_{>\mathfrak{m}}-P\left(y_{>\mathfrak{m}}\right) \leqslant \mathfrak{m}$.
Take $y_{\mathfrak{m}}:=P\left(y_{>\mathfrak{m}}\right)_{\mathfrak{m}}$.
Then $y_{\geqslant \mathfrak{m}}=y_{>\mathfrak{m}}+y_{\mathfrak{m}} \mathfrak{m}$, whence $P\left(y_{\geqslant \mathfrak{m}}\right)=P\left(y_{>\mathfrak{m}}\right)+o(\mathfrak{m})$.
Hence $y_{\geqslant \mathfrak{m}}-P\left(y_{\succ \mathfrak{m}}\right)=y_{>\mathfrak{m}}-P\left(y_{>\mathfrak{m}}\right)+y_{\mathfrak{m}} \mathfrak{m}+o(\mathfrak{m}) \leqslant \mathfrak{m}$.

Theorem

Let $P \in K\left[\left[z^{\Gamma}\right]\right][Y]$ be such that $P<1$. Then $y=P(y)$ has a unique solution in $K\left[\left[z^{\Gamma}\right]\right]^{<1}$.
Existence proof. Let $\mathfrak{S}:=(\operatorname{supp} P)^{*}=\left(\operatorname{supp} P_{0} \cup \cdots \cup \operatorname{supp} P_{\operatorname{deg} P}\right)^{*}$.
For each $\mathfrak{m} \in \mathfrak{S}$, let us construct $y_{\mathfrak{m}} \in K$ and $y_{\geqslant \mathfrak{m}}:=\sum_{\mathfrak{n} \geqslant \mathfrak{m}} y_{\mathfrak{n}} \mathfrak{n}$ with $y_{\geqslant \mathfrak{m}}-P\left(y_{\geqslant \mathfrak{m}}\right)<\mathfrak{m}$. We proceed by transfinite induction.

Assume that $y_{\geqslant \mathfrak{n}}-P\left(y_{\geqslant \mathfrak{n}}\right)<\mathfrak{n}$ for all $\mathfrak{n} \in \mathfrak{S}$ with $\mathfrak{n} \geqslant \mathfrak{m}$.
Then $y_{>\mathfrak{m}}:=\sum_{\mathfrak{n}>\mathfrak{m}} y_{\mathfrak{n}} \mathfrak{n}$ satisfies $y_{>\mathfrak{m}}-P\left(y_{>\mathfrak{m}}\right) \preccurlyeq \mathfrak{m}$.
Take $y_{\mathfrak{m}}:=P\left(y_{>\mathfrak{m}}\right)_{\mathfrak{m}}$.
Then $y_{\geqslant \mathfrak{m}}=y_{>\mathfrak{m}}+y_{\mathfrak{m}} \mathfrak{m}$, whence $P\left(y_{\geqslant \mathfrak{m}}\right)=P\left(y_{>\mathfrak{m}}\right)+o(\mathfrak{m})$.
Hence $y_{\geqslant \mathfrak{m}}-P\left(y_{\geqslant \mathfrak{m}}\right)=y_{>\mathfrak{m}}-P\left(y_{>\mathfrak{m}}\right)+y_{\mathfrak{m}} \mathfrak{m}+o(\mathfrak{m}) \leqslant \mathfrak{m}$.
Hence $y_{\geqslant \mathfrak{m}}-P\left(y_{\geqslant \mathfrak{m}}\right)=\left(y_{\geqslant \mathfrak{m}}-P\left(y_{\geqslant \mathfrak{m}}\right)\right)_{\mathfrak{m}} \mathfrak{m}+o(\mathfrak{m})$

Theorem

Let $P \in K\left[\left[z^{\Gamma}\right]\right][Y]$ be such that $P<1$. Then $y=P(y)$ has a unique solution in $K\left[\left[z^{\Gamma}\right]\right]^{<1}$.
Existence proof. Let $\mathfrak{S}:=(\operatorname{supp} P)^{*}=\left(\operatorname{supp} P_{0} \cup \cdots \cup \operatorname{supp} P_{\operatorname{deg} P}\right)^{*}$.
For each $\mathfrak{m} \in \mathfrak{S}$, let us construct $y_{\mathfrak{m}} \in K$ and $y_{\geqslant \mathfrak{m}}:=\sum_{\mathfrak{n} \geqslant \mathfrak{m}} y_{\mathfrak{n}} \mathfrak{n}$ with $y_{\geqslant \mathfrak{m}}-P\left(y_{\geqslant \mathfrak{m}}\right)<\mathfrak{m}$. We proceed by transfinite induction.

Assume that $y_{\geqslant \mathfrak{n}}-P\left(y_{\geqslant \mathfrak{n}}\right)<\mathfrak{n}$ for all $\mathfrak{n} \in \mathfrak{S}$ with $\mathfrak{n} \geqslant \mathfrak{m}$.
Then $y_{>\mathfrak{m}}:=\sum_{\mathfrak{n}>\mathfrak{m}} y_{\mathfrak{n}} \mathfrak{n}$ satisfies $y_{>\mathfrak{m}}-P\left(y_{>\mathfrak{m}}\right) \preccurlyeq \mathfrak{m}$.
Take $y_{\mathfrak{m}}:=P\left(y_{>\mathfrak{m}}\right)_{\mathfrak{m}}$.
Then $y_{\geqslant \mathfrak{m}}=y_{>\mathfrak{m}}+y_{\mathfrak{m}} \mathfrak{m}$, whence $P\left(y_{\geqslant \mathfrak{m}}\right)=P\left(y_{>\mathfrak{m}}\right)+o(\mathfrak{m})$.
Hence $y_{\geqslant \mathfrak{m}}-P\left(y_{\geqslant \mathfrak{m}}\right)=y_{>\mathfrak{m}}-P\left(y_{>\mathfrak{m}}\right)+y_{\mathfrak{m}} \mathfrak{m}+o(\mathfrak{m}) \leqslant \mathfrak{m}$.
Hence $y_{\geqslant \mathfrak{m}}-P\left(y_{\geqslant \mathfrak{m}}\right)=\left(y_{\succcurlyeq \mathfrak{m}}-P\left(y_{\geqslant \mathfrak{m}}\right)\right)_{\mathfrak{m}} \mathfrak{m}+o(\mathfrak{m})=\left(y_{\mathfrak{m}}-P\left(y_{>\mathfrak{m}}\right)_{\mathfrak{m}}\right) \mathfrak{m}+o(\mathfrak{m})$

Theorem

Let $P \in K\left[\left[z^{\Gamma}\right]\right][Y]$ be such that $P<1$. Then $y=P(y)$ has a unique solution in $K\left[\left[z^{\Gamma}\right]\right]^{<1}$.
Existence proof. Let $\mathfrak{S}:=(\operatorname{supp} P)^{*}=\left(\operatorname{supp} P_{0} \cup \cdots \cup \operatorname{supp} P_{\operatorname{deg} P}\right)^{*}$.
For each $\mathfrak{m} \in \mathfrak{S}$, let us construct $y_{\mathfrak{m}} \in K$ and $y_{\geqslant \mathfrak{m}}:=\sum_{\mathfrak{n} \geqslant \mathfrak{m}} y_{\mathfrak{n}} \mathfrak{n}$ with $y_{\geqslant \mathfrak{m}}-P\left(y_{\geqslant \mathfrak{m}}\right)<\mathfrak{m}$. We proceed by transfinite induction.

Assume that $y_{\geqslant \mathfrak{n}}-P\left(y_{\geqslant \mathfrak{n}}\right)<\mathfrak{n}$ for all $\mathfrak{n} \in \mathfrak{S}$ with $\mathfrak{n} \geqslant \mathfrak{m}$.
Then $y_{>\mathfrak{m}}:=\sum_{\mathfrak{n}>\mathfrak{m}} y_{\mathfrak{n}} \mathfrak{n}$ satisfies $y_{>\mathfrak{m}}-P\left(y_{>\mathfrak{m}}\right) \preccurlyeq \mathfrak{m}$.
Take $y_{\mathfrak{m}}:=P\left(y_{>\mathfrak{m}}\right)_{\mathfrak{m}}$.
Then $y_{\geqslant \mathfrak{m}}=y_{>\mathfrak{m}}+y_{\mathfrak{m}} \mathfrak{m}$, whence $P\left(y_{\geqslant \mathfrak{m}}\right)=P\left(y_{>\mathfrak{m}}\right)+o(\mathfrak{m})$.
Hence $y_{\geqslant \mathfrak{m}}-P\left(y_{\geqslant \mathfrak{m}}\right)=y_{>\mathfrak{m}}-P\left(y_{>\mathfrak{m}}\right)+y_{\mathfrak{m}} \mathfrak{m}+o(\mathfrak{m}) \leqslant \mathfrak{m}$.
Hence $y_{\geqslant \mathfrak{m}}-P\left(y_{\succcurlyeq \mathfrak{m}}\right)=\left(y_{\succcurlyeq \mathfrak{m}}-P\left(y_{\geqslant \mathfrak{m}}\right)\right)_{\mathfrak{m}} \mathfrak{m}+o(\mathfrak{m})=\left(y_{\mathfrak{m}}-P\left(y_{>\mathfrak{m}}\right)_{\mathfrak{m}}\right) \mathfrak{m}+o(\mathfrak{m})<\mathfrak{m}$.

Fixed point theorem - a generalization

Theorem

Let \mathfrak{M} be a monomial monoid and let $P \in K[[\mathfrak{M}]][Y]$ be such that $P<1$ (i.e. $\operatorname{supp} P<1$). Then $y=P(y)$ has a unique solution in $K[[\mathfrak{M}]]^{<1}$.

Theorem

Let \mathfrak{M} be a monomial monoid and let $P \in K[[\mathfrak{M}]][Y]$ be such that $P<1$ (i.e. $\operatorname{supp} P<1$). Then $y=P(y)$ has a unique solution in $K[[\mathfrak{M}]]^{<1}$.

Existence proof. Let $\mathfrak{S}=\operatorname{supp} P$ and let \mathfrak{S}^{\top} be the set of finite \mathfrak{S}-labeled trees.

Theorem

Let \mathfrak{M} be a monomial monoid and let $P \in K[[\mathfrak{M}]][Y]$ be such that $P<1$ (i.e. $\operatorname{supp} P<1$). Then $y=P(y)$ has a unique solution in $K[[\mathfrak{M}]]^{<1}$.

Existence proof. Let $\mathfrak{S}=\operatorname{supp} P$ and let \mathfrak{S}^{\top} be the set of finite \mathfrak{S}-labeled trees. We admit Kruskal's theorem: the set \mathfrak{S}^{\top} is well-based for some natural \preccurlyeq.

Theorem

Let \mathfrak{M} be a monomial monoid and let $P \in K[[\mathfrak{M}]][Y]$ be such that $P<1$ (i.e. $\operatorname{supp} P<1$). Then $y=P(y)$ has a unique solution in $K[[\mathfrak{M}]]^{<1}$.
Existence proof. Let $\mathfrak{S}=\operatorname{supp} P$ and let \mathfrak{S}^{\top} be the set of finite \mathfrak{S}-labeled trees. We admit Kruskal's theorem: the set \mathfrak{S}^{\top} is well-based for some natural \leqslant. For each $T \in \mathfrak{S}^{\top}$, we recursively define a term τ_{T} by

$$
T=\quad \mathfrak{m} \quad \Longrightarrow \quad \tau_{T}:=P_{k, \mathfrak{m}} \mathfrak{m} \tau_{T_{1}} \cdots \tau_{T_{k}}
$$

Theorem

Let \mathfrak{M} be a monomial monoid and let $P \in K[[\mathfrak{M}]][Y]$ be such that $P<1$ (i.e. $\operatorname{supp} P<1$). Then $y=P(y)$ has a unique solution in $K[[\mathfrak{M}]]^{<1}$.
Existence proof. Let $\mathfrak{S}=\operatorname{supp} P$ and let \mathfrak{S}^{\top} be the set of finite \mathfrak{S}-labeled trees. We admit Kruskal's theorem: the set \mathfrak{S}^{\top} is well-based for some natural \leqslant. For each $T \in \mathfrak{S}^{\top}$, we recursively define a term τ_{T} by

$$
T=\quad \mathfrak{m} \quad \Longrightarrow \quad \tau_{T}:=P_{k, \mathfrak{m}} \mathfrak{m} \tau_{T_{1}} \cdots \tau_{T_{k}}
$$

The map $T \mapsto \tau_{T}$ is increasing, so $\left(\tau_{T}\right)_{T \in \mathfrak{S}^{\top}}$ is well-based.

Theorem

Let \mathfrak{M} be a monomial monoid and let $P \in K[[\mathfrak{M}]][Y]$ be such that $P<1$ (i.e. $\operatorname{supp} P<1$). Then $y=P(y)$ has a unique solution in $K[[\mathfrak{M}]]^{<1}$.
Existence proof. Let $\mathfrak{S}=\operatorname{supp} P$ and let \mathfrak{S}^{\top} be the set of finite \mathfrak{S}-labeled trees. We admit Kruskal's theorem: the set \mathfrak{S}^{\top} is well-based for some natural \leqslant. For each $T \in \mathfrak{S}^{\top}$, we recursively define a term τ_{T} by

$$
T=\quad \mathfrak{m} \quad \Longrightarrow \quad \tau_{T}:=P_{k, \mathfrak{m}} \mathfrak{m} \tau_{T_{1}} \cdots \tau_{T_{k}}
$$

The map $T \mapsto \tau_{T}$ is increasing, so $\left(\tau_{T}\right)_{T \in \mathfrak{S}^{\top}}$ is well-based.
Now $y=\sum_{T \in \mathfrak{S}^{\top}} \tau_{T}$ satisfies $y=P(y)$ and $y<1$.

Fixed point theorem - a generalization

Existence proof. Let $\mathfrak{S}=\operatorname{supp} P$ and let \mathfrak{S}^{\top} be the set of finite \mathfrak{S}-labeled trees. We admit Kruskal's theorem: the set \mathfrak{S}^{\top} is well-based for some natural \leqslant. For each $T \in \mathfrak{S}^{\top}$, we recursively define a term τ_{T} by

$$
T=\underset{\sim}{m} \quad \Longrightarrow \quad \tau_{T}:=P_{k, \mathfrak{m}} \mathfrak{m} \tau_{T_{1}} \cdots \tau_{T_{k}}
$$

The map $T \mapsto \tau_{T}$ is increasing, so $\left(\tau_{T}\right)_{T \in \mathfrak{S}^{\top}}$ is well-based.
Now $y=\sum_{T \in \mathfrak{S}^{\top}} \tau_{T}$ satisfies $y=P(y)$ and $y<1$. Indeed:

$$
\begin{aligned}
P(y) & =\sum_{k \in \mathbb{N}} \sum_{\mathfrak{m} \in \mathfrak{S}} P_{k, \mathfrak{m}} \mathfrak{m} y^{k}=\sum_{k \in \mathbb{N}} \sum_{\mathfrak{m} \in \mathfrak{S}} \sum_{T_{1} \in \mathfrak{S}^{\top}} \cdots \sum_{T_{k} \in \mathfrak{S}^{\top}} P_{k, \mathfrak{m}} \mathfrak{m} \tau_{T_{1}} \cdots \tau_{T_{k}} \\
& =\sum_{T \in \mathfrak{S}^{\top}} \tau_{T}=y
\end{aligned}
$$

Consider the equation

$$
\left(y-\frac{1}{1-z}\right)^{2}=z^{1000}
$$

Consider the equation

$$
\left(y-\frac{1}{1-z}\right)^{2}=z^{1000}
$$

There is a unique starting term $y \sim 1$.

Consider the equation

$$
\left(y-\frac{1}{1-z}\right)^{2}=z^{1000} .
$$

There is a unique starting term $y \sim 1$. After

$$
y=1+\tilde{y} \quad(\tilde{y}<1)
$$

we obtain

$$
\left(\tilde{y}-\frac{z}{1-z}\right)^{2}=z^{1000} \quad(\tilde{y}<1) .
$$

Consider the equation

$$
\left(y-\frac{1}{1-z}\right)^{2}=z^{1000}
$$

There is a unique starting term $y \sim 1$. After

$$
y=1+\tilde{y} \quad(\tilde{y}<1)
$$

we obtain

$$
\left(\tilde{y}-\frac{z}{1-z}\right)^{2}=z^{1000} \quad(\tilde{y}<1) .
$$

There is a unique starting term $\tilde{y} \sim z$.

Consider the equation

$$
\left(y-\frac{1}{1-z}\right)^{2}=z^{1000}
$$

There is a unique starting term $y \sim 1$. After

$$
y=1+\tilde{y} \quad(\tilde{y}<1)
$$

we obtain

$$
\left(\tilde{y}-\frac{z}{1-z}\right)^{2}=z^{1000} \quad(\tilde{y}<1) .
$$

There is a unique starting term $\tilde{y} \sim z$. After

$$
\tilde{y}=z+\tilde{\tilde{y}} \quad(\tilde{\tilde{y}}<z),
$$

we obtain

$$
\left(\tilde{\tilde{y}}-\frac{z^{2}}{1-z}\right)^{2}=z^{1000} \quad(\tilde{\tilde{y}}<z)
$$

$$
P(y)=0 \quad\left(y<z^{\gamma}\right)
$$

with unique d-fold starting term $y \sim c z^{v}$. Then $N_{P_{x z^{v}}}=\alpha(Y-c)^{d}$, where $d=\operatorname{deg}_{\left\langle z^{\imath}\right.} P$.

$$
P(y)=0 \quad\left(y<z^{\gamma}\right)
$$

with unique d-fold starting term $y \sim c z^{v}$.
Then $N_{P_{x z^{v}}}=(Y-c)^{d}$, where $d=\operatorname{deg}_{\left\langle z^{r}\right.} P$.
Note: char $K=0 \Longrightarrow N_{P_{x z^{v}}, d-1}=-d c \neq 0 \Longrightarrow P_{d-1} \neq 0$.

$$
P(y)=0 \quad\left(y<z^{\gamma}\right)
$$

with unique d-fold starting term $y \sim c z^{\nu}$.
Note: char $K=0 \Longrightarrow P_{d-1} \neq 0$.
φ : the unique solution of the quasi-linear equation

$$
Q(\varphi):=\frac{\partial^{d-1} P}{\partial Y^{d-1}}(\varphi) \quad\left(\varphi \prec z^{\gamma}\right)
$$

$$
P(y)=0 \quad\left(y<z^{\gamma}\right)
$$

with unique d-fold starting term $y \sim c z^{v}$.
Note: char $K=0 \Longrightarrow P_{d-1} \neq 0$.
φ : the unique solution of the quasi-linear equation

$$
Q(\varphi):=\frac{\partial^{d-1} P}{\partial Y^{d-1}}(\varphi) \quad\left(\varphi \prec z^{\gamma}\right)
$$

Consider the refinement

$$
y=\varphi+\tilde{y} \quad\left(\tilde{y}<z^{v}\right)
$$

instead of

$$
y=c z^{v}+\tilde{y} \quad\left(\tilde{y}<z^{v}\right)
$$

$$
P(y)=0 \quad\left(y<z^{\gamma}\right)
$$

with unique d-fold starting term $y \sim c z^{v}$.
Note: char $K=0 \Longrightarrow P_{d-1} \neq 0$.
φ : the unique solution of the quasi-linear equation

$$
Q(\varphi):=\frac{\partial^{d-1} P}{\partial Y^{d-1}}(\varphi) \quad\left(\varphi<z^{\gamma}\right)
$$

Consider the refinement

$$
y=\varphi+\tilde{y} \quad\left(\tilde{y}<z^{v}\right)
$$

instead of

$$
y=c z^{v}+\tilde{y} \quad\left(\tilde{y}<z^{v}\right) .
$$

$$
P(y)=0 \quad\left(y<z^{\gamma}\right)
$$

with unique d-fold starting term $y \sim c z^{v}$.
Note: char $K=0 \Longrightarrow P_{d-1} \neq 0$.
φ : the unique solution of the quasi-linear equation

$$
Q(\varphi):=\frac{\partial^{d-1} P}{\partial Y^{d-1}}(\varphi) \quad\left(\varphi \prec z^{\gamma}\right)
$$

Consider the refinement

$$
y=\varphi+\tilde{y} \quad\left(\tilde{y}<z^{v}\right)
$$

Then

$$
P_{+\varphi}(\tilde{y})=P(\varphi)+P^{\prime}(\varphi) \tilde{y}+\cdots=0 \quad\left(\tilde{y}<z^{\nu}\right)
$$

whence $P_{+\varphi, d-1}=0$

Algorithm solve $\left(P, z^{\gamma}\right)$

InPut: $P \in K\left[\left[z^{\Gamma}\right]\right][Y]$ and $z^{\gamma} \in z^{\Gamma}$ with $d:=\operatorname{deg}_{\left\langle z^{\gamma}\right.} P>0$ and char $K=0$
OUTPUT: solutions $y_{1}, \ldots, y_{d} \in K\left[\left[z^{\Gamma}\right]\right]$ of $P(y)=0, y<z^{\gamma}$, counted with multiplicities

Algorithm solve $\left(P, z^{\gamma}\right)$

InPut: $P \in K\left[\left[z^{\Gamma}\right]\right][Y]$ and $z^{\gamma} \in z^{\Gamma}$ with $d:=\operatorname{deg}_{\left\langle z^{\gamma}\right.} P>0$ and char $K=0$
OUTPUT: solutions $y_{1}, \ldots, y_{d} \in K\left[\left[z^{\Gamma}\right]\right]$ of $P(y)=0, y<z^{\gamma}$, counted with multiplicities

- If $\operatorname{val}_{\gamma} P=d$, then return $0, \ldots \ldots, 0$.

Complete algorithm

Algorithm solve $\left(P, z^{\gamma}\right)$

InPut: $P \in K\left[\left[z^{\Gamma}\right]\right][Y]$ and $z^{\gamma} \in z^{\Gamma}$ with $d:=\operatorname{deg}_{<z^{\gamma}} P>0$ and char $K=0$
OUtPUT: solutions $y_{1}, \ldots, y_{d} \in K\left[\left[z^{\Gamma}\right]\right]$ of $P(y)=0, y<z^{\gamma}$, counted with multiplicities

- If $\operatorname{val}_{Y} P=d$, then return $0, \ldots \times, 0$.
- If $d=1$, then $P(y)=0, y<z^{\gamma}$ is quasi-linear; return its unique solution

Complete algorithm

Algorithm solve $\left(P, z^{\gamma}\right)$

InPUT: $P \in K\left[\left[z^{\Gamma}\right]\right][Y]$ and $z^{\gamma} \in z^{\Gamma}$ with $d:=\operatorname{deg}_{<z^{\gamma}} P>0$ and char $K=0$
OUtPUT: solutions $y_{1}, \ldots, y_{d} \in K\left[\left[z^{\Gamma}\right]\right]$ of $P(y)=0, y<z^{\gamma}$, counted with multiplicities

- If $\operatorname{val}_{Y} P=d$, then return $0, \ldots \ldots, 0$.
- If $d=1$, then $P(y)=0, y<z^{\gamma}$ is quasi-linear; return its unique solution
- Let z^{ν} be the largest starting monomial and let c_{1}, \ldots, c_{ℓ} be the roots of $N_{P_{x i} \gamma}$

Complete algorithm

Algorithm solve $\left(P, z^{\gamma}\right)$

InPUT: $P \in K\left[\left[z^{\Gamma}\right]\right][Y]$ and $z^{\gamma} \in z^{\Gamma}$ with $d:=\operatorname{deg}_{<z^{\gamma}} P>0$ and char $K=0$
OUtPUT: solutions $y_{1}, \ldots, y_{d} \in K\left[\left[z^{\Gamma}\right]\right]$ of $P(y)=0, y<z^{\gamma}$, counted with multiplicities

- If $\operatorname{val}_{Y} P=d$, then return $0, \ldots \ldots, 0$.
- If $d=1$, then $P(y)=0, y<z^{\gamma}$ is quasi-linear; return its unique solution
- Let z^{ν} be the largest starting monomial and let c_{1}, \ldots, c_{ℓ} be the roots of $N_{P_{x x} \gamma}$
- If $\ell=1$, then
- Compute $\varphi:=$ solve $\left(\frac{\partial^{d-1} p}{\partial \gamma^{d-1}}, z^{\gamma}\right)$

Complete algorithm

Algorithm solve $\left(P, z^{\gamma}\right)$

InPUT: $P \in K\left[\left[z^{\Gamma}\right]\right][Y]$ and $z^{\gamma} \in z^{\Gamma}$ with $d:=\operatorname{deg}_{<z^{\gamma}} P>0$ and char $K=0$
OUtPUT: solutions $y_{1}, \ldots, y_{d} \in K\left[\left[z^{\Gamma}\right]\right]$ of $P(y)=0, y<z^{\gamma}$, counted with multiplicities

- If $\operatorname{val}_{Y} P=d$, then return $0, \ldots \ldots, 0$.
- If $d=1$, then $P(y)=0, y<z^{\gamma}$ is quasi-linear; return its unique solution
- Let z^{ν} be the largest starting monomial and let c_{1}, \ldots, c_{ℓ} be the roots of $N_{P_{x x} \gamma}$
- If $\ell=1$, then
- Compute $\varphi:=$ solve $\left(\frac{\partial^{d-1} p}{\partial \gamma^{d-1}}, z^{\gamma}\right)$
- Compute $\tilde{y}_{1}, \ldots, \tilde{y}_{d}:=\operatorname{solve}\left(P_{+\varphi}, z^{\nu}\right)$

Complete algorithm

Algorithm solve $\left(P, z^{\gamma}\right)$

InPUT: $P \in K\left[\left[z^{\Gamma}\right]\right][Y]$ and $z^{\gamma} \in z^{\Gamma}$ with $d:=\operatorname{deg}_{<z^{\gamma}} P>0$ and char $K=0$
OUtPUT: solutions $y_{1}, \ldots, y_{d} \in K\left[\left[z^{\Gamma}\right]\right]$ of $P(y)=0, y<z^{\gamma}$, counted with multiplicities

- If $\operatorname{val}_{Y} P=d$, then return $0, \ldots \ldots, 0$.
- If $d=1$, then $P(y)=0, y<z^{\gamma}$ is quasi-linear; return its unique solution
- Let z^{ν} be the largest starting monomial and let c_{1}, \ldots, c_{ℓ} be the roots of $N_{P_{x x} \gamma}$
- If $\ell=1$, then
- Compute $\varphi:=$ solve $\left(\frac{\partial^{d-1} p}{\partial \gamma^{d-1}}, z^{\gamma}\right)$
- Compute $\tilde{y}_{1}, \ldots, \tilde{y}_{d}:=\operatorname{solve}\left(P_{+\varphi}, z^{\nu}\right)$
- Return $\varphi+\tilde{y}_{1}, \ldots, \varphi+\tilde{y}_{d}$

Complete algorithm

Algorithm solve $\left(P, z^{\gamma}\right)$

InPUT: $P \in K\left[\left[z^{\Gamma}\right]\right][Y]$ and $z^{\gamma} \in z^{\Gamma}$ with $d:=\operatorname{deg}_{<z^{\gamma}} P>0$ and char $K=0$
OUtPUT: solutions $y_{1}, \ldots, y_{d} \in K\left[\left[z^{\Gamma}\right]\right]$ of $P(y)=0, y<z^{\gamma}$, counted with multiplicities

- If $\operatorname{val}_{Y} P=d$, then return $0, \ldots \ldots, 0$.
- If $d=1$, then $P(y)=0, y<z^{\gamma}$ is quasi-linear; return its unique solution
- Let z^{ν} be the largest starting monomial and let c_{1}, \ldots, c_{ℓ} be the roots of $N_{P_{x i} \gamma}$
- If $\ell=1$, then
- Compute $\varphi:=$ solve $\left(\frac{\partial^{d-1} p}{\partial \gamma^{d-1}}, z^{\gamma}\right)$
- Compute $\tilde{y}_{1}, \ldots, \tilde{y}_{d}:=\operatorname{solve}\left(P_{+\varphi}, z^{\nu}\right)$
- Return $\varphi+\tilde{y}_{1}, \ldots, \varphi+\tilde{y}_{d}$
- For $i=1, \ldots, \ell$, compute $y_{i, 1}, \ldots, y_{i, d_{i}}:=\operatorname{solve}\left(P_{+c_{i} z^{\nu}} z^{\nu}\right)$

Complete algorithm

Algorithm solve $\left(P, z^{\gamma}\right)$

InPUT: $P \in K\left[\left[z^{\Gamma}\right]\right][Y]$ and $z^{\gamma} \in z^{\Gamma}$ with $d:=\operatorname{deg}_{<z^{\gamma}} P>0$ and char $K=0$
OUtPUT: solutions $y_{1}, \ldots, y_{d} \in K\left[\left[z^{\Gamma}\right]\right]$ of $P(y)=0, y<z^{\gamma}$, counted with multiplicities

- If $\operatorname{val}_{Y} P=d$, then return $0, \ldots \ldots, 0$.
- If $d=1$, then $P(y)=0, y<z^{\gamma}$ is quasi-linear; return its unique solution
- Let z^{ν} be the largest starting monomial and let c_{1}, \ldots, c_{ℓ} be the roots of $N_{P_{x i} \gamma}$
- If $\ell=1$, then
- Compute $\varphi:=$ solve $\left(\frac{\partial^{d-1} p}{\partial \gamma^{d-1}}, z^{\gamma}\right)$
- Compute $\tilde{y}_{1}, \ldots, \tilde{y}_{d}:=\operatorname{solve}\left(P_{+\varphi}, z^{\nu}\right)$
- Return $\varphi+\tilde{y}_{1}, \ldots, \varphi+\tilde{y}_{d}$
- For $i=1, \ldots, \ell$, compute $y_{i, 1}, \ldots, y_{i, d_{i}}:=\operatorname{solve}\left(P_{+c_{i} z^{\nu}} z^{\nu}\right)$
- Return $y_{1,1}, \ldots, y_{1, d_{1}}, \ldots, y_{\ell, 1}, \ldots, y_{\ell, d_{\ell}}$

Let K be a field of characteristic zero.

Theorem

Let $P \in K\left[\left[z^{\Gamma}\right]\right][Y]^{\neq 0}$ and $z^{\gamma} \in z^{\Gamma}$. If K is algebraically closed and Γ divisible, then

$$
P(y)=0 \quad\left(y<z^{\gamma}\right)
$$

has exactly $\operatorname{deg}_{<z^{\gamma}} P$ solutions in $K\left[\left[z^{\Gamma}\right]\right]$, when counting with multiplicities.

Let K be a field of characteristic zero.

Theorem

Let $P \in K\left[\left[z^{\Gamma}\right]\right][Y]^{\neq 0}$ and $z^{\gamma} \in z^{\Gamma}$. If K is algebraically closed and Γ divisible, then

$$
P(y)=0 \quad\left(y<z^{2}\right)
$$

has exactly $\operatorname{deg}_{<z^{\gamma}} P$ solutions in $K\left[\left[z^{\Gamma}\right]\right]$, when counting with multiplicities.

Corollary

Let $P \in K\left[\left[z^{\Gamma}\right]\right][Y]^{\neq 0}$ and $z^{\gamma} \in z^{\Gamma}$. If K is algebraically closed and Γ divisible, then

$$
P(y)=0
$$

has exactly $\operatorname{deg} P$ solutions in $K\left[\left[z^{\Gamma}\right]\right]$, when counting with multiplicities.

Let K be a field of characteristic zero.

Theorem

Let $P \in K\left[\left[z^{\Gamma}\right]\right][\bigvee]^{\neq 0}$ and $z^{\gamma} \in z^{\Gamma}$. If K is algebraically closed and Γ divisible, then

$$
P(y)=0 \quad\left(y<z^{2}\right)
$$

has exactly $\operatorname{deg}_{<_{2}>} P$ solutions in $K\left[\left[z^{\Gamma}\right]\right]$, when counting with multiplicities.

Corollary

Let $P \in K\left[\left[z^{\Gamma}\right]\right][Y]^{\neq 0}$ and $z^{\gamma} \in z^{\Gamma}$. If K is algebraically closed and Γ divisible, then

$$
P(y)=0
$$

has exactly deg P solutions in $K\left[\left[z^{\Gamma}\right]\right]$, when counting with multiplicities.

- Generalizations to $K\left[\left[z^{\Gamma}\right]\right]_{\mathscr{S}}$ and $K\left[z^{\Gamma}\right]_{\mathscr{L}}$ instead of $K\left[\left[z^{\Gamma}\right]\right]$.

