# **Lesson 5** — **Transseries**

Joris van der Hoeven **IMS summer school** 

Singapore, July 12, 2023

# **Exp-log fields**

#### Definition

*Consider an ordered field K with a partial function*  $exp: K \rightarrow K$  *such that* 

**E1.** exp 0 = 1.

- **E2.**  $\exp y = \exp (y x) \exp x$  for all  $x, y \in \operatorname{dom} \exp x$ .
- **E3.** exp  $x \ge 1 + x + \dots + \frac{1}{(n-1)!} x^{n-1}$  for all  $x \in \text{dom } x$  and  $n \in \mathbb{N}$ .

We call exp an *exponential function*. Such a function is necessarily injective and its partial inverse is called a *logarithmic function*.

If dom exp = K and  $im exp = K^{>0}$ , then K is called an **exp-log** field.

# **Exp-log fields**

#### Definition

*Consider an ordered field K with a partial function*  $exp: K \rightarrow K$  *such that* 

**E1.** exp 0 = 1.

- **E2.**  $\exp y = \exp (y x) \exp x$  for all  $x, y \in \operatorname{dom} \exp x$ .
- **E3.** exp  $x \ge 1 + x + \dots + \frac{1}{(n-1)!} x^{n-1}$  for all  $x \in \text{dom } x$  and  $n \in \mathbb{N}$ .

We call exp an *exponential function*. Such a function is necessarily injective and its partial inverse is called a *logarithmic function*.

If dom exp = K and  $im exp = K^{>0}$ , then K is called an **exp-log** field.

#### Proposition

 $\mathbb{R}$  is an exp-log field.

#### $\mathbb{R}$ real numbers, but could be any exp-log field

 $\mathbb{R}$ real numbers, but could be any exp-log fieldxformal indeterminate with x > 1

- $\mathbb{R}$  real numbers, but could be any exp-log field
- *x* formal indeterminate with x > 1
- $\log_k x$  formal iterated logarithm  $(\log \circ \cdots \circ \log)(x)$

- $\mathbb{R}$  real numbers, but could be any exp-log field
- *x* formal indeterminate with x > 1
- $\log_k x$  formal iterated logarithm  $(\log \circ \dots \circ \log)(x)$
- $\mathfrak{L}$  formal group of logarithmic monomials of the form

$$\mathfrak{l} = x^{\alpha_0} (\log x)^{\alpha_1} \cdots (\log_r x)^{\alpha_r}, \qquad \alpha_0, \ldots, \alpha_r \in \mathbb{R}$$

- $\mathbb{R}$  real numbers, but could be any exp-log field
- *x* formal indeterminate with x > 1
- $\log_k x$  formal iterated logarithm  $(\log \circ \cdots \circ \log)(x)$
- $\mathfrak{L}$  formal group of logarithmic monomials of the form

 $\mathfrak{l} = x^{\alpha_0} (\log x)^{\alpha_1} \cdots (\log_r x)^{\alpha_r}, \qquad \alpha_0, \ldots, \alpha_r \in \mathbb{R},$ 

with l > 1 iff  $l \neq 1$  and  $\alpha_i > 0$ , where *i* is minimal with  $\alpha_i = 0$ 

- $\mathbb{R}$  real numbers, but could be any exp-log field
- *x* formal indeterminate with x > 1

 $\mathbf{I}$ 

- $\log_k x$  formal iterated logarithm  $(\log \circ \cdots \circ \log)(x)$
- $\mathfrak{L}$  formal group of logarithmic monomials of the form

 $\mathfrak{l} = x^{\alpha_0} (\log x)^{\alpha_1} \cdots (\log_r x)^{\alpha_r}, \qquad \alpha_0, \ldots, \alpha_r \in \mathbb{R},$ 

with l > 1 iff  $l \neq 1$  and  $\alpha_i > 0$ , where *i* is minimal with  $\alpha_i = 0$  the field  $\mathbb{R}[[\mathfrak{L}]]_{\mathscr{S}}$  for some support type  $\mathscr{S}$ 

- $\mathbb{R}$  real numbers, but could be any exp-log field
- *x* formal indeterminate with x > 1

 $\mathbb{L}$ 

- $\log_k x$  formal iterated logarithm  $(\log \circ \cdots \circ \log)(x)$
- $\mathfrak{L}$  formal group of logarithmic monomials of the form

 $\mathfrak{l} = x^{\alpha_0} (\log x)^{\alpha_1} \cdots (\log_r x)^{\alpha_r}, \qquad \alpha_0, \ldots, \alpha_r \in \mathbb{R},$ 

with l > 1 iff  $l \neq 1$  and  $\alpha_i > 0$ , where *i* is minimal with  $\alpha_i = 0$  the field  $\mathbb{R}[[\mathfrak{L}]]_{\mathscr{S}}$  for some support type  $\mathscr{S}$ 

**Partial logarithmic function.** Let  $f \in \mathbb{L}^{>0}$ . Then

 $f = \mathbf{\partial}_f \mathbf{c}_f (1+\delta),$ 

- $\mathbb{R}$  real numbers, but could be any exp-log field
- *x* formal indeterminate with x > 1

 $\mathbb{L}$ 

- $\log_k x$  formal iterated logarithm  $(\log \circ \cdots \circ \log)(x)$
- $\mathfrak{L}$  formal group of logarithmic monomials of the form

 $\mathfrak{l} = x^{\alpha_0} (\log x)^{\alpha_1} \cdots (\log_r x)^{\alpha_r}, \qquad \alpha_0, \ldots, \alpha_r \in \mathbb{R},$ 

with l > 1 iff  $l \neq 1$  and  $\alpha_i > 0$ , where *i* is minimal with  $\alpha_i = 0$  the field  $\mathbb{R}[[\mathfrak{L}]]_{\mathscr{S}}$  for some support type  $\mathscr{S}$ 

**Partial logarithmic function.** Let  $f \in \mathbb{L}^{>0}$ . Then

$$f = \mathfrak{d}_f c_f (1+\delta),$$
  
$$\mathfrak{d}_f = x^{\alpha_0} \cdots (\log_r x)^{\alpha_r}, \ c_f \in \mathbb{R}^>, \ \delta \in \mathbb{L}^{<1}$$

- $\mathbb{R}$  real numbers, but could be any exp-log field
- *x* formal indeterminate with x > 1

 $\mathbb{L}$ 

- $\log_k x$  formal iterated logarithm  $(\log \circ \cdots \circ \log)(x)$
- $\mathfrak{L}$  formal group of logarithmic monomials of the form

 $\mathfrak{l} = x^{\alpha_0} (\log x)^{\alpha_1} \cdots (\log_r x)^{\alpha_r}, \qquad \alpha_0, \ldots, \alpha_r \in \mathbb{R},$ 

with l > 1 iff  $l \neq 1$  and  $\alpha_i > 0$ , where *i* is minimal with  $\alpha_i = 0$  the field  $\mathbb{R}[[\mathfrak{L}]]_{\mathscr{S}}$  for some support type  $\mathscr{S}$ 

**Partial logarithmic function.** Let  $f \in \mathbb{L}^{>0}$ . Then

$$f = \mathfrak{d}_f c_f (1+\delta),$$
  

$$\mathfrak{d}_f = x^{\alpha_0} \cdots (\log_r x)^{\alpha_r}, \ c_f \in \mathbb{R}^>, \ \delta \in \mathbb{L}^{<1}$$
  

$$\log f := \alpha_0 \log x + \cdots + \alpha_r \log_{r+1} x + \log c_f + \log (1+z) \circ \delta.$$

# **Field of transseries**

- $\mathbb{R}$  real numbers, but could be any exp-log field
- $\mathfrak{T}$  totally ordered monomial group
- $\mathbb{T}$  the field  $\mathbb{R}[[\mathfrak{T}]]_{\mathscr{S}}$

### Field of transseries

- $\mathbb{R}$  real numbers, but could be any exp-log field
- $\mathfrak{T}$  totally ordered monomial group
- $\mathbb{T}$  the field  $\mathbb{R}[[\mathfrak{T}]]_{\mathscr{S}}$

#### Definition

Consider a logarithmic function  $\log: \mathbb{T}^{>0} \to \mathbb{T}$  extending the one on  $\mathbb{R}^{>0}$ , such that **T1.** dom  $\log = \mathbb{T}^{>0}$ . **T2.**  $\log \mathfrak{m} \in \mathbb{T}_{>} := \{f \in \mathbb{T} : \operatorname{supp} f > 1\}$  for all  $\mathfrak{m} \in \mathfrak{T}$ . **T3.**  $\log (1 + \varepsilon) = \log (1 + z) \circ \varepsilon$  for all  $\varepsilon \in \mathbb{T}^{<1}$ . Then we say that  $\mathbb{T} = \mathbb{R}[[\mathfrak{T}]]_{\mathscr{S}}$  is a **field of \mathscr{S}-based transseries**.

Given a field of transseries  $\mathbb{T} = \mathbb{R}[[\mathfrak{T}]]_{\mathscr{S}}$ , consider:

$$\begin{split} \mathfrak{T}_{\mathrm{exp}} &\coloneqq \operatorname{exp} \mathbb{T}_{\succ} \\ \mathrm{e}^{\varphi} \leqslant \mathrm{e}^{\psi} &\Leftrightarrow \varphi \leqslant \psi \\ \mathbb{T}_{\mathrm{exp}} &\coloneqq \mathbb{R}[[\mathfrak{T}_{\mathrm{exp}}]]_{\mathscr{S}} \end{split}$$

Given a field of transseries  $\mathbb{T} = \mathbb{R}[[\mathfrak{T}]]_{\mathscr{S}}$ , consider:

$$\begin{split} \mathfrak{T}_{\mathrm{exp}} &\coloneqq \mathrm{exp} \ \mathbb{T}_{\succ} \\ \mathrm{e}^{\varphi} \leqslant \mathrm{e}^{\psi} &\Leftrightarrow \varphi \leqslant \psi \\ \mathbb{T}_{\mathrm{exp}} &\coloneqq \mathbb{R}[[\mathfrak{T}_{\mathrm{exp}}]]_{\mathscr{S}} \end{split}$$

Note that  $\mathfrak{T}_{exp} \supseteq \mathfrak{T} = exp \log \mathfrak{T}$ , since  $\log \mathfrak{T} \subseteq \mathbb{T}_{>}$ .

Given a field of transseries  $\mathbb{T} = \mathbb{R}[[\mathfrak{T}]]_{\mathscr{S}}$ , consider:

$$\begin{split} \mathfrak{T}_{\exp} &\coloneqq \exp \mathbb{T}_{\succ} \\ \mathrm{e}^{\varphi} \leqslant \mathrm{e}^{\psi} &\Leftrightarrow \varphi \leqslant \psi \\ \mathbb{T}_{\exp} &\coloneqq \mathbb{R}[[\mathfrak{T}_{\exp}]]_{\mathscr{S}} \end{split}$$

Note that  $\mathfrak{T}_{exp} \supseteq \mathfrak{T} = exp \log \mathfrak{T}$ , since  $\log \mathfrak{T} \subseteq \mathbb{T}_{>}$ . We extend  $\log$  using:

$$\begin{array}{cccc} \log: \mathbb{T}_{\exp}^{>0} & \to & \mathbb{T}_{\exp} \\ \underbrace{\mathbf{e}}_{\mathfrak{T}_{\exp}}^{\varphi} & \underbrace{\mathbf{c}}_{\mathbb{R}^{>0}} & (1 + \underbrace{\delta}_{\mathbb{T}_{\exp}^{<1}}) & \mapsto & \underbrace{\mathbf{\rho}}_{\mathbb{T}_{>}} + \underbrace{\log c}_{\mathbb{R}} + \underbrace{\log (1 + z) \circ \delta}_{\mathbb{T}_{\exp}^{<1}} \end{array}$$

Given a field of transseries  $\mathbb{T} = \mathbb{R}[[\mathfrak{T}]]_{\mathscr{S}}$ , consider:

$$\begin{split} \mathfrak{T}_{\mathrm{exp}} &\coloneqq \mathrm{exp} \ \mathbb{T}_{\succ} \\ \mathrm{e}^{\varphi} \leqslant \mathrm{e}^{\psi} &\Leftrightarrow \varphi \leqslant \psi \\ \mathbb{T}_{\mathrm{exp}} &\coloneqq \mathbb{R}[[\mathfrak{T}_{\mathrm{exp}}]]_{\mathscr{S}} \end{split}$$

Note that  $\mathfrak{T}_{exp} \supseteq \mathfrak{T} = exp \log \mathfrak{T}$ , since  $\log \mathfrak{T} \subseteq \mathbb{T}_{>}$ . We extend log using:

$$\log: \mathbb{T}_{exp}^{>0} \to \mathbb{T}_{exp}$$

$$\underbrace{e^{\varphi}}_{\mathfrak{T}_{exp}} \underbrace{c}_{\mathbb{R}^{>0}} (1 + \underbrace{\delta}_{\mathbb{T}_{exp}^{<1}}) \mapsto \underbrace{\varphi}_{\mathbb{T}_{>}} + \underbrace{\log c}_{\mathbb{R}} + \underbrace{\log (1 + z) \circ \delta}_{\mathbb{T}_{exp}^{<1}}$$

Proposition

*The exponential extension*  $\mathbb{T}_{exp}$  *of*  $\mathbb{T}$  *is again a field of transseries.* 



#### $x \log x \in \mathfrak{L}$



$$x \log x \in \mathfrak{L}$$
$$x^{x} = e^{x \log x} \in \mathfrak{L}_{exp}$$



$$x \log x \in \mathfrak{L}$$
$$x^{x} = e^{x \log x} \in \mathfrak{L}_{exp}$$
$$x^{\alpha} e^{x} x^{x} = e^{x \log x - x + \alpha \log x} \in \mathfrak{L}_{exp}$$



$$\begin{aligned} x \log x &\in \mathfrak{L} \\ x^{x} &= e^{x \log x} \in \mathfrak{L}_{exp} \\ x^{\alpha} e^{x} x^{x} &= e^{x \log x - x + \alpha \log x} \in \mathfrak{L}_{exp} \\ \Gamma(x) &= \sqrt{2\pi} e^{x \log x - x + \frac{1}{2} \log x} + \frac{\sqrt{2\pi}}{12} e^{x \log x - x - \frac{1}{2} \log x} + \frac{\sqrt{2\pi}}{288} e^{x \log x - x - \frac{3}{2} \log x} + \dots \in \mathbb{L}_{exp} \end{aligned}$$



$$x \log x \in \mathfrak{L}$$
  

$$x^{x} = e^{x \log x} \in \mathfrak{L}_{exp}$$
  

$$x^{\alpha} e^{x} x^{x} = e^{x \log x - x + \alpha \log x} \in \mathfrak{L}_{exp}$$
  

$$\Gamma(x) = \sqrt{2\pi} e^{x \log x - x + \frac{1}{2} \log x} + \frac{\sqrt{2\pi}}{12} e^{x \log x - x - \frac{1}{2} \log x} + \frac{\sqrt{2\pi}}{288} e^{x \log x - x - \frac{3}{2} \log x} + \dots \in \mathbb{L}_{exp,>}$$



$$\begin{aligned} x \log x \in \mathfrak{L} \\ x^{x} &= e^{x \log x} \in \mathfrak{L}_{exp} \\ x^{\alpha} e^{x} x^{x} &= e^{x \log x - x + \alpha \log x} \in \mathfrak{L}_{exp} \\ \Gamma(x) &= \sqrt{2\pi} e^{x \log x - x + \frac{1}{2} \log x} + \frac{\sqrt{2\pi}}{12} e^{x \log x - x - \frac{1}{2} \log x} + \frac{\sqrt{2\pi}}{288} e^{x \log x - x - \frac{3}{2} \log x} + \dots \in \mathbb{L}_{exp, \succ} \\ e^{\Gamma(x)} &\in \mathfrak{L}_{exp, exp} \end{aligned}$$



$$\begin{aligned} x \log x \in \mathfrak{L} \\ x^{x} &= e^{x \log x} \in \mathfrak{L}_{exp} \\ x^{\alpha} e^{x} x^{x} &= e^{x \log x - x + \alpha \log x} \in \mathfrak{L}_{exp} \\ \Gamma(x) &= \sqrt{2\pi} e^{x \log x - x + \frac{1}{2} \log x} + \frac{\sqrt{2\pi}}{12} e^{x \log x - x - \frac{1}{2} \log x} + \frac{\sqrt{2\pi}}{288} e^{x \log x - x - \frac{3}{2} \log x} + \dots \in \mathbb{L}_{exp, \succ} \\ e^{\Gamma(x)} &\in \mathfrak{L}_{exp, exp} \\ 1 + \frac{1}{x} + \frac{2}{x^{2}} + \frac{6}{x^{3}} + \frac{24}{x^{4}} + \frac{120}{x^{5}} + \dots \in \mathbb{R}[[x^{-1}]] \subseteq \mathbb{L}. \end{aligned}$$



$$\begin{aligned} x \log x \in \mathfrak{L} \\ x^{x} &= e^{x \log x} \in \mathfrak{L}_{exp} \\ x^{\alpha} e^{x} x^{x} &= e^{x \log x - x + \alpha \log x} \in \mathfrak{L}_{exp} \\ \Gamma(x) &= \sqrt{2\pi} e^{x \log x - x + \frac{1}{2} \log x} + \frac{\sqrt{2\pi}}{12} e^{x \log x - x - \frac{1}{2} \log x} + \frac{\sqrt{2\pi}}{288} e^{x \log x - x - \frac{3}{2} \log x} + \dots \in \mathbb{L}_{exp, \succ} \\ e^{\Gamma(x)} &\in \mathfrak{L}_{exp, exp} \\ 1 + \frac{1}{x} + \frac{2}{x^{2}} + \frac{6}{x^{3}} + \frac{24}{x^{4}} + \frac{120}{x^{5}} + \dots \in \mathbb{R}[[x^{-1}]] \subseteq \mathbb{L}. \end{aligned}$$

6/29



$$\begin{aligned} x \log x \in \mathfrak{L} \\ x^{x} &= e^{x \log x} \in \mathfrak{L}_{exp} \\ x^{\alpha} e^{x} x^{x} &= e^{x \log x - x + \alpha \log x} \in \mathfrak{L}_{exp} \\ \Gamma(x) &= \sqrt{2\pi} e^{x \log x - x + \frac{1}{2} \log x} + \frac{\sqrt{2\pi}}{12} e^{x \log x - x - \frac{1}{2} \log x} + \frac{\sqrt{2\pi}}{288} e^{x \log x - x - \frac{3}{2} \log x} + \dots \in \mathbb{L}_{exp, >} \\ e^{\Gamma(x)} &\in \mathfrak{L}_{exp, exp} \\ 1 + \frac{1}{x} + \frac{2}{x^{2}} + \frac{6}{x^{3}} + \frac{24}{x^{4}} + \frac{120}{x^{5}} + \dots \in \mathbb{R}[[x^{-1}]] \subseteq \mathbb{L}. \end{aligned}$$





$$\begin{aligned} x \log x \in \mathcal{L} \\ x^{x} &= e^{x \log x} \in \mathcal{L}_{exp} \\ x^{\alpha} e^{x} x^{x} &= e^{x \log x - x + \alpha \log x} \in \mathcal{L}_{exp} \\ \Gamma(x) &= \sqrt{2\pi} e^{x \log x - x + \frac{1}{2} \log x} + \frac{\sqrt{2\pi}}{12} e^{x \log x - x - \frac{1}{2} \log x} + \frac{\sqrt{2\pi}}{288} e^{x \log x - x - \frac{3}{2} \log x} + \dots \in \mathbb{L}_{exp, >} \\ e^{\Gamma(x)} &\in \mathcal{L}_{exp, exp} \\ & 1 + \frac{1}{x} + \frac{2}{x^{2}} + \frac{6}{x^{3}} + \frac{24}{x^{4}} + \frac{120}{x^{5}} + \dots \in \mathbb{R}[[x^{-1}]] \subseteq \mathbb{L}. \\ e^{\frac{x^{3}}{x - 1}} &= e^{x^{2} + x + 1 + x^{-1} + x^{-2} + \dots} \\ &= e^{x^{2} + x} e^{1} e^{x^{-1} + x^{-2} + \dots} \\ &= e^{x^{2} + x} \left(1 + \frac{1}{x} + \frac{3}{2x^{2}} + \frac{13}{6x^{3}} + \dots\right) \end{aligned}$$

$$\begin{aligned} x \log x \in \mathfrak{L} \\ x^{x} &= e^{x \log x} \in \mathfrak{L}_{exp} \\ x^{\alpha} e^{x} x^{x} &= e^{x \log x - x + \alpha \log x} \in \mathfrak{L}_{exp} \\ \Gamma(x) &= \sqrt{2\pi} e^{x \log x - x + \frac{1}{2} \log x} + \frac{\sqrt{2\pi}}{12} e^{x \log x - x - \frac{1}{2} \log x} + \frac{\sqrt{2\pi}}{288} e^{x \log x - x - \frac{3}{2} \log x} + \dots \in \mathbb{L}_{exp,>} \\ e^{\Gamma(x)} &\in \mathfrak{L}_{exp,exp} \\ &\qquad 1 + \frac{1}{x} + \frac{2}{x^{2}} + \frac{6}{x^{3}} + \frac{24}{x^{4}} + \frac{120}{x^{5}} + \dots \in \mathbb{R}[[x^{-1}]] \subseteq \mathbb{L}. \\ e^{\frac{x^{3}}{x^{-1}}} &= e^{x^{2} + x + 1 + x^{-1} + x^{-2} + \dots} \\ &= e^{x^{2} + x} e^{1} e^{x^{-1} + x^{-2} + \dots} \\ &= e \cdot e^{x^{2} + x} \left(1 + \frac{1}{x} + \frac{3}{2x^{2}} + \frac{13}{6x^{3}} + \dots\right) \\ &= e \cdot e^{x^{2} + x} + e \cdot e^{x^{2} + x - \log x} + \frac{3e}{2} e^{x^{2} + x - 2\log x} + \frac{13e}{6} e^{x^{2} + x - 3\log x} + \dots \in \mathbb{L}_{exp} \end{aligned}$$

Examples

$$\mathfrak{L} \subseteq \mathfrak{L}_{\exp} \subseteq \mathfrak{L}_{\exp,\exp} \subseteq \cdots \subseteq \mathfrak{T} := \bigcup_{n \in \mathbb{N}} \mathfrak{L}_{\exp,\stackrel{n \times}{\dots},\exp}$$

$$\mathfrak{L} \subseteq \mathfrak{L}_{exp} \subseteq \mathfrak{L}_{exp,exp} \subseteq \cdots \subseteq \mathfrak{T} := \bigcup_{n \in \mathbb{N}} \mathfrak{L}_{exp,...,exp}$$
$$\mathbb{R}[[\mathfrak{L}]] =: \mathbb{L} \subseteq \mathbb{L}_{exp} \subseteq \mathbb{L}_{exp,exp} \subseteq \cdots \subseteq \mathbb{T} := \bigcup_{n \in \mathbb{N}} \mathbb{L}_{exp,...,exp}$$

$$\mathfrak{L} \subseteq \mathfrak{L}_{\exp} \subseteq \mathfrak{L}_{\exp,\exp} \subseteq \cdots \subseteq \mathfrak{T} := \bigcup_{n \in \mathbb{N}} \mathfrak{L}_{\exp,\stackrel{n\times}{\ldots},\exp}$$
$$\mathbb{R}[\mathfrak{L}]] =: \mathbb{L} \subseteq \mathbb{L}_{\exp} \subseteq \mathbb{L}_{\exp,\exp} \subseteq \cdots \subseteq \mathbb{T} := \bigcup_{n \in \mathbb{N}} \mathbb{L}_{\exp,\stackrel{n\times}{\ldots},\exp}$$

Proposition

*In the grid-based setting, we have* 

$$\mathbb{T} = \mathbb{R}[[\mathfrak{T}]].$$

$$\mathfrak{L} \subseteq \mathfrak{L}_{\exp} \subseteq \mathfrak{L}_{\exp,\exp} \subseteq \cdots \subseteq \mathfrak{T} := \bigcup_{n \in \mathbb{N}} \mathfrak{L}_{\exp,\stackrel{n\times}{\ldots},\exp}$$
$$\mathbb{R}[\![\mathfrak{L}]\!] =: \mathbb{L} \subseteq \mathbb{L}_{\exp} \subseteq \mathbb{L}_{\exp,\exp} \subseteq \cdots \subseteq \mathbb{T} := \bigcup_{n \in \mathbb{N}} \mathbb{L}_{\exp,\stackrel{n\times}{\ldots},\exp}$$

Proposition

*In the grid-based setting, we have* 

$$\mathbb{T} = \mathbb{R}[[\mathfrak{T}]].$$

**Proof.** Given  $f \in \mathbb{T}$ , let  $\mathfrak{S} := \operatorname{supp} f$ .

$$\mathfrak{L} \subseteq \mathfrak{L}_{\exp} \subseteq \mathfrak{L}_{\exp,\exp} \subseteq \cdots \subseteq \mathfrak{T} := \bigcup_{n \in \mathbb{N}} \mathfrak{L}_{\exp,\stackrel{n\times}{\ldots},\exp}$$
$$\mathbb{R}[\![\mathfrak{L}]\!] =: \mathbb{L} \subseteq \mathbb{L}_{\exp} \subseteq \mathbb{L}_{\exp,\exp} \subseteq \cdots \subseteq \mathbb{T} := \bigcup_{n \in \mathbb{N}} \mathbb{L}_{\exp,\stackrel{n\times}{\ldots},\exp}$$

Proposition

In the grid-based setting, we have

$$\mathbb{T} = \mathbb{R}[[\mathfrak{T}]].$$

**Proof.** Given  $f \in \mathbb{T}$ , let  $\mathfrak{S} := \operatorname{supp} f$ . Then  $\mathfrak{S} \subseteq \mathfrak{m} \{\mathfrak{e}_1, \dots, \mathfrak{e}_k\}^*$  for  $\mathfrak{m} \in \mathfrak{T}, \mathfrak{e}_1, \dots, \mathfrak{e}_k \in \mathfrak{T}^{<1}$ .

$$\mathfrak{L} \subseteq \mathfrak{L}_{\exp} \subseteq \mathfrak{L}_{\exp,\exp} \subseteq \cdots \subseteq \mathfrak{T} := \bigcup_{n \in \mathbb{N}} \mathfrak{L}_{\exp,\stackrel{n\times}{\ldots},\exp}$$
$$\mathbb{R}[\![\mathfrak{L}]\!] =: \mathbb{L} \subseteq \mathbb{L}_{\exp} \subseteq \mathbb{L}_{\exp,\exp} \subseteq \cdots \subseteq \mathbb{T} := \bigcup_{n \in \mathbb{N}} \mathbb{L}_{\exp,\stackrel{n\times}{\ldots},\exp}$$

Proposition

In the grid-based setting, we have

$$\mathbb{T} = \mathbb{R}[[\mathfrak{T}]].$$

**Proof.** Given  $f \in \mathbb{T}$ , let  $\mathfrak{S} := \operatorname{supp} f$ . Then  $\mathfrak{S} \subseteq \mathfrak{m} \{\mathfrak{e}_1, \dots, \mathfrak{e}_k\}^*$  for  $\mathfrak{m} \in \mathfrak{T}, \mathfrak{e}_1, \dots, \mathfrak{e}_k \in \mathfrak{T}^{<1}$ . For  $n \in \mathbb{N}$  with  $\mathfrak{m}, \mathfrak{e}_1, \dots, \mathfrak{e}_k \in \mathfrak{L}_{\exp, \overset{n \times}{\dots}, \exp}$ , we have  $f \in \mathbb{L}_{\exp, \overset{n \times}{\dots}, \exp}$ .

$$\mathfrak{T}_0 := \mathfrak{L} \qquad \qquad \mathbb{T}_0 := \mathbb{R}[[\mathfrak{T}_0]]$$

Proposition

*For*  $\alpha < \beta$ *, we have*  $\mathbb{T}_{\alpha} \subsetneq \mathbb{T}_{\beta}$ *.* 

Proposition

*For*  $\alpha < \beta$ *, we have*  $\mathbb{T}_{\alpha} \subsetneq \mathbb{T}_{\beta}$ *.* 

Corollary

There is no non-trivial well-based field of transseries that is closed under exponentiation.

### Logarithmic transseries

$$x^{\alpha_{0}}\cdots(\log_{r} x)^{\alpha_{r}} \xrightarrow{\cdot \circ \log} (\log x)^{\alpha_{0}}\cdots(\log_{r+1} x)^{\alpha_{r}} \in \mathfrak{T}_{0}$$
$$x^{\alpha_{0}}\cdots(\log_{r} x)^{\alpha_{r}} \xrightarrow{\cdot \circ \exp} e^{\alpha_{0}x}x^{\alpha_{1}}\cdots(\log_{r-1} x)^{\alpha_{r}} \in \mathfrak{T}_{1}$$

### Logarithmic transseries

$$x^{\alpha_{0}}\cdots(\log_{r} x)^{\alpha_{r}} \xrightarrow{\cdot \circ \log} (\log x)^{\alpha_{0}}\cdots(\log_{r+1} x)^{\alpha_{r}} \in \mathfrak{T}_{0}$$
$$x^{\alpha_{0}}\cdots(\log_{r} x)^{\alpha_{r}} \xrightarrow{\cdot \circ \exp} e^{\alpha_{0}x}x^{\alpha_{1}}\cdots(\log_{r-1} x)^{\alpha_{r}} \in \mathfrak{T}_{1}$$
Strong linearity:  $\mathbb{T}_{0} \xrightarrow{\cdot \circ \log} \mathbb{T}_{0}$  and  $\mathbb{T}_{0} \xrightarrow{\cdot \circ \exp} \mathbb{T}_{1}$ 

### Logarithmic transseries

$$x^{\alpha_{0}}\cdots(\log_{r} x)^{\alpha_{r}} \xrightarrow{\cdots \circ \log} (\log x)^{\alpha_{0}}\cdots(\log_{r+1} x)^{\alpha_{r}} \in \mathfrak{T}_{0}$$
$$x^{\alpha_{0}}\cdots(\log_{r} x)^{\alpha_{r}} \xrightarrow{\cdots \circ \exp} e^{\alpha_{0}x}x^{\alpha_{1}}\cdots(\log_{r-1} x)^{\alpha_{r}} \in \mathfrak{T}_{1}$$
Strong linearity:  $\mathbb{T}_{0} \xrightarrow{\cdots \circ \log} \mathbb{T}_{0}$  and  $\mathbb{T}_{0} \xrightarrow{\cdots \circ \exp} \mathbb{T}_{1}$ 

#### **Inductive step**

For  $\varphi \in \mathbb{T}_{\alpha,>}$ ,  $e^{\varphi} \in \mathfrak{T}_{\alpha+1}$ ,  $\varphi \circ \log \in \mathbb{T}_{\alpha,>}$ ,  $\varphi \circ \exp \in \mathbb{T}_{\beta,>}$ ,  $\beta = \begin{cases} \alpha+1 & \text{if } \alpha < \omega \\ \alpha & \text{otherwise} \end{cases}$ 

### Logarithmic transseries

$$x^{\alpha_{0}}\cdots(\log_{r} x)^{\alpha_{r}} \xrightarrow{\cdot \circ \log} (\log x)^{\alpha_{0}}\cdots(\log_{r+1} x)^{\alpha_{r}} \in \mathfrak{T}_{0}$$

$$x^{\alpha_{0}}\cdots(\log_{r} x)^{\alpha_{r}} \xrightarrow{\cdot \circ \exp} e^{\alpha_{0}x}x^{\alpha_{1}}\cdots(\log_{r-1} x)^{\alpha_{r}} \in \mathfrak{T}_{1}$$
Strong linearity:  $\mathbb{T}_{0} \xrightarrow{\cdot \circ \log} \mathbb{T}_{0}$  and  $\mathbb{T}_{0} \xrightarrow{\cdot \circ \exp} \mathbb{T}_{1}$ 

### **Inductive step**

For 
$$\varphi \in \mathbb{T}_{\alpha,>}$$
,  $e^{\varphi} \in \mathfrak{T}_{\alpha+1}$ ,  $\varphi \circ \log \in \mathbb{T}_{\alpha,>}$ ,  $\varphi \circ \exp \in \mathbb{T}_{\beta,>}$ ,  $\beta = \begin{cases} \alpha+1 & \text{if } \alpha < \omega \\ \alpha & \text{otherwise} \end{cases}$   
 $e^{\varphi} \circ \log := e^{\varphi \circ \log} \in \mathfrak{T}_{\alpha+1}$   
 $e^{\varphi} \circ \exp := e^{\varphi \circ \exp} \in \mathfrak{T}_{\beta+1}$ 

### Logarithmic transseries

$$x^{\alpha_{0}}\cdots(\log_{r} x)^{\alpha_{r}} \xrightarrow{\cdots \circ \log} (\log x)^{\alpha_{0}}\cdots(\log_{r+1} x)^{\alpha_{r}} \in \mathfrak{T}_{0}$$
$$x^{\alpha_{0}}\cdots(\log_{r} x)^{\alpha_{r}} \xrightarrow{\cdots \circ \exp} e^{\alpha_{0}x}x^{\alpha_{1}}\cdots(\log_{r-1} x)^{\alpha_{r}} \in \mathfrak{T}_{1}$$
Strong linearity:  $\mathbb{T}_{0} \xrightarrow{\cdots \circ \log} \mathbb{T}_{0}$  and  $\mathbb{T}_{0} \xrightarrow{\cdots \circ \exp} \mathbb{T}_{1}$ 

#### **Inductive step**

For  $\varphi \in \mathbb{T}_{\alpha,>}$ ,  $e^{\varphi} \in \mathfrak{T}_{\alpha+1}$ ,  $\varphi \circ \log \in \mathbb{T}_{\alpha,>}$ ,  $\varphi \circ \exp \in \mathbb{T}_{\beta,>}$ ,  $\beta = \begin{cases} \alpha+1 & \text{if } \alpha < \omega \\ \alpha & \text{otherwise} \end{cases}$  $e^{\varphi} \circ \log := e^{\varphi \circ \log} \in \mathfrak{T}_{\alpha+1}$  $e^{\varphi} \circ \exp := e^{\varphi \circ \exp} \in \mathfrak{T}_{\beta+1}$ Strong linearity:  $\mathbb{T}_{\alpha+1} \xrightarrow{\cdot \circ \log} \mathbb{T}_{\alpha+1}$  and  $\mathbb{T}_{\alpha+1} \xrightarrow{\cdot \circ \exp} \mathbb{T}_{\beta+1}$ 

### Logarithmic transseries

$$x^{\alpha_{0}}\cdots(\log_{r} x)^{\alpha_{r}} \xrightarrow{\cdots \circ \log} (\log x)^{\alpha_{0}}\cdots(\log_{r+1} x)^{\alpha_{r}} \in \mathfrak{T}_{0}$$
$$x^{\alpha_{0}}\cdots(\log_{r} x)^{\alpha_{r}} \xrightarrow{\cdots \circ \exp} e^{\alpha_{0}x}x^{\alpha_{1}}\cdots(\log_{r-1} x)^{\alpha_{r}} \in \mathfrak{T}_{1}$$
Strong linearity:  $\mathbb{T}_{0} \xrightarrow{\cdots \circ \log} \mathbb{T}_{0}$  and  $\mathbb{T}_{0} \xrightarrow{\cdots \circ \exp} \mathbb{T}_{1}$ 

### **Inductive step**

For  $\varphi \in \mathbb{T}_{\alpha,>}$ ,  $e^{\varphi} \in \mathfrak{T}_{\alpha+1}$ ,  $\varphi \circ \log \in \mathbb{T}_{\alpha,>}$ ,  $\varphi \circ \exp \in \mathbb{T}_{\beta,>}$ ,  $\beta = \begin{cases} \alpha+1 & \text{if } \alpha < \omega \\ \alpha & \text{otherwise} \end{cases}$  $e^{\varphi} \circ \log := e^{\varphi \circ \log} \in \mathfrak{T}_{\alpha+1}$  $e^{\varphi} \circ \exp := e^{\varphi \circ \exp} \in \mathfrak{T}_{\beta+1}$ Strong linearity:  $\mathbb{T}_{\alpha+1} \xrightarrow{\cdot \circ \log} \mathbb{T}_{\alpha+1}$  and  $\mathbb{T}_{\alpha+1} \xrightarrow{\cdot \circ \exp} \mathbb{T}_{\beta+1}$ 

**Alternative notation:**  $\varphi \uparrow := \varphi \circ \exp$ ,  $\varphi \downarrow := \varphi \circ \log$ 

$$f_{\alpha} := \sqrt{x} - \sum_{0 < \beta < \alpha} e^{f_{\beta} \circ \log \beta}$$

$$f_{\alpha} := \sqrt{x} - \sum_{0 < \beta < \alpha} e^{f_{\beta} \circ \log \beta}$$
$$f_{1} = \sqrt{x}$$

$$f_{\alpha} := \sqrt{x} - \sum_{0 < \beta < \alpha} e^{f_{\beta} \circ \log}$$
$$f_{1} = \sqrt{x}$$
$$f_{2} = \sqrt{x} - e^{\sqrt{\log x}}$$

$$f_{\alpha} := \sqrt{x} - \sum_{0 < \beta < \alpha} e^{f_{\beta} \circ \log \beta}$$

$$f_{1} = \sqrt{x}$$

$$f_{2} = \sqrt{x} - e^{\sqrt{\log x}}$$

$$f_{3} = \sqrt{x} - e^{\sqrt{\log x}} - e^{\sqrt{\log x} - e^{\sqrt{\log x}}}$$

$$f_{\alpha} := \sqrt{x} - \sum_{0 < \beta < \alpha} e^{f_{\beta} \circ \log \alpha}$$

$$f_{1} = \sqrt{x}$$

$$f_{2} = \sqrt{x} - e^{\sqrt{\log x}}$$

$$\vdots$$

$$f_{\omega} = \sqrt{x} - e^{\sqrt{\log x}} - e^{\sqrt{\log x} - e^{\sqrt{\log 2x}}} - \cdots$$

$$f_{\alpha} := \sqrt{x} - \sum_{0 < \beta < \alpha} e^{f_{\beta} \circ \log \alpha}$$

$$f_{1} = \sqrt{x}$$

$$f_{2} = \sqrt{x} - e^{\sqrt{\log x}}$$

$$\vdots$$

$$f_{\omega} = \sqrt{x} - e^{\sqrt{\log x}} - e^{\sqrt{\log x} - e^{\sqrt{\log 2x}}} - \cdots$$

$$f_{\omega+1} = \sqrt{x} - e^{\sqrt{\log x}} - e^{\sqrt{\log x} - e^{\sqrt{\log 2x}}} - \cdots - e^{\sqrt{\log x} - e^{\sqrt{\log 2x}} - e^{\sqrt{\log 2x}}} - \cdots$$

$$\vdots$$

10/29

$$f_{\alpha} := \sqrt{x} - \sum_{0 < \beta < \alpha} e^{f_{\beta} \circ \log} \in \mathbb{T}_{\alpha, \succ}$$

$$f_{1} = \sqrt{x}$$

$$f_{2} = \sqrt{x} - e^{\sqrt{\log x}}$$

$$\vdots$$

$$f_{\omega} = \sqrt{x} - e^{\sqrt{\log x}} - e^{\sqrt{\log x} - e^{\sqrt{\log 2^{x}}}} - \cdots$$

$$f_{\omega+1} = \sqrt{x} - e^{\sqrt{\log x}} - e^{\sqrt{\log x} - e^{\sqrt{\log 2^{x}}}} - \cdots - e^{\sqrt{\log x} - e^{\sqrt{\log 2^{x}} - e^{\sqrt{\log 2^{x}}}} - \cdots$$

$$\vdots$$

$$f_{\alpha} := \sqrt{x} - \sum_{0 < \beta < \alpha} e^{f_{\beta} \circ \log \beta} \in \mathbb{T}_{\alpha, \succ} \Rightarrow e^{f_{\alpha} \circ \log \beta} \in \mathbb{T}_{\alpha+1}^{\succ}$$

$$f_{1} = \sqrt{x}$$

$$f_{2} = \sqrt{x} - e^{\sqrt{\log x}}$$

$$\vdots$$

$$f_{\omega} = \sqrt{x} - e^{\sqrt{\log x}} - e^{\sqrt{\log x} - e^{\sqrt{\log x}}} - \cdots$$

$$f_{\omega+1} = \sqrt{x} - e^{\sqrt{\log x}} - e^{\sqrt{\log x} - e^{\sqrt{\log x}}} - \cdots - e^{\sqrt{\log x} - e^{\sqrt{\log x} - e^{\sqrt{\log x}}}} - \cdots$$

$$\vdots$$

$$f_{\alpha} := \sqrt{x} - \sum_{0 < \beta < \alpha} e^{f_{\beta} \circ \log} \in \mathbb{T}_{\alpha, \succ} \Rightarrow e^{f_{\alpha} \circ \log} \in \mathfrak{T}_{\alpha+1}^{\succ}$$

$$f_{1} = \sqrt{x}$$

$$f_{2} = \sqrt{x} - e^{\sqrt{\log x}}$$

$$\vdots$$

$$f_{\omega} = \sqrt{x} - e^{\sqrt{\log x}} - e^{\sqrt{\log x} - e^{\sqrt{\log 2^{x}}}} - \cdots$$

$$f_{\omega+1} = \sqrt{x} - e^{\sqrt{\log x}} - e^{\sqrt{\log x} - e^{\sqrt{\log 2^{x}}}} - \cdots - e^{\sqrt{\log x} - e^{\sqrt{\log 2^{x}} - e^{\sqrt{\log 2^{x}}} - \cdots}}$$

$$\vdots$$

 $\beta < \alpha \Rightarrow f_{\alpha} < f_{\beta}$ 

$$f_{\alpha} := \sqrt{x} - \sum_{0 < \beta < \alpha} e^{f_{\beta} \circ \log} \in \mathbb{T}_{\alpha, \succ} \Rightarrow e^{f_{\alpha} \circ \log} \in \mathfrak{T}_{\alpha+1}^{\succ}$$

$$f_{1} = \sqrt{x}$$

$$f_{2} = \sqrt{x} - e^{\sqrt{\log x}}$$

$$\vdots$$

$$f_{\omega} = \sqrt{x} - e^{\sqrt{\log x}} - e^{\sqrt{\log x} - e^{\sqrt{\log 2^{x}}}} - \cdots$$

$$f_{\omega+1} = \sqrt{x} - e^{\sqrt{\log x}} - e^{\sqrt{\log x} - e^{\sqrt{\log 2^{x}}}} - \cdots - e^{\sqrt{\log x} - e^{\sqrt{\log 2^{x}} - e^{\sqrt{\log 2^{x}}}} - \cdots$$

$$\vdots$$

 $\beta < \alpha \implies f_{\alpha} < f_{\beta}$ <br/>supp  $f_{\alpha} \cong \alpha$ 

### Proposition

Let  $\mathscr{S}$  be the type of countable supports.

*There exists a non-trivial field of*  $\mathscr{S}$ *-based transseries that is closed under exponentiation.* 

### Proposition

*Let*  $\mathscr{S}$  *be the type of countable supports.* 

*There exists a non-trivial field of*  $\mathscr{S}$ *-based transseries that is closed under exponentiation.* 

### Logarithmic depth

 $\mathbb{E}$  := smallest subset of  $\mathbb{T}$  that contains  $x^{\mathbb{R}}$  and that is closed under  $\sum$  and exp.

### Proposition

*Let*  $\mathscr{S}$  *be the type of countable supports.* 

*There exists a non-trivial field of*  $\mathscr{S}$ *-based transseries that is closed under exponentiation.* 

### Logarithmic depth

 $\mathbb{E}$  := smallest subset of  $\mathbb{T}$  that contains  $x^{\mathbb{R}}$  and that is closed under  $\sum$  and exp. Logarithmic depth  $\operatorname{ld}(f)$  of  $f \in \mathbb{T}$  := smallest  $n \in \mathbb{N}$  such that  $f \in \mathbb{E} \circ \log_n$  or infinity.

### Proposition

### *Let* $\mathscr{S}$ *be the type of countable supports.*

*There exists a non-trivial field of*  $\mathscr{S}$ *-based transseries that is closed under exponentiation.* 

### Logarithmic depth

 $\mathbb{E}$  := smallest subset of  $\mathbb{T}$  that contains  $x^{\mathbb{R}}$  and that is closed under  $\sum$  and exp. Logarithmic depth  $\operatorname{ld}(f)$  of  $f \in \mathbb{T}$  := smallest  $n \in \mathbb{N}$  such that  $f \in \mathbb{E} \circ \log_n$  or infinity.

$$ld (e^{e^{3x}+2x}-x^3e^x) = 0$$
  

$$ld (x^x) = 1$$
  

$$ld (x + \log x + \log \log x + \cdots) = \infty.$$

### Proposition

### *Let* $\mathscr{S}$ *be the type of countable supports.*

*There exists a non-trivial field of*  $\mathscr{S}$ *-based transseries that is closed under exponentiation.* 

### Logarithmic depth

 $\mathbb{E}$  := smallest subset of  $\mathbb{T}$  that contains  $x^{\mathbb{R}}$  and that is closed under  $\sum$  and exp. Logarithmic depth  $\operatorname{ld}(f)$  of  $f \in \mathbb{T}$  := smallest  $n \in \mathbb{N}$  such that  $f \in \mathbb{E} \circ \log_n$  or infinity.

$$ld (e^{e^{3x}+2x}-x^3e^x) = 0$$
  

$$ld (x^x) = 1$$
  

$$ld (x + \log x + \log \log x + \cdots) = \infty.$$

#### Proposition

The field of well-based transseries of finite logarithmic depth is an exp-log field.

### **Exponential transseries.**

### **Exponential transseries.**

$$\mathfrak{E}_0 = x^{\mathbb{R}} \qquad \qquad \mathbb{E}_0 = \mathbb{R}[\![\mathfrak{E}_0]\!]$$

### **Exponential transseries.**

$$\mathfrak{E}_{0} = x^{\mathbb{R}} \qquad \mathbb{E}_{0} = \mathbb{R}[\![\mathfrak{E}_{0}]\!]$$
  
$$\mathfrak{E}_{k} = x^{\mathbb{R}} \exp \mathbb{E}_{k-1,>} \qquad \mathbb{E}_{k} = \mathbb{R}[\![\mathfrak{E}_{k}]\!] \qquad k=1,2,\ldots$$

### **Exponential transseries.**

-

### **Exponential transseries.**

-

$$\mathfrak{E}_{0} = x^{\mathbb{R}} \qquad \mathbb{E}_{0} = \mathbb{R}[[\mathfrak{E}_{0}]] \\
\mathfrak{E}_{k} = x^{\mathbb{R}} \exp \mathbb{E}_{k-1,>} \qquad \mathbb{E}_{k} = \mathbb{R}[[\mathfrak{E}_{k}]] \qquad k=1,2,\dots \\
\mathfrak{E} = \mathfrak{E}_{0} \cup \mathfrak{E}_{1} \cup \cdots \qquad \mathbb{E} = \mathbb{R}[[\mathfrak{E}]] \\
= \mathbb{E}_{0} \cup \mathbb{E}_{1} \cup \cdots$$

### **Exponential transseries.**

 $\mathbb{E}$  := smallest subset of  $\mathbb{T}$  with  $\mathbb{E} \supseteq x^{\mathbb{R}}$  that is closed under  $\sum$  and exp.

Logarithmic closure.

$$\mathbb{T} = \mathbb{E} \cup \mathbb{E} \circ \log \cup \mathbb{E} \circ \log_2 \cup \cdots$$

### **Exponential transseries.**

 $\mathbb{E}$  := smallest subset of  $\mathbb{T}$  with  $\mathbb{E} \supseteq x^{\mathbb{R}}$  that is closed under  $\sum$  and exp.

Logarithmic closure.

$$\mathbb{T} = \mathbb{E} \cup \mathbb{E} \circ \log \cup \mathbb{E} \circ \log_2 \cup \cdots$$

Level.

The **level** of  $f \in \mathbb{T}$  is the largest  $l \in \mathbb{Z}$  with  $f \in \mathbb{E} \circ \exp_l$ . Here  $\exp_l x = \log_{-l} x$  if l < 0.

### Flatness

**Flatness relations.** For  $f, g \in \mathbb{T}^{\neq 0}$ ,

 $f \ll g \iff \log |f| \prec \log |g|$  $f \leq g \iff \log |f| \leq \log |g|$  $f \equiv g \iff \log |f| \approx \log |g|.$ 

### Flatness

**Flatness relations.** For  $f, g \in \mathbb{T}^{\neq 0}$ ,

$$f \ll g \iff \log |f| \prec \log |g|$$
$$f \leq g \iff \log |f| \leqslant \log |g|$$
$$f \equiv g \iff \log |f| \approx \log |g|.$$

**Recursive expansions.** 
$$x \ll e^{x}$$
  
$$\frac{1}{1-x^{-1}-e^{-x}} = \frac{1}{1-x^{-1}} + \left(\frac{1}{1-x^{-1}}\right)^{2}e^{-x} + \left(\frac{1}{1-x^{-1}}\right)^{3}e^{-2x} + \cdots$$

### Flatness

**Flatness relations.** For  $f, g \in \mathbb{T}^{\neq 0}$ ,

$$f \ll g \iff \log |f| \prec \log |g|$$
$$f \leq g \iff \log |f| \leqslant \log |g|$$
$$f \equiv g \iff \log |f| \approx \log |g|.$$

Recursive expansions.  $x \ll e^{x}$  $\frac{1}{1-x^{-1}-e^{-x}} = \frac{1}{1-x^{-1}} + \left(\frac{1}{1-x^{-1}}\right)^{2} e^{-x} + \left(\frac{1}{1-x^{-1}}\right)^{3} e^{-2x} + \cdots$   $= 1 + \frac{1}{x} + \frac{1}{x^{2}} + \cdots$   $+ \frac{1}{e^{x}} + \frac{2}{xe^{x}} + \frac{3}{x^{2}e^{x}} + \cdots$   $+ \frac{1}{e^{x}} + \frac{3}{xe^{2x}} + \frac{6}{x^{2}e^{2x}} + \cdots + \cdots$ 

## Flatness

**Flatness relations.** For  $f, g \in \mathbb{T}^{\neq 0}$ ,

 $f \ll g \iff \log |f| \prec \log |g|$  $f \leq g \iff \log |f| \leqslant \log |g|$  $f \equiv g \iff \log |f| \approx \log |g|.$ 

**Recursive expansions.** Let  $b_1, \ldots, b_n \in \mathbb{T}^{>1}$  with  $b_1 \ll \cdots \ll b_n$ . Then

$$\varphi: x_1^{\mathbb{R}} \times \cdots \times x_n^{\mathbb{R}} \longrightarrow \mathbb{T}$$
$$x_1^{\alpha_1} \cdots x_n^{\alpha_n} \longmapsto b_1^{\alpha_1} \cdots b_n^{\alpha_n}$$

extends by strong linearity into an embedding

$$\hat{\varphi}: \mathbb{R}[[x_1^{\mathbb{R}} \times \cdots \times x_n^{\mathbb{R}}]]_{\mathscr{S}} \longrightarrow \mathbb{T}.$$

We define  $\mathbb{R}[[b_1;\ldots;b_n]]_{\mathscr{S}} := \operatorname{im} \hat{\varphi}.$ 

 $\mathbb{T} = \mathbb{R}[[x]]$ , the field of grid-based transseries.

### $\mathbb{T} = \mathbb{R}[[x]]$ , the field of grid-based transseries.

### Definition

A **transbasis** is a finite tuple  $\mathfrak{B} = (\mathfrak{b}_1, \dots, \mathfrak{b}_n) \in \mathbb{T}^n$  such that

- **TB1.**  $\mathfrak{b}_1, \ldots, \mathfrak{b}_n > 1$  and  $\mathfrak{b}_1 \ll \cdots \ll \mathfrak{b}_n$ .
- **TB2.**  $\mathfrak{b}_1 = \exp_l x$  for some  $l \in \mathbb{Z}$ .
- **TB3.**  $\log \mathfrak{b}_i \in \mathbb{R}[[\mathfrak{b}_1; \ldots; \mathfrak{b}_{i-1}]]_>, for i = 2, \ldots, n.$

### $\mathbb{T} = \mathbb{R}[[x]]$ , the field of grid-based transseries.

### Definition

A **transbasis** is a finite tuple  $\mathfrak{B} = (\mathfrak{b}_1, \ldots, \mathfrak{b}_n) \in \mathbb{T}^n$  such that

- **TB1.**  $\mathfrak{b}_1, \ldots, \mathfrak{b}_n > 1$  and  $\mathfrak{b}_1 \ll \cdots \ll \mathfrak{b}_n$ .
- **TB2.**  $\mathfrak{b}_1 = \exp_l x$  for some  $l \in \mathbb{Z}$ .

**TB3.**  $\log \mathfrak{b}_i \in \mathbb{R}[[\mathfrak{b}_1; \ldots; \mathfrak{b}_{i-1}]]_>, for i = 2, \ldots, n.$ 

▶ l is called the **level** of  $\mathfrak{B}$ .

### $\mathbb{T} = \mathbb{R}[[x]]$ , the field of grid-based transseries.

### Definition

A **transbasis** is a finite tuple  $\mathfrak{B} = (\mathfrak{b}_1, \dots, \mathfrak{b}_n) \in \mathbb{T}^n$  such that

- **TB1.**  $\mathfrak{b}_1, \ldots, \mathfrak{b}_n > 1$  and  $\mathfrak{b}_1 \ll \cdots \ll \mathfrak{b}_n$ .
- **TB2.**  $\mathfrak{b}_1 = \exp_l x$  for some  $l \in \mathbb{Z}$ .

**TB3.**  $\log \mathfrak{b}_i \in \mathbb{R}[[\mathfrak{b}_1; \ldots; \mathfrak{b}_{i-1}]]_>, for i = 2, \ldots, n.$ 

▶ l is called the **level** of  $\mathfrak{B}$ .

▶  $\mathfrak{B}$  is a transbasis **for** each element of  $\mathbb{R}[\![\mathfrak{B}^{\mathbb{R}}]\!] := \mathbb{R}[\![\mathfrak{b}_1; ...; \mathfrak{b}_n]\!]$ .

### $\mathbb{T} = \mathbb{R}[[x]]$ , the field of grid-based transseries.

### Definition

A **transbasis** is a finite tuple  $\mathfrak{B} = (\mathfrak{b}_1, \dots, \mathfrak{b}_n) \in \mathbb{T}^n$  such that

- **TB1.**  $\mathfrak{b}_1, \ldots, \mathfrak{b}_n > 1$  and  $\mathfrak{b}_1 \ll \cdots \ll \mathfrak{b}_n$ .
- **TB2.**  $\mathfrak{b}_1 = \exp_l x$  for some  $l \in \mathbb{Z}$ .

**TB3.**  $\log \mathfrak{b}_i \in \mathbb{R}[[\mathfrak{b}_1; \ldots; \mathfrak{b}_{i-1}]]_>, for i = 2, \ldots, n.$ 

▶ l is called the **level** of  $\mathfrak{B}$ .

▶  $\mathfrak{B}$  is a transbasis **for** each element of  $\mathbb{R}[[\mathfrak{B}^{\mathbb{R}}]] := \mathbb{R}[[\mathfrak{b}_1; ...; \mathfrak{b}_n]]$ .

 $(x, e^{\sqrt{x}}, e^{x\sqrt{x}})$ is a transbasis for  $e^{(x+1)^{3/2}} = e^{x^{3/2} + (3/2)x^{1/2} + cx^{-1/2} + \cdots}$  $(x, e^{(x+3/2)\sqrt{x}})$ is a transbasis for  $e^{(x+1)^{3/2}}$  $(\log x, x, e^x, x^x)$ is a transbasis of level -1 for  $\Gamma(x)$ 

### Theorem

### Theorem

Let  $\mathfrak{B} = (\mathfrak{b}_1, \dots, \mathfrak{b}_n)$  be a transbasis of level l and  $f \in \mathbb{T}$  a transseries of level l'. Then there exists a transbasis  $\hat{\mathfrak{B}}$  of level min(l, l') for f that extends  $\mathfrak{B}$ .

**Proof in a special case.** Assume that  $f = e^g$  and that  $\mathfrak{B}$  is a transbasis for *g*.

### Theorem

Let  $\mathfrak{B} = (\mathfrak{b}_1, \dots, \mathfrak{b}_n)$  be a transbasis of level l and  $f \in \mathbb{T}$  a transseries of level l'. Then there exists a transbasis  $\hat{\mathfrak{B}}$  of level min(l, l') for f that extends  $\mathfrak{B}$ .

**Proof in a special case.** Assume that  $f = e^g$  and that  $\mathfrak{B}$  is a transbasis for g. Let  $k \in \{0, ..., n\}$  be minimal such that there exist  $\lambda_{k+1}, ..., \lambda_n \in \mathbb{R}$  with

$$g = \lambda_n \log \mathfrak{b}_n + \cdots + \lambda_{k+1} \log \mathfrak{b}_{k+1} + \delta, \qquad \delta \prec \log \mathfrak{b}_{k+1}.$$

### Theorem

Let  $\mathfrak{B} = (\mathfrak{b}_1, \dots, \mathfrak{b}_n)$  be a transbasis of level l and  $f \in \mathbb{T}$  a transseries of level l'. Then there exists a transbasis  $\hat{\mathfrak{B}}$  of level min(l, l') for f that extends  $\mathfrak{B}$ .

**Proof in a special case.** Assume that  $f = e^g$  and that  $\mathfrak{B}$  is a transbasis for g. Let  $k \in \{0, ..., n\}$  be minimal such that there exist  $\lambda_{k+1}, ..., \lambda_n \in \mathbb{R}$  with  $g = \lambda_n \log \mathfrak{b}_n + \cdots + \lambda_{k+1} \log \mathfrak{b}_{k+1} + \delta, \quad \delta \prec \log \mathfrak{b}_{k+1}.$ If  $\delta \leq 1$ , then

$$f = e^{\delta} \mathfrak{b}_{k+1}^{\lambda_{k+1}} \cdots \mathfrak{b}_n^{\lambda_n} \in \mathbb{R}[[\mathfrak{B}^{\mathbb{R}}]].$$

### Theorem

Let  $\mathfrak{B} = (\mathfrak{b}_1, \dots, \mathfrak{b}_n)$  be a transbasis of level l and  $f \in \mathbb{T}$  a transseries of level l'. Then there exists a transbasis  $\hat{\mathfrak{B}}$  of level min(l, l') for f that extends  $\mathfrak{B}$ .

**Proof in a special case.** Assume that  $f = e^g$  and that  $\mathfrak{B}$  is a transbasis for g. Let  $k \in \{0, ..., n\}$  be minimal such that there exist  $\lambda_{k+1}, ..., \lambda_n \in \mathbb{R}$  with  $g = \lambda_n \log \mathfrak{b}_n + \cdots + \lambda_{k+1} \log \mathfrak{b}_{k+1} + \delta, \quad \delta \prec \log \mathfrak{b}_{k+1}.$ If  $\delta \leq 1$ , then

$$f = e^{\delta} \mathfrak{b}_{k+1}^{\lambda_{k+1}} \cdots \mathfrak{b}_n^{\lambda_n} \in \mathbb{R}[[\mathfrak{B}^{\mathbb{R}}]].$$

Otherwise, let  $i \leq k$  be such that  $\log \mathfrak{b}_i \prec \delta \prec \log \mathfrak{b}_{i+1}$ .

$$f = e^{\delta_{\leq}} e^{\delta_{>}} \mathfrak{b}_{k+1}^{\lambda_{k+1}} \cdots \mathfrak{b}_{n}^{\lambda_{n}} \in \mathbb{R}[[\hat{\mathfrak{B}}^{\mathbb{R}}]]$$
$$\hat{\mathfrak{B}} := (\mathfrak{b}_{1}, \dots, \mathfrak{b}_{i}, e^{|\delta_{>}|}, \mathfrak{b}_{i+1}, \dots, \mathfrak{b}_{n}).$$

### Theorem

### Theorem

Let  $\mathfrak{B} = (\mathfrak{b}_1, \dots, \mathfrak{b}_n)$  be a transbasis of level l and  $f \in \mathbb{T}$  a transseries of level l'. Then there exists a transbasis  $\hat{\mathfrak{B}}$  of level min(l, l') for f that extends  $\mathfrak{B}$ .

**Proof in general.** Add  $\exp_{l'} x, \ldots, \exp_{l-1} x$  below  $\mathfrak{b}_1$  to arrange that l = l'.

### Theorem

Let  $\mathfrak{B} = (\mathfrak{b}_1, \dots, \mathfrak{b}_n)$  be a transbasis of level l and  $f \in \mathbb{T}$  a transseries of level l'. Then there exists a transbasis  $\hat{\mathfrak{B}}$  of level min(l, l') for f that extends  $\mathfrak{B}$ .

**Proof in general.** Add  $\exp_{l'} x, \dots, \exp_{l-1} x$  below  $\mathfrak{b}_1$  to arrange that l = l'. Induction on *h* with  $f \in \mathbb{E}_h \circ \exp_l x$ .

### Theorem

Let  $\mathfrak{B} = (\mathfrak{b}_1, \dots, \mathfrak{b}_n)$  be a transbasis of level l and  $f \in \mathbb{T}$  a transseries of level l'. Then there exists a transbasis  $\hat{\mathfrak{B}}$  of level min(l, l') for f that extends  $\mathfrak{B}$ .

**Proof in general.** Add  $\exp_{l'} x, \dots, \exp_{l-1} x$  below  $\mathfrak{b}_1$  to arrange that l = l'. Induction on h with  $f \in \mathbb{E}_h \circ \exp_l x$ . Nothing to do if h = 0.

### Theorem

Let  $\mathfrak{B} = (\mathfrak{b}_1, \dots, \mathfrak{b}_n)$  be a transbasis of level l and  $f \in \mathbb{T}$  a transseries of level l'. Then there exists a transbasis  $\hat{\mathfrak{B}}$  of level min(l, l') for f that extends  $\mathfrak{B}$ .

**Proof in general.** Add  $\exp_{l'} x, \dots, \exp_{l-1} x$  below  $\mathfrak{b}_1$  to arrange that l = l'.

- Induction on *h* with  $f \in \mathbb{E}_h \circ \exp_l x$ .
- Nothing to do if h = 0.
- Otherwise, supp  $f \subseteq (\exp_l x)^{\mathbb{R}} e^{g_0 + g_1 \mathbb{N} + \dots + g_k \mathbb{N}}$  with  $g_0, \dots, g_k \in \mathbb{E}_{h-1} \circ \exp_l x$ .

### Theorem

- **Proof in general.** Add  $\exp_{l'} x, \dots, \exp_{l-1} x$  below  $\mathfrak{b}_1$  to arrange that l = l'.
- Induction on *h* with  $f \in \mathbb{E}_h \circ \exp_l x$ .
- Nothing to do if h = 0.
- Otherwise, supp  $f \subseteq (\exp_l x)^{\mathbb{R}} e^{g_0 + g_1 \mathbb{N} + \dots + g_k \mathbb{N}}$  with  $g_0, \dots, g_k \in \mathbb{E}_{h-1} \circ \exp_l x$ .
- Induction hypothesis + special case  $\rightsquigarrow \mathfrak{B}$  transbasis for  $e^{g_0}, \ldots, e^{g_k}$ .

### Theorem

- **Proof in general.** Add  $\exp_{l'} x, \dots, \exp_{l-1} x$  below  $\mathfrak{b}_1$  to arrange that l = l'.
- Induction on *h* with  $f \in \mathbb{E}_h \circ \exp_l x$ .
- Nothing to do if h = 0.
- Otherwise, supp  $f \subseteq (\exp_l x)^{\mathbb{R}} e^{g_0 + g_1 \mathbb{N} + \dots + g_k \mathbb{N}}$  with  $g_0, \dots, g_k \in \mathbb{E}_{h-1} \circ \exp_l x$ . Induction hypothesis + special case  $\rightsquigarrow \mathfrak{B}$  transbasis for  $e^{g_0}, \dots, e^{g_k}$ . Hence  $\mathfrak{B}$  is a transbasis for each monomial in supp f.

### Theorem

- **Proof in general.** Add  $\exp_{l'} x, \dots, \exp_{l-1} x$  below  $\mathfrak{b}_1$  to arrange that l = l'.
- Induction on *h* with  $f \in \mathbb{E}_h \circ \exp_l x$ .
- Nothing to do if h = 0.
- Otherwise, supp  $f \subseteq (\exp_l x)^{\mathbb{R}} e^{g_0 + g_1 \mathbb{N} + \dots + g_k \mathbb{N}}$  with  $g_0, \dots, g_k \in \mathbb{E}_{h-1} \circ \exp_l x$ . Induction hypothesis + special case  $\rightsquigarrow \mathfrak{B}$  transbasis for  $e^{g_0}, \dots, e^{g_k}$ . Hence  $\mathfrak{B}$  is a transbasis for each monomial in supp f.
- And thus for f itself.

 $\mathfrak{M} \rightarrow$  totally ordered monomial group.

## $\mathfrak{M} \rightarrow$ totally ordered monomial group. We focus on the grid-based setting.

## $\mathfrak{M} \rightarrow$ totally ordered monomial group. We focus on the grid-based setting.

### Definition

A strong derivation on  $\mathbb{R}[[\mathfrak{M}]]$  is a map  $\partial: \mathbb{R}[[\mathfrak{M}]] \to \mathbb{R}[[\mathfrak{M}]]$  such that

- **D1.**  $\partial c = 0$  for all  $c \in \mathbb{R}$ .
- **D2.**  $\partial(fg) = (\partial f)g + f \partial g$  for all  $f, g \in \mathbb{R}[[\mathfrak{M}]]$ .

**D3.**  $\partial$  is strongly  $\mathbb{R}$ -linear.

## $\mathfrak{M} \rightarrow$ totally ordered monomial group. We focus on the grid-based setting.

### Definition

A strong derivation on  $\mathbb{R}[[\mathfrak{M}]]$  is a map  $\partial: \mathbb{R}[[\mathfrak{M}]] \to \mathbb{R}[[\mathfrak{M}]]$  such that

- **D1.**  $\partial c = 0$  for all  $c \in \mathbb{R}$ .
- **D2.**  $\partial(fg) = (\partial f)g + f \partial g$  for all  $f, g \in \mathbb{R}[[\mathfrak{M}]]$ .
- **D3.**  $\partial$  is strongly  $\mathbb{R}$ -linear.

### Proposition

Let  $\partial: \mathfrak{M} \to \mathbb{R}[[\mathfrak{M}]]$  be a mapping such that  $\partial(\mathfrak{mn}) = (\partial \mathfrak{m})\mathfrak{n} + \mathfrak{m}\partial\mathfrak{n}$  for all  $\mathfrak{m}, \mathfrak{n} \in \mathfrak{M}$ . Then  $\partial$  is a grid-based mapping that extends uniquely into a strong derivation on  $\mathbb{R}[[\mathfrak{M}]]$ .

## $\mathfrak{M} \rightarrow$ totally ordered monomial group. We focus on the grid-based setting.

### Definition

A strong derivation on  $\mathbb{R}[[\mathfrak{M}]]$  is a map  $\partial: \mathbb{R}[[\mathfrak{M}]] \to \mathbb{R}[[\mathfrak{M}]]$  such that

- **D1.**  $\partial c = 0$  for all  $c \in \mathbb{R}$ .
- **D2.**  $\partial(fg) = (\partial f)g + f \partial g$  for all  $f, g \in \mathbb{R}[[\mathfrak{M}]]$ .
- **D3.**  $\partial$  is strongly  $\mathbb{R}$ -linear.

### Proposition

Let  $\partial: \mathfrak{M} \to \mathbb{R}[[\mathfrak{M}]]$  be a mapping such that  $\partial(\mathfrak{mn}) = (\partial \mathfrak{m})\mathfrak{n} + \mathfrak{m}\partial\mathfrak{n}$  for all  $\mathfrak{m}, \mathfrak{n} \in \mathfrak{M}$ . Then  $\partial$  is a grid-based mapping that extends uniquely into a strong derivation on  $\mathbb{R}[[\mathfrak{M}]]$ .

**Notation.** 
$$f' = \partial f$$
 and  $f^{\dagger} = \frac{\partial f}{f}$  if  $\partial$  is clear from the context.

### Proposition

## *Let* $\partial: \mathfrak{M} \to \mathbb{R}[[\mathfrak{M}]]$ *be a mapping such that* $\partial(\mathfrak{mn}) = (\partial \mathfrak{m})\mathfrak{n} + \mathfrak{m}\partial\mathfrak{n}$ *for all* $\mathfrak{m}, \mathfrak{n} \in \mathfrak{M}$ . *Then* $\partial$ *is a grid-based mapping that extends uniquely into a strong derivation on* $\mathbb{R}[[\mathfrak{M}]]$ .

### Proposition

*Let*  $\partial: \mathfrak{M} \to \mathbb{R}[[\mathfrak{M}]]$  *be a mapping such that*  $\partial(\mathfrak{mn}) = (\partial \mathfrak{m})\mathfrak{n} + \mathfrak{m}\partial\mathfrak{n}$  *for all*  $\mathfrak{m}, \mathfrak{n} \in \mathfrak{M}$ . *Then*  $\partial$  *is a grid-based mapping that extends uniquely into a strong derivation on*  $\mathbb{R}[[\mathfrak{M}]]$ .

**Proof.** Let  $\mathfrak{G} \subseteq \mathfrak{M}$  be grid-based and let  $\mathfrak{e}_1, \ldots, \mathfrak{e}_k \prec 1$  and  $\mathfrak{f}$  be in  $\mathfrak{M}$  with

 $\mathfrak{S} \subseteq \{\mathfrak{e}_1, \ldots, \mathfrak{e}_k\}^* \mathfrak{f}.$ 

### Proposition

Let  $\partial: \mathfrak{M} \to \mathbb{R}[[\mathfrak{M}]]$  be a mapping such that  $\partial(\mathfrak{mn}) = (\partial \mathfrak{m})\mathfrak{n} + \mathfrak{m}\partial\mathfrak{n}$  for all  $\mathfrak{m}, \mathfrak{n} \in \mathfrak{M}$ . Then  $\partial$  is a grid-based mapping that extends uniquely into a strong derivation on  $\mathbb{R}[[\mathfrak{M}]]$ .

**Proof.** Let  $\mathfrak{G} \subseteq \mathfrak{M}$  be grid-based and let  $\mathfrak{e}_1, \ldots, \mathfrak{e}_k \prec 1$  and  $\mathfrak{f}$  be in  $\mathfrak{M}$  with

$$\mathfrak{S} \subseteq \{\mathfrak{e}_1,\ldots,\mathfrak{e}_k\}^*\mathfrak{f}.$$

Then for any  $\mathfrak{m} := \mathfrak{e}_1^{\alpha_1} \cdots \mathfrak{e}_k^{\alpha_k} \mathfrak{f} \in \mathfrak{S}$ , we have

$$\mathfrak{m}^{\dagger} = \alpha_1 \mathfrak{e}_1^{\dagger} + \cdots + \alpha_k \mathfrak{e}_k^{\dagger} + \mathfrak{f}^{\dagger}$$

### Proposition

Let  $\partial: \mathfrak{M} \to \mathbb{R}[[\mathfrak{M}]]$  be a mapping such that  $\partial(\mathfrak{mn}) = (\partial \mathfrak{m})\mathfrak{n} + \mathfrak{m}\partial\mathfrak{n}$  for all  $\mathfrak{m}, \mathfrak{n} \in \mathfrak{M}$ . Then  $\partial$  is a grid-based mapping that extends uniquely into a strong derivation on  $\mathbb{R}[[\mathfrak{M}]]$ .

**Proof.** Let  $\mathfrak{G} \subseteq \mathfrak{M}$  be grid-based and let  $\mathfrak{e}_1, \ldots, \mathfrak{e}_k \prec 1$  and  $\mathfrak{f}$  be in  $\mathfrak{M}$  with

$$\mathfrak{S} \subseteq \{\mathfrak{e}_1,\ldots,\mathfrak{e}_k\}^*\mathfrak{f}.$$

Then for any  $\mathfrak{m} := \mathfrak{e}_1^{\alpha_1} \cdots \mathfrak{e}_k^{\alpha_k} \mathfrak{f} \in \mathfrak{S}$ , we have

$$\mathfrak{m}^{\dagger} = \alpha_1 \mathfrak{e}_1^{\dagger} + \dots + \alpha_k \mathfrak{e}_k^{\dagger} + \mathfrak{f}^{\dagger}$$
  
supp  $\mathfrak{S}^{\dagger} \subseteq$  supp  $\mathfrak{e}_1^{\dagger} \cup \dots \cup$  supp  $\mathfrak{e}_k^{\dagger} \cup$  supp  $\mathfrak{f}^{\dagger}$ 

### Proposition

Let  $\partial: \mathfrak{M} \to \mathbb{R}[[\mathfrak{M}]]$  be a mapping such that  $\partial(\mathfrak{mn}) = (\partial \mathfrak{m})\mathfrak{n} + \mathfrak{m}\partial\mathfrak{n}$  for all  $\mathfrak{m}, \mathfrak{n} \in \mathfrak{M}$ . Then  $\partial$  is a grid-based mapping that extends uniquely into a strong derivation on  $\mathbb{R}[[\mathfrak{M}]]$ .

**Proof.** Let  $\mathfrak{G} \subseteq \mathfrak{M}$  be grid-based and let  $\mathfrak{e}_1, \ldots, \mathfrak{e}_k \prec 1$  and  $\mathfrak{f}$  be in  $\mathfrak{M}$  with

$$\mathfrak{S} \subseteq \{\mathfrak{e}_1,\ldots,\mathfrak{e}_k\}^*\mathfrak{f}.$$

Then for any  $\mathfrak{m} := \mathfrak{e}_1^{\alpha_1} \cdots \mathfrak{e}_k^{\alpha_k} \mathfrak{f} \in \mathfrak{S}$ , we have

$$\mathfrak{m}^{\dagger} = \alpha_1 \mathfrak{e}_1^{\dagger} + \dots + \alpha_k \mathfrak{e}_k^{\dagger} + \mathfrak{f}^{\dagger}$$
  
supp  $\mathfrak{S}^{\dagger} \subseteq$  supp  $\mathfrak{e}_1^{\dagger} \cup \dots \cup$  supp  $\mathfrak{e}_k^{\dagger} \cup$  supp  $\mathfrak{f}^{\dagger}$ 

Hence  $(\mathfrak{m}')_{\mathfrak{m}\in\mathfrak{S}}$  is grid-based.

### Proposition

Let  $\partial: \mathfrak{M} \to \mathbb{R}[[\mathfrak{M}]]$  be a mapping such that  $\partial(\mathfrak{mn}) = (\partial \mathfrak{m})\mathfrak{n} + \mathfrak{m}\partial\mathfrak{n}$  for all  $\mathfrak{m}, \mathfrak{n} \in \mathfrak{M}$ . Then  $\partial$  is a grid-based mapping that extends uniquely into a strong derivation on  $\mathbb{R}[[\mathfrak{M}]]$ .

**Proof.** Let  $\mathfrak{G} \subseteq \mathfrak{M}$  be grid-based and let  $\mathfrak{e}_1, \ldots, \mathfrak{e}_k \prec 1$  and  $\mathfrak{f}$  be in  $\mathfrak{M}$  with

$$\mathfrak{S} \subseteq \{\mathfrak{e}_1,\ldots,\mathfrak{e}_k\}^*\mathfrak{f}.$$

Then for any  $\mathfrak{m} := \mathfrak{e}_1^{\alpha_1} \cdots \mathfrak{e}_k^{\alpha_k} \mathfrak{f} \in \mathfrak{S}$ , we have

$$\mathfrak{m}^{\dagger} = \alpha_1 \mathfrak{e}_1^{\dagger} + \dots + \alpha_k \mathfrak{e}_k^{\dagger} + \mathfrak{f}^{\dagger}$$
  
supp  $\mathfrak{S}^{\dagger} \subseteq$  supp  $\mathfrak{e}_1^{\dagger} \cup \dots \cup$  supp  $\mathfrak{e}_k^{\dagger} \cup$  supp  $\mathfrak{f}^{\dagger}$ .

Hence  $(\mathfrak{m}')_{\mathfrak{m}\in\mathfrak{S}}$  is grid-based.

Indeed, supp  $\mathfrak{S}' \subseteq \mathfrak{S}$  supp  $\mathfrak{S}^{\dagger}$  is grid-based.

### Proposition

Let  $\partial: \mathfrak{M} \to \mathbb{R}[[\mathfrak{M}]]$  be a mapping such that  $\partial(\mathfrak{mn}) = (\partial \mathfrak{m})\mathfrak{n} + \mathfrak{m}\partial\mathfrak{n}$  for all  $\mathfrak{m}, \mathfrak{n} \in \mathfrak{M}$ . Then  $\partial$  is a grid-based mapping that extends uniquely into a strong derivation on  $\mathbb{R}[[\mathfrak{M}]]$ .

**Proof.** Let  $\mathfrak{G} \subseteq \mathfrak{M}$  be grid-based and let  $\mathfrak{e}_1, \ldots, \mathfrak{e}_k \prec 1$  and  $\mathfrak{f}$  be in  $\mathfrak{M}$  with

 $\mathfrak{S} \subseteq \{\mathfrak{e}_1,\ldots,\mathfrak{e}_k\}^*\mathfrak{f}.$ 

Then for any  $\mathfrak{m} := \mathfrak{e}_1^{\alpha_1} \cdots \mathfrak{e}_k^{\alpha_k} \mathfrak{f} \in \mathfrak{S}$ , we have

$$\mathfrak{m}^{\dagger} = \alpha_1 \mathfrak{e}_1^{\dagger} + \dots + \alpha_k \mathfrak{e}_k^{\dagger} + \mathfrak{f}^{\dagger}$$
  
supp  $\mathfrak{S}^{\dagger} \subseteq$  supp  $\mathfrak{e}_1^{\dagger} \cup \dots \cup$  supp  $\mathfrak{e}_k^{\dagger} \cup$  supp  $\mathfrak{f}^{\dagger}$ 

Hence  $(\mathfrak{m}')_{\mathfrak{m}\in\mathfrak{S}}$  is grid-based.

Indeed, supp  $\mathfrak{S}' \subseteq \mathfrak{S}$  supp  $\mathfrak{S}^{\dagger}$  is grid-based. Given  $\mathfrak{v} \in \mathfrak{S}$ , the  $(\mathfrak{m}, \mathfrak{n}) \in \mathfrak{S} \times \operatorname{supp} \mathfrak{S}^{\dagger}$  with  $\mathfrak{v} = \mathfrak{m} \mathfrak{n}$  form a finite antichain.

### Proposition

Let  $\partial: \mathfrak{M} \to \mathbb{R}[[\mathfrak{M}]]$  be a mapping such that  $\partial(\mathfrak{mn}) = (\partial \mathfrak{m})\mathfrak{n} + \mathfrak{m}\partial\mathfrak{n}$  for all  $\mathfrak{m}, \mathfrak{n} \in \mathfrak{M}$ . Then  $\partial$  is a grid-based mapping that extends uniquely into a strong derivation on  $\mathbb{R}[[\mathfrak{M}]]$ .

**Proof.** Let  $\mathfrak{G} \subseteq \mathfrak{M}$  be grid-based and let  $\mathfrak{e}_1, \ldots, \mathfrak{e}_k \prec 1$  and  $\mathfrak{f}$  be in  $\mathfrak{M}$  with

$$\mathfrak{S} \subseteq \{\mathfrak{e}_1,\ldots,\mathfrak{e}_k\}^*\mathfrak{f}.$$

Then for any  $\mathfrak{m} := \mathfrak{e}_1^{\alpha_1} \cdots \mathfrak{e}_k^{\alpha_k} \mathfrak{f} \in \mathfrak{S}$ , we have

$$\mathfrak{m}^{\dagger} = \alpha_1 \mathfrak{e}_1^{\dagger} + \dots + \alpha_k \mathfrak{e}_k^{\dagger} + \mathfrak{f}^{\dagger}$$
  
supp  $\mathfrak{S}^{\dagger} \subseteq$  supp  $\mathfrak{e}_1^{\dagger} \cup \dots \cup$  supp  $\mathfrak{e}_k^{\dagger} \cup$  supp  $\mathfrak{f}^{\dagger}$ 

Hence  $(\mathfrak{m}')_{\mathfrak{m}\in\mathfrak{S}}$  is grid-based.

### Proposition

Let  $\partial: \mathfrak{M} \to \mathbb{R}[[\mathfrak{M}]]$  be a mapping such that  $\partial(\mathfrak{mn}) = (\partial \mathfrak{m})\mathfrak{n} + \mathfrak{m}\partial\mathfrak{n}$  for all  $\mathfrak{m}, \mathfrak{n} \in \mathfrak{M}$ . Then  $\partial$  is a grid-based mapping that extends uniquely into a strong derivation on  $\mathbb{R}[[\mathfrak{M}]]$ .

**Proof.** Let  $\mathfrak{G} \subseteq \mathfrak{M}$  be grid-based and let  $\mathfrak{e}_1, \ldots, \mathfrak{e}_k \prec 1$  and  $\mathfrak{f}$  be in  $\mathfrak{M}$  with

$$\mathfrak{S} \subseteq \{\mathfrak{e}_1,\ldots,\mathfrak{e}_k\}^*\mathfrak{f}.$$

Then for any  $\mathfrak{m} := \mathfrak{e}_1^{\alpha_1} \cdots \mathfrak{e}_k^{\alpha_k} \mathfrak{f} \in \mathfrak{S}$ , we have

$$\mathfrak{m}^{\dagger} = \alpha_1 \mathfrak{e}_1^{\dagger} + \dots + \alpha_k \mathfrak{e}_k^{\dagger} + \mathfrak{f}^{\dagger}$$
  
supp  $\mathfrak{S}^{\dagger} \subseteq$  supp  $\mathfrak{e}_1^{\dagger} \cup \dots \cup$  supp  $\mathfrak{e}_k^{\dagger} \cup$  supp  $\mathfrak{f}^{\dagger}$ 

Hence  $(\mathfrak{m}')_{\mathfrak{m}\in\mathfrak{S}}$  is grid-based.

Uniqueness:  $(f,g) \mapsto (fg)'$  and  $(f,g) \mapsto f'g + fg'$  strongly bilinear, same on  $\mathfrak{M}^2$ .

# **Exp-log derivations**

### Definition

Assume that exp is a partial exponential function on  $\mathbb{R}[[\mathfrak{M}]]$ . An **exp-log derivation** on  $\mathbb{R}[[\mathfrak{M}]]$  is a derivation  $\partial$  that satisfies **ED**.  $\partial \exp f = (\partial f) \exp f$ , for all  $f \in \operatorname{dom} \exp$ .

# **Exp-log derivations**

### Definition

Assume that exp is a partial exponential function on  $\mathbb{R}[[\mathfrak{M}]]$ . An **exp-log derivation** on  $\mathbb{R}[[\mathfrak{M}]]$  is a derivation  $\partial$  that satisfies **ED**.  $\partial \exp f = (\partial f) \exp f$ , for all  $f \in \operatorname{dom} \exp$ .

### Proposition

Let  $\partial: \mathfrak{M} \to \mathbb{R}[[\mathfrak{M}]]$  be a strong derivation with  $\partial \log \mathfrak{m} = \mathfrak{m}^{\dagger}$  for all  $\mathfrak{m} \in \mathfrak{M}$ . Then  $\partial$  is a strong exp-log derivation on  $\mathbb{R}[[\mathfrak{M}]]$ .

# **Exp-log derivations**

### Definition

Assume that exp is a partial exponential function on  $\mathbb{R}[[\mathfrak{M}]]$ . An **exp-log derivation** on  $\mathbb{R}[[\mathfrak{M}]]$  is a derivation  $\partial$  that satisfies **ED**.  $\partial \exp f = (\partial f) \exp f$ , for all  $f \in \operatorname{dom} \exp$ .

### Proposition

Let  $\partial: \mathfrak{M} \to \mathbb{R}[[\mathfrak{M}]]$  be a strong derivation with  $\partial \log \mathfrak{m} = \mathfrak{m}^{\dagger}$  for all  $\mathfrak{m} \in \mathfrak{M}$ . Then  $\partial$  is a strong exp-log derivation on  $\mathbb{R}[[\mathfrak{M}]]$ .

**Proof.** Let  $f = c \mathfrak{m} (1 + \varepsilon), c \in \mathbb{R}^{\neq 0}, \mathfrak{m} \in \mathfrak{M}, \varepsilon \in \mathbb{R}[[\mathfrak{M}]]^{<1}$ .

# **Exp-log derivations**

### Definition

Assume that exp is a partial exponential function on  $\mathbb{R}[[\mathfrak{M}]]$ . An **exp-log derivation** on  $\mathbb{R}[[\mathfrak{M}]]$  is a derivation  $\partial$  that satisfies **ED**.  $\partial \exp f = (\partial f) \exp f$ , for all  $f \in \operatorname{dom} \exp$ .

### Proposition

Let  $\partial: \mathfrak{M} \to \mathbb{R}[[\mathfrak{M}]]$  be a strong derivation with  $\partial \log \mathfrak{m} = \mathfrak{m}^{\dagger}$  for all  $\mathfrak{m} \in \mathfrak{M}$ . Then  $\partial$  is a strong exp-log derivation on  $\mathbb{R}[[\mathfrak{M}]]$ .

**Proof.** Let  $f = c \mathfrak{m} (1 + \varepsilon), c \in \mathbb{R}^{\neq 0}, \mathfrak{m} \in \mathfrak{M}, \varepsilon \in \mathbb{R}[[\mathfrak{M}]]^{<1}$ .  $(\log (1 + \varepsilon))' = (\varepsilon - \frac{1}{2}\varepsilon^2 + \frac{1}{3}\varepsilon^3 + \cdots)' = \varepsilon' (1 - \varepsilon + \varepsilon^2 + \cdots) = (1 + \varepsilon)^{\dagger}.$ 

# **Exp-log derivations**

### Definition

Assume that exp is a partial exponential function on  $\mathbb{R}[[\mathfrak{M}]]$ . An **exp-log derivation** on  $\mathbb{R}[[\mathfrak{M}]]$  is a derivation  $\partial$  that satisfies **ED**.  $\partial \exp f = (\partial f) \exp f$ , for all  $f \in \operatorname{dom} \exp$ .

### Proposition

Let  $\partial: \mathfrak{M} \to \mathbb{R}[[\mathfrak{M}]]$  be a strong derivation with  $\partial \log \mathfrak{m} = \mathfrak{m}^{\dagger}$  for all  $\mathfrak{m} \in \mathfrak{M}$ . Then  $\partial$  is a strong exp-log derivation on  $\mathbb{R}[[\mathfrak{M}]]$ .

**Proof.** Let 
$$f = c \mathfrak{m} (1 + \varepsilon), c \in \mathbb{R}^{\neq 0}, \mathfrak{m} \in \mathfrak{M}, \varepsilon \in \mathbb{R}[[\mathfrak{M}]]^{<1}$$
.  
 $(\log (1 + \varepsilon))' = (\varepsilon - \frac{1}{2}\varepsilon^2 + \frac{1}{3}\varepsilon^3 + \cdots)' = \varepsilon' (1 - \varepsilon + \varepsilon^2 + \cdots) = (1 + \varepsilon)^{\dagger}.$   
 $(\log f)' = (\log c + \log \mathfrak{m} + \log (1 + \varepsilon))' = \mathfrak{m}^{\dagger} + (1 + \varepsilon)^{\dagger} = f^{\dagger}.$ 

### Proposition

*There exists a unique strong exp-log derivation on*  $\mathbb{T}$  *with*  $\partial x = 1$ *.* 

### Proposition

*There exists a unique strong exp-log derivation on*  $\mathbb{T}$  *with*  $\partial x = 1$ *.* 

**Proof.** By induction on *h*, we show that there exists a unique such derivation on  $\mathbb{T}_h$ .

### Proposition

*There exists a unique strong exp-log derivation on*  $\mathbb{T}$  *with*  $\partial x = 1$ *.* 

**Proof.** By induction on *h*, we show that there exists a unique such derivation on  $\mathbb{T}_h$ .

### On $\mathfrak{L}$ , we must have

$$\partial(x^{\alpha_0}\cdots(\log_r x)^{\alpha_r}) = \left(\frac{\alpha_0}{x} + \frac{\alpha_1}{x\log x} + \cdots + \frac{\alpha_r}{x\log x\cdots\log_r x}\right)x^{\alpha_0}\cdots(\log_r x)^{\alpha_r}.$$

### Proposition

*There exists a unique strong exp-log derivation on*  $\mathbb{T}$  *with*  $\partial x = 1$ *.* 

**Proof.** By induction on *h*, we show that there exists a unique such derivation on  $\mathbb{T}_h$ .

### On $\mathfrak{L}$ , we must have

$$\partial(x^{\alpha_0}\cdots(\log_r x)^{\alpha_r}) = \left(\frac{\alpha_0}{x} + \frac{\alpha_1}{x\log x} + \cdots + \frac{\alpha_r}{x\log x \cdots \log_r x}\right) x^{\alpha_0} \cdots (\log_r x)^{\alpha_r}.$$

This map  $\partial: \mathfrak{L} \to \mathbb{L}$  satisfies the conditions of the previous two propositions.

## Proposition

*There exists a unique strong exp-log derivation on*  $\mathbb{T}$  *with*  $\partial x = 1$ *.* 

**Proof.** By induction on *h*, we show that there exists a unique such derivation on  $\mathbb{T}_h$ . On  $\mathfrak{L}$ , we must have

$$\partial(x^{\alpha_0}\cdots(\log_r x)^{\alpha_r}) = \left(\frac{\alpha_0}{x} + \frac{\alpha_1}{x\log x} + \cdots + \frac{\alpha_r}{x\log x \cdots \log_r x}\right) x^{\alpha_0} \cdots (\log_r x)^{\alpha_r}.$$

This map  $\partial : \mathfrak{L} \to \mathbb{L}$  satisfies the conditions of the previous two propositions.

Assume  $\partial: \mathbb{T}_h \to \mathbb{T}_h$ . On  $\mathfrak{T}_{h+1} = \exp \mathbb{T}_{h,>}$ , we must have  $\partial e^{\varphi} = (\partial \varphi) e^{\varphi}$ ,

$$\partial(\mathrm{e}^{\varphi}\mathrm{e}^{\psi}) \ = \ \partial\mathrm{e}^{\varphi+\psi} \ = \ (\partial\varphi+\partial\psi)\mathrm{e}^{\varphi+\psi} \ = \ (\partial\mathrm{e}^{\varphi})\mathrm{e}^{\psi}+\mathrm{e}^{\varphi}(\partial\mathrm{e}^{\psi}).$$

### Proposition

*There exists a unique strong exp-log derivation on*  $\mathbb{T}$  *with*  $\partial x = 1$ *.* 

**Proof.** By induction on *h*, we show that there exists a unique such derivation on  $\mathbb{T}_h$ . On  $\mathfrak{L}$ , we must have

$$\partial(x^{\alpha_0}\cdots(\log_r x)^{\alpha_r}) = \left(\frac{\alpha_0}{x} + \frac{\alpha_1}{x\log x} + \cdots + \frac{\alpha_r}{x\log x \cdots \log_r x}\right) x^{\alpha_0} \cdots (\log_r x)^{\alpha_r}.$$

This map  $\partial : \mathfrak{L} \to \mathbb{L}$  satisfies the conditions of the previous two propositions.

Assume  $\partial: \mathbb{T}_h \to \mathbb{T}_h$ . On  $\mathfrak{T}_{h+1} = \exp \mathbb{T}_{h,>}$ , we must have  $\partial e^{\varphi} = (\partial \varphi) e^{\varphi}$ ,

$$\partial(e^{\varphi}e^{\psi}) = \partial e^{\varphi+\psi} = (\partial \varphi + \partial \psi)e^{\varphi+\psi} = (\partial e^{\varphi})e^{\psi} + e^{\varphi}(\partial e^{\psi}).$$

This map  $\partial: \mathfrak{T}_{h+1} \to \mathbb{T}_{h+1}$  satisfies the conditions of our two propositions.

#### Proposition

*The derivation on*  $\mathbb{T}$  *is* **asymptotic** *and* **positive** *in the following sense:* 

$$\begin{aligned} f \prec g \not\approx 1 \implies f' \prec g' \\ 0 < f \succ 1 \implies f' > 0. \end{aligned}$$

#### Proposition

*The derivation on*  $\mathbb{T}$  *is* **asymptotic** *and* **positive** *in the following sense:* 

$$\begin{aligned} f \prec g \not\approx 1 \implies f' \prec g' \\ 0 < f > 1 \implies f' > 0. \end{aligned}$$

**Proof.** Assume that  $f, g \in \mathbb{R}[[\mathfrak{b}_1; \ldots; \mathfrak{b}_n]]$  for transbasis  $\mathfrak{B} = (\mathfrak{b}_1, \ldots, \mathfrak{b}_n)$ .

#### Proposition

*The derivation on*  $\mathbb{T}$  *is* **asymptotic** *and* **positive** *in the following sense:* 

$$\begin{aligned} f \prec g \not\approx 1 \implies f' \prec g' \\ 0 < f > 1 \implies f' > 0. \end{aligned}$$

**Proof.** Assume that  $f, g \in \mathbb{R}[[\mathfrak{b}_1; \ldots; \mathfrak{b}_n]]$  for transbasis  $\mathfrak{B} = (\mathfrak{b}_1, \ldots, \mathfrak{b}_n)$ . Proof this and  $f > 1 \Rightarrow f' > \mathfrak{b}_1^{\dagger}$  by induction on *n*.

### Proposition

*The derivation on*  $\mathbb{T}$  *is* **asymptotic** *and* **positive** *in the following sense:* 

$$\begin{aligned} f \prec g \not\approx 1 \implies f' \prec g' \\ 0 < f > 1 \implies f' > 0. \end{aligned}$$

**Proof.** Assume that  $f, g \in \mathbb{R}[[\mathfrak{b}_1; \ldots; \mathfrak{b}_n]]$  for transbasis  $\mathfrak{B} = (\mathfrak{b}_1, \ldots, \mathfrak{b}_n)$ . Proof this and  $f > 1 \Rightarrow f' > \mathfrak{b}_1^+$  by induction on n. Easy exercise if n = 1.

#### Proposition

*The derivation on*  $\mathbb{T}$  *is* **asymptotic** *and* **positive** *in the following sense:* 

$$\begin{aligned} f \prec g \not\approx 1 \implies f' \prec g' \\ 0 < f > 1 \implies f' > 0. \end{aligned}$$

**Proof.** Assume that  $f, g \in \mathbb{R}[[\mathfrak{b}_1; \ldots; \mathfrak{b}_n]]$  for transbasis  $\mathfrak{B} = (\mathfrak{b}_1, \ldots, \mathfrak{b}_n)$ . Proof this and  $f > 1 \Rightarrow f' > \mathfrak{b}_1^+$  by induction on n. Assume n > 1.

#### Proposition

*The derivation on*  $\mathbb{T}$  *is* **asymptotic** *and* **positive** *in the following sense:* 

$$\begin{aligned} f \prec g \not\approx 1 \implies f' \prec g' \\ 0 < f > 1 \implies f' > 0. \end{aligned}$$

**Proof.** Assume that  $f, g \in \mathbb{R}[[\mathfrak{b}_1; \ldots; \mathfrak{b}_n]]$  for transbasis  $\mathfrak{B} = (\mathfrak{b}_1, \ldots, \mathfrak{b}_n)$ . Proof this and  $f > 1 \Rightarrow f' > \mathfrak{b}_1^{\dagger}$  by induction on n. Assume n > 1.

$$\mathfrak{b}_1 \ll \mathfrak{b}_2 \ll \cdots \ll \mathfrak{b}_n$$

#### Proposition

*The derivation on*  $\mathbb{T}$  *is* **asymptotic** *and* **positive** *in the following sense:* 

$$\begin{aligned} f \prec g \not\approx 1 \implies f' \prec g' \\ 0 < f > 1 \implies f' > 0. \end{aligned}$$

**Proof.** Assume that  $f, g \in \mathbb{R}[[\mathfrak{b}_1; \ldots; \mathfrak{b}_n]]$  for transbasis  $\mathfrak{B} = (\mathfrak{b}_1, \ldots, \mathfrak{b}_n)$ . Proof this and  $f > 1 \Rightarrow f' > \mathfrak{b}_1^{\dagger}$  by induction on n. Assume n > 1.

#### Proposition

*The derivation on*  $\mathbb{T}$  *is* **asymptotic** *and* **positive** *in the following sense:* 

$$\begin{aligned} f \prec g \not\approx 1 \implies f' \prec g' \\ 0 < f > 1 \implies f' > 0. \end{aligned}$$

**Proof.** Assume that  $f, g \in \mathbb{R}[[\mathfrak{b}_1; \ldots; \mathfrak{b}_n]]$  for transbasis  $\mathfrak{B} = (\mathfrak{b}_1, \ldots, \mathfrak{b}_n)$ . Proof this and  $f > 1 \Rightarrow f' > \mathfrak{b}_1^{\dagger}$  by induction on n. Assume n > 1.

$$\begin{split} \mathfrak{b}_1 &\ll \mathfrak{b}_2 &\ll \cdots \ll \mathfrak{b}_n \\ 1 &\prec \log \mathfrak{b}_2 &\prec \cdots \prec \log \mathfrak{b}_n \\ \mathfrak{b}_1^{\dagger} &\prec (\log \mathfrak{b}_2)' \prec \cdots \prec (\log \mathfrak{b}_n)' \end{split}$$

#### Proposition

*The derivation on*  $\mathbb{T}$  *is* **asymptotic** *and* **positive** *in the following sense:* 

$$\begin{aligned} f \prec g \not\approx 1 \implies f' \prec g' \\ 0 < f > 1 \implies f' > 0. \end{aligned}$$

**Proof.** Assume that  $f, g \in \mathbb{R}[[\mathfrak{b}_1; \ldots; \mathfrak{b}_n]]$  for transbasis  $\mathfrak{B} = (\mathfrak{b}_1, \ldots, \mathfrak{b}_n)$ . Proof this and  $f > 1 \Rightarrow f' > \mathfrak{b}_1^+$  by induction on n. Assume n > 1.

$$\begin{split} \mathfrak{b}_1 &\ll \mathfrak{b}_2 &\ll \cdots \ll \mathfrak{b}_n \\ 1 &< \log \mathfrak{b}_2 &< \cdots &< \log \mathfrak{b}_n \\ \mathfrak{b}_1^{\dagger} &< (\log \mathfrak{b}_2)' &< \cdots &< (\log \mathfrak{b}_n)' \\ \mathfrak{b}_1^{\dagger} &< \mathfrak{b}_2^{\dagger} &< \cdots &< \mathfrak{b}_n^{\dagger} \end{split}$$

**Proof.** Assume that  $f, g \in \mathbb{R}[[\mathfrak{b}_1; \ldots; \mathfrak{b}_n]]$  for transbasis  $\mathfrak{B} = (\mathfrak{b}_1, \ldots, \mathfrak{b}_n)$ . To prove:

$$\begin{aligned} f \prec g \not\approx 1 \implies f' \prec g' \\ 0 < f > 1 \implies f' > 0 \\ f > 1 \implies f' > \mathfrak{b}_1^{\dagger}. \end{aligned}$$

Proof by induction on *n*. Assume that n > 1.

We have  $\mathfrak{b}_1^{\dagger} \prec \cdots \prec \mathfrak{b}_n^{\dagger}$ .

**Proof.** Assume that  $f, g \in \mathbb{R}[[\mathfrak{b}_1; \ldots; \mathfrak{b}_n]]$  for transbasis  $\mathfrak{B} = (\mathfrak{b}_1, \ldots, \mathfrak{b}_n)$ . To prove:

$$\begin{aligned} f \prec g \neq 1 \implies f' \prec g' \\ 0 < f > 1 \implies f' > 0 \\ f > 1 \implies f' > \mathfrak{b}_1^{\dagger}. \end{aligned}$$

Proof by induction on *n*. Assume that n > 1.

We have  $\mathfrak{b}_1^{\dagger} \prec \cdots \prec \mathfrak{b}_n^{\dagger}$ .

Let  $\mathfrak{m} = \mathfrak{b}_1^{\alpha_1} \cdots \mathfrak{b}_n^{\alpha_n} \prec \mathfrak{b}_1^{\beta_1} \cdots \mathfrak{b}_n^{\beta_n} = \mathfrak{n} \neq 1.$ 

**Proof.** Assume that  $f, g \in \mathbb{R}[[\mathfrak{b}_1; \ldots; \mathfrak{b}_n]]$  for transbasis  $\mathfrak{B} = (\mathfrak{b}_1, \ldots, \mathfrak{b}_n)$ . To prove:

$$\begin{aligned} f \prec g \not\approx 1 \implies f' \prec g' \\ 0 < f \succ 1 \implies f' > 0 \\ f \succ 1 \implies f' \succ \mathfrak{b}_1^{\dagger}. \end{aligned}$$

Proof by induction on *n*. Assume that n > 1.

We have  $\mathfrak{b}_1^+ \prec \cdots \prec \mathfrak{b}_n^+$ . Let  $\mathfrak{m} = \mathfrak{b}_1^{\alpha_1} \cdots \mathfrak{b}_n^{\alpha_n} \prec \mathfrak{b}_1^{\beta_1} \cdots \mathfrak{b}_n^{\beta_n} = \mathfrak{n} \neq 1$ .  $\alpha_n = \beta_n = 0 \Longrightarrow \mathfrak{m}' \prec \mathfrak{n}'$  by induction hypothesis.

**Proof.** Assume that  $f, g \in \mathbb{R}[[\mathfrak{b}_1; \ldots; \mathfrak{b}_n]]$  for transbasis  $\mathfrak{B} = (\mathfrak{b}_1, \ldots, \mathfrak{b}_n)$ . To prove:

$$\begin{aligned} f \prec g \not\approx 1 \implies f' \prec g' \\ 0 < f \succ 1 \implies f' > 0 \\ f \succ 1 \implies f' \succ \mathfrak{b}_1^{\dagger}. \end{aligned}$$

Proof by induction on *n*. Assume that n > 1.

We have  $\mathfrak{b}_1^+ \prec \cdots \prec \mathfrak{b}_n^+$ . Let  $\mathfrak{m} = \mathfrak{b}_1^{\alpha_1} \cdots \mathfrak{b}_n^{\alpha_n} \prec \mathfrak{b}_1^{\beta_1} \cdots \mathfrak{b}_n^{\beta_n} = \mathfrak{n} \neq 1$ .  $\alpha_n = \beta_n = 0 \Longrightarrow \mathfrak{m}' \prec \mathfrak{n}'$  by induction hypothesis.  $\alpha_n = \beta_n \neq 0 \Longrightarrow \mathfrak{m}' \asymp \mathfrak{m} \mathfrak{b}_n^+ \prec \mathfrak{n} \mathfrak{b}_n^+ \asymp \mathfrak{n}'$ .

**Proof.** Assume that  $f, g \in \mathbb{R}[[\mathfrak{b}_1; \ldots; \mathfrak{b}_n]]$  for transbasis  $\mathfrak{B} = (\mathfrak{b}_1, \ldots, \mathfrak{b}_n)$ . To prove:

$$\begin{aligned} f \prec g \not\approx 1 \implies f' \prec g' \\ 0 < f > 1 \implies f' > 0 \\ f > 1 \implies f' > \mathfrak{b}_1^{\dagger}. \end{aligned}$$

Proof by induction on *n*. Assume that n > 1.

We have  $\mathfrak{b}_1^{\dagger} \prec \cdots \prec \mathfrak{b}_n^{\dagger}$ . Let  $\mathfrak{m} = \mathfrak{b}_1^{\alpha_1} \cdots \mathfrak{b}_n^{\alpha_n} \prec \mathfrak{b}_1^{\beta_1} \cdots \mathfrak{b}_n^{\beta_n} = \mathfrak{n} \neq 1$ .  $\alpha_n = \beta_n = 0 \Longrightarrow \mathfrak{m}' \prec \mathfrak{n}'$  by induction hypothesis.  $\alpha_n = \beta_n \neq 0 \Longrightarrow \mathfrak{m}' \asymp \mathfrak{m} \mathfrak{b}_n^{\dagger} \prec \mathfrak{n} \mathfrak{b}_n^{\dagger} \asymp \mathfrak{n}'$ .  $\alpha_n < \beta_n \Longrightarrow \mathfrak{m}' \in \mathbb{R}[[\mathfrak{b}_1; \ldots; \mathfrak{b}_{n-1}]] \mathfrak{b}_n^{\alpha_n} \prec \mathbb{R}[[\mathfrak{b}_1; \ldots; \mathfrak{b}_{n-1}]] \mathfrak{b}_n^{\beta_n} \ni \mathfrak{n}'$ .

**Proof.** Assume that  $f, g \in \mathbb{R}[[\mathfrak{b}_1; \ldots; \mathfrak{b}_n]]$  for transbasis  $\mathfrak{B} = (\mathfrak{b}_1, \ldots, \mathfrak{b}_n)$ . To prove:

$$\begin{aligned} f \prec g \not\approx 1 \implies f' \prec g' \\ 0 < f > 1 \implies f' > 0 \\ f > 1 \implies f' > \mathfrak{b}_1^{\dagger}. \end{aligned}$$

Proof by induction on *n*. Assume that n > 1.

We have  $\mathfrak{b}_{1}^{\dagger} < \cdots < \mathfrak{b}_{n}^{\dagger}$ . Let  $\mathfrak{m} = \mathfrak{b}_{1}^{\alpha_{1}} \cdots \mathfrak{b}_{n}^{\beta_{n}} < \mathfrak{b}_{1}^{\beta_{1}} \cdots \mathfrak{b}_{n}^{\beta_{n}} = \mathfrak{n} \neq 1$ .  $\alpha_{n} = \beta_{n} = 0 \Longrightarrow \mathfrak{m}' < \mathfrak{n}'$  by induction hypothesis.  $\alpha_{n} = \beta_{n} \neq 0 \Longrightarrow \mathfrak{m}' \simeq \mathfrak{m} \mathfrak{b}_{n}^{\dagger} < \mathfrak{n} \mathfrak{b}_{n}^{\dagger} \simeq \mathfrak{n}'$ .  $\alpha_{n} < \beta_{n} \Longrightarrow \mathfrak{m}' \in \mathbb{R}[[\mathfrak{b}_{1}; \ldots; \mathfrak{b}_{n-1}]] \mathfrak{b}_{n}^{\alpha_{n}} < \mathbb{R}[[\mathfrak{b}_{1}; \ldots; \mathfrak{b}_{n-1}]] \mathfrak{b}_{n}^{\beta_{n}} \supseteq \mathfrak{n}'$ . Hence  $\mathfrak{m}' < \mathfrak{n}'$  in all cases.

**Proof.** Assume that  $f, g \in \mathbb{R}[[\mathfrak{b}_1; \ldots; \mathfrak{b}_n]]$  for transbasis  $\mathfrak{B} = (\mathfrak{b}_1, \ldots, \mathfrak{b}_n)$ . To prove:

$$\begin{aligned} f \prec g \neq 1 \implies f' \prec g' \\ 0 < f > 1 \implies f' > 0 \\ f > 1 \implies f' > \mathfrak{b}_1^{\dagger}. \end{aligned}$$

Proof by induction on *n*. Assume that n > 1.

We have  $\mathfrak{b}_1^{\dagger} \prec \cdots \prec \mathfrak{b}_n^{\dagger}$ .

If  $\mathfrak{m} = \mathfrak{b}_1^{\alpha_1} \cdots \mathfrak{b}_n^{\alpha_n} \prec \mathfrak{b}_1^{\beta_1} \cdots \mathfrak{b}_n^{\beta_n} = \mathfrak{n} \asymp 1$ , then  $\mathfrak{m}' \prec \mathfrak{n}'$ .

**Proof.** Assume that  $f, g \in \mathbb{R}[[\mathfrak{b}_1; \ldots; \mathfrak{b}_n]]$  for transbasis  $\mathfrak{B} = (\mathfrak{b}_1, \ldots, \mathfrak{b}_n)$ . To prove:

$$\begin{aligned} f \prec g \neq 1 \implies f' \prec g' \\ 0 < f > 1 \implies f' > 0 \\ f > 1 \implies f' > \mathfrak{b}_1^{\dagger}. \end{aligned}$$

Proof by induction on *n*. Assume that n > 1.

We have  $\mathfrak{b}_1^+ \prec \cdots \prec \mathfrak{b}_n^+$ . If  $\mathfrak{m} = \mathfrak{b}_1^{\alpha_1} \cdots \mathfrak{b}_n^{\alpha_n} \prec \mathfrak{b}_1^{\beta_1} \cdots \mathfrak{b}_n^{\beta_n} = \mathfrak{n} \asymp 1$ , then  $\mathfrak{m}' \prec \mathfrak{n}'$ . Assume  $f \prec g \neq 1$ .

**Proof.** Assume that  $f, g \in \mathbb{R}[[\mathfrak{b}_1; \ldots; \mathfrak{b}_n]]$  for transbasis  $\mathfrak{B} = (\mathfrak{b}_1, \ldots, \mathfrak{b}_n)$ . To prove:

$$\begin{aligned} f \prec g \neq 1 \implies f' \prec g' \\ 0 < f > 1 \implies f' > 0 \\ f > 1 \implies f' > \mathfrak{b}_1^{\dagger}. \end{aligned}$$

Proof by induction on *n*. Assume that n > 1.

We have  $\mathfrak{b}_1^{\dagger} \prec \cdots \prec \mathfrak{b}_n^{\dagger}$ . If  $\mathfrak{m} = \mathfrak{b}_1^{\alpha_1} \cdots \mathfrak{b}_n^{\alpha_n} \prec \mathfrak{b}_1^{\beta_1} \cdots \mathfrak{b}_n^{\beta_n} = \mathfrak{n} \asymp 1$ , then  $\mathfrak{m}' \prec \mathfrak{n}'$ . Assume  $f \prec g \not\preccurlyeq 1$ . For all  $\mathfrak{n} \in \text{supp}(g - \tau_g)$ , we have  $\mathfrak{n}' \prec \mathfrak{d}'_g$ , whence  $(g - \tau_g)' \prec \mathfrak{d}'_g$  and  $g' \sim c_g \mathfrak{d}'_g$ .

**Proof.** Assume that  $f, g \in \mathbb{R}[[\mathfrak{b}_1; \ldots; \mathfrak{b}_n]]$  for transbasis  $\mathfrak{B} = (\mathfrak{b}_1, \ldots, \mathfrak{b}_n)$ . To prove:

$$\begin{aligned} f \prec g \neq 1 \implies f' \prec g' \\ 0 < f > 1 \implies f' > 0 \\ f > 1 \implies f' > \mathfrak{b}_1^{\dagger}. \end{aligned}$$

Proof by induction on *n*. Assume that n > 1.

We have  $\mathfrak{b}_1^{\dagger} < \cdots < \mathfrak{b}_n^{\dagger}$ . If  $\mathfrak{m} = \mathfrak{b}_1^{\alpha_1} \cdots \mathfrak{b}_n^{\alpha_n} < \mathfrak{b}_1^{\beta_1} \cdots \mathfrak{b}_n^{\beta_n} = \mathfrak{n} = 1$ , then  $\mathfrak{m}' < \mathfrak{n}'$ . Assume  $f < g \neq 1$ . For all  $\mathfrak{n} \in \operatorname{supp}(g - \tau_g)$ , we have  $\mathfrak{n}' < \mathfrak{d}'_g$ , whence  $(g - \tau_g)' < \mathfrak{d}'_g$  and  $g' \sim c_g \mathfrak{d}'_g$ . For all  $\mathfrak{m} \in \operatorname{supp} f$ , we have  $\mathfrak{m}' < \mathfrak{d}'_g$ , whence  $f' < \mathfrak{d}'_g = g'$ .

**Proof.** Assume that  $f, g \in \mathbb{R}[[\mathfrak{b}_1; \ldots; \mathfrak{b}_n]]$  for transbasis  $\mathfrak{B} = (\mathfrak{b}_1, \ldots, \mathfrak{b}_n)$ . To prove:

$$\begin{aligned} f \prec g \not\approx 1 \implies f' \prec g' \\ 0 < f \succ 1 \implies f' > 0 \\ f \succ 1 \implies f' \succ \mathfrak{b}_1^{\dagger}. \end{aligned}$$

Proof by induction on *n*. Assume that n > 1.

We have  $\mathfrak{b}_1^+ \prec \cdots \prec \mathfrak{b}_n^+$ . If  $\mathfrak{m} = \mathfrak{b}_1^{\alpha_1} \cdots \mathfrak{b}_n^{\alpha_n} \prec \mathfrak{b}_1^{\beta_1} \cdots \mathfrak{b}_n^{\beta_n} = \mathfrak{n} \asymp 1$ , then  $\mathfrak{m}' \prec \mathfrak{n}'$ . Assume  $f \prec g \neq 1$ . For all  $\mathfrak{n} \in \operatorname{supp} (g - \tau_g)$ , we have  $\mathfrak{n}' \prec \mathfrak{d}'_g$ , whence  $(g - \tau_g)' \prec \mathfrak{d}'_g$  and  $g' \sim c_g \mathfrak{d}'_g$ . For all  $\mathfrak{m} \in \operatorname{supp} f$ , we have  $\mathfrak{m}' \prec \mathfrak{d}'_g$ , whence  $f' \prec \mathfrak{d}'_g \asymp g'$ . Hence  $f' \prec g' \sim c_g \mathfrak{d}'_g$ .

**Proof.** Assume that  $f, g \in \mathbb{R}[[\mathfrak{b}_1; \ldots; \mathfrak{b}_n]]$  for transbasis  $\mathfrak{B} = (\mathfrak{b}_1, \ldots, \mathfrak{b}_n)$ . To prove:

$$\begin{aligned} f \prec g \neq 1 \implies f' \prec g' \\ 0 < f > 1 \implies f' > 0 \\ f > 1 \implies f' > \mathfrak{b}_1^{\dagger}. \end{aligned}$$

Proof by induction on *n*. Assume that n > 1.

We have  $\mathfrak{b}_1^+ \prec \cdots \prec \mathfrak{b}_n^+$ . If  $\mathfrak{m} = \mathfrak{b}_1^{\alpha_1} \cdots \mathfrak{b}_n^{\alpha_n} \prec \mathfrak{b}_1^{\beta_1} \cdots \mathfrak{b}_n^{\beta_n} = \mathfrak{n} \asymp 1$ , then  $\mathfrak{m}' \prec \mathfrak{n}'$ . If  $f \prec g \neq 1$ , then  $f' \prec g' \sim c_g \mathfrak{d}'_g$ .

**Proof.** Assume that  $f, g \in \mathbb{R}[[\mathfrak{b}_1; \ldots; \mathfrak{b}_n]]$  for transbasis  $\mathfrak{B} = (\mathfrak{b}_1, \ldots, \mathfrak{b}_n)$ . To prove:

$$\begin{aligned} f \prec g \neq 1 \implies f' \prec g' \\ 0 < f > 1 \implies f' > 0 \\ f > 1 \implies f' > \mathfrak{b}_1^{\dagger}. \end{aligned}$$

Proof by induction on *n*. Assume that n > 1.

We have  $\mathfrak{b}_1^+ \prec \cdots \prec \mathfrak{b}_n^+$ . If  $\mathfrak{m} = \mathfrak{b}_1^{\alpha_1} \cdots \mathfrak{b}_n^{\alpha_n} \prec \mathfrak{b}_1^{\beta_1} \cdots \mathfrak{b}_n^{\beta_n} = \mathfrak{n} \asymp 1$ , then  $\mathfrak{m}' \prec \mathfrak{n}'$ . If  $f \prec g \neq 1$ , then  $f' \prec g' \sim c_g \mathfrak{d}_g'$ . If g > 1 and g > 0, then  $g' \sim c_g \mathfrak{d}_g (\log \mathfrak{d}_g)' > 0$ , since  $0 < \log \mathfrak{d}_g > 1$ .

**Proof.** Assume that  $f, g \in \mathbb{R}[[\mathfrak{b}_1; \ldots; \mathfrak{b}_n]]$  for transbasis  $\mathfrak{B} = (\mathfrak{b}_1, \ldots, \mathfrak{b}_n)$ . To prove:

$$\begin{aligned} f \prec g \neq 1 \implies f' \prec g' \\ 0 < f > 1 \implies f' > 0 \\ f > 1 \implies f' > \mathfrak{b}_1^{\dagger}. \end{aligned}$$

Proof by induction on *n*. Assume that n > 1.

We have  $\mathfrak{b}_1^+ \prec \cdots \prec \mathfrak{b}_n^+$ . If  $\mathfrak{m} = \mathfrak{b}_1^{\alpha_1} \cdots \mathfrak{b}_n^{\alpha_n} \prec \mathfrak{b}_1^{\beta_1} \cdots \mathfrak{b}_n^{\beta_n} = \mathfrak{n} \asymp 1$ , then  $\mathfrak{m}' \prec \mathfrak{n}'$ . If  $f \prec g \not\preccurlyeq 1$ , then  $f' \prec g' \sim c_g \mathfrak{d}_g'$ . If g > 1 and g > 0, then  $g' \sim c_g \mathfrak{d}_g (\log \mathfrak{d}_g)' > 0$ , since  $0 < \log \mathfrak{d}_g > 1$ . If g > 1, then  $g' \sim c_g \mathfrak{d}_g (\log \mathfrak{d}_g)' > \mathfrak{d}_g \mathfrak{b}_1^+ > \mathfrak{b}_1^+$ , since  $\log \mathfrak{d}_g > 1$ .

**Proof.** Assume that  $f, g \in \mathbb{R}[[\mathfrak{b}_1; \ldots; \mathfrak{b}_n]]$  for transbasis  $\mathfrak{B} = (\mathfrak{b}_1, \ldots, \mathfrak{b}_n)$ . To prove:

$$\begin{aligned} f \prec g \not\approx 1 \implies f' \prec g' \\ 0 < f > 1 \implies f' > 0 \\ f > 1 \implies f' > \mathfrak{b}_1^{\dagger}. \end{aligned}$$

Proof by induction on *n*. Assume that n > 1.

We have  $\mathfrak{b}_1^{\dagger} < \cdots < \mathfrak{b}_n^{\dagger}$ . If  $\mathfrak{m} = \mathfrak{b}_1^{\alpha_1} \cdots \mathfrak{b}_n^{\alpha_n} < \mathfrak{b}_1^{\beta_1} \cdots \mathfrak{b}_n^{\beta_n} = \mathfrak{n} = 1$ , then  $\mathfrak{m}' < \mathfrak{n}'$ . If  $f < g \neq 1$ , then  $f' < g' \sim c_g \mathfrak{d}'_g$ . If g > 1 and g > 0, then  $g' \sim c_g \mathfrak{d}_g (\log \mathfrak{d}_g)' > 0$ , since  $0 < \log \mathfrak{d}_g > 1$ . If g > 1, then  $g' \sim c_g \mathfrak{d}_g (\log \mathfrak{d}_g)' > \mathfrak{d}_g \mathfrak{b}_1^{\dagger} > \mathfrak{b}_1^{\dagger}$ , since  $\log \mathfrak{d}_g > 1$ . We conclude by induction.

### Proposition

## *The derivation on* $\mathbb{T}$ *is small**in the sense that* **\varepsilon < 1 \Longrightarrow \varepsilon' < 1** *for all* **\varepsilon \in \mathbb{T}.**

### Proposition

*The derivation on*  $\mathbb{T}$  *is* **small** *in the sense that*  $\varepsilon < 1 \Longrightarrow \varepsilon' < 1$  *for all*  $\varepsilon \in \mathbb{T}$ *.* 

**Proof.** If 
$$\varepsilon < 1$$
, then  $\varepsilon < \frac{1}{\log_n x}$  for some  $n \in \mathbb{N}$ , whence  
 $\varepsilon < \left(\frac{1}{\log_n x}\right)' = \frac{-1}{x \log x \cdots \log_{n-1} x (\log_n x)^2}.$ 

П

### Proposition

*The derivation on*  $\mathbb{T}$  *is small in the sense that*  $\varepsilon < 1 \Longrightarrow \varepsilon' < 1$  *for all*  $\varepsilon \in \mathbb{T}$ *.* 

**Proof.** If 
$$\varepsilon < 1$$
, then  $\varepsilon < \frac{1}{\log_n x}$  for some  $n \in \mathbb{N}$ , whence  
 $\varepsilon < \left(\frac{1}{\log_n x}\right)' = \frac{-1}{x \log x \cdots \log_{n-1} x (\log_n x)^2}.$ 

#### Proposition

If  $y \in \mathbb{T}$ , then  $(y')^2 \leq y$  or  $(y')^2 \leq y^3$ .

### Proposition

*The derivation on*  $\mathbb{T}$  *is small in the sense that*  $\varepsilon < 1 \Longrightarrow \varepsilon' < 1$  *for all*  $\varepsilon \in \mathbb{T}$ *.* 

**Proof.** If 
$$\varepsilon < 1$$
, then  $\varepsilon < \frac{1}{\log_n x}$  for some  $n \in \mathbb{N}$ , whence  
 $\varepsilon < \left(\frac{1}{\log_n x}\right)' = \frac{-1}{x \log x \cdots \log_{n-1} x (\log_n x)^2}$ 

#### Proposition

If 
$$y \in \mathbb{T}$$
, then  $(y')^2 \leq y$  or  $(y')^2 \leq y^3$ .

**Proof.** If  $y \leq 1$ , then  $y < (y')^2 \Rightarrow y' < 2y'y'' < y'$ , since y', y'' < 1. Hence  $(y')^2 \leq y$ .

## **Smallness of the derivation**

#### Proposition

*The derivation on*  $\mathbb{T}$  *is small in the sense that*  $\varepsilon < 1 \Longrightarrow \varepsilon' < 1$  *for all*  $\varepsilon \in \mathbb{T}$ *.* 

**Proof.** If 
$$\varepsilon < 1$$
, then  $\varepsilon < \frac{1}{\log_n x}$  for some  $n \in \mathbb{N}$ , whence  
 $\varepsilon < \left(\frac{1}{\log_n x}\right)' = \frac{-1}{x \log x \cdots \log_{n-1} x (\log_n x)^2}$ 

#### Proposition

If 
$$y \in \mathbb{T}$$
, then  $(y')^2 \leq y$  or  $(y')^2 \leq y^3$ .

**Proof.** If  $y \leq 1$ , then  $y < (y')^2 \Rightarrow y' < 2y'y'' < y'$ , since y', y'' < 1. Hence  $(y')^2 \leq y$ . If  $y \geq 1$ , then  $(y')^2/y^4 \approx ((1/y)')^2 \leq 1/y$ , whence  $(-y')^2 \leq y^3$ .

П

## **Smallness of the derivation**

#### Proposition

*The derivation on*  $\mathbb{T}$  *is small in the sense that*  $\varepsilon < 1 \Longrightarrow \varepsilon' < 1$  *for all*  $\varepsilon \in \mathbb{T}$ *.* 

**Proof.** If 
$$\varepsilon < 1$$
, then  $\varepsilon < \frac{1}{\log_n x}$  for some  $n \in \mathbb{N}$ , whence  
 $\varepsilon < \left(\frac{1}{\log_n x}\right)' = \frac{-1}{x \log x \cdots \log_{n-1} x (\log_n x)^2}$ 

#### Proposition

If 
$$y \in \mathbb{T}$$
, then  $(y')^2 \leq y$  or  $(y')^2 \leq y^3$ .

**Proof.** If  $y \leq 1$ , then  $y < (y')^2 \Rightarrow y' < 2y'y'' < y'$ , since y', y'' < 1. Hence  $(y')^2 \leq y$ . If  $y \geq 1$ , then  $(y')^2/y^4 \approx ((1/y)')^2 \leq 1/y$ , whence  $(-y')^2 \leq y^3$ .

#### Corollary

*Given*  $y \in \mathbb{T}$  *and*  $r \in \mathbb{N}$ *, we have*  $y^{(r)} \leq y^c$  *for some*  $c \in \mathbb{Q}^{>0}$ *.* 

### Proposition

*There exists a unique strong map*  $\int : \mathbb{T} \to \mathbb{T}$  *with*  $(\int f)' = f$  *and*  $(\int f)_1 = 0$  *for all*  $f \in \mathbb{T}$ . *We call it the distinguished integration on*  $\mathbb{T}$ .

### Proposition

*There exists a unique strong map*  $\int : \mathbb{T} \to \mathbb{T}$  *with*  $(\int f)' = f$  *and*  $(\int f)_1 = 0$  *for all*  $f \in \mathbb{T}$ . *We call it the* **distinguished integration** *on*  $\mathbb{T}$ .

**Proof.** In Lesson 6, we will solve more general linear differential equations.

### Proposition

*There exists a unique strong map*  $\int : \mathbb{T} \to \mathbb{T}$  *with*  $(\int f)' = f$  *and*  $(\int f)_1 = 0$  *for all*  $f \in \mathbb{T}$ . *We call it the* **distinguished integration** on  $\mathbb{T}$ .

**Proof.** In Lesson 6, we will solve more general linear differential equations.

### Corollary

*The differential field*  $\mathbb{T}$  *is Liouville closed.* 

### Proposition

*There exists a unique strong map*  $\int : \mathbb{T} \to \mathbb{T}$  *with*  $(\int f)' = f$  *and*  $(\int f)_1 = 0$  *for all*  $f \in \mathbb{T}$ . *We call it the* **distinguished integration** *on*  $\mathbb{T}$ .

**Proof.** In Lesson 6, we will solve more general linear differential equations.

### Corollary

The differential field  $\mathbb T$  is Liouville closed.

**Note.** The following transseries cannot be integrated in any well-based  $\mathbb{T}_{\alpha}$ :

$$\gamma \coloneqq \frac{1}{x \log x \log_2 x + \cdots} = e^{-\log x - \log_2 x - \log_3 x - \cdots}$$

### Proposition

*There exists a unique strong map*  $\int : \mathbb{T} \to \mathbb{T}$  *with*  $(\int f)' = f$  *and*  $(\int f)_1 = 0$  *for all*  $f \in \mathbb{T}$ . *We call it the* **distinguished integration** *on*  $\mathbb{T}$ .

**Proof.** In Lesson 6, we will solve more general linear differential equations.

### Corollary

The differential field  $\mathbb T$  is Liouville closed.

**Note.** The following transseries cannot be integrated in any well-based  $\mathbb{T}_{\alpha}$ :

$$\gamma \coloneqq \frac{1}{x \log x \log_2 x + \cdots} = e^{-\log x - \log_2 x - \log_3 x - \cdots}.$$

The field of well-based transseries of finite logarithmic depth is Liouville closed.

 $\mathfrak{M}, \mathfrak{N} \longrightarrow$  totally ordered monomial groups (usually  $\mathfrak{M} = \mathfrak{N}$  or  $\mathfrak{M} \subseteq \mathfrak{N}$ ).

### $\mathfrak{M}, \mathfrak{N} \longrightarrow$ totally ordered monomial groups (usually $\mathfrak{M} = \mathfrak{N}$ or $\mathfrak{M} \subseteq \mathfrak{N}$ ).

#### Definition

A strong difference operator is a map  $\sigma: \mathbb{R}[[\mathfrak{M}]] \to \mathbb{R}[[\mathfrak{N}]]$  such that  $\Delta 1. \ \sigma c = c \text{ for all } c \in \mathbb{R}.$   $\Delta 2. \ \sigma(fg) = (\sigma f)(\sigma g) \text{ for all } f, g \in \mathbb{R}[[\mathfrak{M}]].$  $\Delta 3. \ \sigma \text{ is strongly } \mathbb{R}\text{-linear.}$ 

## $\mathfrak{M}, \mathfrak{N} \longrightarrow$ totally ordered monomial groups (usually $\mathfrak{M} = \mathfrak{N}$ or $\mathfrak{M} \subseteq \mathfrak{N}$ ).

### Definition

A strong difference operator is a map  $\sigma: \mathbb{R}[[\mathfrak{M}]] \to \mathbb{R}[[\mathfrak{N}]]$  such that  $\Delta 1. \ \sigma c = c \text{ for all } c \in \mathbb{R}.$   $\Delta 2. \ \sigma(fg) = (\sigma f)(\sigma g) \text{ for all } f, g \in \mathbb{R}[[\mathfrak{M}]].$  $\Delta 3. \ \sigma \text{ is strongly } \mathbb{R}\text{-linear.}$ 

#### Proposition

*Let*  $\sigma: \mathfrak{M} \to \mathbb{R}[[\mathfrak{N}]]$  *be a multiplicative and strictly increasing mapping. Then*  $\sigma$  *is a grid-based mapping that extends uniquely into a strong difference operator on*  $\mathbb{R}[[\mathfrak{M}]]$ *.* 

## $\mathfrak{M}, \mathfrak{N} \longrightarrow$ totally ordered monomial groups (usually $\mathfrak{M} = \mathfrak{N}$ or $\mathfrak{M} \subseteq \mathfrak{N}$ ).

### Definition

A strong difference operator is a map  $\sigma: \mathbb{R}[[\mathfrak{M}]] \to \mathbb{R}[[\mathfrak{N}]]$  such that  $\Delta 1. \ \sigma c = c \text{ for all } c \in \mathbb{R}.$   $\Delta 2. \ \sigma(fg) = (\sigma f)(\sigma g) \text{ for all } f, g \in \mathbb{R}[[\mathfrak{M}]].$  $\Delta 3. \ \sigma \text{ is strongly } \mathbb{R}\text{-linear.}$ 

#### Proposition

*Let*  $\sigma: \mathfrak{M} \to \mathbb{R}[[\mathfrak{N}]]$  *be a multiplicative and strictly increasing mapping. Then*  $\sigma$  *is a grid-based mapping that extends uniquely into a strong difference operator on*  $\mathbb{R}[[\mathfrak{M}]]$ *.* 

**Proof.** If  $\mathfrak{S} \subseteq {\mathfrak{e}_1, \ldots, \mathfrak{e}_k}^* \mathfrak{f}$ , then  $(\sigma \mathfrak{m})_{\mathfrak{m} \in \mathfrak{S}}$  is grid-based: exercise of termification and Higman's theorem.

### $\mathfrak{M}, \mathfrak{N} \longrightarrow$ totally ordered monomial groups (usually $\mathfrak{M} = \mathfrak{N}$ or $\mathfrak{M} \subseteq \mathfrak{N}$ ).

### Definition

A strong difference operator is a map  $\sigma: \mathbb{R}[[\mathfrak{M}]] \to \mathbb{R}[[\mathfrak{N}]]$  such that  $\Delta 1. \ \sigma c = c \text{ for all } c \in \mathbb{R}.$   $\Delta 2. \ \sigma(fg) = (\sigma f)(\sigma g) \text{ for all } f, g \in \mathbb{R}[[\mathfrak{M}]].$  $\Delta 3. \ \sigma \text{ is strongly } \mathbb{R}\text{-linear.}$ 

#### Proposition

Let  $\sigma: \mathfrak{M} \to \mathbb{R}[[\mathfrak{N}]]$  be a multiplicative and strictly increasing mapping. Then  $\sigma$  is a gridbased mapping that extends uniquely into a strong difference operator on  $\mathbb{R}[[\mathfrak{M}]]$ .

**Proof.** If  $\mathfrak{S} \subseteq {\mathfrak{e}_1, \ldots, \mathfrak{e}_k}^* \mathfrak{f}$ , then  $(\sigma \mathfrak{m})_{\mathfrak{m} \in \mathfrak{S}}$  is grid-based: exercise of termification and Higman's theorem.

Remainder shown at the end of Lesson 3.

#### Definition

Assume that we have partial exponential functions on  $\mathbb{R}[[\mathfrak{M}]]$  and  $\mathbb{R}[[\mathfrak{N}]]$ .

An *exp-log difference operator* is a difference operator  $\sigma: \mathbb{R}[[\mathfrak{M}]] \to \mathbb{R}[[\mathfrak{N}]]$  that satisfies **E** $\Delta$ .  $\sigma \exp f = \exp \sigma f$ , for all  $f \in \operatorname{dom} \exp f$ .

### Definition

Assume that we have partial exponential functions on  $\mathbb{R}[[\mathfrak{M}]]$  and  $\mathbb{R}[[\mathfrak{N}]]$ .

An *exp-log difference operator* is a difference operator  $\sigma: \mathbb{R}[[\mathfrak{M}]] \to \mathbb{R}[[\mathfrak{N}]]$  that satisfies **E** $\Delta$ .  $\sigma \exp f = \exp \sigma f$ , for all  $f \in \operatorname{dom} \exp f$ .

### Proposition

Let  $\sigma: \mathfrak{M} \to \mathbb{R}[[\mathfrak{N}]]$  be a strong difference operator with  $\sigma \log \mathfrak{m} = \log \sigma \mathfrak{m}$  for all  $\mathfrak{m} \in \mathfrak{M}$ . Then  $\sigma$  is a strong exp-log difference operator on  $\mathbb{R}[[\mathfrak{N}]]$ .

### Definition

Assume that we have partial exponential functions on  $\mathbb{R}[[\mathfrak{M}]]$  and  $\mathbb{R}[[\mathfrak{N}]]$ .

An *exp-log difference operator* is a difference operator  $\sigma: \mathbb{R}[[\mathfrak{M}]] \to \mathbb{R}[[\mathfrak{N}]]$  that satisfies **E** $\Delta$ .  $\sigma \exp f = \exp \sigma f$ , for all  $f \in \operatorname{dom} \exp f$ .

### Proposition

Let  $\sigma: \mathfrak{M} \to \mathbb{R}[[\mathfrak{N}]]$  be a strong difference operator with  $\sigma \log \mathfrak{m} = \log \sigma \mathfrak{m}$  for all  $\mathfrak{m} \in \mathfrak{M}$ . Then  $\sigma$  is a strong exp-log difference operator on  $\mathbb{R}[[\mathfrak{N}]]$ .

**Proof.** Let  $f = c \mathfrak{m} (1 + \varepsilon), c \in \mathbb{R}^{\neq 0}, \mathfrak{m} \in \mathfrak{M}, \varepsilon \in \mathbb{R}[[\mathfrak{M}]]^{<1}$ .

### Definition

Assume that we have partial exponential functions on  $\mathbb{R}[[\mathfrak{M}]]$  and  $\mathbb{R}[[\mathfrak{N}]]$ .

An *exp-log difference operator* is a difference operator  $\sigma: \mathbb{R}[[\mathfrak{M}]] \to \mathbb{R}[[\mathfrak{N}]]$  that satisfies **E** $\Delta$ .  $\sigma \exp f = \exp \sigma f$ , for all  $f \in \operatorname{dom} \exp f$ .

### Proposition

Let  $\sigma: \mathfrak{M} \to \mathbb{R}[[\mathfrak{N}]]$  be a strong difference operator with  $\sigma \log \mathfrak{m} = \log \sigma \mathfrak{m}$  for all  $\mathfrak{m} \in \mathfrak{M}$ . Then  $\sigma$  is a strong exp-log difference operator on  $\mathbb{R}[[\mathfrak{N}]]$ .

**Proof.** Let  $f = c \mathfrak{m} (1 + \varepsilon), c \in \mathbb{R}^{\neq 0}, \mathfrak{m} \in \mathfrak{M}, \varepsilon \in \mathbb{R}[[\mathfrak{M}]]^{<1}$ .

 $\sigma \log \left(1+\varepsilon\right) \ = \ \sigma(\varepsilon - \frac{1}{2}\varepsilon^2 + \frac{1}{3}\varepsilon^3 + \cdots) \ = \ \sigma\varepsilon - \frac{1}{2}(\sigma\varepsilon)^2 + \frac{1}{3}(\sigma\varepsilon)^3 + \cdots \ = \ \log \left(1+\sigma\varepsilon\right)$ 

### Definition

Assume that we have partial exponential functions on  $\mathbb{R}[[\mathfrak{M}]]$  and  $\mathbb{R}[[\mathfrak{N}]]$ .

An *exp-log difference operator* is a difference operator  $\sigma: \mathbb{R}[[\mathfrak{M}]] \to \mathbb{R}[[\mathfrak{N}]]$  that satisfies **E** $\Delta$ .  $\sigma \exp f = \exp \sigma f$ , for all  $f \in \operatorname{dom} \exp f$ .

### Proposition

Let  $\sigma: \mathfrak{M} \to \mathbb{R}[[\mathfrak{N}]]$  be a strong difference operator with  $\sigma \log \mathfrak{m} = \log \sigma \mathfrak{m}$  for all  $\mathfrak{m} \in \mathfrak{M}$ . Then  $\sigma$  is a strong exp-log difference operator on  $\mathbb{R}[[\mathfrak{N}]]$ .

**Proof.** Let 
$$f = c \mathfrak{m}(1 + \varepsilon), c \in \mathbb{R}^{\neq 0}, \mathfrak{m} \in \mathfrak{M}, \varepsilon \in \mathbb{R}[[\mathfrak{M}]]^{<1}$$
.  
 $\sigma \log (1 + \varepsilon) = \sigma(\varepsilon - \frac{1}{2}\varepsilon^2 + \frac{1}{3}\varepsilon^3 + \cdots) = \sigma\varepsilon - \frac{1}{2}(\sigma\varepsilon)^2 + \frac{1}{3}(\sigma\varepsilon)^3 + \cdots = \log (1 + \sigma\varepsilon)$   
 $\sigma \log f = \sigma(\log c + \log \mathfrak{m} + \log (1 + \varepsilon)) = \log c + \log \sigma \mathfrak{m} + \log (1 + \sigma\varepsilon) = \log \sigma f.$ 

#### Definition

We say that a difference operator  $\sigma: \mathbb{R}[[\mathfrak{M}]] \to \mathbb{R}[[\mathfrak{N}]]$  is **asymptotic** resp. **positive** if

 $\begin{aligned} f < 1 \implies \sigma f < 1 \\ f > 0 \implies \sigma f > 0. \end{aligned}$ 

#### Definition

We say that a difference operator  $\sigma: \mathbb{R}[[\mathfrak{M}]] \to \mathbb{R}[[\mathfrak{N}]]$  is **asymptotic** resp. **positive** if

$$\begin{aligned} f < 1 \implies \sigma f < 1 \\ f > 0 \implies \sigma f > 0. \end{aligned}$$

#### Proposition

Let  $\sigma: \mathfrak{M} \to \mathbb{R}[[\mathfrak{N}]]$  be a strong difference operator with  $0 < \sigma \mathfrak{m} > 1$  for all  $\mathfrak{m} \in \mathfrak{M}^{>1}$ . Then  $\sigma$  is asymptotic and positive.

#### Definition

We say that a difference operator  $\sigma: \mathbb{R}[[\mathfrak{M}]] \to \mathbb{R}[[\mathfrak{N}]]$  is **asymptotic** resp. **positive** if

$$\begin{aligned} f < 1 \implies \sigma f < 1 \\ f > 0 \implies \sigma f > 0. \end{aligned}$$

#### Proposition

Let  $\sigma: \mathfrak{M} \to \mathbb{R}[[\mathfrak{N}]]$  be a strong difference operator with  $0 < \sigma \mathfrak{m} > 1$  for all  $\mathfrak{m} \in \mathfrak{M}^{>1}$ . Then  $\sigma$  is asymptotic and positive.

**Proof.** If f < 1, then  $\sigma \mathfrak{m} < 1$  for all  $\mathfrak{m} \in \operatorname{supp} f$ , whence  $\sigma f < 1$ .

#### Definition

We say that a difference operator  $\sigma: \mathbb{R}[[\mathfrak{M}]] \to \mathbb{R}[[\mathfrak{N}]]$  is **asymptotic** resp. **positive** if

$$\begin{aligned} f < 1 \implies \sigma f < 1 \\ f > 0 \implies \sigma f > 0. \end{aligned}$$

#### Proposition

Let  $\sigma: \mathfrak{M} \to \mathbb{R}[[\mathfrak{N}]]$  be a strong difference operator with  $0 < \sigma \mathfrak{m} > 1$  for all  $\mathfrak{m} \in \mathfrak{M}^{>1}$ . Then  $\sigma$  is asymptotic and positive.

**Proof.** If f < 1, then  $\sigma \mathfrak{m} < 1$  for all  $\mathfrak{m} \in \operatorname{supp} f$ , whence  $\sigma f < 1$ . It follows also that  $f < g \Rightarrow f/g < 1 \Rightarrow \sigma(f/g) < 1 \Rightarrow (\sigma f)/(\sigma g) < 1 \Rightarrow \sigma f < \sigma g$ .

#### Definition

We say that a difference operator  $\sigma: \mathbb{R}[[\mathfrak{M}]] \to \mathbb{R}[[\mathfrak{N}]]$  is **asymptotic** resp. **positive** if

$$\begin{aligned} f < 1 \implies \sigma f < 1 \\ f > 0 \implies \sigma f > 0. \end{aligned}$$

#### Proposition

Let  $\sigma: \mathfrak{M} \to \mathbb{R}[[\mathfrak{N}]]$  be a strong difference operator with  $0 < \sigma \mathfrak{m} > 1$  for all  $\mathfrak{m} \in \mathfrak{M}^{>1}$ . Then  $\sigma$  is asymptotic and positive.

**Proof.** If f < 1, then  $\sigma \mathfrak{m} < 1$  for all  $\mathfrak{m} \in \operatorname{supp} f$ , whence  $\sigma f < 1$ . It follows also that  $f < g \Rightarrow f/g < 1 \Rightarrow \sigma(f/g) < 1 \Rightarrow (\sigma f)/(\sigma g) < 1 \Rightarrow \sigma f < \sigma g$ . If f > 0, then  $f - \tau_f < f$  implies  $\sigma f - \sigma \tau_f < \sigma f$ , whence  $\tau_{\sigma f} \sim \sigma \tau_f$ .

# Asymptotic and positive difference operators <sup>27</sup>

#### Definition

We say that a difference operator  $\sigma: \mathbb{R}[[\mathfrak{M}]] \to \mathbb{R}[[\mathfrak{N}]]$  is **asymptotic** resp. **positive** if

$$\begin{aligned} f < 1 \implies \sigma f < 1 \\ f > 0 \implies \sigma f > 0. \end{aligned}$$

#### Proposition

Let  $\sigma: \mathfrak{M} \to \mathbb{R}[[\mathfrak{N}]]$  be a strong difference operator with  $0 < \sigma \mathfrak{m} > 1$  for all  $\mathfrak{m} \in \mathfrak{M}^{>1}$ . Then  $\sigma$  is asymptotic and positive.

**Proof.** If f < 1, then  $\sigma \mathfrak{m} < 1$  for all  $\mathfrak{m} \in \operatorname{supp} f$ , whence  $\sigma f < 1$ . It follows also that  $f < g \Rightarrow f/g < 1 \Rightarrow \sigma(f/g) < 1 \Rightarrow (\sigma f)/(\sigma g) < 1 \Rightarrow \sigma f < \sigma g$ . If f > 0, then  $f - \tau_f < f$  implies  $\sigma f - \sigma \tau_f < \sigma f$ , whence  $\tau_{\sigma f} \sim \sigma \tau_f$ . Now  $\sigma \tau_f = \sigma(c_f \mathfrak{d}_f) = (\sigma c_f)(\sigma \mathfrak{d}_f) = c_f \sigma \mathfrak{d}_f > 0$ .

#### Proposition

*Given*  $g \in \mathbb{T}^{>\mathbb{R}} = \mathbb{R}^{>1,>0}$ , there exists a unique strong exp-log difference operator  $\sigma$  on  $\mathbb{T}$  with  $\sigma x = g$ . This operator is asymptotic and positive. For  $f \in \mathbb{T}$ , we define  $f \circ g \coloneqq \sigma f$ .

#### Proposition

Given  $g \in \mathbb{T}^{>\mathbb{R}} = \mathbb{R}^{>1,>0}$ , there exists a unique strong exp-log difference operator  $\sigma$  on  $\mathbb{T}$  with  $\sigma x = g$ . This operator is asymptotic and positive. For  $f \in \mathbb{T}$ , we define  $f \circ g \coloneqq \sigma f$ .

**Proof.** By induction on *h*, we show that there exists a unique such  $\sigma$  on  $\mathbb{T}_h$ .

#### Proposition

Given  $g \in \mathbb{T}^{>\mathbb{R}} = \mathbb{R}^{>1,>0}$ , there exists a unique strong exp-log difference operator  $\sigma$  on  $\mathbb{T}$  with  $\sigma x = g$ . This operator is asymptotic and positive. For  $f \in \mathbb{T}$ , we define  $f \circ g \coloneqq \sigma f$ .

**Proof.** By induction on *h*, we show that there exists a unique such  $\sigma$  on  $\mathbb{T}_h$ .

On  $\mathbb{L}$ , we must have

$$\sigma(x^{\alpha_0}\cdots(\log_r x)^{\alpha_r}) = g^{\alpha_0}\cdots(\log_r g)^{\alpha_r}.$$

This map  $\sigma: \mathfrak{L} \to \mathbb{T}$  satisfies the conditions of the previous three propositions.

#### Proposition

Given  $g \in \mathbb{T}^{>\mathbb{R}} = \mathbb{R}^{>1,>0}$ , there exists a unique strong exp-log difference operator  $\sigma$  on  $\mathbb{T}$  with  $\sigma x = g$ . This operator is asymptotic and positive. For  $f \in \mathbb{T}$ , we define  $f \circ g \coloneqq \sigma f$ .

**Proof.** By induction on *h*, we show that there exists a unique such  $\sigma$  on  $\mathbb{T}_h$ .

On  $\mathbb{L}$ , we must have

$$\sigma(x^{\alpha_0}\cdots(\log_r x)^{\alpha_r}) = g^{\alpha_0}\cdots(\log_r g)^{\alpha_r}.$$

This map  $\sigma: \mathfrak{L} \to \mathbb{T}$  satisfies the conditions of the previous three propositions.

Assume  $\sigma: \mathbb{T}_h \to \mathbb{T}$ . On  $\mathfrak{T}_{h+1} = \exp \mathbb{T}_{h,>}$ , we must have

$$\sigma(e^{\varphi}e^{\psi}) = \sigma e^{\varphi+\psi} = e^{\sigma(\varphi+\psi)} = e^{\sigma\varphi+\sigma\psi} = e^{\sigma\varphi}e^{\sigma\psi}.$$

This map  $\partial: \mathfrak{T}_{h+1} \to \mathbb{T}$  satisfies the conditions of our two propositions.

### Proposition

For all  $f \in \mathbb{T}$  and  $g, h \in \mathbb{T}^{>\mathbb{R}}$ , we have

$$f \circ (g \circ h) = (f \circ g) \circ h$$
$$(f \circ g)' = g'(f \circ g).$$

#### Proposition

### For all $f \in \mathbb{T}$ and $g, h \in \mathbb{T}^{>\mathbb{R}}$ , we have

$$f \circ (g \circ h) = (f \circ g) \circ h$$
$$(f \circ g)' = g'(f \circ g).$$

### Proposition

If  $f, \delta \in \mathbb{T}$  are such that  $\delta \prec x$  and  $\mathfrak{m}^{\dagger} \delta \prec 1$  for all  $\mathfrak{m} \in \operatorname{supp} f$ , then  $f \circ (x + \delta) = f + f' \delta + \frac{1}{2} f'' \delta^2 + \cdots$ .

### Proposition

### For all $f \in \mathbb{T}$ and $g, h \in \mathbb{T}^{>\mathbb{R}}$ , we have

$$f \circ (g \circ h) = (f \circ g) \circ h$$
  
$$(f \circ g)' = g'(f \circ g).$$

### Proposition

If 
$$f, \delta \in \mathbb{T}$$
 are such that  $\delta \prec x$  and  $\mathfrak{m}^{\dagger} \delta \prec 1$  for all  $\mathfrak{m} \in \operatorname{supp} f$ , then  
 $f \circ (x + \delta) = f + f' \delta + \frac{1}{2} f'' \delta^2 + \cdots$ .

#### Proposition

*For any* 
$$g \in \mathbb{T}^{>\mathbb{R}}$$
*, there exists a unique*  $g^{\text{inv}} \in \mathbb{T}^{>\mathbb{R}}$  *with*  $g^{\text{inv}} \circ g = x$ .

#### Proposition

### For all $f \in \mathbb{T}$ and $g, h \in \mathbb{T}^{>\mathbb{R}}$ , we have

$$f \circ (g \circ h) = (f \circ g) \circ h$$
  
$$(f \circ g)' = g'(f \circ g).$$

### Proposition

If 
$$f, \delta \in \mathbb{T}$$
 are such that  $\delta \prec x$  and  $\mathfrak{m}^{\dagger} \delta \prec 1$  for all  $\mathfrak{m} \in \operatorname{supp} f$ , then  
 $f \circ (x + \delta) = f + f' \delta + \frac{1}{2} f'' \delta^2 + \cdots$ .

#### Proposition

*For any* 
$$g \in \mathbb{T}^{>\mathbb{R}}$$
*, there exists a unique*  $g^{inv} \in \mathbb{T}^{>\mathbb{R}}$  *with*  $g^{inv} \circ g = x$ .

### Proofs. See LNM 1888.