Lesson 5 - Transseries

Exp-log fields

Definition

Consider an ordered field K with a partial function exp: $K \rightarrow K$ such that
E1. $\exp 0=1$.
E2. $\exp y=\exp (y-x) \exp x$ for all $x, y \in$ dom exp.
E3. $\exp x \geqslant 1+x+\cdots+\frac{1}{(n-1)!} x^{n-1}$ for all $x \in \operatorname{dom} x$ and $n \in \mathbb{N}$.
We call exp an exponential function. Such a function is necessarily injective and its partial inverse is called a logarithmic function.
If dom $\exp =K$ and $\operatorname{im} \exp =K^{>0}$, then K is called an $\exp -\log$ field.

Exp-log fields

Definition

Consider an ordered field K with a partial function exp: $K \rightarrow K$ such that
E1. $\exp 0=1$.
E2. $\exp y=\exp (y-x) \exp x$ for all $x, y \in$ dom \exp.
E3. $\exp x \geqslant 1+x+\cdots+\frac{1}{(n-1)!} x^{n-1}$ for all $x \in \operatorname{dom} x$ and $n \in \mathbb{N}$.
We call exp an exponential function. Such a function is necessarily injective and its partial inverse is called a logarithmic function.
If dom $\exp =K$ and $\operatorname{im} \exp =K^{>0}$, then K is called an exp-log field.

Proposition

\mathbb{R} is an exp-log field.

Logarithmic transseries

$\mathbb{R} \quad$ real numbers, but could be any exp-log field

Logarithmic transseries

$\mathbb{R} \quad$ real numbers, but could be any exp-log field formal indeterminate with $x>1$

Logarithmic transseries

$\mathbb{R} \quad$ real numbers, but could be any exp-log field
$x \quad$ formal indeterminate with $x>1$
$\log _{k} x \quad$ formal iterated \log arithm $(\log \circ \stackrel{k \times}{\ldots} \circ \log)(x)$

Logarithmic transseries

$\mathbb{R} \quad$ real numbers, but could be any exp-log field
$x \quad$ formal indeterminate with $x>1$
$\log _{k} x \quad$ formal iterated $\log a r i t h m(\log \circ k \times \circ \log)(x)$
$\mathfrak{L} \quad$ formal group of logarithmic monomials of the form

$$
\mathfrak{l}=x^{\alpha_{0}}(\log x)^{\alpha_{1}} \cdots\left(\log _{r} x\right)^{\alpha_{r}}, \quad \alpha_{0}, \ldots, \alpha_{r} \in \mathbb{R}
$$

Logarithmic transseries

$\mathbb{R} \quad$ real numbers, but could be any exp-log field
$x \quad$ formal indeterminate with $x>1$
$\log _{k} x \quad$ formal iterated $\operatorname{logarithm}(\log \circ \stackrel{k \times}{\ldots} \circ \log)(x)$
$\mathfrak{L} \quad$ formal group of logarithmic monomials of the form

$$
\mathfrak{l}=x^{\alpha_{0}}(\log x)^{\alpha_{1}} \cdots\left(\log _{r} x\right)^{\alpha_{r}}, \quad \alpha_{0}, \ldots, \alpha_{r} \in \mathbb{R},
$$

with $\mathfrak{l}>1$ iff $l \neq 1$ and $\alpha_{i}>0$, where i is minimal with $\alpha_{i}=0$

Logarithmic transseries

$\mathbb{R} \quad$ real numbers, but could be any exp-log field
$x \quad$ formal indeterminate with $x>1$
$\log _{k} x \quad$ formal iterated \log arithm $(\log \circ \stackrel{k \times}{\ldots} \circ \log)(x)$
$\mathfrak{L} \quad$ formal group of logarithmic monomials of the form

$$
\mathfrak{l}=x^{\alpha_{0}}(\log x)^{\alpha_{1}} \cdots\left(\log _{r} x\right)^{\alpha_{r}}, \quad \alpha_{0}, \ldots, \alpha_{r} \in \mathbb{R},
$$

with $\mathfrak{l}>1$ iff $l \neq 1$ and $\alpha_{i}>0$, where i is minimal with $\alpha_{i}=0$
$\mathbb{L} \quad$ the field $\mathbb{R}[[\mathfrak{L}]]_{\mathscr{P}}$ for some support type \mathscr{S}

Logarithmic transseries

$\mathbb{R} \quad$ real numbers, but could be any exp-log field
$x \quad$ formal indeterminate with $x>1$
$\log _{k} x \quad$ formal iterated $\log a r i t h m(\log \circ \stackrel{k \times}{\ldots} \circ \circ \log)(x)$
$\mathfrak{L} \quad$ formal group of logarithmic monomials of the form

$$
\mathfrak{l}=x^{\alpha_{0}}(\log x)^{\alpha_{1}} \cdots\left(\log _{r} x\right)^{\alpha_{r}}, \quad \alpha_{0}, \ldots, \alpha_{r} \in \mathbb{R},
$$

with $\mathfrak{l}>1$ iff $l \neq 1$ and $\alpha_{i}>0$, where i is minimal with $\alpha_{i}=0$
$\mathbb{L} \quad$ the field $\mathbb{R}[[\mathcal{L}]]_{\mathscr{S}}$ for some support type \mathscr{S}
Partial logarithmic function. Let $f \in \mathbb{L}^{>0}$. Then

$$
f=\mathfrak{d}_{f} c_{f}(1+\delta),
$$

Logarithmic transseries

$\mathbb{R} \quad$ real numbers, but could be any exp-log field
$x \quad$ formal indeterminate with $x>1$
$\log _{k} x \quad$ formal iterated $\log a r i t h m(\log \circ \stackrel{k \times}{\ldots} \circ \circ \log)(x)$
$\mathfrak{L} \quad$ formal group of logarithmic monomials of the form

$$
\mathfrak{l}=x^{\alpha_{0}}(\log x)^{\alpha_{1}} \cdots\left(\log _{r} x\right)^{\alpha_{r}}, \quad \alpha_{0}, \ldots, \alpha_{r} \in \mathbb{R},
$$

with $\mathfrak{l}>1$ iff $l \neq 1$ and $\alpha_{i}>0$, where i is minimal with $\alpha_{i}=0$
$\mathbb{L} \quad$ the field $\mathbb{R}[[\mathfrak{L}]]_{\mathscr{S}}$ for some support type \mathscr{S}
Partial logarithmic function. Let $f \in \mathbb{L}^{>0}$. Then

$$
\begin{aligned}
f= & \mathfrak{d}_{f} \mathcal{C}_{f}(1+\delta), \\
& \mathfrak{d}_{f}=x^{\alpha_{0}} \cdots\left(\log _{r} x\right)^{\alpha_{r},}, c_{f} \in \mathbb{R}^{>}, \delta \in \mathbb{L}^{<1}
\end{aligned}
$$

$\mathbb{R} \quad$ real numbers, but could be any exp-log field
$x \quad$ formal indeterminate with $x>1$
$\log _{k} x \quad$ formal iterated $\log a r i t h m(\log \circ \stackrel{k \times}{\ldots} \circ \circ \log)(x)$
$\mathfrak{L} \quad$ formal group of logarithmic monomials of the form

$$
\mathfrak{l}=x^{\alpha_{0}}(\log x)^{\alpha_{1}} \cdots\left(\log _{r} x\right)^{\alpha_{r}}, \quad \alpha_{0}, \ldots, \alpha_{r} \in \mathbb{R},
$$

with $\mathfrak{l}>1$ iff $l \neq 1$ and $\alpha_{i}>0$, where i is minimal with $\alpha_{i}=0$
$\mathbb{L} \quad$ the field $\mathbb{R}[[\mathfrak{L}]]_{\mathscr{S}}$ for some support type \mathscr{S}
Partial logarithmic function. Let $f \in \mathbb{L}^{>0}$. Then

$$
\begin{aligned}
f= & \mathfrak{d}_{f} \mathcal{C}_{f}(1+\delta), \\
& \mathfrak{d}_{f}=x^{\alpha_{0}} \cdots\left(\log _{r} x\right)^{\alpha_{r}}, c_{f} \in \mathbb{R}^{>}, \delta \in \mathbb{L}^{<1} \\
\log f:= & \alpha_{0} \log x+\cdots+\alpha_{r} \log _{r+1} x+\log c_{f}+\log (1+z) \circ \delta .
\end{aligned}
$$

\mathbb{R} real numbers, but could be any exp-log field T totally ordered monomial group \mathbb{T} the field $\mathbb{R}[[\mathfrak{T}]]_{\mathscr{S}}$
\mathbb{R} real numbers, but could be any exp-log field T_{T} totally ordered monomial group
\mathbb{T} the field $\mathbb{R}[[\mathfrak{T}]]_{\mathscr{\mathscr { L }}}$

Definition

Consider a logarithmic function $\log : \mathbb{T}^{>0} \rightarrow \mathbb{T}$ extending the one on $\mathbb{R}^{>0}$, such that T1. $\operatorname{dom} \log =\mathbb{T}^{>0}$.
T2. $\log \mathfrak{m} \in \mathbb{T}_{>}:=\{f \in \mathbb{T}: \operatorname{supp} f>1\}$ for all $\mathfrak{m} \in \mathfrak{T}$.
T3. $\log (1+\varepsilon)=\log (1+z) \circ \varepsilon$ for all $\varepsilon \in \mathbb{T}^{<1}$.
Then we say that $\mathbb{T}=\mathbb{R}[[\mathfrak{T}]]_{\mathscr{S}}$ is a field of \mathscr{P}-based transseries.

Given a field of transseries $\mathbb{T}=\mathbb{R}[[\mathfrak{T}]]_{\mathscr{S}}$, consider:

$$
\begin{aligned}
& \mathfrak{T}_{\exp }:=\exp \mathbb{T}_{\succ} \\
& \mathrm{e}^{\varphi} \leqslant \mathrm{e}^{\psi} \Leftrightarrow \varphi \leqslant \psi \\
& \mathbb{T}_{\exp }:=\mathbb{R}\left[\left[\mathfrak{T}_{\exp }\right]\right]_{\mathscr{L}}
\end{aligned}
$$

Given a field of transseries $\mathbb{T}=\mathbb{R}[[\mathfrak{T}]]_{\mathscr{S}}$, consider:

$$
\begin{aligned}
& \mathfrak{T}_{\exp }:=\exp \mathbb{T}_{>} \\
& \mathrm{e}^{\varphi} \leqslant \mathrm{e}^{\psi} \Leftrightarrow \varphi \leqslant \psi \\
& \mathbb{T}_{\exp }:=\mathbb{R}\left[\left[\mathfrak{T}_{\exp }\right]\right]_{\mathscr{L}}
\end{aligned}
$$

Note that $\mathfrak{T}_{\exp } \supseteq \mathfrak{T}=\exp \log \mathfrak{T}$, since $\log \mathfrak{T} \subseteq \mathbb{T}_{>}$.

Given a field of transseries $\mathbb{T}=\mathbb{R}[[\mathfrak{T}]]_{\mathscr{S}}$, consider:

$$
\begin{aligned}
\mathfrak{T}_{\exp } & :=\exp \mathbb{T}_{>} \\
\mathrm{e}^{\varphi} \leqslant \mathrm{e}^{\psi} & \Leftrightarrow \varphi \leqslant \psi \\
\mathbb{T}_{\exp } & :=\mathbb{R}\left[\left[\mathfrak{T}_{\exp }\right]\right]_{\mathscr{L}}
\end{aligned}
$$

Note that $\mathfrak{T}_{\exp } \supseteq \mathfrak{T}=\exp \log \mathfrak{T}$, since $\log \mathfrak{T} \subseteq \mathbb{T}_{>}$. We extend \log using:

$$
\begin{aligned}
& \log : \mathbb{T}_{\text {exp }}^{>0} \rightarrow \mathbb{T}_{\text {exp }} \\
& \underbrace{e^{\varphi}}_{\mathbb{T}_{\text {exp }}} \underset{\mathbb{R}^{>0}}{c}\left(1+\underset{\mathbb{T}_{<\mathcal{P}}}{\delta}\right) \mapsto{\underset{\mathbb{T}}{\rangle}}_{\varphi}^{\varphi}+\underbrace{\log c}_{\mathbb{R}}+\underbrace{\log (1+z) \circ \delta}_{\mathbb{T}_{\text {epp }}^{2}} .
\end{aligned}
$$

Given a field of transseries $\mathbb{T}=\mathbb{R}[[\mathfrak{T}]]_{\mathscr{S}}$, consider:

$$
\begin{aligned}
\mathfrak{T}_{\exp } & :=\exp \mathbb{T}_{>} \\
\mathrm{e}^{\varphi} \leqslant \mathrm{e}^{\psi} & \Leftrightarrow \varphi \leqslant \psi \\
\mathbb{T}_{\exp } & :=\mathbb{R}\left[\left[\mathfrak{T}_{\exp }\right]\right]_{\mathscr{L}}
\end{aligned}
$$

Note that $\mathfrak{T}_{\exp } \supseteq \mathfrak{T}=\exp \log \mathfrak{T}$, since $\log \mathfrak{T} \subseteq \mathbb{T}_{>}$. We extend \log using:

$$
\begin{aligned}
& \log : \mathbb{T}_{\text {exp }}^{>0} \rightarrow \mathbb{T}_{\text {exp }} \\
& \underbrace{e^{\varphi}}_{\mathbb{T}_{\text {epp }}} \underset{\mathbb{R}^{20}}{c}\left(1+\underset{\mathbb{T}_{e p}^{1}}{\delta}\right) \mapsto \underset{\mathbb{T}_{\succ}}{\varphi}+\underbrace{\log c}_{\mathbb{R}}+\underbrace{\log (1+z) \circ \delta}_{\mathbb{T}_{\text {ep }}} .
\end{aligned}
$$

Proposition

The exponential extension $\mathbb{T}_{\exp }$ of \mathbb{T} is again a field of transseries.
$x \log x \in \mathfrak{L}$
$x \log x \in \mathfrak{L}$

$$
x^{x}=\mathrm{e}^{x \log x} \in \mathfrak{L}_{\exp }
$$

$x \log x \in \mathfrak{L}$
$\begin{aligned} x^{x} & =\mathrm{e}^{x \log x} \in \mathfrak{L}_{\exp } \\ x^{\alpha} \mathrm{e}^{x} x^{x} & =\mathrm{e}^{x \log x-x+\alpha \log x} \in \mathfrak{L}_{\exp }\end{aligned}$

$x \log x \in \mathfrak{L}$

$$
\begin{aligned}
x^{x} & =\mathrm{e}^{x \log x} \in \mathfrak{L}_{\exp } \\
x^{\alpha} \mathrm{e}^{x} x^{x} & =\mathrm{e}^{x \log x-x+\alpha \log x} \in \mathfrak{L}_{\exp } \\
\Gamma(x) & =\sqrt{2 \pi} \mathrm{e}^{x \log x-x+\frac{1}{2} \log x}+\frac{\sqrt{2 \pi}}{12} \mathrm{e}^{x \log x-x-\frac{1}{2} \log x}+\frac{\sqrt{2 \pi}}{288} \mathrm{e}^{x \log x-x-\frac{3}{2} \log x}+\cdots \in \mathbb{L}_{\exp }
\end{aligned}
$$

$x \log x \in \mathfrak{L}$

$$
\begin{aligned}
x^{x} & =\mathrm{e}^{x \log x} \in \mathfrak{L}_{\exp } \\
x^{\alpha} \mathrm{e}^{x} x^{x} & =\mathrm{e}^{x \log x-x+\alpha \log x} \in \mathfrak{L}_{\exp } \\
\Gamma(x) & =\sqrt{2 \pi} \mathrm{e}^{x \log x-x+\frac{1}{2} \log x}+\frac{\sqrt{2 \pi}}{12} \mathrm{e}^{x \log x-x-\frac{1}{2} \log x}+\frac{\sqrt{2 \pi}}{288} \mathrm{e}^{x \log x-x-\frac{3}{2} \log x}+\cdots \in \mathbb{L}_{\exp ,>}
\end{aligned}
$$

$x \log x \in \mathfrak{L}$

$$
\begin{aligned}
x^{x} & =\mathrm{e}^{x \log x} \in \mathfrak{L}_{\exp } \\
x^{\alpha} \mathrm{e}^{x} x^{x} & =\mathrm{e}^{x \log x-x+\alpha \log x} \in \mathfrak{L}_{\exp } \\
\Gamma(x) & =\sqrt{2 \pi} \mathrm{e}^{x \log x-x+\frac{1}{2} \log x}+\frac{\sqrt{2 \pi}}{12} \mathrm{e}^{x \log x-x-\frac{1}{2} \log x}+\frac{\sqrt{2 \pi}}{288} \mathrm{e}^{x \log x-x-\frac{3}{2} \log x}+\cdots \in \mathbb{L}_{\mathrm{exp},>} \\
\mathrm{e}^{\Gamma(x)} & \in \mathfrak{L}_{\exp , \exp }
\end{aligned}
$$

$x \log x \in \mathfrak{L}$

$$
\begin{aligned}
x^{x} & =\mathrm{e}^{x \log x} \in \mathfrak{L}_{\exp } \\
x^{\alpha} \mathrm{e}^{x} x^{x} & =\mathrm{e}^{x \log x-x+\alpha \log x} \in \mathfrak{L}_{\exp } \\
\Gamma(x) & =\sqrt{2 \pi} \mathrm{e}^{x \log x-x+\frac{1}{2} \log x}+\frac{\sqrt{2 \pi}}{12} \mathrm{e}^{x \log x-x-\frac{1}{2} \log x}+\frac{\sqrt{2 \pi}}{288} \mathrm{e}^{x \log x-x-\frac{3}{2} \log x}+\cdots \in \mathbb{L}_{\mathrm{exp},>} \\
\mathrm{e}^{\Gamma(x)} & \in \mathfrak{L}_{\exp , \exp }
\end{aligned}
$$

$$
1+\frac{1}{x}+\frac{2}{x^{2}}+\frac{6}{x^{3}}+\frac{24}{x^{4}}+\frac{120}{x^{5}}+\cdots \in \mathbb{R}\left[\left[x^{-1}\right]\right] \subseteq \mathbb{L}
$$

$x \log x \in \mathfrak{L}$

$$
\begin{aligned}
x^{x} & =\mathrm{e}^{x \log x} \in \mathfrak{L}_{\exp } \\
x^{\alpha} \mathrm{e}^{x} x^{x} & =\mathrm{e}^{x \log x-x+\alpha \log x} \in \mathfrak{L}_{\exp } \\
\Gamma(x) & \left.=\sqrt{2 \pi} \mathrm{e}^{x \log x-x+\frac{1}{2} \log x}+\frac{\sqrt{2 \pi}}{12} \mathrm{e}^{x \log x-x-\frac{1}{2} \log x}+\frac{\sqrt{2 \pi}}{288} \mathrm{e}^{x \log x-x-\frac{3}{2} \log x}+\cdots \in \mathbb{L}_{\text {exp, }}\right\rangle \\
\mathrm{e}^{\mathrm{\Gamma}(x)} & \in \mathfrak{L}_{\text {exp,exp }}
\end{aligned}
$$

$$
1+\frac{1}{x}+\frac{2}{x^{2}}+\frac{6}{x^{3}}+\frac{24}{x^{4}}+\frac{120}{x^{5}}+\cdots \in \mathbb{R}\left[\left[x^{-1}\right]\right] \subseteq \mathbb{L} .
$$

$$
e^{\frac{x^{3}}{x-1}}
$$

$x \log x \in \mathfrak{L}$

$$
\begin{aligned}
x^{x} & =\mathrm{e}^{x \log x} \in \mathfrak{L}_{\exp } \\
x^{\alpha} \mathrm{e}^{x} x^{x} & =\mathrm{e}^{x \log x-x+\alpha \log x} \in \mathfrak{L}_{\exp } \\
\Gamma(x) & =\sqrt{2 \pi} \mathrm{e}^{x \log x-x+\frac{1}{2} \log x}+\frac{\sqrt{2 \pi}}{12} \mathrm{e}^{x \log x-x-\frac{1}{2} \log x}+\frac{\sqrt{2 \pi}}{288} \mathrm{e}^{x \log x-x-\frac{3}{2} \log x}+\cdots \in \mathbb{L}_{\text {exp, }}> \\
\mathrm{e}^{\mathrm{\Gamma}(x)} & \in \mathfrak{L}_{\text {exp, exp }}
\end{aligned}
$$

$$
1+\frac{1}{x}+\frac{2}{x^{2}}+\frac{6}{x^{3}}+\frac{24}{x^{4}}+\frac{120}{x^{5}}+\cdots \in \mathbb{R}\left[\left[x^{-1}\right]\right] \subseteq \mathbb{L}
$$

$$
\mathrm{e}^{\frac{x^{3}}{x-1}}=\mathrm{e}^{x^{2}+x+1+x^{-1}+x^{-2}+\cdots}
$$

$x \log x \in \mathfrak{L}$

$$
\begin{aligned}
x^{x} & =\mathrm{e}^{x \log x} \in \mathfrak{L}_{\exp } \\
x^{\alpha} \mathrm{e}^{x} x^{x} & =\mathrm{e}^{x \log x-x+\alpha \log x} \in \mathfrak{L}_{\exp } \\
\Gamma(x) & =\sqrt{2 \pi} \mathrm{e}^{x \log x-x+\frac{1}{2} \log x}+\frac{\sqrt{2 \pi}}{12} \mathrm{e}^{x \log x-x-\frac{1}{2} \log x}+\frac{\sqrt{2 \pi}}{288} \mathrm{e}^{x \log x-x-\frac{3}{2} \log x}+\cdots \in \mathbb{L}_{\text {exp, }}> \\
\mathrm{e}^{\mathrm{\Gamma}(x)} & \in \mathfrak{L}_{\text {exp, exp }}
\end{aligned}
$$

$$
1+\frac{1}{x}+\frac{2}{x^{2}}+\frac{6}{x^{3}}+\frac{24}{x^{4}}+\frac{120}{x^{5}}+\cdots \in \mathbb{R}\left[\left[x^{-1}\right]\right] \subseteq \mathbb{L}
$$

$$
\mathrm{e}^{\frac{x^{3}}{x-1}}=\mathrm{e}^{x^{2}+x+1+x^{-1}+x^{-2}+\cdots}
$$

$$
=\mathrm{e}^{x^{2}+x} \mathrm{e}^{1} \mathrm{e}^{x^{-1}+x^{-2}+\cdots}
$$

$x \log x \in \mathfrak{L}$

$$
\begin{aligned}
x^{x} & =\mathrm{e}^{x \log x} \in \mathfrak{L}_{\exp } \\
x^{\alpha} \mathrm{e}^{x} x^{x} & =\mathrm{e}^{x \log x-x+\alpha \log x} \in \mathfrak{L}_{\exp } \\
\Gamma(x) & =\sqrt{2 \pi} \mathrm{e}^{x \log x-x+\frac{1}{2} \log x}+\frac{\sqrt{2 \pi}}{12} \mathrm{e}^{x \log x-x-\frac{1}{2} \log x}+\frac{\sqrt{2 \pi}}{288} \mathrm{e}^{x \log x-x-\frac{3}{2} \log x}+\cdots \in \mathbb{L}_{\exp ,>} \\
\mathrm{e}^{\mathrm{\Gamma}(x)} & \in \mathfrak{L}_{\exp , \exp }
\end{aligned}
$$

$$
1+\frac{1}{x}+\frac{2}{x^{2}}+\frac{6}{x^{3}}+\frac{24}{x^{4}}+\frac{120}{x^{5}}+\cdots \in \mathbb{R}\left[\left[x^{-1}\right]\right] \subseteq \mathbb{L}
$$

$$
\mathrm{e}^{\frac{x^{3}}{x-1}}=\mathrm{e}^{x^{2}+x+1+x^{-1}+x^{-2}+\cdots}
$$

$$
=\mathrm{e}^{x^{2}+x} \mathrm{e}^{1} \mathrm{e}^{x^{-1}+x^{-2}+\cdots}
$$

$$
=\mathrm{e} \cdot \mathrm{e}^{x^{2}+x}\left(1+\frac{1}{x}+\frac{3}{2 x^{2}}+\frac{13}{6 x^{3}}+\cdots\right)
$$

$x \log x \in \mathfrak{L}$

$$
\begin{aligned}
x^{x} & =\mathrm{e}^{x \log x} \in \mathfrak{L}_{\exp } \\
x^{\alpha} \mathrm{e}^{x} x^{x} & =\mathrm{e}^{x \log x-x+\alpha \log x} \in \mathfrak{L}_{\exp } \\
\Gamma(x) & =\sqrt{2 \pi} \mathrm{e}^{x \log x-x+\frac{1}{2} \log x}+\frac{\sqrt{2 \pi}}{12} \mathrm{e}^{x \log x-x-\frac{1}{2} \log x}+\frac{\sqrt{2 \pi}}{288} \mathrm{e}^{x \log x-x-\frac{3}{2} \log x}+\cdots \in \mathbb{L}_{\exp ,>} \\
\mathrm{e}^{\Gamma(x)} & \in \mathfrak{L}_{\exp , \exp }
\end{aligned}
$$

$$
1+\frac{1}{x}+\frac{2}{x^{2}}+\frac{6}{x^{3}}+\frac{24}{x^{4}}+\frac{120}{x^{5}}+\cdots \in \mathbb{R}\left[\left[x^{-1}\right]\right] \subseteq \mathbb{L}
$$

$$
\mathrm{e}^{\frac{x^{3}}{x-1}}=\mathrm{e}^{x^{2}+x+1+x^{-1}+x^{-2}+\cdots}
$$

$$
=\mathrm{e}^{x^{2}+x} \mathrm{e}^{1} \mathrm{e}^{x^{-1}+x^{-2}+\cdots}
$$

$$
=\mathrm{e} \cdot \mathrm{e}^{x^{2}+x}\left(1+\frac{1}{x}+\frac{3}{2 x^{2}}+\frac{13}{6 x^{3}}+\cdots\right)
$$

$$
=\mathrm{e} \cdot \mathrm{e}^{x^{2}+x}+\mathrm{e} \cdot \mathrm{e}^{x^{2}+x-\log x}+\frac{3 \mathrm{e}}{2} \mathrm{e}^{x^{2}+x-2 \log x}+\frac{13 \mathrm{e}}{6} \mathrm{e}^{x^{2}+x-3 \log x}+\cdots \in \mathbb{L}_{\exp }
$$

$$
\mathfrak{L} \subseteq \mathfrak{L}_{\exp } \subseteq \mathfrak{L}_{\exp , \exp } \subseteq \cdots \subseteq \mathfrak{T}:=\bigcup_{n \in \mathbb{N}} \mathfrak{L}_{\exp , \ldots \times, \exp }
$$

$$
\begin{aligned}
& \mathfrak{L} \subseteq \mathfrak{L}_{\exp } \subseteq \mathfrak{L}_{\exp , \exp } \subseteq \cdots \subseteq \mathfrak{T}:=\bigcup_{n \in \mathbb{N}} \mathfrak{L}_{\exp , \ldots \times, \exp } \\
& \mathbb{R} \llbracket \mathfrak{L} \rrbracket=: \mathbb{L} \subseteq \mathbb{L}_{\exp } \subseteq \mathbb{L}_{\exp , \exp } \subseteq \cdots \subseteq \mathbb{T}:=\bigcup_{n \in \mathbb{N}} \mathbb{L}_{\exp ,, n \times, \exp }
\end{aligned}
$$

$$
\begin{aligned}
& \mathfrak{L} \subseteq \mathfrak{L}_{\exp } \subseteq \mathfrak{L}_{\exp , \exp } \subseteq \cdots \subseteq \mathfrak{T}:=\bigcup_{n \in \mathbb{N}} \mathfrak{L}_{\exp , n \times, \exp } \\
& \mathbb{R}\left[\mathfrak{L} \mathbb{}=: \mathbb{L} \subseteq \mathbb{L}_{\exp } \subseteq \mathbb{L}_{\exp , \exp } \subseteq \cdots \subseteq \mathbb{T}:=\bigcup_{n \in \mathbb{N}} \mathbb{L}_{\exp , \cdots,, \text { exp }}\right.
\end{aligned}
$$

Proposition

In the grid-based setting, we have

$$
\mathbb{T}=\mathbb{R} \| \mathfrak{T} \rrbracket .
$$

$$
\begin{aligned}
& \mathfrak{L} \subseteq \mathfrak{L}_{\exp } \subseteq \mathfrak{L}_{\exp , \exp } \subseteq \cdots \subseteq \mathfrak{T}:=\bigcup_{n \in \mathbb{N}} \mathfrak{L}_{\exp , n \times, \exp } \\
&\mathbb{R} \llbracket \mathfrak{L} \mathbb{}]=: \mathbb{L} \subseteq \mathbb{L}_{\exp } \subseteq \mathbb{L}_{\exp , \exp } \subseteq \cdots \subseteq \mathbb{T}:=\bigcup_{n \in \mathbb{N}} \mathbb{L}_{\exp , n \times, \exp }
\end{aligned}
$$

Proposition

In the grid-based setting, we have

$$
\mathbb{T}=\mathbb{R} \llbracket \mathfrak{T} \rrbracket .
$$

Proof. Given $f \in \mathbb{T}$, let $\mathfrak{S}:=\operatorname{supp} f$.

$$
\begin{aligned}
& \mathfrak{L} \subseteq \mathfrak{L}_{\exp } \subseteq \mathfrak{L}_{\exp , \exp } \subseteq \cdots \subseteq \mathfrak{T}:=\bigcup_{n \in \mathbb{N}} \mathfrak{L}_{\exp , n \times, \exp } \\
& \mathbb{R}\left[\mathfrak{L} \mathbb{\|}=: \mathbb{L} \subseteq \mathbb{L}_{\exp } \subseteq \mathbb{L}_{\exp , \exp } \subseteq \cdots \subseteq \mathbb{T}:=\bigcup_{n \in \mathbb{N}} \mathbb{L}_{\exp , n \times, \exp }\right.
\end{aligned}
$$

Proposition

In the grid-based setting, we have

$$
\mathbb{T}=\mathbb{R} \llbracket \mathfrak{T} \rrbracket .
$$

Proof. Given $f \in \mathbb{T}$, let $\mathfrak{S}:=\operatorname{supp} f$. Then $\mathfrak{S} \subseteq \mathfrak{m}\left\{\mathfrak{e}_{1}, \ldots, \mathfrak{e}_{k}\right\}^{*}$ for $\mathfrak{m} \in \mathfrak{T}, \mathfrak{e}_{1}, \ldots, \mathfrak{e}_{k} \in \mathfrak{T}^{<1}$.

$$
\begin{aligned}
& \mathfrak{L} \subseteq \mathfrak{L}_{\exp } \subseteq \mathfrak{L}_{\exp , \exp } \subseteq \cdots \subseteq \mathfrak{T}:=\bigcup_{n \in \mathbb{N}} \mathfrak{L}_{\exp , n \times, \exp } \\
& \mathbb{R} \mathbb{L} \mathbb{L} \mathbb{}=: \mathbb{L} \subseteq \mathbb{L}_{\exp } \subseteq \mathbb{L}_{\exp , \exp } \subseteq \cdots \subseteq \mathbb{T}:=\bigcup_{n \in \mathbb{N}} \mathbb{L}_{\exp , \ldots \times, \exp }
\end{aligned}
$$

Proposition

In the grid-based setting, we have

$$
\mathbb{T}=\mathbb{R} \llbracket \mathfrak{T} \rrbracket .
$$

Proof. Given $f \in \mathbb{T}$, let $\mathfrak{S}:=\operatorname{supp} f$.
Then $\mathfrak{S} \subseteq \mathfrak{m}\left\{\mathfrak{e}_{1}, \ldots, \mathfrak{e}_{k}\right\}^{*}$ for $\mathfrak{m} \in \mathfrak{T}, \mathfrak{e}_{1}, \ldots, \mathfrak{e}_{k} \in \mathfrak{T}^{<1}$.
For $n \in \mathbb{N}$ with $\mathfrak{m}, \mathfrak{e}_{1}, \ldots, \mathfrak{e}_{k} \in \mathfrak{L}_{\text {exp }, ~}$ nx., exp, we have $f \in \mathbb{L}_{\text {exp }, \ldots \times, \text { exp }}$.
$\mathfrak{T}_{0}:=\mathfrak{L} \quad \mathbb{T}_{0}:=\mathbb{R}\left[\left[\mathfrak{T}_{0}\right]\right]$

$$
\begin{array}{ll}
\mathfrak{T}_{0}:=\mathfrak{L} & \mathbb{T}_{0}:=\mathbb{R}\left[\left[\mathfrak{T}_{0}\right]\right] \\
\mathfrak{T}_{\alpha+1}:=\mathfrak{T}_{\alpha, \exp } & \mathbb{T}_{\alpha+1}:=\mathbb{R}\left[\left[\mathfrak{T}_{\alpha+1}\right]\right]=\mathbb{T}_{\alpha, \exp }
\end{array}
$$

$$
\begin{array}{ll}
\mathfrak{T}_{0} & :=\mathfrak{L} \\
\mathfrak{T}_{\alpha+1} & :=\mathfrak{T}_{\alpha, \exp } \\
\mathfrak{T}_{\lambda} & :=\bigcup_{\alpha<\lambda} \mathfrak{T}_{\alpha}
\end{array}
$$

$$
\begin{array}{ll}
\mathbb{T}_{0} & :=\mathbb{R}\left[\left[\mathfrak{T}_{0}\right]\right] \\
\mathbb{T}_{\alpha+1} & :=\mathbb{R}\left[\left[\mathfrak{T}_{\alpha+1}\right]\right]=\mathbb{T}_{\alpha, \exp } \\
\mathbb{T}_{\lambda} & :=\mathbb{R}\left[\left[\mathfrak{T}_{\lambda}\right]\right] \quad \supsetneq \bigcup_{\alpha<\lambda} \mathbb{T}_{\alpha}
\end{array}
$$

$$
\begin{aligned}
& \mathfrak{T}_{0}:=\mathfrak{L} \\
& \mathfrak{T}_{\alpha+1}:=\mathfrak{T}_{\alpha, \exp } \\
& \mathfrak{T}_{\lambda}:=\bigcup_{\alpha<\lambda} \mathfrak{T}_{\alpha}
\end{aligned}
$$

$$
\begin{array}{ll}
\mathbb{T}_{0} & :=\mathbb{R}\left[\left[\mathfrak{T}_{0}\right]\right] \\
\mathbb{T}_{\alpha+1} & :=\mathbb{R}\left[\left[\mathfrak{T}_{\alpha+1}\right]\right]=\mathbb{T}_{\alpha, \exp } \\
\mathbb{T}_{\lambda} & :=\mathbb{R}\left[\left[\mathfrak{T}_{\lambda}\right]\right] \quad \supsetneq \bigcup_{\alpha<\lambda} \mathbb{T}_{\alpha}
\end{array}
$$

Proposition
For $\alpha<\beta$, we have $\mathbb{T}_{\alpha} \mp \mathbb{T}_{\beta}$.

$$
\begin{array}{ll}
\mathfrak{T}_{0}:=\mathfrak{L} & \mathbb{T}_{0}:=\mathbb{R}\left[\left[\mathfrak{T}_{0}\right]\right] \\
\mathfrak{T}_{\alpha+1}:=\mathfrak{T}_{\alpha, \exp } & \mathbb{T}_{\alpha+1}:=\mathbb{R}\left[\left[\mathfrak{T}_{\alpha+1}\right]\right]=\mathbb{T}_{\alpha, \exp } \\
\mathfrak{T}_{\lambda}:=\bigcup_{\alpha<\lambda} \mathfrak{T}_{\alpha} & \mathbb{T}_{\lambda}:=\mathbb{R}\left[\left[\mathfrak{T}_{\lambda}\right]\right] \supsetneqq \bigcup_{\alpha<\lambda} \mathbb{T}_{\alpha}
\end{array}
$$

Proposition

For $\alpha<\beta$, we have $\mathbb{T}_{\alpha} \mp \mathbb{T}_{\beta}$.

Corollary

There is no non-trivial well-based field of transseries that is closed under exponentiation.

Logarithmic transseries

$$
\begin{aligned}
& x^{\alpha_{0}} \cdots\left(\log _{r} x\right)^{\alpha_{r}} \xrightarrow{. \circ \log }(\log x)^{\alpha_{0}} \cdots\left(\log _{r+1} x\right)^{\alpha_{r}} \in \mathfrak{T}_{0} \\
& x^{\alpha_{0}} \cdots\left(\log _{r} x\right)^{\alpha_{r}} \xrightarrow{\circ \operatorname{oexp}} \mathrm{e}^{\alpha_{0} x} x^{\alpha_{1}} \cdots\left(\log _{r-1} x\right)^{\alpha_{r}} \in \mathfrak{T}_{1}
\end{aligned}
$$

Upward and downward shifting

Logarithmic transseries

$$
\begin{aligned}
& x^{\alpha_{0}} \cdots\left(\log _{r} x\right)^{\alpha_{r}} \xrightarrow{. \circ \log }(\log x)^{\alpha_{0}} \cdots\left(\log _{r+1} x\right)^{\alpha_{r}} \in \mathfrak{T}_{0} \\
& x^{\alpha_{0}} \cdots\left(\log _{r} x\right)^{\alpha_{r}} \xrightarrow{\cdot \exp } \mathrm{e}^{\alpha_{0} x} x^{\alpha_{1}} \cdots\left(\log _{r-1} x\right)^{\alpha_{r}} \in \mathfrak{T}_{1}
\end{aligned}
$$

Strong linearity: $\mathbb{T}_{0} \xrightarrow{\circ \circ \mathrm{log}} \mathbb{T}_{0}$ and $\mathbb{T}_{0} \xrightarrow{. \circ \exp } \mathbb{T}_{1}$

Upward and downward shifting

Logarithmic transseries

$$
\begin{aligned}
& x^{\alpha_{0}} \cdots\left(\log _{r} x\right)^{\alpha_{r}} \xrightarrow{\cdot \circ \log }(\log x)^{\alpha_{0}} \cdots\left(\log _{r+1} x\right)^{\alpha_{r}} \in \mathfrak{T}_{0} \\
& x^{\alpha_{0}} \cdots\left(\log _{r} x\right)^{\alpha_{r}} \xrightarrow{\cdot \operatorname{oexp}} \mathrm{e}^{\alpha_{0} x} x^{\alpha_{1}} \cdots\left(\log _{r-1} x\right)^{\alpha_{r}} \in \mathfrak{T}_{1}
\end{aligned}
$$

Strong linearity: $\mathbb{T}_{0} \xrightarrow{\circ \circ \mathrm{log}} \mathbb{T}_{0}$ and $\mathbb{T}_{0} \xrightarrow{. \circ \exp } \mathbb{T}_{1}$

Inductive step

For $\varphi \in \mathbb{T}_{\alpha,>,} \quad \mathrm{e}^{\varphi} \in \mathbb{T}_{\alpha+1}, \quad \varphi \circ \log \in \mathbb{T}_{\alpha,>\prime}, \quad \varphi \circ \exp \in \mathbb{T}_{\beta,>}, \quad \beta= \begin{cases}\alpha+1 & \text { if } \alpha<\omega \\ \alpha & \text { otherwise }\end{cases}$

Upward and downward shifting

Logarithmic transseries

$$
\begin{aligned}
& x^{\alpha_{0}} \cdots\left(\log _{r} x\right)^{\alpha_{r}} \xrightarrow{. \circ \log }(\log x)^{\alpha_{0}} \cdots\left(\log _{r+1} x\right)^{\alpha_{r}} \in \mathfrak{T}_{0} \\
& x^{\alpha_{0}} \cdots\left(\log _{r} x\right)^{\alpha_{r}} \xrightarrow{. \operatorname{oexp}} \mathrm{e}^{\alpha_{0} x} x^{\alpha_{1}} \cdots\left(\log _{r-1} x\right)^{\alpha_{r}} \in \mathfrak{T}_{1}
\end{aligned}
$$

Strong linearity: $\mathbb{T}_{0} \xrightarrow{\circ \circ \mathrm{log}} \mathbb{T}_{0}$ and $\mathbb{T}_{0} \xrightarrow{. \circ \exp } \mathbb{T}_{1}$

Inductive step

For $\varphi \in \mathbb{T}_{\alpha,>}, \quad \mathrm{e}^{\varphi} \in \mathbb{T}_{\alpha+1}, \quad \varphi \circ \log \in \mathbb{T}_{\alpha, \gg}, \quad \varphi \circ \exp \in \mathbb{T}_{\beta,>}, \quad \beta= \begin{cases}\alpha+1 & \text { if } \alpha<\omega \\ \alpha & \text { otherwise }\end{cases}$

$$
\begin{aligned}
& \mathrm{e}^{\varphi} \circ \log :=\mathrm{e}^{\varphi \circ \log } \in \mathfrak{T}_{\alpha+1} \\
& \mathrm{e}^{\varphi} \circ \exp :=\mathrm{e}^{\varphi \circ \exp } \in \mathfrak{T}_{\beta+1}
\end{aligned}
$$

Upward and downward shifting

Logarithmic transseries

$$
\begin{aligned}
& x^{\alpha_{0}} \cdots\left(\log _{r} x\right)^{\alpha_{r}} \xrightarrow{. \circ \log }(\log x)^{\alpha_{0}} \cdots\left(\log _{r+1} x\right)^{\alpha_{r}} \in \mathfrak{T}_{0} \\
& x^{\alpha_{0}} \cdots\left(\log _{r} x\right)^{\alpha_{r}} \xrightarrow{\cdot \operatorname{oexp}} \mathrm{e}^{\alpha_{0} x} x^{\alpha_{1}} \cdots\left(\log _{r-1} x\right)^{\alpha_{r}} \in \mathfrak{T}_{1}
\end{aligned}
$$

Strong linearity: $\mathbb{T}_{0} \xrightarrow{\circ \circ \log } \mathbb{T}_{0}$ and $\mathbb{T}_{0} \xrightarrow{. \circ \exp } \mathbb{T}_{1}$

Inductive step

For $\varphi \in \mathbb{T}_{\alpha,>}, \quad \mathrm{e}^{\varphi} \in \mathfrak{T}_{\alpha+1}, \quad \varphi \circ \log \in \mathbb{T}_{\alpha,>}, \quad \varphi \circ \exp \in \mathbb{T}_{\beta,>}, \quad \beta= \begin{cases}\alpha+1 & \text { if } \alpha<\omega \\ \alpha & \text { otherwise }\end{cases}$

$$
\begin{aligned}
\mathrm{e}^{\varphi} \circ \log & :=\mathrm{e}^{\varphi \circ \log } \in \mathfrak{T}_{\alpha+1} \\
\mathrm{e}^{\varphi} \circ \exp & :=\mathrm{e}^{\varphi \circ \exp } \in \mathfrak{T}_{\beta+1}
\end{aligned}
$$

Strong linearity: $\mathbb{T}_{\alpha+1} \xrightarrow{\circ \circ \log } \mathbb{T}_{\alpha+1}$ and $\mathbb{T}_{\alpha+1} \xrightarrow{\circ \exp } \mathbb{T}_{\beta+1}$

Upward and downward shifting

Logarithmic transseries

$$
\begin{aligned}
& x^{\alpha_{0}} \cdots\left(\log _{r} x\right)^{\alpha_{r}} \xrightarrow{\cdot \circ \log }(\log x)^{\alpha_{0}} \cdots\left(\log _{r+1} x\right)^{\alpha_{r}} \in \mathfrak{T}_{0} \\
& x^{\alpha_{0}} \cdots\left(\log _{r} x\right)^{\alpha_{r}} \xrightarrow{\cdot \operatorname{oexp}} \mathrm{e}^{\alpha_{0} x} x^{\alpha_{1}} \cdots\left(\log _{r-1} x\right)^{\alpha_{r}} \in \mathfrak{T}_{1}
\end{aligned}
$$

Strong linearity: $\mathbb{T}_{0} \xrightarrow{\circ \circ \log } \mathbb{T}_{0}$ and $\mathbb{T}_{0} \xrightarrow{. \circ \exp } \mathbb{T}_{1}$

Inductive step

For $\varphi \in \mathbb{T}_{\alpha,>}, \quad \mathrm{e}^{\varphi} \in \mathfrak{T}_{\alpha+1}, \quad \varphi \circ \log \in \mathbb{T}_{\alpha,>}, \quad \varphi \circ \exp \in \mathbb{T}_{\beta,>}, \quad \beta= \begin{cases}\alpha+1 & \text { if } \alpha<\omega \\ \alpha & \text { otherwise }\end{cases}$

$$
\begin{aligned}
\mathrm{e}^{\varphi} \circ \log & :=\mathrm{e}^{\varphi \circ \log } \in \mathfrak{T}_{\alpha+1} \\
\mathrm{e}^{\varphi} \circ \exp & :=\mathrm{e}^{\varphi \circ \exp } \in \mathfrak{T}_{\beta+1}
\end{aligned}
$$

Strong linearity: $\mathbb{T}_{\alpha+1} \xrightarrow{\circ \circ \log } \mathbb{T}_{\alpha+1}$ and $\mathbb{T}_{\alpha+1} \xrightarrow{\circ \exp } \mathbb{T}_{\beta+1}$
Alternative notation: $\varphi \uparrow:=\varphi \circ \exp , \varphi \downarrow:=\varphi \circ \log$

$$
f_{\alpha}:=\sqrt{x}-\sum_{0<\beta<\alpha} \mathrm{e}^{f_{\beta} \circ \log }
$$

$$
\begin{aligned}
& f_{\alpha}:=\sqrt{x}-\sum_{0<\beta<\alpha} \mathrm{e}^{f_{\beta} \log } \\
& f_{1}=\sqrt{x}
\end{aligned}
$$

$$
\begin{aligned}
& f_{\alpha}:=\sqrt{x}-\sum_{0<\beta<\alpha} \mathrm{e}^{f_{\beta} \log } \\
& f_{1}=\sqrt{x} \\
& f_{2}=\sqrt{x}-\mathrm{e}^{\sqrt{\log x}}
\end{aligned}
$$

$$
\begin{aligned}
& f_{\alpha}:=\sqrt{x}-\sum_{0<\beta<\alpha} \mathrm{e}^{f_{\beta} \log } \\
& f_{1}=\sqrt{x} \\
& f_{2}=\sqrt{x}-\mathrm{e}^{\sqrt{\log x}} \\
& f_{3}=\sqrt{x}-\mathrm{e}^{\sqrt{\log x}}-\mathrm{e}^{\sqrt{\log x}-\mathrm{e}^{\sqrt{\log 2 x}}}
\end{aligned}
$$

$$
\begin{aligned}
f_{\alpha} & :=\sqrt{x}-\sum_{0<\beta<\alpha} \mathrm{e}^{f_{\beta} \circ \log } \\
f_{1} & =\sqrt{x} \\
f_{2} & =\sqrt{x}-\mathrm{e}^{\sqrt{\log x}} \\
& \vdots \\
f_{\omega} & =\sqrt{x}-\mathrm{e}^{\sqrt{\log x}}-\mathrm{e}^{\sqrt{\log x}-\mathrm{e}^{\sqrt{\log x}}}-\cdots
\end{aligned}
$$

$$
\begin{aligned}
f_{\alpha} & :=\sqrt{x}-\sum_{0<\beta<\alpha} \mathrm{e}^{f_{\beta} \log } \\
f_{1} & =\sqrt{x} \\
f_{2} & =\sqrt{x}-\mathrm{e}^{\sqrt{\log x}} \\
& \vdots \\
f_{\omega} & =\sqrt{x}-\mathrm{e}^{\sqrt{\log x}}-\mathrm{e}^{\sqrt{\log x}-\mathrm{e}^{\sqrt{\log _{2} x}}}-\cdots \\
f_{\omega+1} & =\sqrt{x}-\mathrm{e}^{\sqrt{\log x}}-\mathrm{e}^{\sqrt{\log x}}-\mathrm{e}^{\sqrt{\log _{2} x}}
\end{aligned} \cdots-\mathrm{e}^{\sqrt{\log x}}-\mathrm{e}^{\sqrt{\log _{2} x}}-\mathrm{e}^{\sqrt{\log _{2} x}-e^{\sqrt{\log _{3} x}}} \cdots \cdots .
$$

$$
\begin{aligned}
f_{\alpha} & :=\sqrt{x}-\sum_{0<\beta<\alpha} \mathrm{e}^{f_{\beta} \log } \in \mathbb{T}_{\alpha,>} \\
f_{1} & =\sqrt{x} \\
f_{2} & =\sqrt{x}-\mathrm{e}^{\sqrt{\log x}} \\
& \vdots \\
f_{\omega} & =\sqrt{x}-\mathrm{e}^{\sqrt{\log x}}-\mathrm{e}^{\sqrt{\log x}-\mathrm{e}^{\sqrt{\log _{2} x}}}-\cdots \\
f_{\omega+1} & =\sqrt{x}-\mathrm{e}^{\sqrt{\log x}}-\mathrm{e}^{\sqrt{\log x}}-\mathrm{e}^{\sqrt{\log _{2} x}}
\end{aligned} \cdots-\mathrm{e}^{\sqrt{\log x}}-\mathrm{e}^{\sqrt{\log _{2} x}}-\mathrm{e}^{\sqrt{\log _{2} x}-e^{\sqrt{\log _{3} x}}} \cdots \cdots .
$$

$$
\begin{aligned}
f_{\alpha} & :=\sqrt{x}-\sum_{0<\beta<\alpha} \mathrm{e}^{f_{\beta} \log } \in \mathbb{T}_{\alpha,>} \Rightarrow \mathrm{e}^{f_{\alpha} \circ \log } \in \mathfrak{T}_{\alpha+1}^{>} \\
f_{1} & =\sqrt{x} \\
f_{2} & =\sqrt{x}-\mathrm{e}^{\sqrt{\log x}} \\
& \vdots \\
f_{\omega} & =\sqrt{x}-\mathrm{e}^{\sqrt{\log x}}-\mathrm{e}^{\sqrt{\log x}-\mathrm{e}^{\sqrt{\log _{2} x}}}-\cdots \\
f_{\omega+1} & =\sqrt{x}-\mathrm{e}^{\sqrt{\log x}}-\mathrm{e}^{\sqrt{\log x}}-\mathrm{e}^{\sqrt{\log _{2} x}}
\end{aligned} \cdots-\mathrm{e}^{\sqrt{\log x}}-\mathrm{e}^{\sqrt{\log _{2} x}}-\mathrm{e}^{\sqrt{\log _{2} x}-\mathrm{e}} \sqrt{\sqrt{\log _{3} x}}-\cdots .
$$

:

$$
\begin{aligned}
f_{\alpha} & :=\sqrt{x}-\sum_{0<\beta<\alpha} \mathrm{e}^{f_{\beta} \log } \in \mathbb{T}_{\alpha,>} \Rightarrow \mathrm{e}^{f_{\alpha} \circ \log } \in \mathfrak{T}_{\alpha+1}^{>} \\
f_{1} & =\sqrt{x} \\
f_{2} & =\sqrt{x}-\mathrm{e}^{\sqrt{\log x}} \\
& \vdots \\
f_{\omega} & =\sqrt{x}-\mathrm{e}^{\sqrt{\log x}}-\mathrm{e}^{\sqrt{\log x}-\mathrm{e}^{\sqrt{\log _{2} x}}}-\cdots \\
f_{\omega+1} & =\sqrt{x}-\mathrm{e}^{\sqrt{\log x}}-\mathrm{e}^{\sqrt{\log x}}-\mathrm{e}^{\sqrt{\log _{2} x}}
\end{aligned} \cdots-\mathrm{e}^{\sqrt{\log x}-\mathrm{e}^{\sqrt{\log _{2} x}}-\mathrm{e}^{\sqrt{\log 2 x x}-\sqrt{\log _{3} x}}}-\cdots .
$$

$$
\begin{aligned}
f_{\alpha} & :=\sqrt{x}-\sum_{0<\beta<\alpha} \mathrm{e}^{f_{\beta} \log } \in \mathbb{T}_{\alpha, 八} \Rightarrow \mathrm{e}^{f_{\kappa \alpha} \log } \in \mathfrak{T}_{\alpha+1}^{>} \\
f_{1} & =\sqrt{x} \\
f_{2} & =\sqrt{x}-\mathrm{e}^{\sqrt{\log x}} \\
& \vdots \\
f_{\omega} & =\sqrt{x}-\mathrm{e}^{\sqrt{\log x}}-\mathrm{e}^{\sqrt{\log x}-\mathrm{e}^{\sqrt{\log 2 x}}}-\cdots \\
f_{\omega+1} & =\sqrt{x}-\mathrm{e}^{\sqrt{\log x}}-\mathrm{e}^{\sqrt{\log x}-\mathrm{e}^{\sqrt{\log 2 x}}}-\cdots-\mathrm{e}^{\sqrt{\log x}}-\mathrm{e}^{\sqrt{\log 2 x}}-\mathrm{e}^{\sqrt{\log 2 x}-e^{\sqrt{\log _{3} x}}} \cdots \\
& \vdots \\
\beta<\alpha & \Rightarrow f_{\alpha}<f_{\beta} \\
\operatorname{supp} f_{\alpha} & \cong \alpha
\end{aligned}
$$

Proposition

Let \mathscr{S} be the type of countable supports.
There exists a non-trivial field of \mathscr{S}-based transseries that is closed under exponentiation.

Proposition

Let \mathscr{S} be the type of countable supports.
There exists a non-trivial field of \mathscr{S}-based transseries that is closed under exponentiation.

Logarithmic depth

$\mathbb{E}:=$ smallest subset of \mathbb{T} that contains $x^{\mathbb{R}}$ and that is closed under \sum and exp.

Proposition

Let \mathscr{S} be the type of countable supports.
There exists a non-trivial field of \mathscr{S}-based transseries that is closed under exponentiation.

Logarithmic depth

$\mathbb{E}:=$ smallest subset of \mathbb{T} that contains $x^{\mathbb{R}}$ and that is closed under \sum and exp.
Logarithmic depth $\operatorname{ld}(f)$ of $f \in \mathbb{T}:=$ smallest $n \in \mathbb{N}$ such that $f \in \mathbb{E} \circ \log _{n}$ or infinity.

Proposition

Let \mathscr{S} be the type of countable supports.
There exists a non-trivial field of \mathscr{S}-based transseries that is closed under exponentiation.

Logarithmic depth

$\mathbb{E}:=$ smallest subset of \mathbb{T} that contains $x^{\mathbb{R}}$ and that is closed under \sum and exp.
Logarithmic depth $\operatorname{ld}(f)$ of $f \in \mathbb{T}:=$ smallest $n \in \mathbb{N}$ such that $f \in \mathbb{E} \circ \log _{n}$ or infinity.

$$
\begin{array}{ll}
\operatorname{ld}\left(\mathrm{e}^{\mathrm{e}^{3 x}+2 x}-x^{3} \mathrm{e}^{x}\right) & =0 \\
\operatorname{ld}\left(x^{x}\right) & =1 \\
\operatorname{ld}(x+\log x+\log \log x+\cdots) & =\infty
\end{array}
$$

Proposition

Let \mathscr{S} be the type of countable supports.
There exists a non-trivial field of \mathscr{S}-based transseries that is closed under exponentiation.

Logarithmic depth

$\mathbb{E}:=$ smallest subset of \mathbb{T} that contains $x^{\mathbb{R}}$ and that is closed under \sum and exp.
Logarithmic depth $\operatorname{ld}(f)$ of $f \in \mathbb{T}:=$ smallest $n \in \mathbb{N}$ such that $f \in \mathbb{E} \circ \log _{n}$ or infinity.

$$
\begin{array}{ll}
\operatorname{ld}\left(\mathrm{e}^{\mathrm{e}^{3 x}+2 x}-x^{3} \mathrm{e}^{x}\right) & =0 \\
\operatorname{ld}\left(x^{x}\right) & =1 \\
\operatorname{ld}(x+\log x+\log \log x+\cdots) & =\infty
\end{array}
$$

Proposition

The field of well-based transseries of finite logarithmic depth is an exp-log field.

Alternative construction (Écalle, Dahn-Göring)

Exponential transseries.

$\mathbb{E}:=$ smallest subset of \mathbb{T} with $\mathbb{E} \supseteq x^{\mathbb{R}}$ that is closed under \sum and exp.

Alternative construction (Écalle, Dahn-Göring)

Exponential transseries.

$\mathbb{E}:=$ smallest subset of \mathbb{T} with $\mathbb{E} \supseteq x^{\mathbb{R}}$ that is closed under \sum and exp.

$$
\mathfrak{E}_{0}=x^{\mathbb{R}} \quad \mathbb{E}_{0}=\mathbb{R} \llbracket \mathfrak{E}_{0} \rrbracket
$$

Alternative construction (Écalle, Dahn-Göring)

Exponential transseries.

$\mathbb{E}:=$ smallest subset of \mathbb{T} with $\mathbb{E} \supseteq x^{\mathbb{R}}$ that is closed under \sum and exp.

$$
\begin{array}{lll}
\mathfrak{E}_{0}=x^{\mathbb{R}} & \mathbb{E}_{0}=\mathbb{R} \llbracket \mathfrak{E}_{0} \rrbracket & \\
\mathfrak{E}_{k}=x^{\mathbb{R}} \exp \mathbb{E}_{k-1,\rangle} & \mathbb{E}_{k}=\mathbb{R} \llbracket \mathfrak{E}_{k} \rrbracket & k=1,2, \ldots
\end{array}
$$

Alternative construction (Écalle, Dahn-Göring)

Exponential transseries.

$\mathbb{E}:=$ smallest subset of \mathbb{T} with $\mathbb{E} \supseteq x^{\mathbb{R}}$ that is closed under \sum and exp.

$$
\begin{array}{ll}
\mathfrak{E}_{0}=x^{\mathbb{R}} & \mathbb{E}_{0}=\mathbb{R} \llbracket \mathfrak{E}_{0} \| \\
\mathfrak{E}_{k}=x^{\mathbb{R}} \exp \mathbb{E}_{k-1,\rangle} & \mathbb{E}_{k}=\mathbb{R} \mathbb{R} \mathfrak{E}_{k} \mathbb{I} \\
\mathfrak{E}=\mathfrak{E}_{0} \cup \mathfrak{E}_{1} \cup \cdots & \mathbb{E}=\mathbb{R} \mathbb{R} \mathbb{E} \mathbb{l}
\end{array}
$$

Alternative construction (Écalle, Dahn-Göring)

Exponential transseries.

$\mathbb{E}:=$ smallest subset of \mathbb{T} with $\mathbb{E} \supseteq x^{\mathbb{R}}$ that is closed under \sum and exp.

$$
\begin{aligned}
\mathfrak{E}_{0} & =x^{\mathbb{R}} \\
\mathfrak{E}_{k} & =x^{\mathbb{R}} \exp \mathbb{E}_{k-1, \succ} \\
\mathfrak{E} & =\mathfrak{E}_{0} \cup \mathfrak{E}_{1} \cup \cdots
\end{aligned}
$$

$$
\mathbb{E}_{0}=\mathbb{R} \llbracket \mathfrak{E}_{0} \rrbracket
$$

$$
\mathbb{E}_{k}=\mathbb{R} \llbracket \mathfrak{E}_{k} \rrbracket
$$

$$
k=1,2, \ldots
$$

$$
\mathbb{E}=\mathbb{R} \llbracket \mathfrak{E} \rrbracket
$$

$$
=\mathbb{E}_{0} \cup \mathbb{E}_{1} \cup \cdots
$$

Exponential transseries.

$\mathbb{E}:=$ smallest subset of \mathbb{T} with $\mathbb{E} \supseteq x^{\mathbb{R}}$ that is closed under \sum and exp.

$$
\begin{aligned}
& \mathfrak{E}_{0}=x^{\mathbb{R}} \quad \mathbb{E}_{0}=\mathbb{R} \llbracket \mathfrak{E}_{0} \rrbracket \\
& \mathfrak{E}_{k}=x^{\mathbb{R}} \exp \mathbb{E}_{k-1,\rangle} \quad \mathbb{E}_{k}=\mathbb{R} \mathbb{R} \mathfrak{E}_{k} \| \quad \quad k=1,2, \ldots \\
& \mathfrak{E}=\mathfrak{E}_{0} \cup \mathfrak{E}_{1} \cup \cdots \quad \mathbb{E}=\mathbb{R} \llbracket \mathfrak{E} \rrbracket \\
& =\mathbb{E}_{0} \cup \mathbb{E}_{1} \cup \cdots
\end{aligned}
$$

Logarithmic closure.

$$
\mathbb{T}=\mathbb{E} \cup \mathbb{E} \circ \log \cup \mathbb{E} \circ \log _{2} \cup \cdots
$$

Exponential transseries.

$\mathbb{E}:=$ smallest subset of \mathbb{T} with $\mathbb{E} \supseteq x^{\mathbb{R}}$ that is closed under \sum and exp.

$$
\begin{array}{lll}
\mathfrak{E}_{0}=x^{\mathbb{R}} & & \mathbb{E}_{0}
\end{array}=\mathbb{R} \mathbb{R} \mathfrak{E}_{0} \mathbb{I}-1 . ~ k=1,2, \ldots
$$

Logarithmic closure.

$$
\mathbb{T}=\mathbb{E} \cup \mathbb{E} \circ \log \cup \mathbb{E} \circ \log _{2} \cup \cdots
$$

Level.
The level of $f \in \mathbb{T}$ is the largest $l \in \mathbb{Z}$ with $f \in \mathbb{E} \circ \exp _{l}$.
Here $\exp _{l} x=\log _{-l} x$ if $l<0$.

Flatness relations. For $f, g \in \mathbb{T}^{\neq 0}$,

$$
\begin{gathered}
f<g g \Longleftrightarrow \log |f|<\log |g| \\
f \preccurlyeq g \Longleftrightarrow \log |f| \preccurlyeq \log |g| \\
f \cong g \Longleftrightarrow \log |f|=\log |g| .
\end{gathered}
$$

Flatness relations. For $f, g \in \mathbb{T}^{\neq 0}$,

$$
\begin{gathered}
f \ll g \Longleftrightarrow \log |f|<\log |g| \\
f \preccurlyeq g \Longleftrightarrow \log |f| \preccurlyeq \log |g| \\
f \cong g \Longleftrightarrow \log |f| \asymp \log |g| .
\end{gathered}
$$

Recursive expansions. $x \ll \mathrm{e}^{x}$

$$
\frac{1}{1-x^{-1}-\mathrm{e}^{-x}}=\frac{1}{1-x^{-1}}+\left(\frac{1}{1-x^{-1}}\right)^{2} \mathrm{e}^{-x}+\left(\frac{1}{1-x^{-1}}\right)^{3} \mathrm{e}^{-2 x}+\cdots
$$

Flatness relations. For $f, g \in \mathbb{T}^{\neq 0}$,

$$
\begin{aligned}
& f \ll g \Longleftrightarrow \log |f| \\
& f \preccurlyeq \log |g| \\
& \Leftrightarrow \log |f| \preccurlyeq \log |g| \\
& f \cong g \Longleftrightarrow \log |f| \asymp \log |g| .
\end{aligned}
$$

Recursive expansions. $x \ll \mathrm{e}^{x}$

$$
\begin{aligned}
& \frac{1}{1-x^{-1}-\mathrm{e}^{-x}}= \frac{1}{1-x^{-1}}+\left(\frac{1}{1-x^{-1}}\right)^{2} \mathrm{e}^{-x}+\left(\frac{1}{1-x^{-1}}\right)^{3} \mathrm{e}^{-2 x}+\cdots \\
&=1+\frac{1}{x}+\frac{1}{x^{2}}+\cdots \\
&+\frac{1}{\mathrm{e}^{x}}+\frac{2}{x \mathrm{e}^{x}}+\frac{3}{x^{2} \mathrm{e}^{x}}+\cdots \\
& \quad+\frac{1}{\mathrm{e}^{2 x}}+\frac{3}{x \mathrm{e}^{2 x}}+\frac{6}{x^{2} \mathrm{e}^{2 x}}+\cdots+\cdots
\end{aligned}
$$

Flatness relations. For $f, g \in \mathbb{T}^{\neq 0}$,

$$
\begin{gathered}
f<g g \Leftrightarrow \log |f|<\log |g| \\
f \preccurlyeq g \Longleftrightarrow \log |f| \preccurlyeq \log |g| \\
f \cong g \Longleftrightarrow \log |f|=\log |g| .
\end{gathered}
$$

Recursive expansions. Let $b_{1}, \ldots, b_{n} \in \mathbb{T}^{>1}$ with $b_{1} \ll \cdots \ll b_{n}$. Then

$$
\begin{aligned}
\varphi: x_{1}^{\mathbb{R}} \dot{x} \cdots \dot{x} x_{n}^{\mathbb{R}} & \longrightarrow \mathbb{T} \\
x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}} & \longmapsto b_{1}^{\alpha_{1}} \cdots b_{n}^{\alpha_{n}}
\end{aligned}
$$

extends by strong linearity into an embedding

$$
\hat{\varphi}: \mathbb{R}\left[\left[x_{1}^{\mathbb{R}} \dot{x} \cdots \dot{x} x_{n}^{\mathbb{R}}\right]\right]_{\mathscr{P}} \rightarrow \mathbb{T} .
$$

We define $\mathbb{R}\left[\left[b_{1} ; \ldots ; b_{n}\right]\right]_{\mathscr{P}}:=\operatorname{im} \hat{\varphi}$.
$\mathbb{T}=\mathbb{R} \llbracket x \rrbracket$, the field of grid-based transseries.
$\mathbb{T}=\mathbb{R} \llbracket x \mathbb{I}$, the field of grid-based transseries.

Definition

A transbasis is a finite tuple $\mathfrak{B}=\left(\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n}\right) \in \mathbb{T}^{n}$ such that TB1. $\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n}>1$ and $\mathfrak{b}_{1} \ll \cdots \ll \mathfrak{b}_{n}$.
TB2. $\mathfrak{b}_{1}=\exp _{l} x$ for some $l \in \mathbb{Z}$.
TB3. $\log \mathfrak{b}_{i} \in \mathbb{R} \llbracket \mathfrak{b}_{1} ; \ldots ; \mathfrak{b}_{i-1} \rrbracket_{>}$for $i=2, \ldots, n$.
$\mathbb{T}=\mathbb{R} \llbracket x \mathbb{I}$, the field of grid-based transseries.

Definition

A transbasis is a finite tuple $\mathfrak{B}=\left(\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n}\right) \in \mathbb{T}^{n}$ such that TB1. $\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n}>1$ and $\mathfrak{b}_{1} \ll \cdots \ll \mathfrak{b}_{n}$.
TB2. $\mathfrak{b}_{1}=\exp _{l} x$ for some $l \in \mathbb{Z}$.
TB3. $\log \mathfrak{b}_{i} \in \mathbb{R} \llbracket \mathfrak{b}_{1} ; \ldots ; \mathfrak{b}_{i-1} \rrbracket_{>}$, for $i=2, \ldots, n$.

- l is called the level of \mathfrak{B}.
$\mathbb{T}=\mathbb{R} \llbracket x \mathbb{I}$, the field of grid-based transseries.

Definition

A transbasis is a finite tuple $\mathfrak{B}=\left(\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n}\right) \in \mathbb{T}^{n}$ such that TB1. $\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n}>1$ and $\mathfrak{b}_{1} \ll \cdots \ll \mathfrak{b}_{n}$.
TB2. $\mathfrak{b}_{1}=\exp _{l} x$ for some $l \in \mathbb{Z}$.
TB3. $\log \mathfrak{b}_{i} \in \mathbb{R} \llbracket \mathfrak{b}_{1} ; \ldots ; \mathfrak{b}_{i-1} \rrbracket_{>}$, for $i=2, \ldots, n$.

- l is called the level of \mathfrak{B}.
- \mathfrak{B} is a transbasis for each element of $\mathbb{R} \llbracket \mathfrak{B}^{\mathbb{R}} \rrbracket:=\mathbb{R} \llbracket \mathfrak{b}_{1} ; \ldots ; \mathfrak{b}_{n} \rrbracket$.
$\mathbb{T}=\mathbb{R} \llbracket x \mathbb{\|}$, the field of grid-based transseries.

Definition

A transbasis is a finite tuple $\mathfrak{B}=\left(\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n}\right) \in \mathbb{T}^{n}$ such that
TB1. $\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n}>1$ and $\mathfrak{b}_{1} \ll \cdots \ll \mathfrak{b}_{n}$.
TB2. $\mathfrak{b}_{1}=\exp _{l} x$ for some $l \in \mathbb{Z}$.
TB3. $\log \mathfrak{b}_{i} \in \mathbb{R} \llbracket \mathfrak{b}_{1} ; \ldots ; \mathfrak{b}_{i-1} \rrbracket_{>}$, for $i=2, \ldots, n$.

- l is called the level of \mathfrak{B}.
$-\mathfrak{B}$ is a transbasis for each element of $\mathbb{R} \llbracket \mathfrak{B}^{\mathbb{R}} \rrbracket:=\mathbb{R} \llbracket \mathfrak{b}_{1} ; \ldots ; \mathfrak{b}_{n} \rrbracket$.

$$
\begin{array}{ll}
\left(x, \mathrm{e}^{\sqrt{x}}, \mathrm{e}^{x \sqrt{x}}\right) & \text { is a transbasis for } \mathrm{e}^{(x+1)^{3 / 2}}=\mathrm{e}^{x^{3 / 2}+(3 / 2) x^{1 / 2}+c x^{-1 / 2}+\cdots} \\
\left(x, \mathrm{e}^{(x+3 / 2) \sqrt{x}}\right) & \text { is a transbasis for } \mathrm{e}^{(x+1)^{3 / 2}} \\
\left(\log x, x, \mathrm{e}^{x}, x^{x}\right) & \text { is a transbasis of level }-1 \text { for } \Gamma(x)
\end{array}
$$

Theorem

Let $\mathfrak{B}=\left(\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n}\right)$ be a transbasis of level l and $f \in \mathbb{T}$ a transseries of level l^{\prime}. Then there exists a transbasis $\hat{\mathfrak{B}}$ of level $\min \left(l, l^{\prime}\right)$ for f that extends \mathfrak{B}.

Theorem

Let $\mathfrak{B}=\left(\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n}\right)$ be a transbasis of level l and $f \in \mathbb{T}$ a transseries of level l^{\prime}. Then there exists a transbasis $\hat{\mathfrak{B}}$ of level $\min \left(l, l^{\prime}\right)$ for f that extends \mathfrak{B}.

Proof in a special case. Assume that $f=\mathrm{e}^{g}$ and that \mathfrak{B} is a transbasis for g.

Theorem

Let $\mathfrak{B}=\left(\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n}\right)$ be a transbasis of level l and $f \in \mathbb{T}$ a transseries of level l^{\prime}. Then there exists a transbasis $\hat{\mathfrak{B}}$ of level $\min \left(l, l^{\prime}\right)$ for f that extends \mathfrak{B}.

Proof in a special case. Assume that $f=\mathrm{e}^{g}$ and that \mathfrak{B} is a transbasis for g. Let $k \in\{0, \ldots, n\}$ be minimal such that there exist $\lambda_{k+1}, \ldots, \lambda_{n} \in \mathbb{R}$ with

$$
g=\lambda_{n} \log \mathfrak{b}_{n}+\cdots+\lambda_{k+1} \log \mathfrak{b}_{k+1}+\delta, \quad \delta<\log \mathfrak{b}_{k+1}
$$

Theorem

Let $\mathfrak{B}=\left(\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n}\right)$ be a transbasis of level l and $f \in \mathbb{T}$ a transseries of level l^{\prime}. Then there exists a transbasis $\hat{\mathfrak{B}}$ of level $\min \left(l, l^{\prime}\right)$ for f that extends \mathfrak{B}.

Proof in a special case. Assume that $f=\mathrm{e}^{g}$ and that \mathfrak{B} is a transbasis for g. Let $k \in\{0, \ldots, n\}$ be minimal such that there exist $\lambda_{k+1}, \ldots, \lambda_{n} \in \mathbb{R}$ with

$$
g=\lambda_{n} \log \mathfrak{b}_{n}+\cdots+\lambda_{k+1} \log \mathfrak{b}_{k+1}+\delta, \quad \delta<\log \mathfrak{b}_{k+1}
$$

If $\delta \leqslant 1$, then

$$
\left.f=\mathrm{e}^{\delta} \mathfrak{b}_{k+1}^{\lambda_{k+1}} \cdots \mathfrak{b}_{n}^{\lambda_{n}} \in \mathbb{R} \llbracket \mathfrak{B}^{\mathbb{R}} \rrbracket\right]
$$

Theorem

Let $\mathfrak{B}=\left(\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n}\right)$ be a transbasis of level l and $f \in \mathbb{T}$ a transseries of level l^{\prime}. Then there exists a transbasis $\hat{\mathfrak{B}}$ of level $\min \left(l, l^{\prime}\right)$ for f that extends \mathfrak{B}.

Proof in a special case. Assume that $f=\mathrm{e}^{g}$ and that \mathfrak{B} is a transbasis for g. Let $k \in\{0, \ldots, n\}$ be minimal such that there exist $\lambda_{k+1}, \ldots, \lambda_{n} \in \mathbb{R}$ with

$$
g=\lambda_{n} \log \mathfrak{b}_{n}+\cdots+\lambda_{k+1} \log \mathfrak{b}_{k+1}+\delta, \quad \delta<\log \mathfrak{b}_{k+1}
$$

If $\delta \preccurlyeq 1$, then

$$
\left.f=\mathrm{e}^{\delta} \mathfrak{b}_{k+1}^{\lambda_{k+1}} \cdots \mathfrak{b}_{n}^{\lambda_{n}} \in \mathbb{R} \llbracket \mathfrak{B}^{\mathbb{R}} \rrbracket\right]
$$

Otherwise, let $i \leqslant k$ be such that $\log \mathfrak{b}_{i}<\delta<\log \mathfrak{b}_{i+1}$.

$$
\begin{aligned}
f & =\mathrm{e}^{\delta_{\preccurlyeq}} \mathrm{e}^{\delta_{>}} \mathfrak{b}_{k+1}^{\lambda_{k+1}} \cdots \mathfrak{b}_{n}^{\lambda_{n}} \in \mathbb{R} \llbracket \hat{\mathfrak{B}}^{\mathbb{R}} \rrbracket \\
\hat{\mathfrak{B}} & :=\left(\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{i}, \mathrm{e}^{\left|\delta_{>}\right|}, \mathfrak{b}_{i+1}, \ldots, \mathfrak{b}_{n}\right)
\end{aligned}
$$

Theorem

Let $\mathfrak{B}=\left(\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n}\right)$ be a transbasis of level l and $f \in \mathbb{T}$ a transseries of level l^{\prime}. Then there exists a transbasis $\hat{\mathfrak{B}}$ of level $\min \left(l, l^{\prime}\right)$ for f that extends \mathfrak{B}.

Theorem

Let $\mathfrak{B}=\left(\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n}\right)$ be a transbasis of level l and $f \in \mathbb{T}$ a transseries of level l^{\prime}. Then there exists a transbasis $\hat{\mathfrak{B}}$ of level $\min \left(l, l^{\prime}\right)$ for f that extends \mathfrak{B}.

Proof in general. Add $\exp _{l^{\prime}} x, \ldots, \exp _{l-1} x$ below \mathfrak{b}_{1} to arrange that $l=l^{\prime}$.

Theorem

Let $\mathfrak{B}=\left(\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n}\right)$ be a transbasis of level l and $f \in \mathbb{T}$ a transseries of level l^{\prime}. Then there exists a transbasis $\hat{\mathfrak{B}}$ of level $\min \left(l, l^{\prime}\right)$ for f that extends \mathfrak{B}.

Proof in general. Add $\exp _{l^{\prime}} x, \ldots, \exp _{l-1} x$ below \mathfrak{b}_{1} to arrange that $l=l^{\prime}$. Induction on h with $f \in \mathbb{E}_{h} \circ \exp _{l} x$.

Theorem

Let $\mathfrak{B}=\left(\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n}\right)$ be a transbasis of level l and $f \in \mathbb{T}$ a transseries of level l^{\prime}. Then there exists a transbasis $\hat{\mathfrak{B}}$ of level $\min \left(l, l^{\prime}\right)$ for f that extends \mathfrak{B}.

Proof in general. Add $\exp _{l^{\prime}} x, \ldots, \exp _{l-1} x$ below \mathfrak{b}_{1} to arrange that $l=l^{\prime}$. Induction on h with $f \in \mathbb{E}_{h} \circ \exp _{l} x$.
Nothing to do if $h=0$.

Theorem

Let $\mathfrak{B}=\left(\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n}\right)$ be a transbasis of level l and $f \in \mathbb{T}$ a transseries of level l^{\prime}. Then there exists a transbasis $\hat{\mathfrak{B}}$ of level $\min \left(l, l^{\prime}\right)$ for f that extends \mathfrak{B}.

Proof in general. Add $\exp _{l^{\prime}} x, \ldots, \exp _{l-1} x$ below \mathfrak{b}_{1} to arrange that $l=l^{\prime}$. Induction on h with $f \in \mathbb{E}_{h} \circ \exp _{l} x$.
Nothing to do if $h=0$.
Otherwise, supp $f \subseteq\left(\exp _{l} x\right)^{\mathbb{R}} \mathbf{e}^{g_{0}+g_{1} \mathbb{N}+\cdots+g_{k} \mathbb{N}}$ with $g_{0}, \ldots, g_{k} \in \mathbb{E}_{h-1} \circ \exp _{l} x$.

Theorem

Let $\mathfrak{B}=\left(\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n}\right)$ be a transbasis of level l and $f \in \mathbb{T}$ a transseries of level l^{\prime}. Then there exists a transbasis $\hat{\mathfrak{B}}$ of level $\min \left(l, l^{\prime}\right)$ for f that extends \mathfrak{B}.

Proof in general. Add $\exp _{l^{\prime}} x, \ldots, \exp _{l-1} x$ below \mathfrak{b}_{1} to arrange that $l=l^{\prime}$. Induction on h with $f \in \mathbb{E}_{h} \circ \exp _{l} x$.
Nothing to do if $h=0$.
Otherwise, supp $f \subseteq\left(\exp _{l} x\right)^{\mathbb{R}} \mathbf{e}^{g_{0}+g_{1} \mathbb{N}+\cdots+g_{k} \mathbb{N}}$ with $g_{0}, \ldots, g_{k} \in \mathbb{E}_{h-1} \circ \exp _{l} x$. Induction hypothesis + special case $\leadsto \mathfrak{B}$ transbasis for $\mathrm{e}^{g_{0}}, \ldots, \mathrm{e}^{g_{k}}$.

Theorem

Let $\mathfrak{B}=\left(\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n}\right)$ be a transbasis of level l and $f \in \mathbb{T}$ a transseries of level l^{\prime}. Then there exists a transbasis $\hat{\mathfrak{B}}$ of level $\min \left(l, l^{\prime}\right)$ for f that extends \mathfrak{B}.

Proof in general. Add $\exp _{l^{\prime}} x, \ldots, \exp _{l-1} x$ below \mathfrak{b}_{1} to arrange that $l=l^{\prime}$. Induction on h with $f \in \mathbb{E}_{h} \circ \exp _{l} x$.
Nothing to do if $h=0$.
Otherwise, supp $f \subseteq\left(\exp _{l} x\right)^{\mathbb{R}} \mathbf{e}^{g_{0}+g_{1} \mathbb{N}+\cdots+g_{k} \mathbb{N}}$ with $g_{0}, \ldots, g_{k} \in \mathbb{E}_{h-1} \circ \exp _{l} x$. Induction hypothesis + special case $\leadsto \mathfrak{B}$ transbasis for $\mathrm{e}^{g_{0}}, \ldots, \mathrm{e}^{g_{k}}$. Hence \mathfrak{B} is a transbasis for each monomial in supp f.

Theorem

Let $\mathfrak{B}=\left(\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n}\right)$ be a transbasis of level l and $f \in \mathbb{T}$ a transseries of level l^{\prime}. Then there exists a transbasis $\hat{\mathfrak{B}}$ of level $\min \left(l, l^{\prime}\right)$ for f that extends \mathfrak{B}.

Proof in general. Add $\exp _{l^{\prime}} x, \ldots, \exp _{l-1} x$ below \mathfrak{b}_{1} to arrange that $l=l^{\prime}$. Induction on h with $f \in \mathbb{E}_{h} \circ \exp _{l} x$.
Nothing to do if $h=0$.
Otherwise, supp $f \subseteq\left(\exp _{l} x\right)^{\mathbb{R}} \mathbf{e}^{g_{0}+g_{1} \mathbb{N}+\cdots+g_{k} \mathbb{N}}$ with $g_{0}, \ldots, g_{k} \in \mathbb{E}_{h-1} \circ \exp _{l} x$. Induction hypothesis + special case $\leadsto \mathfrak{B}$ transbasis for $\mathrm{e}^{g_{0}}, \ldots, \mathrm{e}^{g_{k}}$. Hence \mathfrak{B} is a transbasis for each monomial in supp f. And thus for f itself.

Strong derivations

$\mathfrak{M} \rightarrow$ totally ordered monomial group.
$\mathfrak{M} \rightarrow$ totally ordered monomial group. We focus on the grid-based setting.
$\mathfrak{M} \rightarrow$ totally ordered monomial group. We focus on the grid-based setting.

Definition

A strong derivation on $\mathbb{R} \llbracket \mathfrak{M} \rrbracket$ is a map $\partial: \mathbb{R} \llbracket \mathfrak{M} \rrbracket \rightarrow \mathbb{R} \llbracket \mathfrak{M} \rrbracket$ such that D1. $\partial c=0$ for all $c \in \mathbb{R}$.
D2. $\partial(f g)=(\partial f) g+f \partial g$ for all $f, g \in \mathbb{R}[\mathfrak{M}]$.
D3. ∂ is strongly \mathbb{R}-linear.

Strong derivations

$\mathfrak{M} \rightarrow$ totally ordered monomial group. We focus on the grid-based setting.

Definition

A strong derivation on $\mathbb{R} \llbracket \mathfrak{M} \rrbracket$ is a map $\partial: \mathbb{R} \llbracket \mathfrak{M} \rrbracket \rightarrow \mathbb{R} \llbracket \mathfrak{M} \rrbracket$ such that
D1. $\partial c=0$ for all $c \in \mathbb{R}$.
D2. $\partial(f g)=(\partial f) g+f \partial g$ for all $f, g \in \mathbb{R} \llbracket \mathfrak{M}]$].
D3. ∂ is strongly \mathbb{R}-linear.

Proposition

Let $\partial: \mathfrak{M} \rightarrow \mathbb{R} \llbracket \mathfrak{M} \rrbracket$ be a mapping such that $\partial(\mathfrak{m} \mathfrak{n})=(\partial \mathfrak{m}) \mathfrak{n}+\mathfrak{m} \partial \mathfrak{n}$ for all $\mathfrak{m}, \mathfrak{n} \in \mathfrak{M}$. Then ∂ is a grid-based mapping that extends uniquely into a strong derivation on $\mathbb{R}[\mathfrak{M}]$.

Strong derivations

$\mathfrak{M} \rightarrow$ totally ordered monomial group. We focus on the grid-based setting.

Definition

A strong derivation on $\mathbb{R} \llbracket \mathfrak{M} \rrbracket$ is a map $\partial: \mathbb{R} \llbracket \mathfrak{M} \rrbracket \rightarrow \mathbb{R} \llbracket \mathfrak{M} \rrbracket$ such that
D1. $\partial c=0$ for all $c \in \mathbb{R}$.
D2. $\partial(f g)=(\partial f) g+f \partial g$ for all $f, g \in \mathbb{R} \llbracket \mathfrak{M}]$.
D3. ∂ is strongly \mathbb{R}-linear.

Proposition

Let $\partial: \mathfrak{M} \rightarrow \mathbb{R} \llbracket \mathfrak{M} \rrbracket$ be a mapping such that $\partial(\mathfrak{m} \mathfrak{n})=(\partial \mathfrak{m}) \mathfrak{n}+\mathfrak{m} \partial \mathfrak{n}$ for all $\mathfrak{m}, \mathfrak{n} \in \mathfrak{M}$. Then ∂ is a grid-based mapping that extends uniquely into a strong derivation on $\mathbb{R}[\mathfrak{M}]$.
Notation. $f^{\prime}=\partial f$ and $f^{+}=\frac{\partial f}{f}$ if ∂ is clear from the context.

Proposition

Let $\partial: \mathfrak{M} \rightarrow \mathbb{R} \llbracket \mathfrak{M}]$ be a mapping such that $\partial(\mathfrak{m} \mathfrak{n})=(\partial \mathfrak{m}) \mathfrak{n}+\mathfrak{m} \partial \mathfrak{n}$ for all $\mathfrak{m}, \mathfrak{n} \in \mathfrak{M}$. Then ∂ is a grid-based mapping that extends uniquely into a strong derivation on $\mathbb{R} \llbracket \mathfrak{M}]$.

Proposition

Let $\partial: \mathfrak{M} \rightarrow \mathbb{R} \llbracket \mathfrak{M}]$ be a mapping such that $\partial(\mathfrak{m} \mathfrak{n})=(\partial \mathfrak{m}) \mathfrak{n}+\mathfrak{m} \partial \mathfrak{n}$ for all $\mathfrak{m}, \mathfrak{n} \in \mathfrak{M}$. Then ∂ is a grid-based mapping that extends uniquely into a strong derivation on $\mathbb{R}[\mathfrak{M}]$.

Proof. Let $\mathfrak{G} \subseteq \mathfrak{M}$ be grid-based and let $\mathfrak{e}_{1}, \ldots, \mathfrak{e}_{k}<1$ and \mathfrak{f} be in \mathfrak{M} with

$$
\mathfrak{S} \subseteq\left\{\mathfrak{e}_{1}, \ldots, \mathfrak{e}_{k}\right\}^{*} \mathfrak{f}
$$

Proposition

Let $\partial: \mathfrak{M} \rightarrow \mathbb{R} \llbracket \mathfrak{M} \rrbracket$ be a mapping such that $\partial(\mathfrak{m} \mathfrak{n})=(\partial \mathfrak{m}) \mathfrak{n}+\mathfrak{m} \partial \mathfrak{n}$ for all $\mathfrak{m}, \mathfrak{n} \in \mathfrak{M}$. Then ∂ is a grid-based mapping that extends uniquely into a strong derivation on $\mathbb{R}[\mathfrak{M}]$.

Proof. Let $\mathfrak{G} \subseteq \mathfrak{M}$ be grid-based and let $\mathfrak{e}_{1}, \ldots, \mathfrak{e}_{k}<1$ and \mathfrak{f} be in \mathfrak{M} with

$$
\mathfrak{S} \subseteq\left\{\mathfrak{e}_{1}, \ldots, \mathfrak{e}_{k}\right\}^{*} \mathfrak{f}
$$

Then for any $\mathfrak{m}:=\mathfrak{e}_{1}^{\alpha_{1}} \cdots \mathfrak{e}_{k}^{\alpha_{k}} \mathfrak{f} \in \mathfrak{S}$, we have

$$
\mathfrak{m}^{\dagger}=\alpha_{1} \mathfrak{e}_{1}^{\dagger}+\cdots+\alpha_{k} \mathfrak{e}_{k}^{\dagger}+\mathfrak{f}^{\dagger}
$$

Proposition

Let $\partial: \mathfrak{M} \rightarrow \mathbb{R} \llbracket \mathfrak{M} \rrbracket$ be a mapping such that $\partial(\mathfrak{m} \mathfrak{n})=(\partial \mathfrak{m}) \mathfrak{n}+\mathfrak{m} \partial \mathfrak{n}$ for all $\mathfrak{m}, \mathfrak{n} \in \mathfrak{M}$. Then ∂ is a grid-based mapping that extends uniquely into a strong derivation on $\mathbb{R}[\mathfrak{M}]$.

Proof. Let $\mathfrak{G} \subseteq \mathfrak{M}$ be grid-based and let $\mathfrak{e}_{1}, \ldots, \mathfrak{e}_{k}<1$ and \mathfrak{f} be in \mathfrak{M} with

$$
\mathfrak{S} \subseteq\left\{\mathfrak{e}_{1}, \ldots, \mathfrak{e}_{k}\right\}^{*} \mathfrak{f}
$$

Then for any $\mathfrak{m}:=\mathfrak{e}_{1}^{\alpha_{1}} \cdots \mathfrak{e}_{k}^{\alpha_{k}} \mathfrak{f} \in \mathfrak{S}$, we have

$$
\begin{aligned}
\mathfrak{m}^{\dagger} & =\alpha_{1} \mathfrak{e}_{1}^{\dagger}+\cdots+\alpha_{k} \mathfrak{e}_{k}^{\dagger}+\mathfrak{f}^{\dagger} \\
\operatorname{supp} \mathfrak{S}^{\dagger} & \subseteq \operatorname{supp} \mathfrak{e}_{1}^{\dagger} \cup \cdots \cup \operatorname{supp} \mathfrak{e}_{k}^{\dagger} \cup \operatorname{supp} \mathfrak{f}^{\dagger} .
\end{aligned}
$$

Proposition

Let $\partial: \mathfrak{M} \rightarrow \mathbb{R} \llbracket \mathfrak{M}]$ be a mapping such that $\partial(\mathfrak{m} \mathfrak{n})=(\partial \mathfrak{m}) \mathfrak{n}+\mathfrak{m} \partial \mathfrak{n}$ for all $\mathfrak{m}, \mathfrak{n} \in \mathfrak{M}$.
Then ∂ is a grid-based mapping that extends uniquely into a strong derivation on $\mathbb{R}[\mathfrak{M}]$.
Proof. Let $\mathfrak{G} \subseteq \mathfrak{M}$ be grid-based and let $\mathfrak{e}_{1}, \ldots, \mathfrak{e}_{k}<1$ and \mathfrak{f} be in \mathfrak{M} with

$$
\mathfrak{S} \subseteq\left\{\mathfrak{e}_{1}, \ldots, \mathfrak{e}_{k}\right\}^{*} \mathfrak{f}
$$

Then for any $\mathfrak{m}:=\mathfrak{e}_{1}^{\alpha_{1}} \cdots \mathfrak{e}_{k}^{\alpha_{k}} \mathfrak{f} \in \mathfrak{S}$, we have

$$
\begin{aligned}
\mathfrak{m}^{\dagger} & =\alpha_{1} \mathfrak{e}_{1}^{\dagger}+\cdots+\alpha_{k} \mathfrak{e}_{k}^{\dagger}+\mathfrak{f}^{\dagger} \\
\operatorname{supp} \mathfrak{S}^{\dagger} & \subseteq \operatorname{supp} \mathfrak{e}_{1}^{\dagger} \cup \cdots \cup \operatorname{supp} \mathfrak{e}_{k}^{\dagger} \cup \operatorname{supp} \mathfrak{f}^{\dagger}
\end{aligned}
$$

Hence $\left(\mathfrak{m}^{\prime}\right)_{\mathfrak{m} \in \mathfrak{S}}$ is grid-based.

Proposition

Let $\partial: \mathfrak{M} \rightarrow \mathbb{R}[\mathfrak{M}]$ be a mapping such that $\partial(\mathfrak{m} \mathfrak{n})=(\partial \mathfrak{m}) \mathfrak{n}+\mathfrak{m} \partial \mathfrak{n}$ for all $\mathfrak{m}, \mathfrak{n} \in \mathfrak{M}$.
Then ∂ is a grid-based mapping that extends uniquely into a strong derivation on $\mathbb{R}[\mathfrak{M}]$.
Proof. Let $\mathfrak{G} \subseteq \mathfrak{M}$ be grid-based and let $\mathfrak{e}_{1}, \ldots, \mathfrak{e}_{k}<1$ and \mathfrak{f} be in \mathfrak{M} with

$$
\mathfrak{S} \subseteq\left\{\mathfrak{e}_{1}, \ldots, \mathfrak{e}_{k}\right\}^{*} \mathfrak{f}
$$

Then for any $\mathfrak{m}:=\mathfrak{e}_{1}^{\alpha_{1}} \cdots \mathfrak{e}_{k}^{\alpha_{k}} \mathfrak{f} \in \mathfrak{S}$, we have

$$
\begin{aligned}
\mathfrak{m}^{\dagger} & =\alpha_{1} \mathfrak{e}_{1}^{\dagger}+\cdots+\alpha_{k} \mathfrak{e}_{k}^{\dagger}+\mathfrak{f}^{\dagger} \\
\operatorname{supp} \mathfrak{S}^{\dagger} & \subseteq \operatorname{supp} \mathfrak{e}_{1}^{\dagger} \cup \cdots \cup \operatorname{supp} \mathfrak{e}_{k}^{\dagger} \cup \operatorname{supp} \mathfrak{f}^{\dagger}
\end{aligned}
$$

Hence $\left(\mathfrak{m}^{\prime}\right)_{\mathfrak{m} \in \mathfrak{S}}$ is grid-based. Indeed, supp $\mathfrak{S}^{\prime} \subseteq \mathfrak{S}$ supp \mathfrak{S}^{+}is grid-based.

Proposition

Let $\partial: \mathfrak{M} \rightarrow \mathbb{R} \llbracket \mathfrak{M}]$ be a mapping such that $\partial(\mathfrak{m} \mathfrak{n})=(\partial \mathfrak{m}) \mathfrak{n}+\mathfrak{m} \partial \mathfrak{n}$ for all $\mathfrak{m}, \mathfrak{n} \in \mathfrak{M}$.
Then ∂ is a grid-based mapping that extends uniquely into a strong derivation on $\mathbb{R}[\mathfrak{M}]]$.
Proof. Let $\mathfrak{G} \subseteq \mathfrak{M}$ be grid-based and let $\mathfrak{e}_{1}, \ldots, \mathfrak{e}_{k}<1$ and \mathfrak{f} be in \mathfrak{M} with

$$
\mathfrak{S} \subseteq\left\{\mathfrak{e}_{1}, \ldots, \mathfrak{e}_{k}\right\}^{*} \mathfrak{f}
$$

Then for any $\mathfrak{m}:=\mathfrak{e}_{1}^{\alpha_{1}} \cdots \mathfrak{e}_{k}^{\alpha_{k}} \mathfrak{f} \in \mathfrak{S}$, we have

$$
\begin{aligned}
\mathfrak{m}^{\dagger} & =\alpha_{1} \mathfrak{e}_{1}^{\dagger}+\cdots+\alpha_{k} \mathfrak{e}_{k}^{\dagger}+\mathfrak{f}^{\dagger} \\
\operatorname{supp} \mathfrak{S}^{\dagger} & \subseteq \operatorname{supp} \mathfrak{e}_{1}^{\dagger} \cup \cdots \cup \operatorname{supp} \mathfrak{e}_{k}^{\dagger} \cup \operatorname{supp} \mathfrak{f}^{\dagger} .
\end{aligned}
$$

Hence $\left(\mathfrak{m}^{\prime}\right)_{\mathfrak{m} \in \mathfrak{S}}$ is grid-based.
Indeed, supp $\mathfrak{S}^{\prime} \subseteq \mathfrak{S}$ supp \mathfrak{S}^{+}is grid-based.
Given $\mathfrak{v} \in \mathfrak{S}$, the $(\mathfrak{m}, \mathfrak{n}) \in \mathfrak{S} \times \operatorname{supp} \mathfrak{S}^{\dagger}$ with $\mathfrak{v}=\mathfrak{m} \mathfrak{n}$ form a finite antichain.

Proposition

Let $\partial: \mathfrak{M} \rightarrow \mathbb{R} \llbracket \mathfrak{M}]$ be a mapping such that $\partial(\mathfrak{m} \mathfrak{n})=(\partial \mathfrak{m}) \mathfrak{n}+\mathfrak{m} \partial \mathfrak{n}$ for all $\mathfrak{m}, \mathfrak{n} \in \mathfrak{M}$.
Then ∂ is a grid-based mapping that extends uniquely into a strong derivation on $\mathbb{R}[\mathfrak{M}]$.
Proof. Let $\mathfrak{G} \subseteq \mathfrak{M}$ be grid-based and let $\mathfrak{e}_{1}, \ldots, \mathfrak{e}_{k}<1$ and \mathfrak{f} be in \mathfrak{M} with

$$
\mathfrak{S} \subseteq\left\{\mathfrak{e}_{1}, \ldots, \mathfrak{e}_{k}\right\}^{*} \mathfrak{f}
$$

Then for any $\mathfrak{m}:=\mathfrak{e}_{1}^{\alpha_{1}} \cdots \mathfrak{e}_{k}^{\alpha_{k}} \mathfrak{f} \in \mathfrak{S}$, we have

$$
\begin{aligned}
\mathfrak{m}^{\dagger} & =\alpha_{1} \mathfrak{e}_{1}^{\dagger}+\cdots+\alpha_{k} \mathfrak{e}_{k}^{\dagger}+\mathfrak{f}^{\dagger} \\
\operatorname{supp} \mathfrak{S}^{\dagger} & \subseteq \operatorname{supp} \mathfrak{e}_{1}^{\dagger} \cup \cdots \cup \operatorname{supp} \mathfrak{e}_{k}^{\dagger} \cup \operatorname{supp} \mathfrak{f}^{\dagger}
\end{aligned}
$$

Hence $\left(\mathfrak{m}^{\prime}\right)_{\mathfrak{m} \in \mathfrak{S}}$ is grid-based.

Proposition

Let $\partial: \mathfrak{M} \rightarrow \mathbb{R}[\mathfrak{M}]$ be a mapping such that $\partial(\mathfrak{m} \mathfrak{n})=(\partial \mathfrak{m}) \mathfrak{n}+\mathfrak{m} \partial \mathfrak{n}$ for all $\mathfrak{m}, \mathfrak{n} \in \mathfrak{M}$.
Then ∂ is a grid-based mapping that extends uniquely into a strong derivation on $\mathbb{R} \llbracket \mathfrak{M}]$.
Proof. Let $\mathfrak{G} \subseteq \mathfrak{M}$ be grid-based and let $\mathfrak{e}_{1}, \ldots, \mathfrak{e}_{k}<1$ and \mathfrak{f} be in \mathfrak{M} with

$$
\mathfrak{S} \subseteq\left\{\mathfrak{e}_{1}, \ldots, \mathfrak{e}_{k}\right\}^{*} \mathfrak{f} .
$$

Then for any $\mathfrak{m}:=\mathfrak{e}_{1}^{\alpha_{1}} \cdots \mathfrak{e}_{k}^{\alpha_{k}} \mathfrak{f} \in \mathfrak{S}$, we have

$$
\begin{aligned}
\mathfrak{m}^{\dagger} & =\alpha_{1} \mathfrak{e}_{1}^{\dagger}+\cdots+\alpha_{k} \mathfrak{e}_{k}^{\dagger}+\mathfrak{f}^{\dagger} \\
\operatorname{supp} \mathfrak{S}^{\dagger} & \subseteq \operatorname{supp} \mathfrak{e}_{1}^{\dagger} \cup \cdots \cup \operatorname{supp} \mathfrak{e}_{k}^{\dagger} \cup \operatorname{supp} \mathfrak{f}^{\dagger} .
\end{aligned}
$$

Hence $\left(\mathfrak{m}^{\prime}\right)_{\mathfrak{m} \in \mathfrak{S}}$ is grid-based.
Uniqueness: $(f, g) \mapsto(f g)^{\prime}$ and $(f, g) \mapsto f^{\prime} g+f g^{\prime}$ strongly bilinear, same on \mathfrak{M}^{2}.

Exp-log derivations

Definition

Assume that exp is a partial exponential function on $\mathbb{R}[\llbracket \mathfrak{M}]$.
An exp-log derivation on $\mathbb{R}[\mathfrak{M}]$ is a derivation ∂ that satisfies
ED. $\partial \exp f=(\partial f) \exp f$, for all $f \in \operatorname{dom} \exp$.

Exp-log derivations

Definition

Assume that exp is a partial exponential function on $\mathbb{R}[\mathfrak{M}]]$.
An exp-log derivation on $\mathbb{R} \llbracket \mathfrak{M}]$ is a derivation ∂ that satisfies
ED. $\partial \exp f=(\partial f) \exp f$, for all $f \in \operatorname{dom} \exp$.

Proposition

Let $\partial: \mathfrak{M} \rightarrow \mathbb{R} \llbracket \mathfrak{M} \rrbracket$ be a strong derivation with $\partial \log \mathfrak{m}=\mathfrak{m}^{\dagger}$ for all $\mathfrak{m} \in \mathfrak{M}$.
Then ∂ is a strong exp-log derivation on $\mathbb{R}[\mathfrak{M}]$.

Exp-log derivations

Definition

Assume that exp is a partial exponential function on $\mathbb{R}[\mathfrak{M}]]$.
An exp-log derivation on $\mathbb{R} \llbracket \mathfrak{M}]$ is a derivation ∂ that satisfies
ED. $\partial \exp f=(\partial f) \exp f$, for all $f \in \operatorname{dom} \exp$.

Proposition

Let $\partial: \mathfrak{M} \rightarrow \mathbb{R} \llbracket \mathfrak{M} \rrbracket$ be a strong derivation with $\partial \log \mathfrak{m}=\mathfrak{m}^{\dagger}$ for all $\mathfrak{m} \in \mathfrak{M}$.
Then ∂ is a strong exp-log derivation on $\mathbb{R}[\mathfrak{M}]$.
Proof. Let $\left.f=c \mathfrak{m}(1+\varepsilon), c \in \mathbb{R}^{\neq 0}, \mathfrak{m} \in \mathfrak{M}, \varepsilon \in \mathbb{R} \llbracket \mathfrak{M}\right]^{<1}$.

Exp-log derivations

Definition

Assume that exp is a partial exponential function on $\mathbb{R}[\mathfrak{M}]]$.
An exp-log derivation on $\mathbb{R}[\mathfrak{M}]$ is a derivation ∂ that satisfies
ED. $\partial \exp f=(\partial f) \exp f$, for all $f \in \operatorname{dom} \exp$.

Proposition

Let $\partial: \mathfrak{M} \rightarrow \mathbb{R} \llbracket \mathfrak{M} \rrbracket$ be a strong derivation with $\partial \log \mathfrak{m}=\mathfrak{m}^{\dagger}$ for all $\mathfrak{m} \in \mathfrak{M}$.
Then ∂ is a strong exp-log derivation on $\mathbb{R}[\mathfrak{M}]$.
Proof. Let $\left.f=c \mathfrak{m}(1+\varepsilon), c \in \mathbb{R}^{\neq 0}, \mathfrak{m} \in \mathfrak{M}, \varepsilon \in \mathbb{R} \llbracket \mathfrak{M}\right]^{<1}$.

$$
(\log (1+\varepsilon))^{\prime}=\left(\varepsilon-1 / 2 \varepsilon^{2}+1 / 3 \varepsilon^{3}+\cdots\right)^{\prime}=\varepsilon^{\prime}\left(1-\varepsilon+\varepsilon^{2}+\cdots\right)=(1+\varepsilon)^{\dagger} .
$$

Exp-log derivations

Definition

Assume that exp is a partial exponential function on $\mathbb{R}[\mathfrak{M}]]$.
An exp-log derivation on $\mathbb{R}[\mathfrak{M}]$ is a derivation ∂ that satisfies
ED. $\partial \exp f=(\partial f) \exp f$, for all $f \in \operatorname{dom} \exp$.

Proposition

Let $\partial: \mathfrak{M} \rightarrow \mathbb{R} \llbracket \mathfrak{M} \rrbracket$ be a strong derivation with $\partial \log \mathfrak{m}=\mathfrak{m}^{\dagger}$ for all $\mathfrak{m} \in \mathfrak{M}$.
Then ∂ is a strong exp-log derivation on $\mathbb{R}[\mathfrak{M}]$.
Proof. Let $f=c \mathfrak{m}(1+\varepsilon), c \in \mathbb{R}^{\neq 0}, \mathfrak{m} \in \mathfrak{M}, \varepsilon \in \mathbb{R}[\mathfrak{M}]^{<1}$.

$$
\begin{aligned}
(\log (1+\varepsilon))^{\prime} & =\left(\varepsilon-1 / 2 \varepsilon^{2}+1 / 3 \varepsilon^{3}+\cdots\right)^{\prime}=\varepsilon^{\prime}\left(1-\varepsilon+\varepsilon^{2}+\cdots\right)=(1+\varepsilon)^{\dagger} \\
(\log f)^{\prime} & =(\log c+\log \mathfrak{m}+\log (1+\varepsilon))^{\prime}=\mathfrak{m}^{\dagger}+(1+\varepsilon)^{\dagger}=f^{\dagger}
\end{aligned}
$$

Proposition

There exists a unique strong exp-log derivation on \mathbb{T} with $\partial x=1$.

Proposition
 There exists a unique strong exp-log derivation on \mathbb{T} with $\partial x=1$.

Proof. By induction on h, we show that there exists a unique such derivation on \mathbb{T}_{h}.

Proposition

There exists a unique strong exp-log derivation on \mathbb{T} with $\partial x=1$.
Proof. By induction on h, we show that there exists a unique such derivation on \mathbb{T}_{h}.
On \mathfrak{L}, we must have

$$
\partial\left(x^{\alpha_{0}} \cdots\left(\log _{r} x\right)^{\alpha_{r}}\right)=\left(\frac{\alpha_{0}}{x}+\frac{\alpha_{1}}{x \log x}+\cdots+\frac{\alpha_{r}}{x \log x \cdots \log _{r} x}\right) x^{\alpha_{0}} \cdots\left(\log _{r} x\right)^{\alpha_{r}} .
$$

Proposition

There exists a unique strong exp-log derivation on \mathbb{T} with $\partial x=1$.
Proof. By induction on h, we show that there exists a unique such derivation on \mathbb{T}_{h}.
On \mathfrak{L}, we must have

$$
\partial\left(x^{\alpha_{0}} \cdots\left(\log _{r} x\right)^{\alpha_{r}}\right)=\left(\frac{\alpha_{0}}{x}+\frac{\alpha_{1}}{x \log x}+\cdots+\frac{\alpha_{r}}{x \log x \cdots \log _{r} x}\right) x^{\alpha_{0}} \cdots\left(\log _{r} x\right)^{\alpha_{r}} .
$$

This map $\partial: \mathfrak{L} \rightarrow \mathbb{L}$ satisfies the conditions of the previous two propositions.

Proposition

There exists a unique strong exp-log derivation on \mathbb{T} with $\partial x=1$.
Proof. By induction on h, we show that there exists a unique such derivation on \mathbb{T}_{h}.
On \mathfrak{L}, we must have

$$
\partial\left(x^{\alpha_{0}} \cdots\left(\log _{r} x\right)^{\alpha_{r}}\right)=\left(\frac{\alpha_{0}}{x}+\frac{\alpha_{1}}{x \log x}+\cdots+\frac{\alpha_{r}}{x \log x \cdots \log _{r} x}\right) x^{\alpha_{0}} \cdots\left(\log _{r} x\right)^{\alpha_{r}} .
$$

This map $\partial: \mathfrak{L} \rightarrow \mathbb{L}$ satisfies the conditions of the previous two propositions.
Assume $\partial: \mathbb{T}_{h} \rightarrow \mathbb{T}_{h}$. On $\mathfrak{T}_{h+1}=\exp \mathbb{T}_{h,>}$, we must have $\partial \mathrm{e}^{\varphi}=(\partial \varphi) \mathrm{e}^{\varphi}$,

$$
\partial\left(e^{\varphi} \mathrm{e}^{\psi}\right)=\partial \mathrm{e}^{\varphi+\psi}=(\partial \varphi+\partial \psi) \mathrm{e}^{\varphi+\psi}=\left(\partial \mathrm{e}^{\varphi}\right) \mathrm{e}^{\psi}+\mathrm{e}^{\varphi}\left(\partial \mathrm{e}^{\psi}\right)
$$

Proposition

There exists a unique strong exp-log derivation on \mathbb{T} with $\partial x=1$.
Proof. By induction on h, we show that there exists a unique such derivation on \mathbb{T}_{h}.
On \mathfrak{L}, we must have

$$
\partial\left(x^{\alpha_{0}} \cdots\left(\log _{r} x\right)^{\alpha_{r}}\right)=\left(\frac{\alpha_{0}}{x}+\frac{\alpha_{1}}{x \log x}+\cdots+\frac{\alpha_{r}}{x \log x \cdots \log _{r} x}\right) x^{\alpha_{0}} \cdots\left(\log _{r} x\right)^{\alpha_{r}} .
$$

This map $\partial: \mathfrak{L} \rightarrow \mathbb{L}$ satisfies the conditions of the previous two propositions.
Assume $\partial: \mathbb{T}_{h} \rightarrow \mathbb{T}_{h}$. On $\mathfrak{T}_{h+1}=\exp \mathbb{T}_{h,>}$, we must have $\partial \mathrm{e}^{\varphi}=(\partial \varphi) \mathrm{e}^{\varphi}$,

$$
\partial\left(\mathrm{e}^{\varphi} \mathrm{e}^{\psi}\right)=\partial \mathrm{e}^{\varphi+\psi}=(\partial \varphi+\partial \psi) \mathrm{e}^{\varphi+\psi}=\left(\partial \mathrm{e}^{\varphi}\right) \mathrm{e}^{\psi}+\mathrm{e}^{\varphi}\left(\partial \mathrm{e}^{\psi}\right)
$$

This map $\partial: \mathfrak{T}_{h+1} \rightarrow \mathbb{T}_{h+1}$ satisfies the conditions of our two propositions.

Proposition

The derivation on \mathbb{T} is asymptotic and positive in the following sense:

$$
\begin{aligned}
& f<g \neq 1 \Longrightarrow f^{\prime}<g^{\prime} \\
& 0<f>1 \Longrightarrow f^{\prime}>0 .
\end{aligned}
$$

Asymptotic properties of the derivation

Proposition

The derivation on \mathbb{T} is asymptotic and positive in the following sense:

$$
\begin{aligned}
& f<g \neq 1 \Longrightarrow f^{\prime}<g^{\prime} \\
& 0<f>1 \Longrightarrow f^{\prime}>0 .
\end{aligned}
$$

Proof. Assume that $f, g \in \mathbb{R} \llbracket \mathfrak{b}_{1} ; \ldots ; \mathfrak{b}_{n} \rrbracket$ for transbasis $\mathfrak{B}=\left(\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n}\right)$.

Asymptotic properties of the derivation

Proposition

The derivation on \mathbb{T} is asymptotic and positive in the following sense:

$$
\begin{aligned}
& f<g \neq 1 \Longrightarrow f^{\prime}<g^{\prime} \\
& 0<f>1 \Longrightarrow f^{\prime}>0 .
\end{aligned}
$$

Proof. Assume that $f, g \in \mathbb{R} \llbracket \mathfrak{b}_{1} ; \ldots ; \mathfrak{b}_{n} \rrbracket$ for transbasis $\mathfrak{B}=\left(\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n}\right)$.
Proof this and $f>1 \Rightarrow f^{\prime}>\mathfrak{b}_{1}^{\dagger}$ by induction on n.

Asymptotic properties of the derivation

Proposition

The derivation on \mathbb{T} is asymptotic and positive in the following sense:

$$
\begin{aligned}
& f<g \neq 1 \Longrightarrow f^{\prime}<g^{\prime} \\
& 0<f>1 \Longrightarrow f^{\prime}>0 .
\end{aligned}
$$

Proof. Assume that $f, g \in \mathbb{R} \llbracket \mathfrak{b}_{1} ; \ldots ; \mathfrak{b}_{n} \rrbracket$ for transbasis $\mathfrak{B}=\left(\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n}\right)$.
Proof this and $f>1 \Rightarrow f^{\prime}>\mathfrak{b}_{1}^{\dagger}$ by induction on n.
Easy exercise if $n=1$.

Asymptotic properties of the derivation

Proposition

The derivation on \mathbb{T} is asymptotic and positive in the following sense:

$$
\begin{aligned}
& f<g \neq 1 \Longrightarrow f^{\prime}<g^{\prime} \\
& 0<f>1 \Longrightarrow f^{\prime}>0 .
\end{aligned}
$$

Proof. Assume that $f, g \in \mathbb{R} \llbracket \mathfrak{b}_{1} ; \ldots ; \mathfrak{b}_{n} \rrbracket$ for transbasis $\mathfrak{B}=\left(\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n}\right)$.
Proof this and $f>1 \Rightarrow f^{\prime}>\mathfrak{b}_{1}^{\dagger}$ by induction on n.
Assume $n>1$.

Asymptotic properties of the derivation

Proposition

The derivation on \mathbb{T} is asymptotic and positive in the following sense:

$$
\begin{aligned}
& f<g \neq 1 \Longrightarrow f^{\prime}<g^{\prime} \\
& 0<f>1 \Longrightarrow f^{\prime}>0 .
\end{aligned}
$$

Proof. Assume that $f, g \in \mathbb{R} \llbracket \mathfrak{b}_{1} ; \ldots ; \mathfrak{b}_{n} \rrbracket$ for transbasis $\mathfrak{B}=\left(\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n}\right)$.
Proof this and $f>1 \Rightarrow f^{\prime}>\mathfrak{b}_{1}^{\dagger}$ by induction on n.
Assume $n>1$.

$$
\mathfrak{b}_{1} \ll \mathfrak{b}_{2}<\cdots \ll \mathfrak{b}_{n}
$$

Asymptotic properties of the derivation

Proposition

The derivation on \mathbb{T} is asymptotic and positive in the following sense:

$$
\begin{aligned}
& f<g \neq 1 \Longrightarrow f^{\prime}<g^{\prime} \\
& 0<f>1 \Longrightarrow f^{\prime}>0 .
\end{aligned}
$$

Proof. Assume that $f, g \in \mathbb{R} \llbracket \mathfrak{b}_{1} ; \ldots ; \mathfrak{b}_{n} \rrbracket$ for transbasis $\mathfrak{B}=\left(\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n}\right)$.
Proof this and $f>1 \Rightarrow f^{\prime}>\mathfrak{b}_{1}^{\dagger}$ by induction on n.
Assume $n>1$.

$$
\begin{array}{lllll}
\mathfrak{b}_{1} & \ll \mathfrak{b}_{2} & \ll \cdots & \ll \mathfrak{b}_{n} \\
1 & \prec \log \mathfrak{b}_{2} & \prec \cdots & \prec \log \mathfrak{b}_{n}
\end{array}
$$

Proposition

The derivation on \mathbb{T} is asymptotic and positive in the following sense:

$$
\begin{aligned}
& f<g \neq 1 \Longrightarrow f^{\prime}<g^{\prime} \\
& 0<f>1 \Longrightarrow f^{\prime}>0 .
\end{aligned}
$$

Proof. Assume that $f, g \in \mathbb{R} \llbracket \mathfrak{b}_{1} ; \ldots ; \mathfrak{b}_{n} \rrbracket$ for transbasis $\mathfrak{B}=\left(\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n}\right)$.
Proof this and $f>1 \Rightarrow f^{\prime}>\mathfrak{b}_{1}^{\dagger}$ by induction on n.
Assume $n>1$.

$$
\begin{array}{lllll}
\mathfrak{b}_{1} & \ll \mathfrak{b}_{2} & \ll \cdots & \ll \mathfrak{b}_{n} \\
1 & \prec \log \mathfrak{b}_{2} & \prec \cdots & \prec \log \mathfrak{b}_{n} \\
\mathfrak{b}_{1}^{+} & \prec\left(\log \mathfrak{b}_{2}\right)^{\prime} & \prec \cdots & \prec\left(\log \mathfrak{b}_{n}\right)^{\prime}
\end{array}
$$

Proposition

The derivation on \mathbb{T} is asymptotic and positive in the following sense:

$$
\begin{aligned}
& f<g \neq 1 \Longrightarrow f^{\prime}<g^{\prime} \\
& 0<f>1 \Longrightarrow f^{\prime}>0 .
\end{aligned}
$$

Proof. Assume that $f, g \in \mathbb{R} \llbracket \mathfrak{b}_{1} ; \ldots ; \mathfrak{b}_{n} \rrbracket$ for transbasis $\mathfrak{B}=\left(\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n}\right)$.
Proof this and $f>1 \Rightarrow f^{\prime}>\mathfrak{b}_{1}^{\dagger}$ by induction on n.
Assume $n>1$.

$$
\begin{array}{rlll}
\mathfrak{b}_{1} & \ll \mathfrak{b}_{2} & \ll \cdots & \ll \mathfrak{b}_{n} \\
1 & \prec \log \mathfrak{b}_{2} & \prec \cdots & \prec \log \mathfrak{b}_{n} \\
\mathfrak{b}_{1}^{+} & \prec\left(\log \mathfrak{b}_{2}\right)^{\prime} & \prec \cdots & \prec\left(\log \mathfrak{b}_{n}\right)^{\prime} \\
\mathfrak{b}_{1}^{+} & \prec \mathfrak{b}_{2}^{+} & \prec \cdots & \prec \mathfrak{b}_{n}^{+}
\end{array}
$$

Asymptotic properties of the derivation

Proof. Assume that $f, g \in \mathbb{R} \llbracket \mathfrak{b}_{1} ; \ldots ; \mathfrak{b}_{n} \rrbracket$ for transbasis $\mathfrak{B}=\left(\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n}\right)$. To prove:

$$
\begin{aligned}
& f<g \neq 1 \Longrightarrow f^{\prime}<g^{\prime} \\
& 0<f>1 \Longrightarrow f^{\prime}>0 \\
& \quad f>1 \Longrightarrow f^{\prime}>\mathfrak{b}_{1}^{+} .
\end{aligned}
$$

Proof by induction on n. Assume that $n>1$.
We have $\mathfrak{b}_{1}^{\dagger} \prec \cdots<\mathfrak{b}_{n}^{\dagger}$.

Asymptotic properties of the derivation

Proof. Assume that $f, g \in \mathbb{R} \llbracket \mathfrak{b}_{1} ; \ldots ; \mathfrak{b}_{n} \rrbracket$ for transbasis $\mathfrak{B}=\left(\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n}\right)$. To prove:

$$
\begin{aligned}
& f<g \neq 1 \Longrightarrow f^{\prime}<g^{\prime} \\
& 0<f>1 \Longrightarrow f^{\prime}>0 \\
& \quad f>1 \Longrightarrow f^{\prime}>\mathfrak{b}_{1}^{+} .
\end{aligned}
$$

Proof by induction on n. Assume that $n>1$.
We have $\mathfrak{b}_{1}^{\dagger} \prec \cdots<\mathfrak{b}_{n}^{\dagger}$.
Let $\mathfrak{m}=\mathfrak{b}_{1}^{\alpha_{1}} \cdots \mathfrak{b}_{n}^{\alpha_{n}}<\mathfrak{b}_{1}^{\beta_{1}} \cdots \mathfrak{b}_{n}^{\beta_{n}}=\mathfrak{n} \neq 1$.

Asymptotic properties of the derivation

Proof. Assume that $f, g \in \mathbb{R} \llbracket \mathfrak{b}_{1} ; \ldots ; \mathfrak{b}_{n} \rrbracket$ for transbasis $\mathfrak{B}=\left(\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n}\right)$. To prove:

$$
\begin{aligned}
& f<g \neq 1 \Longrightarrow f^{\prime}<g^{\prime} \\
& 0<f>1 \Longrightarrow f^{\prime}>0 \\
& \quad f>1 \Longrightarrow f^{\prime}>\mathfrak{b}_{1}^{\dagger} .
\end{aligned}
$$

Proof by induction on n. Assume that $n>1$.
We have $\mathfrak{b}_{1}^{\dagger} \prec \cdots<\mathfrak{b}_{n}^{\dagger}$.
Let $\mathfrak{m}=\mathfrak{b}_{1}^{\alpha_{1}} \cdots \mathfrak{b}_{n}^{\alpha_{n}}<\mathfrak{b}_{1}^{\beta_{1}} \cdots \mathfrak{b}_{n}^{\beta_{n}}=\mathfrak{n} \neq 1$.

$$
\alpha_{n}=\beta_{n}=0 \Longrightarrow \mathfrak{m}^{\prime}<\mathfrak{n}^{\prime} \text { by induction hypothesis. }
$$

Asymptotic properties of the derivation

Proof. Assume that $f, g \in \mathbb{R} \llbracket \mathfrak{b}_{1} ; \ldots ; \mathfrak{b}_{n} \rrbracket$ for transbasis $\mathfrak{B}=\left(\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n}\right)$. To prove:

$$
\begin{aligned}
& f<g \neq 1 \Longrightarrow f^{\prime}<g^{\prime} \\
& 0<f>1 \Longrightarrow f^{\prime}>0 \\
& \quad f>1 \Longrightarrow f^{\prime}>\mathfrak{b}_{1}^{\dagger} .
\end{aligned}
$$

Proof by induction on n. Assume that $n>1$.
We have $\mathfrak{b}_{1}^{\dagger} \prec \cdots<\mathfrak{b}_{n}^{\dagger}$.
Let $\mathfrak{m}=\mathfrak{b}_{1}^{\alpha_{1}} \cdots \mathfrak{b}_{n}^{\alpha_{n}}<\mathfrak{b}_{1}^{\beta_{1}} \cdots \mathfrak{b}_{n}^{\beta_{n}}=\mathfrak{n} \neq 1$.

$$
\alpha_{n}=\beta_{n}=0 \Longrightarrow \mathfrak{m}^{\prime}<\mathfrak{n}^{\prime} \text { by induction hypothesis. }
$$

$$
\alpha_{n}=\beta_{n} \neq 0 \Longrightarrow \mathfrak{m}^{\prime} \simeq \mathfrak{m} \mathfrak{b}_{n}^{\dagger}<\mathfrak{n} \mathfrak{b}_{n}^{\dagger} \simeq \mathfrak{n}^{\prime} .
$$

Asymptotic properties of the derivation

Proof. Assume that $f, g \in \mathbb{R} \llbracket \mathfrak{b}_{1} ; \ldots ; \mathfrak{b}_{n} \rrbracket$ for transbasis $\mathfrak{B}=\left(\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n}\right)$. To prove:

$$
\begin{aligned}
& f<g \neq 1 \Longrightarrow f^{\prime}<g^{\prime} \\
& 0<f>1 \Longrightarrow f^{\prime}>0 \\
& \quad f>1 \Longrightarrow f^{\prime}>\mathfrak{b}_{1}^{+} .
\end{aligned}
$$

Proof by induction on n. Assume that $n>1$.
We have $\mathfrak{b}_{1}^{\dagger} \prec \cdots<\mathfrak{b}_{n}^{\dagger}$.
Let $\mathfrak{m}=\mathfrak{b}_{1}^{\alpha_{1}} \cdots \mathfrak{b}_{n}^{\alpha_{n}}<\mathfrak{b}_{1}^{\beta_{1}} \cdots \mathfrak{b}_{n}^{\beta_{n}}=\mathfrak{n} \neq 1$.

$$
\alpha_{n}=\beta_{n}=0 \Longrightarrow \mathfrak{m}^{\prime}<\mathfrak{n}^{\prime} \text { by induction hypothesis. }
$$

$$
\alpha_{n}=\beta_{n} \neq 0 \Longrightarrow \mathfrak{m}^{\prime} \asymp \mathfrak{m} \mathfrak{b}_{n}^{\dagger}<\mathfrak{n} \mathfrak{b}_{n}^{\dagger} \simeq \mathfrak{n}^{\prime} .
$$

$$
\alpha_{n}<\beta_{n} \Longrightarrow \mathfrak{m}^{\prime} \in \mathbb{R} \llbracket \mathfrak{b}_{1} ; \ldots ; \mathfrak{b}_{n-1} \rrbracket \mathfrak{b}_{n}^{\alpha_{n}}<\mathbb{R} \llbracket \mathfrak{b}_{1} ; \ldots ; \mathfrak{b}_{n-1} \rrbracket \mathfrak{b}_{n}^{\beta_{n}} \ni \mathfrak{n}^{\prime} .
$$

Asymptotic properties of the derivation

Proof. Assume that $f, g \in \mathbb{R} \llbracket \mathfrak{b}_{1} ; \ldots ; \mathfrak{b}_{n} \rrbracket$ for transbasis $\mathfrak{B}=\left(\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n}\right)$. To prove:

$$
\begin{aligned}
& f<g \neq 1 \Longrightarrow f^{\prime}<g^{\prime} \\
& 0<f>1 \Longrightarrow f^{\prime}>0 \\
& \quad f>1 \Longrightarrow f^{\prime}>\mathfrak{b}_{1}^{+} .
\end{aligned}
$$

Proof by induction on n. Assume that $n>1$.
We have $\mathfrak{b}_{1}^{\dagger} \prec \cdots<\mathfrak{b}_{n}^{\dagger}$.
Let $\mathfrak{m}=\mathfrak{b}_{1}^{\alpha_{1}} \cdots \mathfrak{b}_{n}^{\alpha_{n}}<\mathfrak{b}_{1}^{\beta_{1}} \cdots \mathfrak{b}_{n}^{\beta_{n}}=\mathfrak{n} \neq 1$.

$$
\alpha_{n}=\beta_{n}=0 \Longrightarrow \mathfrak{m}^{\prime}<\mathfrak{n}^{\prime} \text { by induction hypothesis. }
$$

$$
\alpha_{n}=\beta_{n} \neq 0 \Longrightarrow \mathfrak{m}^{\prime} \simeq \mathfrak{m} \mathfrak{b}_{n}^{\dagger}<\mathfrak{n} \mathfrak{b}_{n}^{\dagger} \simeq \mathfrak{n}^{\prime} .
$$

$$
\alpha_{n}<\beta_{n} \Longrightarrow \mathfrak{m}^{\prime} \in \mathbb{R} \llbracket \mathfrak{b}_{1} ; \ldots ; \mathfrak{b}_{n-1} \rrbracket \mathfrak{b}_{n}^{\alpha_{n}}<\mathbb{R} \llbracket \mathfrak{b}_{1} ; \ldots ; \mathfrak{b}_{n-1} \rrbracket \mathfrak{b}_{n}^{\beta_{n}} \ni \mathfrak{n}^{\prime} .
$$

Hence $\mathfrak{m}^{\prime}<\mathfrak{n}^{\prime}$ in all cases.

Asymptotic properties of the derivation

Proof. Assume that $f, g \in \mathbb{R} \llbracket \mathfrak{b}_{1} ; \ldots ; \mathfrak{b}_{n} \rrbracket$ for transbasis $\mathfrak{B}=\left(\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n}\right)$. To prove:

$$
\begin{aligned}
& f<g \neq 1 \Longrightarrow f^{\prime}<g^{\prime} \\
& 0<f>1 \Longrightarrow f^{\prime}>0 \\
& \quad f>1 \Longrightarrow f^{\prime}>\mathfrak{b}_{1}^{+} .
\end{aligned}
$$

Proof by induction on n. Assume that $n>1$.
We have $\mathfrak{b}_{1}^{\dagger} \prec \cdots<\mathfrak{b}_{n}^{\dagger}$.
If $\mathfrak{m}=\mathfrak{b}_{1}^{\alpha_{1}} \cdots \mathfrak{b}_{n}^{\alpha_{n}}<\mathfrak{b}_{1}^{\beta_{1}} \cdots \mathfrak{b}_{n}^{\beta_{n}}=\mathfrak{n}=1$, then $\mathfrak{m}^{\prime}<\mathfrak{n}^{\prime}$.

Asymptotic properties of the derivation

Proof. Assume that $f, g \in \mathbb{R} \llbracket \mathfrak{b}_{1} ; \ldots ; \mathfrak{b}_{n} \rrbracket$ for transbasis $\mathfrak{B}=\left(\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n}\right)$. To prove:

$$
\begin{aligned}
& f<g \neq 1 \Longrightarrow f^{\prime}<g^{\prime} \\
& 0<f>1 \Longrightarrow f^{\prime}>0 \\
& \quad f>1 \Longrightarrow f^{\prime}>\mathfrak{b}_{1}^{+} .
\end{aligned}
$$

Proof by induction on n. Assume that $n>1$.
We have $\mathfrak{b}_{1}^{\dagger} \prec \cdots<\mathfrak{b}_{n}^{\dagger}$.
If $\mathfrak{m}=\mathfrak{b}_{1}^{\alpha_{1}} \cdots \mathfrak{b}_{n}^{\alpha_{n}}<\mathfrak{b}_{1}^{\beta_{1}} \cdots \mathfrak{b}_{n}^{\beta_{n}}=\mathfrak{n}=1$, then $\mathfrak{m}^{\prime}<\mathfrak{n}^{\prime}$.
Assume $f<g \neq 1$.

Asymptotic properties of the derivation

Proof. Assume that $f, g \in \mathbb{R} \llbracket \mathfrak{b}_{1} ; \ldots ; \mathfrak{b}_{n} \rrbracket$ for transbasis $\mathfrak{B}=\left(\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n}\right)$. To prove:

$$
\begin{aligned}
& f<g \neq 1 \Longrightarrow f^{\prime}<g^{\prime} \\
& 0<f>1 \Longrightarrow f^{\prime}>0 \\
& \quad f>1 \Longrightarrow f^{\prime}>\mathfrak{b}_{1}^{+} .
\end{aligned}
$$

Proof by induction on n. Assume that $n>1$.
We have $\mathfrak{b}_{1}^{\dagger} \prec \cdots<\mathfrak{b}_{n}^{\dagger}$.
If $\mathfrak{m}=\mathfrak{b}_{1}^{\alpha_{1}} \cdots \mathfrak{b}_{n}^{\alpha_{n}}<\mathfrak{b}_{1}^{\beta_{1}} \cdots \mathfrak{b}_{n}^{\beta_{n}}=\mathfrak{n}=1$, then $\mathfrak{m}^{\prime}<\mathfrak{n}^{\prime}$.
Assume $f<g \neq 1$.
For all $\mathfrak{n} \in \operatorname{supp}\left(g-\tau_{g}\right)$, we have $\mathfrak{n}^{\prime}\left\langle\mathfrak{d}_{g}^{\prime}\right.$, whence $\left(g-\tau_{g}\right)^{\prime}<\mathfrak{d}_{g}^{\prime}$ and $g^{\prime} \sim \mathcal{c}_{g} \mathfrak{d}_{g}^{\prime}$.

Asymptotic properties of the derivation

Proof. Assume that $f, g \in \mathbb{R} \llbracket \mathfrak{b}_{1} ; \ldots ; \mathfrak{b}_{n} \rrbracket$ for transbasis $\mathfrak{B}=\left(\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n}\right)$. To prove:

$$
\begin{aligned}
& f<g \neq 1 \Longrightarrow f^{\prime}<g^{\prime} \\
& 0<f>1 \Longrightarrow f^{\prime}>0 \\
& \quad f>1 \Longrightarrow f^{\prime}>\mathfrak{b}_{1}^{+} .
\end{aligned}
$$

Proof by induction on n. Assume that $n>1$.
We have $\mathfrak{b}_{1}^{\dagger}<\cdots<\mathfrak{b}_{n}^{\dagger}$.
If $\mathfrak{m}=\mathfrak{b}_{1}^{\alpha_{1}} \cdots \mathfrak{b}_{n}^{\alpha_{n}}<\mathfrak{b}_{1}^{\beta_{1}} \cdots \mathfrak{b}_{n}^{\beta_{n}}=\mathfrak{n}=1$, then $\mathfrak{m}^{\prime}<\mathfrak{n}^{\prime}$.
Assume $f<g \neq 1$.
For all $\mathfrak{n} \in \operatorname{supp}\left(g-\tau_{g}\right)$, we have $\mathfrak{n}^{\prime}<\mathfrak{d}_{g}^{\prime}$, whence $\left(g-\tau_{g}\right)^{\prime}<\mathfrak{d}_{g}^{\prime}$ and $g^{\prime} \sim \mathcal{c}_{g} \mathfrak{d}_{g}^{\prime}$.
For all $\mathfrak{m} \in \operatorname{supp} f$, we have $\mathfrak{m}^{\prime}<\mathfrak{d}_{g}^{\prime}$, whence $f^{\prime}<\mathfrak{d}_{g}^{\prime} \asymp g^{\prime}$.

Asymptotic properties of the derivation

Proof. Assume that $f, g \in \mathbb{R} \llbracket \mathfrak{b}_{1} ; \ldots ; \mathfrak{b}_{n} \rrbracket$ for transbasis $\mathfrak{B}=\left(\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n}\right)$. To prove:

$$
\begin{aligned}
f<g \neq 1 & \Longrightarrow f^{\prime}<g^{\prime} \\
0<f>1 & \Longrightarrow f^{\prime}>0 \\
f>1 & \Rightarrow f^{\prime}>\mathfrak{b}_{1}^{+} .
\end{aligned}
$$

Proof by induction on n. Assume that $n>1$.
We have $\mathfrak{b}_{1}^{\dagger} \prec \cdots<\mathfrak{b}_{n}^{\dagger}$.
If $\mathfrak{m}=\mathfrak{b}_{1}^{\alpha_{1}} \cdots \mathfrak{b}_{n}^{\alpha_{n}}<\mathfrak{b}_{1}^{\beta_{1}} \cdots \mathfrak{b}_{n}^{\beta_{n}}=\mathfrak{n}=1$, then $\mathfrak{m}^{\prime}<\mathfrak{n}^{\prime}$.
Assume $f<g \neq 1$.
For all $\mathfrak{n} \in \operatorname{supp}\left(g-\tau_{g}\right)$, we have $\mathfrak{n}^{\prime}<\mathfrak{d}_{g}^{\prime}$, whence $\left(g-\tau_{g}\right)^{\prime}<\mathfrak{d}_{g}^{\prime}$ and $g^{\prime} \sim \mathcal{c}_{g} \mathfrak{d}_{g}^{\prime}$.
For all $\mathfrak{m} \in \operatorname{supp} f$, we have $\mathfrak{m}^{\prime}<\mathfrak{d}_{g}^{\prime}$, whence $f^{\prime}<\mathfrak{d}_{g}^{\prime} \asymp g^{\prime}$.
Hence $f^{\prime}\left\langle g^{\prime} \sim \mathcal{c}_{g} d_{g}^{\prime}\right.$.

Asymptotic properties of the derivation

Proof. Assume that $f, g \in \mathbb{R} \llbracket \mathfrak{b}_{1} ; \ldots ; \mathfrak{b}_{n} \rrbracket$ for transbasis $\mathfrak{B}=\left(\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n}\right)$. To prove:

$$
\begin{aligned}
& f<g \neq 1 \Longrightarrow f^{\prime}<g^{\prime} \\
& 0<f>1 \Longrightarrow f^{\prime}>0 \\
& \quad f>1 \Longrightarrow f^{\prime}>\mathfrak{b}_{1}^{\dagger} .
\end{aligned}
$$

Proof by induction on n. Assume that $n>1$.
We have $\mathfrak{b}_{1}^{\dagger} \prec \cdots<\mathfrak{b}_{n}^{\dagger}$.
If $\mathfrak{m}=\mathfrak{b}_{1}^{\alpha_{1}} \cdots \mathfrak{b}_{n}^{\alpha_{n}}<\mathfrak{b}_{1}^{\beta_{1}} \cdots \mathfrak{b}_{n}^{\beta_{n}}=\mathfrak{n}=1$, then $\mathfrak{m}^{\prime}<\mathfrak{n}^{\prime}$.

- If $f<g \neq 1$, then $f^{\prime}\left\langle g^{\prime} \sim \mathcal{C}_{g} \mathfrak{d}_{g}^{\prime}\right.$.

Asymptotic properties of the derivation

Proof. Assume that $f, g \in \mathbb{R} \llbracket \mathfrak{b}_{1} ; \ldots ; \mathfrak{b}_{n} \rrbracket$ for transbasis $\mathfrak{B}=\left(\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n}\right)$. To prove:

$$
\begin{aligned}
& f<g \neq 1 \Longrightarrow f^{\prime}<g^{\prime} \\
& 0<f>1 \Longrightarrow f^{\prime}>0 \\
& \quad f>1 \Longrightarrow f^{\prime}>\mathfrak{b}_{1}^{+} .
\end{aligned}
$$

Proof by induction on n. Assume that $n>1$.
We have $\mathfrak{b}_{1}^{\dagger} \prec \cdots<\mathfrak{b}_{n}^{\dagger}$.
If $\mathfrak{m}=\mathfrak{b}_{1}^{\alpha_{1}} \cdots \mathfrak{b}_{n}^{\alpha_{n}}<\mathfrak{b}_{1}^{\beta_{1}} \cdots \mathfrak{b}_{n}^{\beta_{n}}=\mathfrak{n}=1$, then $\mathfrak{m}^{\prime}<\mathfrak{n}^{\prime}$.

- If $f<g \neq 1$, then $f^{\prime}<g^{\prime} \sim \mathcal{c}_{g} \mathfrak{d}_{g}^{\prime}$.
- If $g>1$ and $g>0$, then $g^{\prime} \sim \mathcal{C}_{g} \mathfrak{J}_{g}\left(\log \mathfrak{J}_{g}\right)^{\prime}>0$, since $0<\log \mathfrak{J}_{g}>1$.

Asymptotic properties of the derivation

Proof. Assume that $f, g \in \mathbb{R} \llbracket \mathfrak{b}_{1} ; \ldots ; \mathfrak{b}_{n} \rrbracket$ for transbasis $\mathfrak{B}=\left(\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n}\right)$. To prove:

$$
\begin{aligned}
& f<g \neq 1 \Longrightarrow f^{\prime}<g^{\prime} \\
& 0<f>1 \Longrightarrow f^{\prime}>0 \\
& \quad f>1 \Longrightarrow f^{\prime}>\mathfrak{b}_{1}^{+} .
\end{aligned}
$$

Proof by induction on n. Assume that $n>1$.
We have $\mathfrak{b}_{1}^{\dagger} \prec \cdots<\mathfrak{b}_{n}^{\dagger}$.
If $\mathfrak{m}=\mathfrak{b}_{1}^{\alpha_{1}} \cdots \mathfrak{b}_{n}^{\alpha_{n}}<\mathfrak{b}_{1}^{\beta_{1}} \cdots \mathfrak{b}_{n}^{\beta_{n}}=\mathfrak{n}=1$, then $\mathfrak{m}^{\prime}<\mathfrak{n}^{\prime}$.

- If $f<g \neq 1$, then $f^{\prime}<g^{\prime} \sim \mathcal{c}_{g} \mathfrak{d}_{g}^{\prime}$.
- If $g>1$ and $g>0$, then $g^{\prime} \sim \mathcal{C}_{g} \mathfrak{J}_{g}\left(\log \mathfrak{J}_{g}\right)^{\prime}>0$, since $0<\log \mathfrak{J}_{g}>1$.
- If $g>1$, then $g^{\prime} \sim \mathcal{C}_{g} \mathfrak{d}_{g}\left(\log \mathfrak{d}_{g}\right)^{\prime}>\mathfrak{D}_{g} \mathfrak{b}_{1}^{\dagger}>\mathfrak{b}_{1}^{\dagger}$, since $\log \mathfrak{d}_{g}>1$.

Proof. Assume that $f, g \in \mathbb{R} \llbracket \mathfrak{b}_{1} ; \ldots ; \mathfrak{b}_{n} \rrbracket$ for transbasis $\mathfrak{B}=\left(\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n}\right)$. To prove:

$$
\begin{aligned}
& f<g \neq 1 \Longrightarrow f^{\prime}<g^{\prime} \\
& 0<f>1 \Longrightarrow f^{\prime}>0 \\
& \quad f>1 \Longrightarrow f^{\prime}>\mathfrak{b}_{1}^{+} .
\end{aligned}
$$

Proof by induction on n. Assume that $n>1$.
We have $\mathfrak{b}_{1}^{\dagger} \prec \cdots<\mathfrak{b}_{n}^{\dagger}$.
If $\mathfrak{m}=\mathfrak{b}_{1}^{\alpha_{1}} \cdots \mathfrak{b}_{n}^{\alpha_{n}}<\mathfrak{b}_{1}^{\beta_{1}} \cdots \mathfrak{b}_{n}^{\beta_{n}}=\mathfrak{n}=1$, then $\mathfrak{m}^{\prime}<\mathfrak{n}^{\prime}$.

- If $f<g \neq 1$, then $f^{\prime}<g^{\prime} \sim \mathcal{C}_{g} \mathfrak{d}_{g}^{\prime}$.
- If $g>1$ and $g>0$, then $g^{\prime} \sim \mathcal{C}_{g} \mathfrak{J}_{g}\left(\log \mathfrak{J}_{g}\right)^{\prime}>0$, since $0<\log \mathfrak{J}_{g}>1$.
- If $g>1$, then $g^{\prime} \sim \mathcal{c}_{g} \mathfrak{d}_{g}\left(\log \mathfrak{d}_{g}\right)^{\prime}>\mathfrak{D}_{g} \mathfrak{b}_{1}^{\dagger}>\mathfrak{b}_{1}^{\dagger}$, since $\log \mathfrak{d}_{g}>1$.

We conclude by induction.

Proposition

The derivation on \mathbb{T} is small in the sense that $\varepsilon<1 \Longrightarrow \varepsilon^{\prime}<1$ for all $\varepsilon \in \mathbb{T}$.

Proposition

The derivation on \mathbb{T} is small in the sense that $\varepsilon<1 \Longrightarrow \varepsilon^{\prime}<1$ for all $\varepsilon \in \mathbb{T}$.
Proof. If $\varepsilon \prec 1$, then $\varepsilon \prec \frac{1}{\log _{n} x}$ for some $n \in \mathbb{N}$, whence

$$
\varepsilon<\left(\frac{1}{\log _{n} x}\right)^{\prime}=\frac{-1}{x \log x \cdots \log _{n-1} x\left(\log _{n} x\right)^{2}}
$$

Proposition

The derivation on \mathbb{T} is small in the sense that $\varepsilon<1 \Longrightarrow \varepsilon^{\prime}<1$ for all $\varepsilon \in \mathbb{T}$.
Proof. If $\varepsilon<1$, then $\varepsilon \prec \frac{1}{\log _{n} x}$ for some $n \in \mathbb{N}$, whence

$$
\varepsilon<\left(\frac{1}{\log _{n} x}\right)^{\prime}=\frac{-1}{x \log x \cdots \log _{n-1} x\left(\log _{n} x\right)^{2}} .
$$

Proposition

If $y \in \mathbb{T}$, then $\left(y^{\prime}\right)^{2} \leqslant y$ or $\left(y^{\prime}\right)^{2} \leqslant y^{3}$.

Proposition

The derivation on \mathbb{T} is small in the sense that $\varepsilon<1 \Longrightarrow \varepsilon^{\prime}<1$ for all $\varepsilon \in \mathbb{T}$.
Proof. If $\varepsilon<1$, then $\varepsilon \prec \frac{1}{\log _{n} x}$ for some $n \in \mathbb{N}$, whence

$$
\varepsilon<\left(\frac{1}{\log _{n} x}\right)^{\prime}=\frac{-1}{x \log x \cdots \log _{n-1} x\left(\log _{n} x\right)^{2}}
$$

Proposition

If $y \in \mathbb{T}$, then $\left(y^{\prime}\right)^{2} \leqslant y$ or $\left(y^{\prime}\right)^{2} \leqslant y^{3}$.
Proof. If $y \preccurlyeq 1$, then $y<\left(y^{\prime}\right)^{2} \Rightarrow y^{\prime}<2 y^{\prime} y^{\prime \prime}<y^{\prime}$, since $y^{\prime}, y^{\prime \prime}<1$. Hence $\left(y^{\prime}\right)^{2} \preccurlyeq y$.

Proposition

The derivation on \mathbb{T} is small in the sense that $\varepsilon<1 \Longrightarrow \varepsilon^{\prime}<1$ for all $\varepsilon \in \mathbb{T}$.
Proof. If $\varepsilon<1$, then $\varepsilon \prec \frac{1}{\log _{n} x}$ for some $n \in \mathbb{N}$, whence

$$
\varepsilon<\left(\frac{1}{\log _{n} x}\right)^{\prime}=\frac{-1}{x \log x \cdots \log _{n-1} x\left(\log _{n} x\right)^{2}}
$$

Proposition

If $y \in \mathbb{T}$, then $\left(y^{\prime}\right)^{2} \leqslant y$ or $\left(y^{\prime}\right)^{2} \leqslant y^{3}$.
Proof. If $y \preccurlyeq 1$, then $y<\left(y^{\prime}\right)^{2} \Rightarrow y^{\prime}<2 y^{\prime} y^{\prime \prime}<y^{\prime}$, since $y^{\prime}, y^{\prime \prime}<1$. Hence $\left(y^{\prime}\right)^{2} \preccurlyeq y$. If $y \geqslant 1$, then $\left(y^{\prime}\right)^{2} / y^{4} \asymp\left((1 / y)^{\prime}\right)^{2} \leqslant 1 / y$, whence $\left(-y^{\prime}\right)^{2} \leqslant y^{3}$.

Proposition

The derivation on \mathbb{T} is small in the sense that $\varepsilon<1 \Longrightarrow \varepsilon^{\prime}<1$ for all $\varepsilon \in \mathbb{T}$.
Proof. If $\varepsilon \prec 1$, then $\varepsilon \prec \frac{1}{\log _{n} x}$ for some $n \in \mathbb{N}$, whence

$$
\varepsilon<\left(\frac{1}{\log _{n} x}\right)^{\prime}=\frac{-1}{x \log x \cdots \log _{n-1} x\left(\log _{n} x\right)^{2}}
$$

Proposition

If $y \in \mathbb{T}$, then $\left(y^{\prime}\right)^{2} \leqslant y$ or $\left(y^{\prime}\right)^{2} \leqslant y^{3}$.
Proof. If $y \preccurlyeq 1$, then $y<\left(y^{\prime}\right)^{2} \Rightarrow y^{\prime}<2 y^{\prime} y^{\prime \prime}<y^{\prime}$, since $y^{\prime}, y^{\prime \prime}<1$. Hence $\left(y^{\prime}\right)^{2} \leqslant y$. If $y \geqslant 1$, then $\left(y^{\prime}\right)^{2} / y^{4} \asymp\left((1 / y)^{\prime}\right)^{2} \preccurlyeq 1 / y$, whence $\left(-y^{\prime}\right)^{2} \preccurlyeq y^{3}$.

Corollary

Given $y \in \mathbb{T}$ and $r \in \mathbb{N}$, we have $y^{(r)} \leqslant y^{c}$ for some $c \in \mathbb{Q}^{>0}$.

Proposition

There exists a unique strong map $\int: \mathbb{T} \rightarrow \mathbb{T}$ with $\left(\int f\right)^{\prime}=f$ and $\left(\int f\right)_{1}=0$ for all $f \in \mathbb{T}$. We call it the distinguished integration on \mathbb{T}.

Proposition

There exists a unique strong map $\int: \mathbb{T} \rightarrow \mathbb{T}$ with $\left(\int f\right)^{\prime}=f$ and $\left(\int f\right)_{1}=0$ for all $f \in \mathbb{T}$. We call it the distinguished integration on \mathbb{T}.

Proof. In Lesson 6, we will solve more general linear differential equations.

Integration

Proposition

There exists a unique strong map $\int: \mathbb{T} \rightarrow \mathbb{T}$ with $\left(\int f\right)^{\prime}=f$ and $\left(\int f\right)_{1}=0$ for all $f \in \mathbb{T}$. We call it the distinguished integration on \mathbb{T}.

Proof. In Lesson 6, we will solve more general linear differential equations.

Corollary

The differential field \mathbb{T} is Liouville closed.

Proposition

There exists a unique strong map $\int: \mathbb{T} \rightarrow \mathbb{T}$ with $\left(\int f\right)^{\prime}=f$ and $\left(\int f\right)_{1}=0$ for all $f \in \mathbb{T}$. We call it the distinguished integration on \mathbb{T}.

Proof. In Lesson 6, we will solve more general linear differential equations.

Corollary

The differential field \mathbb{T} is Liouville closed.
Note. The following transseries cannot be integrated in any well-based \mathbb{T}_{α} :

$$
\gamma:=\frac{1}{x \log x \log _{2} x+\cdots}=\mathrm{e}^{-\log x-\log _{2} x-\log _{3} x-\cdots}
$$

Proposition

There exists a unique strong map $\int: \mathbb{T} \rightarrow \mathbb{T}$ with $\left(\int f\right)^{\prime}=f$ and $\left(\int f\right)_{1}=0$ for all $f \in \mathbb{T}$. We call it the distinguished integration on \mathbb{T}.

Proof. In Lesson 6, we will solve more general linear differential equations.

Corollary

The differential field \mathbb{T} is Liouville closed.
Note. The following transseries cannot be integrated in any well-based \mathbb{T}_{a} :

$$
\gamma:=\frac{1}{x \log x \log _{2} x+\cdots}=\mathrm{e}^{-\log x-\log _{2} x-\log _{3} x-\cdots} .
$$

The field of well-based transseries of finite logarithmic depth is Liouville closed.

Strong difference operator

$\mathfrak{M}, \mathfrak{N} \longrightarrow$ totally ordered monomial groups (usually $\mathfrak{M}=\mathfrak{N}$ or $\mathfrak{M} \subseteq \mathfrak{N}$).
$\mathfrak{M}, \mathfrak{N} \longrightarrow$ totally ordered monomial groups (usually $\mathfrak{M}=\mathfrak{N}$ or $\mathfrak{M} \subseteq \mathfrak{N}$).

Definition

A strong difference operator is a map $\sigma: \mathbb{R}[\mathfrak{M}] \rightarrow \mathbb{R}[\mathfrak{N}]$ such that
11. $\sigma c=c$ for all $c \in \mathbb{R}$.
42. $\sigma(f g)=(\sigma f)(\sigma g)$ for all $f, g \in \mathbb{R}[\llbracket \mathfrak{M}]$.
43. σ is strongly \mathbb{R}-linear.

Strong difference operator

$\mathfrak{M}, \mathfrak{N} \longrightarrow$ totally ordered monomial groups (usually $\mathfrak{M}=\mathfrak{N}$ or $\mathfrak{M} \subseteq \mathfrak{N}$).

Definition

A strong difference operator is a map $\sigma: \mathbb{R} \llbracket \mathfrak{M} \rrbracket \rightarrow \mathbb{R} \llbracket \mathfrak{N} \rrbracket$ such that
11. $\sigma c=c$ for all $c \in \mathbb{R}$.
42. $\sigma(f g)=(\sigma f)(\sigma g)$ for all $f, g \in \mathbb{R} \llbracket \mathfrak{M}]$.
43. σ is strongly \mathbb{R}-linear.

Proposition

Let $\sigma: \mathfrak{M} \rightarrow \mathbb{R} \llbracket \mathfrak{N} \rrbracket$ be a multiplicative and strictly increasing mapping. Then σ is a gridbased mapping that extends uniquely into a strong difference operator on $\mathbb{R} \llbracket \mathfrak{M} \rrbracket$.

Strong difference operator

$\mathfrak{M}, \mathfrak{N} \longrightarrow$ totally ordered monomial groups (usually $\mathfrak{M}=\mathfrak{N}$ or $\mathfrak{M} \subseteq \mathfrak{N}$).

Definition

A strong difference operator is a map $\sigma: \mathbb{R} \llbracket \mathfrak{M}] \rightarrow \mathbb{R} \llbracket \mathfrak{N}]$ such that
11. $\sigma c=c$ for all $c \in \mathbb{R}$.
42. $\sigma(f g)=(\sigma f)(\sigma g)$ for all $f, g \in \mathbb{R}[\llbracket \mathfrak{M}]$.
43. σ is strongly \mathbb{R}-linear.

Proposition

Let $\sigma: \mathfrak{M} \rightarrow \mathbb{R} \llbracket \mathfrak{N}]$ be a multiplicative and strictly increasing mapping. Then σ is a gridbased mapping that extends uniquely into a strong difference operator on $\mathbb{R}[\mathfrak{M}]]$.
Proof. If $\mathfrak{S} \subseteq\left\{\mathfrak{e}_{1}, \ldots, \mathfrak{e}_{k}\right\}^{*} \mathfrak{f}$, then $(\sigma \mathfrak{m})_{\mathfrak{m} \in \mathfrak{S}}$ is grid-based: exercise of termification and Higman's theorem.

Strong difference operator

$\mathfrak{M}, \mathfrak{N} \longrightarrow$ totally ordered monomial groups (usually $\mathfrak{M}=\mathfrak{N}$ or $\mathfrak{M} \subseteq \mathfrak{N}$).

Definition

A strong difference operator is a map $\sigma: \mathbb{R} \llbracket \mathfrak{M} \rrbracket \rightarrow \mathbb{R} \llbracket \mathfrak{N} \rrbracket$ such that
$\Delta 1 . \sigma c=c$ for all $c \in \mathbb{R}$.
42. $\sigma(f g)=(\sigma f)(\sigma g)$ for all $f, g \in \mathbb{R} \llbracket \mathfrak{M}]$.
43. σ is strongly \mathbb{R}-linear.

Proposition

Let $\sigma: \mathfrak{M} \rightarrow \mathbb{R} \llbracket \mathfrak{N} \rrbracket$ be a multiplicative and strictly increasing mapping. Then σ is a gridbased mapping that extends uniquely into a strong difference operator on $\mathbb{R} \llbracket \mathfrak{M} \rrbracket$.
Proof. If $\mathfrak{S} \subseteq\left\{\mathfrak{e}_{1}, \ldots, \mathfrak{e}_{k}\right\}^{*} \mathfrak{f}$, then $(\sigma \mathfrak{m})_{\mathfrak{m} \in \mathfrak{S}}$ is grid-based: exercise of termification and Higman's theorem.
Remainder shown at the end of Lesson 3.

Definition

Assume that we have partial exponential functions on $\mathbb{R}[\mathfrak{M}]$ and $\mathbb{R} \llbracket \mathfrak{N}]$.
An exp-log difference operator is a difference operator $\sigma: \mathbb{R} \llbracket \mathfrak{M} \rrbracket \rightarrow \mathbb{R} \llbracket \mathfrak{N} \rrbracket$ that satisfies Eム. $\sigma \exp f=\exp \sigma f$, for all $f \in \operatorname{dom} \exp$.

Definition

Assume that we have partial exponential functions on $\mathbb{R}[\mathfrak{M}]]$ and $\mathbb{R} \llbracket \mathfrak{N}]$.
An exp-log difference operator is a difference operator $\sigma: \mathbb{R} \llbracket \mathfrak{M}] \rightarrow \mathbb{R} \llbracket \mathfrak{N}]$ that satisfies
Eム. $\sigma \exp f=\exp \sigma f$, for all $f \in \operatorname{dom} \exp$.

Proposition

Let $\sigma: \mathfrak{M} \rightarrow \mathbb{R} \llbracket \mathfrak{N} \rrbracket$ be a strong difference operator with $\sigma \log \mathfrak{m}=\log \sigma \mathfrak{m}$ for all $\mathfrak{m} \in \mathfrak{M}$. Then σ is a strong exp-log difference operator on $\mathbb{R} \llbracket \mathfrak{N}]$.

Definition

Assume that we have partial exponential functions on $\mathbb{R}[\mathfrak{M}]]$ and $\mathbb{R} \llbracket \mathfrak{N}]$.
An exp-log difference operator is a difference operator $\sigma: \mathbb{R}[\mathfrak{M}] \rightarrow \mathbb{R}[\mathfrak{N}]$ that satisfies
Eム. $\sigma \exp f=\exp \sigma f$, for all $f \in \operatorname{dom} \exp$.

Proposition

Let $\sigma: \mathfrak{M} \rightarrow \mathbb{R} \llbracket \mathfrak{N} \rrbracket$ be a strong difference operator with $\sigma \log \mathfrak{m}=\log \sigma \mathfrak{m}$ for all $\mathfrak{m} \in \mathfrak{M}$. Then σ is a strong exp-log difference operator on $\mathbb{R} \llbracket \mathfrak{N}]$.

Proof. Let $\left.f=c \mathfrak{m}(1+\varepsilon), c \in \mathbb{R}^{\neq 0}, \mathfrak{m} \in \mathfrak{M}, \varepsilon \in \mathbb{R} \llbracket \mathfrak{M}\right]^{<1}$.

Definition

Assume that we have partial exponential functions on $\mathbb{R}[\mathfrak{M}]$ and $\mathbb{R} \llbracket \mathfrak{N}]$.
An exp-log difference operator is a difference operator $\sigma: \mathbb{R}[\mathfrak{M}] \rightarrow \mathbb{R}[\mathfrak{N}]$ that satisfies
Eム. $\sigma \exp f=\exp \sigma f$, for all $f \in \operatorname{dom} \exp$.

Proposition

Let $\sigma: \mathfrak{M} \rightarrow \mathbb{R} \llbracket \mathfrak{N} \rrbracket$ be a strong difference operator with $\sigma \log \mathfrak{m}=\log \sigma \mathfrak{m}$ for all $\mathfrak{m} \in \mathfrak{M}$. Then σ is a strong exp-log difference operator on $\mathbb{R} \llbracket \mathfrak{N}]$.

Proof. Let $\left.f=c \mathfrak{m}(1+\varepsilon), c \in \mathbb{R}^{\neq 0}, \mathfrak{m} \in \mathfrak{M}, \varepsilon \in \mathbb{R} \llbracket \mathfrak{M}\right]^{<1}$.
$\sigma \log (1+\varepsilon)=\sigma\left(\varepsilon-1 / 2 \varepsilon^{2}+1 / 3 \varepsilon^{3}+\cdots\right)=\sigma \varepsilon-1 / 2(\sigma \varepsilon)^{2}+1 / 3(\sigma \varepsilon)^{3}+\cdots=\log (1+\sigma \varepsilon)$

Definition

Assume that we have partial exponential functions on $\mathbb{R}[\mathfrak{M}]$ and $\mathbb{R} \llbracket \mathfrak{N}]$.
An exp-log difference operator is a difference operator $\sigma: \mathbb{R}[\mathfrak{M}] \rightarrow \mathbb{R}[\mathfrak{N}]$ that satisfies
Eム. $\sigma \exp f=\exp \sigma f$, for all $f \in \operatorname{dom} \exp$.

Proposition

Let $\sigma: \mathfrak{M} \rightarrow \mathbb{R} \llbracket \mathfrak{N} \rrbracket$ be a strong difference operator with $\sigma \log \mathfrak{m}=\log \sigma \mathfrak{m}$ for all $\mathfrak{m} \in \mathfrak{M}$. Then σ is a strong exp-log difference operator on $\mathbb{R} \llbracket \mathfrak{N}]$.

$$
\begin{aligned}
\text { Proof. Let } f & \left.=c \mathfrak{m}(1+\varepsilon), c \in \mathbb{R}^{\neq 0}, \mathfrak{m} \in \mathfrak{M}, \varepsilon \in \mathbb{R} \llbracket \mathfrak{M}\right]^{<1} \\
\sigma \log (1+\varepsilon) & =\sigma\left(\varepsilon-1 / 2 \varepsilon^{2}+1 / 3 \varepsilon^{3}+\cdots\right)=\sigma \varepsilon-1 / 2(\sigma \varepsilon)^{2}+1 / 3(\sigma \varepsilon)^{3}+\cdots=\log (1+\sigma \varepsilon) \\
\sigma \log f & =\sigma(\log c+\log \mathfrak{m}+\log (1+\varepsilon))=\log c+\log \sigma \mathfrak{m}+\log (1+\sigma \varepsilon)=\log \sigma f .
\end{aligned}
$$

Asymptotic and positive difference operators

Definition

We say that a difference operator $\sigma: \mathbb{R} \llbracket \mathfrak{M} \rrbracket \rightarrow \mathbb{R} \llbracket \mathfrak{N} \rrbracket$ is asymptotic resp. positive if

$$
\begin{aligned}
& f<1 \Longrightarrow \sigma f \prec 1 \\
& f>0 \Longrightarrow \sigma f>0 .
\end{aligned}
$$

Asymptotic and positive difference operators

Definition

We say that a difference operator $\sigma: \mathbb{R}[\mathfrak{M}] \rightarrow \mathbb{R} \llbracket \mathfrak{N}]$ is asymptotic resp. positive if

$$
\begin{aligned}
& f<1 \Longrightarrow \sigma f \prec 1 \\
& f>0 \Longrightarrow \sigma f>0 .
\end{aligned}
$$

Proposition

Let $\sigma: \mathfrak{M} \rightarrow \mathbb{R} \llbracket \mathfrak{N}]$ be a strong difference operator with $0<\sigma \mathfrak{m}>1$ for all $\mathfrak{m} \in \mathfrak{M}^{>1}$. Then σ is asymptotic and positive.

Asymptotic and positive difference operators

Definition

We say that a difference operator $\sigma: \mathbb{R}[\mathfrak{M}] \rightarrow \mathbb{R}[\mathfrak{N}]$ is asymptotic resp. positive if

$$
\begin{aligned}
& f<1 \Longrightarrow \sigma f \prec 1 \\
& f>0 \Longrightarrow \sigma f>0 .
\end{aligned}
$$

Proposition

Let $\sigma: \mathfrak{M} \rightarrow \mathbb{R} \llbracket \mathfrak{N}]$ be a strong difference operator with $0<\sigma \mathfrak{m}>1$ for all $\mathfrak{m} \in \mathfrak{M}^{>1}$. Then σ is asymptotic and positive.

Proof. If $f<1$, then $\sigma \mathfrak{m}<1$ for all $\mathfrak{m} \in \operatorname{supp} f$, whence $\sigma f<1$.

Asymptotic and positive difference operators

Definition

We say that a difference operator $\sigma: \mathbb{R}[\mathfrak{M}] \rightarrow \mathbb{R} \llbracket \mathfrak{N}]$ is asymptotic resp. positive if

$$
\begin{aligned}
& f<1 \Longrightarrow \sigma f \prec 1 \\
& f>0 \Longrightarrow \sigma f>0 .
\end{aligned}
$$

Proposition

Let $\sigma: \mathfrak{M} \rightarrow \mathbb{R} \llbracket \mathfrak{N}]$ be a strong difference operator with $0<\sigma \mathfrak{m}>1$ for all $\mathfrak{m} \in \mathfrak{M}^{>1}$. Then σ is asymptotic and positive.

Proof. If $f<1$, then $\sigma \mathfrak{m}<1$ for all $\mathfrak{m} \in \operatorname{supp} f$, whence $\sigma f<1$. It follows also that $f<g \Rightarrow f / g<1 \Rightarrow \sigma(f / g)<1 \Rightarrow(\sigma f) /(\sigma g)<1 \Rightarrow \sigma f<\sigma g$.

Asymptotic and positive difference operators

Definition

We say that a difference operator $\sigma: \mathbb{R}[\mathfrak{M}] \rightarrow \mathbb{R} \llbracket \mathfrak{N}]$ is asymptotic resp. positive if

$$
\begin{aligned}
& f<1 \Longrightarrow \sigma f<1 \\
& f>0 \Longrightarrow \sigma f>0
\end{aligned}
$$

Proposition

Let $\sigma: \mathfrak{M} \rightarrow \mathbb{R} \llbracket \mathfrak{N}]$ be a strong difference operator with $0<\sigma \mathfrak{m}>1$ for all $\mathfrak{m} \in \mathfrak{M}^{>1}$. Then σ is asymptotic and positive.

Proof. If $f<1$, then $\sigma \mathfrak{m}<1$ for all $\mathfrak{m} \in \operatorname{supp} f$, whence $\sigma f<1$. It follows also that $f<g \Rightarrow f / g<1 \Rightarrow \sigma(f / g)<1 \Rightarrow(\sigma f) /(\sigma g)<1 \Rightarrow \sigma f<\sigma g$. If $f>0$, then $f-\tau_{f} \prec f$ implies $\sigma f-\sigma \tau_{f} \prec \sigma f$, whence $\tau_{\sigma f} \sim \sigma \tau_{f}$.

Definition

We say that a difference operator $\sigma: \mathbb{R} \llbracket \mathfrak{M}] \rightarrow \mathbb{R} \llbracket \mathfrak{N} \rrbracket$ is asymptotic resp. positive if

$$
\begin{aligned}
& f<1 \Longrightarrow \sigma f<1 \\
& f>0 \Longrightarrow \sigma f>0
\end{aligned}
$$

Proposition

Let $\sigma: \mathfrak{M} \rightarrow \mathbb{R} \llbracket \mathfrak{N} \rrbracket$ be a strong difference operator with $0<\sigma \mathfrak{m}>1$ for all $\mathfrak{m} \in \mathfrak{M}^{>1}$. Then σ is asymptotic and positive.

Proof. If $f<1$, then $\sigma \mathfrak{m}<1$ for all $\mathfrak{m} \in \operatorname{supp} f$, whence $\sigma f<1$. It follows also that $f<g \Rightarrow f / g<1 \Rightarrow \sigma(f / g)<1 \Rightarrow(\sigma f) /(\sigma g)<1 \Rightarrow \sigma f<\sigma g$. If $f>0$, then $f-\tau_{f} \prec f$ implies $\sigma f-\sigma \tau_{f} \prec \sigma f$, whence $\tau_{\sigma f} \sim \sigma \tau_{f}$. Now $\sigma \tau_{f}=\sigma\left(c_{f} \mathfrak{d}_{f}\right)=\left(\sigma c_{f}\right)\left(\sigma \mathfrak{d}_{f}\right)=c_{f} \sigma \mathfrak{d}_{f}>0$.

Proposition

Given $g \in \mathbb{T}^{>\mathbb{R}}=\mathbb{R}^{>1,>0}$, there exists a unique strong exp-log difference operator σ on \mathbb{T} with $\sigma x=g$. This operator is asymptotic and positive. For $f \in \mathbb{T}$, we define $f \circ g:=\sigma f$.

Proposition

Given $g \in \mathbb{T}^{>\mathbb{R}}=\mathbb{R}^{>1,>0}$, there exists a unique strong exp-log difference operator σ on \mathbb{T} with $\sigma x=g$. This operator is asymptotic and positive. For $f \in \mathbb{T}$, we define $f \circ g:=\sigma f$.

Proof. By induction on h, we show that there exists a unique such σ on \mathbb{T}_{h}.

Proposition

Given $g \in \mathbb{T}^{>\mathbb{R}}=\mathbb{R}^{>1,>0}$, there exists a unique strong exp-log difference operator σ on \mathbb{T} with $\sigma x=g$. This operator is asymptotic and positive. For $f \in \mathbb{T}$, we define $f \circ g:=\sigma f$.

Proof. By induction on h, we show that there exists a unique such σ on \mathbb{T}_{h}. On \mathbb{L}, we must have

$$
\sigma\left(x^{\alpha_{0}} \cdots\left(\log _{r} x\right)^{\alpha_{r}}\right)=g^{\alpha_{0}} \cdots\left(\log _{r} g\right)^{\alpha_{r}} .
$$

This map $\sigma: \mathfrak{L} \rightarrow \mathbb{T}$ satisfies the conditions of the previous three propositions.

Proposition

Given $g \in \mathbb{T}^{>\mathbb{R}}=\mathbb{R}^{>1,>0}$, there exists a unique strong exp-log difference operator σ on \mathbb{T} with $\sigma x=g$. This operator is asymptotic and positive. For $f \in \mathbb{T}$, we define $f \circ g:=\sigma f$.

Proof. By induction on h, we show that there exists a unique such σ on \mathbb{T}_{h}.
On \mathbb{L}, we must have

$$
\sigma\left(x^{\alpha_{0}} \cdots\left(\log _{r} x\right)^{\alpha_{r}}\right)=g^{\alpha_{0}} \cdots\left(\log _{r} g\right)^{\alpha_{r}} .
$$

This map $\sigma: \mathfrak{L} \rightarrow \mathbb{T}$ satisfies the conditions of the previous three propositions.
Assume σ : $\mathbb{T}_{h} \rightarrow \mathbb{T}$. On $\mathfrak{T}_{h+1}=\exp \mathbb{T}_{h,>}$, we must have

$$
\sigma\left(\mathrm{e}^{\varphi} \mathrm{e}^{\psi}\right)=\sigma \mathrm{e}^{\varphi+\psi}=\mathrm{e}^{\sigma(\varphi+\psi)}=\mathrm{e}^{\sigma \varphi+\sigma \psi}=\mathrm{e}^{\sigma \varphi} \mathrm{e}^{\sigma \psi}
$$

This map $\partial: \mathfrak{T}_{h+1} \rightarrow \mathbb{T}$ satisfies the conditions of our two propositions.

Proposition

For all $f \in \mathbb{T}$ and $g, h \in \mathbb{T}^{>\mathbb{R}}$, we have

$$
\begin{aligned}
f \circ(g \circ h) & =(f \circ g) \circ h \\
(f \circ g)^{\prime} & =g^{\prime}(f \circ g) .
\end{aligned}
$$

Properties of composition

Proposition

For all $f \in \mathbb{T}$ and $g, h \in \mathbb{T}^{>\mathbb{R}}$, we have

$$
\begin{aligned}
f \circ(g \circ h) & =(f \circ g) \circ h \\
(f \circ g)^{\prime} & =g^{\prime}(f \circ g) .
\end{aligned}
$$

Proposition

If $f, \delta \in \mathbb{T}$ are such that $\delta<x$ and $\mathfrak{m}^{+} \delta<1$ for all $\mathfrak{m} \in \operatorname{supp} f$, then

$$
f \circ(x+\delta)=f+f^{\prime} \delta+\frac{1}{2} f^{\prime \prime} \delta^{2}+\cdots
$$

Properties of composition

Proposition

For all $f \in \mathbb{T}$ and $g, h \in \mathbb{T}^{>\mathbb{R}}$, we have

$$
\begin{aligned}
f \circ(g \circ h) & =(f \circ g) \circ h \\
(f \circ g)^{\prime} & =g^{\prime}(f \circ g) .
\end{aligned}
$$

Proposition

If $f, \delta \in \mathbb{T}$ are such that $\delta<x$ and $\mathfrak{m}^{\dagger} \delta<1$ for all $\mathfrak{m} \in \operatorname{supp} f$, then

$$
f \circ(x+\delta)=f+f^{\prime} \delta+\frac{1}{2} f^{\prime \prime} \delta^{2}+\cdots
$$

Proposition

For any $g \in \mathbb{T}^{>\mathbb{R}}$, there exists a unique $g^{\mathrm{inv}} \in \mathbb{T}^{>\mathbb{R}}$ with $g^{\mathrm{inv}} \circ g=x$.

Properties of composition

Proposition

For all $f \in \mathbb{T}$ and $g, h \in \mathbb{T}^{>\mathbb{R}}$, we have

$$
\begin{aligned}
f \circ(g \circ h) & =(f \circ g) \circ h \\
(f \circ g)^{\prime} & =g^{\prime}(f \circ g) .
\end{aligned}
$$

Proposition

If $f, \delta \in \mathbb{T}$ are such that $\delta<x$ and $\mathfrak{m}^{\dagger} \delta<1$ for all $\mathfrak{m} \in \operatorname{supp} f$, then

$$
f \circ(x+\delta)=f+f^{\prime} \delta+\frac{1}{2} f^{\prime \prime} \delta^{2}+\cdots
$$

Proposition

For any $g \in \mathbb{T}^{>\mathbb{R}}$, there exists a unique $g^{\text {inv }} \in \mathbb{T}^{>\mathbb{R}}$ with $g^{\text {inv }} \circ g=x$.

Proofs. See LNM 1888.

