Lesson 7 — Algebraic differential equations over \mathbb{T}

Joris van der Hoeven

IMS summer school Singapore, July 13, 2023

CONTRACTOR DE LA CONTRACT

Differential polynomials over \mathbb{T}

Differential polynomials as series. $P \in \mathbb{T}{Y} \subseteq \mathbb{R}{Y}[[\mathcal{I}]]$

- supp P $\vartheta(P) \in \mathfrak{T}$ $D(P) \in \mathbb{R} \{Y\}$ $\leqslant, \prec, \asymp, \dots$
 - support of *P*
 - dominant monomial of *P*
- $D(P) \in \mathbb{R}{Y}$ dominant coefficient or "part" of *P*
- $\leq, <, \approx, \dots$ extend to $\mathbb{T}{Y}$

Standard decomposition

Standard decomposition. $P \in \mathbb{T}{Y}$ of order *r*.

$$P = \sum_{i=(i_0,\ldots,i_r)\in\mathbb{N}^{r+1}} P_i Y^i, \qquad Y^i := Y^{i_0} (Y')^{i_1} \cdots (Y^{(r)})^{i_r}.$$

Standard decomposition

Standard decomposition. $P \in \mathbb{T}{Y}$ of order *r*.

$$P = \sum_{i=(i_0,\ldots,i_r)\in\mathbb{N}^{r+1}} P_i Y^i, \qquad Y^i := Y^{i_0} (Y')^{i_1} \cdots (Y^{(r)})^{i_r}.$$

Degree and valuation.

$$\deg P := \max \{|\mathbf{i}|: P_{\mathbf{i}} \neq 0\}$$

val P := min $\{|\mathbf{i}|: P_{\mathbf{i}} \neq 0\}$

Standard decomposition

Standard decomposition. $P \in \mathbb{T}{Y}$ of order *r*.

$$P = \sum_{i=(i_0,\ldots,i_r)\in\mathbb{N}^{r+1}} P_i Y^i, \qquad Y^i := Y^{i_0} (Y')^{i_1} \cdots (Y^{(r)})^{i_r}.$$

Degree and valuation.

$$\deg P := \max \{ |\mathbf{i}| : P_{\mathbf{i}} \neq 0 \}$$

val P := min $\{ |\mathbf{i}| : P_{\mathbf{i}} \neq 0 \}$

Decomposition in homogeneous parts. $P \in \mathbb{T}{Y}$ of degree *d*

$$P = P_d + \dots + P_0,$$
 $P_k := \sum_{|i|=k} P_i Y^i,$ $|i| := i_0 + \dots + i_r.$

Additive conjugation

 $P \in \mathbb{T}{Y}, \varphi \in \mathbb{T}$

 $P_{+\varphi}(y) = P(y+\varphi)$

Additive conjugation

 $P \in \mathbb{T}{Y}, \varphi \in \mathbb{T}$

$$P_{+\varphi}(y) = P(y+\varphi)$$

If *P* has order *r*, then for any $i = (i_0, \ldots, i_r) \in \mathbb{N}^{r+1}$,

$$P_{+\varphi,i} = P^{(i)}(\varphi) = \frac{\partial P}{\partial Y^{i_0} \cdots (\partial Y^{(r)})^{i_r}}(\varphi)$$

= $\sum_{j \ge i} {j \choose i} \varphi^{j-i} P_j = \sum_{j_0 \ge i_0, \dots, j_r \ge i_r} {j_0 \choose i_0} \cdots {j_r \choose i_r} \varphi^{i_0} (\varphi')^{i_1} \cdots (\varphi^{(r)})^{i_r} P_j.$

Additive conjugation

 $P \in \mathbb{T}{Y}, \varphi \in \mathbb{T}$

$$P_{+\varphi}(y) = P(y+\varphi)$$

If *P* has order *r*, then for any $i = (i_0, \ldots, i_r) \in \mathbb{N}^{r+1}$,

$$P_{+\varphi,i} = P^{(i)}(\varphi) = \frac{\partial P}{\partial Y^{i_0} \cdots (\partial Y^{(r)})^{i_r}}(\varphi)$$

= $\sum_{j \ge i} {j \choose i} \varphi^{j-i} P_j = \sum_{j_0 \ge i_0, \dots, j_r \ge i_r} {j_0 \choose i_0} \cdots {j_r \choose i_r} \varphi^{i_0} (\varphi')^{i_1} \cdots (\varphi^{(r)})^{i_r} P_j.$

Proposition

If $\varphi = c + \varepsilon$ *with* $c \in \mathbb{R}$ *and* $\varepsilon < 1$ *, then*

$$P_{+\varphi} \asymp P$$
$$D(P_{+\varphi}) = D(P)_{+\varphi}$$

Decomposition by orders

Decomposition by orders. *P* of order *r* and degree *d*.

$$P = \sum_{\substack{\omega = (\omega_1, \dots, \omega_l) \\ l \leq d}} P_{[\omega]} Y^{[\omega]}, \qquad Y^{[\omega]} := Y^{(\omega_1)} \cdots Y^{(\omega_l)}.$$

Here we assume that $P_{[\omega]} = P_{[\tau]}$ if $\tau = (\omega_{\sigma(1)}, \dots, \omega_{\sigma(l)})$ for some permutation σ .

Decomposition by orders

Decomposition by orders. *P* of order *r* and degree *d*.

$$P = \sum_{\substack{\omega = (\omega_1, \dots, \omega_l) \\ l \leq d}} P_{[\omega]} Y^{[\omega]}, \qquad Y^{[\omega]} := Y^{(\omega_1)} \cdots Y^{(\omega_l)}.$$

Here we assume that $P_{[\omega]} = P_{[\tau]}$ if $\tau = (\omega_{\sigma(1)}, \dots, \omega_{\sigma(l)})$ for some permutation σ .

Weight and weighted valuation.

wt $P := \max \{ |\boldsymbol{\omega}| : P_{[\boldsymbol{\omega}]} \neq 0 \}$ wv $P := \min \{ |\boldsymbol{\omega}| : P_{[\boldsymbol{\omega}]} \neq 0 \}.$

Decomposition by orders

Decomposition by orders. *P* of order *r* and degree *d*.

$$P = \sum_{\substack{\omega = (\omega_1, \dots, \omega_l) \\ l \leq d}} P_{[\omega]} Y^{[\omega]}, \qquad Y^{[\omega]} := Y^{(\omega_1)} \cdots Y^{(\omega_l)}.$$

Here we assume that $P_{[\omega]} = P_{[\tau]}$ if $\tau = (\omega_{\sigma(1)}, \dots, \omega_{\sigma(l)})$ for some permutation σ .

Weight and weighted valuation.

wt $P := \max \{ |\boldsymbol{\omega}| : P_{[\boldsymbol{\omega}]} \neq 0 \}$ wv $P := \min \{ |\boldsymbol{\omega}| : P_{[\boldsymbol{\omega}]} \neq 0 \}.$

Decomposition into isobaric parts. *P* of weight *w*

$$P = P_{[w]} + \dots + P_{[0]}, \qquad P_{[k]} := \sum_{|\omega|=k} P_{[\omega]} Y^{[\omega]}.$$

Multiplicative conjugation

$$P \in \mathbb{T}{Y}, \varphi \in \mathbb{T}^{\neq 0}$$

 $P_{\times\varphi}(y) = P(\varphi y)$

Multiplicative conjugation

 $P \in \mathbb{T}{Y}, \varphi \in \mathbb{T}^{\neq 0}$

$$P_{\times \varphi}(y) = P(\varphi y)$$

For any ω , we have

$$P_{\times\varphi,[\omega]} = \sum_{\tau \ge \omega} {\tau \choose \omega} \varphi^{[\tau-\omega]} P_{[\tau]}.$$

Multiplicative conjugation

 $P \in \mathbb{T}{Y}, \varphi \in \mathbb{T}^{\neq 0}$

$$P_{\times \varphi}(y) = P(\varphi y)$$

For any ω , we have

$$P_{\times \varphi, [\omega]} = \sum_{\tau \ge \omega} {\tau \choose \omega} \varphi^{[\tau - \omega]} P_{[\tau]}.$$

Proposition

If
$$\varphi \gg x$$
, then $\frac{\mathfrak{d}(P_{\times \varphi})}{\mathfrak{d}(P)} \ll \varphi$.
If $\varphi \gg x$ and P is homogeneous of degree d, then $\frac{\mathfrak{d}(P_{\times \varphi})}{\varphi^d \mathfrak{d}(P)} \ll \varphi$.

Upward shifting

$$P\uparrow(y\uparrow) = P(y)\uparrow$$

Upward shifting

$$P\uparrow(y\uparrow) = P(y)\uparrow$$

For any ω , we have

$$P\uparrow_{[\omega]} = \sum_{\tau \ge \omega} s_{\tau,\omega} e^{-|\tau|x} P_{[\tau]}\uparrow,$$

where

$$s_{\tau,\omega} = s_{\tau_1,\omega_1} \cdots s_{\tau_l,\omega_l} \in \mathbb{Z}, \qquad f(\log x)^{(j)} = \sum_{0 \leq i \leq j} \frac{s_{i,j}}{x^j} f^{(j)}(\log x).$$

Upward shifting

$$P\uparrow(y\uparrow) = P(y)\uparrow$$

For any ω , we have

$$P\uparrow_{[\omega]} = \sum_{\tau \ge \omega} s_{\tau,\omega} e^{-|\tau|x} P_{[\tau]}\uparrow,$$

where

$$s_{\tau,\omega} = s_{\tau_1,\omega_1} \cdots s_{\tau_l,\omega_l} \in \mathbb{Z}, \qquad f(\log x)^{(j)} = \sum_{0 \leq i \leq j} \frac{s_{i,j}}{x^j} f^{(j)}(\log x).$$

Proposition

We have
$$\frac{\mathfrak{d}(P\uparrow)}{\mathfrak{d}(P)\uparrow} \ll e^{x}$$
.
If P is isobaric of weight w, then $\frac{\mathfrak{d}(P\uparrow)}{e^{-wx}\mathfrak{d}(P)\uparrow} \ll e^{x}$.

Getting rid of logarithms

Proposition

If $P \in \mathbb{T}{Y}$ *has level l, then* $P \uparrow$ *has level at least* min(l + 1, 1).

Getting rid of logarithms

Proposition

If $P \in \mathbb{T}{Y}$ *has level l, then* $P \uparrow$ *has level at least* min(l + 1, 1).

Proposition

If $P \in \mathbb{R}[[\mathfrak{B}^{\mathbb{R}}]] \{Y\}$ for a transbasis of level $l \leq 0$ and $\exp_l x, \exp_{l-1} x, \dots, x \in \mathbb{R}[[\mathfrak{B}^{\mathbb{R}}]]$, then $P \uparrow \in \mathbb{R}[[\mathfrak{B}^{\mathbb{R}}]] \{Y\}$, where $\mathfrak{B} \uparrow$ has level l+1 and $\exp_{l-1} x, \dots, x \in \mathbb{R}[[\mathfrak{B}^{\mathbb{R}}]]$.

Getting rid of logarithms

Proposition

If $P \in \mathbb{T}{Y}$ *has level l, then* $P \uparrow$ *has level at least* min(l + 1, 1).

Proposition

If $P \in \mathbb{R}[[\mathfrak{B}^{\mathbb{R}}]] \{Y\}$ for a transbasis of level $l \leq 0$ and $\exp_l x, \exp_{l-1} x, \dots, x \in \mathbb{R}[[\mathfrak{B}^{\mathbb{R}}]]$, then $P \uparrow \in \mathbb{R}[[\mathfrak{B}^{\uparrow \mathbb{R}}]] \{Y\}$, where $\mathfrak{B} \uparrow$ has level l+1 and $\exp_{l-1} x, \dots, x \in \mathbb{R}[[\mathfrak{B}^{\uparrow \mathbb{R}}]]$.

Proposition

If $P \in \mathbb{R}[[e^x = \mathfrak{b}_1; \ldots; \mathfrak{b}_n]] \{Y\}$, then $P \uparrow \in \mathbb{R}[[e^x; \mathfrak{b}_1 \uparrow; \ldots; \mathfrak{b}_n \uparrow]] \{Y\}$.

$$y = y$$
$$y' = yy^{\dagger}$$

$$y = y$$

$$y' = yy^{\dagger}$$

$$y'' = y(y^{\dagger})^{2} + yy^{\dagger}y^{\dagger\dagger}$$

$$y = y$$

$$y' = yy^{\dagger}$$

$$y'' = y(y^{\dagger})^{2} + yy^{\dagger}y^{\dagger\dagger}$$

$$\vdots$$

$$y^{(k)} \in \mathbb{Z}[y, y^{\dagger}, y^{\dagger\dagger}, \dots, y^{\langle k \rangle}].$$

$$y = y$$

$$y' = yy^{\dagger}$$

$$y'' = y(y^{\dagger})^{2} + yy^{\dagger}y^{\dagger\dagger}$$

$$\vdots$$

$$y^{(k)} \in \mathbb{Z}[y, y^{\dagger}, y^{\dagger\dagger}, \dots, y^{\langle k \rangle}].$$

Logarithmic decomposition.

$$P = \sum_{i \in \mathbb{N}^{r+1}} P_{\langle i \rangle} y^{\langle i \rangle}, \qquad y^{\langle i \rangle} = y^{i_0} (y^{\dagger})^{i_1} \cdots (y^{\langle r \rangle})^{i_r}$$

$$y = y$$

$$y' = yy^{\dagger}$$

$$y'' = y(y^{\dagger})^{2} + yy^{\dagger}y^{\dagger\dagger}$$

$$\vdots$$

$$y^{(k)} \in \mathbb{Z}[y, y^{\dagger}, y^{\dagger\dagger}, \dots, y^{\langle k \rangle}].$$

Logarithmic decomposition.

$$P = \sum_{i \in \mathbb{N}^{r+1}} P_{\langle i \rangle} y^{\langle i \rangle}, \qquad y^{\langle i \rangle} = y^{i_0} (y^{\dagger})^{i_1} \cdots (y^{\langle r \rangle})^{i_r}$$

Proposition

Let i be largest for \leq_{lex} *on* \mathbb{N}^{r+1} *with* $P_{\langle i \rangle} \neq 0$ *. Then for* $y \to \infty$ *, we have* $P(y) \sim P_{\langle i \rangle} y^{\langle i \rangle} \neq 0$ *.*

$$y = y$$

$$y' = yy^{\dagger}$$

$$y'' = y(y^{\dagger})^{2} + yy^{\dagger}y^{\dagger\dagger}$$

$$\vdots$$

$$y^{(k)} \in \mathbb{Z}[y, y^{\dagger}, y^{\dagger\dagger}, \dots, y^{\langle k \rangle}].$$

Logarithmic decomposition.

$$P = \sum_{i \in \mathbb{N}^{r+1}} P_{\langle i \rangle} y^{\langle i \rangle}, \qquad y^{\langle i \rangle} = y^{i_0} (y^{\dagger})^{i_1} \cdots (y^{\langle r \rangle})^{i_r}$$

Proposition

Let i be largest for \leq_{lex} *on* \mathbb{N}^{r+1} *with* $P_{\langle i \rangle} \neq 0$ *. Then for* $y \to \infty$ *, we have* $P(y) \sim P_{\langle i \rangle} y^{\langle i \rangle} \neq 0$ *.*

Proof. For large *y*, we have $y \gg y^{\dagger} \gg y^{\dagger\dagger} \gg \cdots$.

10/30

$$e^{-e^{x}}y^{3} + yy'' - (y')^{2} + e^{-x}y' + e^{-3x} = 0$$

Algebraic starting monomials.

• $y \approx e^{-2x}$

$$e^{-e^{x}}y^{3} + yy^{\prime\prime} - (y^{\prime})^{2} + e^{-x}y^{\prime} + e^{-3x} = 0$$

Algebraic starting monomials.

- $y \approx e^{-2x}$ $y \approx x^2 e^{-x}$

$$e^{-e^{x}}y^{3} + yy^{\prime\prime} - (y^{\prime})^{2} + e^{-x}y^{\prime} + e^{-3x} = 0$$

Algebraic starting monomials.

- $y \approx e^{-2x}$ $y \approx x^2 e^{-x}$ $y \approx e^x e^{e^x}$

$$e^{-e^{x}}y^{3} + yy'' - (y')^{2} + e^{-x}y' + e^{-3x} = 0$$

Algebraic starting monomials.

- $y \approx e^{-2x}$ $y \approx x^2 e^{-x}$
- $\eta \simeq e^x e^{e^x}$

Differential starting monomials.

• $y \approx e^{\lambda x}, \lambda > -1$

Necessary condition for the existence of a root $y \in \mathbb{T}$ of $P \in \mathbb{T}{Y}$ with y = 1?

Necessary condition for the existence of a root $y \in \mathbb{T}$ of $P \in \mathbb{T}{Y}$ with y = 1?

Tentative answer

D(P)(c) = 0 has a non-zero solution $c \in \mathbb{R}$.

Necessary condition for the existence of a root $y \in \mathbb{T}$ of $P \in \mathbb{T}$ {*Y*} with $y \approx 1$?

Tentative answer

D(P)(c) = 0 has a non-zero solution $c \in \mathbb{R}$.

Problem

$$P = x^{-2}Y^5 + (Y')^3 + x^{-1}$$

Necessary condition for the existence of a root $y \in \mathbb{T}$ of $P \in \mathbb{T}{Y}$ with y = 1?

Tentative answer

D(P)(c) = 0 has a non-zero solution $c \in \mathbb{R}$.

Problem

$$P = x^{-2}Y^{5} + (Y')^{3} + x^{-1}$$
$$D(P) = (Y')^{3}$$

Necessary condition for the existence of a root $y \in \mathbb{T}$ of $P \in \mathbb{T}{Y}$ with y = 1?

Tentative answer

D(P)(c) = 0 has a non-zero solution $c \in \mathbb{R}$.

Problem

$$P = x^{-2}Y^{5} + (Y')^{3} + x^{-1}$$

$$D(P) = (Y')^{3}$$

Any $c \in \mathbb{R}^{\neq 0}$ is a root of D(P), but P cannot have roots $y \in \mathbb{T}{Y}$ with $y \approx 1$.
When is 1 a starting monomial?

Necessary condition for the existence of a root $y \in \mathbb{T}$ of $P \in \mathbb{T}{Y}$ with y = 1?

Tentative answer

D(P)(c) = 0 has a non-zero solution $c \in \mathbb{R}$.

Problem

$$P = x^{-2}Y^{5} + (Y')^{3} + x^{-1}$$

$$D(P) = (Y')^{3}$$

Any $c \in \mathbb{R}^{\neq 0}$ is a root of D(P), but P cannot have roots $y \in \mathbb{T}{Y}$ with $y \approx 1$.

Reason

$$P(y) \!=\! 0 \land y \! \asymp \! 1 \iff P \! \uparrow \! (y \! \uparrow) \! = \! 0 \land y \! \uparrow \! \asymp \! 1$$

When is 1 a starting monomial?

Necessary condition for the existence of a root $y \in \mathbb{T}$ of $P \in \mathbb{T}{Y}$ with y = 1?

Tentative answer

D(P)(c) = 0 has a non-zero solution $c \in \mathbb{R}$.

Problem

$$P = x^{-2}Y^{5} + (Y')^{3} + x^{-1}$$

$$D(P) = (Y')^{3}$$

Any $c \in \mathbb{R}^{\neq 0}$ is a root of D(P), but P cannot have roots $y \in \mathbb{T}{Y}$ with $y \approx 1$.

Reason

$$P(y) = 0 \land y \approx 1 \iff P \uparrow (y \uparrow) = 0 \land y \uparrow \approx 1$$

$$P \uparrow = e^{-2x} Y^5 + e^{-3x} (Y')^3 + e^{-x}$$

$$D(P \uparrow) = 1.$$

Example continued

$$P = x^{-2}Y^{5} + (Y')^{3} + x^{-1} \qquad D(P) = (Y')^{3}$$

Example continued

$$P = x^{-2}Y^{5} + (Y')^{3} + x^{-1} \qquad D(P) = (Y')^{3}$$

$$P\uparrow = e^{-2x}Y^{5} + e^{-3x}(Y')^{3} + e^{-x} \qquad D(P\uparrow) = 1$$

Example continued

$$P = x^{-2}Y^{5} + (Y')^{3} + x^{-1}$$

$$P^{\uparrow} = e^{-2x}Y^{5} + e^{-3x}(Y')^{3} + e^{-x}$$

$$P^{\uparrow} = e^{-2e^{x}}Y^{5} + e^{-3e^{x} - 3x}(Y')^{3} + e^{-e^{x}}$$

$$D(P) = (Y')^3$$
$$D(P\uparrow) = 1$$
$$D(P\uparrow\uparrow) = 1$$

Example continued

$$P = x^{-2}Y^{5} + (Y')^{3} + x^{-1}$$

$$P^{\uparrow} = e^{-2x}Y^{5} + e^{-3x}(Y')^{3} + e^{-x}$$

$$P^{\uparrow\uparrow} = e^{-2e^{x}}Y^{5} + e^{-3e^{x} - 3x}(Y')^{3} + e^{-e^{x}}$$

$$P^{\uparrow\uparrow\uparrow} = e^{-2e^{e^{x}}}Y^{5} + e^{-3e^{e^{x}} - 3e^{x} - 3x}(Y')^{3} + e^{-e^{e^{x}}}$$

$$\vdots$$

$$D(P) = (Y')^{3}$$
$$D(P\uparrow) = 1$$
$$D(P\uparrow\uparrow) = 1$$

•

$$D(P\uparrow\uparrow\uparrow) = 1$$

Example continued

$$P = x^{-2}Y^{5} + (Y')^{3} + x^{-1} \qquad D(P) = (Y')^{3}$$

$$P^{\uparrow} = e^{-2x}Y^{5} + e^{-3x}(Y')^{3} + e^{-x} \qquad D(P^{\uparrow}) = 1$$

$$P^{\uparrow} = e^{-2e^{x}}Y^{5} + e^{-3e^{x} - 3x}(Y')^{3} + e^{-e^{x}} \qquad D(P^{\uparrow}) = 1$$

$$P^{\uparrow} \uparrow = e^{-2e^{e^{x}}}Y^{5} + e^{-3e^{e^{x}} - 3e^{x} - 3x}(Y')^{3} + e^{-e^{e^{x}}} \qquad D(P^{\uparrow} \uparrow) = 1$$

$$\vdots \qquad \vdots$$

Theorem DNP

Given $P \in \mathbb{T}{Y}$ *, there exists* $l_0 \in \mathbb{N}$ *and* $N(P) \in \mathbb{R}[Y](Y')^{\mathbb{N}}$ *with*

 $D(P\uparrow_l) = N(P),$ for all $l \ge l_0$.

We call N(P) the differential Newton polynomial of P.

$$P\uparrow_{[\omega]} = \sum_{\tau \ge \omega} s_{\tau,\omega} e^{-|\tau|x} P_{[\tau]}\uparrow \qquad (\star)$$

$$P\uparrow_{[\omega]} = \sum_{\tau \ge \omega} s_{\tau,\omega} e^{-|\tau|x} P_{[\tau]}\uparrow \qquad (\star)$$

Lemma

Assume that $P \in (\mathbb{E} \circ \exp)\{Y\}$. Then

 $D(P\uparrow) = D(D(P)\uparrow).$

13/30

$$P\uparrow_{[\omega]} = \sum_{\tau \ge \omega} s_{\tau,\omega} e^{-|\tau|x} P_{[\tau]}\uparrow \qquad (\star)$$

Lemma

Assume that $P \in (\mathbb{E} \circ \exp)\{Y\}$. Then

 $D(P\uparrow) \ = \ D(D(P)\uparrow).$

$$P\uparrow_{[\omega]} = \sum_{\tau \ge \omega} s_{\tau,\omega} e^{-|\tau|x} P_{[\tau]}\uparrow \qquad (\star)$$

Lemma

Assume that $P \in (\mathbb{E} \circ \exp)\{Y\}$. Then

 $D(P\uparrow) = D(D(P)\uparrow).$

$$P = D(P) + O(e^{-\sqrt{x}}) \qquad (P \in (\mathbb{E} \circ \exp)\{Y\})$$

$$P\uparrow_{[\omega]} = \sum_{\tau \ge \omega} s_{\tau,\omega} e^{-|\tau|x} P_{[\tau]}\uparrow \qquad (\star)$$

Lemma

Assume that $P \in (\mathbb{E} \circ \exp)\{Y\}$. Then

 $D(P\uparrow) = D(D(P)\uparrow).$

$$P = D(P) + O(e^{-\sqrt{x}}) \qquad (P \in (\mathbb{E} \circ \exp)\{Y\})$$

$$P\uparrow = D(P)\uparrow + O(e^{-e^{x/2}}) \qquad (by (\star))$$

$$P\uparrow_{[\omega]} = \sum_{\tau \ge \omega} s_{\tau,\omega} e^{-|\tau|x} P_{[\tau]}\uparrow \qquad (\star)$$

Lemma

Assume that $P \in (\mathbb{E} \circ \exp)\{Y\}$. Then

 $D(P\uparrow) = D(D(P)\uparrow).$

$$P = D(P) + O(e^{-\sqrt{x}}) \qquad (P \in (\mathbb{E} \circ \exp)\{Y\})$$

$$P\uparrow = D(P)\uparrow + O(e^{-e^{x/2}}) \qquad (by (\star))$$

$$P\uparrow \leq e^{x} \qquad (by (\star))$$

$$P\uparrow_{[\omega]} = \sum_{\tau \ge \omega} s_{\tau,\omega} e^{-|\tau|x} P_{[\tau]}\uparrow \qquad (\star)$$

Lemma

Assume that $P \in (\mathbb{E} \circ \exp)\{Y\}$. Then

 $D(P\uparrow) = D(D(P)\uparrow).$

Proof. Without loss of generality, we may assume that $P \approx 1$.

$$P = D(P) + O(e^{-\sqrt{x}}) \qquad (P \in (\mathbb{E} \circ \exp)\{Y\})$$

$$P\uparrow = D(P)\uparrow + O(e^{-e^{x/2}}) \qquad (by (\star))$$

$$P\uparrow \not\leq e^{x} \qquad (by (\star))$$

$$P\uparrow - D(P)\uparrow \prec P\uparrow \qquad \Box$$

13/30

$$P\uparrow_{[\omega]} = \sum_{\tau \geqslant \omega} s_{\tau,\omega} e^{-|\tau|x} P_{[\tau]}\uparrow \qquad (\star)$$

Lemma

a) If $P \in \mathbb{R}{Y}$, then wt $P\uparrow = wv P$. *b)* If $wv P\uparrow = wv P$, then $P\uparrow = e^{-(wv P)x}P$ and $D(P\uparrow) = P$.

$$P\uparrow_{[\omega]} = \sum_{\tau \geqslant \omega} s_{\tau,\omega} e^{-|\tau|x} P_{[\tau]}\uparrow \qquad (\star)$$

Lemma

a) If $P \in \mathbb{R}{Y}$, then wt $P \uparrow = wv P$.

b) If wv
$$P\uparrow =$$
 wv P , then $P\uparrow = e^{-(wvP)x}P$ and $D(P\uparrow) = P$

Proof. From (*), we deduce,

$$P\uparrow \approx e^{-(wvP)x}$$

$$P\uparrow_{[\omega]} = \sum_{\tau \geqslant \omega} s_{\tau,\omega} e^{-|\tau|x} P_{[\tau]}\uparrow \qquad (\star)$$

Lemma

a) If $P \in \mathbb{R}{Y}$, then wt $P \uparrow = wv P$.

b) If wv
$$P\uparrow =$$
 wv P , then $P\uparrow = e^{-(wvP)x}P$ and $D(P\uparrow) = P$

Proof. From (*), we deduce,

$$P\uparrow \approx e^{-(wvP)x}$$
$$D(P\uparrow) = \sum_{|\tau|=wvP, \ \tau \geqslant \omega} s_{\tau,\omega} P_{[\tau]}\uparrow Y^{[\omega]}.$$

14/30

$$P\uparrow_{[\omega]} = \sum_{\tau \ge \omega} s_{\tau,\omega} e^{-|\tau|x} P_{[\tau]}\uparrow \qquad (\star)$$

Lemma

a) If
$$P \in \mathbb{R}{Y}$$
, then wt $P \uparrow = wv P$.

b) If wv
$$P\uparrow = wv P$$
, then $P\uparrow = e^{-(wvP)x}P$ and $D(P\uparrow) = P$.

Proof. From (*), we deduce,

$$P\uparrow \approx e^{-(wvP)x}$$

$$D(P\uparrow) = \sum_{|\tau|=wvP, \ \tau \geqslant \omega} s_{\tau,\omega} P_{[\tau]}\uparrow Y^{[\omega]}.$$

If $wv P \uparrow = wv P$, then the last formula becomes

$$D(P\uparrow) = \sum_{|\tau|=\mathrm{wv}P, \ \tau=\omega} s_{\tau,\omega} P_{[\tau]}\uparrow Y^{[\omega]} = P.$$

$$P\uparrow_{[\omega]} = \sum_{\tau \ge \omega} s_{\tau,\omega} e^{-|\tau|x} P_{[\tau]}\uparrow \qquad (\star)$$

Lemma

Given $P \in \mathbb{T}{Y}$ *, there exists* $l_0 \in \mathbb{N}$ *and isobaric* $N(P) \in \mathbb{R}{Y}$ *with*

 $D(P\uparrow_l) = N(P), \quad \text{for all } l \ge l_0.$

$$P\uparrow_{[\omega]} = \sum_{\tau \ge \omega} s_{\tau,\omega} e^{-|\tau|x} P_{[\tau]}\uparrow \qquad (\star)$$

Lemma

Given $P \in \mathbb{T}{Y}$ *, there exists* $l_0 \in \mathbb{N}$ *and isobaric* $N(P) \in \mathbb{R}{Y}$ *with*

$$D(P\uparrow_l) = N(P), \quad \text{for all } l \ge l_0.$$

Proof. The previous two lemmas yield

 $\operatorname{wt} D(P) \ge \operatorname{wv} D(P) = \operatorname{wt} D(P\uparrow) \ge \operatorname{wv} D(P\uparrow) = \operatorname{wt} D(P\uparrow\uparrow) \ge \cdots$

In other words, wv $D(P\uparrow_l)$ stabilizes for sufficiently large $l \ge l_0$.

$$P\uparrow_{[\omega]} = \sum_{\tau \geqslant \omega} s_{\tau,\omega} e^{-|\tau|x} P_{[\tau]}\uparrow \qquad (\star)$$

Lemma

Given $P \in \mathbb{T}{Y}$ *, there exists* $l_0 \in \mathbb{N}$ *and isobaric* $N(P) \in \mathbb{R}{Y}$ *with*

$$D(P\uparrow_l) = N(P), \quad \text{for all } l \ge l_0.$$

Proof. The previous two lemmas yield

 $\operatorname{wt} D(P) \ge \operatorname{wv} D(P) = \operatorname{wt} D(P\uparrow) \ge \operatorname{wv} D(P\uparrow) = \operatorname{wt} D(P\uparrow\uparrow) \ge \cdots$

In other words, wv $D(P\uparrow_l)$ stabilizes for sufficiently large $l \ge l_0$.

When that happens, we have $D(P\uparrow_{l+1}) = D(D(P\uparrow_l)\uparrow) = D(P\uparrow_l)$ for all $l \ge l_0$, again by the previous two lemmas

$$P\uparrow_{[\omega]} = \sum_{\tau \ge \omega} s_{\tau,\omega} e^{-|\tau|x} P_{[\tau]}\uparrow \qquad (\star)$$

Lemma

Given $P \in \mathbb{T}{Y}$ *, there exists* $l_0 \in \mathbb{N}$ *and isobaric* $N(P) \in \mathbb{R}{Y}$ *with*

$$D(P\uparrow_l) = N(P), \quad \text{for all } l \ge l_0.$$

Proof. The previous two lemmas yield

 $\operatorname{wt} D(P) \ge \operatorname{wv} D(P) = \operatorname{wt} D(P\uparrow) \ge \operatorname{wv} D(P\uparrow) = \operatorname{wt} D(P\uparrow\uparrow) \ge \cdots$

In other words, wv $D(P\uparrow_l)$ stabilizes for sufficiently large $l \ge l_0$.

When that happens, we have $D(P\uparrow_{l+1}) = D(D(P\uparrow_l)\uparrow) = D(P\uparrow_l)$ for all $l \ge l_0$, again by the previous two lemmas, and $D(P\uparrow_l)$ is isobaric.

$$P\uparrow_{[\omega]} = \sum_{\tau \ge \omega} s_{\tau,\omega} e^{-|\tau|x} P_{[\tau]}\uparrow \qquad (\star)$$

Lemma

If $P \in \mathbb{R}{Y}$ is isobaric of weight w with $D(P\uparrow) = P$, then $P \in \mathbb{R}[Y](Y')^{\mathbb{N}}$.

$$P\uparrow_{[\omega]} = \sum_{\tau \ge \omega} s_{\tau,\omega} e^{-|\tau|x} P_{[\tau]}\uparrow \qquad (\star)$$

Lemma

If $P \in \mathbb{R}{Y}$ is isobaric of weight w with $D(P\uparrow) = P$, then $P \in \mathbb{R}[Y](Y')^{\mathbb{N}}$.

Proof. Let $P^* = \sum_{i \in \mathbb{N}} P_{(i,w,0,...,0)} Y^i (Y')^w$.

Assume for contradiction that $\Delta := P - P^* \neq 0$.

$$P\uparrow_{[\omega]} = \sum_{\tau \ge \omega} s_{\tau,\omega} e^{-|\tau|x} P_{[\tau]}\uparrow \qquad (\star)$$

Lemma

If $P \in \mathbb{R}{Y}$ is isobaric of weight w with $D(P\uparrow) = P$, then $P \in \mathbb{R}[Y](Y')^{\mathbb{N}}$.

Proof. Let $P^* = \sum_{i \in \mathbb{N}} P_{(i,w,0,...,0)} Y^i (Y')^w$.

Assume for contradiction that $\Delta := P - P^* \neq 0$.

Since $i_0 = i_1 = 0$ for all *i* with $\Delta_i \neq 0$, we have $\Delta(x) = 0$.

$$P\uparrow_{[\omega]} = \sum_{\tau \ge \omega} s_{\tau,\omega} e^{-|\tau|x} P_{[\tau]}\uparrow \qquad (\star)$$

Lemma

If $P \in \mathbb{R}{Y}$ is isobaric of weight w with $D(P\uparrow) = P$, then $P \in \mathbb{R}[Y](Y')^{\mathbb{N}}$.

Proof. Let $P^* = \sum_{i \in \mathbb{N}} P_{(i,w,0,\ldots,0)} Y^i (Y')^w$.

Assume for contradiction that $\Delta := P - P^* \neq 0$.

Since $i_0 = i_1 = 0$ for all *i* with $\Delta_i \neq 0$, we have $\Delta(x) = 0$.

Now Δ is isobaric of weight w and $D(\Delta \uparrow) = \Delta$. From (*), it follows that $\Delta \uparrow = e^{-wx} \Delta$.

$$P\uparrow_{[\omega]} = \sum_{\tau \ge \omega} s_{\tau,\omega} e^{-|\tau|x} P_{[\tau]}\uparrow \qquad (\star)$$

Lemma

If $P \in \mathbb{R}{Y}$ is isobaric of weight w with $D(P\uparrow) = P$, then $P \in \mathbb{R}[Y](Y')^{\mathbb{N}}$.

Proof. Let $P^* = \sum_{i \in \mathbb{N}} P_{(i,w,0,\ldots,0)} \Upsilon^i (\Upsilon')^w$.

Assume for contradiction that $\Delta := P - P^* \neq 0$.

Since $i_0 = i_1 = 0$ for all *i* with $\Delta_i \neq 0$, we have $\Delta(x) = 0$.

Now Δ is isobaric of weight w and $D(\Delta \uparrow) = \Delta$. From (*), it follows that $\Delta \uparrow = e^{-wx} \Delta$.

Consequently $\Delta(x) = \Delta(e^x) = \Delta(e^{e^x}) = \cdots = 0$, which is impossible.

Theorem (DNP)

Given $P \in \mathbb{T}{Y}$, there exists $l_0 \in \mathbb{N}$ and $N(P) \in \mathbb{R}[Y](Y')^{\mathbb{N}}$ with $D(P\uparrow_l) = N(P)$, for all $l \ge l_0$.

We call N(P) the differential Newton polynomial of P.

Theorem (DNP)

Given $P \in \mathbb{T}{Y}$, there exists $l_0 \in \mathbb{N}$ and $N(P) \in \mathbb{R}[Y](Y')^{\mathbb{N}}$ with

 $D(P\uparrow_l) = N(P), \quad \text{for all } l \ge l_0.$

We call N(P) the differential Newton polynomial of P.

Newton degree. For $P \in \mathbb{T}{Y}^{\neq 0}$ and $\mathfrak{m} \in \mathfrak{T}$, we define

$$\deg_{\leq \mathfrak{m}} P := \deg N(P_{\times \mathfrak{m}})$$
$$\deg_{<\mathfrak{m}} P := \operatorname{val} N(P_{\times \mathfrak{m}})$$

Theorem (DNP)

Given $P \in \mathbb{T}{Y}$, there exists $l_0 \in \mathbb{N}$ and $N(P) \in \mathbb{R}[Y](Y')^{\mathbb{N}}$ with $D(P\uparrow_l) = N(P)$, for all $l \ge l_0$.

We call N(P) the differential Newton polynomial of P.

Newton degree. For $P \in \mathbb{T}{Y}^{\neq 0}$ and $\mathfrak{m} \in \mathfrak{T}$, we define

 $\deg_{{\preccurlyeq}\mathfrak{m}} P := \deg N(P_{{\ast}\mathfrak{m}})$ $\deg_{{\preccurlyeq}\mathfrak{m}} P := \operatorname{val} N(P_{{\ast}\mathfrak{m}})$

m is a **starting monomial** for P(y) = 0 if $N(P_{\times m})(c) = 0$ for some $c \in \mathbb{C}^{\neq 0}$.

Theorem (DNP)

Given $P \in \mathbb{T}{Y}$, there exists $l_0 \in \mathbb{N}$ and $N(P) \in \mathbb{R}[Y](Y')^{\mathbb{N}}$ with $D(P\uparrow_l) = N(P)$, for all $l \ge l_0$.

We call N(P) the differential Newton polynomial of P.

Newton degree. For $P \in \mathbb{T}{Y}^{\neq 0}$ and $\mathfrak{m} \in \mathfrak{T}$, we define

 $\deg_{{\leqslant}\mathfrak{m}} P := \deg N(P_{{\times}\mathfrak{m}})$ $\deg_{{\leqslant}\mathfrak{m}} P := \operatorname{val} N(P_{{\times}\mathfrak{m}})$

m is a **starting monomial** for P(y) = 0 if $N(P_{\times m})(c) = 0$ for some $c \in \mathbb{C}^{\neq 0}$. m is an **algebraic starting monomial** if $N(P_{\times m})$ is not homogeneous.

Theorem (DNP)

Given $P \in \mathbb{T}{Y}$, there exists $l_0 \in \mathbb{N}$ and $N(P) \in \mathbb{R}[Y](Y')^{\mathbb{N}}$ with $D(P\uparrow_l) = N(P)$, for all $l \ge l_0$.

We call N(P) the differential Newton polynomial of P.

Newton degree. For $P \in \mathbb{T}{Y}^{\neq 0}$ and $\mathfrak{m} \in \mathfrak{T}$, we define

 $\deg_{{\leqslant}\mathfrak{m}} P := \deg N(P_{{\times}\mathfrak{m}})$ $\deg_{{\leqslant}\mathfrak{m}} P := \operatorname{val} N(P_{{\times}\mathfrak{m}})$

m is a **starting monomial** for P(y) = 0 if $N(P_{\times m})(c) = 0$ for some $c \in \mathbb{C}^{\neq 0}$. m is an **algebraic starting monomial** if $N(P_{\times m})$ is not homogeneous. m is a **differential starting monomial** if $N(P_{\times m}) \in \mathbb{R}[Y](Y')^{\nu}$ for some $\nu > 0$.

Proposition

For any $P \in \mathbb{T}{Y}^{\neq 0}$, we have $N(P\uparrow) = N(P)$.

Proof. By construction.

Proposition

For any $P \in \mathbb{T}{Y}^{\neq 0}$, we have $N(P\uparrow) = N(P)$.

Proposition

For $P \in \mathbb{T}{Y}^{\neq 0}$ *and* $\mathfrak{m} \prec \mathfrak{n}$ *in* \mathfrak{T} *, we have*

 $\deg_{\prec \mathfrak{m}} P \leqslant \deg_{\leqslant \mathfrak{m}} P \leqslant \deg_{\prec \mathfrak{n}} P \leqslant \deg_{\leqslant \mathfrak{n}} P.$

Proposition

For any
$$P \in \mathbb{T}{Y}^{\neq 0}$$
, we have $N(P\uparrow) = N(P)$.

Proposition

For $P \in \mathbb{T}{Y}^{\neq 0}$ *and* $\mathfrak{m} \prec \mathfrak{n}$ *in* \mathfrak{T} *, we have*

$$\deg_{{\prec}\mathfrak{m}} P \leqslant \deg_{{\leqslant}\mathfrak{m}} P \leqslant \deg_{{\prec}\mathfrak{n}} P \leqslant \deg_{{\leqslant}\mathfrak{n}} P.$$

Proof. By considering $P_{\times n}$ instead of *P*, we may also arrange that m < n = 1.

Proposition

For any
$$P \in \mathbb{T}{Y}^{\neq 0}$$
, we have $N(P\uparrow) = N(P)$.

Proposition

For $P \in \mathbb{T}{Y}^{\neq 0}$ *and* $\mathfrak{m} \prec \mathfrak{n}$ *in* \mathfrak{T} *, we have*

$$\deg_{{\prec}\mathfrak{m}} P \leqslant \deg_{{\leqslant}\mathfrak{m}} P \leqslant \deg_{{\prec}\mathfrak{n}} P \leqslant \deg_{{\leqslant}\mathfrak{n}} P.$$

Proof. By considering $P_{\times n}$ instead of P, we may also arrange that $\mathfrak{m} \prec \mathfrak{n} = 1$. By what precedes, we also arrange that N(P) = D(P), $N(P_{\times m}) = D(P_{\times m})$, and $\mathfrak{m} \gg x$.
Properties of Newton degree

Proposition

For any
$$P \in \mathbb{T}{Y}^{\neq 0}$$
, we have $N(P\uparrow) = N(P)$.

Proposition

For $P \in \mathbb{T}{Y}^{\neq 0}$ *and* $\mathfrak{m} \prec \mathfrak{n}$ *in* \mathfrak{T} *, we have*

 $\deg_{\prec \mathfrak{m}} P \leqslant \deg_{\leqslant \mathfrak{m}} P \leqslant \deg_{\prec \mathfrak{n}} P \leqslant \deg_{\leqslant \mathfrak{n}} P.$

Proof. By considering $P_{\times n}$ instead of P, we may also arrange that $\mathfrak{m} \prec \mathfrak{n} = 1$. By what precedes, we also arrange that N(P) = D(P), $N(P_{\times \mathfrak{m}}) = D(P_{\times \mathfrak{m}})$, and $\mathfrak{m} \gg x$. Recall that $\mathfrak{d}(Q_{\times \mathfrak{m}})/(\mathfrak{m}^i \mathfrak{d}(Q)) \ll \mathfrak{m}$ for $Q \in \mathbb{T}{Y}$ homogeneous of degree *i*.

Properties of Newton degree

Proposition

For any $P \in \mathbb{T}{Y}^{\neq 0}$, we have $N(P\uparrow) = N(P)$.

Proposition

For $P \in \mathbb{T}{Y}^{\neq 0}$ *and* $\mathfrak{m} \prec \mathfrak{n}$ *in* \mathfrak{T} *, we have*

$$\deg_{{\prec}\mathfrak{m}} P \leqslant \deg_{{\leqslant}\mathfrak{m}} P \leqslant \deg_{{\prec}\mathfrak{n}} P \leqslant \deg_{{\leqslant}\mathfrak{n}} P.$$

Proof. By considering $P_{\times n}$ instead of P, we may also arrange that $\mathfrak{m} \prec \mathfrak{n} = 1$. By what precedes, we also arrange that N(P) = D(P), $N(P_{\times \mathfrak{m}}) = D(P_{\times \mathfrak{m}})$, and $\mathfrak{m} \gg x$. Recall that $\partial(Q_{\times \mathfrak{m}})/(\mathfrak{m}^i \partial(Q)) \ll \mathfrak{m}$ for $Q \in \mathbb{T}{Y}$ homogeneous of degree i. For all $i > d := \deg_{<1} P$, it follows that

$$P_{\times \mathfrak{m},d} \approx \phi \mathfrak{m}^d P_d \succ \psi \mathfrak{m}^i P_i \approx P_{\times \mathfrak{m},ij}$$

for some $\phi, \psi \ll \mathfrak{m}$. Hence, deg $N(P_{\times \mathfrak{m}}) = \deg D(P_{\times \mathfrak{m}}) \leq d$.

Lemma EQ

Let $P \in \mathbb{T}{Y}$ and i < j with $P_i \neq 0$, $P_j \neq 0$. Then there exists a unique $e \in \mathfrak{T}$ for which $N(P_{i,\times e} + P_{j,\times e})$ is not homogeneous. We call e the (i, j)-equalizer for P.

Lemma EQ

Let $P \in \mathbb{T}{Y}$ and i < j with $P_i \neq 0$, $P_j \neq 0$. Then there exists a unique $e \in \mathfrak{T}$ for which $N(P_{i,\times e} + P_{j,\times e})$ is not homogeneous. We call e the (i, j)-equalizer for P.

Consider an equation $P(y) = 0, y \prec v$ of Newton degree $d := \deg_{\prec v} P$, with $P_{\prec d} \neq 0$. Then its **principal equalizer** is the unique equalizer $\mathfrak{e}_{P,v} := \mathfrak{e}$ with deg $N(P_{\times \mathfrak{e}}) = d$.

Lemma EQ

Let $P \in \mathbb{T}{Y}$ and i < j with $P_i \neq 0$, $P_j \neq 0$. Then there exists a unique $e \in \mathfrak{T}$ for which $N(P_{i,\times e} + P_{j,\times e})$ is not homogeneous. We call e the (i, j)-equalizer for P.

Proof. We first arrange that $P \in \mathbb{R}[[\mathfrak{B}^{\mathbb{R}}]] \{Y\}$ for a transbasis \mathfrak{B} of level 1. Without loss of generality, we may assume that P = P + P.

Without loss of generality, we may assume that $P = P_i + P_j$.

Lemma EQ

Let $P \in \mathbb{T}{Y}$ and i < j with $P_i \neq 0$, $P_j \neq 0$. Then there exists a unique $e \in \mathfrak{T}$ for which $N(P_{i,\times e} + P_{j,\times e})$ is not homogeneous. We call e the (i, j)-equalizer for P.

Proof. We first arrange that $P \in \mathbb{R}[[\mathfrak{B}^{\mathbb{R}}]] \{Y\}$ for a transbasis \mathfrak{B} of level 1. Without loss of generality, we may assume that $P = P_i + P_j$. In a similar way as in the linear case one proves that

- $\mathfrak{m} \in \mathfrak{B}^{\mathbb{R}} \mapsto \mathfrak{d}(P_{k,\times\mathfrak{m}})$ is increasing for any k.
- There exists a unique $\mathfrak{e}(P) := \mathfrak{e} \in \mathfrak{B}^{\mathbb{R}}$ such that $D(P_{\times \mathfrak{e}})$ is not homogeneous.

Lemma EQ

Let $P \in \mathbb{T}{Y}$ and i < j with $P_i \neq 0$, $P_j \neq 0$. Then there exists a unique $e \in \mathfrak{T}$ for which $N(P_{i,\times e} + P_{j,\times e})$ is not homogeneous. We call e the (i, j)-equalizer for P.

Proof. We first arrange that $P \in \mathbb{R}[[\mathfrak{B}^{\mathbb{R}}]] \{Y\}$ for a transbasis \mathfrak{B} of level 1. Without loss of generality, we may assume that $P = P_i + P_j$. In a similar way as in the linear case one proves that

- $\mathfrak{m} \in \mathfrak{B}^{\mathbb{R}} \mapsto \mathfrak{d}(P_{k,\times\mathfrak{m}})$ is increasing for any k.
- There exists a unique $e(P) := e \in \mathfrak{B}^{\mathbb{R}}$ such that $D(P_{\times e})$ is not homogeneous. As in the proof of Theorem DNP, one may show that
 - wt $D((P\uparrow_l)_{\times \mathfrak{e}(P\uparrow_l)})$ strictly decreases as a function of $l \in \mathbb{N}$, until stabilization.

Lemma EQ

Let $P \in \mathbb{T}{Y}$ and i < j with $P_i \neq 0$, $P_j \neq 0$. Then there exists a unique $e \in \mathfrak{T}$ for which $N(P_{i,\times e} + P_{j,\times e})$ is not homogeneous. We call e the (i, j)-equalizer for P.

Proof. We first arrange that $P \in \mathbb{R}[[\mathfrak{B}^{\mathbb{R}}]] \{Y\}$ for a transbasis \mathfrak{B} of level 1. Without loss of generality, we may assume that $P = P_i + P_j$. In a similar way as in the linear case one proves that

- $\mathfrak{m} \in \mathfrak{B}^{\mathbb{R}} \mapsto \mathfrak{d}(P_{k,\times\mathfrak{m}})$ is increasing for any k.
- There exists a unique $e(P) := e \in \mathfrak{B}^{\mathbb{R}}$ such that $D(P_{\times e})$ is not homogeneous. As in the proof of Theorem DNP, one may show that
- wt $D((P\uparrow_l)_{\times \mathfrak{e}(P\uparrow_l)})$ strictly decreases as a function of $l \in \mathbb{N}$, until stabilization. Stabilization occurs when $N((P\uparrow_l)_{\times \mathfrak{e}(P\uparrow_l)}) = D((P\uparrow_l)_{\times \mathfrak{e}(P\uparrow_l)})$ and $\mathfrak{e}\uparrow_l := \mathfrak{e}(P\uparrow_l)$.

$$P = e^{-e^{x}}Y^{3} + YY'' - (Y')^{2} + e^{-x}Y' + e^{-3x}$$

$$P = e^{-e^{x}}Y^{3} + YY'' - (Y')^{2} + e^{-x}Y' + e^{-3x}$$

 $\mathfrak{d}(P_1)/\mathfrak{d}(P_2) = \mathrm{e}^{-x}$

$$P = e^{-e^{x}}Y^{3} + YY'' - (Y')^{2} + e^{-x}Y' + e^{-3x}$$

$$\partial(P_{1})/\partial(P_{2}) = e^{-x}$$

$$P_{\times e^{-x}} = e^{-3x}e^{-e^{x}}Y^{3} + e^{-2x}(YY'' - (Y')^{2}) + e^{-2x}(Y' - Y) + e^{-3x}$$

 $P = e^{-e^{x}}Y^{3} + YY'' - (Y')^{2} + e^{-x}Y' + e^{-3x}$ $\mathfrak{d}(P_{1})/\mathfrak{d}(P_{2}) = e^{-x}$ $P_{\times e^{-x}} = e^{-3x}e^{-e^{x}}Y^{3} + e^{-2x}(YY'' - (Y')^{2}) + e^{-2x}(Y' - Y) + e^{-3x}$ $P_{\times e^{-x}} \uparrow = e^{-3e^{x}}e^{-e^{e^{x}}}Y^{3} + e^{-2x}e^{-2e^{x}}(YY'' - (Y')^{2} - YY') + e^{-x}e^{-2e^{x}}Y' - e^{-2e^{x}}Y + e^{-3e^{x}}$

 $P = e^{-e^{x}}Y^{3} + YY'' - (Y')^{2} + e^{-x}Y' + e^{-3x}$ $\mathfrak{d}(P_{1})/\mathfrak{d}(P_{2}) = e^{-x}$ $P_{\times e^{-x}} = e^{-3x}e^{-e^{x}}Y^{3} + e^{-2x}(YY'' - (Y')^{2}) + e^{-2x}(Y' - Y) + e^{-3x}$ $P_{\times e^{-x}} \uparrow = e^{-3e^{x}}e^{-e^{e^{x}}}Y^{3} + e^{-2x}e^{-2e^{x}}(YY'' - (Y')^{2} - YY') + e^{-x}e^{-2e^{x}}Y' - e^{-2e^{x}}Y + e^{-3e^{x}}$ $\mathfrak{d}(P_{\times e^{-x}}\uparrow_{1})/\mathfrak{d}(P_{\times e^{-x}}\uparrow_{2}) = e^{2x}$

 $P = e^{-e^{x}}Y^{3} + YY'' - (Y')^{2} + e^{-x}Y' + e^{-3x}$ $\mathfrak{d}(P_{1})/\mathfrak{d}(P_{2}) = e^{-x}$ $P_{\times e^{-x}} = e^{-3x}e^{-e^{x}}Y^{3} + e^{-2x}(YY'' - (Y')^{2}) + e^{-2x}(Y' - Y) + e^{-3x}$ $P_{\times e^{-x}} \uparrow = e^{-3e^{x}}e^{-e^{e^{x}}}Y^{3} + e^{-2x}e^{-2e^{x}}(YY'' - (Y')^{2} - YY') + e^{-x}e^{-2e^{x}}Y' - e^{-2e^{x}}Y + e^{-3e^{x}}$ $\mathfrak{d}(P_{\times e^{-x}}\uparrow_{1})/\mathfrak{d}(P_{\times e^{-x}}\uparrow_{2}) = e^{2x}$ $P_{e^{-x}}\uparrow_{\times e^{2x}} = P_{\times x^{2}e^{-x}}\uparrow = e^{2x}e^{-2e^{x}}(YY'' - (Y')^{2} - YY' - 2Y^{2} - Y) + \cdots$

 $P = e^{-e^{x}} \Upsilon^{3} + \Upsilon \Upsilon'' - (\Upsilon')^{2} + e^{-x} \Upsilon' + e^{-3x}$ $\mathfrak{d}(P_1)/\mathfrak{d}(P_2) = e^{-x}$ $P_{xe^{-x}} = e^{-3x}e^{-e^{x}}Y^{3} + e^{-2x}(YY'' - (Y')^{2}) + e^{-2x}(Y' - Y) + e^{-3x}$ $P_{xe^{-x}} \uparrow = e^{-3e^{x}} e^{-e^{e^{x}}} \Upsilon^{3} + e^{-2x} e^{-2e^{x}} (\Upsilon \Upsilon'' - (\Upsilon')^{2} - \Upsilon \Upsilon') + e^{-x} e^{-2e^{x}} \Upsilon' - e^{-2e^{x}} \Upsilon + e^{-3e^{x}} (\Upsilon \Upsilon'' - (\Upsilon')^{2} - \Upsilon \Upsilon') + e^{-x} e^{-2e^{x}} \Upsilon' - e^{-2e^{x}} \Upsilon + e^{-3e^{x}} (\Upsilon \Upsilon'' - (\Upsilon')^{2} - \Upsilon \Upsilon') + e^{-x} e^{-2e^{x}} \Upsilon + e^{-3e^{x}} (\Upsilon + e^{-3e^{x}}) = e^{-3e^{x}} (\Upsilon + e^{-3e^{x}}) + e^{-3e^{x}} (\Upsilon + e^{-3e^{x}}) + e^{-3e^{x}} (\Upsilon + e^{-3e^{x}}) = e^{-3e^{x}} (\Upsilon + e^{-3e^{x}}) + e^{-3e^{x}} (\Upsilon + e^{-3e^{x}}) + e^{-3e^{x}} (\Upsilon + e^{-3e^{x}}) + e^{-3e^{x}} (\Upsilon + e^{-3e^{x}}) = e^{-3e^{x}} (\Upsilon + e^{-3e^{x}}) + e^$ $\partial(P_{\times e^{-x}\uparrow 1})/\partial(P_{\times e^{-x}\uparrow 2}) = e^{2x}$ $P_{e^{-x}} \uparrow_{xe^{2x}} = P_{xx^2e^{-x}} \uparrow = e^{2x} e^{-2e^x} (YY'' - (Y')^2 - YY' - 2Y^2 - Y) + \cdots$ $P_{\times \gamma^2 e^{-x}} \uparrow \uparrow = e^{2e^x} e^{-2e^{e^x}} (-2Y^2 - Y - e^{-x}YY' + e^{-2x}(YY'' - (Y')^2 - YY')) + \cdots$

 $P = e^{-e^{x}} \gamma^{3} + \gamma \gamma'' - (\gamma')^{2} + e^{-x} \gamma' + e^{-3x}$ $\mathfrak{d}(P_1)/\mathfrak{d}(P_2) = e^{-x}$ $P_{xe^{-x}} = e^{-3x}e^{-e^{x}}Y^{3} + e^{-2x}(YY'' - (Y')^{2}) + e^{-2x}(Y' - Y) + e^{-3x}$ $P_{xe^{-x}} \uparrow = e^{-3e^{x}} e^{-e^{e^{x}}} \Upsilon^{3} + e^{-2x} e^{-2e^{x}} (\Upsilon \Upsilon'' - (\Upsilon')^{2} - \Upsilon \Upsilon') + e^{-x} e^{-2e^{x}} \Upsilon' - e^{-2e^{x}} \Upsilon + e^{-3e^{x}}$ $\mathfrak{d}(P_{\mathbf{x}e^{-x}\uparrow 1})/\mathfrak{d}(P_{\mathbf{x}e^{-x}\uparrow 2}) = e^{2x}$ $P_{e^{-x}} \uparrow_{xe^{2x}} = P_{xx^2e^{-x}} \uparrow = e^{2x} e^{-2e^x} (YY'' - (Y')^2 - YY' - 2Y^2 - Y) + \cdots$ $P_{xy^2e^{-x}}\uparrow\uparrow = e^{2e^x}e^{-2e^{e^x}}(-2Y^2 - Y - e^{-x}YY' + e^{-2x}(YY'' - (Y')^2 - YY')) + \cdots$ $D(P_{\times r^2 e^{-x}}\uparrow\uparrow) = -2Y^2 - Y \in \mathbb{R}[Y](Y')^{\mathbb{N}}$

 $P = e^{-e^{x}} \gamma^{3} + \gamma \gamma'' - (\gamma')^{2} + e^{-x} \gamma' + e^{-3x}$ $\mathfrak{d}(P_1)/\mathfrak{d}(P_2) = e^{-x}$ $P_{xe^{-x}} = e^{-3x}e^{-e^{x}}Y^{3} + e^{-2x}(YY'' - (Y')^{2}) + e^{-2x}(Y' - Y) + e^{-3x}$ $P_{xe^{-x}} \uparrow = e^{-3e^{x}} e^{-e^{e^{x}}} \Upsilon^{3} + e^{-2x} e^{-2e^{x}} (\Upsilon \Upsilon'' - (\Upsilon')^{2} - \Upsilon \Upsilon') + e^{-x} e^{-2e^{x}} \Upsilon' - e^{-2e^{x}} \Upsilon + e^{-3e^{x}}$ $\partial(P_{\times e^{-x}\uparrow 1})/\partial(P_{\times e^{-x}\uparrow 2}) = e^{2x}$ $P_{e^{-x}} \uparrow_{xe^{2x}} = P_{xx^2e^{-x}} \uparrow = e^{2x} e^{-2e^x} (YY'' - (Y')^2 - YY' - 2Y^2 - Y) + \cdots$ $P_{x \gamma^2 e^{-x}} \uparrow \uparrow = e^{2e^x} e^{-2e^{e^x}} (-2Y^2 - Y - e^{-x}YY' + e^{-2x}(YY'' - (Y')^2 - YY')) + \cdots$ $D(P_{\times r^2 e^{-x}}\uparrow\uparrow) = -2Y^2 - Y \in \mathbb{R}[Y](Y')^{\mathbb{N}}$ $e = x^2 e^{-x}$

Let $P \in \mathbb{T}{Y}$ be homogeneous of degree *d* and of order *r*.

Let $P \in \mathbb{T}{Y}$ be homogeneous of degree *d* and of order *r*.

Then there exists a unique **Riccati polynomial** $R_P \in \mathbb{T}\{W\}$ of order r-1 with

$$P(y) = y^d R_P(y^{\dagger}).$$

Let $P \in \mathbb{T}{Y}$ be homogeneous of degree *d* and of order *r*. Then there exists a unique **Riccati polynomial** $R_P \in \mathbb{T}{W}$ of order r-1 with

$$P(y) = y^d R_P(y^{\dagger}).$$

Assume that $R_P(w) = 0$.

Let $P \in \mathbb{T}{Y}$ be homogeneous of degree *d* and of order *r*. Then there exists a unique **Riccati polynomial** $R_P \in \mathbb{T}{W}$ of order r-1 with

$$P(y) = y^d R_P(y^{\dagger}).$$

Assume that $R_P(w) = 0$. Then P(y) = 0 for

$$y = e^{\int w} = e^{(\int w)_{\succ}} e^{(\int w)_{\prec}} = e^{\int w_{\succ \gamma}} e^{\int w_{\prec \gamma}}, \qquad \gamma := \frac{1}{x \log x \log_2 x \cdots}$$

Let $P \in \mathbb{T}{Y}$ be homogeneous of degree *d* and of order *r*. Then there exists a unique **Riccati polynomial** $R_P \in \mathbb{T}{W}$ of order r-1 with

$$P(y) = y^d R_P(y^{\dagger}).$$

Assume that $R_P(w) = 0$. Then P(y) = 0 for

$$y = e^{\int w} = e^{(\int w)_{\geq}} e^{(\int w)_{\leq}} = e^{\int w_{\geq \gamma}} e^{\int w_{<\gamma}}, \qquad \gamma \coloneqq \frac{1}{x \log x \log_2 x \cdots}$$

In particular, $\vartheta_y = e^{\int w_{>\gamma}}$.

1

Let $P \in \mathbb{T}{Y}$ be homogeneous of degree *d* and of order *r*. Then there exists a unique **Pieceti relumential** $P \in \mathbb{T}{W}$ of order

Then there exists a unique **Riccati polynomial** $R_P \in \mathbb{T}\{W\}$ of order r-1 with

$$P(y) = y^d R_P(y^{\dagger}).$$

Assume that $R_P(w) = 0$. Then P(y) = 0 for

$$y = e^{\int w} = e^{(\int w)_{\gamma}} e^{(\int w)_{\gamma}} = e^{\int w_{\gamma} \gamma} e^{\int w_{\gamma}}, \qquad \gamma \coloneqq \frac{1}{x \log x \log_2 x \cdots}.$$

In particular, $\mathfrak{d}_y = e^{\int w > \gamma}$.

▶ Determining starting monomials for $P(y) = 0 \iff$ Solving R_P modulo $O(\gamma)$.

Let $P \in \mathbb{T}{Y}$ be homogeneous of degree *d* and of order *r*.

Then there exists a unique **Riccati polynomial** $R_P \in \mathbb{T}\{W\}$ of order r-1 with

$$P(y) = y^d R_P(y^{\dagger}).$$

Assume that $R_P(w) = 0$. Then P(y) = 0 for

$$y = e^{\int w} = e^{(\int w)_{\gamma}} e^{(\int w)_{\gamma}} = e^{\int w_{\gamma} \gamma} e^{\int w_{\gamma}}, \qquad \gamma \coloneqq \frac{1}{x \log x \log_2 x \cdots}.$$

In particular, $\mathfrak{d}_y = e^{\int w_{>\gamma}}$.

▶ Determining starting monomials for $P(y) = 0 \iff$ Solving R_P modulo $O(\gamma)$.

Proposition

 $\mathfrak{m} \in \mathfrak{T}$ is a starting monomial for P(y) = 0 if and only if $\deg_{\prec \gamma} R_P > 0$.

Quasi-linear equations

Let $Q \in \mathbb{T}{Y}$ and $\mathfrak{m} \in \mathfrak{T}$. We say that

$$Q(y) = 0, \qquad y \prec \mathfrak{m}$$

is **quasi-linear** if $\deg_{<\mathfrak{m}} Q = 1$.

Quasi-linear equations

Let $Q \in \mathbb{T}{Y}$ and $\mathfrak{m} \in \mathfrak{T}$. We say that

$$Q(y) = 0, \qquad y \prec \mathfrak{m}$$

is **quasi-linear** if $\deg_{<\mathfrak{m}} Q = 1$.

Theorem

Any quasi-linear equation as above has a solution in \mathbb{T} .

Moreover, there exists a unique solution such that $y_{\mathfrak{d}(\tilde{y}-y)} = 0$ for any other solution \tilde{y} ; this is called the **distinguished solution**.

Lemma

Let $\mathfrak{B} = (\mathfrak{b}_1, \dots, \mathfrak{b}_n)$ be of level 1 and $Q \in \mathbb{R}[\mathfrak{B}^{\mathbb{R}}][Y]$ of order r and degree d. Assume that $Q - Q_1 < \mathfrak{b}_n^{-\eta} Q_1$ for some $\eta \in \mathbb{R}^{>0}$. Then Q(y) = 0, y < 1 has a solution in $\mathbb{R}[[x^{\mathbb{N}} \mathfrak{B}^{\mathbb{R}}]]$.

Lemma

Let $\mathfrak{B} = (\mathfrak{b}_1, \dots, \mathfrak{b}_n)$ be of level 1 and $Q \in \mathbb{R}[[\mathfrak{B}^{\mathbb{R}}]] \{Y\}$ of order *r* and degree *d*.

Assume that $Q - Q_1 \prec \mathfrak{b}_n^{-\eta} Q_1$ for some $\eta \in \mathbb{R}^{>0}$.

Then Q(y) = 0, y < 1 *has a solution in* $\mathbb{R}[[x^{\mathbb{N}} \mathfrak{B}^{\mathbb{R}}]]$.

Proof. Let $R := Q_{\neq 1} := Q - Q_1$ and $L \in \mathbb{T}[\partial]$ be such that $Q_1 = LY$. We want to solve

$$Ly = R(y), \qquad y \prec 1.$$

Lemma

Let $\mathfrak{B} = (\mathfrak{b}_1, \dots, \mathfrak{b}_n)$ be of level 1 and $Q \in \mathbb{R}[[\mathfrak{B}^{\mathbb{R}}]] \{Y\}$ of order *r* and degree *d*.

Assume that $Q - Q_1 \prec \mathfrak{b}_n^{-\eta} Q_1$ for some $\eta \in \mathbb{R}^{>0}$.

Then Q(y) = 0, y < 1 *has a solution in* $\mathbb{R}[[x^{\mathbb{N}} \mathfrak{B}^{\mathbb{R}}]]$.

Proof. Let $R := Q_{\neq 1} := Q - Q_1$ and $L \in \mathbb{T}[\partial]$ be such that $Q_1 = LY$. We want to solve

$$Ly = R(y), \qquad y \prec 1.$$

We may arrange $L \approx 1$ and $R \prec \mathfrak{b}_n^{-\eta}$.

Lemma

Let $\mathfrak{B} = (\mathfrak{b}_1, \dots, \mathfrak{b}_n)$ be of level 1 and $Q \in \mathbb{R}[[\mathfrak{B}^{\mathbb{R}}]] \{Y\}$ of order *r* and degree *d*.

Assume that $Q - Q_1 \prec \mathfrak{b}_n^{-\eta} Q_1$ for some $\eta \in \mathbb{R}^{>0}$.

Then Q(y) = 0, y < 1 *has a solution in* $\mathbb{R}[[x^{\mathbb{N}} \mathfrak{B}^{\mathbb{R}}]]$.

Proof. Let $R := Q_{\neq 1} := Q - Q_1$ and $L \in \mathbb{T}[\partial]$ be such that $Q_1 = LY$. We want to solve

$$Ly = R(y), \qquad y \prec 1.$$

We may arrange $L \approx 1$ and $R < \mathfrak{b}_n^{-\eta}$.

By Lesson 6, the set $\mathfrak{G} := \operatorname{supp}_* L^{-1}$ is grid-based and $\mathfrak{S} \leq \mathfrak{w}$ for some $\mathfrak{w} \ll \mathfrak{b}_n$.

Lemma

Let $\mathfrak{B} = (\mathfrak{b}_1, \dots, \mathfrak{b}_n)$ be of level 1 and $Q \in \mathbb{R}[[\mathfrak{B}^{\mathbb{R}}]] \{Y\}$ of order *r* and degree *d*.

Assume that $Q - Q_1 \prec \mathfrak{b}_n^{-\eta} Q_1$ for some $\eta \in \mathbb{R}^{>0}$.

Then Q(y) = 0, y < 1 *has a solution in* $\mathbb{R}[[x^{\mathbb{N}} \mathfrak{B}^{\mathbb{R}}]]$.

Proof. Let $R := Q_{\neq 1} := Q - Q_1$ and $L \in \mathbb{T}[\partial]$ be such that $Q_1 = LY$. We want to solve

$$Ly = R(y), \qquad y \prec 1.$$

We may arrange $L \approx 1$ and $R \prec \mathfrak{b}_n^{-\eta}$.

By Lesson 6, the set $\mathfrak{G} := \operatorname{supp}_* L^{-1}$ is grid-based and $\mathfrak{S} \leq \mathfrak{w}$ for some $\mathfrak{w} \ll \mathfrak{b}_n$. Let $\mathfrak{V} := \{1\} \cup \operatorname{supp}_* \partial \cup \cdots \cup \operatorname{supp}_* \partial^r$ and $\mathfrak{W} := (\operatorname{supp} R)(\{1\} \cup \mathfrak{V} \cup \cdots \cup \mathfrak{V}^d).$

Lemma

Let $\mathfrak{B} = (\mathfrak{b}_1, \dots, \mathfrak{b}_n)$ be of level 1 and $Q \in \mathbb{R}[[\mathfrak{B}^{\mathbb{R}}]] \{Y\}$ of order *r* and degree *d*.

Assume that $Q - Q_1 \prec \mathfrak{b}_n^{-\eta} Q_1$ for some $\eta \in \mathbb{R}^{>0}$.

Then Q(y) = 0, y < 1 *has a solution in* $\mathbb{R}[[x^{\mathbb{N}} \mathfrak{B}^{\mathbb{R}}]]$.

Proof. Let $R := Q_{\neq 1} := Q - Q_1$ and $L \in \mathbb{T}[\partial]$ be such that $Q_1 = LY$. We want to solve

$$Ly = R(y), \qquad y \prec 1.$$

We may arrange $L \approx 1$ and $R \prec \mathfrak{b}_n^{-\eta}$.

By Lesson 6, the set $\mathfrak{G} := \operatorname{supp}_* L^{-1}$ is grid-based and $\mathfrak{S} \leq \mathfrak{w}$ for some $\mathfrak{w} \ll \mathfrak{b}_n$. Let $\mathfrak{V} := \{1\} \cup \operatorname{supp}_* \partial \cup \cdots \cup \operatorname{supp}_* \partial^r$ and $\mathfrak{W} := (\operatorname{supp} R)(\{1\} \cup \mathfrak{V} \cup \cdots \cup \mathfrak{V}^d)$. We have $\mathfrak{G} \mathfrak{W} \prec \mathfrak{b}_n^{-\eta/2}$, so $\mathfrak{S} := \mathfrak{G} \mathfrak{W}(\mathfrak{G} \mathfrak{W})^*$ is grid-based.

Lemma

Let $\mathfrak{B} = (\mathfrak{b}_1, \dots, \mathfrak{b}_n)$ be of level 1 and $Q \in \mathbb{R}[[\mathfrak{B}^{\mathbb{R}}]] \{Y\}$ of order r and degree d.

Assume that $Q - Q_1 \prec \mathfrak{b}_n^{-\eta} Q_1$ for some $\eta \in \mathbb{R}^{>0}$.

Then Q(y) = 0, y < 1 *has a solution in* $\mathbb{R}[[x^{\mathbb{N}} \mathfrak{B}^{\mathbb{R}}]]$.

Proof. Let $R := Q_{\neq 1} := Q - Q_1$ and $L \in \mathbb{T}[\partial]$ be such that $Q_1 = LY$. We want to solve

$$Ly = R(y), \qquad y \prec 1.$$

We may arrange $L \approx 1$ and $R \prec \mathfrak{b}_n^{-\eta}$.

By Lesson 6, the set $\mathfrak{G} := \operatorname{supp}_* L^{-1}$ is grid-based and $\mathfrak{S} \leq \mathfrak{w}$ for some $\mathfrak{w} \ll \mathfrak{b}_n$. Let $\mathfrak{V} := \{1\} \cup \operatorname{supp}_* \partial \cup \cdots \cup \operatorname{supp}_* \partial^r$ and $\mathfrak{W} := (\operatorname{supp} R)(\{1\} \cup \mathfrak{V} \cup \cdots \cup \mathfrak{V}^d)$. We have $\mathfrak{G} \mathfrak{W} < \mathfrak{b}_n^{-\eta/2}$, so $\mathfrak{S} := \mathfrak{G} \mathfrak{W}(\mathfrak{G} \mathfrak{W})^*$ is grid-based. Now $0, L^{-1} R(0), L^{-1} R(L^{-1} R(0)), \ldots$ converges to a solution with supp $y \subseteq \mathfrak{S}$.

Quasi-linear equations — continued

Lemma

Let $\mathfrak{B} = (\mathfrak{b}_1, \dots, \mathfrak{b}_n)$ be of level 1 and $Q \in \mathbb{R}[\mathfrak{B}^{\mathbb{R}}] \{Y\}$ with $Q - Q_1 \prec Q_1$. Then Q(y) = 0, $y \prec 1$ has a solution in $\mathbb{R}[[(\log_k x)^{\mathbb{R}} \cdots x^{\mathbb{R}} \mathfrak{B}^{\mathbb{R}}]]$ for some $k \in \mathbb{N}$.

Quasi-linear equations — continued

Lemma

Let $\mathfrak{B} = (\mathfrak{b}_1, \dots, \mathfrak{b}_n)$ be of level 1 and $Q \in \mathbb{R}[\mathfrak{B}^{\mathbb{R}}] \{Y\}$ with $Q - Q_1 \prec Q_1$. Then Q(y) = 0, $y \prec 1$ has a solution in $\mathbb{R}[[(\log_k x)^{\mathbb{R}} \cdots x^{\mathbb{R}} \mathfrak{B}^{\mathbb{R}}]]$ for some $k \in \mathbb{N}$.

Proof. Without loss of generality, we may assume that $Q \approx 1$.

Quasi-linear equations — continued

Lemma

Let $\mathfrak{B} = (\mathfrak{b}_1, \dots, \mathfrak{b}_n)$ be of level 1 and $Q \in \mathbb{R}[[\mathfrak{B}^{\mathbb{R}}]] \{Y\}$ with $Q - Q_1 \prec Q_1$. Then Q(y) = 0, $y \prec 1$ has a solution in $\mathbb{R}[[(\log_k x)^{\mathbb{R}} \cdots x^{\mathbb{R}} \mathfrak{B}^{\mathbb{R}}]]$ for some $k \in \mathbb{N}$.

Proof. Without loss of generality, we may assume that $Q \approx 1$. We prove the result by induction on *n*. For n = 1 we are done by what precedes.
Lemma

Let $\mathfrak{B} = (\mathfrak{b}_1, \dots, \mathfrak{b}_n)$ be of level 1 and $Q \in \mathbb{R}[[\mathfrak{B}^{\mathbb{R}}]] \{Y\}$ with $Q - Q_1 \prec Q_1$. Then Q(y) = 0, $y \prec 1$ has a solution in $\mathbb{R}[[(\log_k x)^{\mathbb{R}} \cdots x^{\mathbb{R}} \mathfrak{B}^{\mathbb{R}}]]$ for some $k \in \mathbb{N}$.

Proof. Without loss of generality, we may assume that $Q \approx 1$. We prove the result by induction on *n*. For n = 1 we are done by what precedes. Let $Q^{\sharp} \in \mathbb{R}[[\mathfrak{b}_1; \ldots; \mathfrak{b}_{n-1}]] \{Y\}$ be the dominant coefficient of *Q* as a series in \mathfrak{b}_n^{-1} .

Lemma

Let $\mathfrak{B} = (\mathfrak{b}_1, \dots, \mathfrak{b}_n)$ be of level 1 and $Q \in \mathbb{R}[[\mathfrak{B}^{\mathbb{R}}]] \{Y\}$ with $Q - Q_1 \prec Q_1$. Then Q(y) = 0, $y \prec 1$ has a solution in $\mathbb{R}[[(\log_k x)^{\mathbb{R}} \cdots x^{\mathbb{R}} \mathfrak{B}^{\mathbb{R}}]]$ for some $k \in \mathbb{N}$.

Proof. Without loss of generality, we may assume that $Q \simeq 1$. We prove the result by induction on *n*. For n = 1 we are done by what precedes. Let $Q^{\sharp} \in \mathbb{R}[[\mathfrak{b}_1; \ldots; \mathfrak{b}_{n-1}]] \{Y\}$ be the dominant coefficient of *Q* as a series in \mathfrak{b}_n^{-1} . Induction hypothesis $\rightsquigarrow k \in \mathbb{N}, y^{\sharp} \in \mathbb{R}[[(\log_{k-1} x)^{\mathbb{N}} \cdots x^{\mathbb{N}} \mathfrak{B}^{\mathbb{R}}]]^{<1}$ with $Q^{\sharp}(y^{\sharp}) = 0$.

Lemma

Let $\mathfrak{B} = (\mathfrak{b}_1, \dots, \mathfrak{b}_n)$ be of level 1 and $Q \in \mathbb{R}[[\mathfrak{B}^{\mathbb{R}}]] \{Y\}$ with $Q - Q_1 \prec Q_1$. Then Q(y) = 0, $y \prec 1$ has a solution in $\mathbb{R}[[(\log_k x)^{\mathbb{R}} \cdots x^{\mathbb{R}} \mathfrak{B}^{\mathbb{R}}]]$ for some $k \in \mathbb{N}$.

Proof. Without loss of generality, we may assume that $Q \simeq 1$. We prove the result by induction on *n*. For n = 1 we are done by what precedes. Let $Q^{\sharp} \in \mathbb{R}[[\mathfrak{b}_1; \ldots; \mathfrak{b}_{n-1}]] \{Y\}$ be the dominant coefficient of *Q* as a series in \mathfrak{b}_n^{-1} . Induction hypothesis $\rightsquigarrow k \in \mathbb{N}, y^{\sharp} \in \mathbb{R}[[(\log_{k-1} x)^{\mathbb{N}} \cdots x^{\mathbb{N}} \mathfrak{B}^{\mathbb{R}}]]^{<1}$ with $Q^{\sharp}(y^{\sharp}) = 0$. For some small $\eta > 0$, we then have $Q_{+y^{\sharp},0} < \mathfrak{b}_n^{-3\eta}$ and $Q_{+y^{\sharp},\times\mathfrak{b}_n^{-\eta},\neq 1} < \mathfrak{b}_n^{-\eta} Q_{+y^{\sharp},\times\mathfrak{b}_n^{-\eta}}$.

Lemma

Let $\mathfrak{B} = (\mathfrak{b}_1, \dots, \mathfrak{b}_n)$ be of level 1 and $Q \in \mathbb{R}[[\mathfrak{B}^{\mathbb{R}}]] \{Y\}$ with $Q - Q_1 \prec Q_1$. Then Q(y) = 0, $y \prec 1$ has a solution in $\mathbb{R}[[(\log_k x)^{\mathbb{R}} \cdots x^{\mathbb{R}} \mathfrak{B}^{\mathbb{R}}]]$ for some $k \in \mathbb{N}$.

Proof. Without loss of generality, we may assume that Q = 1. We prove the result by induction on *n*. For n = 1 we are done by what precedes. Let $Q^{\sharp} \in \mathbb{R}[[\mathfrak{b}_1; \ldots; \mathfrak{b}_{n-1}]] \{Y\}$ be the dominant coefficient of *Q* as a series in \mathfrak{b}_n^{-1} . Induction hypothesis $\rightsquigarrow k \in \mathbb{N}, y^{\sharp} \in \mathbb{R}[[(\log_{k-1} x)^{\mathbb{N}} \cdots x^{\mathbb{N}} \mathfrak{B}^{\mathbb{R}}]]^{<1}$ with $Q^{\sharp}(y^{\sharp}) = 0$. For some small $\eta > 0$, we then have $Q_{+y^{\sharp},0} < \mathfrak{b}_n^{-3\eta}$ and $Q_{+y^{\sharp},\times \mathfrak{b}_n^{-\eta},\neq 1} < \mathfrak{b}_n^{-\eta} Q_{+y^{\sharp},\times \mathfrak{b}_n^{-\eta}}$. Now apply the previous lemma $Q_{+y^{\sharp},\times \mathfrak{b}_n^{-\eta}} \uparrow_k$ and $(e^x, \ldots, \exp_k x, \mathfrak{b}_1 \uparrow_k, \ldots, \mathfrak{b}_n \uparrow_k)$.

Lemma

Let $\mathfrak{B} = (\mathfrak{b}_1, \dots, \mathfrak{b}_n)$ be of level 1 and $Q \in \mathbb{R}[[\mathfrak{B}^{\mathbb{R}}]] \{Y\}$ with $Q - Q_1 \prec Q_1$. Then Q(y) = 0, $y \prec 1$ has a solution in $\mathbb{R}[[(\log_k x)^{\mathbb{R}} \cdots x^{\mathbb{R}} \mathfrak{B}^{\mathbb{R}}]]$ for some $k \in \mathbb{N}$.

Proof. Without loss of generality, we may assume that $Q \approx 1$. We prove the result by induction on *n*. For n = 1 we are done by what precedes. Let $Q^{\sharp} \in \mathbb{R}[[\mathfrak{b}_1; \ldots; \mathfrak{b}_{n-1}]] \{Y\}$ be the dominant coefficient of Q as a series in \mathfrak{b}_n^{-1} . Induction hypothesis $\rightsquigarrow k \in \mathbb{N}, y^{\sharp} \in \mathbb{R}[[(\log_{k-1} x)^{\mathbb{N}} \cdots x^{\mathbb{N}} \mathfrak{B}^{\mathbb{R}}]]^{<1}$ with $Q^{\sharp}(y^{\sharp}) = 0$. For some small $\eta > 0$, we then have $Q_{+\mu^{\sharp},0} < \mathfrak{b}_{n}^{-3\eta}$ and $Q_{+\mu^{\sharp},\times\mathfrak{b}_{n}^{-\eta},\neq 1} < \mathfrak{b}_{n}^{-\eta}Q_{+\mu^{\sharp},\times\mathfrak{b}_{n}^{-\eta}}$. Now apply the previous lemma $Q_{+y^{\sharp},\times \mathfrak{b}_{n}^{-\eta}}\uparrow_{k}$ and $(e^{x},\ldots,\exp_{k}x,\mathfrak{b}_{1}\uparrow_{k},\ldots,\mathfrak{b}_{n}\uparrow_{k})$. This yields $u \in \mathbb{R}[[x; \ldots; \exp_k x; \mathfrak{b}_1 \uparrow_k; \ldots; \mathfrak{b}_n \uparrow_k]]^{<1}$ with $Q_{+y^{\sharp}, \times \mathfrak{b}_n^{-\eta}} \uparrow_k(u) = 0$.

Lemma

Let $\mathfrak{B} = (\mathfrak{b}_1, \dots, \mathfrak{b}_n)$ be of level 1 and $Q \in \mathbb{R}[[\mathfrak{B}^{\mathbb{R}}]] \{Y\}$ with $Q - Q_1 \prec Q_1$. Then Q(y) = 0, $y \prec 1$ has a solution in $\mathbb{R}[[(\log_k x)^{\mathbb{R}} \cdots x^{\mathbb{R}} \mathfrak{B}^{\mathbb{R}}]]$ for some $k \in \mathbb{N}$.

Proof. Without loss of generality, we may assume that $Q \approx 1$. We prove the result by induction on *n*. For n = 1 we are done by what precedes. Let $Q^{\sharp} \in \mathbb{R}[[\mathfrak{b}_1; \ldots; \mathfrak{b}_{n-1}]] \{Y\}$ be the dominant coefficient of Q as a series in \mathfrak{b}_n^{-1} . Induction hypothesis $\rightsquigarrow k \in \mathbb{N}, y^{\sharp} \in \mathbb{R}[[(\log_{k-1} x)^{\mathbb{N}} \cdots x^{\mathbb{N}} \mathfrak{B}^{\mathbb{R}}]]^{<1}$ with $Q^{\sharp}(y^{\sharp}) = 0$. For some small $\eta > 0$, we then have $Q_{+y^{\sharp},0} \prec \mathfrak{b}_{n}^{-3\eta}$ and $Q_{+y^{\sharp},\times\mathfrak{b}_{n}^{-\eta},\neq 1} \prec \mathfrak{b}_{n}^{-\eta}Q_{+y^{\sharp},\times\mathfrak{b}_{n}^{-\eta}}$. Now apply the previous lemma $Q_{+y^{\sharp},\times b_{n}^{-\eta}}\uparrow_{k}$ and $(e^{x},\ldots,\exp_{k}x,b_{1}\uparrow_{k},\ldots,b_{n}\uparrow_{k})$. This yields $u \in \mathbb{R}[[x; \ldots; \exp_k x; \mathfrak{b}_1 \uparrow_k; \ldots; \mathfrak{b}_n \uparrow_k]]^{<1}$ with $Q_{+y^{\sharp}, \times \mathfrak{b}_n^{-\eta}} \uparrow_k(u) = 0$. Then $y := y^{\sharp} + (u \downarrow_k) \mathfrak{b}_n^{-\eta}$ fulfills the requirements.

Theorem

Any quasi-linear equation Q(y) = 0, y < 1 has a solution in \mathbb{T} .

Moreover, there exists a unique solution such that $y_{\mathfrak{d}(\tilde{y}-y)} = 0$ for any other solution \tilde{y} ; this is called the **distinguished solution**.

Theorem

Any quasi-linear equation Q(y) = 0, y < 1 has a solution in \mathbb{T} .

Moreover, there exists a unique solution such that $y_{\mathfrak{d}(\tilde{y}-y)} = 0$ for any other solution \tilde{y} ; this is called the **distinguished solution**.

Proof. Let $\mathcal{Y} = \{y \in \mathbb{T}^{\leq 1} : Q(y) = 0\}$. Previous lemma + upward shifting $\implies \mathcal{Y} \neq \emptyset$.

Theorem

Any quasi-linear equation Q(y) = 0, y < 1 has a solution in \mathbb{T} .

Moreover, there exists a unique solution such that $y_{\mathfrak{d}(\tilde{y}-y)} = 0$ for any other solution \tilde{y} ; this is called the **distinguished solution**.

Proof. Let $\mathcal{Y} = \{y \in \mathbb{T}^{<1} : Q(y) = 0\}$. Previous lemma + upward shifting $\implies \mathcal{Y} \neq \emptyset$. **Uniqueness.** If $y, \tilde{y} \in \mathcal{Y}$ with $\tilde{y} \neq y$, then $(\tilde{y} - y)_{\mathfrak{d}(\tilde{y} - y)} \neq 0$, so $\tilde{y}_{\mathfrak{d}(y - \tilde{y})} \neq 0$ or $y_{\mathfrak{d}(\tilde{y} - y)} \neq 0$.

Theorem

Any quasi-linear equation Q(y) = 0, y < 1 has a solution in \mathbb{T} .

Moreover, there exists a unique solution such that $y_{\mathfrak{d}(\tilde{y}-y)} = 0$ for any other solution \tilde{y} ; this is called the **distinguished solution**.

Proof. Let $\mathcal{Y} = \{y \in \mathbb{T}^{<1} : Q(y) = 0\}$. Previous lemma + upward shifting $\Longrightarrow \mathcal{Y} \neq \emptyset$. **Existence.** Let $y, \tilde{y} \in \mathcal{Y}, \tilde{y} \neq y, \mathfrak{v} := \mathfrak{d}_{\tilde{y}-y}$, and $LY := P_{+y,1}$.

Theorem

Any quasi-linear equation Q(y) = 0, y < 1 has a solution in \mathbb{T} .

Moreover, there exists a unique solution such that $y_{\mathfrak{d}(\tilde{y}-y)} = 0$ for any other solution \tilde{y} ; this is called the **distinguished solution**.

Proof. Let $\mathcal{Y} = \{y \in \mathbb{T}^{<1} : Q(y) = 0\}$. Previous lemma + upward shifting $\Longrightarrow \mathcal{Y} \neq \emptyset$. **Existence.** Let $y, \tilde{y} \in \mathcal{Y}, \tilde{y} \neq y, \mathfrak{v} := \mathfrak{d}_{\tilde{y}-y}$, and $LY := P_{+y,1}$. Claim: $\mathfrak{v} \in \mathfrak{H}_L := \{\mathfrak{d}_h : h \in \mathbb{T}, Lh = 0\}$.

Theorem

Any quasi-linear equation Q(y) = 0, y < 1 has a solution in \mathbb{T} .

Moreover, there exists a unique solution such that $y_{\mathfrak{d}(\tilde{y}-y)} = 0$ for any other solution \tilde{y} ; this is called the **distinguished solution**.

Proof. Let $\mathcal{Y} = \{y \in \mathbb{T}^{<1} : Q(y) = 0\}$. Previous lemma + upward shifting $\Longrightarrow \mathcal{Y} \neq \emptyset$. **Existence.** Let $y, \tilde{y} \in \mathcal{Y}, \tilde{y} \neq y, \mathfrak{v} := \mathfrak{d}_{\tilde{y}-y}$, and $LY := P_{+y,1}$. Claim: $\mathfrak{v} \in \mathfrak{H}_L := \{\mathfrak{d}_h : h \in \mathbb{T}, Lh = 0\}$.

Theorem

Any quasi-linear equation Q(y) = 0, y < 1 has a solution in \mathbb{T} .

Moreover, there exists a unique solution such that $y_{\mathfrak{d}(\tilde{y}-y)} = 0$ for any other solution \tilde{y} ; this is called the **distinguished solution**.

Proof. Let $\mathcal{Y} = \{y \in \mathbb{T}^{<1} : Q(y) = 0\}$. Previous lemma + upward shifting $\implies \mathcal{Y} \neq \emptyset$. **Existence.** Let $y, \tilde{y} \in \mathcal{Y}, \tilde{y} \neq y, \mathfrak{v} := \mathfrak{d}_{\tilde{y}-y}$, and $LY := P_{+y,1}$. Claim: $\mathfrak{v} \in \mathfrak{H}_L := \{\mathfrak{d}_h : h \in \mathbb{T}, Lh = 0\}$. We have $N(P_{+y,\times\mathfrak{v}}) = N(P_{+y,\leqslant 1,\times\mathfrak{v}}) \in \mathbb{R}^{\neq 0} + \mathbb{R}^{\neq 0} Y$.

Theorem

Any quasi-linear equation Q(y) = 0, y < 1 has a solution in \mathbb{T} .

Moreover, there exists a unique solution such that $y_{\mathfrak{d}(\tilde{y}-y)} = 0$ for any other solution \tilde{y} ; this is called the **distinguished solution**.

Proof. Let $\mathcal{Y} = \{y \in \mathbb{T}^{<1} : Q(y) = 0\}$. Previous lemma + upward shifting $\implies \mathcal{Y} \neq \emptyset$. **Existence.** Let $y, \tilde{y} \in \mathcal{Y}, \tilde{y} \neq y, \mathfrak{v} := \mathfrak{d}_{\tilde{y}-y}$, and $LY := P_{+y,1}$. Claim: $\mathfrak{v} \in \mathfrak{H}_L := \{\mathfrak{d}_h : h \in \mathbb{T}, Lh = 0\}$. We have $N(P_{+y,\times\mathfrak{v}}) = N(P_{+y,\leqslant 1,\times\mathfrak{v}}) \in \mathbb{R}^{\neq 0} + \mathbb{R}^{\neq 0} Y$. Solutions $u \leqslant \mathfrak{v}$ of $P_{+y,\times\mathfrak{v}}(u) = 0$ or $P_{+y,\leqslant 1,\times\mathfrak{v}}(u) = 0$ have the same dominant term. Hence $P_{+y,\times\mathfrak{v}}((\tilde{y}-y)\mathfrak{v}) = 0$ and $P_{+y,\leqslant 1,\times\mathfrak{v}}(\delta) = 0$ has a solution $\delta \sim (\tilde{y}-y)/\mathfrak{v}$

Theorem

Any quasi-linear equation Q(y) = 0, y < 1 has a solution in \mathbb{T} .

Moreover, there exists a unique solution such that $y_{\mathfrak{d}(\tilde{y}-y)} = 0$ for any other solution \tilde{y} ; this is called the **distinguished solution**.

Proof. Let $\mathcal{Y} = \{y \in \mathbb{T}^{<1} : Q(y) = 0\}$. Previous lemma + upward shifting $\implies \mathcal{Y} \neq \emptyset$. **Existence.** Let $y, \tilde{y} \in \mathcal{Y}, \tilde{y} \neq y, \mathfrak{v} := \mathfrak{d}_{\tilde{y}-y}$, and $LY := P_{+y,1}$. Claim: $\mathfrak{v} \in \mathfrak{H}_L := \{\mathfrak{d}_h : h \in \mathbb{T}, Lh = 0\}$. We have $N(P_{+y,\times\mathfrak{v}}) = N(P_{+y,\leqslant 1,\times\mathfrak{v}}) \in \mathbb{R}^{\neq 0} + \mathbb{R}^{\neq 0}Y$. Solutions $u \leqslant \mathfrak{v}$ of $P_{+y,\times\mathfrak{v}}(u) = 0$ or $P_{+y,\leqslant 1,\times\mathfrak{v}}(u) = 0$ have the same dominant term. Hence $P_{+y,\times\mathfrak{v}}((\tilde{y}-y)\mathfrak{v}) = 0$ and $P_{+y,\leqslant 1,\times\mathfrak{v}}(\delta) = 0$ has a solution $\delta \sim (\tilde{y}-y)/\mathfrak{v}$ Hence $Lh = P_{+y,\leqslant 1}(h) = 0$ has a solution $h \sim \tilde{y} - y$.

Theorem

Any quasi-linear equation Q(y) = 0, y < 1 has a solution in \mathbb{T} .

Moreover, there exists a unique solution such that $y_{\mathfrak{d}(\tilde{y}-y)} = 0$ for any other solution \tilde{y} ; this is called the **distinguished solution**.

Proof. Let $\mathcal{Y} = \{y \in \mathbb{T}^{<1} : Q(y) = 0\}$. Previous lemma + upward shifting $\Longrightarrow \mathcal{Y} \neq \emptyset$. **Existence.** Let $y, \tilde{y} \in \mathcal{Y}, \tilde{y} \neq y, \mathfrak{v} := \mathfrak{d}_{\tilde{y}-y}$, and $LY := P_{+y,1}$. Then $\mathfrak{v} \in \mathfrak{H}_L := \{\mathfrak{d}_h : h \in \mathbb{T}, Lh = 0\}$.

Theorem

Any quasi-linear equation Q(y) = 0, y < 1 has a solution in \mathbb{T} .

Moreover, there exists a unique solution such that $y_{\mathfrak{d}(\tilde{y}-y)} = 0$ for any other solution \tilde{y} ; this is called the **distinguished solution**.

Proof. Let $\mathcal{Y} = \{y \in \mathbb{T}^{<1} : Q(y) = 0\}$. Previous lemma + upward shifting $\Longrightarrow \mathcal{Y} \neq \emptyset$. **Existence.** Let $y, \tilde{y} \in \mathcal{Y}, \tilde{y} \neq y, v := \mathfrak{d}_{\tilde{y}-y}$, and $LY := P_{+y,1}$. Then $v \in \mathfrak{H}_L := \{\mathfrak{d}_h : h \in \mathbb{T}, Lh = 0\}$. Let $\mathfrak{H}_y := \{\mathfrak{d}_{\tilde{y}-y} : \tilde{y} \in \mathcal{Y}\} \subseteq \mathfrak{H}_L$ with $|\mathfrak{H}_y| \leq r$.

Theorem

Any quasi-linear equation Q(y) = 0, y < 1 has a solution in \mathbb{T} .

Moreover, there exists a unique solution such that $y_{\mathfrak{d}(\tilde{y}-y)} = 0$ for any other solution \tilde{y} ; this is called the **distinguished solution**.

Proof. Let $\mathcal{Y} = \{y \in \mathbb{T}^{<1} : Q(y) = 0\}$. Previous lemma + upward shifting $\implies \mathcal{Y} \neq \emptyset$. **Existence.** Let $y, \tilde{y} \in \mathcal{Y}, \tilde{y} \neq y, v := \mathfrak{d}_{\tilde{y}-y}$, and $LY := P_{+y,1}$. Then $v \in \mathfrak{H}_L := \{\mathfrak{d}_h : h \in \mathbb{T}, Lh = 0\}$. Let $\mathfrak{H}_y := \{\mathfrak{d}_{\tilde{y}-y} : \tilde{y} \in \mathcal{Y}\} \subseteq \mathfrak{H}_L$ with $|\mathfrak{H}_y| \leq r$. Let $\mathfrak{H}_y^* := \{\mathfrak{h} \in \mathfrak{H}_y : y_{\mathfrak{h}} \neq 0\}$ and $\mathfrak{H}_y^* := \{\mathfrak{h} \in \mathfrak{H}_y : \mathfrak{h} > \mathfrak{H}_y^*\}$.

Theorem

Any quasi-linear equation Q(y) = 0, y < 1 has a solution in \mathbb{T} .

Moreover, there exists a unique solution such that $y_{\mathfrak{d}(\tilde{y}-y)} = 0$ for any other solution \tilde{y} ; this is called the **distinguished solution**.

Proof. Let $\mathcal{Y} = \{y \in \mathbb{T}^{<1} : Q(y) = 0\}$. Previous lemma + upward shifting $\implies \mathcal{Y} \neq \emptyset$. **Existence.** Let $y, \tilde{y} \in \mathcal{Y}, \tilde{y} \neq y, v := \mathfrak{d}_{\tilde{y}-y}$, and $LY := P_{+y,1}$. Then $v \in \mathfrak{H}_L := \{\mathfrak{d}_h : h \in \mathbb{T}, Lh = 0\}$. Let $\mathfrak{H}_y := \{\mathfrak{d}_{\tilde{y}-y} : \tilde{y} \in \mathcal{Y}\} \subseteq \mathfrak{H}_L$ with $|\mathfrak{H}_y| \leq r$. Let $\mathfrak{H}_y^* := \{\mathfrak{h} \in \mathfrak{H}_y : y_{\mathfrak{h}} \neq 0\}$ and $\mathfrak{H}_y^* := \{\mathfrak{h} \in \mathfrak{H}_y : \mathfrak{h} > \mathfrak{H}_y^*\}$. If $y \in \mathfrak{H}_y^*$, let $\tilde{y} \in \mathcal{Y}$ with $\mathfrak{h} := \mathfrak{d}_{\tilde{y}-y} = \max_{\leq} \mathfrak{H}_y^*$ and $\tilde{y}_{\mathfrak{h}} = 0$.

Theorem

Any quasi-linear equation Q(y) = 0, y < 1 has a solution in \mathbb{T} .

Moreover, there exists a unique solution such that $y_{\mathfrak{d}(\tilde{y}-y)} = 0$ for any other solution \tilde{y} ; this is called the **distinguished solution**.

Proof. Let $\mathcal{Y} = \{y \in \mathbb{T}^{<1} : Q(y) = 0\}$. Previous lemma + upward shifting $\implies \mathcal{Y} \neq \emptyset$. **Existence.** Let $y, \tilde{y} \in \mathcal{Y}, \tilde{y} \neq y, v := \mathfrak{d}_{\tilde{y}-y}$, and $LY := P_{+y,1}$. Then $v \in \mathfrak{H}_L := \{\mathfrak{d}_h : h \in \mathbb{T}, Lh = 0\}$. Let $\mathfrak{H}_y := \{\mathfrak{d}_{\tilde{y}-y} : \tilde{y} \in \mathcal{Y}\} \subseteq \mathfrak{H}_L$ with $|\mathfrak{H}_y| \leq r$. Let $\mathfrak{H}_y^* := \{\mathfrak{h} \in \mathfrak{H}_y : y_{\mathfrak{h}} \neq 0\}$ and $\mathfrak{H}_y^* := \{\mathfrak{h} \in \mathfrak{H}_y : \mathfrak{h} > \mathfrak{H}_y^*\}$. If $y \in \mathfrak{H}_y^*$, let $\tilde{y} \in \mathcal{Y}$ with $\mathfrak{h} := \mathfrak{d}_{\tilde{y}-y} = \max_{\leq} \mathfrak{H}_y^*$ and $\tilde{y}_{\mathfrak{h}} = 0$. Then $\mathfrak{H}_y^* \supseteq \mathfrak{H}_y^* \cup \{\mathfrak{h}\}$.

Theorem

Any quasi-linear equation $Q(y) = 0, y \prec 1$ has a solution in \mathbb{T} .

Moreover, there exists a unique solution such that $y_{\mathfrak{d}(\tilde{y}-y)} = 0$ for any other solution \tilde{y} ; this is called the **distinguished solution**.

Proof. Let $\mathcal{Y} = \{y \in \mathbb{T}^{<1} : Q(y) = 0\}$. Previous lemma + upward shifting $\implies \mathcal{Y} \neq \emptyset$. **Existence.** Let $y, \tilde{y} \in \mathcal{Y}$, $\tilde{y} \neq y$, $v := \mathfrak{d}_{\tilde{y}-y}$, and $LY := P_{+y,1}$. Then $v \in \mathfrak{H}_L := \{\mathfrak{d}_h : h \in \mathbb{T}, Lh = 0\}.$ Let $\mathfrak{H}_{y} := {\mathfrak{d}_{\tilde{y}-y} : \tilde{y} \in \mathcal{Y}} \subseteq \mathfrak{H}_{L}$ with $|\mathfrak{H}_{y}| \leq r$. Let $\mathfrak{H}_{y}^{*} := \{\mathfrak{h} \in \mathfrak{H}_{y} : y_{\mathfrak{h}} \neq 0\}$ and $\mathfrak{H}_{y}^{\#} := \{\mathfrak{h} \in \mathfrak{H}_{y} : \mathfrak{h} \succ \mathfrak{H}_{y}^{*}\}.$ If $y \in \mathfrak{H}_{y}^{*}$, let $\tilde{y} \in \mathcal{Y}$ with $\mathfrak{h} := \mathfrak{d}_{\tilde{y}-y} = \max_{\leq} \mathfrak{H}_{y}^{*}$ and $\tilde{y}_{\mathfrak{h}} = 0$. Then $\mathfrak{H}_{y}^{\#} \supseteq \mathfrak{H}_{y}^{\#} \cup \{\mathfrak{h}\}$. Repeating this $k \leq r$ times, we find $y, \tilde{y}, \tilde{\tilde{y}}, \dots, y^{[k]} \in \mathcal{Y}$ with $\mathfrak{H}_{y^{[k]}} = \emptyset$.

Consider an asymptotic differential equation of Newton degree *d*

 $P(y) = 0, \qquad y \prec v.$

Unravelling

Consider an asymptotic differential equation of Newton degree *d*

 $P(y) = 0, \qquad y \prec \mathfrak{v}.$

We say that (*) is **raveled** if there exist $c \in \mathbb{R}^{\neq}$, e < v, and i < d with

 $N(P_{\times e}) = (Y-c)^{d-i} (Y')^{i}.$

Unravelling

Consider an asymptotic differential equation of Newton degree *d*

$$P(y) = 0, \qquad y \prec v.$$

We say that (*) is **raveled** if there exist $c \in \mathbb{R}^{\neq}$, $e \prec v$, and i < d with

$$N(P_{\times \mathfrak{e}}) = (Y - c)^{d-i} (Y')^{i}.$$

Theorem

Given a raveled equation (*) with val P < d, there exist $\varphi \prec v$ and $\tilde{v} \prec v$ such that

$$P_{+\varphi}(\tilde{y}) = 0, \qquad \tilde{y} \prec \tilde{v}$$

is unraveled and of Newton degree d. We call (φ, \tilde{v}) *an unraveler for* (\star) *.*

Theorem

Given a raveled equation (\star) *with* val *P* < *d*, *there exist* $\varphi \prec v$ *and* $\tilde{v} \prec v$ *such that*

$$P_{+\varphi}(\tilde{y}) = 0, \qquad \tilde{y} \prec \tilde{v}$$

is unraveled and of Newton degree d. We call $(\varphi, \tilde{\mathfrak{v}})$ *an unraveler for* (\star) *.*

Theorem

Given a raveled equation (\star) *with* val *P* < *d*, *there exist* $\varphi \prec v$ *and* $\tilde{v} \prec v$ *such that*

$$P_{+\varphi}(\tilde{y}) = 0, \qquad \tilde{y} \prec \tilde{v}$$

is unraveled and of Newton degree d. We call (φ, \tilde{v}) *an unraveler for* (\star) *.*

Sketch of proof. Arrange that $N(P) = (Y - c)^{d-i} (Y')^i$ for $c \in \mathbb{R}^{\neq}$, 1 < v, and i < d.

Theorem

Given a raveled equation (*) with val P < d, there exist $\varphi < v$ and $\tilde{v} < v$ such that

$$P_{+\varphi}(\tilde{y}) = 0, \qquad \tilde{y} \prec \tilde{v}$$

is unraveled and of Newton degree d. We call (φ, \tilde{v}) *an unraveler for* (\star) *.*

Sketch of proof. Arrange that $N(P) = (Y - c)^{d-i} (Y')^i$ for $c \in \mathbb{R}^{\neq}$, 1 < v, and i < d. Let

$$Q := \frac{\partial^{d-1} P}{\partial Y^{d-i-1} \partial (Y')^i} \text{ if } i < d \qquad Q := \frac{\partial^{d-1} P}{\partial (Y')^{d-1}} \text{ if } i = d.$$

Theorem

Given a raveled equation (*) with val P < d, there exist $\varphi < v$ and $\tilde{v} < v$ such that

$$P_{+\varphi}(\tilde{y}) = 0, \qquad \tilde{y} \prec \tilde{v}$$

is unraveled and of Newton degree d. We call (φ, \tilde{v}) *an unraveler for* (\star) *.*

Sketch of proof. Arrange that $N(P) = (Y - c)^{d-i} (Y')^i$ for $c \in \mathbb{R}^{\neq}$, 1 < v, and i < d. Let

$$Q := \frac{\partial^{d-1} P}{\partial Y^{d-i-1} \partial (Y')^i} \text{ if } i < d \qquad Q := \frac{\partial^{d-1} P}{\partial (Y')^{d-1}} \text{ if } i = d.$$

Let φ be a solution of $Q(\varphi) = 0$, $\varphi \leq 1$ for which $\tilde{\mathfrak{v}} := \mathfrak{e}_{P_{+\varphi},1}$ is minimal for \prec .

Theorem

Given a raveled equation (*) with val P < d, there exist $\varphi < v$ and $\tilde{v} < v$ such that

$$P_{+\varphi}(\tilde{y}) = 0, \qquad \tilde{y} \prec \tilde{v}$$

is unraveled and of Newton degree d. We call (φ, \tilde{v}) *an unraveler for* (\star) *.*

Sketch of proof. Arrange that $N(P) = (Y - c)^{d-i} (Y')^i$ for $c \in \mathbb{R}^{\neq}$, 1 < v, and i < d. Let

$$Q := \frac{\partial^{d-1} P}{\partial Y^{d-i-1} \partial (Y')^i} \text{ if } i < d \qquad Q := \frac{\partial^{d-1} P}{\partial (Y')^{d-1}} \text{ if } i = d.$$

Let φ be a solution of $Q(\varphi) = 0$, $\varphi \leq 1$ for which $\tilde{\mathfrak{v}} := \mathfrak{e}_{P_{+\varphi},1}$ is minimal for \prec . Although $(\varphi, \tilde{\mathfrak{v}})$ is not necessarily un unraveller, one may repeat the process.

Theorem

Given a raveled equation (\star) *with* val *P* < *d*, *there exist* $\varphi \prec v$ *and* $\tilde{v} \prec v$ *such that*

$$P_{+\varphi}(\tilde{y}) = 0, \qquad \tilde{y} \prec \tilde{v}$$

is unraveled and of Newton degree d. We call (φ, \tilde{v}) *an unraveler for* (\star) *.*

Sketch of proof. Arrange that $N(P) = (Y - c)^{d-i} (Y')^i$ for $c \in \mathbb{R}^{\neq}$, 1 < v, and i < d. Let

$$Q := \frac{\partial^{d-1} P}{\partial Y^{d-i-1} \partial (Y')^i} \text{ if } i < d \qquad Q := \frac{\partial^{d-1} P}{\partial (Y')^{d-1}} \text{ if } i = d.$$

Let φ be a solution of $Q(\varphi) = 0$, $\varphi \leq 1$ for which $\tilde{\mathfrak{v}} := \mathfrak{e}_{P_{+\varphi},1}$ is minimal for \prec . Although $(\varphi, \tilde{\mathfrak{v}})$ is not necessarily un unraveller, one may repeat the process. This yields $(\varphi, \tilde{\mathfrak{v}}), (\tilde{\varphi}, \tilde{\tilde{\mathfrak{v}}}), \dots$ with $\tilde{\mathfrak{v}} / \mathfrak{v} \gg \tilde{\tilde{\mathfrak{v}}} / \tilde{\mathfrak{v}} \gg \dots \Longrightarrow$ termination.

 (\star)

Theorem

Given $P \in \mathbb{T}{Y}$ *and* $v \in \mathfrak{T}$ *, consider*

$$P(y) = 0, \qquad y \prec v.$$

If $\deg_{\langle v} P$ is odd, then (\star) has a solution in \mathbb{T} .

Theorem

Given $P \in \mathbb{T}{Y}$ *and* $v \in \mathfrak{T}$ *, consider*

$$P(y) = 0, \qquad y \prec v.$$

If $\deg_{\langle v} P$ is odd, then (\star) has a solution in \mathbb{T} .

Proof. By induction on $\deg_{<\mathfrak{v}} P$.

 (\star)

Theorem

Given $P \in \mathbb{T}{Y}$ *and* $v \in \mathfrak{T}$ *, consider*

$$P(y) = 0, \qquad y \prec v.$$

If $\deg_{\langle v} P$ is odd, then (\star) has a solution in \mathbb{T} .

Proof. By induction on $\deg_{<v} P$.

If d = 1, then (\star) is quasi-linear, so it has a solution. So assume that d > 1.

Theorem

Given $P \in \mathbb{T}{Y}$ *and* $v \in \mathfrak{T}$ *, consider*

$$P(y) = 0, \qquad y \prec v.$$

If $\deg_{\langle v} P$ is odd, then (\star) has a solution in \mathbb{T} .

Proof. By induction on deg_{<v} *P*. If d = 1, then (*) is quasi-linear, so it has a solution. So assume that d > 1. If $P_{<d} = 0$, then y = 0 is a solution. 28/30

Theorem

Given $P \in \mathbb{T}{Y}$ *and* $v \in \mathfrak{T}$ *, consider*

$$P(y) = 0, \qquad y \prec v.$$

If $\deg_{\langle v} P$ is odd, then (\star) has a solution in \mathbb{T} .

Proof. By induction on $\deg_{<v} P$.

If d = 1, then (*) is quasi-linear, so it has a solution. So assume that d > 1.

If $P_{<d} = 0$, then y = 0 is a solution.

Otherwise, we unravel (*) and let $e := e_{P,v}$.

Theorem

Given $P \in \mathbb{T}{Y}$ *and* $v \in \mathfrak{T}$ *, consider*

$$P(y) = 0, \qquad y \prec v.$$

If deg_{<v} *P* is odd, then (*) has a solution in \mathbb{T} .

Proof. By induction on $\deg_{\prec v} P$.

If d = 1, then (*) is quasi-linear, so it has a solution. So assume that d > 1.

If $P_{<d} = 0$, then y = 0 is a solution.

Otherwise, we unravel (*) and let $e := e_{P,v}$.

Then $N := N(P_{\times e}) = Q(Y)(Y')^i$ for some i < d and Q(Y) is not a (d - i)-th power.
Theorem

Given $P \in \mathbb{T}{Y}$ *and* $v \in \mathfrak{T}$ *, consider*

$$P(y) = 0, \qquad y \prec v.$$

If deg_{<v} *P* is odd, then (*) has a solution in \mathbb{T} .

Proof. By induction on $\deg_{\prec v} P$.

If d = 1, then (*) is quasi-linear, so it has a solution. So assume that d > 1.

If $P_{<d} = 0$, then y = 0 is a solution.

Otherwise, we unravel (*) and let $e := e_{P,v}$.

Then $N := N(P_{\times e}) = Q(Y)(Y')^i$ for some i < d and Q(Y) is not a (d - i)-th power. If *i* is odd, then let $c \in \mathbb{R}$ with $Q(c) \neq 0$.

Theorem

Given $P \in \mathbb{T}{Y}$ *and* $v \in \mathfrak{T}$ *, consider*

$$P(y) = 0, \qquad y \prec v.$$

If deg_{<v} *P* is odd, then (*) has a solution in \mathbb{T} .

Proof. By induction on $\deg_{\langle v} P$.

If d = 1, then (*) is quasi-linear, so it has a solution. So assume that d > 1. If $P_{<d} = 0$, then y = 0 is a solution.

Otherwise, we unravel (\star) and let $e := e_{P,v}$.

Then $N := N(P_{\times e}) = Q(Y)(Y')^i$ for some i < d and Q(Y) is not a (d - i)-th power. If *i* is odd, then let $c \in \mathbb{R}$ with $Q(c) \neq 0$.

Then $\deg_{\langle v} P_{+ce} = \operatorname{val}_{\leqslant v} P_{+ce} = i$.

Theorem

Given $P \in \mathbb{T}{Y}$ *and* $v \in \mathfrak{T}$ *, consider*

$$P(y) = 0, \qquad y \prec v.$$

If deg_{<v} *P* is odd, then (*) has a solution in \mathbb{T} .

Proof. By induction on $\deg_{\langle v} P$.

If d = 1, then (*) is quasi-linear, so it has a solution. So assume that d > 1. If $P_{<d} = 0$, then y = 0 is a solution.

Otherwise, we unravel (\star) and let $e := e_{P,v}$.

Then $N := N(P_{\times e}) = Q(Y)(Y')^i$ for some i < d and Q(Y) is not a (d - i)-th power. If *i* is odd, then let $c \in \mathbb{R}$ with $Q(c) \neq 0$.

Then deg $_{\prec v} P_{+ce} = val_{\leq v} P_{+ce} = i$. We conclude using the induction hypothesis.

Theorem

Given $P \in \mathbb{T}{Y}$ *and* $v \in \mathfrak{T}$ *, consider*

$$P(y) = 0, \qquad y \prec v.$$

If deg_{<v} *P* is odd, then (*) has a solution in \mathbb{T} .

Proof. By induction on $\deg_{\prec v} P$.

If d = 1, then (\star) is quasi-linear, so it has a solution. So assume that d > 1.

If $P_{<d} = 0$, then y = 0 is a solution.

Otherwise, we unravel (*) and let $e := e_{P,v}$.

Then $N := N(P_{\times e}) = Q(Y)(Y')^i$ for some i < d and Q(Y) is not a (d - i)-th power. If *i* is even, then deg *Q* is odd.

 (\star)

Theorem

Given $P \in \mathbb{T}{Y}$ *and* $v \in \mathfrak{T}$ *, consider*

$$P(y) = 0, \qquad y \prec v.$$

If deg_{<v} *P* is odd, then (*) has a solution in \mathbb{T} .

Proof. By induction on $\deg_{\prec v} P$.

If d = 1, then (*) is quasi-linear, so it has a solution. So assume that d > 1.

If $P_{<d} = 0$, then y = 0 is a solution.

Otherwise, we unravel (*) and let $e := e_{P,v}$.

Then $N := N(P_{\times e}) = Q(Y)(Y')^i$ for some i < d and Q(Y) is not a (d - i)-th power.

If *i* is even, then deg *Q* is odd. Let $c \in \mathbb{R}$ be a root of odd multiplicity *j* of *Q*.

Theorem

Given $P \in \mathbb{T}{Y}$ *and* $v \in \mathfrak{T}$ *, consider*

$$P(y) = 0, \qquad y \prec v.$$

If deg_{<v} *P* is odd, then (*) has a solution in \mathbb{T} .

Proof. By induction on $\deg_{\prec v} P$.

If d = 1, then (*) is quasi-linear, so it has a solution. So assume that d > 1.

If $P_{<d} = 0$, then y = 0 is a solution.

Otherwise, we unravel (*) and let $e := e_{P,v}$.

Then $N := N(P_{\times e}) = Q(Y)(Y')^i$ for some i < d and Q(Y) is not a (d - i)-th power. If i is even, then deg Q is odd. Let $c \in \mathbb{R}$ be a root of odd multiplicity j of Q. $\deg_{\prec v} P_{+ce} = \operatorname{val}_{\leqslant v} P_{+ce} = i + j < d$.

Theorem

Given $P \in \mathbb{T}{Y}$ *and* $v \in \mathfrak{T}$ *, consider*

$$P(y) = 0, \qquad y \prec v.$$

If deg_{<v} *P* is odd, then (*) has a solution in \mathbb{T} .

Proof. By induction on $\deg_{\prec v} P$.

If d = 1, then (*) is quasi-linear, so it has a solution. So assume that d > 1. If $P_{<d} = 0$, then y = 0 is a solution.

If $P_{\leq d} = 0$, then y = 0 is a solution.

Otherwise, we unravel (*) and let $e := e_{P,v}$.

Then $N := N(P_{\times e}) = Q(Y)(Y')^i$ for some i < d and Q(Y) is not a (d - i)-th power. If i is even, then deg Q is odd. Let $c \in \mathbb{R}$ be a root of odd multiplicity j of Q. $\deg_{<v} P_{+ce} = val_{\leq v} P_{+ce} = i + j < d$. We conclude using the induction hypothesis.

 (\star)

Theorem IVP (intermediate value property)

Let $P \in \mathbb{T}{Y}$ and f < g in \mathbb{T} be such that P(f)P(g) < 0. Then there exists an $h \in \mathbb{T}$ with f < h < g and P(h) = 0.

Theorem IVP (intermediate value property)

Let $P \in \mathbb{T}{Y}$ and f < g in \mathbb{T} be such that P(f)P(g) < 0. Then there exists an $h \in \mathbb{T}$ with f < h < g and P(h) = 0.

Proof. Newton polygon method & maintain sign change during refinements.

Theorem IVP (intermediate value property)

Let $P \in \mathbb{T}{Y}$ and f < g in \mathbb{T} be such that P(f)P(g) < 0. Then there exists an $h \in \mathbb{T}$ with f < h < g and P(h) = 0.

Proof. Newton polygon method & maintain sign change during refinements.

Other " ∂ -compatible" support types \mathcal{P}

Main results generalize to $\mathscr{S}\text{-}\mathsf{based}$ transseries of finite logarithmic depth.

Theorem IVP (intermediate value property)

Let $P \in \mathbb{T}{Y}$ and f < g in \mathbb{T} be such that P(f)P(g) < 0. Then there exists an $h \in \mathbb{T}$ with f < h < g and P(h) = 0.

Proof. Newton polygon method & maintain sign change during refinements.

Other "∂-compatible" support types *P*

Main results generalize to \mathscr{S} -based transseries of finite logarithmic depth. Let $\mathbb{T}_{\mathscr{S}}$ be the set of such transseries.

Theorem IVP (intermediate value property)

Let $P \in \mathbb{T}{Y}$ and f < g in \mathbb{T} be such that P(f)P(g) < 0. Then there exists an $h \in \mathbb{T}$ with f < h < g and P(h) = 0.

Proof. Newton polygon method & maintain sign change during refinements.

Other " ∂ -compatible" support types \mathcal{P}

Main results generalize to $\mathscr S\text{-}\mathsf{based}$ transseries of finite logarithmic depth.

Let $\mathbb{T}_{\mathscr{S}}$ be the set of such transseries.

Any well-based transseries root of $P \in \mathbb{T}_{\mathscr{P}} \{Y\}$ is in $\mathbb{T}_{\mathscr{P}}$.

Theorem IVP (intermediate value property)

Let $P \in \mathbb{T}{Y}$ and f < g in \mathbb{T} be such that P(f)P(g) < 0. Then there exists an $h \in \mathbb{T}$ with f < h < g and P(h) = 0.

Proof. Newton polygon method & maintain sign change during refinements.

Other "∂-compatible" support types *P*

Main results generalize to $\mathscr S\text{-}\mathsf{based}$ transseries of finite logarithmic depth.

Let $\mathbb{T}_{\mathscr{S}}$ be the set of such transseries.

Any well-based transseries root of $P \in \mathbb{T}_{\mathscr{S}} \{Y\}$ is in $\mathbb{T}_{\mathscr{S}}$.

 $\zeta(x) := 1 + 2^{-x} + 3^{-x} + \cdots$ is d-transcendental over \mathbb{T} .

Theorem IVP (intermediate value property)

Let $P \in \mathbb{T}{Y}$ and f < g in \mathbb{T} be such that P(f)P(g) < 0. Then there exists an $h \in \mathbb{T}$ with f < h < g and P(h) = 0.

Proof. Newton polygon method & maintain sign change during refinements.

Other "∂-compatible" support types *P*

Main results generalize to \mathscr{S} -based transseries of finite logarithmic depth. Let $\mathbb{T}_{\mathscr{S}}$ be the set of such transseries.

Any well-based transseries root of $P \in \mathbb{T}_{\mathscr{P}} \{Y\}$ is in $\mathbb{T}_{\mathscr{P}}$.

 $\zeta(x) := 1 + 2^{-x} + 3^{-x} + \cdots$ is d-transcendental over \mathbb{T} . $y(x) := e^x + e^{\sqrt{x}} + e^{\sqrt{\sqrt{x}}} + \cdots$ is d-transcendental over $\mathbb{T}\langle \zeta \rangle := \mathbb{T}(\zeta, \zeta', \dots).$

Remarkable first order properties

 \blacktriangleright T is real closed

- \blacktriangleright T is real closed
- ▶ T is Liouville closed

- \blacktriangleright T is real closed
- \mathbb{T} is Liouville closed
- Solvability of linear differential equations

- ► T is real closed
- \mathbb{T} is Liouville closed
- Solvability of linear differential equations , quasi-linear differential equations?

- \blacktriangleright T is real closed
- \mathbb{T} is Liouville closed
- Solvability of linear differential equations ,, quasi-linear differential equations?
- ► Order ≤ 2 factorization in $\mathbb{T}[\partial]$

- ► T is real closed
- \mathbb{T} is Liouville closed
- Solvability of linear differential equations
 ,, quasi-linear differential equations?
- ▶ Order ≤ 2 factorization in $\mathbb{T}[\partial]$
- ▶ T satisfies the IVP

- ► T is real closed
- \mathbb{T} is Liouville closed
- Solvability of linear differential equations
 ,, quasi-linear differential equations?
- ▶ Order ≤ 2 factorization in $\mathbb{T}[\partial]$
- ▶ T satisfies the IVP
- Existence + form of Newton polynomials

- ► T is real closed
- \mathbb{T} is Liouville closed
- Solvability of linear differential equations
 ,, quasi-linear differential equations?
- ▶ Order ≤ 2 factorization in $\mathbb{T}[\partial]$
- ▶ T satisfies the IVP
- Existence + form of Newton polynomials
- Existence of equalizers

- ► T is real closed
- \mathbb{T} is Liouville closed
- Solvability of linear differential equations
 ,, quasi-linear differential equations?
- ▶ Order ≤ 2 factorization in $\mathbb{T}[\partial]$
- ▶ T satisfies the IVP
- Existence + form of Newton polynomials
- Existence of equalizers
- Existence of unravellers

Remarkable first order properties

- \mathbb{T} is real closed
- \mathbb{T} is Liouville closed
- Solvability of linear differential equations ,, quasi-linear differential equations?
- ▶ Order ≤ 2 factorization in $\mathbb{T}[\partial]$
- ▶ T satisfies the IVP
- Existence + form of Newton polynomials
- Existence of equalizers
- Existence of unravellers

Remarkable first order properties

- ► T is real closed
- \mathbb{T} is Liouville closed
- Solvability of linear differential equations ,, quasi-linear differential equations?
- ▶ Order ≤ 2 factorization in $\mathbb{T}[\partial]$
- ▶ T satisfies the IVP
- Existence + form of Newton polynomials
- Existence of equalizers
- Existence of unravellers

Remarkable first order properties

- ► T is real closed
- \mathbb{T} is Liouville closed
- Solvability of linear differential equations ,, quasi-linear differential equations?
- ▶ Order ≤ 2 factorization in $\mathbb{T}[\partial]$
- ▶ T satisfies the IVP
- Existence + form of Newton polynomials
- Existence of equalizers
- Existence of unravellers

- support types \mathscr{S}
- axioms for strong summation

Remarkable first order properties

- ► T is real closed
- \mathbb{T} is Liouville closed
- Solvability of linear differential equations
 ,, quasi-linear differential equations?
- ▶ Order ≤ 2 factorization in $\mathbb{T}[\partial]$
- ▶ T satisfies the IVP
- Existence + form of Newton polynomials
- Existence of equalizers
- Existence of unravellers

- ▶ support types \mathscr{S}
- axioms for strong summation
- distinguished solutions

Remarkable first order properties

- ► T is real closed
- \mathbb{T} is Liouville closed
- Solvability of linear differential equations ,, quasi-linear differential equations?
- ► Order ≤ 2 factorization in $\mathbb{T}[\partial]$
- ▶ T satisfies the IVP
- Existence + form of Newton polynomials
- Existence of equalizers
- Existence of unravellers

- ▶ support types \mathscr{S}
- axioms for strong summation
- distinguished solutions
- strong linearity of L^{-1}

Remarkable first order properties

- ► T is real closed
- \mathbb{T} is Liouville closed
- Solvability of linear differential equations ,, quasi-linear differential equations?
- ► Order ≤ 2 factorization in $\mathbb{T}[\partial]$
- ▶ T satisfies the IVP
- Existence + form of Newton polynomials
- Existence of equalizers
- Existence of unravellers

- ▶ support types \mathscr{S}
- axioms for strong summation
- distinguished solutions
- strong linearity of L^{-1}
- ▶ (e.g.) composition on \mathbb{T}