Lesson 8 — Valued fields

Joris van der Hoeven

IMS summer school Singapore, July 13, 2023

Valued fields

Definition

Let K be a field and Γ *a totally ordered abelian group.*

A *valuation* is a map $v: K \to \Gamma \cup \{\infty\}$ such that

- $v(a) = \infty$ if and only if a = 0;
- v(ab) = v(a) + v(b);
- $v(a+b) \ge \min(v(a), v(b))$ with equality if $v(b) \ne v(a)$.

In that case, we define

$\mathcal{O}_K := \{a \in K : v(a) \ge 0\}$	the valuation ring
$\mathcal{O}_K := \{a \in K : v(a) > 0\}$	its maximal ideal
$\boldsymbol{k}_K := \mathcal{O}_K / \mathcal{O}_K$	its residue field

Convention. We will usually assume that $\Gamma = v(K^{\neq 0})$.

Ordered fields. Let *K* be an ordered field. For $x, y \in K^{\neq 0}$, we define

 $\begin{array}{ll} x \leqslant y \iff (\exists n \in \mathbb{N}^{>0}) & |x| \leqslant n |y| \\ x \asymp y \iff x \leqslant y \leqslant x \end{array}$

Ordered fields. Let *K* be an ordered field. For $x, y \in K^{\neq 0}$, we define

Ordered fields. Let *K* be an ordered field. For $x, y \in K^{\neq 0}$, we define

Ordered fields. Let *K* be an ordered field. For $x, y \in K^{\neq 0}$, we define

Hausdorff fields. Any Hausdorff field *K* is valued as an ordered field with $k_K \subseteq \mathbb{R}$.

Ordered fields. Let *K* be an ordered field. For $x, y \in K^{\neq 0}$, we define

Hausdorff fields. Any Hausdorff field *K* is valued as an ordered field with $k_K \subseteq \mathbb{R}$. **Well-based series.** $K := R[[z^{\Gamma}]], R$ field, Γ totally ordered group.

$$z^{\alpha} \geq z^{\beta} \iff \alpha \leq \beta$$

$$v(f) := \alpha, \qquad \text{for } f \in K^{\neq 0} \text{ with } \mathfrak{d}_{f} = x^{\alpha}.$$

Ordered fields. Let *K* be an ordered field. For $x, y \in K^{\neq 0}$, we define

Hausdorff fields. Any Hausdorff field *K* is valued as an ordered field with $k_K \subseteq \mathbb{R}$.

Well-based series. $K := R[[z^{\Gamma}]], R$ field, Γ totally ordered group.

$$z^{\alpha} \geq z^{\beta} \iff \alpha \leq \beta$$

$$v(f) := \alpha, \qquad \text{for } f \in K^{\neq 0} \text{ with } \mathfrak{d}_{f} = x^{\alpha}$$

p-adic numbers. $K = \mathbb{Q}_p$, $\Gamma := \mathbb{Z}$, *p*-adic valuation.

Asymptotic relations

Let *K* be a valued field. For $x, y \in K$, we define

$$\begin{aligned} x \prec y &\iff v(x) > v(y) \iff x \in \mathcal{O}y \land y \neq 0 \\ x \leqslant y \iff v(x) \ge v(y) \iff x \in \mathcal{O}y \\ x \approx y \iff v(x) = v(y) \iff x \leqslant y \leqslant x \\ x \sim y \iff x - y \prec x. \end{aligned}$$

Note. The axioms of valued fields can be reformulated in terms of ≤. Both points of views are essentially equivalent. Always remind the reversal of the ordering.

Let *K* be a valued field.

Let *K* be a valued field.

A **monomial group** for *K* is a subgroup $\mathfrak{M} \subseteq K^{\neq 0}$ such that $v_{|\mathfrak{M}|}$ is a bijection. Given $\gamma \in \Gamma$, we define \mathfrak{z}^{γ} to be the unique element in \mathfrak{M} with $v(\mathfrak{z}^{\gamma}) = \gamma$.

Let *K* be a valued field.

A **monomial group** for *K* is a subgroup $\mathfrak{M} \subseteq K^{\neq 0}$ such that $v_{|\mathfrak{M}|}$ is a bijection. Given $\gamma \in \Gamma$, we define \mathfrak{z}^{γ} to be the unique element in \mathfrak{M} with $v(\mathfrak{z}^{\gamma}) = \gamma$.

Proposition

Let $G \subseteq K^{\neq 0}$ *be divisible with* $v(G) = \Gamma$ *. Then there is a monomial group* $\mathfrak{M} \subseteq G$ *for K.*

Let *K* be a valued field.

A **monomial group** for *K* is a subgroup $\mathfrak{M} \subseteq K^{\neq 0}$ such that $v_{|\mathfrak{M}|}$ is a bijection. Given $\gamma \in \Gamma$, we define \mathfrak{z}^{γ} to be the unique element in \mathfrak{M} with $v(\mathfrak{z}^{\gamma}) = \gamma$.

Proposition

Let $G \subseteq K^{\neq 0}$ *be divisible with* $v(G) = \Gamma$ *. Then there is a monomial group* $\mathfrak{M} \subseteq G$ *for K.*

Proof. Embed increasingly large subgroups Δ of Γ into G. Given $\Gamma \supseteq \Delta \hookrightarrow G$ and $\gamma \in \Gamma \setminus \Delta$, let $k \in \mathbb{N}$ with $k \mathbb{Z} = \{n \in \mathbb{Z} : n \gamma \in \Delta\}$. Take $\mathfrak{z}^{\gamma} \in G$ with $v(\mathfrak{z}^{\gamma}) = \gamma$ such that $(\mathfrak{z}^{\gamma})^{k} = \mathfrak{z}^{k\gamma}$ whenever k > 0. Apply Zorn.

Let *K* be a valued field.

A **monomial group** for *K* is a subgroup $\mathfrak{M} \subseteq K^{\neq 0}$ such that $v_{|\mathfrak{M}|}$ is a bijection. Given $\gamma \in \Gamma$, we define \mathfrak{z}^{γ} to be the unique element in \mathfrak{M} with $v(\mathfrak{z}^{\gamma}) = \gamma$.

Proposition

Let $G \subseteq K^{\neq 0}$ *be divisible with* $v(G) = \Gamma$ *. Then there is a monomial group* $\mathfrak{M} \subseteq G$ *for K.*

Proof. Embed increasingly large subgroups Δ of Γ into G. Given $\Gamma \supseteq \Delta \hookrightarrow G$ and $\gamma \in \Gamma \setminus \Delta$, let $k \in \mathbb{N}$ with $k \mathbb{Z} = \{n \in \mathbb{Z} : n \gamma \in \Delta\}$. Take $\mathfrak{z}^{\gamma} \in G$ with $v(\mathfrak{z}^{\gamma}) = \gamma$ such that $(\mathfrak{z}^{\gamma})^{k} = \mathfrak{z}^{k\gamma}$ whenever k > 0. Apply Zorn.

Examples:

• $G = K^{\neq 0}$ for an algebraically closed valued field *K*.

Let *K* be a valued field.

A **monomial group** for *K* is a subgroup $\mathfrak{M} \subseteq K^{\neq 0}$ such that $v_{|\mathfrak{M}|}$ is a bijection. Given $\gamma \in \Gamma$, we define \mathfrak{z}^{γ} to be the unique element in \mathfrak{M} with $v(\mathfrak{z}^{\gamma}) = \gamma$.

Proposition

Let $G \subseteq K^{\neq 0}$ *be divisible with* $v(G) = \Gamma$ *. Then there is a monomial group* $\mathfrak{M} \subseteq G$ *for K.*

Proof. Embed increasingly large subgroups Δ of Γ into G. Given $\Gamma \supseteq \Delta \hookrightarrow G$ and $\gamma \in \Gamma \setminus \Delta$, let $k \in \mathbb{N}$ with $k \mathbb{Z} = \{n \in \mathbb{Z} : n \gamma \in \Delta\}$. Take $\mathfrak{z}^{\gamma} \in G$ with $v(\mathfrak{z}^{\gamma}) = \gamma$ such that $(\mathfrak{z}^{\gamma})^{k} = \mathfrak{z}^{k\gamma}$ whenever k > 0. Apply Zorn.

Examples:

- $G = K^{\neq 0}$ for an algebraically closed valued field *K*.
- $G = K^{>0}$ for a real closed field *K*.

Newton polynomials

Let *K* be a valued field and $P \in K[Y]^{\neq 0}$. We extend the valuation *v* to K[Y] by $v(P_d Y^d + \dots + P_0) := \min(v(P_d), \dots, v(P_0)).$

We also define the relation \propto on k[Y] by

$$A \propto B \iff (\exists \lambda \in k^{\neq 0}) B = \lambda A.$$

The **projective Newton polynomial** $N_{\infty}(P) \in k[Y]/\infty$ is defined by $N_{\infty}(P) := \overline{aP}/\infty$, where $a \in K$ is such that $aP \approx 1$.

The **monic Newton polynomial** $N_{mon}(P) \in k[Y]$ is the monic polynomial with $N_{mon}(P)/\propto = N_{\infty}(P)$

If *K* has a monomial group, then we define the **Newton polynomial** $N(P) \in k[Y]$ by $N(P) := \overline{\mathfrak{z}^{-v(P)}P}$.

Newton degree

Given $P \in K[Y]$ and $\gamma \in \Gamma$, one may consider the asymptotic equation

$$P(y) = 0, \qquad v(y) > \gamma.$$

The **Newton degrees** of this equation is defined by

$$\deg_{>\gamma} P := \operatorname{val} N_{\propto}(P_{\times a})$$

where $a \in K^{\neq 0}$ is such that $v(a) = \gamma$.

Equations of Newton degree one are said to be **quasi-linear**.

Definition

We say that K is henselian if any quasi-linear equation has a solution in K.

Let *K* be a henselian valued field of characteristic zero with a divisible value group Γ .

Let *K* be a henselian valued field of characteristic zero with a divisible value group Γ .

Theorem

Let $P \in K[Y]^{\neq 0}$ *and* $\gamma \in \Gamma$ *. If* k *is algebraically closed, then*

 $P(y) = 0, \qquad v(y) > \gamma$

has exactly $\deg_{>\gamma} P$ solutions in *K*, when counting with multiplicities.

Let *K* be a henselian valued field of characteristic zero with a divisible value group Γ .

Theorem

Let $P \in K[Y]^{\neq 0}$ *and* $\gamma \in \Gamma$ *. If* k *is algebraically closed, then*

 $P(y) \ = \ 0, \qquad v(y) \ > \ \gamma$

has exactly $\deg_{>\gamma} P$ solutions in *K*, when counting with multiplicities.

Proof. Straightforward adaptation of proof from Lesson 4.

Let *K* be a henselian valued field of characteristic zero with a divisible value group Γ .

Theorem

Let $P \in K[Y]^{\neq 0}$ *and* $\gamma \in \Gamma$ *. If* k *is algebraically closed, then*

 $P(y) \ = \ 0, \qquad v(y) \ > \ \gamma$

has exactly $\deg_{>\gamma} P$ solutions in *K*, when counting with multiplicities.

Corollary

a) If *k* is algebraically closed, then so is *K*. *b*) If *k* is real closed, then so is *K*.

Let *K* be a henselian valued field of characteristic zero with a divisible value group Γ .

Theorem

Let $P \in K[Y]^{\neq 0}$ *and* $\gamma \in \Gamma$ *. If* k *is algebraically closed, then*

 $P(y) \ = \ 0, \qquad v(y) \ > \ \gamma$

has exactly $\deg_{>\gamma} P$ solutions in *K*, when counting with multiplicities.

Corollary

a) If *k* is algebraically closed, then so is *K*.

b) If k is real closed, then so is K.

Proof of (b). Since k[i] is algebraically closed, so is K[i], by (*a*).

Let *K* be a henselian valued field of characteristic zero with a divisible value group Γ .

Theorem

Let $P \in K[Y]^{\neq 0}$ *and* $\gamma \in \Gamma$ *. If* k *is algebraically closed, then*

 $P(y) \ = \ 0, \qquad v(y) \ > \ \gamma$

has exactly $\deg_{>\gamma} P$ solutions in *K*, when counting with multiplicities.

Corollary

a) If *k* is algebraically closed, then so is *K*.

b) If k is real closed, then so is K.

Proof of (*b*). Since k[i] is algebraically closed, so is K[i], by (*a*). The complex roots of *P* in K[i] come in conjugate pairs.

Let *K* be a henselian valued field of characteristic zero with a divisible value group Γ .

Theorem

Let $P \in K[Y]^{\neq 0}$ *and* $\gamma \in \Gamma$ *. If* k *is algebraically closed, then*

 $P(y) \ = \ 0, \qquad v(y) \ > \ \gamma$

has exactly $\deg_{>\gamma} P$ solutions in *K*, when counting with multiplicities.

Corollary

a) *If k**is algebraically closed, then so is**K***.**

b) If k is real closed, then so is K.

Proof of (b). Since *k*[i] is algebraically closed, so is *K*[i], by (*a*). The complex roots of *P* in *K*[i] come in conjugate pairs. If deg *P* is odd, this means that *P* has at least one root in *K*.

Given a valued field *K*, describe the valued field extensions $L := K(y) \supseteq K$.

Given a valued field *K*, describe the valued field extensions $L := K(y) \supseteq K$.

Given a valued field *K*, describe the valued field extensions $L := K(y) \supseteq K$.

Given a valued field *K*, describe the valued field extensions $L := K(y) \supseteq K$.

$\begin{array}{c} K(y) \\ \uparrow \\ K \end{array}$

- *y* is algebraic.
- *y* is transcendental.

Given a valued field *K*, describe the valued field extensions $L := K(y) \supseteq K$.

$\begin{array}{c} K(y) \\ \uparrow \\ K \end{array}$

- *y* is algebraic.
- *y* is transcendental.
- $k_L = k_K$, $\Gamma_L = \Gamma_K$ ($L \supseteq K$ is called an **immediate extension**).

Given a valued field *K*, describe the valued field extensions $L := K(y) \supseteq K$.

K(y) \bigwedge_{K}

- *y* is algebraic.
- *y* is transcendental.
- $k_L = k_K$, $\Gamma_L = \Gamma_K$ ($L \supseteq K$ is called an **immediate extension**).

•
$$k_L \subsetneq k_K$$
, $\Gamma_L = \Gamma_K$ with $y \preccurlyeq 1$ and $k_L = k_K(\bar{y})$.

Given a valued field *K*, describe the valued field extensions $L := K(y) \supseteq K$.

 $\begin{array}{c}
K(y) \\
 \\
 \\
K
\end{array}$

- *y* is algebraic.
- *y* is transcendental.
- $k_L = k_K$, $\Gamma_L = \Gamma_K$ ($L \supseteq K$ is called an **immediate extension**).
- $k_L \subsetneq k_K$, $\Gamma_L = \Gamma_K$ with $y \preccurlyeq 1$ and $k_L = k_K(\bar{y})$.
- $k_L = k_K$, $\Gamma_L \subsetneq \Gamma_K$ with $\Gamma_L = \Gamma_K + v(y) \mathbb{Z}$.

Given a valued field *K*, describe the valued field extensions $L := K(y) \supseteq K$.

K(y) \bigwedge K

2 × 3 fundamental kinds of extensions

- *y* is algebraic.
- *y* is transcendental.
- $k_L = k_K$, $\Gamma_L = \Gamma_K$ ($L \supseteq K$ is called an **immediate extension**).
- $k_L \subsetneq k_K$, $\Gamma_L = \Gamma_K$ with $y \preccurlyeq 1$ and $k_L = k_K(\bar{y})$.
- $k_L = k_K$, $\Gamma_L \subsetneq \Gamma_K$ with $\Gamma_L = \Gamma_K + v(y) \mathbb{Z}$.

How unique is the extension $K \subseteq K(y)$?

Given a valued field *K*, describe the valued field extensions $L := K(y) \supseteq K$.

2 × 3 fundamental kinds of extensions

- *y* is algebraic.
- *y* is transcendental.
- $k_L = k_K$, $\Gamma_L = \Gamma_K$ ($L \supseteq K$ is called an **immediate extension**).
- $k_L \subsetneq k_K$, $\Gamma_L = \Gamma_K$ with $y \preccurlyeq 1$ and $k_L = k_K(\bar{y})$.
- $k_L = k_K$, $\Gamma_L \subsetneq \Gamma_K$ with $\Gamma_L = \Gamma_K + v(y) \mathbb{Z}$.

How unique is the extension $K \subseteq K(y)$?

Given a valued field extension $F \supseteq K$ and $a \in F$ of "same type over K" as y, does there exist a unique embedding of valued fields $\varphi: K(y) \rightarrow F$ with $\varphi(y) = a$?

Pseudo-convergence

Let $(a_{\rho})_{\rho < \alpha} \in K^{\alpha}$ or shortly (a_{ρ}) be a sequence indexed by ordinals smaller than α .

Pseudo-convergence

Let $(a_{\rho})_{\rho < \alpha} \in K^{\alpha}$ or shortly (a_{ρ}) be a sequence indexed by ordinals smaller than α . We say that (a_{ρ}) is a **pseudo-cauchy sequence** (pc-sequence) if $(\exists \rho_0) \quad (\forall \tau > \sigma > \rho > \rho_0) \quad a_{\tau} - a_{\sigma} \prec a_{\sigma} - a_{\rho}.$

Pseudo-convergence

Let $(a_{\rho})_{\rho < \alpha} \in K^{\alpha}$ or shortly (a_{ρ}) be a sequence indexed by ordinals smaller than α . We say that (a_{ρ}) is a **pseudo-cauchy sequence** (pc-sequence) if $(\exists \rho_0) \quad (\forall \tau > \sigma > \rho > \rho_0) \quad a_{\tau} - a_{\sigma} \prec a_{\sigma} - a_{\rho}.$

We say that (a_{ρ}) **pseudo-converges** to $a \in K$ (notation: $a_{\rho} \rightsquigarrow a$), if $(\exists \rho_0) \quad (\forall \sigma > \rho > \rho_0) \quad a - a_{\sigma} \prec a - a_{\rho}.$
Let $(a_{\rho})_{\rho < \alpha} \in K^{\alpha}$ or shortly (a_{ρ}) be a sequence indexed by ordinals smaller than α . We say that (a_{ρ}) is a **pseudo-cauchy sequence** (pc-sequence) if $(\exists \rho_0) \quad (\forall \tau > \sigma > \rho > \rho_0) \quad a_{\tau} - a_{\sigma} \prec a_{\sigma} - a_{\rho}.$

We say that (a_{ρ}) **pseudo-converges** to $a \in K$ (notation: $a_{\rho} \rightsquigarrow a$), if $(\exists \rho_0) \quad (\forall \sigma > \rho > \rho_0) \quad a - a_{\sigma} \prec a - a_{\rho}.$

- 1, $1 + x^{-1}$, $1 + x^{-1} + x^{-2}$, ... pseudo-converges to $1 + x^{-1} + x^{-2} + \cdots$ in $\mathbb{R}[[x; e^x]]$.
- It also converges to $1 + x^{-1} + x^{-2} + \cdots$ in $\mathbb{R}[[x^{-1}]]$, but not in $\mathbb{R}[[x;e^x]]$.

Let $(a_{\rho})_{\rho < \alpha} \in K^{\alpha}$ or shortly (a_{ρ}) be a sequence indexed by ordinals smaller than α . We say that (a_{ρ}) is a **pseudo-cauchy sequence** (pc-sequence) if $(\exists \rho_0) \quad (\forall \tau > \sigma > \rho > \rho_0) \quad a_{\tau} - a_{\sigma} \prec a_{\sigma} - a_{\rho}.$

We say that (a_{ρ}) **pseudo-converges** to $a \in K$ (notation: $a_{\rho} \rightsquigarrow a$), if $(\exists \rho_0) \quad (\forall \sigma > \rho > \rho_0) \quad a - a_{\sigma} \prec a - a_{\rho}.$

- 1, $1 + x^{-1}$, $1 + x^{-1} + x^{-2}$, ... pseudo-converges to $1 + x^{-1} + x^{-2} + \cdots$ in $\mathbb{R}[[x; e^x]]$.
- It also converges to $1 + x^{-1} + x^{-2} + \cdots$ in $\mathbb{R}[[x^{-1}]]$, but not in $\mathbb{R}[[x;e^x]]$.

If (a_{ρ}) **pseudo-diverges**, then

Let $(a_{\rho})_{\rho < \alpha} \in K^{\alpha}$ or shortly (a_{ρ}) be a sequence indexed by ordinals smaller than α . We say that (a_{ρ}) is a **pseudo-cauchy sequence** (pc-sequence) if $(\exists \rho_0) \quad (\forall \tau > \sigma > \rho > \rho_0) \quad a_{\tau} - a_{\sigma} \prec a_{\sigma} - a_{\rho}.$

We say that (a_{ρ}) **pseudo-converges** to $a \in K$ (notation: $a_{\rho} \rightsquigarrow a$), if $(\exists \rho_0) \quad (\forall \sigma > \rho > \rho_0) \quad a - a_{\sigma} \prec a - a_{\rho}.$

- 1, $1 + x^{-1}$, $1 + x^{-1} + x^{-2}$, ... pseudo-converges to $1 + x^{-1} + x^{-2} + \cdots$ in $\mathbb{R}[[x; e^x]]$.
- It also converges to $1 + x^{-1} + x^{-2} + \cdots$ in $\mathbb{R}[[x^{-1}]]$, but not in $\mathbb{R}[[x;e^x]]$.

If (a_{ρ}) **pseudo-diverges**, then

• (a_{ρ}) is of **algebraic type** if there exists a $P \in K[Y]$ with $P(a_{\rho}) \rightarrow 0$

Let $(a_{\rho})_{\rho < \alpha} \in K^{\alpha}$ or shortly (a_{ρ}) be a sequence indexed by ordinals smaller than α . We say that (a_{ρ}) is a **pseudo-cauchy sequence** (pc-sequence) if $(\exists \rho_0) \quad (\forall \tau > \sigma > \rho > \rho_0) \quad a_{\tau} - a_{\sigma} \prec a_{\sigma} - a_{\rho}.$

We say that (a_{ρ}) **pseudo-converges** to $a \in K$ (notation: $a_{\rho} \rightsquigarrow a$), if $(\exists \rho_0) \quad (\forall \sigma > \rho > \rho_0) \quad a - a_{\sigma} \prec a - a_{\rho}.$

- 1, $1 + x^{-1}$, $1 + x^{-1} + x^{-2}$, ... pseudo-converges to $1 + x^{-1} + x^{-2} + \cdots$ in $\mathbb{R}[[x; e^x]]$.
- It also converges to $1 + x^{-1} + x^{-2} + \cdots$ in $\mathbb{R}[[x^{-1}]]$, but not in $\mathbb{R}[[x;e^x]]$.

If (a_{ρ}) **pseudo-diverges**, then

- (a_{ρ}) is of **algebraic type** if there exists a $P \in K[Y]$ with $P(a_{\rho}) \rightarrow 0$
- Otherwise, (*a*_{*ρ*}) is of **transcendental type**.

Lemma TR-IMM

Let (a_{ρ}) be pseudo-divergent of transcendental type. Then v extends to K(Y) via

 $v(P) := eventual value of v(P(a_{\rho})), for any P \in K[Y].$

The extension $L := K(Y) \supseteq K$ *is immediate and* $a_{\rho} \rightsquigarrow Y$ *in* L*. Moreover, if* $a_{\rho} \rightsquigarrow a$ *in another immediate extension* $F \supseteq K$ *, then there is a unique embedding* $\varphi: L \rightarrow F$ *over* K *with* $\varphi(Y) = a$ *.*

Lemma TR-IMM

Let (a_{ρ}) be pseudo-divergent of transcendental type. Then v extends to K(Y) via

 $v(P) := eventual value of v(P(a_{\rho})), for any P \in K[Y].$

The extension $L := K(Y) \supseteq K$ *is immediate and* $a_{\rho} \rightsquigarrow Y$ *in* L*. Moreover, if* $a_{\rho} \rightsquigarrow a$ *in another immediate extension* $F \supseteq K$ *, then there is a unique embedding* $\varphi: L \rightarrow F$ *over* K *with* $\varphi(Y) = a$ *.*

Proof. Easy: our formula for v(P) yields a valuation with $\Gamma_L = \Gamma_K$ and $a_\rho \rightsquigarrow Y$.

Lemma TR-IMM

Let (a_{ρ}) be pseudo-divergent of transcendental type. Then v extends to K(Y) via

 $v(P) := eventual value of v(P(a_{\rho})), for any P \in K[Y].$

The extension $L := K(Y) \supseteq K$ *is immediate and* $a_{\rho} \rightsquigarrow Y$ *in* L*. Moreover, if* $a_{\rho} \rightsquigarrow a$ *in another immediate extension* $F \supseteq K$ *, then there is a unique embedding* $\varphi: L \rightarrow F$ *over* K *with* $\varphi(Y) = a$ *.*

Proof. Easy: our formula for v(P) yields a valuation with $\Gamma_L = \Gamma_K$ and $a_\rho \rightsquigarrow Y$.

Given $P \in K[Y]$ with v(P) = 0, let us show that $\overline{P} \in k_K$.

Lemma TR-IMM

Let (a_{ρ}) be pseudo-divergent of transcendental type. Then v extends to K(Y) via

 $v(P) := eventual value of v(P(a_{\rho})), for any P \in K[Y].$

The extension $L := K(Y) \supseteq K$ *is immediate and* $a_{\rho} \rightsquigarrow Y$ *in* L*. Moreover, if* $a_{\rho} \rightsquigarrow a$ *in another immediate extension* $F \supseteq K$ *, then there is a unique embedding* $\varphi: L \rightarrow F$ *over* K *with* $\varphi(Y) = a$ *.*

Proof. Easy: our formula for v(P) yields a valuation with $\Gamma_L = \Gamma_K$ and $a_\rho \rightsquigarrow Y$.

Given $P \in K[Y]$ with v(P) = 0, let us show that $\overline{P} \in k_K$. This will imply $k_L = k_K$.

Lemma TR-IMM

Let (a_{ρ}) be pseudo-divergent of transcendental type. Then v extends to K(Y) via

 $v(P) := eventual value of v(P(a_{\rho})), for any P \in K[Y].$

The extension $L := K(Y) \supseteq K$ *is immediate and* $a_{\rho} \rightsquigarrow Y$ *in* L*. Moreover, if* $a_{\rho} \rightsquigarrow a$ *in another immediate extension* $F \supseteq K$ *, then there is a unique embedding* $\varphi: L \rightarrow F$ *over* K *with* $\varphi(Y) = a$ *.*

Proof. Easy: our formula for v(P) yields a valuation with $\Gamma_L = \Gamma_K$ and $a_\rho \rightsquigarrow Y$.

Given $P \in K[Y]$ with v(P) = 0, let us show that $\overline{P} \in k_K$. This will imply $k_L = k_K$. We have, $v(P(a_\rho)) = 0$ and $v(P - P(a_\rho)) > 0$, eventually.

Lemma TR-IMM

Let (a_{ρ}) be pseudo-divergent of transcendental type. Then v extends to K(Y) via

 $v(P) := eventual value of v(P(a_{\rho})), for any P \in K[Y].$

The extension $L := K(Y) \supseteq K$ *is immediate and* $a_{\rho} \rightsquigarrow Y$ *in* L*. Moreover, if* $a_{\rho} \rightsquigarrow a$ *in another immediate extension* $F \supseteq K$ *, then there is a unique embedding* $\varphi: L \rightarrow F$ *over* K *with* $\varphi(Y) = a$ *.*

Proof. Easy: our formula for v(P) yields a valuation with $\Gamma_L = \Gamma_K$ and $a_\rho \rightsquigarrow Y$.

Given $P \in K[Y]$ with v(P) = 0, let us show that $\overline{P} \in k_K$. This will imply $k_L = k_K$. We have, $v(P(a_\rho)) = 0$ and $v(P - P(a_\rho)) > 0$, eventually.

Let $c = P(a_{\rho}) \in K$ with v(c) = 0 and v(P - c) > 0. Then $\overline{P} = \overline{c} \in k_{K}$.

Lemma TR-IMM

Let (a_{ρ}) be pseudo-divergent of transcendental type. Then v extends to K(Y) via

 $v(P) := eventual value of v(P(a_{\rho})), for any P \in K[Y].$

The extension $L := K(Y) \supseteq K$ *is immediate and* $a_{\rho} \rightsquigarrow Y$ *in* L*. Moreover, if* $a_{\rho} \rightsquigarrow a$ *in another immediate extension* $F \supseteq K$ *, then there is a unique embedding* $\varphi: L \rightarrow F$ *over* K *with* $\varphi(Y) = a$ *.*

Proof. Easy: our formula for v(P) yields a valuation with $\Gamma_L = \Gamma_K$ and $a_\rho \rightsquigarrow Y$.

Given $P \in K[Y]$ with v(P) = 0, let us show that $\overline{P} \in k_K$. This will imply $k_L = k_K$. We have, $v(P(a_\rho)) = 0$ and $v(P - P(a_\rho)) > 0$, eventually.

Let $c = P(a_{\rho}) \in K$ with v(c) = 0 and v(P - c) > 0. Then $\overline{P} = \overline{c} \in k_{K}$.

If $a_{\rho} \rightsquigarrow a$ in $F \supseteq K$ and $P \in K[Y] \setminus K$, then $P(a_{\rho}) \rightsquigarrow P(a)$, by Taylor expansion around a.

Lemma TR-IMM

Let (a_{ρ}) be pseudo-divergent of transcendental type. Then v extends to K(Y) via

 $v(P) := eventual value of v(P(a_{\rho})), for any P \in K[Y].$

The extension $L := K(Y) \supseteq K$ *is immediate and* $a_{\rho} \rightsquigarrow Y$ *in* L*. Moreover, if* $a_{\rho} \rightsquigarrow a$ *in another immediate extension* $F \supseteq K$ *, then there is a unique embedding* $\varphi: L \rightarrow F$ *over* K *with* $\varphi(Y) = a$ *.*

Proof. Easy: our formula for v(P) yields a valuation with $\Gamma_L = \Gamma_K$ and $a_\rho \rightsquigarrow Y$.

Given $P \in K[Y]$ with v(P) = 0, let us show that $\overline{P} \in k_K$. This will imply $k_L = k_K$. We have, $v(P(a_\rho)) = 0$ and $v(P - P(a_\rho)) > 0$, eventually.

Let $c = P(a_{\rho}) \in K$ with v(c) = 0 and v(P - c) > 0. Then $\overline{P} = \overline{c} \in k_{K}$.

If $a_{\rho} \rightsquigarrow a$ in $F \supseteq K$ and $P \in K[Y] \setminus K$, then $P(a_{\rho}) \rightsquigarrow P(a)$, by Taylor expansion around a. Hence, $v(P(a)) = v(P(a_{\rho})) = v(P)$, eventually, so $P(a) \neq 0$ and a is transcendental.

Lemma TR-IMM

Let (a_{ρ}) *be pseudo-divergent of transcendental type. Then v extends to K*(*Y*) *via*

 $v(P) := eventual value of v(P(a_{\rho})), for any P \in K[Y].$

The extension $L := K(Y) \supseteq K$ *is immediate and* $a_{\rho} \rightsquigarrow Y$ *in* L*. Moreover, if* $a_{\rho} \rightsquigarrow a$ *in another immediate extension* $F \supseteq K$ *, then there is a unique embedding* $\varphi: L \rightarrow F$ *over* K *with* $\varphi(Y) = a$ *.*

Proof. Easy: our formula for v(P) yields a valuation with $\Gamma_L = \Gamma_K$ and $a_\rho \rightsquigarrow Y$.

Given $P \in K[Y]$ with v(P) = 0, let us show that $\overline{P} \in k_K$. This will imply $k_L = k_K$. We have, $v(P(a_\rho)) = 0$ and $v(P - P(a_\rho)) > 0$, eventually.

Let $c = P(a_{\rho}) \in K$ with v(c) = 0 and v(P - c) > 0. Then $\overline{P} = \overline{c} \in k_{K}$.

If $a_{\rho} \rightarrow a$ in $F \supseteq K$ and $P \in K[Y] \setminus K$, then $P(a_{\rho}) \rightarrow P(a)$, by Taylor expansion around a. Hence, $v(P(a)) = v(P(a_{\rho})) = v(P)$, eventually, so $P(a) \neq 0$ and a is transcendental. We conclude that $\exists !$ ring morphism $\varphi : L \rightarrow F$ with $\varphi(Y) = a$ and φ preserves v. \Box

Lemma ALG-IMM

Let (a_{ρ}) be pseudo-divergent of algebraic type. Let $\mu \in K[Y]$ be of minimal degree d with $\mu(a_{\rho}) \rightarrow 0$. Let $L := K[Y]/(\mu)$, $y := Y + (\mu)$, $K[Y]_d := \{P \in K[Y] : \deg P < d\}$. Then $v(P(y)) := eventual value of <math>v(P(a_{\rho}))$, for any $P \in K[Y]_d$ yields an extension of v to L. This extension $L := K(Y) \supseteq K$ is immediate and $a_{\rho} \rightarrow y$ in L. Moreover, if $a_{\rho} \rightarrow a$ and $\mu(a) = 0$ for a in another immediate extension $F \supseteq K$, there is a unique embedding $\varphi: L \rightarrow F$ over K with $\varphi(y) = a$.

Lemma ALG-IMM

Let (a_{ρ}) be pseudo-divergent of algebraic type. Let $\mu \in K[Y]$ be of minimal degree d with $\mu(a_{\rho}) \rightarrow 0$. Let $L := K[Y]/(\mu)$, $y := Y + (\mu)$, $K[Y]_d := \{P \in K[Y] : \deg P < d\}$. Then $v(P(y)) := eventual value of <math>v(P(a_{\rho}))$, for any $P \in K[Y]_d$ yields an extension of v to L. This extension $L := K(Y) \supseteq K$ is immediate and $a_{\rho} \rightarrow y$ in L. Moreover, if $a_{\rho} \rightarrow a$ and $\mu(a) = 0$ for a in another immediate extension $F \supseteq K$, there is a unique embedding $\varphi: L \rightarrow F$ over K with $\varphi(y) = a$.

Proof. Mostly similar to previous lemma, except for v(st) = v(s) + P(t) in $L^{\neq 0}$.

Lemma ALG-IMM

Let (a_{ρ}) be pseudo-divergent of algebraic type. Let $\mu \in K[Y]$ be of minimal degree d with $\mu(a_{\rho}) \rightarrow 0$. Let $L := K[Y]/(\mu)$, $y := Y + (\mu)$, $K[Y]_d := \{P \in K[Y] : \deg P < d\}$. Then $v(P(y)) := eventual value of <math>v(P(a_{\rho}))$, for any $P \in K[Y]_d$ yields an extension of v to L. This extension $L := K(Y) \supseteq K$ is immediate and $a_{\rho} \rightarrow y$ in L. Moreover, if $a_{\rho} \rightarrow a$ and $\mu(a) = 0$ for a in another immediate extension $F \supseteq K$, there is a unique embedding $\varphi: L \rightarrow F$ over K with $\varphi(y) = a$.

Proof. Mostly similar to previous lemma, except for v(st) = v(s) + P(t) in $L^{\neq 0}$. Write s = S(y), $t \in T(y)$, $S, T \in K[Y]_d$. $ST =: Q \mu + R$, $R \in K[Y]_d$, so that R(y) = st.

Lemma ALG-IMM

Let (a_{ρ}) be pseudo-divergent of algebraic type. Let $\mu \in K[Y]$ be of minimal degree d with $\mu(a_{\rho}) \rightarrow 0$. Let $L := K[Y]/(\mu)$, $y := Y + (\mu)$, $K[Y]_d := \{P \in K[Y] : \deg P < d\}$. Then v(P(y)) := eventual value of $v(P(a_{\rho}))$, for any $P \in K[Y]_d$ yields an extension of v to L. This extension $L := K(Y) \supseteq K$ is immediate and $a_{\rho} \rightarrow y$ in L. Moreover, if $a_{\rho} \rightarrow a$ and $\mu(a) = 0$ for a in another immediate extension $F \supseteq K$, there is a unique embedding $\varphi: L \rightarrow F$ over K with $\varphi(y) = a$.

Proof. Mostly similar to previous lemma, except for v(st) = v(s) + P(t) in $L^{\neq 0}$. Write s = S(y), $t \in T(y)$, $S, T \in K[Y]_d$. $ST =: Q \mu + R$, $R \in K[Y]_d$, so that R(y) = st. Eventually, $v(st) = v(R(a_\rho))$

Lemma ALG-IMM

Let (a_{ρ}) be pseudo-divergent of algebraic type. Let $\mu \in K[Y]$ be of minimal degree d with $\mu(a_{\rho}) \rightarrow 0$. Let $L := K[Y]/(\mu)$, $y := Y + (\mu)$, $K[Y]_d := \{P \in K[Y] : \deg P < d\}$. Then v(P(y)) := eventual value of $v(P(a_{\rho}))$, for any $P \in K[Y]_d$ yields an extension of v to L. This extension $L := K(Y) \supseteq K$ is immediate and $a_{\rho} \rightarrow y$ in L. Moreover, if $a_{\rho} \rightarrow a$ and $\mu(a) = 0$ for a in another immediate extension $F \supseteq K$, there is a unique embedding $\varphi: L \rightarrow F$ over K with $\varphi(y) = a$.

Proof. Mostly similar to previous lemma, except for v(st) = v(s) + P(t) in $L^{\neq 0}$. Write s = S(y), $t \in T(y)$, $S, T \in K[Y]_d$. $ST =: Q \mu + R$, $R \in K[Y]_d$, so that R(y) = st. Eventually, $v(st) = v(R(a_{\rho}))$ and $v(s) + v(t) = v(S(a_{\rho})T(a_{\rho})) = v(Q(a_{\rho})\mu(a_{\rho}) + R(a_{\rho}))$.

Lemma ALG-IMM

Let (a_{ρ}) be pseudo-divergent of algebraic type. Let $\mu \in K[Y]$ be of minimal degree d with $\mu(a_{\rho}) \rightarrow 0$. Let $L := K[Y]/(\mu)$, $y := Y + (\mu)$, $K[Y]_d := \{P \in K[Y] : \deg P < d\}$. Then $v(P(y)) := eventual value of <math>v(P(a_{\rho}))$, for any $P \in K[Y]_d$ yields an extension of v to L. This extension $L := K(Y) \supseteq K$ is immediate and $a_{\rho} \rightarrow y$ in L.

Moreover, if $a_{\rho} \rightarrow a$ and $\mu(a) = 0$ for a in another immediate extension $F \supseteq K$, there is a unique embedding $\varphi: L \rightarrow F$ over K with $\varphi(y) = a$.

Proof. Mostly similar to previous lemma, except for v(st) = v(s) + P(t) in $L^{\neq 0}$. Write s = S(y), $t \in T(y)$, $S, T \in K[Y]_d$. $ST =: Q \mu + R$, $R \in K[Y]_d$, so that R(y) = st. Eventually, $v(st) = v(R(a_{\rho}))$ and $v(s) + v(t) = v(S(a_{\rho}) T(a_{\rho})) = v(Q(a_{\rho}) \mu(a_{\rho}) + R(a_{\rho}))$. But $Q(a_{\rho}) \mu(\alpha_{\rho})$ is eventually increasing or eventually infinite.

Lemma ALG-IMM

Let (a_{ρ}) be pseudo-divergent of algebraic type. Let $\mu \in K[Y]$ be of minimal degree d with $\mu(a_{\rho}) \rightarrow 0$. Let $L := K[Y]/(\mu)$, $y := Y + (\mu)$, $K[Y]_d := \{P \in K[Y] : \deg P < d\}$. Then $v(P(y)) := eventual value of <math>v(P(a_{\rho}))$, for any $P \in K[Y]_d$

yields an extension of v to L. This extension $L := K(Y) \supseteq K$ is immediate and $a_{\rho} \rightarrow y$ in L. Moreover, if $a_{\rho} \rightarrow a$ and $\mu(a) = 0$ for a in another immediate extension $F \supseteq K$, there is a unique embedding $\varphi: L \rightarrow F$ over K with $\varphi(y) = a$.

Proof. Mostly similar to previous lemma, except for v(st) = v(s) + P(t) in $L^{\neq 0}$. Write s = S(y), $t \in T(y)$, $S, T \in K[Y]_d$. $ST =: Q \mu + R$, $R \in K[Y]_d$, so that R(y) = st. Eventually, $v(st) = v(R(a_{\rho}))$ and $v(s) + v(t) = v(S(a_{\rho}) T(a_{\rho})) = v(Q(a_{\rho}) \mu(a_{\rho}) + R(a_{\rho}))$. But $Q(a_{\rho}) \mu(\alpha_{\rho})$ is eventually increasing or eventually infinite. Eventually, this yields $v(Q(a_{\rho}) \mu(a_{\rho})) > v(R(a_{\rho}))$ and $v(s) + v(t) = v(R(a_{\rho})) = v(st)$.

Definition

A valued field K is said to be **spherically complete** if every pc-sequence pseudo-converges.

Definition

A valued field K is said to be **spherically complete** if every pc-sequence pseudo-converges.

Example. If *R* is a field and \mathfrak{M} totally ordered, then *R*[[\mathfrak{M}]] is sperically complete.

Definition

A valued field K is said to be **spherically complete** if every pc-sequence pseudo-converges.

Example. If *R* is a field and \mathfrak{M} totally ordered, then *R*[[\mathfrak{M}]] is sperically complete.

Theorem

Any valued field K has a unique immediate spherical completion, up to isomorphism.

Definition

A valued field K is said to be **spherically complete** if every pc-sequence pseudo-converges.

Example. If *R* is a field and \mathfrak{M} totally ordered, then *R*[[\mathfrak{M}]] is sperically complete.

Theorem

Any valued field K has a unique immediate spherical completion, up to isomorphism.

Proof. Combine Lemmas TR-IMM and ALG-IMM, and apply Zorn.

Definition

A valued field K is said to be **algebraically maximal** if it does not admit any proper immediate algebraic valued field extension.

Definition

A valued field K is said to be **algebraically maximal** if it does not admit any proper immediate algebraic valued field extension.

Examples. Any algebraically closed or spherically complete valued field.

Definition

A valued field K is said to be **algebraically maximal** if it does not admit any proper immediate algebraic valued field extension.

Examples. Any algebraically closed or spherically complete valued field.

Theorem

Any valued field K has a unique algebraically maximal extension, up to isomorphism.

Definition

A valued field K is said to be **algebraically maximal** if it does not admit any proper immediate algebraic valued field extension.

Examples. Any algebraically closed or spherically complete valued field.

Theorem

Any valued field K has a unique algebraically maximal extension, up to isomorphism.

Proof. Use Lemma ALG-IMM and Zorn.

Definition

A valued field K is said to be **algebraically maximal** if it does not admit any proper immediate algebraic valued field extension.

Examples. Any algebraically closed or spherically complete valued field.

Theorem

Any valued field K has a unique algebraically maximal extension, up to isomorphism.

Proof. Use Lemma ALG-IMM and Zorn.

Proposition

If K is algebraically maximal, then K is henselian.

Definition

A valued field K is said to be **algebraically maximal** if it does not admit any proper immediate algebraic valued field extension.

Examples. Any algebraically closed or spherically complete valued field.

Theorem

Any valued field K has a unique algebraically maximal extension, up to isomorphism.

Proof. Use Lemma ALG-IMM and Zorn.

Proposition

If K is algebraically maximal, then K is henselian.

Proof. Any quasi-linear y = P(y), y < 1 with no solution in *K* gives rise to a divergent pc-sequence (a_{ρ}) with $P(a_{\rho}) \rightarrow 0$: $a_0 = 0$, $a_{\alpha+1} = P(a_{\alpha})$, $a_{\lambda} := \ell$, whenever $(a_{\alpha})_{\alpha < \lambda} \rightarrow \ell$. \Box

Definition

A valued field K is said to be **algebraically maximal** if it does not admit any proper *immediate algebraic valued field extension*.

Examples. Any algebraically closed or spherically complete valued field.

Theorem

Any valued field K has a unique algebraically maximal extension, up to isomorphism.

Proof. Use Lemma ALG-IMM and Zorn.

Proposition

If char $K = \text{char } \mathbf{k} = 0$, then *K* is algebraically maximal iff *K* is henselian.

Definition

A valued field K is said to be **algebraically maximal** if it does not admit any proper *immediate algebraic valued field extension*.

Examples. Any algebraically closed or spherically complete valued field.

Theorem

Any valued field K has a unique algebraically maximal extension, up to isomorphism.

Proof. Use Lemma ALG-IMM and Zorn.

Proposition

If char $K = \text{char } \mathbf{k} = 0$, then *K* is algebraically maximal iff *K* is henselian.

Proof. By what precedes and Newton polygon method.

Adjoining transcendental residues

Lemma TR-RES

Define $v: K(Y)^{\neq 0} \rightarrow \Gamma$ *with* v(P/Q) = v(P) - v(Q) *for* $P, Q \in K[Y]^{\neq 0}$ *and*

 $v(P) = \min(v(P_0), \dots, v(P_d)), \quad \text{for any } P = P_d Y^d + \dots + P_0 \in K[Y].$

Then $L := K(Y) \supseteq K$ *is a valued field extension with* $k_L = k(\overline{Y})$ *and* $\Gamma_L = \Gamma_K$.

For any valued field extension $F \supseteq K$ with $\Gamma_F = \Gamma_K$ and $a \in \mathcal{O}_L$ such that \bar{a} is transcendental over \mathbf{k}_K , there exists a unique valued field embedding $\varphi: L \to F$ over K with $\varphi(Y) = a$.

Proof. $L \supseteq K$ is easily seen to be a valued field extension. Clearly, $\Gamma_L = \Gamma_K$. Consider $A \in L$ with v(A) = 0. We claim that $\bar{A} \in k(\bar{Y})$, which proves $k_L = k(\bar{Y})$. Indeed, A = P/Q with $P, Q \in K[Y]$ such that v(P) = v(Q) = 0. Then $\bar{P}, \bar{Q} \in k[\bar{Y}]^{\neq 0}$, so $\bar{A} = \bar{P}/\bar{Q} \in k(\bar{Y})$.

Y, *a* transcendental over $K \Longrightarrow \exists !$ field embedding $L \to F$ over *K* with $\varphi(Y) = a$. $v(a) = 0 \Longrightarrow v(P(a)) = \min(v(P_0), \dots, v(P_d))$ for any $P = P_d Y^d + \dots + P_0 \in K[Y]$.

Adjoining algebraic residues

Lemma ALG-RES

Let $\mu \in K[Y]$ with $v(\mu) = 0$ and $\bar{\mu} \in k[\bar{Y}]$ irreducible of degree $d = \deg \mu$. Then $y := Y + (\mu)$ in $L := K[Y]/(\mu)$. Then $L \supseteq K$ is a valued field extension with $k_L = k[\bar{y}]/(\bar{\mu})$ and $\Gamma_L = \Gamma_K$ for $v(P(y)) = \min(v(P_0), \dots, v(P_{d-1})), \quad \text{for any } P \in K[Y]_d.$

For any valued field extension $F \supseteq K$ with $\Gamma_F = \Gamma_K$ and $a \in \mathcal{O}_L$ such that $k(\bar{a}) \cong k_L$, there exists a unique valued field embedding $\varphi: L \to F$ over K with $\varphi(y) = a$.

Note. μ is irreducible in K[Y] since $\overline{\mu}$ is irreducible in $k[\overline{Y}]$, by Gauss' lemma.

Proof. Similar to previous lemma, except for v(st) = v(s) + v(t) in *L*. Any $s \in L$ can be decomposed $s = u\tilde{s}$ with $u \in K$ and $\tilde{s} \in L$ such that $v(\tilde{s}) = 0$. Without loss of generality, we may therefore assume that v(s) = v(t) = 0. Then $\bar{s}, \bar{t} \in k_L^{\neq 0}$, so $s\bar{t} = \bar{s}\bar{t} \in k_L^{\neq 0}$, hence v(st) = 0.

Adjoining "transcendental" elements to Γ

Lemma TR-VAL

Let $\Delta \supseteq \Gamma$ be a totally ordered group and $\gamma \in \Delta$ be such that $\Delta = \Gamma \oplus \mathbb{Z} \gamma$. Then there is a unique valued field extension $L := K(Y) \supseteq K$ with $v(Y) = \gamma$. It is given by

 $v(P) := \min(v(P_0), \dots, v(P_d) + d\gamma), \quad \text{for all } P = P_d Y^d + \dots + P_0 \in K[Y]^{\neq 0}.$

Moreover, if $F \supseteq K$ *is a valued field extension and* $a \in F$ *transcendental such that* v(a) *and* γ *lie in the same cut over* Γ *, then* \exists ! *valued field embedding* $\varphi: L \rightarrow F$ *over* K *with* $\varphi(a) = Y$.

Exercise. We also have $k_L = k_K$.

Adjoining "transcendental" elements to Γ

Lemma TR-VAL

Let $\Delta \supseteq \Gamma$ be a totally ordered group and $\gamma \in \Delta$ be such that $\Delta = \Gamma \oplus \mathbb{Z} \gamma$. Then there is a unique valued field extension $L := K(Y) \supseteq K$ with $v(Y) = \gamma$. It is given by

 $v(P) := \min(v(P_0), \dots, v(P_d) + d\gamma), \quad \text{for all } P = P_d Y^d + \dots + P_0 \in K[Y]^{\neq 0}.$

Moreover, if $F \supseteq K$ *is a valued field extension and* $a \in F$ *transcendental such that* v(a) *and* γ *lie in the same cut over* Γ *, then* \exists ! *valued field embedding* $\varphi: L \rightarrow F$ *over* K *with* $\varphi(a) = Y$.

Proof. For $P = P_d Y^d + \dots + P_0 \in K[Y]^{\neq 0}$, there exists exactly one *i* with $v(P) = v(P_i) + i\gamma$. Given a second $Q \in K[Y]^{\neq 0}$, there is also exactly one *j* with $v(Q) = v(Q_j) + j\gamma$. One verifies that $v(PQ) = v(P_iQ_j) + (i+j)\gamma = v(P) + v(Q)$, so v_L is a valuation on *L*.

Y, *a* transcendental over $K \Longrightarrow \exists !$ field embedding $\varphi: L \to F$ over *K* with $\gamma(a) = Y$. $v(P(a)) = \min(v(P_0), \dots, v(P_d) + dv(a))$ for all $P = P_d Y^d + \dots + P_0 \in K[Y]^{\neq 0}$. Hence φ preserves *v*, since v(a) and γ lie in the same cut over Γ .
Adjoining "algebraic" elements to Γ

Lemma ALG-VAL

Let $\gamma \in d^{-1}\Gamma$ be such that $\Delta := \Gamma + \gamma \mathbb{Z} = \Gamma \cup \Gamma + \gamma \cup \cdots \cup \Gamma + (d-1)\gamma \supseteq \Gamma$ for d > 1. Let $\xi \in K$ be such that $v(\xi) = d\gamma$ and $\mu := Y^d - \xi \in K[Y]$. Let $L := K[Y]/(\mu)$ and $y = Y + (\mu)$. Then $L \supseteq K$ is a valued field extension for the valuation defined by

 $v(P(y)) := \min(v(P_0), \dots, v(P_{p-1}) + (d-1)\gamma), \quad \text{for all } P \in K[Y]_d^{\neq 0}.$

Moreover, if $F \supseteq K$ *is a valued field extension and* $a \in F$ *satisfies* $a^d = \xi$ *, then there exists a unique valued field embedding* $\varphi: L \to F$ *over* K *with* $\varphi(a) = y$.

Exercise. We also have $k_L = k_K$.

Proof. Similar to the previous proof (exercise).

Algebraic closure of valued fields

Theorem

If char K = char k = 0, then the valuation on K can be extended to the algebraic closure K^a of K. Any valued field embedding $K \to F$ into another algebraically closed field F extends to a valued field embedding $K^a \to F$.

Proof. Lemmas ALG-IMM, ALG-RES, ALG-VAL, and Zorn yield:

- An algebraic valued field extension $L \supseteq K$, such that
 - *L* is henselian (ALG-IMM).
 - k_L algebraically closed (ALG-RES).
 - Γ_L is divisible (ALG-VAL).
- Any valued field embedding $K \rightarrow F$ extends to a valued field embedding $K^a \rightarrow F$. (See also below.)

Newton polygon methods \implies *L* is algebraically closed.

Languages

Triples $\mathscr{L} = (S, \mathscr{L}^r, \mathscr{L}^f)$ of sorts (e.g. $\{K, \Gamma\}$), relations, and functions.

Languages

Triples $\mathscr{L} = (S, \mathscr{L}^r, \mathscr{L}^f)$ of sorts (e.g. $\{K, \Gamma\}$), relations, and functions.

L-structures

 $M = ((M_s)_{s \in S}, (R_i), (f_j))$, sets M_s , relations $R_i \subseteq M_{s_1} \times \cdots \times M_{s_n}$, functions $f_j: M_{s_1} \times \cdots \times M_{s_n} \to M_t$ (s_1, \ldots, s_n, t depend on i, j). Morphisms, ...

Languages

Triples $\mathscr{L} = (S, \mathscr{L}^r, \mathscr{L}^f)$ of sorts (e.g. $\{K, \Gamma\}$), relations, and functions.

L-structures

 $M = ((M_s)_{s \in S}, (R_i), (f_j))$, sets M_s , relations $R_i \subseteq M_{s_1} \times \cdots \times M_{s_n}$, functions $f_j: M_{s_1} \times \cdots \times M_{s_n} \to M_t$ (s_1, \ldots, s_n, t depend on i, j). Morphisms, ...

L-formulas

Formed from \mathscr{L} , variables of the sorts *S*, and $\top, \bot, \neg, \lor, \land, =, \exists, \forall$. $\mathscr{L}_A :=$ extension of \mathscr{L} with constants $a \in A_s$ of sort *s* for $A = (A_s)_{s \in S}$

Languages

Triples $\mathscr{L} = (S, \mathscr{L}^r, \mathscr{L}^f)$ of sorts (e.g. $\{K, \Gamma\}$), relations, and functions.

L-structures

 $M = ((M_s)_{s \in S}, (R_i), (f_j))$, sets M_s , relations $R_i \subseteq M_{s_1} \times \cdots \times M_{s_n}$, functions $f_j: M_{s_1} \times \cdots \times M_{s_n} \to M_t$ (s_1, \ldots, s_n, t depend on i, j). Morphisms, ...

L-formulas

Formed from \mathscr{L} , variables of the sorts *S*, and $\top, \bot, \neg, \lor, \land, =, \exists, \forall$. $\mathscr{L}_A :=$ extension of \mathscr{L} with constants $a \in A_s$ of sort *s* for $A = (A_s)_{s \in S}$

L-theories

Let *M* be an \mathscr{L} -structure and Σ , Σ' sets of \mathscr{L} -formulas

 $\begin{array}{ll} M \models \Sigma & M \text{ is a model for } \Sigma & \Sigma \models \Sigma' & M \models T \text{ whenever } M \models \Sigma' \\ Th(M) & \{\sigma : M \models \sigma\} & Th(\Sigma) & \{\sigma : \Sigma \models \sigma\} \end{array}$

 $\mathcal L$: a fixed a language

- $\mathcal L$: a fixed a language
- $M \equiv N$ Th(M) = Th(N)M and N are elementary equivalent $M \leq N$ $M \subseteq N$ and $M \equiv \mathcal{B}_M N$ M is an elementary substructure of N

 $\mathcal L$: a fixed a language

 $M \equiv N$ Th(M) = Th(N)M and N are elementary equivalent $M \leq N$ $M \subseteq N$ and $M \equiv \mathcal{L}_M N$ M is an elementary substructure of N

 Σ is complete Σ has a model and $\Sigma \models \sigma$ or $\Sigma \models \neg \sigma$ for any formula σ T is an \mathscr{L} -theoryTh(T) = T Σ axiomatizes T $Th(\Sigma) = T$

$\mathcal L$: a fixed a language

 $M \equiv N$ Th(M) = Th(N)M and N are elementary equivalent $M \leq N$ $M \subseteq N$ and $M \equiv \mathcal{L}_M N$ M is an elementary substructure of N

 Σ is **complete** *T* is an *L***-theory** Σ **axiomatizes** *T*

$$\Sigma$$
 has a model and $\Sigma \models \sigma$ or $\Sigma \models \neg \sigma$ for any formula σ
Th(*T*) = *T*
Th(Σ) = *T*

qf-formula $\varphi(x)$ is **\Sigma-equivalent** to $\psi(x)$ Σ has **quantifier elimination** Formula that does not involve \forall or $\exists \Sigma \models \varphi(x) \iff \Sigma \models \psi(x)$ Any formula is Σ -equivalent to a qf-formula

$\mathcal L$: a fixed a language

 $M \equiv N$ Th(M) = Th(N)M and N are elementary equivalent $M \leq N$ $M \subseteq N$ and $M \equiv \mathcal{L}_M N$ M is an elementary substructure of N

 Σ is **complete** *T* is an *L***-theory** Σ **axiomatizes** *T* Σ has a model and $\Sigma \models \sigma$ or $\Sigma \models \neg \sigma$ for any formula σ Th(*T*) = *T* Th(Σ) = *T*

qf-formula ∃-formula $\varphi(x)$ is **\Sigma-equivalent** to $\psi(x)$ Σ has **quantifier elimination** Σ is **model complete** Formula that does not involve \forall or \exists Formula $(\exists x) \varphi(x)$ for some qf-formula $\varphi(x)$ $\Sigma \models \varphi(x) \iff \Sigma \models \psi(x)$

Any formula is Σ -equivalent to a qf-formula Any formula is Σ -equivalent to an \exists -formula

\mathcal{L} : a fixed a language

 $M \equiv N$ Th(M) = Th(N)M and N are elementary equivalent $M \leq N$ $M \subseteq N$ and $M \equiv_{\mathcal{L}_M} N$ M is an elementary substructure of N

 Σ is **complete** *T* is an *L***-theory** Σ **axiomatizes** *T* Σ has a model and $\Sigma \models \sigma$ or $\Sigma \models \neg \sigma$ for any formula σ Th(*T*) = *T* Th(Σ) = *T*

qf-formula ∃-formula $\varphi(x)$ is **\Sigma-equivalent** to $\psi(x)$ Σ has **quantifier elimination** Σ is **model complete** T^* is a **model companion** of T

Formula that does not involve \forall or \exists Formula $(\exists x) \varphi(x)$ for some qf-formula $\varphi(x)$ $\Sigma \models \varphi(x) \iff \Sigma \models \psi(x)$

Any formula is Σ -equivalent to a qf-formula Any formula is Σ -equivalent to an \exists -formula T^* model complete and

Any model of *T* embeds into a model of T^*

Let $\Phi = \Phi(x)$ be a set of formulas depending on free variables $x = (x_i)$ of sorts (s_i) Let M be an \mathscr{L} -structure and $M_x := \prod_i M_{s_i}$.

Let $\Phi = \Phi(x)$ be a set of formulas depending on free variables $x = (x_i)$ of sorts (s_i) Let M be an \mathscr{L} -structure and $M_x := \prod_i M_{s_i}$.

 $a \in M_x$ realizes Φ in M Φ is realized in M Φ is **\Sigma-realizable** $M \models \varphi(a) \text{ for all } \varphi \in \Phi$ *a* realizes Φ in *M* for some $a \in M_x$ Φ is realized in some model *M* of Σ

Let $\Phi = \Phi(x)$ be a set of formulas depending on free variables $x = (x_i)$ of sorts (s_i) Let M be an \mathscr{L} -structure and $M_x := \prod_i M_{s_i}$.

 $a \in M_x$ realizes Φ in M Φ is realized in M Φ is **\Sigma-realizable**

 Φ is an *x***-type**

— that is **complete**

 $- \operatorname{over} A \subseteq M \operatorname{in} M$

 $M \models \varphi(a) \text{ for all } \varphi \in \Phi$ *a* realizes Φ in *M* for some $a \in M_x$ Φ is realized in some model *M* of Σ

Φ is realized in some *M* either φ ∈ Φ or ¬φ ∈ Φ for all φ(x)Φ is a Th(*M*_A)-realizable *x*-type for the language \mathscr{L}_A

Let $\Phi = \Phi(x)$ be a set of formulas depending on free variables $x = (x_i)$ of sorts (s_i) Let M be an \mathscr{L} -structure and $M_x := \prod_i M_{s_i}$.

 $M \models \varphi(a)$ for all $\varphi \in \Phi$

 $a \in M_x$ realizes Φ in M Φ is realized in M Φ is **\Sigma-realizable**

 Φ is an *x*-type

- that is **complete**
- $over A \subseteq M in M$

M is *κ*-saturated

a realizes Φ in M for some $a \in M_x$ Φ is realized in some model M of Σ Φ is realized in some Meither $\varphi \in \Phi$ or $\neg \varphi \in \Phi$ for all $\varphi(x)$ Φ is a Th(M_A)-realizable x-type for the language \mathscr{L}_A For any $A \subseteq M$ of size $<\kappa$ and any variable v of \mathscr{L} , each complete v-type over A in M is realized in M

Let $\Phi = \Phi(x)$ be a set of formulas depending on free variables $x = (x_i)$ of sorts (s_i) Let M be an \mathscr{L} -structure and $M_x := \prod_i M_{s_i}$.

a realizes Φ in *M* for some $a \in M_r$

 $M \models \varphi(a)$ for all $\varphi \in \Phi$

 $a \in M_x$ realizes Φ in M Φ is realized in M Φ is **\Sigma-realizable**

 Φ is an *x***-type**

- that is **complete**
- over $A \subseteq M$ in M

M is *κ*-saturated

Φ is realized in some model *M* of Σ Φ is realized in some *M* either φ ∈ Φ or ¬φ ∈ Φ for all φ(x)Φ is a Th(*M*_A)-realizable *x*-type for the language \mathscr{L}_A For any *A*⊆*M* of size <*κ* and any variable *v* of \mathscr{L} , each complete *v*-type over *A* in *M* is realized in *M*

Proposition

Suppose that **M** is κ -saturated, κ is infinite, $A \subseteq M$ and x have size $<\kappa$. Then every *x*-type over *A* in **M** is realized in **M**.

Theorem

Assume that Σ eliminates quantifiers and also has a model.

Then Σ *is complete if and only if some* \mathscr{L} *-structure embeds into every model of* Σ *.*

Theorem

Assume that Σ eliminates quantifiers and also has a model.

Then Σ *is complete if and only if some* \mathscr{L} *-structure embeds into every model of* Σ *.*

Note: The \mathscr{L} -structure does not need to be a model of Σ .

Theorem

Assume that Σ eliminates quantifiers and also has a model.

Then Σ *is complete if and only if some* \mathscr{L} *-structure embeds into every model of* Σ *.*

Note: The \mathscr{L} -structure does not need to be a model of Σ .

Example.

• The theory ACF of algebraically closed fields has QE. (See below)

Theorem

Assume that Σ eliminates quantifiers and also has a model.

Then Σ *is complete if and only if some* \mathscr{L} *-structure embeds into every model of* Σ *.*

Note: The \mathscr{L} -structure does not need to be a model of Σ .

Example.

- The theory ACF of algebraically closed fields has QE. (See below)
- So does the theory ACF(0) of algebraically closed fields of characteristic zero.

Theorem

Assume that Σ eliminates quantifiers and also has a model.

Then Σ *is complete if and only if some* \mathscr{L} *-structure embeds into every model of* Σ *.*

Note: The \mathscr{L} -structure does not need to be a model of Σ .

Example.

- The theory ACF of algebraically closed fields has QE. (See below)
- So does the theory ACF(0) of algebraically closed fields of characteristic zero.
- Z embeds into any (algebraically closed) field of characteristic zero.

Theorem

Assume that Σ eliminates quantifiers and also has a model.

Then Σ *is complete if and only if some* \mathscr{L} *-structure embeds into every model of* Σ *.*

Note: The \mathscr{L} -structure does not need to be a model of Σ .

Example.

- The theory ACF of algebraically closed fields has QE. (See below)
- So does the theory ACF(0) of algebraically closed fields of characteristic zero.
- \mathbb{Z} embeds into any (algebraically closed) field of characteristic zero.
- Hence ACF(0) is complete.

Test for quantifier-elimination

Theorem

Let Σ be given and suppose that

- $M \models \Sigma$
- proper substructure $A \subsetneq M$
 - $|A|^+$ -saturated model N of Σ
 - embedding $\iota: A \hookrightarrow N$

Then Σ *admits quantifier elimination.*

• an extension $\hat{\iota}: A(b) \hookrightarrow N$ of ι

Test for model completeness

Theorem

Let Σ be given and suppose that

- $M \models \Sigma$
- $\forall \bullet A \models \Sigma \text{ with } A \subseteq M$
 - $|A|^+$ -saturated $N \geq A$
 - inclusion $\iota: A \hookrightarrow N$

Then Σ *is model complete.*

 \exists an embedding $\hat{\iota}: M \hookrightarrow N$ that extends ι

Theorem

The theory ACF of algebraically closed fields (for $\mathcal{L} = \{0, 1, +, -, \cdot\}$ *) has QE.*

Theorem

The theory ACF of algebraically closed fields (for $\mathcal{L} = \{0, 1, +, -, \cdot\}$ *) has QE.*

Proof. Let

- *E* be an algebraically closed field.
- $A \subseteq E$ a substructure, i.e. an integral domain.
- *F* an algebraically closed field that is $|A|^+$ -saturated.
- An embedding $\iota: A \to F$.

Theorem

The theory ACF of algebraically closed fields (for $\mathcal{L} = \{0, 1, +, -, \cdot\}$ *) has QE.*

Proof. Let

- *E* be an algebraically closed field.
- $A \subseteq E$ a substructure, i.e. an integral domain.
- *F* an algebraically closed field that is $|A|^+$ -saturated.
- An embedding $\iota: A \to F$.

Problem: construct $a \in E \setminus A$ + embedding $\hat{\iota}: A[a] \to F$ that extends ι .

Theorem

The theory ACF of algebraically closed fields (for $\mathcal{L} = \{0, 1, +, -, \cdot\}$ *) has QE.*

Proof. Let

- *E* be an algebraically closed field.
- $A \subseteq E$ a substructure, i.e. an integral domain.
- *F* an algebraically closed field that is $|A|^+$ -saturated.
- An embedding $\iota: A \to F$.

Problem: construct $a \in E \setminus A$ + embedding $\hat{\iota}: A[a] \to F$ that extends ι .

Case 0. A is not a field

Take $x \in A^{\neq 0}$ such that $a := x^{-1} \in E \setminus A$.

Theorem

The theory ACF of algebraically closed fields (for $\mathcal{L} = \{0, 1, +, -, \cdot\}$ *) has QE.*

Proof. Let

- *E* be an algebraically closed field.
- $A \subseteq E$ a substructure, i.e. an integral domain.
- *F* an algebraically closed field that is $|A|^+$ -saturated.
- An embedding $\iota: A \to F$.

Problem: construct $a \in E \setminus A$ + embedding $\hat{\iota}: A[a] \to F$ that extends ι .

Case 0. A is not a field

Take $x \in A^{\neq 0}$ such that $a := x^{-1} \in E \setminus A$.

Then ι uniquely extends into an embedding $\hat{\iota}: A[a] = A x^{-\mathbb{N}} \to F$ with $\hat{\iota}(a) = \iota(x)^{-1}$.

Theorem

The theory ACF of algebraically closed fields (for $\mathcal{L} = \{0, 1, +, -, \cdot\}$ *) has QE.*

Proof. Let

- *E* be an algebraically closed field.
- $A \subseteq E$ a substructure, i.e. an integral domain.
- *F* an algebraically closed field that is $|A|^+$ -saturated.
- An embedding $\iota: A \to F$.

Problem: construct $a \in E \setminus A$ + embedding $\hat{\iota}: A[a] \to F$ that extends ι .

Case 1. *K* := *A* is a field that is not algebraically closed

Take $a \in K^a \setminus K \subseteq E \setminus K$ with P(a) = 0 for some irreductible $\mu = \mu_d Y^d + \cdots + \mu_0 \in K[Y]$.

Theorem

The theory ACF of algebraically closed fields (for $\mathcal{L} = \{0, 1, +, -, \cdot\}$ *) has QE.*

Proof. Let

- *E* be an algebraically closed field.
- $A \subseteq E$ a substructure, i.e. an integral domain.
- *F* an algebraically closed field that is $|A|^+$ -saturated.
- An embedding $\iota: A \to F$.

Problem: construct $a \in E \setminus A$ + embedding $\hat{\iota}: A[a] \to F$ that extends ι .

Case 1. *K* := *A* is a field that is not algebraically closed

Take $a \in K^a \setminus K \subseteq E \setminus K$ with P(a) = 0 for some irreductible $\mu = \mu_d Y^d + \dots + \mu_0 \in K[Y]$. Since *F* is algebraically closed, there exists a $b \in F$ with $\iota(\mu_d) b^d + \dots + \iota(\mu_0) = 0$.

Theorem

The theory ACF of algebraically closed fields (for $\mathcal{L} = \{0, 1, +, -, \cdot\}$ *) has QE.*

Proof. Let

- *E* be an algebraically closed field.
- $A \subseteq E$ a substructure, i.e. an integral domain.
- *F* an algebraically closed field that is $|A|^+$ -saturated.
- An embedding $\iota: A \to F$.

Problem: construct $a \in E \setminus A$ + embedding $\hat{\iota}: A[a] \to F$ that extends ι .

Case 1. *K* := *A* is a field that is not algebraically closed

Take $a \in K^a \setminus K \subseteq E \setminus K$ with P(a) = 0 for some irreductible $\mu = \mu_d Y^d + \dots + \mu_0 \in K[Y]$. Since *F* is algebraically closed, there exists a $b \in F$ with $\iota(\mu_d) b^d + \dots + \iota(\mu_0) = 0$. Since $K[Y]/(\mu) \cong \iota(K)(b)$, we may extend ι into an embedding $\hat{\iota}: K(a) \to F$ with $\hat{\iota}(a) = b$.

Theorem

The theory ACF of algebraically closed fields (for $\mathcal{L} = \{0, 1, +, -, \cdot\}$ *) has QE.*

Proof. Let

- *E* be an algebraically closed field.
- $A \subseteq E$ a substructure, i.e. an integral domain.
- *F* an algebraically closed field that is $|A|^+$ -saturated.
- An embedding $\iota: A \to F$.

Problem: construct $a \in E \setminus A$ + embedding $\hat{\iota}: A[a] \to F$ that extends ι .

Case 2. *K* := *A* is an algebraically closed field

Let $a \in E \setminus K$. Then *a* is transcendental over *K*.

Theorem

The theory ACF of algebraically closed fields (for $\mathcal{L} = \{0, 1, +, -, \cdot\}$ *) has QE.*

Proof. Let

- *E* be an algebraically closed field.
- $A \subseteq E$ a substructure, i.e. an integral domain.
- *F* an algebraically closed field that is $|A|^+$ -saturated.
- An embedding $\iota: A \to F$.

Problem: construct $a \in E \setminus A$ + embedding $\hat{\iota}: A[a] \to F$ that extends ι .

Case 2. *K* := *A* is an algebraically closed field

Let $a \in E \setminus K$. Then *a* is transcendental over *K*.

Saturation \implies There exists a transcendental $b \in F \setminus K$.

Theorem

The theory ACF of algebraically closed fields (for $\mathcal{L} = \{0, 1, +, -, \cdot\}$ *) has QE.*

Proof. Let

- *E* be an algebraically closed field.
- $A \subseteq E$ a substructure, i.e. an integral domain.
- *F* an algebraically closed field that is $|A|^+$ -saturated.
- An embedding $\iota: A \to F$.

Problem: construct $a \in E \setminus A$ + embedding $\hat{\iota}: A[a] \to F$ that extends ι .

Case 2. *K* := *A* is an algebraically closed field

Let $a \in E \setminus K$. Then *a* is transcendental over *K*.

Saturation \implies There exists a transcendental $b \in F \setminus K$.

Then $K[a] \cong \iota(K)[b]$, so we may extend ι into an embedding $\hat{\iota}: K[a] \to F$.

Theorem

The theory ACVF of algebraically closed valued fields eliminates quantifiers.

Note. ACVF can be modeled in the language $(K, \Gamma, +, -, \cdot, v, \leq_{\Gamma}, +_{\Gamma}, -_{\Gamma})$. Sometimes: extra sort for k (and extra component $\iota_k: k_A \to k_F$). Alternatively: one-sorted language $(K, +, -, \cdot, \leq)$.

Proof. Let

- *E* be an algebraically closed valued field.
- $A \subseteq E$ a substructure, i.e. a "valued integral domain".
- *F* an algebraically closed valued field that is $|A|^+$ -saturated.
- An embedding $\iota: A \to F$.

Problem: construct $y \in E \setminus A$ + embedding $\hat{\iota}: A[y] \to F$ that extends ι .

To easy notations, we may assume wlog that $A \subseteq F$ and that ι is the inclusion.

Case 0. *A* is not a field

Let x be a non-invertible element of $A^{\neq 0}$ and take $y := x^{-1}$. Let $\hat{\iota}: A[a] = A x^{-\mathbb{N}} \to F$ extend ι with $\hat{\iota}(a) = \iota(x)^{-1}$ (as for ACF). Any element of A[a] is of the form $c a^n = c x^{-n}$ for $c \in A$ and $n \in \mathbb{N}$. Then $v(\hat{\iota}(c a^n)) = v(c x^{-n}) = v(c) - n v(x)$, both in $\Gamma_{A[a]} = \Gamma_A$ and in $\Gamma_F \supseteq \Gamma_A$. Hence the embedding $\hat{\iota}$ preserves the valuation.

Case 1a. $K \coloneqq A$ is a field, but k_K is not AC (algebraically closed).

Let $\mu \in K[Y]$ be monic with $\mu \leq 1$ and $\bar{\mu}$ irreducible in $k_K[Y]$. Let $y \in E$ be a root of μ . Since *F* is AC, $\exists a \in F$ with $\mu(a) = 0$. Let $\hat{\iota}: K[y] \to F$ extend ι with $\hat{\iota}(y) = a$ (as for ACF). Then $k_K(\bar{a}) \cong k_K(\bar{y})$ and $\hat{\iota}$ preserves the valuation by Lemma ALG-RES.

Case 1b. K := A is a field, but Γ_K is not divisible.

Similar as above, with $\mu = Y^p - \xi$ for p prime and $\xi \in K$ such that $p^{-1}v(\xi) \notin \Gamma_K$.

Completeness

The valued field *K* has **characteristic** (m, n) if char K = m and char $k_K = n$.

Theorem

The theory $ACV_{(m,n)}$ of algebraically valued fields of characteristic (m, n) has QE and it is complete.

QE. The characteristic of a valued field is conserved under the extensions. Hence the previous proof goes through for any fixed characteristic.

Completeness. Sufficient: a valued ring that embeds into any model of $ACV_{(m,n)}$.

- If m = n = 0, then we may take \mathbb{Z} with the trivial valuation.
- If m = 0 and n = p is prime, then we may take \mathbb{Z} with the *p*-adic valuation.
- If m = n = p is prime, then we may take \mathbb{F}_p with the trivial valuation.

Valued ordered fields

Let (K, \leq) be an ordered field (so $\mathbb{Q} \subseteq K$). Given $X \subseteq K$, its **convex hull** is $\{a \in K : (\exists x, y \in X) | x \leq a \leq y\}$.

Definition

Given a valuation v *on* K*, we say that* (K, \leq, v) *is an* **ordered valued field** *if* \mathcal{O}_K *is convex.*

Example. The "finest" valuation v with $\mathcal{O}_K = \operatorname{hull}(K)$ and $\mathcal{O}_K = \{a \in K : |a| < \mathbb{Q}^{>0}\}$.

Theorem

The theory RCVF of real closed valued fields eliminates quantifiers and is complete.

Proof. QE: similar as for ACVF. Completeness: \mathbb{Z} embeds into any model.