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Valued fields

Let K be a field and T a totally ordered abelian group.

A valuation is a map v: K —T'U { oo} such that

e v(a)=co ifand only if a=0;

e v(ab)=v(a)+v(b);

e v(a+Db)>min(v(a),v(b)) with equality if v(b) # v(a).
In that case, we define

Ok = {aeK:v(a) >0} the valuation ring
ok = {aeK:v(a)>0} its maximal ideal
kx = Oxlok its residue field

Convention. We will usually assume that I' =o(K )
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Ordered fields. Let K be an ordered field. For x,iy € K**, we define

x Xy = GneN>") |x < nlyl
X =Y = xXVYXX
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Ordered fields. Let K be an ordered field. For x,y € K*, we define

x Sy = @AnEN) K < nlyl [ = (x/=ixeK™)
X =Y = xXVYXX o(x) = x/=
vx) S oy) = x >y

Hausdorff fields. Any Hausdorff field K is valued as an ordered field with kx CIR.

Well-based series. K:=R[[z']], R field, I totally ordered group.
2"y 2P = a <P
o(f) = a, for f € K* with oy =x".

p-adic numbers. K=Q,, I':=Z, p-adic valuation.
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Let K be a valued field. For x,y € K, we define

x <y =ux) >y = xeoy ANy +0
x Xy =ux) 2oy = x € Oy
x =y =vx) =9y = x Iy x

X ~ Yy = x—y <X
Note. The axioms of valued fields can be reformulated in terms of <.

Both points of views are essentially equivalent.
Always remind the reversal of the ordering.
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Monomial groups 6

Let K be a valued field.

A monomial group for K is a subgroup 9t C K* such that vy is a bijection.
Given y €I’, we define 3" to be the unique element in 91 with v(3”) =1.

Proposition

Let G C K*? be divisible with v(G) =T. Then there is a monomial group "M C G for K.

Proof. Embed increasingly large subgroups A of I into G.

Given ' DA~ Gand yel'\ A, letke NwithkZ={neZ:nyeA}.

Take 37 € G with v(37) = such that (37)" = 3*” whenever k> 0. Apply Zorn. O
Examples:

e G=K7 for an algebraically closed valued field K.
e G=K""for a real closed field K.
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Let K be a valued field and P € K[Y]"". We extend the valuation v to K[Y] by
o(P; Y+ - 4+ Py) := min (v(Py),...,v(Py)).

We also define the relation o« on k[Y] by
A x B = (3re€k?™) B=AA.

The projective Newton polynomial N.(P) € k[Y]/x is defined by
N.(P) := aP/x, where a € K is such thataP =1.

The monic Newton polynomial N,,,(P) € k[Y] is the monic polynomial with
I\]mon(P)/o< — Noc(P)

If K has a monomial group, then we define the Newton polynomial N(P) € k[Y] by
N(P) := 37°PP.
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Given P K[Y] and y €I, one may consider the asymptotic equation
Py) =0, oy > 7.

The Newton degrees of this equation is defined by
deg-, P := val No(Py,)

where a € K* is such that v(a) = .

Equations of Newton degree one are said to be quasi-linear.

Definition

We say that K is henselian if any quasi-linear equation has a solution in K.
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Let PEK[Y]?? and v €T. If k is algebraically closed, then
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Proof. Straightforward adaptation of proof from Lesson 4. O
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The Newton polygon method

Let K be a henselian valued field of characteristic zero with a divisible value group I'.

Let PEK[Y]?? and v €T. If k is algebraically closed, then
Py) =0, oy > 7

has exactly deg-., P solutions in K, when counting with multiplicities.

Corollary

a) If k is algebraically closed, then so is K.
b) If k is real closed, then so is K.

Proof of (b). Since k[i] is algebraically closed, so is K[i], by (a).
The complex roots of P in K[i] come in conjugate pairs.
If deg P is odd, this means that P has at least one root in K. O
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Adjoining single elements to valued fields

Given a valued field K, describe the valued field extensions L:=K(y) D K.

@ 2 x 3 fundamental kinds of extensions

e 1 is algebraic.

e 1 is transcendental.

o ki =kg I.=Ix (LDKis called an immediate extension).
o kL g k[(, FL = FK with Yy < 1 and kL = kK(g)

K o k;=kg, FLC_;FK with FLZFK+U(y)Z.

How unique is the extension K C K(y)?

Given a valued field extension F O K and a € F of “same type over K” as v,
does there exist a unique embedding of valued fields ¢: K(y) — F with ¢(y)=a?
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Let (a,),<, € K" or shortly (a,) be a sequence indexed by ordinals smaller than «.

We say that (a,) is a pseudo-cauchy sequence (pc-sequence) if
(Jo0) (VT>0>p>p0) ac—a, < a,—a,.

We say that (2,) pseudo-converges to 2 € K (notation: a,~ a), if
(Jo0) (Vo>p>pg) a—a, < a—a,.

o 1,14+x7 !, 1+x7'4+x72, ... pseudo-converges to 1 +x ' +x 7%+ --- in R[[x;e"]].

e Italso converges to 1+ x T4+ x7?+ - in R[[x~']], but not in R[[x;e*]].

If (a,) pseudo-diverges, then
® (a,) is of algebraic type if there exists a P € K[Y] with P(a,)~ 0
o Otherwise, (4,) is of transcendental type.
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Lemma I'R=1IVIIVI
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The extension L:= K(Y) 2 K is immediate and a,~> Y in L. Moreover, if a,~> a in another
immediate extension F D K, then there is a unique embedding ¢: L — F over K with ¢(Y)=a.
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Lemma TR=IIVIIVI
Let (a,) be pseudo-divergent of transcendental type. Then v extends to K(Y) via

v(P) := eventual value of v(P(a,)), for any P e K[Y].

The extension L:= K(Y) 2 K is immediate and a,~> Y in L. Moreover, if a,~> a in another
immediate extension F D K, then there is a unique embedding ¢: L — F over K with ¢(Y)=a.

Proof. Easy: our formula for v(P) yields a valuation with I} =Ix and a,~ Y.

Given P € K[ Y] with v(P) =0, let us show that P € k. This will imply k; = kg.

We have, v(P(a,)) =0 and v(P — P(a,)) > 0, eventually.

Let ¢ =P(a,) € K with v(c) =0 and o(P —¢) > 0. Then P =¢ € k.

If a,~ain F D Kand PeK[Y]\ K, then P(a,)~> P(a), by Taylor expansion around a.

Hence, v(P(a)) =v(P(a,)) = v(P), eventually, so P(a) #0 and a is transcendental.
We conclude that 3! ring morphism ¢:L — F with ¢(Y)=a and ¢ preservesv. O
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Lemma ALG-IMM
Let (a,) be pseudo-divergent of algebraic type. Let y € K[Y] be of minimal degree d with
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Moreover, if a,~> a and p(a) =0 for a in another immediate extension F D K, there is a
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Lemma ALG-IMM
Let (a,) be pseudo-divergent of algebraic type. Let y € K[Y] be of minimal degree d with
u(a)~0. Let L:=K[Y]/(), y:=Y +(u), K[Y]s:={P€K[Y]:deg P<d}. Then
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Proof. Mostly similar to previous lemma, except for v(st) =ov(s) + P(t) in L7,
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Lemma ALG-IMM
Let (a,) be pseudo-divergent of algebraic type. Let y € K[Y] be of minimal degree d with
u(a)~0. Let L:=K[Y]/(), y:=Y +(u), K[Y]s:={P€K[Y]:deg P<d}. Then

v(P(y)) = eventual value of v(P(a,)), for any P K[Y],

yields an extension of v to L. This extension L:=K(Y) 2 K is immediate and a,~>y in L.
Moreover, if a,~> a and p(a) =0 for a in another immediate extension F D K, there is a

unique embedding ¢:L — F over K with ¢(y) =a.

Proof. Mostly similar to previous lemma, except for v(st) =ov(s) + P(t) in L7,
Writes=5(y), teT(y), S, TeK[Y];. ST=0Qu+R, ReK[Y],, so that R(y)=st.
Eventually, v(st) =v(R(a,)) and v(s) +v(t) =v(5(a,) T(a,)) = v(Q(a,) u(a,) + R(a,)).
But Q(a,) 1(a,) is eventually increasing or eventually infinite.

Eventually, this yields v(Q(a,) j1(a,)) > v(R(a,)) and v(s) + v(t) = v(R(a,)) =v(st). O
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Definition
A valued field K is said to be spherically complete if every pc-sequence pseudo-converges.

Example. If R is a field and 91 totally ordered, then R[[)1]] is sperically complete.

Theorem
Any valued field K has a unique immediate spherical completion, up to isomorphism.

Proof. Combine Lemmas TR-IMM and ALG-IMM, and apply Zorn. O
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Definition

A valued field K is said to be algebraically maximal if it does not admit any proper
immediate algebraic valued field extension.

Examples. Any algebraically closed or spherically complete valued field.

Any valued field K has a unique algebraically maximal extension, up to isomorphism. |

Proof. Use Lemma ALG-IMM and Zorn. O

Proposition
If K is algebraically maximal, then K is henselian.

Proof. Any quasi-linear y=P(y), y <1 with no solution in K gives rise to a divergent
pc-sequence (a,) with P(a,)~>0:a9=0, a,,1=P(a,), a,:={, whenever (a,),<,~>{. O
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Henselization 5

Definition

A valued field K is said to be algebraically maximal if it does not admit any proper
immediate algebraic valued field extension.

Examples. Any algebraically closed or spherically complete valued field.

Any valued field K has a unique algebraically maximal extension, up to isomorphism. |

Proof. Use Lemma ALG-IMM and Zorn. O

Proposition

If char K=char k=0, then K is algebraically maximal iff K is henselian.

Proof. By what precedes and Newton polygon method. O



Adjoining transcendental residues

Lemma TR-RES
Define v: K(Y)™* — T with v(P/Q) =v(P)—v(Q) for P,Q € K[Y]*° and

o(P) = min(v(Py),...,0(Py)), for any P="P; Y%+ ...+ PyeK[Y]
Then L:=K(Y) D K is a valued field extension with k; = k(Y) and T} =TIk

For any valued field extension F 2O K with Iy =1y and a € O such that a is transcendental
over kg, there exists a unique valued field embedding ¢:L — F over K with ¢(Y)=a.

Proof. L O K is easily seen to be a valued field extension. Clearly, I} =Tk%.
Consider A € L with v(A)=0. We claim that A € k(Y), which proves k; = k(Y).
Indeed, A=P/Q with P,Q € K[ Y] such that v(P)=v(Q) =0.
Then P,Qek[Y]?™, so A=P/Q e k(Y).
Y, a transcendental over K = 3! field embedding L — F over K with ¢(Y) =a.
v(a)=0 = v(P(a)) =min (v(Py),...,v(P;)) for any P =P, Y9+ ... + PyeK[Y]. O



Adjoining algebraic residues

Lemma ALG-RES
Let u € K[Y] with v(1) =0 and ji € k[Y] irreducible of degree d =deg u. Then y:=Y + (i)
in L:=K[Y]/(n). Then L D K is a valued field extension with k; = k[y]/(y) and I}, =Tk for

v(P(y)) = min(v(Py),...,v(Pi-1)), for any P K[Y],.

For any valued field extension F O K with Ir =1y and a € O such that k(a) =k, there
exists a unique valued field embedding ¢:L — F over K with ¢(y) =a.

Note. 1 is irreducible in K[Y] since j is irreducible in k[Y], by Gauss' lemma.

Proof. Similar to previous lemma, except for v(st) =v(s) +v(t) in L.
Any s € L can be decomposed s =1u s with u € K and s & L such that v(s) =0.
Without loss of generality, we may therefore assume that v(s) =v(t) =0.

Then s, te k7’ sost=5teki’, hence v(st)=0. O



Adjoining “transcendental” elements to I

Lemma TR-VAL
Let ADT be a totally ordered group and v € A be such that A=1 @ Zy. Then there is
a unique valued field extension L:=K(Y) D K with v(Y)=1y. It is given by

o(P) := min (©(Py),...,o(P)+dy),  forall P=P;Y?+ ...+ Py K[Y]*"

Moreover, if F D K is a valued field extension and a € F transcendental such that v(a) and <y
lie in the same cut over I, then 3! valued field embedding ¢:L — F over K with ¢(a)=Y.

Exercise. We also have k; = kx.



Adjoining “transcendental” elements to I

Lemma TR-VAL

Let ADT be a totally ordered group and <y € A be such that A=1 & Z-y. Then there is
a unique valued field extension L:=K(Y) D K with v(Y)=1y. It is given by

o(P) = min (v(Py),...,o(P)+dy),  forall P=P;Y"+...+PyeK[Y]*"

Moreover, if F D K is a valued field extension and a € F transcendental such that v(a) and <y
lie in the same cut over I, then 3! valued field embedding ¢:L — F over K with ¢(a)=Y.

Proof. For P=P, Y%+ ...+ P, K[ Y]?", there exists exactly one i with v(P)=0v(P;) +iy.
Given a second Q € K[Y]*, there is also exactly one j with v(Q) = o(Q)+j-
One verifies that v(P Q) =ov(P; Q) + (i + j)y =0v(P) + v(Q), so v} is a valuation on L.

Y, a transcendental over K = 3! field embedding ¢:L — F over K with y(a) =Y.
v(P(a)) =min (v(Py), ..., v(P;) +dv(a)) foral P=P; Y9+ - .- + Py K[Y]?.
Hence ¢ preserves v, since v(a) and 7 lie in the same cut over I'. O



Adjoining “algebraic” elements to I

Lemma ALG-VAL

Let yed 'T be such that A:=T+yZ=TUT+yU---UT+(d—-1)y 2T ford>1. Let
& €K be such that v(&)=dy and y:=Y'—FcK[Y]. Let L:=K[Y]/(x) and y=Y + (u).
Then L D K is a valued field extension for the valuation defined by

o(P(y)) := min (@(Py),...,0(P,)+d—1)7),  forall PEK[Y]".

Moreover, if F D K is a valued field extension and a € F satisfies a” = ¢, then there exists
a unique valued field embedding ¢:L — F over K with ¢(a)=1y.

Exercise. We also have k; = kx.

Proof. Similar to the previous proof (exercise). O



Algebraic closure of valued fields

If char K=char k =0, then the valuation on K can be extended to the algebraic closure K*
of K. Any valued field embedding K — F into another algebraically closed field F extends
to a valued field embedding K* — F.

Proof. Lemmas ALG-IMM, ALG-RES, ALG-VAL, and Zorn yield:
e An algebraic valued field extension L D K, such that

o L is henselian (ALG-IMM).
o k; algebraically closed (ALG-RES).
o I7 is divisible (ALG-VAL).
e Any valued field embedding K — F extends to a valued field embedding K* — F.
(See also below.)

Newton polygon methods = L is algebraically closed. O
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Basic model theoretic terminology

Languages
Triples £ =(S, £, £") of sorts (e.g. {K,T'}), relations, and functions.

L-structures

M = ((My)ses, (R)), (), sets M, relations R; C M x --- x M, ,
functions f;: M, x - - x M, — M, (sy,...,s,,t depend on i, j). Morphisms, ...

L-formulas

Formed from %, variables of thesorts S,and T, 1, -, VvV, A, =, 3, V.
% 4 = extension of £ with constants 1 € A, of sort s for A =(A,).cs

L-theories
Let M be an $-structure and &, Y. sets of £-formulas
MEY. M isamodel for X Y=Y MET whenever MY’

Th(M) {oc:MEo} Th(X) {oc:XE0}
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Basic concepts from model theory

% : a tixed a language

M=N ThM)=Th(N) M and N are elementary equivalent
M<N MCNandM=4,N M isan elementary substructure of N

2. is complete 2. has a model and 2~ |- ¢ or 2 = -0 for any formula ¢

T is an $-theory Th(T)=T

2. axiomatizes T Th(X)=T

qf-formula Formula that does not involve V or 3
J-formula Formula (3x) ¢(x) for some gf-formula ¢(x)
@(x) is Z-equivalent to y(x) LEpx) <= ZEP(x)

2. has quantifier elimination Any formula is 2-equivalent to a qf-formula
2. is model complete Any formula is 2-equivalent to an 3-formula

T* is a model companion of T T* model complete and
Any model of T embeds into a model of T*



Types and saturation 22/50

Let © = ®(x) be a set of formulas depending on free variables x = (x;) of sorts (s;)
Let M be an $£-structure and M, :=[ [, M.



Types and saturation 22/50

Let © = ®(x) be a set of formulas depending on free variables x = (x;) of sorts (s;)
Let M be an $£-structure and M, :=[ [, M.

a€ M, realizes ®inM MEge@)forall pe®
® is realized in M a realizes ® in M for some a € M,
O is L-realizable ® is realized in some model M of %



Types and saturation 22/50

Let © = ®(x) be a set of formulas depending on free variables x = (x;) of sorts (s;)
Let M be an $£-structure and M, :=[ [, M.

ae€ M, realizes ®inM  MEg@(a)forall pe d

® is realized in M a realizes ® in M for some a € M,
o is Z-realizable ® is realized in some model M of %
® is an x-type ® is realized in some M

— that is complete either ¢ € ® or —¢p € P for all p(x)
— over ACMinM ® is a Th(M,)-realizable x-type for the language £,



Types and saturation 22/50

Let © = ®(x) be a set of formulas depending on free variables x = (x;) of sorts (s;)
Let M be an $£-structure and M, :=[ [, M.

ae€ M, realizes ®inM  MEg@(a)forall pe d

® is realized in M a realizes ® in M for some a € M,
O is X-realizable ® is realized in some model M of %
® is an x-type ® is realized in some M

— that is complete either ¢ € ® or —¢p € P for all p(x)
— over ACMinM ® is a Th(M,)-realizable x-type for the language £,

M is k-saturated For any A C M of size <x and any variable v of %,
each complete v-type over A in M is realized in M



Types and saturation 22/50

Let © = ®(x) be a set of formulas depending on free variables x = (x;) of sorts (s;)
Let M be an $£-structure and M, :=[ [, M.

ae€ M, realizes ®inM  MEg@(a)forall pe d

® is realized in M a realizes ® in M for some a € M,
O is X-realizable ® is realized in some model M of %
® is an x-type ® is realized in some M

— that is complete either ¢ € ® or —¢p € P for all p(x)
— over ACMinM ® is a Th(M,)-realizable x-type for the language £,

M is k-saturated For any A C M of size <x and any variable v of %,
each complete v-type over A in M is realized in M

Suppose that M is x-saturated, x is infinite, A C M and x have size <x.
Then every x-type over A in M is realized in M.




Quantifier elimination and completeness

Assume that 2. eliminates quantifiers and also has a model.
Then . is complete if and only if some %-structure embeds into every model of 2.




Quantifier elimination and completeness 2550

Assume that 2. eliminates quantifiers and also has a model.

Then . is complete if and only if some %-structure embeds into every model of 2.

Note: The #£-structure does not need to be a model of ..



Quantifier elimination and completeness 2550

Theorem
Assume that 2. eliminates quantifiers and also has a model.

Then . is complete if and only if some %-structure embeds into every model of 2.

Note: The #£-structure does not need to be a model of ..

Example.
e The theory ACF of algebraically closed fields has QE. (See below)



Quantifier elimination and completeness 2550

Theorem
Assume that 2. eliminates quantifiers and also has a model.

Then . is complete if and only if some %-structure embeds into every model of 2.

Note: The #£-structure does not need to be a model of ..

Example.
e The theory ACF of algebraically closed fields has QE. (See below)

e So does the theory ACF(0) of algebraically closed fields of characteristic zero.



Quantifier elimination and completeness

Assume that 2. eliminates quantifiers and also has a model.
Then . is complete if and only if some %-structure embeds into every model of 2.

Note: The #£-structure does not need to be a model of ..

Example.
e The theory ACF of algebraically closed fields has QE. (See below)
e So does the theory ACF(0) of algebraically closed fields of characteristic zero.
e Z embeds into any (algebraically closed) field of characteristic zero.



Quantifier elimination and completeness

Assume that 2. eliminates quantifiers and also has a model.
Then . is complete if and only if some %-structure embeds into every model of 2.

Note: The #£-structure does not need to be a model of ..

Example.
e The theory ACF of algebraically closed fields has QE. (See below)
e So does the theory ACF(0) of algebraically closed fields of characteristic zero.
e Z embeds into any (algebraically closed) field of characteristic zero.
e Hence ACF(0) is complete.



Test for quantifier-elimination

Theorem
Let 3. be given and suppose that
o MEX
y ® proper substructure A G M 5 ® beM\ A, for somes €S
o |Al"-saturated model N of X e an extension i: A{b) — N of 1
o embedding A — N

Then % admits quantifier elimination.




Test for model completeness

Theorem

Let 3. be given and suppose that

o MEX

o AEX with ACM

o |A|*-saturated N > A
e inclusion A — N

v 3 an embedding i: M — N that extends |

Then % is model complete.




Application to ACF

Iheorem
The theory ACF of algebraically closed fields (for £ =1{0,1,+,—,-}) has QE.




Application to ACF

Iheorem
The theory ACF of algebraically closed fields (for £ =1{0,1,+,—,-}) has QE.

Proof. Let
e E be an algebraically closed field.
e ACE asubstructure, i.e. an integral domain.
e F an algebraically closed field that is |A|"-saturated.
e An embedding : A —F.



Application to ACF

Iheorem
The theory ACF of algebraically closed fields (for £ =1{0,1,+,—,-}) has QE.

Proof. Let
e E be an algebraically closed field.
e ACE asubstructure, i.e. an integral domain.
e F an algebraically closed field that is |A|"-saturated.
e An embedding : A —F.
Problem: construct a € E\ A + embedding i: A[a] — F that extends .



Application to ACF

Iheorem
The theory ACF of algebraically closed fields (for £ =1{0,1,+,—,-}) has QE.

Proof. Let
e E be an algebraically closed field.
e ACE asubstructure, i.e. an integral domain.
e F an algebraically closed field that is |A|"-saturated.
e An embedding : A —F.
Problem: construct a € E\ A + embedding i: A[a] — F that extends .

Case 0. A is not a field
Take x € A7? such thata:=x"' € E \ A.



Application to ACF

Iheorem
The theory ACF of algebraically closed fields (for £ =1{0,1,+,—,-}) has QE.

Proof. Let
e E be an algebraically closed field.
e ACE asubstructure, i.e. an integral domain.
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e An embedding : A —F.
Problem: construct a € E\ A + embedding i: A[a] — F that extends .

Case 0. A is not a field
Take x € A7? such thata:=x"' € E \ A.
Then  uniquely extends into an embedding : A[a] = Ax ™™ — F with i(a) = 1(x)~".
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Proof. Let
e E be an algebraically closed field.
e ACE asubstructure, i.e. an integral domain.
e F an algebraically closed field that is |A|"-saturated.
e An embedding : A —F.
Problem: construct a € E\ A + embedding i: A[a] — F that extends .
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Proof. Let
e E be an algebraically closed field.
e ACE asubstructure, i.e. an integral domain.
e F an algebraically closed field that is |A|"-saturated.
e An embedding : A —F.
Problem: construct a € E\ A + embedding i: A[a] — F that extends .

Case 2. K:= A is an algebraically closed field
Let ae E\ K. Then a is transcendental over K.
Saturation = There exists a transcendental b € F \ K.



Application to ACF

Iheorem
The theory ACF of algebraically closed fields (for £ =1{0,1,+,—,-}) has QE.

Proof. Let
e E be an algebraically closed field.
e ACE asubstructure, i.e. an integral domain.
e F an algebraically closed field that is |A|"-saturated.
e An embedding : A —F.
Problem: construct a € E\ A + embedding i: A[a] — F that extends .

Case 2. K:= A is an algebraically closed field

Let ae E\ K. Then a is transcendental over K.

Saturation = There exists a transcendental b € F \ K.

Then K[a] = «(K)[b], so we may extend ! into an embedding : K[a] — F. O



Application to ACVF

The theory ACVF of algebraically closed valued fields eliminates quantifiers. |

Note. ACVF can be modeled in the language (K,I',+,—,-,v, <r, +1, —1).
Sometimes: extra sort for k (and extra component i;: ks — k).
Alternatively: one-sorted language (K, +,—, -, X).
Proof. Let

e E be an algebraically closed valued field.

e ACE asubstructure, i.e. a “valued integral domain”.

e [ an algebraically closed valued field that is |A|"-saturated.

e An embedding : A —F.

Problem: construct y€ E\ A + embedding i: A[y] — F that extends .

To easy notations, we may assume wlog that A CF and that : is the inclusion.



Proof that ACVF has QE — continued 25/30

Case 0. A is not a field

Let x be a non-invertible element of A™ and take y:=x"".
Let i: Ala] = Ax ™ = F extend : with i(a) = «(x)™" (as for ACF).

Any element of A[a] is of the form ca" =cx™" for ce A and n € IN.
Then v(i(ca™))=v(cx™)=0v(c) —nov(x), both in [y,;; =4 and in [} D I}.
Hence the embedding ! preserves the valuation.

Case 1a. K := A is a field, but kg is not AC (algebraically closed).

Let 1 € K[Y] be monic with ¢ <1 and y irreducible in k¢[Y]. Let y € E be a root of .
Since F is AC, 3 a € F with u(a)=0. Let i: K[y] - F extend  with i(y) =a (as for ACF).
Then kx(a) = ki(i7) and [ preserves the valuation by Lemma ALG-RES.

Case 1b. K := A is a field, but Ik is not divisible.
Similar as above, with 1= Y” — & for p prime and ¢ € K such that p ' v(&) & Ik.



Completeness 25/30

The valued field K has characteristic (111, 1) if char K=m and char kg =n.

The theory ACV, , of algebraically valued fields of characteristic (m,n) has QE and
it is complete.

QE. The characteristic of a valued field is conserved under the extensions.
Hence the previous proof goes through for any fixed characteristic.

Completeness. Sufficient: a valued ring that embeds into any model of ACV,, ,,).
o If m=n=0, then we may take Z with the trivial valuation.
o If m=0and n=p is prime, then we may take Z with the p-adic valuation.
o If m=n=pis prime, then we may take IF, with the trivial valuation. O



Valued ordered fields 30/30

Let (K, <) be an ordered field (so ©Q CK).
Given X CK, its convex hull is {n€K:(3x,y € X) x<a<y}.

Definition
Given a valuation v on K, we say that (K, <,v) is an ordered valued field if O is convex.

Example. The “finest” valuation v with O =hull(K) and ox= {a € K:|a| <Q>"}.

Theorem
The theory RCVF of real closed valued fields eliminates quantifiers and is complete.

Proof. QE: similar as for ACVFE. Completeness: Z embeds into any model. O
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