Lesson 7 - Algebraic differential equations over 'T

Differential polynomials over $\mathbb{I T}$

Differential polynomials as series. $P \in \mathbb{T}\{Y\} \subseteq \mathbb{R}\{Y\} \llbracket \mathbb{T} \rrbracket$
$\mathfrak{d}(P) \in \mathfrak{T}$
$D(P) \in \mathbb{R}\{Y\} \quad$ dominant coefficient or "part" of P
$\leqslant, \prec, \asymp, \ldots \quad$ extend to $\mathbb{T}\{Y\}$

Standard decomposition. $P \in \mathbb{T}\{Y\}$ of order r.

$$
P=\sum_{i=\left(i_{0}, \ldots, i_{i}\right) \in \mathbb{N}^{+1}} P_{i} Y^{i}, \quad Y^{i}:=Y^{i_{0}}\left(Y^{\prime}\right)^{i_{1}} \cdots\left(Y^{(r)}\right)^{i_{r}} .
$$

Standard decomposition. $P \in \mathbb{T}\{Y\}$ of order r.

$$
P=\sum_{i=\left(i_{0}, \ldots, i_{r}\right) \in \mathbb{N}^{+1}} P_{i} Y^{i}, \quad Y^{i}:=Y^{i_{0}}\left(Y^{\prime}\right)^{i_{1}} \cdots\left(Y^{(r)}\right)^{i_{r}}
$$

Degree and valuation.

$$
\begin{aligned}
\operatorname{deg} P & :=\max \left\{|i|: P_{i} \neq 0\right\} \\
\operatorname{val} P & :=\min \left\{|i|: P_{i} \neq 0\right\}
\end{aligned}
$$

Standard decomposition. $P \in \mathbb{T}\{Y\}$ of order r.

$$
P=\sum_{i=\left(i_{0}, \ldots, i_{i}\right) \in \mathbb{N}^{+1}} P_{i} Y^{i}, \quad Y^{i}:=Y^{i_{0}}\left(Y^{\prime}\right)^{i_{1}} \cdots\left(Y^{(r)}\right)^{i_{r}} .
$$

Degree and valuation.

$$
\begin{aligned}
\operatorname{deg} P & :=\max \left\{|i|: P_{i} \neq 0\right\} \\
\operatorname{val} P & :=\min \left\{|i|: P_{i} \neq 0\right\}
\end{aligned}
$$

Decomposition in homogeneous parts. $P \in \mathbb{T}\{Y\}$ of degree d

$$
P=P_{d}+\cdots+P_{0}, \quad P_{k}:=\sum_{|i|=k} P_{i} Y^{i}, \quad|i|:=i_{0}+\cdots+i_{r} .
$$

$P \in \mathbb{T}\{Y\}, \varphi \in \mathbb{T}$

$$
P_{+\varphi}(y)=P(y+\varphi)
$$

$P \in \mathbb{T}\{Y\}, \varphi \in \mathbb{T}$

$$
P_{+\varphi}(y)=P(y+\varphi)
$$

If P has order r, then for any $i=\left(i_{0}, \ldots, i_{r}\right) \in \mathbb{N}^{r+1}$,

$$
\begin{aligned}
P_{+\varphi, i} & =P^{(i)}(\varphi)=\frac{\partial P}{\partial Y^{i_{0}} \cdots\left(\partial Y^{(r)}\right)^{i_{r}}}(\varphi) \\
& =\sum_{j \geqslant i}\binom{j}{i} \varphi^{j-i} P_{j}=\sum_{j_{0} \geqslant i_{0}, \ldots, j_{r} \geqslant i_{r}}\binom{j_{0}}{i_{0}} \cdots\binom{j_{r}}{i_{r}} \varphi^{i_{0}}\left(\varphi^{\prime}\right)^{i_{1}} \cdots\left(\varphi^{(r)}\right)^{i_{r}} P_{j} .
\end{aligned}
$$

$P \in \mathbb{T}\{Y\}, \varphi \in \mathbb{T}$

$$
P_{+\varphi}(y)=P(y+\varphi)
$$

If P has order r, then for any $i=\left(i_{0}, \ldots, i_{r}\right) \in \mathbb{N}^{r+1}$,

$$
\begin{aligned}
P_{+\varphi, i} & =P^{(i)}(\varphi)=\frac{\partial P}{\partial Y^{i_{0}} \cdots\left(\partial Y^{(r)}\right)^{i_{r}}}(\varphi) \\
& =\sum_{j \geqslant i}\binom{j}{i} \varphi^{j-i} P_{j}=\sum_{j_{0} \geqslant i_{0}, \cdots, j_{r} \geqslant i_{r}}\binom{j_{0}}{i_{0}} \cdots\binom{j_{r}}{i_{r}} \varphi^{i_{0}}\left(\varphi^{\prime}\right)^{i_{1}} \cdots\left(\varphi^{(r)}\right)^{i_{r}} P_{j} .
\end{aligned}
$$

Proposition

If $\varphi=c+\varepsilon$ with $c \in \mathbb{R}$ and $\varepsilon<1$, then

$$
\begin{aligned}
P_{+\varphi} & =P \\
D\left(P_{+\varphi}\right) & =D(P)_{+c} .
\end{aligned}
$$

Decomposition by orders

Decomposition by orders. P of order r and degree d.

$$
P=\sum_{\substack{\omega=\left(\omega_{1}, \ldots, \omega_{l}\right) \\ l \leqslant d}} P_{[\omega]} Y^{[\omega]}, \quad Y^{[\omega]}:=Y^{\left(\omega_{1}\right)} \cdots Y^{\left(\omega_{l}\right)}
$$

Here we assume that $P_{[\omega]}=P_{[\tau]}$ if $\tau=\left(\omega_{\sigma(1)}, \ldots, \omega_{\sigma(l)}\right)$ for some permutation σ.

Decomposition by orders

Decomposition by orders. P of order r and degree d.

$$
P=\sum_{\substack{\omega=\left(\omega_{1}, \ldots, \omega_{l}\right) \\ l \leqslant d}} P_{[\omega]} Y^{[\omega]}, \quad Y^{[\omega]}:=Y^{\left(\omega_{1}\right)} \cdots Y^{\left(\omega_{1}\right)} .
$$

Here we assume that $P_{[\omega]}=P_{[\tau]}$ if $\tau=\left(\omega_{\sigma(1)}, \ldots, \omega_{\sigma(\eta)}\right)$ for some permutation σ.
Weight and weighted valuation.

$$
\begin{aligned}
\mathrm{wt} P & :=\max \left\{|\omega|: P_{[\omega]} \neq 0\right\} \\
\mathrm{wv} P & :=\min \left\{|\omega|: P_{[\omega]} \neq 0\right\} .
\end{aligned}
$$

Decomposition by orders

Decomposition by orders. P of order r and degree d.

$$
P=\sum_{\substack{\omega=\left(\omega_{1}, \ldots, \omega_{l}\right) \\ l \leqslant d}} P_{[\omega]} Y^{[\omega]}, \quad Y^{[\omega]}:=Y^{\left(\omega_{1}\right)} \cdots Y^{\left(\omega_{l}\right)}
$$

Here we assume that $P_{[\omega]}=P_{[\tau]}$ if $\tau=\left(\omega_{\left.\sigma(1), \ldots, \omega_{\sigma(l)}\right)}\right.$ for some permutation σ.
Weight and weighted valuation.

$$
\begin{aligned}
\text { wt } P & :=\max \left\{|\omega|: P_{[\omega]} \neq 0\right\} \\
\mathrm{wv} P & :=\min \left\{|\omega|: P_{[\omega]} \neq 0\right\} .
\end{aligned}
$$

Decomposition into isobaric parts. P of weight w

$$
P=P_{[w]}+\cdots+P_{[0],} \quad P_{[k]}:=\sum_{|\omega|=k} P_{[\omega]} Y^{[\omega]} .
$$

$P \in \mathbb{T}\{Y\}, \varphi \in \mathbb{T}^{\neq 0}$

$$
P_{x \varphi}(y)=P(\varphi y)
$$

$P \in \mathbb{T}\{Y\}, \varphi \in \mathbb{T}^{\neq 0}$

$$
P_{x \varphi}(y)=P(\varphi y)
$$

For any ω, we have

$$
P_{\times \varphi,[\omega]}=\sum_{\tau \geqslant \omega}\binom{\tau}{\omega} \varphi^{[\tau-\omega]} P_{[\tau]} .
$$

$P \in \mathbb{T}\{Y\}, \varphi \in \mathbb{T}^{\neq 0}$

$$
P_{\times \varphi}(y)=P(\varphi y)
$$

For any ω, we have

$$
P_{\times \varphi,[\omega]}=\sum_{\tau \geqslant \omega}\binom{\boldsymbol{\tau}}{\boldsymbol{\omega}} \varphi^{[\tau-\omega]} P_{[\tau]} .
$$

Proposition

If $\varphi \gg x$, then $\frac{\mathfrak{d}\left(P_{\times \varphi}\right)}{\mathfrak{d}(P)} \preccurlyeq \varphi$.
If $\varphi \gg x$ and P is homogeneous of degree d, then $\frac{\mathfrak{d}\left(P_{\times \varphi}\right)}{\varphi^{d}(P)} \ll \varphi$.

$$
P \uparrow(y \uparrow)=P(y) \uparrow
$$

$$
P \uparrow(y \uparrow)=P(y) \uparrow
$$

For any ω, we have
where

$$
P \uparrow_{[\omega]}=\sum_{\tau \geqslant \omega} s_{\tau, \omega} \mathrm{e}^{-|\tau| x} P_{[\tau]} \uparrow
$$

$$
s_{\tau, \omega}=s_{\tau_{1}, \omega_{1}} \cdots s_{\tau_{l}, \omega_{l}} \in \mathbb{Z}, \quad f(\log x)^{(j)}=\sum_{0 \leqslant i \leqslant j} \frac{s_{i, j}}{x^{j}} f^{(j)}(\log x)
$$

$$
P \uparrow(y \uparrow)=P(y) \uparrow
$$

For any ω, we have
where

$$
P \uparrow_{[\omega]}=\sum_{\tau \geqslant \omega} s_{\tau, \omega} \mathrm{e}^{-|\tau| x} P_{[\tau]} \uparrow
$$

$$
s_{\tau, \omega}=s_{\tau_{1}, \omega_{1}} \cdots s_{\tau_{l}, \omega_{l}} \in \mathbb{Z}, \quad f(\log x)^{(j)}=\sum_{0 \leqslant i \leqslant j} \frac{s_{i, j}}{x^{j}} f^{(j)}(\log x)
$$

Proposition

We have $\frac{\mathfrak{d}(P \uparrow)}{\mathfrak{d}(P) \uparrow} \preccurlyeq \mathrm{e}^{x}$.
If P is isobaric of weight w, then $\frac{\mathfrak{d}(P \uparrow)}{\mathrm{e}^{-w x} \mathfrak{d}(P) \uparrow} \ll \mathrm{e}^{x}$.

Getting rid of logarithms

Proposition
If $P \in \mathbb{T}\{Y\}$ has level l, then $P \uparrow$ has level at least $\min (l+1,1)$.

Getting rid of logarithms

Proposition

If $P \in \mathbb{T}\{Y\}$ has level l, then $P \uparrow$ has level at least $\min (l+1,1)$.

Proposition

If $P \in \mathbb{R} \llbracket \mathfrak{B}^{\mathbb{R}} \rrbracket\{Y\}$ for a transbasis of level $l \leqslant 0$ and $\exp _{l} x, \exp _{l-1} x, \ldots, x \in \mathbb{R} \llbracket \mathfrak{B}^{\mathbb{R}} \rrbracket$, then $P \uparrow \in \mathbb{R} \llbracket \mathfrak{B} \uparrow^{\mathbb{R}} \mathbb{I}\{Y\}$, where $\mathfrak{B} \uparrow$ has level $l+1$ and $\exp _{l-1} x, \ldots, x \in \mathbb{R} \llbracket \mathfrak{B} \uparrow^{\mathbb{R}} \rrbracket$.

Getting rid of logarithms

Proposition

If $P \in \mathbb{T}\{Y\}$ has level l, then $P \uparrow$ has level at least $\min (l+1,1)$.

Proposition

If $P \in \mathbb{R} \llbracket \mathfrak{B}^{\mathbb{R}} \mathbb{\{}\{Y\}$ for a transbasis of level $l \leqslant 0$ and $\exp _{l} x, \exp _{l-1} x, \ldots, x \in \mathbb{R} \llbracket \mathfrak{B}^{\mathbb{R}} \rrbracket$, then $P \uparrow \in \mathbb{R} \llbracket \mathfrak{B} \uparrow^{\mathbb{R}} \mathbb{I}\{Y\}$, where $\mathfrak{B} \uparrow$ has level $l+1$ and $\exp _{l-1} x, \ldots, x \in \mathbb{R} \llbracket \mathfrak{B} \uparrow^{\mathbb{R}} \rrbracket$.

Proposition

If $P \in \mathbb{R} \llbracket e^{x}=\mathfrak{b}_{1} ; \ldots ; \mathfrak{b}_{n} \rrbracket\{Y\}$, then $P \uparrow \in \mathbb{R} \llbracket e^{x} ; \mathfrak{b}_{1} \uparrow ; \ldots ; \mathfrak{b}_{n} \uparrow \rrbracket\{Y\}$.

$$
\begin{aligned}
y & =y \\
y^{\prime} & =y y^{+}
\end{aligned}
$$

$$
\begin{aligned}
y & =y \\
y^{\prime} & =y y^{\dagger} \\
y^{\prime \prime} & =y\left(y^{\dagger}\right)^{2}+y y^{\dagger} y^{+\dagger}
\end{aligned}
$$

$$
\begin{aligned}
y & =y \\
y^{\prime} & =y y^{\dagger} \\
y^{\prime \prime} & =y\left(y^{\dagger}\right)^{2}+y y^{+} y^{+\dagger} \\
& \vdots \\
y^{(k)} & \in \mathbb{Z}\left[y, y^{\dagger}, y^{+\dagger}, \ldots, y^{\langle k\rangle}\right] .
\end{aligned}
$$

$$
\begin{aligned}
y & =y \\
y^{\prime} & =y y^{\dagger} \\
y^{\prime \prime} & =y\left(y^{\dagger}\right)^{2}+y y^{+} y^{+\dagger} \\
& \vdots \\
y^{(k)} & \in \mathbb{Z}\left[y, y^{\dagger}, y^{\dagger \dagger}, \ldots, y^{\langle k\rangle}\right] .
\end{aligned}
$$

Logarithmic decomposition.

$$
P=\sum_{i \in \mathbb{N}^{r+1}} P_{\langle i\rangle} y^{\langle i\rangle}, \quad y^{\langle i\rangle}=y^{i_{0}}\left(y^{\dagger}\right)^{i_{1}} \cdots\left(y^{\langle r\rangle}\right)^{i_{r}}
$$

Logarithmic decomposition

$$
\begin{aligned}
y & =y \\
y^{\prime} & =y y^{\dagger} \\
y^{\prime \prime} & =y\left(y^{\dagger}\right)^{2}+y y^{+} y^{+\dagger} \\
& \vdots \\
y^{(k)} & \in \mathbb{Z}\left[y, y^{\dagger}, y^{+\dagger}, \ldots, y^{(k)}\right] .
\end{aligned}
$$

Logarithmic decomposition.

$$
P=\sum_{i \in \mathbb{N}^{r+1}} P_{\langle i\rangle} y^{\langle i\rangle}, \quad y^{\langle i\rangle}=y^{i_{0}}\left(y^{\dagger}\right)^{i_{1}} \cdots\left(y^{\langle r\rangle}\right)^{i_{r}}
$$

Proposition
Let i be largest for $\leqslant_{\text {lex }}$ on \mathbb{N}^{r+1} with $P_{\langle i\rangle} \neq 0$. Then for $y \rightarrow \infty$, we have $P(y) \sim P_{\langle i\rangle} y^{\langle i\rangle} \neq 0$.

Logarithmic decomposition

$$
\begin{aligned}
y & =y \\
y^{\prime} & =y y^{+} \\
y^{\prime \prime} & =y\left(y^{+}\right)^{2}+y y^{+} y^{++} \\
& \vdots \\
y^{(k)} & \in \mathbb{Z}\left[y, y^{+}, y^{++}, \ldots, y^{(k)}\right] .
\end{aligned}
$$

Logarithmic decomposition.

$$
P=\sum_{i \in \mathbb{N}^{r+1}} P_{\langle i\rangle} y^{\langle i\rangle}, \quad y^{\langle i\rangle}=y^{i_{0}}\left(y^{+}\right)^{i_{1}} \cdots\left(y^{\langle r\rangle}\right)^{i_{r}}
$$

Proposition

Let i be largest for $\leqslant_{l e x}$ on \mathbb{N}^{r+1} with $P_{\langle i\rangle} \neq 0$. Then for $y \rightarrow \infty$, we have $P(y) \sim P_{\langle i\rangle} y^{(i)} \neq 0$.
Proof. For large y, we have $y \gg y^{+} \gg y^{++} \gg \cdots$.

$$
\mathrm{e}^{-\mathrm{e}^{x}} y^{3}+y y^{\prime \prime}-\left(y^{\prime}\right)^{2}+\mathrm{e}^{-x} y^{\prime}+\mathrm{e}^{-3 x}=0
$$

Differential Newton polygons

$$
\mathrm{e}^{-\mathrm{e}^{x}} y^{3}+y y^{\prime \prime}-\left(y^{\prime}\right)^{2}+\mathrm{e}^{-x} y^{\prime}+\mathrm{e}^{-3 x}=0
$$

Algebraic starting monomials.

- $y=\mathrm{e}^{-2 x}$

Differential Newton polygons

$$
\mathrm{e}^{-\mathrm{e}^{x}} y^{3}+y y^{\prime \prime}-\left(y^{\prime}\right)^{2}+\mathrm{e}^{-x} y^{\prime}+\mathrm{e}^{-3 x}=0
$$

Algebraic starting monomials.

- $y=\mathrm{e}^{-2 x}$
- $y=x^{2} \mathrm{e}^{-x}$

Differential Newton polygons

$$
\mathrm{e}^{-\mathrm{e}^{x}} y^{3}+y y^{\prime \prime}-\left(y^{\prime}\right)^{2}+\mathrm{e}^{-x} y^{\prime}+\mathrm{e}^{-3 x}=0
$$

Algebraic starting monomials.

- $y=\mathrm{e}^{-2 x}$
- $y=x^{2} \mathrm{e}^{-x}$
- $y=\mathrm{e}^{x} \mathrm{e}^{\mathrm{e}^{x}}$

Differential Newton polygons

$$
\mathrm{e}^{-\mathrm{e}^{x}} y^{3}+y y^{\prime \prime}-\left(y^{\prime}\right)^{2}+\mathrm{e}^{-x} y^{\prime}+\mathrm{e}^{-3 x}=0
$$

Algebraic starting monomials.

- $y=\mathrm{e}^{-2 x}$
- $y=x^{2} \mathrm{e}^{-x}$
- $y=\mathrm{e}^{x} \mathrm{e}^{\mathrm{e}^{x}}$

Differential starting monomials.

- $y=\mathrm{e}^{\lambda x}, \lambda>-1$

Necessary condition for the existence of a root $y \in \mathbb{T}$ of $P \in \mathbb{T}\{Y\}$ with $y=1$?

When is 1 a starting monomial?

Necessary condition for the existence of a $\operatorname{root} y \in \mathbb{T}$ of $P \in \mathbb{T}\{Y\}$ with $y=1$?
Tentative answer
$D(P)(c)=0$ has a non-zero solution $c \in \mathbb{R}$.

When is 1 a starting monomial?

Necessary condition for the existence of a $\operatorname{root} y \in \mathbb{T}$ of $P \in \mathbb{T}\{Y\}$ with $y=1$?
Tentative answer
$D(P)(c)=0$ has a non-zero solution $c \in \mathbb{R}$.
Problem

$$
P=x^{-2} Y^{5}+\left(Y^{\prime}\right)^{3}+x^{-1}
$$

When is 1 a starting monomial?

Necessary condition for the existence of a $\operatorname{root} y \in \mathbb{T}$ of $P \in \mathbb{T}\{Y\}$ with $y=1$?
Tentative answer
$D(P)(c)=0$ has a non-zero solution $c \in \mathbb{R}$.
Problem

$$
\begin{aligned}
P & =x^{-2} Y^{5}+\left(Y^{\prime}\right)^{3}+x^{-1} \\
D(P) & =\left(Y^{\prime}\right)^{3}
\end{aligned}
$$

When is 1 a starting monomial?

Necessary condition for the existence of a $\operatorname{root} y \in \mathbb{T}$ of $P \in \mathbb{T}\{Y\}$ with $y=1$?

Tentative answer

$D(P)(c)=0$ has a non-zero solution $c \in \mathbb{R}$.
Problem

$$
\begin{aligned}
P & =x^{-2} Y^{5}+\left(Y^{\prime}\right)^{3}+x^{-1} \\
D(P) & =\left(Y^{\prime}\right)^{3}
\end{aligned}
$$

Any $c \in \mathbb{R}^{\neq 0}$ is a root of $D(P)$, but P cannot have roots $y \in \mathbb{T}\{Y\}$ with $y=1$.

When is 1 a starting monomial?

Necessary condition for the existence of a $\operatorname{root} y \in \mathbb{T}$ of $P \in \mathbb{T}\{Y\}$ with $y=1$?

Tentative answer

$D(P)(c)=0$ has a non-zero solution $c \in \mathbb{R}$.

Problem

$$
\begin{aligned}
P & =x^{-2} Y^{5}+\left(Y^{\prime}\right)^{3}+x^{-1} \\
D(P) & =\left(Y^{\prime}\right)^{3}
\end{aligned}
$$

Any $c \in \mathbb{R}^{\neq 0}$ is a root of $D(P)$, but P cannot have roots $y \in \mathbb{T}\{Y\}$ with $y=1$.

Reason

$$
P(y)=0 \wedge y=1 \Longleftrightarrow P \uparrow(y \uparrow)=0 \wedge y \uparrow=1
$$

When is 1 a starting monomial?

Necessary condition for the existence of a $\operatorname{root} y \in \mathbb{T}$ of $P \in \mathbb{T}\{Y\}$ with $y=1$?

Tentative answer

$D(P)(c)=0$ has a non-zero solution $c \in \mathbb{R}$.

Problem

$$
\begin{aligned}
P & =x^{-2} Y^{5}+\left(Y^{\prime}\right)^{3}+x^{-1} \\
D(P) & =\left(Y^{\prime}\right)^{3}
\end{aligned}
$$

Any $c \in \mathbb{R}^{\neq 0}$ is a root of $D(P)$, but P cannot have roots $y \in \mathbb{T}\{Y\}$ with $y=1$.

Reason

$$
\begin{aligned}
P(y)=0 \wedge y=1 & \Longleftrightarrow P \uparrow(y \uparrow)=0 \wedge y \uparrow=1 \\
P \uparrow & =\mathrm{e}^{-2 x} Y^{5}+\mathrm{e}^{-3 x}\left(Y^{\prime}\right)^{3}+\mathrm{e}^{-x} \\
D(P \uparrow) & =1 .
\end{aligned}
$$

Example continued

$$
P=x^{-2} Y^{5}+\left(Y^{\prime}\right)^{3}+x^{-1} \quad D(P)=\left(Y^{\prime}\right)^{3}
$$

Example continued

$$
\begin{array}{lll}
P & =x^{-2} Y^{5}+\left(Y^{\prime}\right)^{3}+x^{-1} & D(P)=\left(Y^{\prime}\right)^{3} \\
P \uparrow & =\mathrm{e}^{-2 x} Y^{5}+\mathrm{e}^{-3 x}\left(Y^{\prime}\right)^{3}+\mathrm{e}^{-x} & D(P \uparrow)=1
\end{array}
$$

Example continued

$$
\begin{array}{lll}
P=x^{-2} Y^{5}+\left(Y^{\prime}\right)^{3}+x^{-1} & D(P)=\left(Y^{\prime}\right)^{3} \\
P \uparrow=\mathrm{e}^{-2 x} Y^{5}+\mathrm{e}^{-3 x}\left(Y^{\prime}\right)^{3}+\mathrm{e}^{-x} & D(P \uparrow)=1 \\
P \uparrow \uparrow=\mathrm{e}^{-2 \mathrm{e}^{x} Y^{5}+\mathrm{e}^{-3 e^{-}-3 x}\left(Y^{\prime}\right)^{3}+\mathrm{e}^{-\mathrm{e}^{x}}} & D(P \uparrow \uparrow)=1
\end{array}
$$

Example continued

$$
\begin{array}{lll}
P=x^{-2} Y^{5}+\left(Y^{\prime}\right)^{3}+x^{-1} & D(P)=\left(Y^{\prime}\right)^{3} \\
P \uparrow=\mathrm{e}^{-2 x} Y^{5}+\mathrm{e}^{-3 x}\left(Y^{\prime}\right)^{3}+\mathrm{e}^{-x} & D(P \uparrow)=1 \\
P \uparrow \uparrow=\mathrm{e}^{-2 \mathrm{e}^{x} Y^{5}+\mathrm{e}^{-3 e^{x}-3 x}\left(Y^{\prime}\right)^{3}+\mathrm{e}^{-\mathrm{e}^{x}}} & D(P \uparrow \uparrow)=1 \\
P \uparrow \uparrow \uparrow=\mathrm{e}^{-2 \mathrm{e}^{x}} Y^{5}+\mathrm{e}^{-3 \mathrm{e}^{x^{x}}-3 \mathrm{e}^{x}-3 x}\left(Y^{\prime}\right)^{3}+\mathrm{e}^{-\mathrm{e}^{e^{x}}} & D(P \uparrow \uparrow \uparrow)=1
\end{array}
$$

Differential Newton polynomials

Example continued

$$
\begin{array}{lll}
P & =x^{-2} Y^{5}+\left(Y^{\prime}\right)^{3}+x^{-1} & D(P)=\left(Y^{\prime}\right)^{3} \\
P \uparrow=\mathrm{e}^{-2 x} Y^{5}+\mathrm{e}^{-3 x}\left(Y^{\prime}\right)^{3}+\mathrm{e}^{-x} & D(P \uparrow)=1 \\
P \uparrow \uparrow=\mathrm{e}^{-2 \mathrm{e}^{Y} Y^{5}+\mathrm{e}^{-3 e^{e}-3 x}\left(Y^{\prime}\right)^{3}+\mathrm{e}^{-\mathrm{e}^{x}}} & D(P \uparrow \uparrow)=1 \\
P \uparrow \uparrow \uparrow=\mathrm{e}^{-2 \mathrm{e}^{x}} Y^{5}+\mathrm{e}^{-3 \mathrm{e}^{x}-3 e^{x}-3 x}\left(Y^{\prime}\right)^{3}+\mathrm{e}^{-\mathrm{e}^{x}} & D(P \uparrow \uparrow \uparrow)=1
\end{array}
$$

Theorem DNP

Given $P \in \mathbb{T}\{Y\}$, there exists $l_{0} \in \mathbb{N}$ and $N(P) \in \mathbb{R}[Y]\left(Y^{\prime}\right)^{\mathbb{N}}$ with

$$
D\left(P \uparrow_{l}\right)=N(P), \quad \text { for all } l \geqslant l_{0} .
$$

We call $N(P)$ the differential Newton polynomial of P.

Dominant parts and upward shifting

$$
P \uparrow_{[\omega]}=\sum_{\tau \geqslant \omega} s_{\tau, \omega} \mathrm{e}^{-|\tau| x} P_{[\tau]} \uparrow
$$

Dominant parts and upward shifting

$$
P \uparrow_{[\omega]}=\sum_{\tau \geqslant \omega} s_{\tau, \omega} \mathrm{e}^{-|\tau| x} P_{[\tau]} \uparrow
$$

Lemma

Assume that $P \in(\mathbb{E} \circ \exp)\{Y\}$. Then

$$
D(P \uparrow)=D(D(P) \uparrow)
$$

Dominant parts and upward shifting

$$
P \uparrow_{[\omega]}=\sum_{\tau \geqslant \omega} s_{\tau, \omega} \mathrm{e}^{-|\tau| x} P_{[\tau]} \uparrow
$$

Lemma

Assume that $P \in(\mathbb{E} \circ \exp)\{Y\}$. Then

$$
D(P \uparrow)=D(D(P) \uparrow)
$$

Proof. Without loss of generality, we may assume that $P \asymp 1$.

Dominant parts and upward shifting

$$
P \uparrow_{[\omega]}=\sum_{\tau \geqslant \omega} s_{\tau, \omega} \mathrm{e}^{-|\tau| x} P_{[\tau]} \uparrow
$$

Lemma

Assume that $P \in(\mathbb{E} \circ \exp)\{Y\}$. Then

$$
D(P \uparrow)=D(D(P) \uparrow)
$$

Proof. Without loss of generality, we may assume that $P \asymp 1$.

$$
P=D(P)+O\left(\mathrm{e}^{-\sqrt{x}}\right)
$$

$$
(P \in(\mathbb{E} \circ \exp)\{Y\})
$$

Dominant parts and upward shifting

$$
P \uparrow_{[\omega]}=\sum_{\tau \geqslant \omega} s_{\tau, \omega} \mathrm{e}^{-|\tau| x} P_{[\tau]} \uparrow
$$

Lemma

Assume that $P \in(\mathbb{E} \circ \exp)\{Y\}$. Then

$$
D(P \uparrow)=D(D(P) \uparrow)
$$

Proof. Without loss of generality, we may assume that $P \asymp 1$.

$$
\begin{array}{rlr}
P & =D(P)+O\left(\mathrm{e}^{-\sqrt{x}}\right) & (P \in(\mathbb{E} \circ \exp)\{Y\}) \\
P \uparrow & =D(P) \uparrow+O\left(\mathrm{e}^{-\mathrm{e}^{x / 2}}\right) & (\text { by }(\star))
\end{array}
$$

Dominant parts and upward shifting

$$
P \uparrow_{[\omega]}=\sum_{\tau \geqslant \omega} s_{\tau, \omega} \mathrm{e}^{-|\tau| x} P_{[\tau]} \uparrow
$$

Lemma

Assume that $P \in(\mathbb{E} \circ \exp)\{Y\}$. Then

$$
D(P \uparrow)=D(D(P) \uparrow)
$$

Proof. Without loss of generality, we may assume that $P \asymp 1$.

$$
\begin{aligned}
P & =D(P)+O\left(\mathrm{e}^{-\sqrt{x}}\right) \\
P \uparrow & =D(P) \uparrow+O\left(\mathrm{e}^{-\mathrm{e}^{x / 2}}\right) \\
P \uparrow & \geqq \mathrm{e}^{x}
\end{aligned}
$$

$$
(P \in(\mathbb{E} \circ \exp)\{Y\})
$$

$$
(b y(\star))
$$

$$
(\text { by }(\star))
$$

Dominant parts and upward shifting

$$
P \uparrow_{[\omega]}=\sum_{\tau \geqslant \omega} s_{\tau, \omega} \mathrm{e}^{-|\tau| x} P_{[\tau]} \uparrow
$$

Lemma

Assume that $P \in(\mathbb{E} \circ \exp)\{Y\}$. Then

$$
D(P \uparrow)=D(D(P) \uparrow)
$$

Proof. Without loss of generality, we may assume that $P \asymp 1$.

$$
\begin{aligned}
P & =D(P)+O\left(\mathrm{e}^{-\sqrt{x}}\right) \\
P \uparrow & =D(P) \uparrow+O\left(\mathrm{e}^{-\mathrm{e}^{x / 2}}\right) \\
P \uparrow & \geqq \mathrm{e}^{x} \\
P \uparrow-D(P) \uparrow & \prec P \uparrow
\end{aligned}
$$

$$
(P \in(\mathbb{E} \circ \exp)\{Y\})
$$

$$
P \uparrow_{[\omega]}=\sum_{\tau \geqslant \omega} s_{\tau, \omega} \mathrm{e}^{-|\tau| x} P_{[\tau]} \uparrow
$$

Lemma

a) If $P \in \mathbb{R}\{Y\}$, then $\mathrm{wt} P \uparrow=\mathrm{wv} P$.
b) If $\mathrm{wv} P \uparrow=\mathrm{wv} P$, then $P \uparrow=\mathrm{e}^{-(\mathrm{wv} P) x} P$ and $D(P \uparrow)=P$.

Weight and upward shifting

$$
P \uparrow_{[\omega]}=\sum_{\tau \geqslant \omega} s_{\tau, \omega} \mathrm{e}^{-|\tau| x} P_{[\tau]} \uparrow
$$

Lemma

a) If $P \in \mathbb{R}\{Y\}$, then $\mathrm{wt} P \uparrow=\mathrm{wv} P$.
b) If $\mathrm{wv} P \uparrow=\mathrm{wv} P$, then $P \uparrow=\mathrm{e}^{-(\mathrm{wv} P) x} P$ and $D(P \uparrow)=P$.

Proof. From (\star), we deduce,

$$
P \uparrow=\mathrm{e}^{-(\mathrm{wv} P) x}
$$

Weight and upward shifting

$$
P \uparrow_{[\omega]}=\sum_{\tau \geqslant \omega} s_{\tau, \omega} \mathrm{e}^{-|\tau| x} P_{[\tau]} \uparrow
$$

Lemma

a) If $P \in \mathbb{R}\{Y\}$, then $\mathrm{wt} P \uparrow=\mathrm{wv} P$.
b) If $\mathrm{wv} P \uparrow=\mathrm{wv} P$, then $P \uparrow=\mathrm{e}^{-(\mathrm{wv} P) x} P$ and $D(P \uparrow)=P$.

Proof. From (\star), we deduce,

$$
\begin{aligned}
P \uparrow & \approx \mathrm{e}^{-(\mathrm{wv} P) x} \\
D(P \uparrow) & =\sum_{|\tau|=\mathrm{wv} P, \tau \geqslant \omega} s_{\tau, \omega} P_{[\tau]} \uparrow Y^{[\omega]} .
\end{aligned}
$$

Weight and upward shifting

$$
P \uparrow_{[\omega]}=\sum_{\tau \geqslant \omega} s_{\tau, \omega} \mathrm{e}^{-|\tau| x} P_{[\tau]} \uparrow
$$

Lemma

a) If $P \in \mathbb{R}\{Y\}$, then wt $P \uparrow=\mathrm{wv} P$.
b) If $\mathrm{wv} P \uparrow=\mathrm{wv} P$, then $P \uparrow=\mathrm{e}^{-(\mathrm{wv} P) x} P$ and $D(P \uparrow)=P$.

Proof. From (\star), we deduce,

$$
\begin{aligned}
P \uparrow & \approx \mathrm{e}^{-(\mathrm{wv} P) x} \\
D(P \uparrow) & =\sum_{|\tau|=\mathrm{wv} P, \tau \geqslant \omega} s_{\tau, \omega} P_{[\tau]} \uparrow Y^{[\omega]} .
\end{aligned}
$$

If $\mathrm{wv} P \uparrow=\mathrm{wv} P$, then the last formula becomes

$$
D(P \uparrow)=\sum_{|\tau|=\mathrm{wv} P, \tau=\omega} s_{\tau, \omega} P_{[\tau]} \uparrow Y^{[\omega]}=P
$$

Existence of differential Newton polynomials

$$
P \uparrow_{[\omega]}=\sum_{\tau \geqslant \omega} s_{\tau, \omega} \mathrm{e}^{-|\tau| x} P_{[\tau]} \uparrow
$$

Lemma

Given $P \in \mathbb{T}\{Y\}$, there exists $l_{0} \in \mathbb{N}$ and isobaric $N(P) \in \mathbb{R}\{Y\}$ with

$$
D\left(P \uparrow_{l}\right)=N(P), \quad \text { for all } l \geqslant l_{0}
$$

Existence of differential Newton polynomials

$$
P \uparrow_{[\omega]}=\sum_{\tau \geqslant \omega} s_{\tau, \omega} \mathrm{e}^{-|\tau| x} P_{[\tau]} \uparrow
$$

Lemma

Given $P \in \mathbb{T}\{Y\}$, there exists $l_{0} \in \mathbb{N}$ and isobaric $N(P) \in \mathbb{R}\{Y\}$ with

$$
D\left(P \uparrow_{l}\right)=N(P), \quad \text { for all } l \geqslant l_{0}
$$

Proof. The previous two lemmas yield

$$
\text { wt } D(P) \geqslant \mathrm{wv} D(P)=\mathrm{wt} D(P \uparrow) \geqslant \mathrm{wv} D(P \uparrow)=\mathrm{wt} D(P \uparrow \uparrow) \geqslant \cdots
$$

In other words, wv $D\left(P \uparrow_{l}\right)$ stabilizes for sufficiently large $l \geqslant l_{0}$.

$$
P \uparrow_{[\omega]}=\sum_{\tau \geqslant \omega} s_{\tau, \omega} \mathrm{e}^{-|\tau| x} P_{[\tau]} \uparrow
$$

Lemma

Given $P \in \mathbb{T}\{Y\}$, there exists $l_{0} \in \mathbb{N}$ and isobaric $N(P) \in \mathbb{R}\{Y\}$ with

$$
D\left(P \uparrow_{l}\right)=N(P), \quad \text { for all } l \geqslant l_{0}
$$

Proof. The previous two lemmas yield

$$
\operatorname{wt} D(P) \geqslant \mathrm{wv} D(P)=\operatorname{wt} D(P \uparrow) \geqslant \mathrm{wv} D(P \uparrow)=\operatorname{wt} D(P \uparrow \uparrow) \geqslant \cdots
$$

In other words, $\mathrm{wv} D\left(P \uparrow_{l}\right)$ stabilizes for sufficiently large $l \geqslant l_{0}$.
When that happens, we have $D\left(P \uparrow_{l+1}\right)=D\left(D\left(P \uparrow_{l}\right) \uparrow\right)=D\left(P \uparrow_{l}\right)$ for all $l \geqslant l_{0}$, again by the previous two lemmas

$$
P \uparrow_{[\omega]}=\sum_{\tau \geqslant \omega} s_{\tau, \omega} \mathrm{e}^{-|\tau| x} P_{[\tau]} \uparrow
$$

Lemma

Given $P \in \mathbb{T}\{Y\}$, there exists $l_{0} \in \mathbb{N}$ and isobaric $N(P) \in \mathbb{R}\{Y\}$ with

$$
D\left(P \uparrow_{l}\right)=N(P), \quad \text { for all } l \geqslant l_{0}
$$

Proof. The previous two lemmas yield

$$
\text { wt } D(P) \geqslant \mathrm{wv} D(P)=\mathrm{wt} D(P \uparrow) \geqslant \mathrm{wv} D(P \uparrow)=\mathrm{wt} D(P \uparrow \uparrow) \geqslant \cdots
$$

In other words, wv $D\left(P \uparrow_{l}\right)$ stabilizes for sufficiently large $l \geqslant l_{0}$.
When that happens, we have $D\left(P \uparrow_{l+1}\right)=D\left(D\left(P \uparrow_{l}\right) \uparrow\right)=D\left(P \uparrow_{l}\right)$ for all $l \geqslant l_{0}$, again by the previous two lemmas, and $D\left(P \uparrow_{l}\right)$ is isobaric.

$$
P \uparrow_{[\omega]}=\sum_{\tau \geqslant \omega} s_{\tau, \omega} \mathrm{e}^{-|\tau| x} P_{[\tau]} \uparrow
$$

Lemma

If $P \in \mathbb{R}\{Y\}$ is isobaric of weight w with $D(P \uparrow)=P$, then $P \in \mathbb{R}[Y]\left(Y^{\prime}\right)^{\mathbb{N}}$.

$$
P \uparrow_{[\omega]}=\sum_{\tau \geqslant \omega} s_{\tau, \omega} \mathrm{e}^{-|\tau| x} P_{[\tau]} \uparrow
$$

Lemma

If $P \in \mathbb{R}\{Y\}$ is isobaric of weight w with $D(P \uparrow)=P$, then $P \in \mathbb{R}[Y]\left(Y^{\prime}\right)^{\mathbb{N}}$.
Proof. Let $P^{*}=\sum_{i \in \mathbb{N}} P_{(i, w, 0, \ldots, 0)} Y^{i}\left(Y^{\prime}\right)^{w}$.
Assume for contradiction that $\Delta:=P-P^{*} \neq 0$.

$$
P \uparrow_{[\omega]}=\sum_{\tau \geqslant \omega} s_{\tau, \omega} \mathrm{e}^{-|\tau| x} P_{[\tau]} \uparrow
$$

Lemma

If $P \in \mathbb{R}\{Y\}$ is isobaric of weight w with $D(P \uparrow)=P$, then $P \in \mathbb{R}[Y]\left(Y^{\prime}\right)^{\mathbb{N}}$.
Proof. Let $P^{*}=\sum_{i \in \mathbb{N}} P_{(i, w, 0, \ldots, 0)} Y^{i}\left(Y^{\prime}\right)^{w}$.
Assume for contradiction that $\Delta:=P-P^{*} \neq 0$.
Since $i_{0}=i_{1}=0$ for all i with $\Delta_{i} \neq 0$, we have $\Delta(x)=0$.

$$
P \uparrow_{[\omega]}=\sum_{\tau \geqslant \omega} s_{\tau, \omega} \mathrm{e}^{-|\tau| x} P_{[\tau]} \uparrow
$$

Lemma

If $P \in \mathbb{R}\{Y\}$ is isobaric of weight w with $D(P \uparrow)=P$, then $P \in \mathbb{R}[Y]\left(Y^{\prime}\right)^{\mathbb{N}}$.
Proof. Let $P^{*}=\sum_{i \in \mathbb{N}} P_{(i, w, 0, \ldots, 0)} Y^{i}\left(Y^{\prime}\right)^{w}$.
Assume for contradiction that $\Delta:=P-P^{*} \neq 0$.
Since $i_{0}=i_{1}=0$ for all i with $\Delta_{i} \neq 0$, we have $\Delta(x)=0$.
Now Δ is isobaric of weight w and $D(\Delta \uparrow)=\Delta$.
From (\star), it follows that $\Delta \uparrow=\mathrm{e}^{-w x} \Delta$.

$$
P \uparrow_{[\omega]}=\sum_{\tau \geqslant \omega} s_{\tau, \omega} \mathrm{e}^{-|\tau| x} P_{[\tau]} \uparrow
$$

Lemma

If $P \in \mathbb{R}\{Y\}$ is isobaric of weight w with $D(P \uparrow)=P$, then $P \in \mathbb{R}[Y]\left(Y^{\prime}\right)^{\mathbb{N}}$.
Proof. Let $P^{*}=\sum_{i \in \mathbb{N}} P_{(i, w, 0, \ldots, 0)} Y^{i}\left(Y^{\prime}\right)^{w}$.
Assume for contradiction that $\Delta:=P-P^{*} \neq 0$.
Since $i_{0}=i_{1}=0$ for all i with $\Delta_{i} \neq 0$, we have $\Delta(x)=0$.
Now Δ is isobaric of weight w and $D(\Delta \uparrow)=\Delta$.
From (\star), it follows that $\Delta \uparrow=\mathrm{e}^{-w x} \Delta$.
Consequently $\Delta(x)=\Delta\left(\mathrm{e}^{x}\right)=\Delta\left(\mathrm{e}^{\mathrm{e}^{x}}\right)=\cdots=0$, which is impossible.

Theorem (DNP)

Given $P \in \mathbb{T}\{Y\}$, there exists $l_{0} \in \mathbb{N}$ and $N(P) \in \mathbb{R}[Y]\left(Y^{\prime}\right)^{\mathbb{N}}$ with

$$
D\left(P \uparrow_{l}\right)=N(P), \quad \text { for all } l \geqslant l_{0}
$$

We call $N(P)$ the differential Newton polynomial of P.

Theorem (DNP)

Given $P \in \mathbb{T}\{Y\}$, there exists $l_{0} \in \mathbb{N}$ and $N(P) \in \mathbb{R}[Y]\left(Y^{\prime}\right)^{\mathbb{N}}$ with

$$
D\left(P \uparrow_{l}\right)=N(P), \quad \text { for all } l \geqslant l_{0} .
$$

We call $N(P)$ the differential Newton polynomial of P.
Newton degree. For $P \in \mathbb{T}\{Y\}^{\neq 0}$ and $\mathfrak{m} \in \mathfrak{T}$, we define

$$
\begin{aligned}
& \operatorname{deg}_{\leqslant \mathfrak{m}} P:=\operatorname{deg} N\left(P_{\times m}\right) \\
& \operatorname{deg}_{<\mathrm{m}} P:=\operatorname{val} N\left(P_{\times \mathrm{m}}\right)
\end{aligned}
$$

Theorem (DNP)

Given $P \in \mathbb{T}\{Y\}$, there exists $l_{0} \in \mathbb{N}$ and $N(P) \in \mathbb{R}[Y]\left(Y^{\prime}\right)^{\mathbb{N}}$ with

$$
D\left(P \uparrow_{l}\right)=N(P), \quad \text { for all } l \geqslant l_{0}
$$

We call $N(P)$ the differential Newton polynomial of P.
Newton degree. For $P \in \mathbb{T}\{Y\}^{\neq 0}$ and $\mathfrak{m} \in \mathfrak{T}$, we define

$$
\begin{aligned}
\operatorname{deg}_{\leqslant \mathfrak{m}} P & :=\operatorname{deg} N\left(P_{\times \mathfrak{m}}\right) \\
\operatorname{deg}_{<\mathfrak{m}} P & :=\operatorname{val} N\left(P_{\times \mathfrak{m}}\right)
\end{aligned}
$$

\mathfrak{m} is a starting monomial for $P(y)=0$ if $N\left(P_{x \mathfrak{m}}\right)(c)=0$ for some $c \in \mathbb{C}^{\neq 0}$.

Theorem (DNP)

Given $P \in \mathbb{T}\{Y\}$, there exists $l_{0} \in \mathbb{N}$ and $N(P) \in \mathbb{R}[Y]\left(Y^{\prime}\right)^{\mathbb{N}}$ with

$$
D\left(P \uparrow_{l}\right)=N(P), \quad \text { for all } l \geqslant l_{0}
$$

We call $N(P)$ the differential Newton polynomial of P.
Newton degree. For $P \in \mathbb{T}\{Y\}^{\neq 0}$ and $\mathfrak{m} \in \mathfrak{T}$, we define

$$
\begin{aligned}
\operatorname{deg}_{\leqslant \mathfrak{m}} P & :=\operatorname{deg} N\left(P_{\times \mathfrak{m}}\right) \\
\operatorname{deg}_{<\mathfrak{m}} P & :=\operatorname{val} N\left(P_{\times \mathfrak{m}}\right)
\end{aligned}
$$

\mathfrak{m} is a starting monomial for $P(y)=0$ if $N\left(P_{x \mathfrak{m}}\right)(c)=0$ for some $c \in \mathbb{C}^{\neq 0}$. \mathfrak{m} is an algebraic starting monomial if $N\left(P_{\times \mathfrak{m}}\right)$ is not homogeneous.

Theorem (DNP)

Given $P \in \mathbb{T}\{Y\}$, there exists $l_{0} \in \mathbb{N}$ and $N(P) \in \mathbb{R}[Y]\left(Y^{\prime}\right)^{\mathbb{N}}$ with

$$
D\left(P \uparrow_{l}\right)=N(P), \quad \text { for all } l \geqslant l_{0}
$$

We call $N(P)$ the differential Newton polynomial of P.
Newton degree. For $P \in \mathbb{T}\{Y\}^{\neq 0}$ and $\mathfrak{m} \in \mathfrak{T}$, we define

$$
\begin{aligned}
\operatorname{deg}_{\leqslant \mathfrak{m}} P & :=\operatorname{deg} N\left(P_{\times \mathfrak{m}}\right) \\
\operatorname{deg}_{<\mathfrak{m}} P & :=\operatorname{val} N\left(P_{\times \mathfrak{m}}\right)
\end{aligned}
$$

\mathfrak{m} is a starting monomial for $P(y)=0$ if $N\left(P_{x \mathfrak{m}}\right)(c)=0$ for some $c \in \mathbb{C}^{\neq 0}$. \mathfrak{m} is an algebraic starting monomial if $N\left(P_{\times \mathfrak{m}}\right)$ is not homogeneous. \mathfrak{m} is a differential starting monomial if $N\left(P_{\times \mathfrak{m}}\right) \in \mathbb{R}[Y]\left(Y^{\prime}\right)^{v}$ for some $v>0$.

Properties of Newton degree

Proposition

For any $P \in \mathbb{T}\{Y\}^{\neq 0}$, we have $N(P \uparrow)=N(P)$.
Proof. By construction.

Properties of Newton degree

Proposition

For any $P \in \mathbb{T}\{Y\}^{\neq 0}$, we have $N(P \uparrow)=N(P)$.

Proposition

For $P \in \mathbb{T}\{Y\}^{\neq 0}$ and $\mathfrak{m}<\mathfrak{n}$ in \mathfrak{T}, we have

$$
\operatorname{deg}_{<\mathfrak{m}} P \leqslant \operatorname{deg}_{\preccurlyeq \mathfrak{m}} P \leqslant \operatorname{deg}_{<\mathfrak{n}} P \leqslant \operatorname{deg}_{\leqslant \mathfrak{n}} P
$$

Properties of Newton degree

Proposition

For any $P \in \mathbb{T}\{Y\}^{\neq 0}$, we have $N(P \uparrow)=N(P)$.

Proposition

For $P \in \mathbb{T}\{Y\}^{\neq 0}$ and $\mathfrak{m}<\mathfrak{n}$ in \mathfrak{T}, we have

$$
\operatorname{deg}_{<\mathfrak{m}} P \leqslant \operatorname{deg}_{\preccurlyeq \mathfrak{m}} P \leqslant \operatorname{deg}_{<\mathfrak{n}} P \leqslant \operatorname{deg}_{\preccurlyeq \mathfrak{n}} P
$$

Proof. By considering $P_{\times \mathfrak{n}}$ instead of P, we may also arrange that $\mathfrak{m}<\mathfrak{n}=1$.

Properties of Newton degree

Proposition

For any $P \in \mathbb{T}\{Y\}^{\neq 0}$, we have $N(P \uparrow)=N(P)$.

Proposition

For $P \in \mathbb{T}\{Y\}^{\neq 0}$ and $\mathfrak{m}<\mathfrak{n}$ in \mathfrak{T}, we have

$$
\operatorname{deg}_{<\mathfrak{m}} P \leqslant \operatorname{deg}_{\leqslant \mathfrak{m}} P \leqslant \operatorname{deg}_{<\mathfrak{n}} P \leqslant \operatorname{deg}_{\leqslant \mathfrak{n}} P
$$

Proof. By considering $P_{\times \mathfrak{n}}$ instead of P, we may also arrange that $\mathfrak{m}<\mathfrak{n}=1$. By what precedes, we also arrange that $N(P)=D(P), N\left(P_{\times \mathfrak{m}}\right)=D\left(P_{\times \mathfrak{m}}\right)$, and $\mathfrak{m} \gg x$.

Properties of Newton degree

Proposition

For any $P \in \mathbb{T}\{Y\}^{\neq 0}$, we have $N(P \uparrow)=N(P)$.

Proposition

For $P \in \mathbb{T}\{Y\}^{\neq 0}$ and $\mathfrak{m}<\mathfrak{n}$ in \mathfrak{T}, we have

$$
\operatorname{deg}_{<\mathfrak{m}} P \leqslant \operatorname{deg}_{\preccurlyeq \mathfrak{m}} P \leqslant \operatorname{deg}_{<\mathfrak{n}} P \leqslant \operatorname{deg}_{\leqslant \mathfrak{n}} P
$$

Proof. By considering $P_{\times \mathfrak{n}}$ instead of P, we may also arrange that $\mathfrak{m}<\mathfrak{n}=1$. By what precedes, we also arrange that $N(P)=D(P), N\left(P_{\times \mathfrak{m}}\right)=D\left(P_{\times \mathfrak{m}}\right)$, and $\mathfrak{m} \gg x$. Recall that $\mathfrak{d}\left(Q_{\times \mathfrak{m}}\right) /\left(\mathfrak{m}^{i} \mathfrak{d}(Q)\right) \ll \mathfrak{m}$ for $Q \in \mathbb{T}\{Y\}$ homogeneous of degree i.

Properties of Newton degree

Proposition

For any $P \in \mathbb{T}\{Y\}^{\neq 0}$, we have $N(P \uparrow)=N(P)$.

Proposition

For $P \in \mathbb{T}\{Y\}^{\neq 0}$ and $\mathfrak{m}<\mathfrak{n}$ in \mathfrak{T}, we have

$$
\operatorname{deg}_{<\mathfrak{m}} P \leqslant \operatorname{deg}_{\preccurlyeq \mathfrak{m}} P \leqslant \operatorname{deg}_{<\mathfrak{n}} P \leqslant \operatorname{deg}_{\leqslant \mathfrak{n}} P
$$

Proof. By considering $P_{\times \mathfrak{n}}$ instead of P, we may also arrange that $\mathfrak{m}<\mathfrak{n}=1$. By what precedes, we also arrange that $N(P)=D(P), N\left(P_{\times \mathfrak{m}}\right)=D\left(P_{\times \mathfrak{m}}\right)$, and $\mathfrak{m} \gg x$. Recall that $\mathfrak{d}\left(Q_{\times \mathfrak{m}}\right) /\left(\mathfrak{m}^{i} \mathfrak{d}(Q)\right) \ll \mathfrak{m}$ for $Q \in \mathbb{T}\{Y\}$ homogeneous of degree i. For all $i>d:=\operatorname{deg}_{<1} P$, it follows that

$$
P_{\times \mathfrak{m}, d}=\phi \mathfrak{m}^{d} P_{d}>\psi \mathfrak{m}^{i} P_{i}=P_{\times \mathfrak{m}, i \prime}
$$

for some $\phi, \psi \ll \mathfrak{m}$. Hence, $\operatorname{deg} N\left(P_{\times \mathfrak{m}}\right)=\operatorname{deg} D\left(P_{\times \mathfrak{m}}\right) \leqslant d$.

The non-linear equalizer lemma

Lemma EO

Let $P \in \mathbb{T}\{Y\}$ and $i<j$ with $P_{i} \neq 0, P_{j} \neq 0$. Then there exists a unique $\mathfrak{e} \in \mathfrak{T}$ for which $N\left(P_{i, \times \mathfrak{e}}+P_{j, \times \mathfrak{e}}\right)$ is not homogeneous. We call \mathfrak{e} the (i, j)-equalizer for P.

Lemma EO

Let $P \in \mathbb{T}\{Y\}$ and $i<j$ with $P_{i} \neq 0, P_{j} \neq 0$. Then there exists a unique $\mathfrak{e} \in \mathfrak{T}$ for which $N\left(P_{i, \times \mathfrak{e}}+P_{j, \times \mathfrak{e}}\right)$ is not homogeneous. We call \mathfrak{e} the (i, j)-equalizer for P.

Consider an equation $P(y)=0, y<\mathfrak{v}$ of Newton degree $d:=\operatorname{deg}_{<\mathfrak{v}} P$, with $P_{<d} \neq 0$. Then its principal equalizer is the unique equalizer $\mathfrak{e}_{P, \mathfrak{v}}:=\mathfrak{e}$ with $\operatorname{deg} N\left(P_{\times \mathfrak{e}}\right)=d$.

Lemma EO

Let $P \in \mathbb{T}\{Y\}$ and $i<j$ with $P_{i} \neq 0, P_{j} \neq 0$. Then there exists a unique $\mathfrak{e} \in \mathfrak{T}$ for which $N\left(P_{i, \times \mathfrak{e}}+P_{j, \times \mathfrak{e}}\right)$ is not homogeneous. We call \mathfrak{e} the (i, j)-equalizer for P.
Proof. We first arrange that $P \in \mathbb{R} \llbracket \mathfrak{B}^{\mathbb{R}} \rrbracket\{Y\}$ for a transbasis \mathfrak{B} of level 1 . Without loss of generality, we may assume that $P=P_{i}+P_{j}$.

Lemma EQ

Let $P \in \mathbb{T}\{Y\}$ and $i<j$ with $P_{i} \neq 0, P_{j} \neq 0$. Then there exists a unique $\mathfrak{e} \in \mathfrak{T}$ for which $N\left(P_{i, \times \mathrm{e}}+P_{j, \times \mathrm{e}}\right)$ is not homogeneous. We call e the (i, j)-equalizer for P.
Proof. We first arrange that $P \in \mathbb{R} \llbracket \mathfrak{B}^{\mathbb{R}} \rrbracket\{Y\}$ for a transbasis \mathfrak{B} of level 1 . Without loss of generality, we may assume that $P=P_{i}+P_{j}$.
In a similar way as in the linear case one proves that

- $\mathfrak{m} \in \mathfrak{B}^{\mathbb{R}} \longmapsto \mathfrak{d}\left(P_{k, \times \mathfrak{m}}\right)$ is increasing for any k.
- There exists a unique $\mathfrak{e}(P):=\mathfrak{e} \in \mathfrak{B}^{\mathbb{R}}$ such that $D\left(P_{\times \mathfrak{c}}\right)$ is not homogeneous.

Lemma $E Q$

Let $P \in \mathbb{T}\{Y\}$ and $i<j$ with $P_{i} \neq 0, P_{j} \neq 0$. Then there exists a unique $\mathfrak{e} \in \mathfrak{T}$ for which $N\left(P_{i, \times \mathfrak{e}}+P_{j, \times \mathfrak{e}}\right)$ is not homogeneous. We call \mathfrak{e} the (i, j)-equalizer for P.

Proof. We first arrange that $P \in \mathbb{R} \llbracket \mathfrak{B}^{\mathbb{R}} \rrbracket\{Y\}$ for a transbasis \mathfrak{B} of level 1 . Without loss of generality, we may assume that $P=P_{i}+P_{j}$. In a similar way as in the linear case one proves that

- $\mathfrak{m} \in \mathfrak{B}^{\mathbb{R}} \longmapsto \mathfrak{d}\left(P_{k, \times \mathfrak{m}}\right)$ is increasing for any k.
- There exists a unique $\mathfrak{e}(P):=\mathfrak{e} \in \mathfrak{B}^{\mathbb{R}}$ such that $D\left(P_{\times \mathfrak{e}}\right)$ is not homogeneous. As in the proof of Theorem DNP, one may show that
- wt $D\left(\left(P \uparrow_{l}\right)_{\times e\left(P \uparrow_{l}\right)}\right)$ strictly decreases as a function of $l \in \mathbb{N}$, until stabilization.

Lemma $E Q$

Let $P \in \mathbb{T}\{Y\}$ and $i<j$ with $P_{i} \neq 0, P_{j} \neq 0$. Then there exists a unique $\mathfrak{e} \in \mathfrak{T}$ for which $N\left(P_{i, \times \mathfrak{e}}+P_{j, \times e}\right)$ is not homogeneous. We call e the (i, j)-equalizer for P.

Proof. We first arrange that $P \in \mathbb{R} \llbracket \mathfrak{B}^{\mathbb{R}} \rrbracket\{Y\}$ for a transbasis \mathfrak{B} of level 1 . Without loss of generality, we may assume that $P=P_{i}+P_{j}$. In a similar way as in the linear case one proves that

- $\mathfrak{m} \in \mathfrak{B}^{\mathbb{R}} \longmapsto \mathfrak{d}\left(P_{k, \times \mathfrak{m}}\right)$ is increasing for any k.
- There exists a unique $\mathfrak{e}(P):=\mathfrak{e} \in \mathfrak{B}^{\mathbb{R}}$ such that $D\left(P_{\times \mathfrak{e}}\right)$ is not homogeneous. As in the proof of Theorem DNP, one may show that
- wt $D\left(\left(P \uparrow_{l}\right)_{\times e\left(P \uparrow_{l}\right)}\right)$ strictly decreases as a function of $l \in \mathbb{N}$, until stabilization.

Stabilization occurs when $N\left(\left(P \uparrow_{l}\right)_{\times \mathfrak{e}\left(P \uparrow_{l}\right)}\right)=D\left(\left(P \uparrow_{l}\right)_{\times \mathfrak{e}\left(P \uparrow_{l}\right)}\right)$ and $\mathfrak{e} \uparrow_{l}:=\mathfrak{e}\left(P \uparrow_{l}\right)$.

$$
P=\mathrm{e}^{-\mathrm{e}^{x}} Y^{3}+Y Y^{\prime \prime}-\left(Y^{\prime}\right)^{2}+\mathrm{e}^{-x} Y^{\prime}+\mathrm{e}^{-3 x}
$$

$$
P=\mathrm{e}^{-\mathrm{e}^{x}} Y^{3}+Y Y^{\prime \prime}-\left(Y^{\prime}\right)^{2}+\mathrm{e}^{-x} Y^{\prime}+\mathrm{e}^{-3 x}
$$

$$
\mathfrak{d}\left(P_{1}\right) / \mathfrak{d}\left(P_{2}\right)=\mathrm{e}^{-x}
$$

$$
P=\mathrm{e}^{-\mathrm{e}^{x}} Y^{3}+Y Y^{\prime \prime}-\left(Y^{\prime}\right)^{2}+\mathrm{e}^{-x} Y^{\prime}+\mathrm{e}^{-3 x}
$$

$$
\mathfrak{d}\left(P_{1}\right) / \mathfrak{d}\left(P_{2}\right)=\mathrm{e}^{-x}
$$

$$
P_{x \mathrm{e}^{-x}}=\mathrm{e}^{-3 x} \mathrm{e}^{-\mathrm{e}^{x}} Y^{3}+\mathrm{e}^{-2 x}\left(Y Y^{\prime \prime}-\left(Y^{\prime}\right)^{2}\right)+\mathrm{e}^{-2 x}\left(Y^{\prime}-Y\right)+\mathrm{e}^{-3 x}
$$

$$
P=\mathrm{e}^{-\mathrm{e}^{x}} Y^{3}+Y Y^{\prime \prime}-\left(Y^{\prime}\right)^{2}+\mathrm{e}^{-x} Y^{\prime}+\mathrm{e}^{-3 x}
$$

$\mathfrak{d}\left(P_{1}\right) / \mathfrak{d}\left(P_{2}\right)=\mathrm{e}^{-x}$

$$
P_{x \mathrm{e}^{-x}}=\mathrm{e}^{-3 x} \mathrm{e}^{-\mathrm{e}^{x}} Y^{3}+\mathrm{e}^{-2 x}\left(Y Y^{\prime \prime}-\left(Y^{\prime}\right)^{2}\right)+\mathrm{e}^{-2 x}\left(Y^{\prime}-Y\right)+\mathrm{e}^{-3 x}
$$

$$
P_{x \mathrm{e}^{-x} \uparrow}=\mathrm{e}^{-3 \mathrm{e}^{x}} \mathrm{e}^{-\mathrm{e}^{\mathrm{e}^{x}}} \Upsilon^{3}+\mathrm{e}^{-2 x} \mathrm{e}^{-2 \mathrm{e}^{x}}\left(\Upsilon Y^{\prime \prime}-\left(Y^{\prime}\right)^{2}-\Upsilon Y^{\prime}\right)+\mathrm{e}^{-x} \mathrm{e}^{-2 \mathrm{e}^{x}} \Upsilon^{\prime}-\mathrm{e}^{-2 \mathrm{e}^{x}} \Upsilon+\mathrm{e}^{-3 \mathrm{e}^{x}}
$$

$$
P=\mathrm{e}^{-\mathrm{e}^{x}} Y^{3}+Y Y^{\prime \prime}-\left(Y^{\prime}\right)^{2}+\mathrm{e}^{-x} Y^{\prime}+\mathrm{e}^{-3 x}
$$

$\mathfrak{d}\left(P_{1}\right) / \mathfrak{d}\left(P_{2}\right)=\mathrm{e}^{-x}$

$$
P_{x \mathrm{e}^{-x}}=\mathrm{e}^{-3 x} \mathrm{e}^{-\mathrm{e}^{x}} Y^{3}+\mathrm{e}^{-2 x}\left(Y Y^{\prime \prime}-\left(Y^{\prime}\right)^{2}\right)+\mathrm{e}^{-2 x}\left(Y^{\prime}-Y\right)+\mathrm{e}^{-3 x}
$$

$$
P_{x \mathrm{e}^{-x} \uparrow} \uparrow=\mathrm{e}^{-3 \mathrm{e}^{x}} \mathrm{e}^{-\mathrm{e}^{e^{x}}} Y^{3}+\mathrm{e}^{-2 x} \mathrm{e}^{-2 \mathrm{e}^{x}}\left(Y Y^{\prime \prime}-\left(Y^{\prime}\right)^{2}-Y Y^{\prime}\right)+\mathrm{e}^{-x} \mathrm{e}^{-2 \mathrm{e}^{x}} Y^{\prime}-\mathrm{e}^{-2 \mathrm{e}^{x}} Y+\mathrm{e}^{-3 \mathrm{e}^{x}}
$$

$$
\mathfrak{d}\left(P_{\times \mathrm{e}^{-x} \uparrow_{1}}\right) / \mathfrak{d}\left(P_{\times \mathrm{e}^{-x} \uparrow_{2}}\right)=\mathrm{e}^{2 x}
$$

$$
P=\mathrm{e}^{-\mathrm{e}^{x}} Y^{3}+Y Y^{\prime \prime}-\left(Y^{\prime}\right)^{2}+\mathrm{e}^{-x} Y^{\prime}+\mathrm{e}^{-3 x}
$$

$\mathfrak{d}\left(P_{1}\right) / \mathfrak{d}\left(P_{2}\right)=\mathrm{e}^{-x}$

$$
P_{x e^{-x}}=\mathrm{e}^{-3 x} \mathrm{e}^{-\mathrm{e}^{x}} Y^{3}+\mathrm{e}^{-2 x}\left(Y Y^{\prime \prime}-\left(Y^{\prime}\right)^{2}\right)+\mathrm{e}^{-2 x}\left(Y^{\prime}-Y\right)+\mathrm{e}^{-3 x}
$$

$$
P_{x e^{-x} \uparrow}=\mathrm{e}^{-3 \mathrm{e}^{x}} \mathrm{e}^{-\mathrm{e}^{e^{x}}} Y^{3}+\mathrm{e}^{-2 x} \mathrm{e}^{-2 \mathrm{e}^{x}}\left(Y Y^{\prime \prime}-\left(Y^{\prime}\right)^{2}-Y Y^{\prime}\right)+\mathrm{e}^{-x} \mathrm{e}^{-2 \mathrm{e}^{x}} Y^{\prime}-\mathrm{e}^{-2 \mathrm{e}^{x}} Y+\mathrm{e}^{-3 \mathrm{e}^{x}}
$$

$$
\mathfrak{d}\left(P_{x e^{-x} \hat{1}_{1}}\right) / \mathfrak{d}\left(P_{x e^{-x} \hat{\imath}_{2}}\right)=\mathrm{e}^{2 x}
$$

$$
P_{\mathrm{e}^{-x} \uparrow} \mathrm{e}^{2 x}=P_{\times x^{2} \mathrm{e}^{-x} \uparrow}=\mathrm{e}^{2 x} \mathrm{e}^{-2 \mathrm{e}^{x}}\left(Y Y^{\prime \prime}-\left(Y^{\prime}\right)^{2}-Y Y^{\prime}-2 Y^{2}-Y\right)+\cdots
$$

$$
P=\mathrm{e}^{-\mathrm{e}^{x}} Y^{3}+Y Y^{\prime \prime}-\left(Y^{\prime}\right)^{2}+\mathrm{e}^{-x} Y^{\prime}+\mathrm{e}^{-3 x}
$$

$\mathfrak{d}\left(P_{1}\right) / \mathfrak{d}\left(P_{2}\right)=\mathrm{e}^{-x}$

$$
P_{x \mathrm{e}^{-x}}=\mathrm{e}^{-3 x} \mathrm{e}^{-\mathrm{e}^{x}} Y^{3}+\mathrm{e}^{-2 x}\left(Y Y^{\prime \prime}-\left(Y^{\prime}\right)^{2}\right)+\mathrm{e}^{-2 x}\left(Y^{\prime}-Y\right)+\mathrm{e}^{-3 x}
$$

$$
P_{x \mathrm{e}^{-x} \uparrow} \uparrow=\mathrm{e}^{-3 \mathrm{e}^{x}} \mathrm{e}^{-\mathrm{e}^{\mathrm{e}^{x}}} Y^{3}+\mathrm{e}^{-2 x} \mathrm{e}^{-2 \mathrm{e}^{x}}\left(Y Y^{\prime \prime}-\left(Y^{\prime}\right)^{2}-Y Y^{\prime}\right)+\mathrm{e}^{-x} \mathrm{e}^{-2 \mathrm{e}^{x}} Y^{\prime}-\mathrm{e}^{-2 \mathrm{e}^{x}} Y+\mathrm{e}^{-3 \mathrm{e}^{x}}
$$

$$
\mathfrak{d}\left(P_{\times \mathrm{e}^{-x} \uparrow_{1}}\right) / \mathfrak{d}\left(P_{\times \mathrm{e}^{-x} \uparrow_{2}}\right)=\mathrm{e}^{2 x}
$$

$$
\begin{gathered}
P_{\mathrm{e}^{-x} \uparrow} \uparrow \mathrm{e}^{2 x}=P_{\times x^{2} \mathrm{e}^{-x} \uparrow}=\mathrm{e}^{2 x} \mathrm{e}^{-2 \mathrm{e}^{x}}\left(Y Y^{\prime \prime}-\left(Y^{\prime}\right)^{2}-Y Y^{\prime}-2 Y^{2}-Y\right)+\cdots \\
P_{\times x^{2} \mathrm{e}^{-x} \uparrow \uparrow}=\mathrm{e}^{2 \mathrm{e}^{x}} \mathrm{e}^{-2 \mathrm{e}^{\mathrm{e}^{x}}}\left(-2 Y^{2}-Y-\mathrm{e}^{-x} Y Y^{\prime}+\mathrm{e}^{-2 x}\left(Y Y^{\prime \prime}-\left(Y^{\prime}\right)^{2}-Y Y^{\prime}\right)\right)+\cdots
\end{gathered}
$$

$$
P=\mathrm{e}^{-\mathrm{e}^{x}} Y^{3}+Y Y^{\prime \prime}-\left(Y^{\prime}\right)^{2}+\mathrm{e}^{-x} Y^{\prime}+\mathrm{e}^{-3 x}
$$

$\mathfrak{d}\left(P_{1}\right) / \mathfrak{d}\left(P_{2}\right)=\mathrm{e}^{-x}$

$$
P_{x e^{-x}}=\mathrm{e}^{-3 x} \mathrm{e}^{-\mathrm{e}^{x}} Y^{3}+\mathrm{e}^{-2 x}\left(Y Y^{\prime \prime}-\left(Y^{\prime}\right)^{2}\right)+\mathrm{e}^{-2 x}\left(Y^{\prime}-Y\right)+\mathrm{e}^{-3 x}
$$

$$
P_{x e^{-x} \uparrow} \uparrow=\mathrm{e}^{-3 e^{x}} \mathrm{e}^{-\mathrm{e}^{e^{x}}} Y^{3}+\mathrm{e}^{-2 x} \mathrm{e}^{-2 e^{x}}\left(\Upsilon Y^{\prime \prime}-\left(Y^{\prime}\right)^{2}-\Upsilon Y^{\prime}\right)+\mathrm{e}^{-x} \mathrm{e}^{-2 \mathrm{e}^{x}} Y^{\prime}-\mathrm{e}^{-2 e^{x}} Y+\mathrm{e}^{-3 \mathrm{e}^{x}}
$$

$$
\mathfrak{d}\left(P_{x e^{-x} \uparrow_{1}}\right) / \mathfrak{d}\left(P_{x e^{-x} \uparrow_{2}}\right)=\mathrm{e}^{2 x}
$$

$$
\begin{aligned}
& P_{\times x^{2} \mathrm{e}^{-x} \uparrow} \uparrow=\mathrm{e}^{2 \mathrm{e}^{x}} \mathrm{e}^{-2 \mathrm{e}^{e^{x}}}\left(-2 \Upsilon^{2}-Y-\mathrm{e}^{-x} Y Y^{\prime}+\mathrm{e}^{-2 x}\left(\Upsilon Y^{\prime \prime}-\left(Y^{\prime}\right)^{2}-\Upsilon Y^{\prime}\right)\right)+\cdots \\
& D\left(P_{\times x^{2} e^{-x} \uparrow \uparrow}\right)=-2 Y^{2}-Y \in \mathbb{R}[Y]\left(Y^{\prime}\right)^{\mathbb{N}}
\end{aligned}
$$

$$
P=\mathrm{e}^{-\mathrm{e}^{x}} Y^{3}+Y Y^{\prime \prime}-\left(Y^{\prime}\right)^{2}+\mathrm{e}^{-x} Y^{\prime}+\mathrm{e}^{-3 x}
$$

$\mathfrak{d}\left(P_{1}\right) / \mathfrak{d}\left(P_{2}\right)=\mathrm{e}^{-x}$

$$
P_{x \mathrm{e}^{-x}}=\mathrm{e}^{-3 x} \mathrm{e}^{-\mathrm{e}^{x}} Y^{3}+\mathrm{e}^{-2 x}\left(Y Y^{\prime \prime}-\left(Y^{\prime}\right)^{2}\right)+\mathrm{e}^{-2 x}\left(Y^{\prime}-Y\right)+\mathrm{e}^{-3 x}
$$

$$
P_{x e^{-x} \uparrow} \uparrow=\mathrm{e}^{-3 e^{x}} \mathrm{e}^{-\mathrm{e}^{e^{x}}} Y^{3}+\mathrm{e}^{-2 x} \mathrm{e}^{-2 e^{x}}\left(\Upsilon Y^{\prime \prime}-\left(Y^{\prime}\right)^{2}-\Upsilon Y^{\prime}\right)+\mathrm{e}^{-x} \mathrm{e}^{-2 \mathrm{e}^{x}} Y^{\prime}-\mathrm{e}^{-2 e^{x}} Y+\mathrm{e}^{-3 \mathrm{e}^{x}}
$$

$$
\mathfrak{d}\left(P_{x e^{-x} \uparrow_{1}}\right) / \mathfrak{d}\left(P_{x e^{-x} \uparrow_{2}}\right)=\mathrm{e}^{2 x}
$$

$$
\begin{gathered}
P_{\mathrm{e}^{-x} \uparrow \times \mathrm{e}^{2 x}}=P_{\times x^{2}-x \uparrow}=\mathrm{e}^{2 x} \mathrm{e}^{-2 \mathrm{e}^{x}}\left(Y Y^{\prime \prime}-\left(Y^{\prime}\right)^{2}-Y Y^{\prime}-2 Y^{2}-Y\right)+\cdots \\
P_{\times x^{2} \mathrm{e}^{-x} \uparrow \uparrow}=\mathrm{e}^{2 e^{x}} \mathrm{e}^{-2 \mathrm{e}^{e^{x}}}\left(-2 Y^{2}-Y-\mathrm{e}^{-x} \Upsilon Y^{\prime}+\mathrm{e}^{-2 x}\left(Y Y^{\prime \prime}-\left(Y^{\prime}\right)^{2}-\Upsilon Y^{\prime}\right)\right)+\cdots \\
D\left(P_{\left.\times x^{2} \mathrm{e}^{-x} \uparrow \uparrow\right)=-2 Y^{2}-Y \in \mathbb{R}[Y]\left(Y^{\prime}\right)^{\mathrm{N}}}^{\mathfrak{e}=x^{2} \mathrm{e}^{-x} .}\right.
\end{gathered}
$$

Differential starting monomials

Let $P \in \mathbb{T}\{Y\}$ be homogeneous of degree d and of order r.

Let $P \in \mathbb{T}\{Y\}$ be homogeneous of degree d and of order r. Then there exists a unique Riccati polynomial $R_{P} \in \mathbb{T}\{W\}$ of order $r-1$ with

$$
P(y)=y^{d} R_{P}\left(y^{\dagger}\right) .
$$

Let $P \in \mathbb{T}\{Y\}$ be homogeneous of degree d and of order r. Then there exists a unique Riccati polynomial $R_{P} \in \mathbb{T}\{W\}$ of order $r-1$ with

$$
P(y)=y^{d} R_{P}\left(y^{\dagger}\right) .
$$

Assume that $R_{P}(w)=0$.

Let $P \in \mathbb{T}\{Y\}$ be homogeneous of degree d and of order r. Then there exists a unique Riccati polynomial $R_{P} \in \mathbb{T}\{W\}$ of order $r-1$ with

$$
P(y)=y^{d} R_{P}\left(y^{\dagger}\right) .
$$

Assume that $R_{P}(w)=0$. Then $P(y)=0$ for

$$
y=\mathrm{e}^{\int w}=\mathrm{e}^{\left(\int w\right)>} \mathrm{e}^{\left(\int w\right)<}=\mathrm{e}^{\int w_{>\gamma}} \mathrm{e}^{\int w_{\gamma \gamma},} \quad \gamma:=\frac{1}{x \log x \log _{2} x \cdots} .
$$

Let $P \in \mathbb{T}\{Y\}$ be homogeneous of degree d and of order r. Then there exists a unique Riccati polynomial $R_{P} \in \mathbb{T}\{W\}$ of order $r-1$ with

$$
P(y)=y^{d} R_{P}\left(y^{\dagger}\right) .
$$

Assume that $R_{P}(w)=0$. Then $P(y)=0$ for

$$
y=\mathrm{e}^{\int w}=\mathrm{e}^{\left(\int w\right)>} \mathrm{e}^{\left(\int w\right)<}=\mathrm{e}^{\int w_{>\gamma}} \mathrm{e}^{\int w_{<\gamma}}, \quad \gamma:=\frac{1}{x \log x \log _{2} x \cdots} .
$$

In particular, $\mathfrak{d}_{y}=\mathrm{e}^{\int w_{\chi \gamma}}$.

Let $P \in \mathbb{T}\{Y\}$ be homogeneous of degree d and of order r.
Then there exists a unique Riccati polynomial $R_{P} \in \mathbb{T}\{W\}$ of order $r-1$ with

$$
P(y)=y^{d} R_{P}\left(y^{\dagger}\right) .
$$

Assume that $R_{P}(w)=0$. Then $P(y)=0$ for

$$
y=\mathrm{e}^{\int w}=\mathrm{e}^{\left(\int w\right)>} \mathrm{e}^{\left(\int w\right)<}=\mathrm{e}^{\int w_{>\gamma}} \mathrm{e}^{\int w_{<\gamma}}, \quad \gamma:=\frac{1}{x \log x \log _{2} x \cdots} .
$$

In particular, $\mathfrak{d}_{y}=\mathrm{e}^{\int w_{\chi \gamma}}$.

- Determining starting monomials for $P(y)=0 \Longleftrightarrow$ Solving R_{P} modulo $O(\gamma)$.

Let $P \in \mathbb{T}\{Y\}$ be homogeneous of degree d and of order r.
Then there exists a unique Riccati polynomial $R_{P} \in \mathbb{T}\{W\}$ of order $r-1$ with

$$
P(y)=y^{d} R_{P}\left(y^{\dagger}\right) .
$$

Assume that $R_{P}(w)=0$. Then $P(y)=0$ for

$$
y=\mathrm{e}^{\int w}=\mathrm{e}^{\left.\left(\int w\right)\right\rangle} \mathrm{e}^{\left(\int w\right)<}=\mathrm{e}^{\int w_{\searrow \gamma \gamma}} \mathrm{e}^{\int w_{<\gamma}}, \quad \gamma:=\frac{1}{x \log x \log _{2} x \cdots} .
$$

In particular, $\mathfrak{d}_{y}=\mathrm{e}^{\int w_{>}}$.

- Determining starting monomials for $P(y)=0 \Longleftrightarrow$ Solving R_{P} modulo $O(\gamma)$.

Proposition

$\mathfrak{m} \in \mathfrak{T}$ is a starting monomial for $P(y)=0$ if and only if $\operatorname{deg}_{<\gamma} R_{P}>0$.

Quasi-linear equations

Let $Q \in \mathbb{T}\{Y\}$ and $\mathfrak{m} \in \mathfrak{T}$. We say that

$$
Q(y)=0, \quad y<\mathfrak{m}
$$

is quasi-linear if $\operatorname{deg}_{<\mathrm{m}} Q=1$.

Quasi-linear equations

Let $Q \in \mathbb{T}\{Y\}$ and $\mathfrak{m} \in \mathfrak{T}$. We say that

$$
Q(y)=0, \quad y \prec \mathfrak{m}
$$

is quasi-linear if $\operatorname{deg}_{<m} Q=1$.

Theorem

Any quasi-linear equation as above has a solution in \mathbb{T}.
Moreover, there exists a unique solution such that $y_{0(\tilde{y}-y)}=0$ for any other solution \tilde{y}; this is called the distinguished solution.

Quasi-linear equations - the steep case

Lemma

Let $\mathfrak{B}=\left(\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n}\right)$ be of level 1 and $Q \in \mathbb{R} \llbracket \mathfrak{B}^{\mathbb{R}} \rrbracket\{Y\}$ of order r and degree d. Assume that $Q-Q_{1}<\mathfrak{b}_{n}^{-\eta} Q_{1}$ for some $\eta \in \mathbb{R}^{>0}$.
Then $Q(y)=0, y<1$ has a solution in $\mathbb{R} \llbracket x^{\mathbb{N}} \mathfrak{B}^{\mathbb{R}} \rrbracket$.

Lemma

Let $\mathfrak{B}=\left(\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n}\right)$ be of level 1 and $Q \in \mathbb{R} \llbracket \mathfrak{B}^{\mathbb{R}} \rrbracket\{Y\}$ of order r and degree d. Assume that $Q-Q_{1}<\mathfrak{b}_{n}^{-\eta} Q_{1}$ for some $\eta \in \mathbb{R}^{>0}$.
Then $Q(y)=0, y<1$ has a solution in $\mathbb{R} \llbracket x^{\mathbb{N}} \mathfrak{B}^{\mathbb{R}} \rrbracket$.
Proof. Let $R:=Q_{\neq 1}:=Q-Q_{1}$ and $L \in \mathbb{T}[\partial]$ be such that $Q_{1}=L Y$. We want to solve

$$
L y=R(y), \quad y<1
$$

Quasi-linear equations - the steep case

Lemma

Let $\mathfrak{B}=\left(\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n}\right)$ be of level 1 and $Q \in \mathbb{R} \llbracket \mathfrak{B}^{\mathbb{R}} \rrbracket\{Y\}$ of order r and degree d. Assume that $Q-Q_{1}<\mathfrak{b}_{n}^{-\eta} Q_{1}$ for some $\eta \in \mathbb{R}^{>0}$.
Then $Q(y)=0, y<1$ has a solution in $\mathbb{R} \llbracket x^{\mathbb{N}} \mathfrak{B}^{\mathbb{R}} \rrbracket$.
Proof. Let $R:=Q_{\neq 1}:=Q-Q_{1}$ and $L \in \mathbb{T}[\partial]$ be such that $Q_{1}=L Y$. We want to solve

$$
L y=R(y), \quad y<1
$$

We may arrange $L \asymp 1$ and $R<\mathfrak{b}_{n}^{-\eta}$.

Quasi-linear equations - the steep case

Lemma

Let $\mathfrak{B}=\left(\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n}\right)$ be of level 1 and $Q \in \mathbb{R} \llbracket \mathfrak{B}^{\mathbb{R}} \rrbracket\{Y\}$ of order r and degree d. Assume that $Q-Q_{1}<\mathfrak{b}_{n}^{-\eta} Q_{1}$ for some $\eta \in \mathbb{R}^{>0}$.
Then $Q(y)=0, y<1$ has a solution in $\mathbb{R} \llbracket x^{\mathbb{N}} \mathfrak{B}^{\mathbb{R}} \rrbracket$.
Proof. Let $R:=Q_{\neq 1}:=Q-Q_{1}$ and $L \in \mathbb{T}[\partial]$ be such that $Q_{1}=L Y$. We want to solve

$$
L y=R(y), \quad y<1
$$

We may arrange $L \asymp 1$ and $R<\mathfrak{b}_{n}^{-\eta}$.
By Lesson 6, the set $\mathfrak{G}:=\operatorname{supp}_{*} L^{-1}$ is grid-based and $\mathfrak{S} \leqslant \mathfrak{w}$ for some $\mathfrak{w} \ll \mathfrak{b}_{n}$.

Quasi-linear equations - the steep case

Lemma

Let $\mathfrak{B}=\left(\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n}\right)$ be of level 1 and $Q \in \mathbb{R} \llbracket \mathfrak{B}^{\mathbb{R}} \rrbracket\{Y\}$ of order r and degree d. Assume that $Q-Q_{1}<\mathfrak{b}_{n}^{-\eta} Q_{1}$ for some $\eta \in \mathbb{R}^{>0}$.
Then $Q(y)=0, y<1$ has a solution in $\mathbb{R} \llbracket x^{\mathbb{N}} \mathfrak{B}^{\mathbb{R}} \rrbracket$.
Proof. Let $R:=Q_{\neq 1}:=Q-Q_{1}$ and $L \in \mathbb{T}[\partial]$ be such that $Q_{1}=L Y$. We want to solve

$$
L y=R(y), \quad y<1
$$

We may arrange $L \asymp 1$ and $R<\mathfrak{b}_{n}^{-\eta}$.
By Lesson 6, the set $\mathfrak{G}:=\operatorname{supp}_{*} L^{-1}$ is grid-based and $\mathfrak{S} \leqslant \mathfrak{w}$ for some $\mathfrak{w} \ll \mathfrak{b}_{n}$. Let $\mathfrak{V}:=\{1\} \cup \operatorname{supp}_{*} \partial \cup \cdots \cup \operatorname{supp}_{*} \partial^{r}$ and $\mathfrak{W}:=(\operatorname{supp} R)\left(\{1\} \cup \mathfrak{V} \cup \cdots \cup \mathfrak{V}^{d}\right)$.

Quasi-linear equations - the steep case

Lemma

Let $\mathfrak{B}=\left(\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n}\right)$ be of level 1 and $Q \in \mathbb{R} \llbracket \mathfrak{B}^{\mathbb{R}} \rrbracket\{Y\}$ of order r and degree d. Assume that $Q-Q_{1}<\mathfrak{b}_{n}^{-\eta} Q_{1}$ for some $\eta \in \mathbb{R}^{>0}$.
Then $Q(y)=0, y<1$ has a solution in $\mathbb{R} \llbracket x^{\mathbb{N}} \mathfrak{B}^{\mathbb{R}} \rrbracket$.
Proof. Let $R:=Q_{\neq 1}:=Q-Q_{1}$ and $L \in \mathbb{T}[\partial]$ be such that $Q_{1}=L Y$. We want to solve

$$
L y=R(y), \quad y<1
$$

We may arrange $L \asymp 1$ and $R<\mathfrak{b}_{n}^{-\eta}$.
By Lesson 6, the set $\mathfrak{G}:=\operatorname{supp}_{*} L^{-1}$ is grid-based and $\mathfrak{S} \leqslant \mathfrak{w}$ for some $\mathfrak{w} \ll \mathfrak{b}_{n}$. Let $\mathfrak{V}:=\{1\} \cup \operatorname{supp}_{*} \partial \cup \cdots \cup \operatorname{supp}_{*} \partial^{r}$ and $\mathfrak{W}:=(\operatorname{supp} R)\left(\{1\} \cup \mathfrak{V} \cup \cdots \cup \mathfrak{V}^{d}\right)$. We have $\mathfrak{G} \mathfrak{W}<\mathfrak{b}_{n}^{-\eta / 2}$, so $\mathfrak{S}:=\mathfrak{G} \mathfrak{W}(\mathfrak{G} \mathfrak{W})^{*}$ is grid-based.

Quasi-linear equations - the steep case

Lemma

Let $\mathfrak{B}=\left(\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n}\right)$ be of level 1 and $Q \in \mathbb{R} \llbracket \mathfrak{B}^{\mathbb{R}} \rrbracket\{Y\}$ of order r and degree d. Assume that $Q-Q_{1}<\mathfrak{b}_{n}^{-\eta} Q_{1}$ for some $\eta \in \mathbb{R}^{>0}$.
Then $Q(y)=0, y<1$ has a solution in $\mathbb{R} \llbracket x^{\mathbb{N}} \mathfrak{B}^{\mathbb{R}} \rrbracket$.
Proof. Let $R:=Q_{\neq 1}:=Q-Q_{1}$ and $L \in \mathbb{T}[\partial]$ be such that $Q_{1}=L Y$. We want to solve

$$
L y=R(y), \quad y<1
$$

We may arrange $L \asymp 1$ and $R<\mathfrak{b}_{n}^{-\eta}$.
By Lesson 6, the set $\mathfrak{G}:=\operatorname{supp}_{*} L^{-1}$ is grid-based and $\mathfrak{S} \leqslant \mathfrak{w}$ for some $\mathfrak{w} \ll \mathfrak{b}_{n}$. Let $\mathfrak{V}:=\{1\} \cup \operatorname{supp}_{*} \partial \cup \cdots \cup \operatorname{supp}_{*} \partial^{r}$ and $\mathfrak{W}:=(\operatorname{supp} R)\left(\{1\} \cup \mathfrak{V} \cup \cdots \cup \mathfrak{V}^{d}\right)$. We have $\mathfrak{G} \mathfrak{W}<\mathfrak{b}_{n}^{-\eta / 2}$, so $\mathfrak{S}:=\mathfrak{G} \mathfrak{W}(\mathfrak{G} \mathfrak{W})^{*}$ is grid-based. Now $0, L^{-1} R(0), L^{-1} R\left(L^{-1} R(0)\right), \ldots$ converges to a solution with supp $y \subseteq \subseteq$.

Quasi-linear equations - continued

Lemma

Let $\mathfrak{B}=\left(\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n}\right)$ be of level 1 and $Q \in \mathbb{R} \llbracket \mathfrak{B}^{\mathbb{R}} \rrbracket\{Y\}$ with $Q-Q_{1} \prec Q_{1}$.
Then $Q(y)=0, y<1$ has a solution in $\mathbb{R} \llbracket\left(\log _{k} x\right)^{\mathbb{R}} \cdots x^{\mathbb{R}} \mathfrak{B}^{\mathbb{R}} \rrbracket$ for some $k \in \mathbb{N}$.

Quasi-linear equations - continued

Lemma

Let $\mathfrak{B}=\left(\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n}\right)$ be of level 1 and $Q \in \mathbb{R} \llbracket \mathfrak{B}^{\mathbb{R}} \rrbracket\{Y\}$ with $Q-Q_{1} \prec Q_{1}$.
Then $Q(y)=0, y<1$ has a solution in $\mathbb{R} \llbracket\left(\log _{k} x\right)^{\mathbb{R}} \cdots x^{\mathbb{R}} \mathfrak{B}^{\mathbb{R}} \rrbracket$ for some $k \in \mathbb{N}$.
Proof. Without loss of generality, we may assume that $Q \asymp 1$.

Lemma

Let $\mathfrak{B}=\left(\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n}\right)$ be of level 1 and $Q \in \mathbb{R} \llbracket \mathfrak{B}^{\mathbb{R}} \mathbb{I}\{Y\}$ with $Q-Q_{1}<Q_{1}$.
Then $Q(y)=0, y<1$ has a solution in $\mathbb{R} \llbracket\left(\log _{k} x\right)^{\mathbb{R}} \cdots x^{\mathbb{R}} \mathfrak{B}^{\mathbb{R}} \mathbb{I}$ for some $k \in \mathbb{N}$.
Proof. Without loss of generality, we may assume that $Q=1$.
We prove the result by induction on n. For $n=1$ we are done by what precedes.

Lemma

Let $\mathfrak{B}=\left(\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n}\right)$ be of level 1 and $Q \in \mathbb{R} \llbracket \mathfrak{B}^{\mathbb{R}} \mathbb{I}\{Y\}$ with $Q-Q_{1}<Q_{1}$.
Then $Q(y)=0, y<1$ has a solution in $\mathbb{R} \llbracket\left(\log _{k} x\right)^{\mathbb{R}} \cdots x^{\mathbb{R}} \mathfrak{B}^{\mathbb{R}} \rrbracket$ for some $k \in \mathbb{N}$.
Proof. Without loss of generality, we may assume that $Q=1$.
We prove the result by induction on n. For $n=1$ we are done by what precedes. Let $Q^{\#} \in \mathbb{R} \llbracket \mathfrak{b}_{1} ; \ldots ; \mathfrak{b}_{n-1} \rrbracket\{Y\}$ be the dominant coefficient of Q as a series in \mathfrak{b}_{n}^{-1}.

Lemma

Let $\mathfrak{B}=\left(\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n}\right)$ be of level 1 and $Q \in \mathbb{R} \llbracket \mathfrak{B}^{\mathbb{R}} \mathbb{I}\{Y\}$ with $Q-Q_{1}<Q_{1}$.
Then $Q(y)=0, y<1$ has a solution in $\mathbb{R} \llbracket\left(\log _{k} x\right)^{\mathbb{R}} \cdots x^{\mathbb{R}} \mathfrak{B}^{\mathbb{R}} \rrbracket$ for some $k \in \mathbb{N}$.
Proof. Without loss of generality, we may assume that $Q=1$.
We prove the result by induction on n. For $n=1$ we are done by what precedes. Let $Q^{\#} \in \mathbb{R} \llbracket \mathfrak{b}_{1} ; \ldots ; \mathfrak{b}_{n-1} \mathbb{\|}\{Y\}$ be the dominant coefficient of Q as a series in \mathfrak{b}_{n}^{-1}. Induction hypothesis $\leadsto k \in \mathbb{N}, y^{\#} \in \mathbb{R} \mathbb{I}\left(\log _{k-1} x\right)^{\mathbb{N}} \cdots x^{\mathbb{N}} \mathfrak{B}^{\mathbb{R}} \mathbb{I}^{<1}$ with $Q^{\sharp}\left(y^{\sharp}\right)=0$.

Quasi-linear equations - continued

Lemma

Let $\mathfrak{B}=\left(\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n}\right)$ be of level 1 and $Q \in \mathbb{R} \llbracket \mathfrak{B}^{\mathbb{R}} \rrbracket\{Y\}$ with $Q-Q_{1}<Q_{1}$.
Then $Q(y)=0, y<1$ has a solution in $\mathbb{R} \llbracket\left(\log _{k} x\right)^{\mathbb{R}} \cdots x^{\mathbb{R}} \mathfrak{B}^{\mathbb{R}} \rrbracket$ for some $k \in \mathbb{N}$.
Proof. Without loss of generality, we may assume that $Q \asymp 1$.
We prove the result by induction on n. For $n=1$ we are done by what precedes. Let $Q^{\#} \in \mathbb{R} \llbracket \mathfrak{b}_{1} ; \ldots ; \mathfrak{b}_{n-1} \rrbracket\{Y\}$ be the dominant coefficient of Q as a series in \mathfrak{b}_{n}^{-1}. Induction hypothesis $\left.\leadsto k \in \mathbb{N}, y^{\#} \in \mathbb{R} \llbracket\left(\log _{k-1} x\right)^{\mathbb{N}} \cdots x^{\mathbb{N}} \mathfrak{B}^{\mathbb{R}}\right]^{<1}$ with $Q^{\#}\left(y^{\#}\right)=0$. For some small $\eta>0$, we then have $Q_{+y^{\sharp}, 0}<\mathfrak{b}_{n}^{-3 \eta}$ and $Q_{+y^{\sharp}, \times \mathfrak{b}_{n}^{-\eta}, \neq 1}<\mathfrak{b}_{n}^{-\eta} Q_{+y^{\sharp}, \times \mathfrak{b}_{n}^{-\eta}}$.

Quasi-linear equations - continued

Lemma

Let $\mathfrak{B}=\left(\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n}\right)$ be of level 1 and $Q \in \mathbb{R} \llbracket \mathfrak{B}^{\mathbb{R}} \rrbracket\{Y\}$ with $Q-Q_{1}<Q_{1}$.
Then $Q(y)=0, y<1$ has a solution in $\mathbb{R} \llbracket\left(\log _{k} x\right)^{\mathbb{R}} \cdots x^{\mathbb{R}} \mathfrak{B}^{\mathbb{R}} \rrbracket$ for some $k \in \mathbb{N}$.
Proof. Without loss of generality, we may assume that $Q \asymp 1$.
We prove the result by induction on n. For $n=1$ we are done by what precedes. Let $Q^{\#} \in \mathbb{R} \llbracket \mathfrak{b}_{1} ; \ldots ; \mathfrak{b}_{n-1} \rrbracket\{Y\}$ be the dominant coefficient of Q as a series in \mathfrak{b}_{n}^{-1}. Induction hypothesis $\left.\leadsto k \in \mathbb{N}, y^{\#} \in \mathbb{R} \llbracket\left(\log _{k-1} x\right)^{\mathbb{N}} \cdots x^{\mathbb{N}} \mathfrak{B}^{\mathbb{R}}\right]^{<1}$ with $Q^{\#}\left(y^{\#}\right)=0$. For some small $\eta>0$, we then have $Q_{+y^{\sharp}, 0}<\mathfrak{b}_{n}^{-3 \eta}$ and $Q_{+y^{\sharp}, \times \mathfrak{b}_{n}^{-\eta}, \neq 1}<\mathfrak{b}_{n}^{-\eta} Q_{+y^{\sharp}, \times \mathfrak{b}_{n}^{-\eta}}$. Now apply the previous lemma $Q_{+y^{\sharp}, \times \mathfrak{b}_{n}^{-n} \uparrow_{k}}$ and $\left(\mathrm{e}^{x}, \ldots, \exp _{k} x, \mathfrak{b}_{1} \uparrow_{k}, \ldots, \mathfrak{b}_{n} \uparrow_{k}\right)$.

Quasi-linear equations - continued

Lemma

Let $\mathfrak{B}=\left(\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n}\right)$ be of level 1 and $Q \in \mathbb{R} \llbracket \mathfrak{B}^{\mathbb{R}} \rrbracket\{Y\}$ with $Q-Q_{1}<Q_{1}$.
Then $Q(y)=0, y<1$ has a solution in $\mathbb{R} \llbracket\left(\log _{k} x\right)^{\mathbb{R}} \cdots x^{\mathbb{R}} \mathfrak{B}^{\mathbb{R}} \rrbracket$ for some $k \in \mathbb{N}$.
Proof. Without loss of generality, we may assume that $Q \asymp 1$.
We prove the result by induction on n. For $n=1$ we are done by what precedes. Let $Q^{\#} \in \mathbb{R} \llbracket \mathfrak{b}_{1} ; \ldots ; \mathfrak{b}_{n-1} \rrbracket\{Y\}$ be the dominant coefficient of Q as a series in \mathfrak{b}_{n}^{-1}. Induction hypothesis $\left.\leadsto k \in \mathbb{N}, y^{\#} \in \mathbb{R} \llbracket\left(\log _{k-1} x\right)^{\mathbb{N}} \cdots x^{\mathbb{N}} \mathfrak{B}^{\mathbb{R}}\right]^{<1}$ with $Q^{\#}\left(y^{\#}\right)=0$. For some small $\eta>0$, we then have $Q_{+y^{\sharp}, 0}<\mathfrak{b}_{n}^{-3 \eta}$ and $Q_{+y^{\sharp}, \times \mathfrak{b}_{n}^{-\eta}, \neq 1}<\mathfrak{b}_{n}^{-\eta} Q_{+y^{\sharp}, \times \mathfrak{b}_{n}^{-\eta}}$. Now apply the previous lemma $Q_{+y^{\sharp}, \times \mathfrak{b}_{n}^{-n} \uparrow_{k}}$ and $\left(\mathrm{e}^{x}, \ldots, \exp _{k} x, \mathfrak{b}_{1} \uparrow_{k}, \ldots, \mathfrak{b}_{n} \uparrow_{k}\right)$. This yields $\left.u \in \mathbb{R} \llbracket x ; \ldots ; \exp _{k} x ; \mathfrak{b}_{1} \uparrow_{k} ; \ldots ; \mathfrak{b}_{n} \uparrow_{k}\right]^{<1}$ with $Q_{+y^{\sharp}, \times \mathfrak{b}_{n}^{-1} \uparrow_{k}}(u)=0$.

Quasi-linear equations - continued

Lemma

Let $\mathfrak{B}=\left(\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n}\right)$ be of level 1 and $Q \in \mathbb{R} \llbracket \mathfrak{B}^{\mathbb{R}} \rrbracket\{Y\}$ with $Q-Q_{1}<Q_{1}$.
Then $Q(y)=0, y<1$ has a solution in $\mathbb{R} \llbracket\left(\log _{k} x\right)^{\mathbb{R}} \cdots x^{\mathbb{R}} \mathfrak{B}^{\mathbb{R}} \rrbracket$ for some $k \in \mathbb{N}$.
Proof. Without loss of generality, we may assume that $Q \asymp 1$.
We prove the result by induction on n. For $n=1$ we are done by what precedes. Let $Q^{\#} \in \mathbb{R} \llbracket \mathfrak{b}_{1} ; \ldots ; \mathfrak{b}_{n-1} \rrbracket\{Y\}$ be the dominant coefficient of Q as a series in \mathfrak{b}_{n}^{-1}. Induction hypothesis $\left.\sim k \in \mathbb{N}, y^{\#} \in \mathbb{R} \llbracket\left(\log _{k-1} x\right)^{\mathbb{N}} \cdots x^{\mathbb{N}} \mathfrak{B}^{\mathbb{R}}\right]^{<1}$ with $Q^{\#}\left(y^{\#}\right)=0$. For some small $\eta>0$, we then have $Q_{+y^{\sharp}, 0}<\mathfrak{b}_{n}^{-3 \eta}$ and $Q_{+y^{\sharp}, \times \mathfrak{b}_{n}^{-\eta}, \neq 1}<\mathfrak{b}_{n}^{-\eta} Q_{+y^{\sharp}, \times \mathfrak{b}_{n}^{-\eta}}$. Now apply the previous lemma $Q_{+y^{\sharp}, \times \mathfrak{b}_{n}^{-n} \uparrow_{k}}$ and $\left(\mathrm{e}^{x}, \ldots, \exp _{k} x, \mathfrak{b}_{1} \uparrow_{k}, \ldots, \mathfrak{b}_{n} \uparrow_{k}\right)$. This yields $\left.u \in \mathbb{R} \llbracket x ; \ldots ; \exp _{k} x ; \mathfrak{b}_{1} \uparrow_{k} ; \ldots ; \mathfrak{b}_{n} \uparrow_{k}\right]^{<1}$ with $Q_{+y^{\sharp}, \times \mathfrak{b}_{n}^{-\eta} \uparrow_{k}}(u)=0$. Then $y:=y^{\#}+\left(u \downarrow_{k}\right) \mathfrak{b}_{n}^{-\eta}$ fulfills the requirements.

Distinguished solutions

Theorem

Any quasi-linear equation $Q(y)=0, y<1$ has a solution in \mathbb{T}.
Moreover, there exists a unique solution such that $y_{\mathfrak{0}(\tilde{y}-y)}=0$ for any other solution \tilde{y}; this is called the distinguished solution.

Theorem

Any quasi-linear equation $Q(y)=0, y<1$ has a solution in \mathbb{T}.
Moreover, there exists a unique solution such that $y_{\mathfrak{0}(\tilde{y}-y)}=0$ for any other solution \tilde{y}; this is called the distinguished solution.

Proof. Let $\mathscr{Y}=\left\{y \in \mathbb{T}^{<1}: Q(y)=0\right\}$. Previous lemma + upward shifting $\Longrightarrow \mathscr{Y} \neq \emptyset$.

Theorem

Any quasi-linear equation $Q(y)=0, y<1$ has a solution in \mathbb{T}.
Moreover, there exists a unique solution such that $y_{\mathfrak{0}(\tilde{y}-y)}=0$ for any other solution \tilde{y}; this is called the distinguished solution.

Proof. Let $\mathscr{Y}=\left\{y \in \mathbb{T}^{<1}: Q(y)=0\right\}$. Previous lemma + upward shifting $\Longrightarrow \mathscr{Y} \neq \emptyset$. Uniqueness. If $y, \tilde{y} \in \mathscr{Y}$ with $\tilde{y} \neq y$, then $(\tilde{y}-y)_{\mathfrak{d}(\tilde{y}-y)} \neq 0$, so $\tilde{y}_{\mathfrak{d}(y-\tilde{y})} \neq 0$ or $y_{\mathfrak{d}(\tilde{y}-y)} \neq 0$.

Theorem

Any quasi-linear equation $Q(y)=0, y<1$ has a solution in \mathbb{T}.
Moreover, there exists a unique solution such that $y_{\mathfrak{0}(\tilde{y}-y)}=0$ for any other solution \tilde{y}; this is called the distinguished solution.

Proof. Let $\mathscr{Y}=\left\{y \in \mathbb{T}^{<1}: Q(y)=0\right\}$. Previous lemma + upward shifting $\Longrightarrow \mathscr{Y} \neq \emptyset$. Existence. Let $y, \tilde{y} \in \mathscr{Y}, \tilde{y} \neq y, \mathfrak{v}:=\mathfrak{d}_{\tilde{y}-y}$, and $L Y:=P_{+y, 1}$.

Theorem

Any quasi-linear equation $Q(y)=0, y<1$ has a solution in \mathbb{T}.
Moreover, there exists a unique solution such that $y_{\mathfrak{0}(\tilde{y}-y)}=0$ for any other solution \tilde{y}; this is called the distinguished solution.

Proof. Let $\mathscr{Y}=\left\{y \in \mathbb{T}^{<1}: Q(y)=0\right\}$. Previous lemma + upward shifting $\Longrightarrow \mathscr{Y} \neq \emptyset$.
Existence. Let $y, \tilde{y} \in \mathscr{Y}, \tilde{y} \neq y, \mathfrak{v}:=\mathfrak{d}_{\tilde{y}-y}$, and $L Y:=P_{+y, 1}$.
Claim: $\mathfrak{v} \in \mathfrak{H}_{L}:=\left\{\mathfrak{d}_{h}: h \in \mathbb{T}, L h=0\right\}$.

Theorem

Any quasi-linear equation $Q(y)=0, y<1$ has a solution in \mathbb{T}.
Moreover, there exists a unique solution such that $y_{\mathfrak{0}(\tilde{y}-y)}=0$ for any other solution \tilde{y}; this is called the distinguished solution.

Proof. Let $\mathscr{Y}=\left\{y \in \mathbb{T}^{<1}: Q(y)=0\right\}$. Previous lemma + upward shifting $\Longrightarrow \mathscr{Y} \neq \emptyset$.
Existence. Let $y, \tilde{y} \in \mathscr{Y}, \tilde{y} \neq y, \mathfrak{v}:=\mathfrak{d}_{\tilde{y}-y}$, and $L Y:=P_{+y, 1}$.
Claim: $\mathfrak{v} \in \mathfrak{H}_{L}:=\left\{\mathfrak{d}_{h}: h \in \mathbb{T}, L h=0\right\}$.

Theorem

Any quasi-linear equation $Q(y)=0, y<1$ has a solution in \mathbb{T}.
Moreover, there exists a unique solution such that $y_{0(\tilde{y}-y)}=0$ for any other solution \tilde{y}; this is called the distinguished solution.

Proof. Let $\mathscr{Y}=\left\{y \in \mathbb{T}^{<1}: Q(y)=0\right\}$. Previous lemma + upward shifting $\Longrightarrow \mathscr{Y} \neq \emptyset$.
Existence. Let $y, \tilde{y} \in \mathscr{Y}, \tilde{y} \neq y, \mathfrak{v}:=\mathfrak{d}_{\tilde{y}-y}$, and $L Y:=P_{+y, 1}$.
Claim: $\mathfrak{v} \in \mathfrak{H}_{L}:=\left\{\mathfrak{d}_{h}: h \in \mathbb{T}, L h=0\right\}$.
We have $N\left(P_{+y, \times \mathfrak{v}}\right)=N\left(P_{+y, \leqslant 1, \times \mathfrak{v}}\right) \in \mathbb{R}^{\neq 0}+\mathbb{R}^{\neq 0} Y$.

Distinguished solutions

Theorem

Any quasi-linear equation $Q(y)=0, y<1$ has a solution in \mathbb{T}.
Moreover, there exists a unique solution such that $y_{0(\tilde{y}-y)}=0$ for any other solution \tilde{y}; this is called the distinguished solution.

Proof. Let $\mathscr{Y}=\left\{y \in \mathbb{T}^{<1}: Q(y)=0\right\}$. Previous lemma + upward shifting $\Longrightarrow \mathscr{Y} \neq \emptyset$. Existence. Let $y, \tilde{y} \in \mathscr{Y}, \tilde{y} \neq y, \mathfrak{v}:=\mathfrak{d}_{\tilde{y}-y}$, and $L Y:=P_{+y, 1}$.
Claim: $\mathfrak{v} \in \mathfrak{H}_{L}:=\left\{\mathfrak{d}_{h}: h \in \mathbb{T}, L h=0\right\}$.
We have $N\left(P_{+y, \times \mathfrak{v}}\right)=N\left(P_{+y, \leqslant 1, \times \mathfrak{v}}\right) \in \mathbb{R}^{\neq 0}+\mathbb{R}^{\neq 0} Y$.
Solutions $u \leqslant \mathfrak{v}$ of $P_{+y, \times \mathfrak{v}}(u)=0$ or $P_{+y, \leqslant 1, \times \mathfrak{v}}(u)=0$ have the same dominant term.
Hence $P_{+y, \times \mathfrak{v}}((\tilde{y}-y) \mathfrak{v})=0$ and $P_{+y, \leqslant 1, \times \mathfrak{v}}(\delta)=0$ has a solution $\delta \sim(\tilde{y}-y) / \mathfrak{v}$

Distinguished solutions

Theorem

Any quasi-linear equation $Q(y)=0, y<1$ has a solution in \mathbb{T}.
Moreover, there exists a unique solution such that $y_{0(\tilde{y}-y)}=0$ for any other solution \tilde{y}; this is called the distinguished solution.

Proof. Let $\mathscr{Y}=\left\{y \in \mathbb{T}^{<1}: Q(y)=0\right\}$. Previous lemma + upward shifting $\Longrightarrow \mathscr{Y} \neq \emptyset$.
Existence. Let $y, \tilde{y} \in \mathscr{Y}, \tilde{y} \neq y, \mathfrak{v}:=\mathfrak{d}_{\tilde{y}-y}$, and $L Y:=P_{+y, 1}$.
Claim: $\mathfrak{v} \in \mathfrak{H}_{L}:=\left\{\mathfrak{d}_{h}: h \in \mathbb{T}, L h=0\right\}$.
We have $N\left(P_{+y, \times \mathfrak{v}}\right)=N\left(P_{+y, \leqslant 1, \times \mathfrak{v}}\right) \in \mathbb{R}^{\neq 0}+\mathbb{R}^{\neq 0} Y$.
Solutions $u \leqslant \mathfrak{v}$ of $P_{+y, \times \mathfrak{v}}(u)=0$ or $P_{+y, \leqslant 1, \times \mathfrak{v}}(u)=0$ have the same dominant term. Hence $P_{+y, \times \mathfrak{v}}((\tilde{y}-y) \mathfrak{v})=0$ and $P_{+y, \leqslant 1, \times \mathfrak{v}}(\delta)=0$ has a solution $\delta \sim(\tilde{y}-y) / \mathfrak{v}$
Hence $L h=P_{+y, \leqslant 1}(h)=0$ has a solution $h \sim \tilde{y}-y$.

Theorem

Any quasi-linear equation $Q(y)=0, y<1$ has a solution in \mathbb{T}.
Moreover, there exists a unique solution such that $y_{\mathfrak{0}(\tilde{y}-y)}=0$ for any other solution \tilde{y}; this is called the distinguished solution.

Proof. Let $\mathscr{Y}=\left\{y \in \mathbb{T}^{<1}: Q(y)=0\right\}$. Previous lemma + upward shifting $\Longrightarrow \mathscr{Y} \neq \emptyset$. Existence. Let $y, \tilde{y} \in \mathscr{Y}, \tilde{y} \neq y, \mathfrak{v}:=\mathfrak{d}_{\tilde{y}-y}$, and $L Y:=P_{+y, 1}$. Then $\mathfrak{v} \in \mathfrak{H}_{L}:=\left\{\mathfrak{d}_{h}: h \in \mathbb{T}, L h=0\right\}$.

Theorem

Any quasi-linear equation $Q(y)=0, y<1$ has a solution in \mathbb{T}.
Moreover, there exists a unique solution such that $y_{\mathfrak{0}(\tilde{y}-y)}=0$ for any other solution \tilde{y}; this is called the distinguished solution.

Proof. Let $\mathscr{Y}=\left\{y \in \mathbb{T}^{<1}: Q(y)=0\right\}$. Previous lemma + upward shifting $\Longrightarrow \mathscr{Y} \neq \emptyset$.
Existence. Let $y, \tilde{y} \in \mathscr{Y}, \tilde{y} \neq y, \mathfrak{v}:=\mathfrak{d}_{\tilde{y}-y}$, and $L Y:=P_{+y, 1}$.
Then $\mathfrak{v} \in \mathfrak{H}_{L}:=\left\{\mathfrak{d}_{h}: h \in \mathbb{T}, L h=0\right\}$.
Let $\mathfrak{H}_{y}:=\left\{\mathfrak{d}_{\tilde{y}-y}: \tilde{y} \in \mathscr{Y}\right\} \subseteq \mathfrak{H}_{L}$ with $\left|\mathfrak{H}_{y}\right| \leqslant r$.

Theorem

Any quasi-linear equation $Q(y)=0, y<1$ has a solution in \mathbb{T}.
Moreover, there exists a unique solution such that $y_{0(\tilde{y}-y)}=0$ for any other solution \tilde{y}; this is called the distinguished solution.

Proof. Let $\mathscr{Y}=\left\{y \in \mathbb{T}^{<1}: Q(y)=0\right\}$. Previous lemma + upward shifting $\Longrightarrow \mathscr{Y} \neq \emptyset$.
Existence. Let $y, \tilde{y} \in \mathscr{Y}, \tilde{y} \neq y, \mathfrak{v}:=\mathfrak{d}_{\tilde{y}-y}$, and $L Y:=P_{+y, 1}$.
Then $\mathfrak{v} \in \mathfrak{H}_{L}:=\left\{\mathfrak{d}_{h}: h \in \mathbb{T}, L h=0\right\}$.
Let $\mathfrak{H}_{y}:=\left\{\mathfrak{d}_{\tilde{y}-y}: \tilde{y} \in \mathscr{Y}\right\} \subseteq \mathfrak{H}_{L}$ with $\left|\mathfrak{H}_{y}\right| \leqslant r$.
Let $\mathfrak{H}_{y}^{*}:=\left\{\mathfrak{h} \in \mathfrak{H}_{y}: y_{\mathfrak{h}} \neq 0\right\}$ and $\mathfrak{H}_{y}^{\#}:=\left\{\mathfrak{h} \in \mathfrak{H}_{y}: \mathfrak{h}>\mathfrak{H}_{y}^{*}\right\}$.

Distinguished solutions

Theorem

Any quasi-linear equation $Q(y)=0, y<1$ has a solution in \mathbb{T}.
Moreover, there exists a unique solution such that $y_{0(\tilde{y}-y)}=0$ for any other solution \tilde{y}; this is called the distinguished solution.

Proof. Let $\mathscr{Y}=\left\{y \in \mathbb{T}^{<1}: Q(y)=0\right\}$. Previous lemma + upward shifting $\Longrightarrow \mathscr{Y} \neq \emptyset$.
Existence. Let $y, \tilde{y} \in \mathscr{Y}, \tilde{y} \neq y, \mathfrak{v}:=\mathfrak{d}_{\tilde{y}-y}$, and $L Y:=P_{+y, 1}$.
Then $\mathfrak{v} \in \mathfrak{H}_{L}:=\left\{\mathfrak{d}_{h}: h \in \mathbb{T}, L h=0\right\}$.
Let $\mathfrak{H}_{y}:=\left\{\mathfrak{d}_{\tilde{y}-y}: \tilde{y} \in \mathscr{Y}\right\} \subseteq \mathfrak{H}_{L}$ with $\left|\mathfrak{H}_{y}\right| \leqslant r$.
Let $\mathfrak{H}_{y}^{*}:=\left\{\mathfrak{h} \in \mathfrak{H}_{y}: y_{\mathfrak{h}} \neq 0\right\}$ and $\mathfrak{H}_{y}^{\#}:=\left\{\mathfrak{h} \in \mathfrak{H}_{y}: \mathfrak{h}>\mathfrak{H}_{y}^{*}\right\}$.
If $y \in \mathfrak{H}_{y}^{*}$, let $\tilde{y} \in \mathscr{Y}$ with $\mathfrak{h}:=\mathfrak{d}_{\tilde{y}-y}=\max _{\leqslant} \mathfrak{H}_{y}^{*}$ and $\tilde{y}_{\mathfrak{h}}=0$.

Distinguished solutions

Theorem

Any quasi-linear equation $Q(y)=0, y<1$ has a solution in \mathbb{T}.
Moreover, there exists a unique solution such that $y_{0(\tilde{y}-y)}=0$ for any other solution \tilde{y}; this is called the distinguished solution.

Proof. Let $\mathscr{Y}=\left\{y \in \mathbb{T}^{<1}: Q(y)=0\right\}$. Previous lemma + upward shifting $\Longrightarrow \mathscr{Y} \neq \emptyset$.
Existence. Let $y, \tilde{y} \in \mathscr{Y}, \tilde{y} \neq y, \mathfrak{v}:=\mathfrak{d}_{\tilde{y}-y}$, and $L Y:=P_{+y, 1}$.
Then $\mathfrak{v} \in \mathfrak{H}_{L}:=\left\{\mathfrak{d}_{h}: h \in \mathbb{T}, L h=0\right\}$.
Let $\mathfrak{H}_{y}:=\left\{\mathfrak{d}_{\tilde{y}-y}: \tilde{y} \in \mathscr{Y}\right\} \subseteq \mathfrak{H}_{L}$ with $\left|\mathfrak{H}_{y}\right| \leqslant r$.
Let $\mathfrak{H}_{y}^{*}:=\left\{\mathfrak{h} \in \mathfrak{H}_{y}: y_{\mathfrak{h}} \neq 0\right\}$ and $\mathfrak{H}_{y}^{\#}:=\left\{\mathfrak{h} \in \mathfrak{H}_{y}: \mathfrak{h}>\mathfrak{H}_{y}^{*}\right\}$.
If $y \in \mathfrak{H}_{y}^{*}$, let $\tilde{y} \in \mathscr{Y}$ with $\mathfrak{h}:=\mathfrak{d}_{\tilde{y}-y}=\max _{\leqslant} \mathfrak{H}_{y}^{*}$ and $\tilde{y}_{\mathfrak{h}}=0$. Then $\mathfrak{H}_{\tilde{y}}^{\#} \supseteq \mathfrak{H}_{y}^{\#} \cup\{\mathfrak{h}\}$.

Theorem

Any quasi-linear equation $Q(y)=0, y<1$ has a solution in \mathbb{T}.
Moreover, there exists a unique solution such that $y_{0(\tilde{y}-y)}=0$ for any other solution \tilde{y}; this is called the distinguished solution.

Proof. Let $\mathscr{Y}=\left\{y \in \mathbb{T}^{<1}: Q(y)=0\right\}$. Previous lemma + upward shifting $\Longrightarrow \mathscr{Y} \neq \emptyset$. Existence. Let $y, \tilde{y} \in \mathscr{Y}, \tilde{y} \neq y, \mathfrak{v}:=\mathfrak{d}_{\tilde{y}-y}$, and $L Y:=P_{+y, 1}$.
Then $\mathfrak{v} \in \mathfrak{H}_{L}:=\left\{\mathfrak{d}_{h}: h \in \mathbb{T}, L h=0\right\}$.
Let $\mathfrak{H}_{y}:=\left\{\mathfrak{d}_{\tilde{y}-y}: \tilde{y} \in \mathscr{Y}\right\} \subseteq \mathfrak{H}_{L}$ with $\left|\mathfrak{H}_{y}\right| \leqslant r$.
Let $\mathfrak{H}_{y}^{*}:=\left\{\mathfrak{h} \in \mathfrak{H}_{y}: y_{\mathfrak{h}} \neq 0\right\}$ and $\mathfrak{H}_{y}^{\#}:=\left\{\mathfrak{h} \in \mathfrak{H}_{y}: \mathfrak{h}>\mathfrak{H}_{y}^{*}\right\}$.
If $y \in \mathfrak{H}_{y}^{*}$, let $\tilde{y} \in \mathscr{Y}$ with $\mathfrak{h}:=\mathfrak{d}_{\tilde{y}-y}=\max _{\leqslant} \mathfrak{H}_{y}^{*}$ and $\tilde{y}_{\mathfrak{h}}=0$. Then $\mathfrak{H}_{\tilde{y}}^{\#} \supseteq \mathfrak{H}_{y}^{\#} \cup\{\mathfrak{h}\}$.
Repeating this $k \leqslant r$ times, we find $y, \tilde{y}, \tilde{\tilde{y}}, \ldots, y^{[k]} \in \mathscr{Y}$ with $\mathfrak{H}_{y^{[k]}}^{*}=\emptyset$.

Consider an asymptotic differential equation of Newton degree d

$$
P(y)=0, \quad y<\mathfrak{v} .
$$

Consider an asymptotic differential equation of Newton degree d

$$
P(y)=0, \quad y<\mathfrak{v} .
$$

We say that (\star) is raveled if there exist $c \in \mathbb{R}^{\neq}, \mathfrak{e}<\mathfrak{v}$, and $i<d$ with

$$
N\left(P_{\times \mathrm{c}}\right)=(Y-c)^{d-i}\left(Y^{\prime}\right)^{i} .
$$

Consider an asymptotic differential equation of Newton degree d

$$
P(y)=0, \quad y<\mathfrak{v} .
$$

We say that (*) is raveled if there exist $c \in \mathbb{R}^{\neq}, \mathfrak{e}<\mathfrak{v}$, and $i<d$ with

$$
N\left(P_{\times \mathrm{c}}\right)=(Y-c)^{d-i}\left(Y^{\prime}\right)^{i}
$$

Theorem

Given a raveled equation (*) with val $P<d$, there exist $\varphi<\mathfrak{v}$ and $\tilde{\mathfrak{v}}<\mathfrak{v}$ such that

$$
P_{+\varphi}(\tilde{y})=0, \quad \tilde{y}<\tilde{\mathfrak{v}}
$$

is unraveled and of Newton degree d. We call $(\varphi, \tilde{\mathfrak{v}})$ an unraveler for (\star).

Theorem

Given a raveled equation (\star) with $\operatorname{val} P<d$, there exist $\varphi<\mathfrak{v}$ and $\tilde{\mathfrak{v}}<\mathfrak{v}$ such that

$$
P_{+\varphi}(\tilde{y})=0, \quad \tilde{y}<\tilde{\mathfrak{v}}
$$

is unraveled and of Newton degree d. We call $(\varphi, \tilde{\mathfrak{v}})$ an unraveler for (\star).

Theorem

Given a raveled equation (\star) with $\operatorname{val} P<d$, there exist $\varphi<\mathfrak{v}$ and $\tilde{\mathfrak{v}}<\mathfrak{v}$ such that

$$
P_{+\varphi}(\tilde{y})=0, \quad \tilde{y}<\tilde{\mathfrak{v}}
$$

is unraveled and of Newton degree d. We call $(\varphi, \tilde{\mathfrak{v}})$ an unraveler for (\star).
Sketch of proof. Arrange that $N(P)=(Y-c)^{d-i}\left(Y^{\prime}\right)^{i}$ for $c \in \mathbb{R}^{\neq}, 1<\mathfrak{v}$, and $i<d$.

Theorem

$$
P_{+\varphi}(\tilde{y})=0, \quad \tilde{y}<\tilde{\mathfrak{v}}
$$

is unraveled and of Newton degree d. We call $(\varphi, \tilde{\mathfrak{v}})$ an unraveler for (\star).
Sketch of proof. Arrange that $N(P)=(Y-c)^{d-i}\left(Y^{\prime}\right)^{i}$ for $c \in \mathbb{R}^{\neq}, 1<\mathfrak{v}$, and $i<d$. Let

$$
Q:=\frac{\partial^{d-1} P}{\partial Y^{d-i-1} \partial\left(Y^{\prime}\right)^{i}} \text { if } i<d \quad Q:=\frac{\partial^{d-1} P}{\partial\left(Y^{\prime}\right)^{d-1}} \text { if } i=d
$$

Theorem

$$
P_{+\varphi}(\tilde{y})=0, \quad \tilde{y}<\tilde{\mathfrak{v}}
$$

is unraveled and of Newton degree d. We call $(\varphi, \tilde{\mathfrak{v}})$ an unraveler for (\star).
Sketch of proof. Arrange that $N(P)=(Y-c)^{d-i}\left(Y^{\prime}\right)^{i}$ for $c \in \mathbb{R}^{\neq}, 1<\mathfrak{v}$, and $i<d$. Let

$$
Q:=\frac{\partial^{d-1} P}{\partial Y^{d-i-1} \partial\left(Y^{\prime}\right)^{i}} \text { if } i<d \quad Q:=\frac{\partial^{d-1} P}{\partial\left(Y^{\prime}\right)^{d-1}} \text { if } i=d
$$

Let φ be a solution of $Q(\varphi)=0, \varphi \preccurlyeq 1$ for which $\tilde{\mathfrak{v}}:=\mathfrak{e}_{P_{+\varphi,}}$ is minimal for \prec.

Theorem

Given a raveled equation (\star) with $\operatorname{val} P<d$, there exist $\varphi<\mathfrak{v}$ and $\tilde{\mathfrak{v}}<\mathfrak{v}$ such that

$$
P_{+\varphi}(\tilde{y})=0, \quad \tilde{y}<\tilde{\mathfrak{v}}
$$

is unraveled and of Newton degree d. We call $(\varphi, \tilde{\mathfrak{v}})$ an unraveler for (\star).
Sketch of proof. Arrange that $N(P)=(Y-c)^{d-i}\left(Y^{\prime}\right)^{i}$ for $c \in \mathbb{R}^{\neq}, 1<\mathfrak{v}$, and $i<d$. Let

$$
Q:=\frac{\partial^{d-1} P}{\partial Y^{d-i-1} \partial\left(Y^{\prime}\right)^{i}} \text { if } i<d \quad Q:=\frac{\partial^{d-1} P}{\partial\left(Y^{\prime}\right)^{d-1}} \text { if } i=d
$$

Let φ be a solution of $Q(\varphi)=0, \varphi \preccurlyeq 1$ for which $\tilde{\mathfrak{v}}:=\mathfrak{e}_{P_{+\varphi}, 1}$ is minimal for \prec. Although $(\varphi, \tilde{\mathfrak{v}})$ is not necessarily un unraveller, one may repeat the process.

Theorem

Given a raveled equation (\star) with $\operatorname{val} P<d$, there exist $\varphi<\mathfrak{v}$ and $\tilde{\mathfrak{v}}<\mathfrak{v}$ such that

$$
P_{+\varphi}(\tilde{y})=0, \quad \tilde{y}<\tilde{\mathfrak{v}}
$$

is unraveled and of Newton degree d. We call $(\varphi, \tilde{\mathfrak{v}})$ an unraveler for (\star).
Sketch of proof. Arrange that $N(P)=(Y-c)^{d-i}\left(Y^{\prime}\right)^{i}$ for $c \in \mathbb{R}^{\neq}, 1<\mathfrak{v}$, and $i<d$. Let

$$
Q:=\frac{\partial^{d-1} P}{\partial Y^{d-i-1} \partial\left(Y^{\prime}\right)^{i}} \text { if } i<d \quad Q:=\frac{\partial^{d-1} P}{\partial\left(Y^{\prime}\right)^{d-1}} \text { if } i=d
$$

Let φ be a solution of $Q(\varphi)=0, \varphi \preccurlyeq 1$ for which $\tilde{\mathfrak{v}}:=\mathfrak{e}_{P_{+\varphi}, 1}$ is minimal for \prec. Although $(\varphi, \tilde{\mathfrak{v}})$ is not necessarily un unraveller, one may repeat the process. This yields $(\varphi, \tilde{\mathfrak{v}}),(\tilde{\varphi}, \tilde{\mathfrak{v}}), \ldots$ with $\tilde{\mathfrak{v}} / \mathfrak{v} \gg \tilde{\mathfrak{v}} / \tilde{\mathfrak{v}} \gg \cdots \Longrightarrow$ termination.

Theorem

Given $P \in \mathbb{T}\{Y\}$ and $\mathfrak{v} \in \mathfrak{T}$, consider

$$
\begin{equation*}
P(y)=0, \quad y<\mathfrak{v} . \tag{*}
\end{equation*}
$$

If $\operatorname{deg}_{<0} P$ is odd, then (\star) has a solution in \mathbb{T}.

Theorem

Given $P \in \mathbb{T}\{Y\}$ and $\mathfrak{v} \in \mathfrak{T}$, consider

$$
P(y)=0, \quad y<\mathfrak{v}
$$

If $\operatorname{deg}_{<\mathfrak{v}} P$ is odd, then (\star) has a solution in \mathbb{T}.
Proof. By induction on $\operatorname{deg}_{<\mathfrak{v}} P$.

Theorem

Given $P \in \mathbb{T}\{Y\}$ and $\mathfrak{v} \in \mathfrak{T}$, consider

$$
P(y)=0, \quad y<\mathfrak{v}
$$

If $\operatorname{deg}_{<\mathfrak{v}} P$ is odd, then (\star) has a solution in \mathbb{T}.
Proof. By induction on $\operatorname{deg}_{<\mathfrak{v}} P$.
If $d=1$, then (\star) is quasi-linear, so it has a solution. So assume that $d>1$.

Theorem

Given $P \in \mathbb{T}\{Y\}$ and $\mathfrak{v} \in \mathfrak{T}$, consider

$$
P(y)=0, \quad y<\mathfrak{v}
$$

If $\operatorname{deg}_{<\mathfrak{v}} P$ is odd, then (\star) has a solution in \mathbb{T}.
Proof. By induction on $\operatorname{deg}_{<\mathfrak{v}} P$.
If $d=1$, then (\star) is quasi-linear, so it has a solution. So assume that $d>1$. If $P_{<d}=0$, then $y=0$ is a solution.

Theorem

Given $P \in \mathbb{T}\{Y\}$ and $\mathfrak{v} \in \mathfrak{T}$, consider

$$
P(y)=0, \quad y<\mathfrak{v}
$$

If $\operatorname{deg}_{<\mathfrak{v}} P$ is odd, then (\star) has a solution in \mathbb{T}.
Proof. By induction on $\operatorname{deg}_{<\mathfrak{v}} P$.
If $d=1$, then (\star) is quasi-linear, so it has a solution. So assume that $d>1$. If $P_{<d}=0$, then $y=0$ is a solution.
Otherwise, we unravel (\star) and let $\mathfrak{e}:=\mathfrak{e}_{P, \mathfrak{v}}$.

Theorem

Given $P \in \mathbb{T}\{Y\}$ and $\mathfrak{v} \in \mathfrak{T}$, consider

$$
P(y)=0, \quad y<\mathfrak{v}
$$

If $\operatorname{deg}_{<\mathfrak{v}} P$ is odd, then (\star) has a solution in \mathbb{T}.
Proof. By induction on $\operatorname{deg}_{<\mathfrak{v}} P$.
If $d=1$, then (\star) is quasi-linear, so it has a solution. So assume that $d>1$. If $P_{<d}=0$, then $y=0$ is a solution.
Otherwise, we unravel (\star) and let $\mathfrak{e}:=\mathfrak{e}_{P, \mathfrak{v}}$.
Then $N:=N\left(P_{x_{\mathfrak{e}}}\right)=Q(Y)\left(Y^{\prime}\right)^{i}$ for some $i<d$ and $Q(Y)$ is not a $(d-i)$-th power.

Theorem

Given $P \in \mathbb{T}\{Y\}$ and $\mathfrak{v} \in \mathfrak{T}$, consider

$$
P(y)=0, \quad y<\mathfrak{v}
$$

If $\operatorname{deg}_{<\mathfrak{v}} P$ is odd, then (\star) has a solution in \mathbb{T}.
Proof. By induction on $\operatorname{deg}_{<\mathfrak{v}} P$.
If $d=1$, then (\star) is quasi-linear, so it has a solution. So assume that $d>1$.
If $P_{<d}=0$, then $y=0$ is a solution.
Otherwise, we unravel (\star) and let $\mathfrak{e}:=\mathfrak{e}_{P, \mathfrak{v}}$.
Then $N:=N\left(P_{x_{\mathfrak{e}}}\right)=Q(Y)\left(Y^{\prime}\right)^{i}$ for some $i<d$ and $Q(Y)$ is not a $(d-i)$-th power. If i is odd, then let $c \in \mathbb{R}$ with $Q(c) \neq 0$.

Theorem

Given $P \in \mathbb{T}\{Y\}$ and $\mathfrak{v} \in \mathfrak{T}$, consider

$$
P(y)=0, \quad y<\mathfrak{v}
$$

If $\operatorname{deg}_{<\mathfrak{v}} P$ is odd, then (\star) has a solution in \mathbb{T}.
Proof. By induction on $\operatorname{deg}_{<v} P$.
If $d=1$, then (\star) is quasi-linear, so it has a solution. So assume that $d>1$.
If $P_{<d}=0$, then $y=0$ is a solution.
Otherwise, we unravel (\star) and let $\mathfrak{e}:=\mathfrak{e}_{P, \mathfrak{v}}$.
Then $N:=N\left(P_{\times \mathfrak{e}}\right)=Q(Y)\left(Y^{\prime}\right)^{i}$ for some $i<d$ and $Q(Y)$ is not a $(d-i)$-th power. If i is odd, then let $c \in \mathbb{R}$ with $Q(c) \neq 0$.
Then $\operatorname{deg}_{<\mathfrak{v}} P_{+c \mathfrak{e}}=\operatorname{val}_{\leqslant \mathfrak{v}} P_{+\mathfrak{e}}=i$.

Theorem

Given $P \in \mathbb{T}\{Y\}$ and $\mathfrak{v} \in \mathfrak{T}$, consider

$$
P(y)=0, \quad y<\mathfrak{v}
$$

If $\operatorname{deg}_{<\mathfrak{v}} P$ is odd, then (\star) has a solution in \mathbb{T}.
Proof. By induction on $\operatorname{deg}_{<v} P$.
If $d=1$, then (\star) is quasi-linear, so it has a solution. So assume that $d>1$.
If $P_{<d}=0$, then $y=0$ is a solution.
Otherwise, we unravel (\star) and let $\mathfrak{e}:=\mathfrak{e}_{P, \mathfrak{v}}$.
Then $N:=N\left(P_{\times \mathfrak{e}}\right)=Q(Y)\left(Y^{\prime}\right)^{i}$ for some $i<d$ and $Q(Y)$ is not a $(d-i)$-th power. If i is odd, then let $c \in \mathbb{R}$ with $Q(c) \neq 0$.
Then $\operatorname{deg}_{<\mathfrak{v}} P_{+c \mathfrak{e}}=\operatorname{val}_{\leqslant \mathfrak{v}} P_{+\mathfrak{e}}=i$. We conclude using the induction hypothesis.

Theorem

Given $P \in \mathbb{T}\{Y\}$ and $\mathfrak{v} \in \mathfrak{T}$, consider

$$
P(y)=0, \quad y<\mathfrak{v}
$$

If $\operatorname{deg}_{<\mathfrak{v}} P$ is odd, then (\star) has a solution in \mathbb{T}.
Proof. By induction on $\operatorname{deg}_{<\mathfrak{v}} P$.
If $d=1$, then (\star) is quasi-linear, so it has a solution. So assume that $d>1$.
If $P_{<d}=0$, then $y=0$ is a solution.
Otherwise, we unravel (\star) and let $\mathfrak{e}:=\mathfrak{e}_{P, \mathfrak{v}}$.
Then $N:=N\left(P_{x \mathfrak{e}}\right)=Q(Y)\left(Y^{\prime}\right)^{i}$ for some $i<d$ and $Q(Y)$ is not a $(d-i)$-th power. If i is even, then $\operatorname{deg} Q$ is odd.

Theorem

Given $P \in \mathbb{T}\{Y\}$ and $\mathfrak{v} \in \mathfrak{T}$, consider

$$
P(y)=0, \quad y<\mathfrak{v}
$$

If $\operatorname{deg}_{<\mathfrak{v}} P$ is odd, then (\star) has a solution in \mathbb{T}.
Proof. By induction on $\mathrm{deg}_{<\mathfrak{v}} P$.
If $d=1$, then (\star) is quasi-linear, so it has a solution. So assume that $d>1$.
If $P_{<d}=0$, then $y=0$ is a solution.
Otherwise, we unravel (\star) and let $\mathfrak{e}:=\mathfrak{e}_{P, \mathfrak{v}}$.
Then $N:=N\left(P_{x_{\mathfrak{e}}}\right)=Q(Y)\left(Y^{\prime}\right)^{i}$ for some $i<d$ and $Q(Y)$ is not a $(d-i)$-th power. If i is even, then $\operatorname{deg} Q$ is odd. Let $c \in \mathbb{R}$ be a root of odd multiplicity j of Q.

Theorem

Given $P \in \mathbb{T}\{Y\}$ and $\mathfrak{v} \in \mathfrak{T}$, consider

$$
P(y)=0, \quad y<\mathfrak{v}
$$

If $\operatorname{deg}_{<\mathfrak{v}} P$ is odd, then (\star) has a solution in \mathbb{T}.
Proof. By induction on $\mathrm{deg}_{<\mathfrak{v}} P$.
If $d=1$, then (\star) is quasi-linear, so it has a solution. So assume that $d>1$.
If $P_{<d}=0$, then $y=0$ is a solution.
Otherwise, we unravel (\star) and let $\mathfrak{e}:=\mathfrak{e}_{P, \mathfrak{v}}$.
Then $N:=N\left(P_{x_{\mathfrak{e}}}\right)=Q(Y)\left(Y^{\prime}\right)^{i}$ for some $i<d$ and $Q(Y)$ is not a $(d-i)$-th power. If i is even, then $\operatorname{deg} Q$ is odd. Let $c \in \mathbb{R}$ be a root of odd multiplicity j of Q. $\operatorname{deg}_{<\mathfrak{v}} P_{+c e}=\operatorname{val}_{\leqslant \mathfrak{v}} P_{+c \mathfrak{e}}=i+j<d$.

Theorem

Given $P \in \mathbb{T}\{Y\}$ and $\mathfrak{v} \in \mathfrak{T}$, consider

$$
P(y)=0, \quad y<\mathfrak{v}
$$

If $\operatorname{deg}_{<\mathfrak{v}} P$ is odd, then (\star) has a solution in \mathbb{T}.
Proof. By induction on $\mathrm{deg}_{<\mathfrak{v}} P$.
If $d=1$, then (\star) is quasi-linear, so it has a solution. So assume that $d>1$.
If $P_{<d}=0$, then $y=0$ is a solution.
Otherwise, we unravel (\star) and let $\mathfrak{e}:=\mathfrak{e}_{P, \mathfrak{v}}$.
Then $N:=N\left(P_{x_{\mathfrak{e}}}\right)=Q(Y)\left(Y^{\prime}\right)^{i}$ for some $i<d$ and $Q(Y)$ is not a $(d-i)$-th power. If i is even, then $\operatorname{deg} Q$ is odd. Let $c \in \mathbb{R}$ be a root of odd multiplicity j of Q. $\operatorname{deg}_{<\mathfrak{v}} P_{+c \mathfrak{c}}=\operatorname{val}_{\preccurlyeq \mathfrak{v}} P_{+c \mathfrak{c}}=i+j<d$. We conclude using the induction hypothesis.

Theorem IVP (intermediate value property)

Let $P \in \mathbb{T}\{Y\}$ and $f<g$ in \mathbb{T} be such that $P(f) P(g)<0$. Then there exists an $h \in \mathbb{T}$ with $f<h<g$ and $P(h)=0$.

Theorem IVP (intermediate value property)

Let $P \in \mathbb{T}\{Y\}$ and $f<g$ in \mathbb{T} be such that $P(f) P(g)<0$.
Then there exists an $h \in \mathbb{T}$ with $f<h<g$ and $P(h)=0$.
Proof. Newton polygon method \& maintain sign change during refinements.

Theorem IVP (intermediate value property)

Let $P \in \mathbb{T}\{Y\}$ and $f<g$ in \mathbb{T} be such that $P(f) P(g)<0$.
Then there exists an $h \in \mathbb{T}$ with $f<h<g$ and $P(h)=0$.
Proof. Newton polygon method \& maintain sign change during refinements.
Other "д-compatible" support types \mathscr{P}
Main results generalize to \mathscr{S}-based transseries of finite logarithmic depth.

Theorem IVP (intermediate value property)

Let $P \in \mathbb{T}\{Y\}$ and $f<g$ in \mathbb{T} be such that $P(f) P(g)<0$.
Then there exists an $h \in \mathbb{T}$ with $f<h<g$ and $P(h)=0$.
Proof. Newton polygon method \& maintain sign change during refinements.
Other "д-compatible" support types \mathscr{P}
Main results generalize to \mathscr{S}-based transseries of finite logarithmic depth.
Let $\mathbb{T}_{\mathscr{P}}$ be the set of such transseries.

Theorem IVP (intermediate value property)

Let $P \in \mathbb{T}\{Y\}$ and $f<g$ in \mathbb{T} be such that $P(f) P(g)<0$.
Then there exists an $h \in \mathbb{T}$ with $f<h<g$ and $P(h)=0$.
Proof. Newton polygon method \& maintain sign change during refinements.

Other "д-compatible" support types \mathscr{P}

Main results generalize to \mathscr{S}-based transseries of finite logarithmic depth.
Let $\mathbb{T}_{\mathscr{S}}$ be the set of such transseries.
Any well-based transseries root of $P \in \mathbb{T}_{\mathscr{S}}\{Y\}$ is in $\mathbb{T}_{\mathscr{S}}$.

Theorem IVP (intermediate value property)

Let $P \in \mathbb{T}\{Y\}$ and $f<g$ in \mathbb{T} be such that $P(f) P(g)<0$.
Then there exists an $h \in \mathbb{T}$ with $f<h<g$ and $P(h)=0$.
Proof. Newton polygon method \& maintain sign change during refinements.

Other "д-compatible" support types $\mathscr{\mathscr { S }}$

Main results generalize to \mathscr{L}-based transseries of finite logarithmic depth.
Let $\mathbb{T}_{\mathscr{S}}$ be the set of such transseries.
Any well-based transseries root of $P \in \mathbb{T}_{\mathscr{\varphi}}\{Y\}$ is in $\mathbb{T}_{\mathscr{\varphi}}$.

$$
\zeta(x):=1+2^{-x}+3^{-x}+\cdots \quad \text { is d-transcendental over } \mathbb{T} .
$$

Theorem IVP (intermediate value property)

Let $P \in \mathbb{T}\{Y\}$ and $f<g$ in \mathbb{T} be such that $P(f) P(g)<0$.
Then there exists an $h \in \mathbb{T}$ with $f<h<g$ and $P(h)=0$.
Proof. Newton polygon method \& maintain sign change during refinements.

Other "ว-compatible" support types \mathscr{P}

Main results generalize to \mathscr{S}-based transseries of finite logarithmic depth.
Let $\mathbb{T}_{\mathscr{P}}$ be the set of such transseries.
Any well-based transseries root of $P \in \mathbb{T}_{\mathscr{S}}\{Y\}$ is in $\mathbb{T}_{\mathscr{S}}$.

$$
\begin{aligned}
& \zeta(x):=1+2^{-x}+3^{-x}+\cdots \quad \text { is d-transcendental over } \mathbb{T} . \\
& y(x):=\mathrm{e}^{x}+\mathrm{e}^{\sqrt{x}}+\mathrm{e}^{\sqrt{x}}+\cdots \quad \text { is } \mathrm{d} \text {-transcendental over } \mathbb{T}\langle\zeta\rangle:=\mathbb{T}\left(\zeta, \zeta^{\prime}, \ldots\right) .
\end{aligned}
$$

Remarkable first order properties

Remarkable first order properties
$-\mathbb{T}$ is real closed

Remarkable first order properties
$-\mathbb{T}$ is real closed

- \mathbb{T} is Liouville closed

Model theoretic perspective

Remarkable first order properties

- \mathbb{T} is real closed
- \mathbb{T} is Liouville closed
- Solvability of linear differential equations

Model theoretic perspective

Remarkable first order properties
$-\mathbb{T}$ is real closed

- \mathbb{T} is Liouville closed
- Solvability of linear differential equations
, quasi-linear differential equations?

Model theoretic perspective

Remarkable first order properties
$-\mathbb{T}$ is real closed

- \mathbb{T} is Liouville closed
- Solvability of linear differential equations
, quasi-linear differential equations?
- Order $\leqslant 2$ factorization in $\mathbb{T}[\partial]$

Model theoretic perspective

Remarkable first order properties
$-\mathbb{T}$ is real closed

- \mathbb{T} is Liouville closed
- Solvability of linear differential equations
, quasi-linear differential equations?
- Order $\leqslant 2$ factorization in $\mathbb{T}[\partial]$
- \mathbb{T} satisfies the IVP

Model theoretic perspective

Remarkable first order properties
$-\mathbb{T}$ is real closed

- \mathbb{T} is Liouville closed
- Solvability of linear differential equations
, quasi-linear differential equations?
- Order $\leqslant 2$ factorization in $\mathbb{T}[\partial]$
- \mathbb{T} satisfies the IVP
- Existence + form of Newton polynomials

Model theoretic perspective

Remarkable first order properties
$-\mathbb{T}$ is real closed

- \mathbb{T} is Liouville closed
- Solvability of linear differential equations
, quasi-linear differential equations?
- Order $\leqslant 2$ factorization in $\mathbb{T}[\partial]$
- \mathbb{T} satisfies the IVP
- Existence + form of Newton polynomials
- Existence of equalizers

Model theoretic perspective

Remarkable first order properties
$-\mathbb{T}$ is real closed

- \mathbb{T} is Liouville closed
- Solvability of linear differential equations
, quasi-linear differential equations?
- Order $\leqslant 2$ factorization in $\mathbb{T}[\partial]$
- \mathbb{T} satisfies the IVP
- Existence + form of Newton polynomials
- Existence of equalizers
- Existence of unravellers

Model theoretic perspective

Remarkable first order properties
$-\mathbb{T}$ is real closed

- \mathbb{T} is Liouville closed
- Solvability of linear differential equations , quasi-linear differential equations?
- Order $\leqslant 2$ factorization in $\mathbb{T}[\partial]$
- \mathbb{T} satisfies the IVP
- Existence + form of Newton polynomials
- Existence of equalizers
- Existence of unravellers

Interesting challenges

Remarkable first order properties
$-\mathbb{T}$ is real closed

- \mathbb{T} is Liouville closed
- Solvability of linear differential equations , quasi-linear differential equations?
- Order $\leqslant 2$ factorization in $\mathbb{T}[\partial]$
- \mathbb{T} satisfies the IVP
- Existence + form of Newton polynomials
- Existence of equalizers
- Existence of unravellers

Interesting challenges

- support types \mathscr{S}

Remarkable first order properties
$-\mathbb{T}$ is real closed

- \mathbb{T} is Liouville closed
- Solvability of linear differential equations , quasi-linear differential equations?
- Order $\leqslant 2$ factorization in $\mathbb{T}[\partial]$
- \mathbb{T} satisfies the IVP
- Existence + form of Newton polynomials
- Existence of equalizers
- Existence of unravellers

Interesting challenges

- support types \mathscr{S}
- axioms for strong summation

Remarkable first order properties
$-\mathbb{T}$ is real closed

- \mathbb{T} is Liouville closed
- Solvability of linear differential equations , quasi-linear differential equations?
- Order $\leqslant 2$ factorization in $\mathbb{T}[\partial]$
- \mathbb{T} satisfies the IVP
- Existence + form of Newton polynomials
- Existence of equalizers
- Existence of unravellers

Interesting challenges

- support types \mathscr{S}
- axioms for strong summation
- distinguished solutions

Remarkable first order properties
$-\mathbb{T}$ is real closed

- \mathbb{T} is Liouville closed
- Solvability of linear differential equations , quasi-linear differential equations?
- Order $\leqslant 2$ factorization in $\mathbb{T}[\partial]$
- \mathbb{T} satisfies the IVP
- Existence + form of Newton polynomials
- Existence of equalizers
- Existence of unravellers

Interesting challenges

- support types \mathscr{S}
- axioms for strong summation
- distinguished solutions
- strong linearity of L^{-1}

Model theoretic perspective

Remarkable first order properties
$-\mathbb{T}$ is real closed

- \mathbb{T} is Liouville closed
- Solvability of linear differential equations , quasi-linear differential equations?
- Order $\leqslant 2$ factorization in $\mathbb{T}[\partial]$
- \mathbb{T} satisfies the IVP
- Existence + form of Newton polynomials
- Existence of equalizers
- Existence of unravellers

Interesting challenges

- support types \mathscr{S}
- axioms for strong summation
- distinguished solutions
- strong linearity of L^{-1}
- (e.g.) composition on \mathbb{T}

