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DifferentialDifferentialDifferential polynomialspolynomialspolynomials overoveroverTTT 222///303030

DifferentialDifferentialDifferential polynomialspolynomialspolynomials asasas seriesseriesseries... P∈T{Y}⊆R{Y}[[𝔗]]
supp P support of P
𝔡(P)∈𝔗 dominant monomial of P
D(P)∈R{Y} dominant coefficient or “part” of P
≼, ≺, ≍, . . . extend to T{Y}



StandardStandardStandard decompositiondecompositiondecomposition 333///303030

StandardStandardStandard decompositiondecompositiondecomposition... P∈T{Y} of order r.

P = �
𝒊=(i0, . . . ,ir)∈Nr+1

P𝒊Y𝒊, Y𝒊≔Y i0 (Y′)i1 ⋅ ⋅ ⋅ (Y(r))ir.



StandardStandardStandard decompositiondecompositiondecomposition 333///303030

StandardStandardStandard decompositiondecompositiondecomposition... P∈T{Y} of order r.

P = �
𝒊=(i0, . . . ,ir)∈Nr+1

P𝒊Y𝒊, Y𝒊≔Y i0 (Y′)i1 ⋅ ⋅ ⋅ (Y(r))ir.

DegreeDegreeDegree andandand valuationvaluationvaluation...
deg P ≔ max {|𝒊| :P𝒊≠0}
val P ≔ min {|𝒊| :P𝒊≠0}



StandardStandardStandard decompositiondecompositiondecomposition 333///303030

StandardStandardStandard decompositiondecompositiondecomposition... P∈T{Y} of order r.

P = �
𝒊=(i0, . . . ,ir)∈Nr+1

P𝒊Y𝒊, Y𝒊≔Y i0 (Y′)i1 ⋅ ⋅ ⋅ (Y(r))ir.

DegreeDegreeDegree andandand valuationvaluationvaluation...
deg P ≔ max {|𝒊| :P𝒊≠0}
val P ≔ min {|𝒊| :P𝒊≠0}

DecompositionDecompositionDecomposition ininin homogeneoushomogeneoushomogeneous partspartsparts... P∈T{Y} of degree d

P = Pd+ ⋅ ⋅ ⋅ +P0, Pk≔�
|𝒊|=k

P𝒊Y𝒊, |𝒊|≔ i0+ ⋅ ⋅ ⋅ + ir.



AdditiveAdditiveAdditive conjugationconjugationconjugation 444///303030

P∈T{Y}, 𝜑∈T
P+𝜑(y) = P(y+𝜑)



AdditiveAdditiveAdditive conjugationconjugationconjugation 444///303030

P∈T{Y}, 𝜑∈T
P+𝜑(y) = P(y+𝜑)

If P has order r, then for any 𝒊= (i0, . . . , ir)∈Nr+1,

P+𝜑,𝒊 = P(𝒊)(𝜑) = ∂P
∂Y i0 ⋅ ⋅ ⋅ (∂Y(r))ir

(𝜑)

= �
𝒋⩾𝒊

(𝒋𝒊)𝜑 𝒋−𝒊P𝒋 = �
j0⩾i0, . . . , jr⩾ir

(j0i0) ⋅ ⋅ ⋅ (jrir)𝜑 i0 (𝜑′)i1 ⋅ ⋅ ⋅ (𝜑(r))irP𝒋.



AdditiveAdditiveAdditive conjugationconjugationconjugation 444///303030

P∈T{Y}, 𝜑∈T
P+𝜑(y) = P(y+𝜑)

If P has order r, then for any 𝒊= (i0, . . . , ir)∈Nr+1,

P+𝜑,𝒊 = P(𝒊)(𝜑) = ∂P
∂Y i0 ⋅ ⋅ ⋅ (∂Y(r))ir

(𝜑)

= �
𝒋⩾𝒊

(𝒋𝒊)𝜑 𝒋−𝒊P𝒋 = �
j0⩾i0, . . . , jr⩾ir

(j0i0) ⋅ ⋅ ⋅ (jrir)𝜑 i0 (𝜑′)i1 ⋅ ⋅ ⋅ (𝜑(r))irP𝒋.

If 𝜑= c+𝜀 with c∈R and 𝜀≺1, then
P+𝜑 ≍ P

D(P+𝜑) = D(P)+c.

PropositionPropositionPropositionPropositionProposition



DecompositionDecompositionDecomposition bybyby ordersordersorders 555///303030

DecompositionDecompositionDecomposition bybyby ordersordersorders... P of order r and degree d.
P = �

𝝎=(𝜔1, . . . ,𝜔l)
l⩽d

P[𝝎]Y[𝝎], Y[𝝎]≔Y(𝜔1) ⋅ ⋅ ⋅Y(𝜔l).

Here we assume that P[𝝎]=P[𝝉] if 𝝉= (𝜔𝜎(1), . . . ,𝜔𝜎(l)) for some permutation 𝜎.



DecompositionDecompositionDecomposition bybyby ordersordersorders 555///303030

DecompositionDecompositionDecomposition bybyby ordersordersorders... P of order r and degree d.
P = �

𝝎=(𝜔1, . . . ,𝜔l)
l⩽d

P[𝝎]Y[𝝎], Y[𝝎]≔Y(𝜔1) ⋅ ⋅ ⋅Y(𝜔l).

Here we assume that P[𝝎]=P[𝝉] if 𝝉= (𝜔𝜎(1), . . . ,𝜔𝜎(l)) for some permutation 𝜎.

WeightWeightWeight andandand weightedweightedweighted valuationvaluationvaluation...
wt P ≔ max {|𝝎| :P[𝝎]≠0}
wv P ≔ min {|𝝎| :P[𝝎]≠0}.



DecompositionDecompositionDecomposition bybyby ordersordersorders 555///303030

DecompositionDecompositionDecomposition bybyby ordersordersorders... P of order r and degree d.
P = �

𝝎=(𝜔1, . . . ,𝜔l)
l⩽d

P[𝝎]Y[𝝎], Y[𝝎]≔Y(𝜔1) ⋅ ⋅ ⋅Y(𝜔l).

Here we assume that P[𝝎]=P[𝝉] if 𝝉= (𝜔𝜎(1), . . . ,𝜔𝜎(l)) for some permutation 𝜎.

WeightWeightWeight andandand weightedweightedweighted valuationvaluationvaluation...
wt P ≔ max {|𝝎| :P[𝝎]≠0}
wv P ≔ min {|𝝎| :P[𝝎]≠0}.

DecompositionDecompositionDecomposition intointointo isobaricisobaricisobaric partspartsparts... P of weight w

P = P[w]+ ⋅ ⋅ ⋅ +P[0], P[k] ≔ �
|𝝎|=k

P[𝝎]Y[𝝎].



MultiplicativeMultiplicativeMultiplicative conjugationconjugationconjugation 666///303030

P∈T{Y}, 𝜑∈T≠0

P×𝜑(y) = P(𝜑y)



MultiplicativeMultiplicativeMultiplicative conjugationconjugationconjugation 666///303030

P∈T{Y}, 𝜑∈T≠0

P×𝜑(y) = P(𝜑y)

For any 𝝎, we have

P×𝜑,[𝝎] = �
𝝉⩾𝝎

(𝝉𝝎)𝜑[𝝉−𝝎]P[𝝉].



MultiplicativeMultiplicativeMultiplicative conjugationconjugationconjugation 666///303030

P∈T{Y}, 𝜑∈T≠0

P×𝜑(y) = P(𝜑y)

For any 𝝎, we have

P×𝜑,[𝝎] = �
𝝉⩾𝝎

(𝝉𝝎)𝜑[𝝉−𝝎]P[𝝉].

If 𝜑≻≻x, then 𝔡(P×𝜑)
𝔡(P) ⪯⪯ 𝜑.

If 𝜑≻≻x and P is homogeneous of degree d, then 𝔡(P×𝜑)
𝜑d𝔡(P)

≺≺ 𝜑.

PropositionPropositionPropositionPropositionProposition



UpwardUpwardUpward shiftingshiftingshifting 777///303030

P↑(y↑) = P(y)↑



UpwardUpwardUpward shiftingshiftingshifting 777///303030

P↑(y↑) = P(y)↑

For any 𝝎, we have
P↑[𝝎] = �

𝝉⩾𝝎
s𝝉,𝝎e−|𝝉|xP[𝝉]↑,

where
s𝝉,𝝎 = s𝜏1,𝜔1 ⋅ ⋅ ⋅ s𝜏l,𝜔l ∈ Z, f (log x)(j) = �

0⩽i⩽ j

si, j
x j f

(j)(log x).



UpwardUpwardUpward shiftingshiftingshifting 777///303030

P↑(y↑) = P(y)↑

For any 𝝎, we have
P↑[𝝎] = �

𝝉⩾𝝎
s𝝉,𝝎e−|𝝉|xP[𝝉]↑,

where
s𝝉,𝝎 = s𝜏1,𝜔1 ⋅ ⋅ ⋅ s𝜏l,𝜔l ∈ Z, f (log x)(j) = �

0⩽i⩽ j

si, j
x j f

(j)(log x).

We have 𝔡(P↑)
𝔡(P)↑ ⪯⪯ ex.

If P is isobaric of weight w, then 𝔡(P↑)
e−wx𝔡(P)↑ ≺≺ ex.

PropositionPropositionPropositionPropositionProposition



GettingGettingGetting ridridrid ofofof logarithmslogarithmslogarithms 888///303030

If P∈T{Y} has level l, then P↑ has level at least min (l+1,1).
PropositionPropositionPropositionPropositionProposition



GettingGettingGetting ridridrid ofofof logarithmslogarithmslogarithms 888///303030

If P∈T{Y} has level l, then P↑ has level at least min (l+1,1).
PropositionPropositionPropositionPropositionProposition

If P∈R[[𝔅R]]{Y} for a transbasis of level l⩽0 and expl x, expl−1 x, . . . ,x∈R[[𝔅R]],
then P↑∈R[[𝔅↑R]]{Y}, where 𝔅↑ has level l+1 and expl−1 x, . . . ,x∈R[[𝔅↑R]].

PropositionPropositionPropositionPropositionProposition



GettingGettingGetting ridridrid ofofof logarithmslogarithmslogarithms 888///303030

If P∈T{Y} has level l, then P↑ has level at least min (l+1,1).
PropositionPropositionPropositionPropositionProposition

If P∈R[[𝔅R]]{Y} for a transbasis of level l⩽0 and expl x, expl−1 x, . . . ,x∈R[[𝔅R]],
then P↑∈R[[𝔅↑R]]{Y}, where 𝔅↑ has level l+1 and expl−1 x, . . . ,x∈R[[𝔅↑R]].

PropositionPropositionPropositionPropositionProposition

If P∈R[[ex=𝔟1; . . . ; 𝔟n]]{Y}, then P↑∈R[[ex; 𝔟1↑; . . . ; 𝔟n↑]]{Y}.
PropositionPropositionPropositionPropositionProposition



LogarithmicLogarithmicLogarithmic decompositiondecompositiondecomposition 999///303030

y = y
y′ = yy†

y′′ = y (y†)2+yy†y††

⋅⋅⋅
y(k) ∈ Z[y,y†,y††, . . . ,y //k //].



LogarithmicLogarithmicLogarithmic decompositiondecompositiondecomposition 999///303030

y = y
y′ = yy†

y′′ = y (y†)2+yy†y††

⋅⋅⋅
y(k) ∈ Z[y,y†,y††, . . . ,y //k //].



LogarithmicLogarithmicLogarithmic decompositiondecompositiondecomposition 999///303030

y = y
y′ = yy†

y′′ = y (y†)2+yy†y††

⋅⋅⋅
y(k) ∈ Z[y,y†,y††, . . . ,y //k //].



LogarithmicLogarithmicLogarithmic decompositiondecompositiondecomposition 999///303030

y = y
y′ = yy†

y′′ = y (y†)2+yy†y††

⋅⋅⋅
y(k) ∈ Z[y,y†,y††, . . . ,y //k //].

LogarithmicLogarithmicLogarithmic decompositiondecompositiondecomposition...
P = �

𝒊∈Nr+1

P // 𝒊 //y // 𝒊 //, y // 𝒊 // = y i0 (y†)i1 ⋅ ⋅ ⋅ (y //r //)ir



LogarithmicLogarithmicLogarithmic decompositiondecompositiondecomposition 999///303030

y = y
y′ = yy†

y′′ = y (y†)2+yy†y††

⋅⋅⋅
y(k) ∈ Z[y,y†,y††, . . . ,y //k //].

LogarithmicLogarithmicLogarithmic decompositiondecompositiondecomposition...
P = �

𝒊∈Nr+1

P // 𝒊 //y // 𝒊 //, y // 𝒊 // = y i0 (y†)i1 ⋅ ⋅ ⋅ (y //r //)ir

Let 𝒊 be largest for⩽lex onNr+1 with P // 𝒊 //≠0. Then for y→∞, we have P(y)∼P // 𝒊 //y // 𝒊 //≠0.
PropositionPropositionPropositionPropositionProposition



LogarithmicLogarithmicLogarithmic decompositiondecompositiondecomposition 999///303030

y = y
y′ = yy†

y′′ = y (y†)2+yy†y††

⋅⋅⋅
y(k) ∈ Z[y,y†,y††, . . . ,y //k //].

LogarithmicLogarithmicLogarithmic decompositiondecompositiondecomposition...
P = �

𝒊∈Nr+1

P // 𝒊 //y // 𝒊 //, y // 𝒊 // = y i0 (y†)i1 ⋅ ⋅ ⋅ (y //r //)ir

Let 𝒊 be largest for⩽lex onNr+1 with P // 𝒊 //≠0. Then for y→∞, we have P(y)∼P // 𝒊 //y // 𝒊 //≠0.
PropositionPropositionPropositionPropositionProposition

ProofProofProof... For large y, we have y≻≻y†≻≻y††≻≻ ⋅ ⋅ ⋅. □



DifferentialDifferentialDifferential NewtonNewtonNewton polygonspolygonspolygons 101010///303030

e−exy3+yy′′− (y′)2+e−xy′+e−3x = 0

deg

−log 𝔗
ex

x

3x



DifferentialDifferentialDifferential NewtonNewtonNewton polygonspolygonspolygons 101010///303030

e−exy3+yy′′− (y′)2+e−xy′+e−3x = 0

AlgebraicAlgebraicAlgebraic startingstartingstarting monomialsmonomialsmonomials...
• y≍e−2x

deg

−log 𝔗
ex

x

3x



DifferentialDifferentialDifferential NewtonNewtonNewton polygonspolygonspolygons 101010///303030

e−exy3+yy′′− (y′)2+e−xy′+e−3x = 0

AlgebraicAlgebraicAlgebraic startingstartingstarting monomialsmonomialsmonomials...
• y≍e−2x

• y≍x2e−x

deg

−log 𝔗
ex

x

3x



DifferentialDifferentialDifferential NewtonNewtonNewton polygonspolygonspolygons 101010///303030

e−exy3+yy′′− (y′)2+e−xy′+e−3x = 0

AlgebraicAlgebraicAlgebraic startingstartingstarting monomialsmonomialsmonomials...
• y≍e−2x

• y≍x2e−x

• y≍exeex

deg

−log 𝔗
ex

x

3x



DifferentialDifferentialDifferential NewtonNewtonNewton polygonspolygonspolygons 101010///303030

e−exy3+yy′′− (y′)2+e−xy′+e−3x = 0

AlgebraicAlgebraicAlgebraic startingstartingstarting monomialsmonomialsmonomials...
• y≍e−2x

• y≍x2e−x

• y≍exeex

DifferentialDifferentialDifferential startingstartingstarting monomialsmonomialsmonomials...
• y≍e𝜆x, 𝜆>−1

deg

−log 𝔗
ex

x

3x
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Necessary condition for the existence of a root y∈T of P∈T{Y} with y≍1?



WhenWhenWhen isisis 111 aaa startingstartingstarting monomialmonomialmonomial??? 111111///303030

Necessary condition for the existence of a root y∈T of P∈T{Y} with y≍1?

TentativeTentativeTentative answeransweranswer
D(P)(c)=0 has a non-zero solution c∈R.



WhenWhenWhen isisis 111 aaa startingstartingstarting monomialmonomialmonomial??? 111111///303030

Necessary condition for the existence of a root y∈T of P∈T{Y} with y≍1?

TentativeTentativeTentative answeransweranswer
D(P)(c)=0 has a non-zero solution c∈R.

ProblemProblemProblem
P = x−2Y5+ (Y′)3+x−1



WhenWhenWhen isisis 111 aaa startingstartingstarting monomialmonomialmonomial??? 111111///303030

Necessary condition for the existence of a root y∈T of P∈T{Y} with y≍1?

TentativeTentativeTentative answeransweranswer
D(P)(c)=0 has a non-zero solution c∈R.

ProblemProblemProblem
P = x−2Y5+ (Y′)3+x−1

D(P) = (Y′)3



WhenWhenWhen isisis 111 aaa startingstartingstarting monomialmonomialmonomial??? 111111///303030

Necessary condition for the existence of a root y∈T of P∈T{Y} with y≍1?

TentativeTentativeTentative answeransweranswer
D(P)(c)=0 has a non-zero solution c∈R.

ProblemProblemProblem
P = x−2Y5+ (Y′)3+x−1

D(P) = (Y′)3

Any c∈R≠0 is a root of D(P), but P cannot have roots y∈T{Y} with y≍1.



WhenWhenWhen isisis 111 aaa startingstartingstarting monomialmonomialmonomial??? 111111///303030

Necessary condition for the existence of a root y∈T of P∈T{Y} with y≍1?

TentativeTentativeTentative answeransweranswer
D(P)(c)=0 has a non-zero solution c∈R.

ProblemProblemProblem
P = x−2Y5+ (Y′)3+x−1

D(P) = (Y′)3

Any c∈R≠0 is a root of D(P), but P cannot have roots y∈T{Y} with y≍1.

ReasonReasonReason
P(y)=0 ∧ y≍1 ⟺ P↑(y↑)=0 ∧ y↑≍1



WhenWhenWhen isisis 111 aaa startingstartingstarting monomialmonomialmonomial??? 111111///303030

Necessary condition for the existence of a root y∈T of P∈T{Y} with y≍1?

TentativeTentativeTentative answeransweranswer
D(P)(c)=0 has a non-zero solution c∈R.

ProblemProblemProblem
P = x−2Y5+ (Y′)3+x−1

D(P) = (Y′)3

Any c∈R≠0 is a root of D(P), but P cannot have roots y∈T{Y} with y≍1.

ReasonReasonReason
P(y)=0 ∧ y≍1 ⟺ P↑(y↑)=0 ∧ y↑≍1

P↑ = e−2xY5+e−3x (Y′)3+e−x

D(P↑) = 1.



DifferentialDifferentialDifferential NewtonNewtonNewton polynomialspolynomialspolynomials 121212///303030

ExampleExampleExample continuedcontinuedcontinued

P = x−2Y5+ (Y′)3+x−1 D(P) = (Y′)3
P↑ = e−2xY5+e−3x (Y′)3+e−x D(P↑) = 1
P↑↑ = e−2exY5+e−3ex−3x (Y′)3+e−ex D(P↑↑) = 1
P↑↑↑ = e−2eexY5+e−3eex−3ex−3x (Y′)3+e−eex D(P↑↑↑) = 1

⋅⋅⋅ ⋅⋅⋅
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ExampleExampleExample continuedcontinuedcontinued

P = x−2Y5+ (Y′)3+x−1 D(P) = (Y′)3
P↑ = e−2xY5+e−3x (Y′)3+e−x D(P↑) = 1
P↑↑ = e−2exY5+e−3ex−3x (Y′)3+e−ex D(P↑↑) = 1
P↑↑↑ = e−2eexY5+e−3eex−3ex−3x (Y′)3+e−eex D(P↑↑↑) = 1

⋅⋅⋅ ⋅⋅⋅
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ExampleExampleExample continuedcontinuedcontinued

P = x−2Y5+ (Y′)3+x−1 D(P) = (Y′)3
P↑ = e−2xY5+e−3x (Y′)3+e−x D(P↑) = 1
P↑↑ = e−2exY5+e−3ex−3x (Y′)3+e−ex D(P↑↑) = 1
P↑↑↑ = e−2eexY5+e−3eex−3ex−3x (Y′)3+e−eex D(P↑↑↑) = 1

⋅⋅⋅ ⋅⋅⋅
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ExampleExampleExample continuedcontinuedcontinued

P = x−2Y5+ (Y′)3+x−1 D(P) = (Y′)3
P↑ = e−2xY5+e−3x (Y′)3+e−x D(P↑) = 1
P↑↑ = e−2exY5+e−3ex−3x (Y′)3+e−ex D(P↑↑) = 1
P↑↑↑ = e−2eexY5+e−3eex−3ex−3x (Y′)3+e−eex D(P↑↑↑) = 1

⋅⋅⋅ ⋅⋅⋅



DifferentialDifferentialDifferential NewtonNewtonNewton polynomialspolynomialspolynomials 121212///303030

ExampleExampleExample continuedcontinuedcontinued

P = x−2Y5+ (Y′)3+x−1 D(P) = (Y′)3
P↑ = e−2xY5+e−3x (Y′)3+e−x D(P↑) = 1
P↑↑ = e−2exY5+e−3ex−3x (Y′)3+e−ex D(P↑↑) = 1
P↑↑↑ = e−2eexY5+e−3eex−3ex−3x (Y′)3+e−eex D(P↑↑↑) = 1

⋅⋅⋅ ⋅⋅⋅

Given P∈T{Y}, there exists l0∈N and N(P)∈R[Y] (Y′)N with

D(P↑l) = N(P), for all l⩾ l0.

We call N(P) the differentialdifferentialdifferential NewtonNewtonNewton polynomialpolynomialpolynomial of P.

TheoremTheoremTheoremTheoremTheorem DNPDNPDNPDNPDNP



DominantDominantDominant partspartsparts andandand upwardupwardupward shiftingshiftingshifting 131313///303030

P↑[𝝎] = �
𝝉⩾𝝎

s𝝉,𝝎e−|𝝉|xP[𝝉]↑ (⋆)



DominantDominantDominant partspartsparts andandand upwardupwardupward shiftingshiftingshifting 131313///303030

P↑[𝝎] = �
𝝉⩾𝝎

s𝝉,𝝎e−|𝝉|xP[𝝉]↑ (⋆)

Assume that P∈ (E∘exp){Y}. Then
D(P↑) = D(D(P)↑).

LemmaLemmaLemmaLemmaLemma



DominantDominantDominant partspartsparts andandand upwardupwardupward shiftingshiftingshifting 131313///303030

P↑[𝝎] = �
𝝉⩾𝝎

s𝝉,𝝎e−|𝝉|xP[𝝉]↑ (⋆)

Assume that P∈ (E∘exp){Y}. Then
D(P↑) = D(D(P)↑).

LemmaLemmaLemmaLemmaLemma

ProofProofProof... Without loss of generality, we may assume that P≍1.



DominantDominantDominant partspartsparts andandand upwardupwardupward shiftingshiftingshifting 131313///303030

P↑[𝝎] = �
𝝉⩾𝝎

s𝝉,𝝎e−|𝝉|xP[𝝉]↑ (⋆)

Assume that P∈ (E∘exp){Y}. Then
D(P↑) = D(D(P)↑).

LemmaLemmaLemmaLemmaLemma

ProofProofProof... Without loss of generality, we may assume that P≍1.
P = D(P)+O(e− x√ ) (P∈ (E∘exp){Y})
P↑ = D(P)↑+O(e−ex/2) (by (⋆))
P↑ ⪯⪯ ex (by (⋆))

P↑−D(P)↑ ≺ P↑ □



DominantDominantDominant partspartsparts andandand upwardupwardupward shiftingshiftingshifting 131313///303030

P↑[𝝎] = �
𝝉⩾𝝎

s𝝉,𝝎e−|𝝉|xP[𝝉]↑ (⋆)
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P = D(P)+O(e− x√ ) (P∈ (E∘exp){Y})
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P↑[𝝎] = �
𝝉⩾𝝎

s𝝉,𝝎e−|𝝉|xP[𝝉]↑ (⋆)

a) If P∈R{Y}, then wt P↑=wv P.
b) If wv P↑=wv P, then P↑=e−(wvP)xP and D(P↑)=P.

LemmaLemmaLemmaLemmaLemma
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ProofProofProof... From (⋆), we deduce,
P↑ ≍ e−(wvP)x

D(P↑) = �
|𝝉|=wvP, 𝝉⩾𝝎

s𝝉,𝝎P[𝝉]↑Y[𝝎].
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a) If P∈R{Y}, then wt P↑=wv P.
b) If wv P↑=wv P, then P↑=e−(wvP)xP and D(P↑)=P.

LemmaLemmaLemmaLemmaLemma

ProofProofProof... From (⋆), we deduce,
P↑ ≍ e−(wvP)x

D(P↑) = �
|𝝉|=wvP, 𝝉⩾𝝎

s𝝉,𝝎P[𝝉]↑Y[𝝎].

If wv P↑=wv P, then the last formula becomes
D(P↑) = �

|𝝉|=wvP, 𝝉=𝝎
s𝝉,𝝎P[𝝉]↑Y[𝝎] = P. □
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P↑[𝝎] = �
𝝉⩾𝝎

s𝝉,𝝎e−|𝝉|xP[𝝉]↑ (⋆)

Given P∈T{Y}, there exists l0∈N and isobaric N(P)∈R{Y} with

D(P↑l) = N(P), for all l⩾ l0.

LemmaLemmaLemmaLemmaLemma
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Given P∈T{Y}, there exists l0∈N and isobaric N(P)∈R{Y} with

D(P↑l) = N(P), for all l⩾ l0.

LemmaLemmaLemmaLemmaLemma

ProofProofProof... The previous two lemmas yield

wtD(P) ⩾ wvD(P) = wtD(P↑) ⩾ wvD(P↑) = wtD(P↑↑) ⩾ ⋅ ⋅ ⋅.

In other words, wvD(P↑l) stabilizes for sufficiently large l⩾ l0.
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ProofProofProof... The previous two lemmas yield

wtD(P) ⩾ wvD(P) = wtD(P↑) ⩾ wvD(P↑) = wtD(P↑↑) ⩾ ⋅ ⋅ ⋅.

In other words, wvD(P↑l) stabilizes for sufficiently large l⩾ l0.

When that happens, we have D(P↑l+1)=D(D(P↑l)↑)=D(P↑l) for all l⩾ l0,
again by the previous two lemmas
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Given P∈T{Y}, there exists l0∈N and isobaric N(P)∈R{Y} with

D(P↑l) = N(P), for all l⩾ l0.

LemmaLemmaLemmaLemmaLemma

ProofProofProof... The previous two lemmas yield

wtD(P) ⩾ wvD(P) = wtD(P↑) ⩾ wvD(P↑) = wtD(P↑↑) ⩾ ⋅ ⋅ ⋅.

In other words, wvD(P↑l) stabilizes for sufficiently large l⩾ l0.

When that happens, we have D(P↑l+1)=D(D(P↑l)↑)=D(P↑l) for all l⩾ l0,
again by the previous two lemmas, and D(P↑l) is isobaric. □
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P↑[𝝎] = �
𝝉⩾𝝎

s𝝉,𝝎e−|𝝉|xP[𝝉]↑ (⋆)

If P∈R{Y} is isobaric of weight w with D(P↑)=P, then P∈R[Y] (Y′)N.
LemmaLemmaLemmaLemmaLemma
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P↑[𝝎] = �
𝝉⩾𝝎

s𝝉,𝝎e−|𝝉|xP[𝝉]↑ (⋆)

If P∈R{Y} is isobaric of weight w with D(P↑)=P, then P∈R[Y] (Y′)N.
LemmaLemmaLemmaLemmaLemma

ProofProofProof... Let P∗=∑i∈N P(i,w,0, . . . ,0)Y i (Y′)w.
Assume for contradiction that Δ≔P−P∗≠0.
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P↑[𝝎] = �
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If P∈R{Y} is isobaric of weight w with D(P↑)=P, then P∈R[Y] (Y′)N.
LemmaLemmaLemmaLemmaLemma

ProofProofProof... Let P∗=∑i∈N P(i,w,0, . . . ,0)Y i (Y′)w.
Assume for contradiction that Δ≔P−P∗≠0.
Since i0= i1=0 for all 𝒊 with Δ𝒊≠0, we have Δ(x)=0.
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If P∈R{Y} is isobaric of weight w with D(P↑)=P, then P∈R[Y] (Y′)N.
LemmaLemmaLemmaLemmaLemma

ProofProofProof... Let P∗=∑i∈N P(i,w,0, . . . ,0)Y i (Y′)w.
Assume for contradiction that Δ≔P−P∗≠0.
Since i0= i1=0 for all 𝒊 with Δ𝒊≠0, we have Δ(x)=0.

Now Δ is isobaric of weight w and D(Δ↑)=Δ.
From (⋆), it follows that Δ↑=e−wxΔ.
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P↑[𝝎] = �
𝝉⩾𝝎

s𝝉,𝝎e−|𝝉|xP[𝝉]↑ (⋆)

If P∈R{Y} is isobaric of weight w with D(P↑)=P, then P∈R[Y] (Y′)N.
LemmaLemmaLemmaLemmaLemma

ProofProofProof... Let P∗=∑i∈N P(i,w,0, . . . ,0)Y i (Y′)w.
Assume for contradiction that Δ≔P−P∗≠0.
Since i0= i1=0 for all 𝒊 with Δ𝒊≠0, we have Δ(x)=0.

Now Δ is isobaric of weight w and D(Δ↑)=Δ.
From (⋆), it follows that Δ↑=e−wxΔ.

Consequently Δ(x)=Δ(ex)=Δ(eex)= ⋅ ⋅ ⋅ =0, which is impossible. □
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Given P∈T{Y}, there exists l0∈N and N(P)∈R[Y] (Y′)N with

D(P↑l) = N(P), for all l⩾ l0.

We call N(P) the differentialdifferentialdifferential NewtonNewtonNewton polynomialpolynomialpolynomial of P.

TheoremTheoremTheoremTheoremTheorem (((((DNPDNPDNPDNPDNP)))))
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Given P∈T{Y}, there exists l0∈N and N(P)∈R[Y] (Y′)N with

D(P↑l) = N(P), for all l⩾ l0.

We call N(P) the differentialdifferentialdifferential NewtonNewtonNewton polynomialpolynomialpolynomial of P.

TheoremTheoremTheoremTheoremTheorem (((((DNPDNPDNPDNPDNP)))))

NewtonNewtonNewton degreedegreedegree... For P∈T{Y}≠0 and 𝔪∈𝔗, we define
deg≼𝔪 P ≔ degN(P×𝔪)
deg≺𝔪 P ≔ valN(P×𝔪)
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Given P∈T{Y}, there exists l0∈N and N(P)∈R[Y] (Y′)N with

D(P↑l) = N(P), for all l⩾ l0.

We call N(P) the differentialdifferentialdifferential NewtonNewtonNewton polynomialpolynomialpolynomial of P.

TheoremTheoremTheoremTheoremTheorem (((((DNPDNPDNPDNPDNP)))))

NewtonNewtonNewton degreedegreedegree... For P∈T{Y}≠0 and 𝔪∈𝔗, we define
deg≼𝔪 P ≔ degN(P×𝔪)
deg≺𝔪 P ≔ valN(P×𝔪)

𝔪 is a startingstartingstarting monomialmonomialmonomial for P(y)=0 if N(P×𝔪)(c)=0 for some c∈C≠0.
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Given P∈T{Y}, there exists l0∈N and N(P)∈R[Y] (Y′)N with

D(P↑l) = N(P), for all l⩾ l0.

We call N(P) the differentialdifferentialdifferential NewtonNewtonNewton polynomialpolynomialpolynomial of P.

TheoremTheoremTheoremTheoremTheorem (((((DNPDNPDNPDNPDNP)))))

NewtonNewtonNewton degreedegreedegree... For P∈T{Y}≠0 and 𝔪∈𝔗, we define
deg≼𝔪 P ≔ degN(P×𝔪)
deg≺𝔪 P ≔ valN(P×𝔪)

𝔪 is a startingstartingstarting monomialmonomialmonomial for P(y)=0 if N(P×𝔪)(c)=0 for some c∈C≠0.
𝔪 is an algebraicalgebraicalgebraic startingstartingstarting monomialmonomialmonomial if N(P×𝔪) is not homogeneous.
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Given P∈T{Y}, there exists l0∈N and N(P)∈R[Y] (Y′)N with

D(P↑l) = N(P), for all l⩾ l0.

We call N(P) the differentialdifferentialdifferential NewtonNewtonNewton polynomialpolynomialpolynomial of P.

TheoremTheoremTheoremTheoremTheorem (((((DNPDNPDNPDNPDNP)))))

NewtonNewtonNewton degreedegreedegree... For P∈T{Y}≠0 and 𝔪∈𝔗, we define
deg≼𝔪 P ≔ degN(P×𝔪)
deg≺𝔪 P ≔ valN(P×𝔪)

𝔪 is a startingstartingstarting monomialmonomialmonomial for P(y)=0 if N(P×𝔪)(c)=0 for some c∈C≠0.
𝔪 is an algebraicalgebraicalgebraic startingstartingstarting monomialmonomialmonomial if N(P×𝔪) is not homogeneous.
𝔪 is a differentialdifferentialdifferential startingstartingstarting monomialmonomialmonomial if N(P×𝔪)∈R[Y] (Y′)𝜈 for some 𝜈>0.
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For any P∈T{Y}≠0, we have N(P↑)=N(P).
PropositionPropositionPropositionPropositionProposition

ProofProofProof... By construction. □
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For any P∈T{Y}≠0, we have N(P↑)=N(P).
PropositionPropositionPropositionPropositionProposition

For P∈T{Y}≠0 and 𝔪≺𝔫 in 𝔗, we have
deg≺𝔪 P ⩽ deg≼𝔪 P ⩽ deg≺𝔫 P ⩽ deg≼𝔫 P.

PropositionPropositionPropositionPropositionProposition
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For any P∈T{Y}≠0, we have N(P↑)=N(P).
PropositionPropositionPropositionPropositionProposition

For P∈T{Y}≠0 and 𝔪≺𝔫 in 𝔗, we have
deg≺𝔪 P ⩽ deg≼𝔪 P ⩽ deg≺𝔫 P ⩽ deg≼𝔫 P.

PropositionPropositionPropositionPropositionProposition

ProofProofProof... By considering P×𝔫 instead of P, we may also arrange that 𝔪≺𝔫=1.
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For any P∈T{Y}≠0, we have N(P↑)=N(P).
PropositionPropositionPropositionPropositionProposition

For P∈T{Y}≠0 and 𝔪≺𝔫 in 𝔗, we have
deg≺𝔪 P ⩽ deg≼𝔪 P ⩽ deg≺𝔫 P ⩽ deg≼𝔫 P.

PropositionPropositionPropositionPropositionProposition

ProofProofProof... By considering P×𝔫 instead of P, we may also arrange that 𝔪≺𝔫=1.
By what precedes, we also arrange that N(P)=D(P), N(P×𝔪)=D(P×𝔪), and 𝔪≻≻x.
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For any P∈T{Y}≠0, we have N(P↑)=N(P).
PropositionPropositionPropositionPropositionProposition

For P∈T{Y}≠0 and 𝔪≺𝔫 in 𝔗, we have
deg≺𝔪 P ⩽ deg≼𝔪 P ⩽ deg≺𝔫 P ⩽ deg≼𝔫 P.

PropositionPropositionPropositionPropositionProposition

ProofProofProof... By considering P×𝔫 instead of P, we may also arrange that 𝔪≺𝔫=1.
By what precedes, we also arrange that N(P)=D(P), N(P×𝔪)=D(P×𝔪), and 𝔪≻≻x.
Recall that 𝔡(Q×𝔪)/(𝔪i𝔡(Q))≺≺𝔪 for Q∈T{Y} homogeneous of degree i.
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For any P∈T{Y}≠0, we have N(P↑)=N(P).
PropositionPropositionPropositionPropositionProposition

For P∈T{Y}≠0 and 𝔪≺𝔫 in 𝔗, we have
deg≺𝔪 P ⩽ deg≼𝔪 P ⩽ deg≺𝔫 P ⩽ deg≼𝔫 P.

PropositionPropositionPropositionPropositionProposition

ProofProofProof... By considering P×𝔫 instead of P, we may also arrange that 𝔪≺𝔫=1.
By what precedes, we also arrange that N(P)=D(P), N(P×𝔪)=D(P×𝔪), and 𝔪≻≻x.
Recall that 𝔡(Q×𝔪)/(𝔪i𝔡(Q))≺≺𝔪 for Q∈T{Y} homogeneous of degree i.
For all i>d≔deg≺1 P, it follows that

P×𝔪,d ≍ 𝜙𝔪dPd ≻ 𝜓𝔪iPi ≍ P×𝔪,i,
for some 𝜙,𝜓≺≺𝔪. Hence, degN(P×𝔪)=degD(P×𝔪)⩽d. □
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Let P∈T{Y} and i< j with Pi≠0, Pj≠0. Then there exists a unique 𝔢∈𝔗 for which
N(Pi,×𝔢+Pj,×𝔢) is not homogeneous. We call 𝔢 the (i, j)-equalizerequalizerequalizer for P.

LemmaLemmaLemmaLemmaLemma EQEQEQEQEQ
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Let P∈T{Y} and i< j with Pi≠0, Pj≠0. Then there exists a unique 𝔢∈𝔗 for which
N(Pi,×𝔢+Pj,×𝔢) is not homogeneous. We call 𝔢 the (i, j)-equalizerequalizerequalizer for P.

LemmaLemmaLemmaLemmaLemma EQEQEQEQEQ

Consider an equation P(y)=0,y≺𝔳 of Newton degree d≔deg≺𝔳 P, with P<d≠0.
Then its principalprincipalprincipal equalizerequalizerequalizer is the unique equalizer 𝔢P,𝔳≔𝔢 with degN(P×𝔢)=d.
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Let P∈T{Y} and i< j with Pi≠0, Pj≠0. Then there exists a unique 𝔢∈𝔗 for which
N(Pi,×𝔢+Pj,×𝔢) is not homogeneous. We call 𝔢 the (i, j)-equalizerequalizerequalizer for P.

LemmaLemmaLemmaLemmaLemma EQEQEQEQEQ

ProofProofProof... We first arrange that P∈R[[𝔅R]]{Y} for a transbasis 𝔅 of level 1.
Without loss of generality, we may assume that P=Pi+Pj.
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Let P∈T{Y} and i< j with Pi≠0, Pj≠0. Then there exists a unique 𝔢∈𝔗 for which
N(Pi,×𝔢+Pj,×𝔢) is not homogeneous. We call 𝔢 the (i, j)-equalizerequalizerequalizer for P.

LemmaLemmaLemmaLemmaLemma EQEQEQEQEQ

ProofProofProof... We first arrange that P∈R[[𝔅R]]{Y} for a transbasis 𝔅 of level 1.
Without loss of generality, we may assume that P=Pi+Pj.
In a similar way as in the linear case one proves that
• 𝔪∈𝔅R⟼𝔡(Pk,×𝔪) is increasing for any k.
• There exists a unique 𝔢(P)≔𝔢∈𝔅R such that D(P×𝔢) is not homogeneous.
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Let P∈T{Y} and i< j with Pi≠0, Pj≠0. Then there exists a unique 𝔢∈𝔗 for which
N(Pi,×𝔢+Pj,×𝔢) is not homogeneous. We call 𝔢 the (i, j)-equalizerequalizerequalizer for P.

LemmaLemmaLemmaLemmaLemma EQEQEQEQEQ

ProofProofProof... We first arrange that P∈R[[𝔅R]]{Y} for a transbasis 𝔅 of level 1.
Without loss of generality, we may assume that P=Pi+Pj.
In a similar way as in the linear case one proves that
• 𝔪∈𝔅R⟼𝔡(Pk,×𝔪) is increasing for any k.
• There exists a unique 𝔢(P)≔𝔢∈𝔅R such that D(P×𝔢) is not homogeneous.
As in the proof of Theorem DNP, one may show that
• wtD((P↑l)×𝔢(P↑l)) strictly decreases as a function of l∈N, until stabilization.
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Let P∈T{Y} and i< j with Pi≠0, Pj≠0. Then there exists a unique 𝔢∈𝔗 for which
N(Pi,×𝔢+Pj,×𝔢) is not homogeneous. We call 𝔢 the (i, j)-equalizerequalizerequalizer for P.

LemmaLemmaLemmaLemmaLemma EQEQEQEQEQ

ProofProofProof... We first arrange that P∈R[[𝔅R]]{Y} for a transbasis 𝔅 of level 1.
Without loss of generality, we may assume that P=Pi+Pj.
In a similar way as in the linear case one proves that
• 𝔪∈𝔅R⟼𝔡(Pk,×𝔪) is increasing for any k.
• There exists a unique 𝔢(P)≔𝔢∈𝔅R such that D(P×𝔢) is not homogeneous.
As in the proof of Theorem DNP, one may show that
• wtD((P↑l)×𝔢(P↑l)) strictly decreases as a function of l∈N, until stabilization.
Stabilization occurs when N((P↑l)×𝔢(P↑l))=D((P↑l)×𝔢(P↑l)) and 𝔢↑l≔𝔢(P↑l). □
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In particular, 𝔡y=e∫w≻γ.
��� Determining starting monomials for P(y)=0 ⟺ Solving RP modulo O(γ).
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Let P∈T{Y} be homogeneous of degree d and of order r.
Then there exists a unique RiccatiRiccatiRiccati polynomialpolynomialpolynomial RP∈T{W} of order r−1 with

P(y) = ydRP(y†).

Assume that RP(w)=0. Then P(y)=0 for

y = e∫w = e(∫w)≻e(∫w)≺ = e∫w≻γe∫w≺γ, γ ≔ 1
x log x log2 x ⋅ ⋅ ⋅

.

In particular, 𝔡y=e∫w≻γ.
��� Determining starting monomials for P(y)=0 ⟺ Solving RP modulo O(γ).

𝔪∈𝔗 is a starting monomial for P(y)=0 if and only if deg≺γRP>0.
PropositionPropositionPropositionPropositionProposition
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Q(y) = 0, y ≺ 𝔪
is quasiquasiquasi---linearlinearlinear if deg≺𝔪Q=1.
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Let Q∈T{Y} and 𝔪∈𝔗. We say that

Q(y) = 0, y ≺ 𝔪
is quasiquasiquasi---linearlinearlinear if deg≺𝔪Q=1.

Any quasi-linear equation as above has a solution in T.
Moreover, there exists a unique solution such that y𝔡(ỹ−y)=0 for any other solution ỹ;
this is called the distinguisheddistinguisheddistinguished solutionsolutionsolution.

TheoremTheoremTheoremTheoremTheorem
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Let 𝔅= (𝔟1, . . . , 𝔟n) be of level 1 and Q∈R[[𝔅R]]{Y} of order r and degree d.
Assume that Q−Q1≺𝔟n

−𝜂Q1 for some 𝜂∈R>0.
Then Q(y)=0, y≺1 has a solution in R[[xN𝔅R]].

LemmaLemmaLemmaLemmaLemma
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ProofProofProof... Let R≔Q≠1≔Q−Q1 and L∈T[∂] be such that Q1=LY. We want to solve

Ly = R(y), y ≺ 1.
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Let 𝔅= (𝔟1, . . . , 𝔟n) be of level 1 and Q∈R[[𝔅R]]{Y} with Q−Q1≺Q1.
Then Q(y)=0, y≺1 has a solution in R[[(logk x)R ⋅ ⋅ ⋅ xR𝔅R]] for some k∈N.
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ProofProofProof... Without loss of generality, we may assume that Q≍1.
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ProofProofProof... Without loss of generality, we may assume that Q≍1.
We prove the result by induction on n. For n=1 we are done by what precedes.
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Let Q♯∈R[[𝔟1; . . . ; 𝔟n−1]]{Y} be the dominant coefficient of Q as a series in 𝔟n−1.
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−𝜂,≠1≺𝔟n

−𝜂Q+y♯,×𝔟n
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Now apply the previous lemma Q+y♯,×𝔟n
−𝜂↑k and (ex, . . . , expk x, 𝔟1↑k, . . . , 𝔟n↑k).
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This yields u∈R[[x; . . . ; expk x; 𝔟1↑k; . . . ; 𝔟n↑k]]≺1 with Q+y♯,×𝔟n
−𝜂↑k(u)=0.
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Let Q♯∈R[[𝔟1; . . . ; 𝔟n−1]]{Y} be the dominant coefficient of Q as a series in 𝔟n−1.
Induction hypothesis↝ k∈N, y♯∈R[[(logk−1 x)N ⋅ ⋅ ⋅ xN𝔅R]]≺1 with Q♯(y♯)=0.
For some small 𝜂>0, we then have Q+y♯,0≺𝔟n

−3𝜂 and Q+y♯,×𝔟n
−𝜂,≠1≺𝔟n

−𝜂Q+y♯,×𝔟n
−𝜂.

Now apply the previous lemma Q+y♯,×𝔟n
−𝜂↑k and (ex, . . . , expk x, 𝔟1↑k, . . . , 𝔟n↑k).

This yields u∈R[[x; . . . ; expk x; 𝔟1↑k; . . . ; 𝔟n↑k]]≺1 with Q+y♯,×𝔟n
−𝜂↑k(u)=0.

Then y≔y♯+ (u↓k)𝔟n
−𝜂 fulfills the requirements. □
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this is called the distinguisheddistinguisheddistinguished solutionsolutionsolution.

TheoremTheoremTheoremTheoremTheorem

ProofProofProof... Let 𝒴={y∈T≺1 :Q(y)=0}. Previous lemma + upward shifting ⟹ 𝒴≠∅.
ExistenceExistenceExistence... Let y, ỹ∈𝒴, ỹ≠y, 𝔳≔𝔡ỹ−y, and LY≔P+y,1.
Claim: 𝔳∈ℌL≔{𝔡h :h∈T,Lh=0}.



DistinguishedDistinguishedDistinguished solutionssolutionssolutions 252525///303030

Any quasi-linear equation Q(y)=0,y≺1 has a solution in T.
Moreover, there exists a unique solution such that y𝔡(ỹ−y)=0 for any other solution ỹ;
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We have N(P+y,×𝔳)=N(P+y,⩽1,×𝔳)∈R≠0+R≠0Y.
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Let ℌy≔{𝔡ỹ−y : ỹ∈𝒴}⊆ℌL with |ℌy|⩽ r.



DistinguishedDistinguishedDistinguished solutionssolutionssolutions 252525///303030

Any quasi-linear equation Q(y)=0,y≺1 has a solution in T.
Moreover, there exists a unique solution such that y𝔡(ỹ−y)=0 for any other solution ỹ;
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Then 𝔳∈ℌL≔{𝔡h :h∈T,Lh=0}.
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this is called the distinguisheddistinguisheddistinguished solutionsolutionsolution.

TheoremTheoremTheoremTheoremTheorem

ProofProofProof... Let 𝒴={y∈T≺1 :Q(y)=0}. Previous lemma + upward shifting ⟹ 𝒴≠∅.
ExistenceExistenceExistence... Let y, ỹ∈𝒴, ỹ≠y, 𝔳≔𝔡ỹ−y, and LY≔P+y,1.
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Repeating this k⩽ r times, we find y, ỹ, ỹ̃, . . . ,y[k]∈𝒴 with ℌy[k]
∗ =∅. □



UnravellingUnravellingUnravelling 262626///303030

Consider an asymptotic differential equation of Newton degree d

P(y) = 0, y ≺ 𝔳. (⋆)



UnravellingUnravellingUnravelling 262626///303030

Consider an asymptotic differential equation of Newton degree d

P(y) = 0, y ≺ 𝔳. (⋆)

We say that (⋆) is raveledraveledraveled if there exist c∈R≠, 𝔢≺𝔳, and i<d with

N(P×𝔢) = (Y− c)d−i (Y′)i.



UnravellingUnravellingUnravelling 262626///303030

Consider an asymptotic differential equation of Newton degree d

P(y) = 0, y ≺ 𝔳. (⋆)

We say that (⋆) is raveledraveledraveled if there exist c∈R≠, 𝔢≺𝔳, and i<d with

N(P×𝔢) = (Y− c)d−i (Y′)i.

Given a raveled equation (⋆) with val P<d, there exist 𝜑≺𝔳 and �̃�≺𝔳 such that

P+𝜑(ỹ) = 0, ỹ ≺ �̃�
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Q ≔ ∂d−1 P
∂Yd−i−1∂ (Y′)i

if i<d Q ≔ ∂d−1 P
∂ (Y′)d−1 if i=d.
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Let 𝜑 be a solution of Q(𝜑)=0,𝜑≼1 for which �̃�≔𝔢P+𝜑,1 is minimal for ≺.
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Let 𝜑 be a solution of Q(𝜑)=0,𝜑≼1 for which �̃�≔𝔢P+𝜑,1 is minimal for ≺.
Although (𝜑, �̃�) is not necessarily un unraveller, one may repeat the process.
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Given P∈T{Y} and 𝔳∈𝔗, consider
P(y) = 0, y ≺ 𝔳. (⋆)

If deg≺𝔳 P is odd, then (⋆) has a solution in T.

TheoremTheoremTheoremTheoremTheorem
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ProofProofProof... By induction on deg≺𝔳 P.
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P(y) = 0, y ≺ 𝔳. (⋆)

If deg≺𝔳 P is odd, then (⋆) has a solution in T.

TheoremTheoremTheoremTheoremTheorem

ProofProofProof... By induction on deg≺𝔳 P.
If d=1, then (⋆) is quasi-linear, so it has a solution. So assume that d>1.
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If d=1, then (⋆) is quasi-linear, so it has a solution. So assume that d>1.
If P<d=0, then y=0 is a solution.
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Then N≔N(P×𝔢)=Q(Y) (Y′)i for some i<d and Q(Y) is not a (d− i)-th power.
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Given P∈T{Y} and 𝔳∈𝔗, consider
P(y) = 0, y ≺ 𝔳. (⋆)

If deg≺𝔳 P is odd, then (⋆) has a solution in T.

TheoremTheoremTheoremTheoremTheorem

ProofProofProof... By induction on deg≺𝔳 P.
If d=1, then (⋆) is quasi-linear, so it has a solution. So assume that d>1.
If P<d=0, then y=0 is a solution.
Otherwise, we unravel (⋆) and let 𝔢≔𝔢P,𝔳.
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