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ExpExpExp---logloglog fieldsfieldsfields 222///292929

Consider an ordered field K with a partial function exp:K→K such that
EEE111... exp 0=1.
EEE222... exp y=exp (y−x)exp x for all x,y∈dom exp.

EEE333... exp x⩾1+x+ ⋅ ⋅ ⋅ + 1
(n−1)! x

n−1 for all x∈dom x and n∈N.
We call exp an exponentialexponentialexponential functionfunctionfunction. Such a function is necessarily injective and its
partial inverse is called a logarithmiclogarithmiclogarithmic functionfunctionfunction.
If dom exp=K and im exp=K>0, then K is called an expexpexp---logloglog field.

DefinitionDefinitionDefinitionDefinitionDefinition
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R is an exp-log field.
PropositionPropositionPropositionPropositionProposition
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R real numbers, but could be any exp-log field
x formal indeterminate with x≻1
logk x formal iterated logarithm (log∘ . . .k× ∘ log)(x)
𝔏 formal group of logarithmic monomials of the form

𝔩 = x𝛼0 (log x)𝛼1 ⋅ ⋅ ⋅ (logr x)𝛼r, 𝛼0, . . . , 𝛼r∈R,
with 𝔩≻1 iff l≠1 and 𝛼i>0, where i is minimal with 𝛼i=0

L the field R[[𝔏]]𝒮 for some support type 𝒮
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PartialPartialPartial logarithmiclogarithmiclogarithmic functionfunctionfunction... Let f ∈L>0. Then
f = 𝔡f cf (1+𝛿),

𝔡f=x𝛼0 ⋅ ⋅ ⋅ (logr x)𝛼r, cf∈R>, 𝛿∈𝕃≺1

log f ≔ 𝛼0 log x+ ⋅ ⋅ ⋅ +𝛼r logr+1 x+log cf+log (1+z)∘𝛿.
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R real numbers, but could be any exp-log field
𝔗 totally ordered monomial group
𝕋 the field R[[𝔗]]𝒮
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R real numbers, but could be any exp-log field
𝔗 totally ordered monomial group
𝕋 the field R[[𝔗]]𝒮

Consider a logarithmic function log:T>0→T extending the one on R>0, such that
TTT111... dom log=T>0.
TTT222... log 𝔪∈T≻≔{ f ∈T : supp f ≻1} for all 𝔪∈𝔗.
TTT333... log (1+𝜀)=log (1+z)∘𝜀 for all 𝜀∈T≺1.
Then we say that 𝕋=R[[𝔗]]𝒮 is a fieldfieldfield ofofof 풮풮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮---basedbasedbased transseriestransseriestransseries.

DefinitionDefinitionDefinitionDefinitionDefinition
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Given a field of transseries T=R[[𝔗]]𝒮, consider:
𝔗exp ≔ expT≻

e𝜑≼e𝜓 ⇔ 𝜑⩽𝜓
Texp ≔ R[[𝔗exp]]𝒮
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Note that 𝔗exp⊇𝔗=exp log 𝔗, since log 𝔗⊆T≻.
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e𝜑�
𝔗exp

c�
R>0

(1+ 𝛿�
Texp

≺1

) ↦ 𝜑�
T≻

+log c�
R

+log (1+z)∘𝛿||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
Texp

≺1

.
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≺1

.

The exponential extension Texp of T is again a field of transseries.
PropositionPropositionPropositionPropositionProposition
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x log x ∈ 𝔏
xx = exlogx ∈ 𝔏exp

x𝛼exxx = exlogx−x+𝛼logx ∈ 𝔏exp

Γ(x) = 2π� exlogx−x+ 1
2 logx+ 2π�

12 exlogx−x− 1
2 logx+ 2π�

288 exlogx−x− 3
2 logx+ ⋅ ⋅ ⋅ ∈ Lexp,≻

eΓ(x) ∈ 𝔏exp,exp
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2
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6
x3 +

24
x4 +

120
x5 + ⋅ ⋅ ⋅ ∈ R[[x−1]] ⊆ L.
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n∈ℕ

𝔏exp,. . .n× ,exp



GridGridGrid---basedbasedbased transseriestransseriestransseries 777///292929

𝔏 ⊆ 𝔏exp ⊆ 𝔏exp,exp ⊆ ⋅ ⋅ ⋅ ⊆ 𝔗 ≔ �
n∈ℕ

𝔏exp,. . .n× ,exp

R[[𝔏]] ≔L ⊆ Lexp ⊆ Lexp,exp ⊆ ⋅ ⋅ ⋅ ⊆ T ≔ �
n∈ℕ

Lexp,. . .n× ,exp



GridGridGrid---basedbasedbased transseriestransseriestransseries 777///292929

𝔏 ⊆ 𝔏exp ⊆ 𝔏exp,exp ⊆ ⋅ ⋅ ⋅ ⊆ 𝔗 ≔ �
n∈ℕ

𝔏exp,. . .n× ,exp

R[[𝔏]] ≔L ⊆ Lexp ⊆ Lexp,exp ⊆ ⋅ ⋅ ⋅ ⊆ T ≔ �
n∈ℕ

Lexp,. . .n× ,exp

In the grid-based setting, we have
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ProofProofProof... Given f ∈T, let𝔖≔supp f .
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Then 𝔖⊆𝔪{𝔢1, . . . , 𝔢k}∗ for 𝔪∈𝔗, 𝔢1, . . . , 𝔢k∈𝔗≺1.
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LogarithmicLogarithmicLogarithmic transseriestransseriestransseries

x𝛼0 ⋅ ⋅ ⋅ (logr x)𝛼r →→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→ →
⋅∘log

(log x)𝛼0 ⋅ ⋅ ⋅ (logr+1 x)𝛼r ∈ 𝔗0

x𝛼0 ⋅ ⋅ ⋅ (logr x)𝛼r →→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→ →
⋅∘exp

e𝛼0xx𝛼1 ⋅ ⋅ ⋅ (logr−1 x)𝛼r ∈ 𝔗1



UpwardUpwardUpward andandand downwarddownwarddownward shiftingshiftingshifting 999///292929

LogarithmicLogarithmicLogarithmic transseriestransseriestransseries

x𝛼0 ⋅ ⋅ ⋅ (logr x)𝛼r →→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→ →
⋅∘log

(log x)𝛼0 ⋅ ⋅ ⋅ (logr+1 x)𝛼r ∈ 𝔗0

x𝛼0 ⋅ ⋅ ⋅ (logr x)𝛼r →→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→ →
⋅∘exp

e𝛼0xx𝛼1 ⋅ ⋅ ⋅ (logr−1 x)𝛼r ∈ 𝔗1

Strong linearity: T0→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→ →
⋅∘log

T0 and T0→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→ →
⋅∘exp

T1



UpwardUpwardUpward andandand downwarddownwarddownward shiftingshiftingshifting 999///292929

LogarithmicLogarithmicLogarithmic transseriestransseriestransseries

x𝛼0 ⋅ ⋅ ⋅ (logr x)𝛼r →→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→ →
⋅∘log

(log x)𝛼0 ⋅ ⋅ ⋅ (logr+1 x)𝛼r ∈ 𝔗0

x𝛼0 ⋅ ⋅ ⋅ (logr x)𝛼r →→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→ →
⋅∘exp

e𝛼0xx𝛼1 ⋅ ⋅ ⋅ (logr−1 x)𝛼r ∈ 𝔗1

Strong linearity: T0→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→ →
⋅∘log

T0 and T0→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→ →
⋅∘exp

T1

InductiveInductiveInductive stepstepstep
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𝛼 otherwise
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f𝛼 ≔ x√ − �
0<𝛽<𝛼

e f𝛽∘log ∈ 𝕋𝛼,≻ ⇒ e f𝛼∘log ∈ 𝔗𝛼+1
≻

f1 = x√
f2 = x√ −e logx�

f3 =⋅⋅⋅ x√ −e logx� −e logx� −e log2x�

f𝜔 = x√ −e logx� −e logx� −e log2x�

− ⋅ ⋅ ⋅

f𝜔+1 = x√ −e logx� −e logx� −e log2x�

− ⋅ ⋅ ⋅−e logx� −e log2x� −e log2x� −e log3x�
−⋅ ⋅ ⋅

⋅⋅⋅

𝛽<𝛼 ⇒ f𝛼< f𝛽
supp f𝛼 ≅ 𝛼
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Let 𝒮 be the type of countable supports.
There exists a non-trivial field of 𝒮-based transseries that is closed under exponentiation.

PropositionPropositionPropositionPropositionProposition
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Let 𝒮 be the type of countable supports.
There exists a non-trivial field of 𝒮-based transseries that is closed under exponentiation.

PropositionPropositionPropositionPropositionProposition

LogarithmicLogarithmicLogarithmic depthdepthdepth
E≔ smallest subset of T that contains xR and that is closed under ∑ and exp.
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Let 𝒮 be the type of countable supports.
There exists a non-trivial field of 𝒮-based transseries that is closed under exponentiation.

PropositionPropositionPropositionPropositionProposition

LogarithmicLogarithmicLogarithmic depthdepthdepth
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ld (ee3x+2x−x3ex) = 0
ld (xx) = 1
ld (x+log x+log log x+ ⋅ ⋅ ⋅) = ∞.



WellWellWell---basedbasedbased transseriestransseriestransseries——— continuedcontinuedcontinued 111111///292929

Let 𝒮 be the type of countable supports.
There exists a non-trivial field of 𝒮-based transseries that is closed under exponentiation.

PropositionPropositionPropositionPropositionProposition

LogarithmicLogarithmicLogarithmic depthdepthdepth
E≔ smallest subset of T that contains xR and that is closed under ∑ and exp.
Logarithmic depth ld( f ) of f∈T≔ smallest n∈N such that f ∈E∘logn or infinity.

ld (ee3x+2x−x3ex) = 0
ld (xx) = 1
ld (x+log x+log log x+ ⋅ ⋅ ⋅) = ∞.

The field of well-based transseries of finite logarithmic depth is an exp-log field.
PropositionPropositionPropositionPropositionProposition
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ExponentialExponentialExponential transseriestransseriestransseries...
E≔ smallest subset of T with E⊇xR that is closed under ∑and exp.
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ExponentialExponentialExponential transseriestransseriestransseries...
E≔ smallest subset of T with E⊇xR that is closed under ∑and exp.

𝔈0 = xR E0 = R[[𝔈0]]
𝔈k = xRexpEk−1,≻ Ek = R[[𝔈k]] k=1,2, . . .
𝔈 = 𝔈0∪𝔈1∪ ⋅ ⋅ ⋅ E = R[[𝔈]]

= E0∪E1∪ ⋅ ⋅ ⋅
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E≔ smallest subset of T with E⊇xR that is closed under ∑and exp.

𝔈0 = xR E0 = R[[𝔈0]]
𝔈k = xRexpEk−1,≻ Ek = R[[𝔈k]] k=1,2, . . .
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ExponentialExponentialExponential transseriestransseriestransseries...
E≔ smallest subset of T with E⊇xR that is closed under ∑and exp.

𝔈0 = xR E0 = R[[𝔈0]]
𝔈k = xRexpEk−1,≻ Ek = R[[𝔈k]] k=1,2, . . .
𝔈 = 𝔈0∪𝔈1∪ ⋅ ⋅ ⋅ E = R[[𝔈]]

= E0∪E1∪ ⋅ ⋅ ⋅

LogarithmicLogarithmicLogarithmic closureclosureclosure...
T = E ∪ E∘ log ∪ E∘ log2 ∪ ⋅ ⋅ ⋅.
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ExponentialExponentialExponential transseriestransseriestransseries...
E≔ smallest subset of T with E⊇xR that is closed under ∑and exp.

𝔈0 = xR E0 = R[[𝔈0]]
𝔈k = xRexpEk−1,≻ Ek = R[[𝔈k]] k=1,2, . . .
𝔈 = 𝔈0∪𝔈1∪ ⋅ ⋅ ⋅ E = R[[𝔈]]

= E0∪E1∪ ⋅ ⋅ ⋅

LogarithmicLogarithmicLogarithmic closureclosureclosure...
T = E ∪ E∘ log ∪ E∘ log2 ∪ ⋅ ⋅ ⋅.

LevelLevelLevel...
The levellevellevel of f ∈T is the largest l∈Z with f ∈E∘expl.
Here expl x=log−l x if l<0.
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FlatnessFlatnessFlatness relationsrelationsrelations... For f , g∈T≠0,
f ≺≺ g ⟺ log | f | ≺ log |g|
f ⪯⪯ g ⟺ log | f | ≼ log |g|
f ≍−≍ g ⟺ log | f | ≍ log |g|.
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f ≺≺ g ⟺ log | f | ≺ log |g|
f ⪯⪯ g ⟺ log | f | ≼ log |g|
f ≍−≍ g ⟺ log | f | ≍ log |g|.

RecursiveRecursiveRecursive expansionsexpansionsexpansions... x≺≺ex

1
1−x−1−e−x = 1
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FlatnessFlatnessFlatness relationsrelationsrelations... For f , g∈T≠0,
f ≺≺ g ⟺ log | f | ≺ log |g|
f ⪯⪯ g ⟺ log | f | ≼ log |g|
f ≍−≍ g ⟺ log | f | ≍ log |g|.

RecursiveRecursiveRecursive expansionsexpansionsexpansions... x≺≺ex

1
1−x−1−e−x = 1

1−x−1 +((((((( 1
1−x−1)))))))2e−x+((((((( 1

1−x−1)))))))3e−2x+ ⋅ ⋅ ⋅

= 1+ 1
x +

1
x2 + ⋅ ⋅ ⋅
+ 1

ex +
2
xex +

3
x2ex + ⋅ ⋅ ⋅

+ 1
e2x +

3
xe2x +

6
x2e2x + ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅
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FlatnessFlatnessFlatness relationsrelationsrelations... For f , g∈T≠0,
f ≺≺ g ⟺ log | f | ≺ log |g|
f ⪯⪯ g ⟺ log | f | ≼ log |g|
f ≍−≍ g ⟺ log | f | ≍ log |g|.

RecursiveRecursiveRecursive expansionsexpansionsexpansions... Let b1, . . . ,bn∈T≻1 with b1≺≺ ⋅ ⋅ ⋅ ≺≺bn. Then
𝜑:x1R×

. ⋅ ⋅ ⋅ ×. xnR ⟶ T

x1𝛼1 ⋅ ⋅ ⋅ xn𝛼n ⟼ b1𝛼1 ⋅ ⋅ ⋅ bn𝛼n

extends by strong linearity into an embedding
�̂�:R[[x1R×

. ⋅ ⋅ ⋅ ×. xnR]]𝒮 ⟶ T.
We define R[[b1; . . . ;bn]]𝒮≔im �̂�.
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T=R[[[x]]], the field of grid-based transseries.

A transbasistransbasistransbasis is a finite tuple 𝔅= (𝔟1, . . . , 𝔟n)∈Tn such that
TBTBTB111... 𝔟1, . . . , 𝔟n≻1 and 𝔟1≺≺ ⋅ ⋅ ⋅ ≺≺𝔟n.
TBTBTB222... 𝔟1=expl x for some l∈Z.
TBTBTB333... log 𝔟i∈R[[𝔟1; . . . ; 𝔟i−1]]≻, for i=2, . . . ,n.

DefinitionDefinitionDefinitionDefinitionDefinition
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��� l is called the levellevellevel of 𝔅.
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��� l is called the levellevellevel of 𝔅.
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T=R[[[x]]], the field of grid-based transseries.

A transbasistransbasistransbasis is a finite tuple 𝔅= (𝔟1, . . . , 𝔟n)∈Tn such that
TBTBTB111... 𝔟1, . . . , 𝔟n≻1 and 𝔟1≺≺ ⋅ ⋅ ⋅ ≺≺𝔟n.
TBTBTB222... 𝔟1=expl x for some l∈Z.
TBTBTB333... log 𝔟i∈R[[𝔟1; . . . ; 𝔟i−1]]≻, for i=2, . . . ,n.

DefinitionDefinitionDefinitionDefinitionDefinition

��� l is called the levellevellevel of 𝔅.
��� 𝔅 is a transbasis forforfor each element of R[[𝔅R]]≔R[[𝔟1; . . . ; 𝔟n]].

(x, e x√ , ex x√ ) is a transbasis for e(x+1)3/2=ex3/2+(3/2)x1/2+cx−1/2+⋅ ⋅ ⋅

(x, e(x+ /3 2) x√ ) is a transbasis for e(x+1)3/2

(log x,x, ex,xx) is a transbasis of level −1 for Γ(x)
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Let 𝔅= (𝔟1, . . . , 𝔟n) be a transbasis of level l and f ∈T a transseries of level l′.
Then there exists a transbasis �̂� of level min (l, l′) for f that extends 𝔅.

TheoremTheoremTheoremTheoremTheorem
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Let 𝔅= (𝔟1, . . . , 𝔟n) be a transbasis of level l and f ∈T a transseries of level l′.
Then there exists a transbasis �̂� of level min (l, l′) for f that extends 𝔅.

TheoremTheoremTheoremTheoremTheorem

ProofProofProof ininin aaa specialspecialspecial casecasecase... Assume that f =eg and that𝔅 is a transbasis for g.
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Let 𝔅= (𝔟1, . . . , 𝔟n) be a transbasis of level l and f ∈T a transseries of level l′.
Then there exists a transbasis �̂� of level min (l, l′) for f that extends 𝔅.

TheoremTheoremTheoremTheoremTheorem

ProofProofProof ininin aaa specialspecialspecial casecasecase... Assume that f =eg and that𝔅 is a transbasis for g.
Let k∈{0, . . . ,n} be minimal such that there exist 𝜆k+1, . . . , 𝜆n∈R with

g = 𝜆n log 𝔟n+ ⋅ ⋅ ⋅ +𝜆k+1 log 𝔟k+1+𝛿, 𝛿 ≺ log 𝔟k+1.
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Let 𝔅= (𝔟1, . . . , 𝔟n) be a transbasis of level l and f ∈T a transseries of level l′.
Then there exists a transbasis �̂� of level min (l, l′) for f that extends 𝔅.

TheoremTheoremTheoremTheoremTheorem

ProofProofProof ininin aaa specialspecialspecial casecasecase... Assume that f =eg and that𝔅 is a transbasis for g.
Let k∈{0, . . . ,n} be minimal such that there exist 𝜆k+1, . . . , 𝜆n∈R with

g = 𝜆n log 𝔟n+ ⋅ ⋅ ⋅ +𝜆k+1 log 𝔟k+1+𝛿, 𝛿 ≺ log 𝔟k+1.
If 𝛿≼1, then

f = e𝛿𝔟k+1
𝜆k+1 ⋅ ⋅ ⋅ 𝔟n𝜆n ∈ R[[𝔅R]].
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Let 𝔅= (𝔟1, . . . , 𝔟n) be a transbasis of level l and f ∈T a transseries of level l′.
Then there exists a transbasis �̂� of level min (l, l′) for f that extends 𝔅.

TheoremTheoremTheoremTheoremTheorem

ProofProofProof ininin aaa specialspecialspecial casecasecase... Assume that f =eg and that𝔅 is a transbasis for g.
Let k∈{0, . . . ,n} be minimal such that there exist 𝜆k+1, . . . , 𝜆n∈R with

g = 𝜆n log 𝔟n+ ⋅ ⋅ ⋅ +𝜆k+1 log 𝔟k+1+𝛿, 𝛿 ≺ log 𝔟k+1.
If 𝛿≼1, then

f = e𝛿𝔟k+1
𝜆k+1 ⋅ ⋅ ⋅ 𝔟n𝜆n ∈ R[[𝔅R]].

Otherwise, let i⩽k be such that log 𝔟i≺𝛿≺log 𝔟i+1.
f = e𝛿≼e𝛿≻𝔟k+1

𝜆k+1 ⋅ ⋅ ⋅ 𝔟n𝜆n ∈ R[[�̂�R]]
�̂� ≔ (𝔟1, . . . , 𝔟i, e|𝛿≻|, 𝔟i+1, . . . , 𝔟n).
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Let 𝔅= (𝔟1, . . . , 𝔟n) be a transbasis of level l and f ∈T a transseries of level l′.
Then there exists a transbasis �̂� of level min (l, l′) for f that extends 𝔅.

TheoremTheoremTheoremTheoremTheorem
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Let 𝔅= (𝔟1, . . . , 𝔟n) be a transbasis of level l and f ∈T a transseries of level l′.
Then there exists a transbasis �̂� of level min (l, l′) for f that extends 𝔅.

TheoremTheoremTheoremTheoremTheorem

ProofProofProof ininin generalgeneralgeneral... Add expl′ x, . . . , expl−1 x below 𝔟1 to arrange that l= l′.
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Let 𝔅= (𝔟1, . . . , 𝔟n) be a transbasis of level l and f ∈T a transseries of level l′.
Then there exists a transbasis �̂� of level min (l, l′) for f that extends 𝔅.

TheoremTheoremTheoremTheoremTheorem

ProofProofProof ininin generalgeneralgeneral... Add expl′ x, . . . , expl−1 x below 𝔟1 to arrange that l= l′.
Induction on h with f ∈Eh∘expl x.
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Let 𝔅= (𝔟1, . . . , 𝔟n) be a transbasis of level l and f ∈T a transseries of level l′.
Then there exists a transbasis �̂� of level min (l, l′) for f that extends 𝔅.

TheoremTheoremTheoremTheoremTheorem

ProofProofProof ininin generalgeneralgeneral... Add expl′ x, . . . , expl−1 x below 𝔟1 to arrange that l= l′.
Induction on h with f ∈Eh∘expl x.
Nothing to do if h=0.



TheTheThe incompleteincompleteincomplete transbasistransbasistransbasis theoremtheoremtheorem——— continuedcontinuedcontinued 161616///292929

Let 𝔅= (𝔟1, . . . , 𝔟n) be a transbasis of level l and f ∈T a transseries of level l′.
Then there exists a transbasis �̂� of level min (l, l′) for f that extends 𝔅.

TheoremTheoremTheoremTheoremTheorem

ProofProofProof ininin generalgeneralgeneral... Add expl′ x, . . . , expl−1 x below 𝔟1 to arrange that l= l′.
Induction on h with f ∈Eh∘expl x.
Nothing to do if h=0.
Otherwise, supp f ⊆ (expl x)Reg0+g1N+⋅ ⋅ ⋅+gkN with g0, . . . , gk∈Eh−1∘expl x.
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Let 𝔅= (𝔟1, . . . , 𝔟n) be a transbasis of level l and f ∈T a transseries of level l′.
Then there exists a transbasis �̂� of level min (l, l′) for f that extends 𝔅.

TheoremTheoremTheoremTheoremTheorem

ProofProofProof ininin generalgeneralgeneral... Add expl′ x, . . . , expl−1 x below 𝔟1 to arrange that l= l′.
Induction on h with f ∈Eh∘expl x.
Nothing to do if h=0.
Otherwise, supp f ⊆ (expl x)Reg0+g1N+⋅ ⋅ ⋅+gkN with g0, . . . , gk∈Eh−1∘expl x.
Induction hypothesis + special case↝ 𝔅 transbasis for eg0, . . . , egk.
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Let 𝔅= (𝔟1, . . . , 𝔟n) be a transbasis of level l and f ∈T a transseries of level l′.
Then there exists a transbasis �̂� of level min (l, l′) for f that extends 𝔅.

TheoremTheoremTheoremTheoremTheorem

ProofProofProof ininin generalgeneralgeneral... Add expl′ x, . . . , expl−1 x below 𝔟1 to arrange that l= l′.
Induction on h with f ∈Eh∘expl x.
Nothing to do if h=0.
Otherwise, supp f ⊆ (expl x)Reg0+g1N+⋅ ⋅ ⋅+gkN with g0, . . . , gk∈Eh−1∘expl x.
Induction hypothesis + special case↝ 𝔅 transbasis for eg0, . . . , egk.
Hence 𝔅 is a transbasis for each monomial in supp f .



TheTheThe incompleteincompleteincomplete transbasistransbasistransbasis theoremtheoremtheorem——— continuedcontinuedcontinued 161616///292929

Let 𝔅= (𝔟1, . . . , 𝔟n) be a transbasis of level l and f ∈T a transseries of level l′.
Then there exists a transbasis �̂� of level min (l, l′) for f that extends 𝔅.

TheoremTheoremTheoremTheoremTheorem

ProofProofProof ininin generalgeneralgeneral... Add expl′ x, . . . , expl−1 x below 𝔟1 to arrange that l= l′.
Induction on h with f ∈Eh∘expl x.
Nothing to do if h=0.
Otherwise, supp f ⊆ (expl x)Reg0+g1N+⋅ ⋅ ⋅+gkN with g0, . . . , gk∈Eh−1∘expl x.
Induction hypothesis + special case↝ 𝔅 transbasis for eg0, . . . , egk.
Hence 𝔅 is a transbasis for each monomial in supp f .
And thus for f itself. □
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𝔐 → totally ordered monomial group. We focus on the grid-based setting.

A strongstrongstrong derivationderivationderivation on R[[𝔐]] is a map ∂:R[[𝔐]]→R[[𝔐]] such that
DDD111... ∂c=0 for all c∈R.
DDD222... ∂( f g)= (∂ f ) g+ f ∂g for all f , g∈R[[𝔐]].
DDD333... ∂ is strongly R-linear.

DefinitionDefinitionDefinitionDefinitionDefinition
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𝔐 → totally ordered monomial group. We focus on the grid-based setting.

A strongstrongstrong derivationderivationderivation on R[[𝔐]] is a map ∂:R[[𝔐]]→R[[𝔐]] such that
DDD111... ∂c=0 for all c∈R.
DDD222... ∂( f g)= (∂ f ) g+ f ∂g for all f , g∈R[[𝔐]].
DDD333... ∂ is strongly R-linear.

DefinitionDefinitionDefinitionDefinitionDefinition

Let ∂:𝔐→R[[𝔐]] be a mapping such that ∂(𝔪𝔫)= (∂𝔪)𝔫+𝔪∂𝔫 for all 𝔪,𝔫∈𝔐.
Then ∂ is a grid-based mapping that extends uniquely into a strong derivation onR[[𝔐]].

PropositionPropositionPropositionPropositionProposition
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𝔐 → totally ordered monomial group. We focus on the grid-based setting.

A strongstrongstrong derivationderivationderivation on R[[𝔐]] is a map ∂:R[[𝔐]]→R[[𝔐]] such that
DDD111... ∂c=0 for all c∈R.
DDD222... ∂( f g)= (∂ f ) g+ f ∂g for all f , g∈R[[𝔐]].
DDD333... ∂ is strongly R-linear.

DefinitionDefinitionDefinitionDefinitionDefinition

Let ∂:𝔐→R[[𝔐]] be a mapping such that ∂(𝔪𝔫)= (∂𝔪)𝔫+𝔪∂𝔫 for all 𝔪,𝔫∈𝔐.
Then ∂ is a grid-based mapping that extends uniquely into a strong derivation onR[[𝔐]].

PropositionPropositionPropositionPropositionProposition

NotationNotationNotation... f ′=∂ f and f †= ∂ f
f if ∂ is clear from the context.
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Let ∂:𝔐→R[[𝔐]] be a mapping such that ∂(𝔪𝔫)= (∂𝔪)𝔫+𝔪∂𝔫 for all 𝔪,𝔫∈𝔐.
Then ∂ is a grid-based mapping that extends uniquely into a strong derivation onR[[𝔐]].

PropositionPropositionPropositionPropositionProposition
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An expexpexp---logloglog derivationderivationderivation on R[[𝔐]] is a derivation ∂ that satisfies
EDEDED... ∂ exp f = (∂ f )exp f, for all f ∈dom exp.
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DifferentiationDifferentiationDifferentiation ofofof transseriestransseriestransseries 202020///292929

There exists a unique strong exp-log derivation on T with ∂x=1.
PropositionPropositionPropositionPropositionProposition

ProofProofProof... By induction on h, we show that there exists a unique such derivation onTh.

On 𝔏, we must have

∂(x𝛼0 ⋅ ⋅ ⋅ (logr x)𝛼r) = (𝛼0
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x log x + ⋅ ⋅ ⋅ + 𝛼r
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Assume ∂:Th→Th. On 𝔗h+1=expTh,≻, we must have ∂e𝜑= (∂𝜑)e𝜑,

∂(e𝜑e𝜓) = ∂e𝜑+𝜓 = (∂𝜑+∂𝜓)e𝜑+𝜓 = (∂e𝜑)e𝜓+e𝜑 (∂e𝜓).
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Assume ∂:Th→Th. On 𝔗h+1=expTh,≻, we must have ∂e𝜑= (∂𝜑)e𝜑,
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The derivation on T is asymptoticasymptoticasymptotic and positivepositivepositive in the following sense:
f ≺ g ≭ 1 ⟹ f ′ ≺ g′
0 < f ≻ 1 ⟹ f ′ > 0.

PropositionPropositionPropositionPropositionProposition
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0 < f ≻ 1 ⟹ f ′ > 0.
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ProofProofProof... Assume that f , g∈R[[𝔟1; . . . ; 𝔟n]] for transbasis 𝔅= (𝔟1, . . . , 𝔟n).
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ProofProofProof... Assume that f , g∈R[[𝔟1; . . . ; 𝔟n]] for transbasis 𝔅= (𝔟1, . . . , 𝔟n).
Proof this and f ≻1⇒ f ′≻𝔟1† by induction on n.
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The derivation on T is asymptoticasymptoticasymptotic and positivepositivepositive in the following sense:
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ProofProofProof... Assume that f , g∈R[[𝔟1; . . . ; 𝔟n]] for transbasis 𝔅= (𝔟1, . . . , 𝔟n).
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Easy exercise if n=1.
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Assume n>1.
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ProofProofProof... Assume that f , g∈R[[𝔟1; . . . ; 𝔟n]] for transbasis 𝔅= (𝔟1, . . . , 𝔟n). To prove:
f ≺ g ≭ 1 ⟹ f ′ ≺ g′
0 < f ≻ 1 ⟹ f ′ > 0

f ≻ 1 ⟹ f ′ ≻ 𝔟1†.
Proof by induction on n. Assume that n>1.
We have 𝔟1†≺ ⋅ ⋅ ⋅ ≺𝔟n†.



AsymptoticAsymptoticAsymptotic propertiespropertiesproperties ofofof thethethe derivationderivationderivation 222222///292929

ProofProofProof... Assume that f , g∈R[[𝔟1; . . . ; 𝔟n]] for transbasis 𝔅= (𝔟1, . . . , 𝔟n). To prove:
f ≺ g ≭ 1 ⟹ f ′ ≺ g′
0 < f ≻ 1 ⟹ f ′ > 0

f ≻ 1 ⟹ f ′ ≻ 𝔟1†.
Proof by induction on n. Assume that n>1.
We have 𝔟1†≺ ⋅ ⋅ ⋅ ≺𝔟n†.
Let 𝔪=𝔟1𝛼1 ⋅ ⋅ ⋅ 𝔟n𝛼n≺𝔟1

𝛽1 ⋅ ⋅ ⋅ 𝔟n
𝛽n=𝔫≭1.
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ProofProofProof... Assume that f , g∈R[[𝔟1; . . . ; 𝔟n]] for transbasis 𝔅= (𝔟1, . . . , 𝔟n). To prove:
f ≺ g ≭ 1 ⟹ f ′ ≺ g′
0 < f ≻ 1 ⟹ f ′ > 0

f ≻ 1 ⟹ f ′ ≻ 𝔟1†.
Proof by induction on n. Assume that n>1.
We have 𝔟1†≺ ⋅ ⋅ ⋅ ≺𝔟n†.
Let 𝔪=𝔟1𝛼1 ⋅ ⋅ ⋅ 𝔟n𝛼n≺𝔟1

𝛽1 ⋅ ⋅ ⋅ 𝔟n
𝛽n=𝔫≭1.

𝛼n=𝛽n=0 ⟹ 𝔪′≺𝔫′ by induction hypothesis.
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ProofProofProof... Assume that f , g∈R[[𝔟1; . . . ; 𝔟n]] for transbasis 𝔅= (𝔟1, . . . , 𝔟n). To prove:
f ≺ g ≭ 1 ⟹ f ′ ≺ g′
0 < f ≻ 1 ⟹ f ′ > 0

f ≻ 1 ⟹ f ′ ≻ 𝔟1†.
Proof by induction on n. Assume that n>1.
We have 𝔟1†≺ ⋅ ⋅ ⋅ ≺𝔟n†.
Let 𝔪=𝔟1𝛼1 ⋅ ⋅ ⋅ 𝔟n𝛼n≺𝔟1

𝛽1 ⋅ ⋅ ⋅ 𝔟n
𝛽n=𝔫≭1.

𝛼n=𝛽n=0 ⟹ 𝔪′≺𝔫′ by induction hypothesis.
𝛼n=𝛽n≠0 ⟹ 𝔪′≍𝔪𝔟n†≺𝔫𝔟n†≍𝔫′.
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ProofProofProof... Assume that f , g∈R[[𝔟1; . . . ; 𝔟n]] for transbasis 𝔅= (𝔟1, . . . , 𝔟n). To prove:
f ≺ g ≭ 1 ⟹ f ′ ≺ g′
0 < f ≻ 1 ⟹ f ′ > 0

f ≻ 1 ⟹ f ′ ≻ 𝔟1†.
Proof by induction on n. Assume that n>1.
We have 𝔟1†≺ ⋅ ⋅ ⋅ ≺𝔟n†.
Let 𝔪=𝔟1𝛼1 ⋅ ⋅ ⋅ 𝔟n𝛼n≺𝔟1

𝛽1 ⋅ ⋅ ⋅ 𝔟n
𝛽n=𝔫≭1.

𝛼n=𝛽n=0 ⟹ 𝔪′≺𝔫′ by induction hypothesis.
𝛼n=𝛽n≠0 ⟹ 𝔪′≍𝔪𝔟n†≺𝔫𝔟n†≍𝔫′.
𝛼n<𝛽n ⟹ 𝔪′∈R[[𝔟1; . . . ; 𝔟n−1]]𝔟n𝛼n≺R[[𝔟1; . . . ; 𝔟n−1]]𝔟n

𝛽n∋𝔫′.
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ProofProofProof... Assume that f , g∈R[[𝔟1; . . . ; 𝔟n]] for transbasis 𝔅= (𝔟1, . . . , 𝔟n). To prove:
f ≺ g ≭ 1 ⟹ f ′ ≺ g′
0 < f ≻ 1 ⟹ f ′ > 0

f ≻ 1 ⟹ f ′ ≻ 𝔟1†.
Proof by induction on n. Assume that n>1.
We have 𝔟1†≺ ⋅ ⋅ ⋅ ≺𝔟n†.
Let 𝔪=𝔟1𝛼1 ⋅ ⋅ ⋅ 𝔟n𝛼n≺𝔟1

𝛽1 ⋅ ⋅ ⋅ 𝔟n
𝛽n=𝔫≭1.

𝛼n=𝛽n=0 ⟹ 𝔪′≺𝔫′ by induction hypothesis.
𝛼n=𝛽n≠0 ⟹ 𝔪′≍𝔪𝔟n†≺𝔫𝔟n†≍𝔫′.
𝛼n<𝛽n ⟹ 𝔪′∈R[[𝔟1; . . . ; 𝔟n−1]]𝔟n𝛼n≺R[[𝔟1; . . . ; 𝔟n−1]]𝔟n

𝛽n∋𝔫′.
Hence 𝔪′≺𝔫′ in all cases.
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ProofProofProof... Assume that f , g∈R[[𝔟1; . . . ; 𝔟n]] for transbasis 𝔅= (𝔟1, . . . , 𝔟n). To prove:
f ≺ g ≭ 1 ⟹ f ′ ≺ g′
0 < f ≻ 1 ⟹ f ′ > 0

f ≻ 1 ⟹ f ′ ≻ 𝔟1†.
Proof by induction on n. Assume that n>1.
We have 𝔟1†≺ ⋅ ⋅ ⋅ ≺𝔟n†.
If 𝔪=𝔟1𝛼1 ⋅ ⋅ ⋅ 𝔟n𝛼n≺𝔟1

𝛽1 ⋅ ⋅ ⋅ 𝔟n
𝛽n=𝔫≍1, then 𝔪′≺𝔫′.
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ProofProofProof... Assume that f , g∈R[[𝔟1; . . . ; 𝔟n]] for transbasis 𝔅= (𝔟1, . . . , 𝔟n). To prove:
f ≺ g ≭ 1 ⟹ f ′ ≺ g′
0 < f ≻ 1 ⟹ f ′ > 0

f ≻ 1 ⟹ f ′ ≻ 𝔟1†.
Proof by induction on n. Assume that n>1.
We have 𝔟1†≺ ⋅ ⋅ ⋅ ≺𝔟n†.
If 𝔪=𝔟1𝛼1 ⋅ ⋅ ⋅ 𝔟n𝛼n≺𝔟1

𝛽1 ⋅ ⋅ ⋅ 𝔟n
𝛽n=𝔫≍1, then 𝔪′≺𝔫′.

Assume f ≺ g≭1.
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ProofProofProof... Assume that f , g∈R[[𝔟1; . . . ; 𝔟n]] for transbasis 𝔅= (𝔟1, . . . , 𝔟n). To prove:
f ≺ g ≭ 1 ⟹ f ′ ≺ g′
0 < f ≻ 1 ⟹ f ′ > 0

f ≻ 1 ⟹ f ′ ≻ 𝔟1†.
Proof by induction on n. Assume that n>1.
We have 𝔟1†≺ ⋅ ⋅ ⋅ ≺𝔟n†.
If 𝔪=𝔟1𝛼1 ⋅ ⋅ ⋅ 𝔟n𝛼n≺𝔟1

𝛽1 ⋅ ⋅ ⋅ 𝔟n
𝛽n=𝔫≍1, then 𝔪′≺𝔫′.

Assume f ≺ g≭1.
For all 𝔫∈supp (g−𝜏g), we have 𝔫′≺𝔡g′, whence (g−𝜏g)′≺𝔡g′ and g′∼ cg𝔡g′.
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ProofProofProof... Assume that f , g∈R[[𝔟1; . . . ; 𝔟n]] for transbasis 𝔅= (𝔟1, . . . , 𝔟n). To prove:
f ≺ g ≭ 1 ⟹ f ′ ≺ g′
0 < f ≻ 1 ⟹ f ′ > 0

f ≻ 1 ⟹ f ′ ≻ 𝔟1†.
Proof by induction on n. Assume that n>1.
We have 𝔟1†≺ ⋅ ⋅ ⋅ ≺𝔟n†.
If 𝔪=𝔟1𝛼1 ⋅ ⋅ ⋅ 𝔟n𝛼n≺𝔟1

𝛽1 ⋅ ⋅ ⋅ 𝔟n
𝛽n=𝔫≍1, then 𝔪′≺𝔫′.

Assume f ≺ g≭1.
For all 𝔫∈supp (g−𝜏g), we have 𝔫′≺𝔡g′, whence (g−𝜏g)′≺𝔡g′ and g′∼ cg𝔡g′.
For all 𝔪∈supp f , we have 𝔪′≺𝔡g′, whence f ′≺𝔡g′≍ g′.
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ProofProofProof... Assume that f , g∈R[[𝔟1; . . . ; 𝔟n]] for transbasis 𝔅= (𝔟1, . . . , 𝔟n). To prove:
f ≺ g ≭ 1 ⟹ f ′ ≺ g′
0 < f ≻ 1 ⟹ f ′ > 0

f ≻ 1 ⟹ f ′ ≻ 𝔟1†.
Proof by induction on n. Assume that n>1.
We have 𝔟1†≺ ⋅ ⋅ ⋅ ≺𝔟n†.
If 𝔪=𝔟1𝛼1 ⋅ ⋅ ⋅ 𝔟n𝛼n≺𝔟1

𝛽1 ⋅ ⋅ ⋅ 𝔟n
𝛽n=𝔫≍1, then 𝔪′≺𝔫′.

Assume f ≺ g≭1.
For all 𝔫∈supp (g−𝜏g), we have 𝔫′≺𝔡g′, whence (g−𝜏g)′≺𝔡g′ and g′∼ cg𝔡g′.
For all 𝔪∈supp f , we have 𝔪′≺𝔡g′, whence f ′≺𝔡g′≍ g′.

Hence f ′≺ g′∼ cg𝔡g′.
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ProofProofProof... Assume that f , g∈R[[𝔟1; . . . ; 𝔟n]] for transbasis 𝔅= (𝔟1, . . . , 𝔟n). To prove:
f ≺ g ≭ 1 ⟹ f ′ ≺ g′
0 < f ≻ 1 ⟹ f ′ > 0

f ≻ 1 ⟹ f ′ ≻ 𝔟1†.
Proof by induction on n. Assume that n>1.
We have 𝔟1†≺ ⋅ ⋅ ⋅ ≺𝔟n†.
If 𝔪=𝔟1𝛼1 ⋅ ⋅ ⋅ 𝔟n𝛼n≺𝔟1

𝛽1 ⋅ ⋅ ⋅ 𝔟n
𝛽n=𝔫≍1, then 𝔪′≺𝔫′.

��� If f ≺ g≭1, then f ′≺ g′∼ cg𝔡g′.
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ProofProofProof... Assume that f , g∈R[[𝔟1; . . . ; 𝔟n]] for transbasis 𝔅= (𝔟1, . . . , 𝔟n). To prove:
f ≺ g ≭ 1 ⟹ f ′ ≺ g′
0 < f ≻ 1 ⟹ f ′ > 0

f ≻ 1 ⟹ f ′ ≻ 𝔟1†.
Proof by induction on n. Assume that n>1.
We have 𝔟1†≺ ⋅ ⋅ ⋅ ≺𝔟n†.
If 𝔪=𝔟1𝛼1 ⋅ ⋅ ⋅ 𝔟n𝛼n≺𝔟1

𝛽1 ⋅ ⋅ ⋅ 𝔟n
𝛽n=𝔫≍1, then 𝔪′≺𝔫′.

��� If f ≺ g≭1, then f ′≺ g′∼ cg𝔡g′.
��� If g≻1 and g>0, then g′∼ cg𝔡g (log 𝔡g)′>0, since 0<log 𝔡g≻1.
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ProofProofProof... Assume that f , g∈R[[𝔟1; . . . ; 𝔟n]] for transbasis 𝔅= (𝔟1, . . . , 𝔟n). To prove:
f ≺ g ≭ 1 ⟹ f ′ ≺ g′
0 < f ≻ 1 ⟹ f ′ > 0

f ≻ 1 ⟹ f ′ ≻ 𝔟1†.
Proof by induction on n. Assume that n>1.
We have 𝔟1†≺ ⋅ ⋅ ⋅ ≺𝔟n†.
If 𝔪=𝔟1𝛼1 ⋅ ⋅ ⋅ 𝔟n𝛼n≺𝔟1

𝛽1 ⋅ ⋅ ⋅ 𝔟n
𝛽n=𝔫≍1, then 𝔪′≺𝔫′.

��� If f ≺ g≭1, then f ′≺ g′∼ cg𝔡g′.
��� If g≻1 and g>0, then g′∼ cg𝔡g (log 𝔡g)′>0, since 0<log 𝔡g≻1.
��� If g≻1, then g′∼ cg𝔡g (log 𝔡g)′≻𝔡g𝔟1†≻𝔟1†, since log 𝔡g≻1.
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ProofProofProof... Assume that f , g∈R[[𝔟1; . . . ; 𝔟n]] for transbasis 𝔅= (𝔟1, . . . , 𝔟n). To prove:
f ≺ g ≭ 1 ⟹ f ′ ≺ g′
0 < f ≻ 1 ⟹ f ′ > 0

f ≻ 1 ⟹ f ′ ≻ 𝔟1†.
Proof by induction on n. Assume that n>1.
We have 𝔟1†≺ ⋅ ⋅ ⋅ ≺𝔟n†.
If 𝔪=𝔟1𝛼1 ⋅ ⋅ ⋅ 𝔟n𝛼n≺𝔟1

𝛽1 ⋅ ⋅ ⋅ 𝔟n
𝛽n=𝔫≍1, then 𝔪′≺𝔫′.

��� If f ≺ g≭1, then f ′≺ g′∼ cg𝔡g′.
��� If g≻1 and g>0, then g′∼ cg𝔡g (log 𝔡g)′>0, since 0<log 𝔡g≻1.
��� If g≻1, then g′∼ cg𝔡g (log 𝔡g)′≻𝔡g𝔟1†≻𝔟1†, since log 𝔡g≻1.
We conclude by induction. □
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The derivation on T is smallsmallsmall in the sense that 𝜀≺1⟹𝜀′≺1 for all 𝜀∈T.
PropositionPropositionPropositionPropositionProposition
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The derivation on T is smallsmallsmall in the sense that 𝜀≺1⟹𝜀′≺1 for all 𝜀∈T.
PropositionPropositionPropositionPropositionProposition

ProofProofProof... If 𝜀≺1, then 𝜀≺ 1
logn x

for some n∈N, whence

𝜀 ≺ ( 1
logn x)′ = −1

x log x ⋅ ⋅ ⋅ logn−1 x (logn x)2 . □
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The derivation on T is smallsmallsmall in the sense that 𝜀≺1⟹𝜀′≺1 for all 𝜀∈T.
PropositionPropositionPropositionPropositionProposition

ProofProofProof... If 𝜀≺1, then 𝜀≺ 1
logn x

for some n∈N, whence

𝜀 ≺ ( 1
logn x)′ = −1

x log x ⋅ ⋅ ⋅ logn−1 x (logn x)2 . □

If y∈T, then (y′)2≼y or (y′)2≼y3.
PropositionPropositionPropositionPropositionProposition
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The derivation on T is smallsmallsmall in the sense that 𝜀≺1⟹𝜀′≺1 for all 𝜀∈T.
PropositionPropositionPropositionPropositionProposition

ProofProofProof... If 𝜀≺1, then 𝜀≺ 1
logn x

for some n∈N, whence

𝜀 ≺ ( 1
logn x)′ = −1

x log x ⋅ ⋅ ⋅ logn−1 x (logn x)2 . □

If y∈T, then (y′)2≼y or (y′)2≼y3.
PropositionPropositionPropositionPropositionProposition

ProofProofProof... If y≼1, then y≺ (y′)2⇒y′≺2y′y′′≺y′, since y′,y′′≺1. Hence (y′)2≼y.
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The derivation on T is smallsmallsmall in the sense that 𝜀≺1⟹𝜀′≺1 for all 𝜀∈T.
PropositionPropositionPropositionPropositionProposition

ProofProofProof... If 𝜀≺1, then 𝜀≺ 1
logn x

for some n∈N, whence

𝜀 ≺ ( 1
logn x)′ = −1

x log x ⋅ ⋅ ⋅ logn−1 x (logn x)2 . □

If y∈T, then (y′)2≼y or (y′)2≼y3.
PropositionPropositionPropositionPropositionProposition

ProofProofProof... If y≼1, then y≺ (y′)2⇒y′≺2y′y′′≺y′, since y′,y′′≺1. Hence (y′)2≼y.
If y≽1, then (y′)2/y4≍ ((1/y)′)2≼1/y, whence (−y′)2≼y3. □
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The derivation on T is smallsmallsmall in the sense that 𝜀≺1⟹𝜀′≺1 for all 𝜀∈T.
PropositionPropositionPropositionPropositionProposition

ProofProofProof... If 𝜀≺1, then 𝜀≺ 1
logn x

for some n∈N, whence

𝜀 ≺ ( 1
logn x)′ = −1

x log x ⋅ ⋅ ⋅ logn−1 x (logn x)2 . □

If y∈T, then (y′)2≼y or (y′)2≼y3.
PropositionPropositionPropositionPropositionProposition

ProofProofProof... If y≼1, then y≺ (y′)2⇒y′≺2y′y′′≺y′, since y′,y′′≺1. Hence (y′)2≼y.
If y≽1, then (y′)2/y4≍ ((1/y)′)2≼1/y, whence (−y′)2≼y3. □

Given y∈T and r∈N, we have y(r)≼yc for some c∈Q>0.
CorollaryCorollaryCorollaryCorollaryCorollary
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There exists a unique strong map ∫:T→T with (∫ f )′= f and (∫ f )1=0 for all f ∈T.
We call it the distinguisheddistinguisheddistinguished integrationintegrationintegration on T.

PropositionPropositionPropositionPropositionProposition
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There exists a unique strong map ∫:T→T with (∫ f )′= f and (∫ f )1=0 for all f ∈T.
We call it the distinguisheddistinguisheddistinguished integrationintegrationintegration on T.

PropositionPropositionPropositionPropositionProposition

ProofProofProof... In Lesson 6, we will solve more general linear differential equations. □
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There exists a unique strong map ∫:T→T with (∫ f )′= f and (∫ f )1=0 for all f ∈T.
We call it the distinguisheddistinguisheddistinguished integrationintegrationintegration on T.

PropositionPropositionPropositionPropositionProposition

ProofProofProof... In Lesson 6, we will solve more general linear differential equations. □

The differential field T is Liouville closed.
CorollaryCorollaryCorollaryCorollaryCorollary
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There exists a unique strong map ∫:T→T with (∫ f )′= f and (∫ f )1=0 for all f ∈T.
We call it the distinguisheddistinguisheddistinguished integrationintegrationintegration on T.

PropositionPropositionPropositionPropositionProposition

ProofProofProof... In Lesson 6, we will solve more general linear differential equations. □

The differential field T is Liouville closed.
CorollaryCorollaryCorollaryCorollaryCorollary

NoteNoteNote... The following transseries cannot be integrated in any well-based T𝛼:

γ ≔ 1
x log x log2 x+ ⋅ ⋅ ⋅ = e−logx−log2x−log3x−⋅ ⋅ ⋅.
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There exists a unique strong map ∫:T→T with (∫ f )′= f and (∫ f )1=0 for all f ∈T.
We call it the distinguisheddistinguisheddistinguished integrationintegrationintegration on T.

PropositionPropositionPropositionPropositionProposition

ProofProofProof... In Lesson 6, we will solve more general linear differential equations. □

The differential field T is Liouville closed.
CorollaryCorollaryCorollaryCorollaryCorollary

NoteNoteNote... The following transseries cannot be integrated in any well-based T𝛼:

γ ≔ 1
x log x log2 x+ ⋅ ⋅ ⋅ = e−logx−log2x−log3x−⋅ ⋅ ⋅.

The field of well-based transseries of finite logarithmic depth is Liouville closed.
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𝔐, 𝔑⟶ totally ordered monomial groups (usually 𝔐=𝔑 or 𝔐⊆𝔑).
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𝔐, 𝔑⟶ totally ordered monomial groups (usually 𝔐=𝔑 or 𝔐⊆𝔑).

A strongstrongstrong differencedifferencedifference operatoroperatoroperator is a map 𝜎:R[[𝔐]]→R[[𝔑]] such that
ΔΔΔ111... 𝜎c= c for all c∈R.
ΔΔΔ222... 𝜎( f g)= (𝜎 f ) (𝜎g) for all f , g∈R[[𝔐]].
ΔΔΔ333... 𝜎 is strongly R-linear.

DefinitionDefinitionDefinitionDefinitionDefinition
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𝔐, 𝔑⟶ totally ordered monomial groups (usually 𝔐=𝔑 or 𝔐⊆𝔑).

A strongstrongstrong differencedifferencedifference operatoroperatoroperator is a map 𝜎:R[[𝔐]]→R[[𝔑]] such that
ΔΔΔ111... 𝜎c= c for all c∈R.
ΔΔΔ222... 𝜎( f g)= (𝜎 f ) (𝜎g) for all f , g∈R[[𝔐]].
ΔΔΔ333... 𝜎 is strongly R-linear.

DefinitionDefinitionDefinitionDefinitionDefinition

Let 𝜎:𝔐→R[[𝔑]] be a multiplicative and strictly increasing mapping. Then 𝜎 is a grid-
based mapping that extends uniquely into a strong difference operator on R[[𝔐]].

PropositionPropositionPropositionPropositionProposition
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𝔐, 𝔑⟶ totally ordered monomial groups (usually 𝔐=𝔑 or 𝔐⊆𝔑).

A strongstrongstrong differencedifferencedifference operatoroperatoroperator is a map 𝜎:R[[𝔐]]→R[[𝔑]] such that
ΔΔΔ111... 𝜎c= c for all c∈R.
ΔΔΔ222... 𝜎( f g)= (𝜎 f ) (𝜎g) for all f , g∈R[[𝔐]].
ΔΔΔ333... 𝜎 is strongly R-linear.

DefinitionDefinitionDefinitionDefinitionDefinition

Let 𝜎:𝔐→R[[𝔑]] be a multiplicative and strictly increasing mapping. Then 𝜎 is a grid-
based mapping that extends uniquely into a strong difference operator on R[[𝔐]].

PropositionPropositionPropositionPropositionProposition

ProofProofProof... If 𝔖⊆{𝔢1, . . . , 𝔢k}∗ 𝔣, then (𝜎𝔪)𝔪∈𝔖 is grid-based:
exercise of termification and Higman's theorem.
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𝔐, 𝔑⟶ totally ordered monomial groups (usually 𝔐=𝔑 or 𝔐⊆𝔑).

A strongstrongstrong differencedifferencedifference operatoroperatoroperator is a map 𝜎:R[[𝔐]]→R[[𝔑]] such that
ΔΔΔ111... 𝜎c= c for all c∈R.
ΔΔΔ222... 𝜎( f g)= (𝜎 f ) (𝜎g) for all f , g∈R[[𝔐]].
ΔΔΔ333... 𝜎 is strongly R-linear.

DefinitionDefinitionDefinitionDefinitionDefinition

Let 𝜎:𝔐→R[[𝔑]] be a multiplicative and strictly increasing mapping. Then 𝜎 is a grid-
based mapping that extends uniquely into a strong difference operator on R[[𝔐]].

PropositionPropositionPropositionPropositionProposition

ProofProofProof... If 𝔖⊆{𝔢1, . . . , 𝔢k}∗ 𝔣, then (𝜎𝔪)𝔪∈𝔖 is grid-based:
exercise of termification and Higman's theorem.

Remainder shown at the end of Lesson 3. □
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Assume that we have partial exponential functions on R[[𝔐]] and R[[𝔑]].
An expexpexp---logloglog differencedifferencedifference operatoroperatoroperator is a difference operator 𝜎:R[[𝔐]]→R[[𝔑]] that satisfies
EEEΔΔΔ... 𝜎 exp f =exp 𝜎 f, for all f ∈dom exp.

DefinitionDefinitionDefinitionDefinitionDefinition
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Assume that we have partial exponential functions on R[[𝔐]] and R[[𝔑]].
An expexpexp---logloglog differencedifferencedifference operatoroperatoroperator is a difference operator 𝜎:R[[𝔐]]→R[[𝔑]] that satisfies
EEEΔΔΔ... 𝜎 exp f =exp 𝜎 f, for all f ∈dom exp.
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Let 𝜎:𝔐→R[[𝔑]] be a strong difference operator with 𝜎 log 𝔪=log 𝜎𝔪 for all 𝔪∈𝔐.
Then 𝜎 is a strong exp-log difference operator on R[[𝔑]].

PropositionPropositionPropositionPropositionProposition
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Assume that we have partial exponential functions on R[[𝔐]] and R[[𝔑]].
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EEEΔΔΔ... 𝜎 exp f =exp 𝜎 f, for all f ∈dom exp.
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Let 𝜎:𝔐→R[[𝔑]] be a strong difference operator with 𝜎 log 𝔪=log 𝜎𝔪 for all 𝔪∈𝔐.
Then 𝜎 is a strong exp-log difference operator on R[[𝔑]].

PropositionPropositionPropositionPropositionProposition

ProofProofProof... Let f = c𝔪 (1+𝜀), c∈R≠0, 𝔪∈𝔐, 𝜀∈R[[𝔐]]≺1.
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Then 𝜎 is a strong exp-log difference operator on R[[𝔑]].
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𝜎 log (1+𝜀) = 𝜎(𝜀− /1 2𝜀2+ /1 3𝜀3+⋅⋅ ⋅) = 𝜎𝜀− /1 2 (𝜎𝜀)2+ /1 3 (𝜎𝜀)3+⋅⋅ ⋅ = log (1+𝜎𝜀)

𝜎 log f = 𝜎(log c+log𝔪+log (1+𝜀)) = log c+log𝜎𝔪+log (1+𝜎𝜀) = log𝜎 f .
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Assume that we have partial exponential functions on R[[𝔐]] and R[[𝔑]].
An expexpexp---logloglog differencedifferencedifference operatoroperatoroperator is a difference operator 𝜎:R[[𝔐]]→R[[𝔑]] that satisfies
EEEΔΔΔ... 𝜎 exp f =exp 𝜎 f, for all f ∈dom exp.
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Let 𝜎:𝔐→R[[𝔑]] be a strong difference operator with 𝜎 log 𝔪=log 𝜎𝔪 for all 𝔪∈𝔐.
Then 𝜎 is a strong exp-log difference operator on R[[𝔑]].

PropositionPropositionPropositionPropositionProposition

ProofProofProof... Let f = c𝔪 (1+𝜀), c∈R≠0, 𝔪∈𝔐, 𝜀∈R[[𝔐]]≺1.
𝜎 log (1+𝜀) = 𝜎(𝜀− /1 2𝜀2+ /1 3𝜀3+⋅⋅ ⋅) = 𝜎𝜀− /1 2 (𝜎𝜀)2+ /1 3 (𝜎𝜀)3+⋅⋅ ⋅ = log (1+𝜎𝜀)

𝜎 log f = 𝜎(log c+log𝔪+log (1+𝜀)) = log c+log𝜎𝔪+log (1+𝜎𝜀) = log𝜎 f .
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We say that a difference operator 𝜎:R[[𝔐]]→R[[𝔑]] is asymptoticasymptoticasymptotic resp. positivepositivepositive if
f ≺ 1 ⟹ 𝜎 f ≺ 1
f > 0 ⟹ 𝜎 f > 0.

DefinitionDefinitionDefinitionDefinitionDefinition
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We say that a difference operator 𝜎:R[[𝔐]]→R[[𝔑]] is asymptoticasymptoticasymptotic resp. positivepositivepositive if
f ≺ 1 ⟹ 𝜎 f ≺ 1
f > 0 ⟹ 𝜎 f > 0.

DefinitionDefinitionDefinitionDefinitionDefinition

Let 𝜎:𝔐→R[[𝔑]] be a strong difference operator with 0<𝜎𝔪≻1 for all 𝔪∈𝔐≻1.
Then 𝜎 is asymptotic and positive.

PropositionPropositionPropositionPropositionProposition



AsymptoticAsymptoticAsymptotic andandand positivepositivepositive differencedifferencedifference operatorsoperatorsoperators 272727///292929

We say that a difference operator 𝜎:R[[𝔐]]→R[[𝔑]] is asymptoticasymptoticasymptotic resp. positivepositivepositive if
f ≺ 1 ⟹ 𝜎 f ≺ 1
f > 0 ⟹ 𝜎 f > 0.

DefinitionDefinitionDefinitionDefinitionDefinition

Let 𝜎:𝔐→R[[𝔑]] be a strong difference operator with 0<𝜎𝔪≻1 for all 𝔪∈𝔐≻1.
Then 𝜎 is asymptotic and positive.

PropositionPropositionPropositionPropositionProposition

ProofProofProof... If f ≺1, then 𝜎𝔪≺1 for all 𝔪∈supp f , whence 𝜎 f ≺1.
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We say that a difference operator 𝜎:R[[𝔐]]→R[[𝔑]] is asymptoticasymptoticasymptotic resp. positivepositivepositive if
f ≺ 1 ⟹ 𝜎 f ≺ 1
f > 0 ⟹ 𝜎 f > 0.

DefinitionDefinitionDefinitionDefinitionDefinition

Let 𝜎:𝔐→R[[𝔑]] be a strong difference operator with 0<𝜎𝔪≻1 for all 𝔪∈𝔐≻1.
Then 𝜎 is asymptotic and positive.

PropositionPropositionPropositionPropositionProposition

ProofProofProof... If f ≺1, then 𝜎𝔪≺1 for all 𝔪∈supp f , whence 𝜎 f ≺1.
It follows also that f ≺ g⇒ f /g≺1⇒𝜎( f /g)≺1⇒ (𝜎 f )/(𝜎g)≺1⇒𝜎 f ≺𝜎g.
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We say that a difference operator 𝜎:R[[𝔐]]→R[[𝔑]] is asymptoticasymptoticasymptotic resp. positivepositivepositive if
f ≺ 1 ⟹ 𝜎 f ≺ 1
f > 0 ⟹ 𝜎 f > 0.

DefinitionDefinitionDefinitionDefinitionDefinition

Let 𝜎:𝔐→R[[𝔑]] be a strong difference operator with 0<𝜎𝔪≻1 for all 𝔪∈𝔐≻1.
Then 𝜎 is asymptotic and positive.

PropositionPropositionPropositionPropositionProposition

ProofProofProof... If f ≺1, then 𝜎𝔪≺1 for all 𝔪∈supp f , whence 𝜎 f ≺1.
It follows also that f ≺ g⇒ f /g≺1⇒𝜎( f /g)≺1⇒ (𝜎 f )/(𝜎g)≺1⇒𝜎 f ≺𝜎g.
If f >0, then f −𝜏f≺ f implies 𝜎 f −𝜎𝜏f≺𝜎 f , whence 𝜏𝜎f∼𝜎𝜏f .
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We say that a difference operator 𝜎:R[[𝔐]]→R[[𝔑]] is asymptoticasymptoticasymptotic resp. positivepositivepositive if
f ≺ 1 ⟹ 𝜎 f ≺ 1
f > 0 ⟹ 𝜎 f > 0.

DefinitionDefinitionDefinitionDefinitionDefinition

Let 𝜎:𝔐→R[[𝔑]] be a strong difference operator with 0<𝜎𝔪≻1 for all 𝔪∈𝔐≻1.
Then 𝜎 is asymptotic and positive.

PropositionPropositionPropositionPropositionProposition

ProofProofProof... If f ≺1, then 𝜎𝔪≺1 for all 𝔪∈supp f , whence 𝜎 f ≺1.
It follows also that f ≺ g⇒ f /g≺1⇒𝜎( f /g)≺1⇒ (𝜎 f )/(𝜎g)≺1⇒𝜎 f ≺𝜎g.
If f >0, then f −𝜏f≺ f implies 𝜎 f −𝜎𝜏f≺𝜎 f , whence 𝜏𝜎f∼𝜎𝜏f .
Now 𝜎𝜏f=𝜎(cf 𝔡f)= (𝜎cf) (𝜎𝔡f)= cf 𝜎𝔡f>0. □



CompositionCompositionComposition ofofof transseriestransseriestransseries 282828///292929

Given g∈T>R=R≻1,>0, there exists a unique strong exp-log difference operator 𝜎 on T
with 𝜎x= g. This operator is asymptotic and positive. For f ∈T, we define f ∘ g≔𝜎 f.

PropositionPropositionPropositionPropositionProposition
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Given g∈T>R=R≻1,>0, there exists a unique strong exp-log difference operator 𝜎 on T
with 𝜎x= g. This operator is asymptotic and positive. For f ∈T, we define f ∘ g≔𝜎 f.

PropositionPropositionPropositionPropositionProposition

ProofProofProof... By induction on h, we show that there exists a unique such 𝜎 on Th.
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Given g∈T>R=R≻1,>0, there exists a unique strong exp-log difference operator 𝜎 on T
with 𝜎x= g. This operator is asymptotic and positive. For f ∈T, we define f ∘ g≔𝜎 f.

PropositionPropositionPropositionPropositionProposition

ProofProofProof... By induction on h, we show that there exists a unique such 𝜎 on Th.

On L, we must have
𝜎(x𝛼0 ⋅ ⋅ ⋅ (logr x)𝛼r) = g𝛼0 ⋅ ⋅ ⋅ (logr g)𝛼r.

This map 𝜎:𝔏→T satisfies the conditions of the previous three propositions.
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Given g∈T>R=R≻1,>0, there exists a unique strong exp-log difference operator 𝜎 on T
with 𝜎x= g. This operator is asymptotic and positive. For f ∈T, we define f ∘ g≔𝜎 f.

PropositionPropositionPropositionPropositionProposition

ProofProofProof... By induction on h, we show that there exists a unique such 𝜎 on Th.

On L, we must have
𝜎(x𝛼0 ⋅ ⋅ ⋅ (logr x)𝛼r) = g𝛼0 ⋅ ⋅ ⋅ (logr g)𝛼r.

This map 𝜎:𝔏→T satisfies the conditions of the previous three propositions.

Assume 𝜎:Th→T. On 𝔗h+1=expTh,≻, we must have

𝜎(e𝜑e𝜓) = 𝜎e𝜑+𝜓 = e𝜎(𝜑+𝜓) = e𝜎𝜑+𝜎𝜓 = e𝜎𝜑e𝜎𝜓.

This map ∂:𝔗h+1→T satisfies the conditions of our two propositions. □
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For all f ∈T and g,h∈T>R, we have
f ∘ (g∘h) = ( f ∘ g)∘h

( f ∘ g)′ = g′ ( f ∘ g).

PropositionPropositionPropositionPropositionProposition
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For all f ∈T and g,h∈T>R, we have
f ∘ (g∘h) = ( f ∘ g)∘h

( f ∘ g)′ = g′ ( f ∘ g).

PropositionPropositionPropositionPropositionProposition

If f , 𝛿∈T are such that 𝛿≺x and 𝔪†𝛿≺1 for all 𝔪∈supp f, then

f ∘ (x+𝛿) = f + f ′ 𝛿+ 1
2 f ′′ 𝛿2+ ⋅ ⋅ ⋅.

PropositionPropositionPropositionPropositionProposition
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For all f ∈T and g,h∈T>R, we have
f ∘ (g∘h) = ( f ∘ g)∘h

( f ∘ g)′ = g′ ( f ∘ g).

PropositionPropositionPropositionPropositionProposition

If f , 𝛿∈T are such that 𝛿≺x and 𝔪†𝛿≺1 for all 𝔪∈supp f, then

f ∘ (x+𝛿) = f + f ′ 𝛿+ 1
2 f ′′ 𝛿2+ ⋅ ⋅ ⋅.

PropositionPropositionPropositionPropositionProposition

For any g∈T>R, there exists a unique ginv∈T>R with ginv∘ g=x.
PropositionPropositionPropositionPropositionProposition
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For all f ∈T and g,h∈T>R, we have
f ∘ (g∘h) = ( f ∘ g)∘h

( f ∘ g)′ = g′ ( f ∘ g).

PropositionPropositionPropositionPropositionProposition

If f , 𝛿∈T are such that 𝛿≺x and 𝔪†𝛿≺1 for all 𝔪∈supp f, then

f ∘ (x+𝛿) = f + f ′ 𝛿+ 1
2 f ′′ 𝛿2+ ⋅ ⋅ ⋅.

PropositionPropositionPropositionPropositionProposition

For any g∈T>R, there exists a unique ginv∈T>R with ginv∘ g=x.
PropositionPropositionPropositionPropositionProposition

ProofsProofsProofs... See LNM 1888.


	Logarithmic depth
	Logarithmic depth
	Logarithmic depth
	Logarithmic depth
	Exponential transseries.
	Exponential transseries.
	Exponential transseries.
	Exponential transseries.
	Exponential transseries.
	Exponential transseries.
	Logarithmic closure.
	Exponential transseries.
	Logarithmic closure.
	Level.
	Flatness relations.
	Flatness relations.
	Recursive expansions.
	Flatness relations.
	Recursive expansions.
	Flatness relations.
	Recursive expansions.

