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Let K be a field and Γ a totally ordered abelian group.
A valuationvaluationvaluation is a map v:K→Γ∪{∞} such that
• v(a)=∞ if and only if a=0;
• v(ab)=v(a)+v(b);
• v(a+b)⩾min (v(a),v(b)) with equality if v(b)≠v(a).
In that case, we define

𝒪K ≔ {a∈K :v(a)⩾0} the valuationvaluationvaluation ringringring
𝒪K ≔ {a∈K :v(a)>0} its maximalmaximalmaximal idealidealideal
𝒌K ≔ 𝒪K/𝒪K its residueresidueresidue fieldfieldfield

DefinitionDefinitionDefinitionDefinitionDefinition

ConventionConventionConvention... We will usually assume that Γ=v(K≠0).
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OrderedOrderedOrdered fieldsfieldsfields... Let K be an ordered field. For x,y∈K≠0, we define

x ≼ y ⟺ (∃n∈N>0) |x| ⩽ n |y| Γ ≔ {x/≍:x∈K≠0}
x ≍ y ⟺ x ≼ y ≼ x v(x) ≔ x/≍

v(x) ⩽ v(y) ⟺ x ≽ y
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x ≼ y ⟺ (∃n∈N>0) |x| ⩽ n |y| Γ ≔ {x/≍:x∈K≠0}
x ≍ y ⟺ x ≼ y ≼ x v(x) ≔ x/≍

v(x) ⩽ v(y) ⟺ x ≽ y
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OrderedOrderedOrdered fieldsfieldsfields... Let K be an ordered field. For x,y∈K≠0, we define
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x ≍ y ⟺ x ≼ y ≼ x v(x) ≔ x/≍

v(x) ⩽ v(y) ⟺ x ≽ y



ExamplesExamplesExamples 333///303030

OrderedOrderedOrdered fieldsfieldsfields... Let K be an ordered field. For x,y∈K≠0, we define

x ≼ y ⟺ (∃n∈N>0) |x| ⩽ n |y| Γ ≔ {x/≍:x∈K≠0}
x ≍ y ⟺ x ≼ y ≼ x v(x) ≔ x/≍

v(x) ⩽ v(y) ⟺ x ≽ y

HausdorffHausdorffHausdorff fieldsfieldsfields... Any Hausdorff field K is valued as an ordered field with 𝒌K⊆R.
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OrderedOrderedOrdered fieldsfieldsfields... Let K be an ordered field. For x,y∈K≠0, we define

x ≼ y ⟺ (∃n∈N>0) |x| ⩽ n |y| Γ ≔ {x/≍:x∈K≠0}
x ≍ y ⟺ x ≼ y ≼ x v(x) ≔ x/≍

v(x) ⩽ v(y) ⟺ x ≽ y

HausdorffHausdorffHausdorff fieldsfieldsfields... Any Hausdorff field K is valued as an ordered field with 𝒌K⊆R.

WellWellWell---basedbasedbased seriesseriesseries... K≔R[[zΓ]], R field, Γ totally ordered group.
z𝛼 ≽ z𝛽 ⟺ 𝛼 ⩽ 𝛽

v( f ) ≔ 𝛼, for f ∈K≠0 with 𝔡f =x𝛼.
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OrderedOrderedOrdered fieldsfieldsfields... Let K be an ordered field. For x,y∈K≠0, we define

x ≼ y ⟺ (∃n∈N>0) |x| ⩽ n |y| Γ ≔ {x/≍:x∈K≠0}
x ≍ y ⟺ x ≼ y ≼ x v(x) ≔ x/≍

v(x) ⩽ v(y) ⟺ x ≽ y

HausdorffHausdorffHausdorff fieldsfieldsfields... Any Hausdorff field K is valued as an ordered field with 𝒌K⊆R.

WellWellWell---basedbasedbased seriesseriesseries... K≔R[[zΓ]], R field, Γ totally ordered group.
z𝛼 ≽ z𝛽 ⟺ 𝛼 ⩽ 𝛽

v( f ) ≔ 𝛼, for f ∈K≠0 with 𝔡f =x𝛼.

ppp---adicadicadic numbersnumbersnumbers... K=Qp, Γ≔Z, p-adic valuation.
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Let K be a valued field. For x,y∈K, we define
x ≺ y ⟺ v(x) > v(y) ⟺ x ∈ 𝒪y ∧ y ≠ 0
x ≼ y ⟺ v(x) ⩾ v(y) ⟺ x ∈ 𝒪y
x ≍ y ⟺ v(x) = v(y) ⟺ x ≼ y ≼ x
x ∼ y ⟺ x−y ≺ x.

NoteNoteNote... The axioms of valued fields can be reformulated in terms of ≼.
Both points of views are essentially equivalent.
Always remind the reversal of the ordering.
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Let K be a valued field.
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Let K be a valued field.

A monomialmonomialmonomial groupgroupgroup for K is a subgroup 𝔐⊆K≠0 such that v|𝔐 is a bijection.
Given 𝛾 ∈Γ, we define 𝔷𝛾 to be the unique element in 𝔐 with v(𝔷𝛾)=𝛾.
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Let K be a valued field.

A monomialmonomialmonomial groupgroupgroup for K is a subgroup 𝔐⊆K≠0 such that v|𝔐 is a bijection.
Given 𝛾 ∈Γ, we define 𝔷𝛾 to be the unique element in 𝔐 with v(𝔷𝛾)=𝛾.

Let G⊆K≠0 be divisible with v(G)=Γ. Then there is a monomial group 𝔐⊆G for K.
PropositionPropositionPropositionPropositionProposition



MonomialMonomialMonomial groupsgroupsgroups 555///303030

Let K be a valued field.

A monomialmonomialmonomial groupgroupgroup for K is a subgroup 𝔐⊆K≠0 such that v|𝔐 is a bijection.
Given 𝛾 ∈Γ, we define 𝔷𝛾 to be the unique element in 𝔐 with v(𝔷𝛾)=𝛾.

Let G⊆K≠0 be divisible with v(G)=Γ. Then there is a monomial group 𝔐⊆G for K.
PropositionPropositionPropositionPropositionProposition

ProofProofProof... Embed increasingly large subgroups Δ of Γ into G.
Given Γ⊇/ Δ ↪←→G and 𝛾 ∈Γ∖Δ, let k∈Nwith kZ={n∈Z :n𝛾 ∈Δ}.
Take 𝔷𝛾 ∈G with v(𝔷𝛾)=𝛾 such that (𝔷𝛾)k=𝔷k𝛾 whenever k>0. Apply Zorn. □
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Let K be a valued field.

A monomialmonomialmonomial groupgroupgroup for K is a subgroup 𝔐⊆K≠0 such that v|𝔐 is a bijection.
Given 𝛾 ∈Γ, we define 𝔷𝛾 to be the unique element in 𝔐 with v(𝔷𝛾)=𝛾.

Let G⊆K≠0 be divisible with v(G)=Γ. Then there is a monomial group 𝔐⊆G for K.
PropositionPropositionPropositionPropositionProposition

ProofProofProof... Embed increasingly large subgroups Δ of Γ into G.
Given Γ⊇/ Δ ↪←→G and 𝛾 ∈Γ∖Δ, let k∈Nwith kZ={n∈Z :n𝛾 ∈Δ}.
Take 𝔷𝛾 ∈G with v(𝔷𝛾)=𝛾 such that (𝔷𝛾)k=𝔷k𝛾 whenever k>0. Apply Zorn. □
ExamplesExamplesExamples:::
• G=K≠0 for an algebraically closed valued field K.
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Let K be a valued field.

A monomialmonomialmonomial groupgroupgroup for K is a subgroup 𝔐⊆K≠0 such that v|𝔐 is a bijection.
Given 𝛾 ∈Γ, we define 𝔷𝛾 to be the unique element in 𝔐 with v(𝔷𝛾)=𝛾.

Let G⊆K≠0 be divisible with v(G)=Γ. Then there is a monomial group 𝔐⊆G for K.
PropositionPropositionPropositionPropositionProposition

ProofProofProof... Embed increasingly large subgroups Δ of Γ into G.
Given Γ⊇/ Δ ↪←→G and 𝛾 ∈Γ∖Δ, let k∈Nwith kZ={n∈Z :n𝛾 ∈Δ}.
Take 𝔷𝛾 ∈G with v(𝔷𝛾)=𝛾 such that (𝔷𝛾)k=𝔷k𝛾 whenever k>0. Apply Zorn. □
ExamplesExamplesExamples:::
• G=K≠0 for an algebraically closed valued field K.
• G=K>0 for a real closed field K.
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Let K be a valued field and P∈K[Y]≠0. We extend the valuation v to K[Y] by
v(PdYd+ ⋅ ⋅ ⋅ +P0) ≔ min (v(Pd), . . . ,v(P0)).

We also define the relation ∝ on 𝒌[Y] by
A ∝ B ⟺ (∃𝜆∈𝒌≠0) B=𝜆A.

The projectiveprojectiveprojective NewtonNewtonNewton polynomialpolynomialpolynomial N∝(P)∈𝒌[Y]/∝ is defined by
N∝(P) ≔ aP/∝, where a∈K is such that aP≍1.

The monicmonicmonic NewtonNewtonNewton polynomialpolynomialpolynomial Nmon(P)∈𝒌[Y] is the monic polynomial with
Nmon(P)/∝ = N∝(P)

If K has a monomial group, then we define theNewtonNewtonNewton polynomialpolynomialpolynomialN(P)∈𝒌[Y] by
N(P) ≔ 𝔷−v(P)P.
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Given P∈K[Y] and 𝛾 ∈Γ, one may consider the asymptotic equation
P(y) = 0, v(y) > 𝛾.

The NewtonNewtonNewton degreesdegreesdegrees of this equation is defined by
deg>𝛾 P ≔ valN∝(P×a)

where a∈K≠0 is such that v(a)=𝛾.

Equations of Newton degree one are said to be quasiquasiquasi---linearlinearlinear.

We say that K is henselianhenselianhenselian if any quasi-linear equation has a solution in K.
DefinitionDefinitionDefinitionDefinitionDefinition
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LetK be a henselian valued field of characteristic zerowith a divisible value group Γ.
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LetK be a henselian valued field of characteristic zerowith a divisible value group Γ.

Let P∈K[Y]≠0 and 𝛾 ∈Γ. If 𝒌 is algebraically closed, then
P(y) = 0, v(y) > 𝛾

has exactly deg>𝛾 P solutions in K, when counting with multiplicities.

TheoremTheoremTheoremTheoremTheorem
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LetK be a henselian valued field of characteristic zerowith a divisible value group Γ.

Let P∈K[Y]≠0 and 𝛾 ∈Γ. If 𝒌 is algebraically closed, then
P(y) = 0, v(y) > 𝛾

has exactly deg>𝛾 P solutions in K, when counting with multiplicities.

TheoremTheoremTheoremTheoremTheorem

ProofProofProof... Straightforward adaptation of proof from Lesson 4. □
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LetK be a henselian valued field of characteristic zerowith a divisible value group Γ.

Let P∈K[Y]≠0 and 𝛾 ∈Γ. If 𝒌 is algebraically closed, then
P(y) = 0, v(y) > 𝛾

has exactly deg>𝛾 P solutions in K, when counting with multiplicities.

TheoremTheoremTheoremTheoremTheorem

a) If 𝒌 is algebraically closed, then so is K.
b) If 𝒌 is real closed, then so is K.

CorollaryCorollaryCorollaryCorollaryCorollary
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LetK be a henselian valued field of characteristic zerowith a divisible value group Γ.

Let P∈K[Y]≠0 and 𝛾 ∈Γ. If 𝒌 is algebraically closed, then
P(y) = 0, v(y) > 𝛾

has exactly deg>𝛾 P solutions in K, when counting with multiplicities.

TheoremTheoremTheoremTheoremTheorem

a) If 𝒌 is algebraically closed, then so is K.
b) If 𝒌 is real closed, then so is K.

CorollaryCorollaryCorollaryCorollaryCorollary

ProofProofProof ofofof (((bbb)))... Since 𝒌[i] is algebraically closed, so is K[i], by (a).



TheTheThe NewtonNewtonNewton polygonpolygonpolygon methodmethodmethod 888///303030

LetK be a henselian valued field of characteristic zerowith a divisible value group Γ.

Let P∈K[Y]≠0 and 𝛾 ∈Γ. If 𝒌 is algebraically closed, then
P(y) = 0, v(y) > 𝛾

has exactly deg>𝛾 P solutions in K, when counting with multiplicities.

TheoremTheoremTheoremTheoremTheorem

a) If 𝒌 is algebraically closed, then so is K.
b) If 𝒌 is real closed, then so is K.

CorollaryCorollaryCorollaryCorollaryCorollary

ProofProofProof ofofof (((bbb)))... Since 𝒌[i] is algebraically closed, so is K[i], by (a).
The complex roots of P in K[i] come in conjugate pairs.
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LetK be a henselian valued field of characteristic zerowith a divisible value group Γ.

Let P∈K[Y]≠0 and 𝛾 ∈Γ. If 𝒌 is algebraically closed, then
P(y) = 0, v(y) > 𝛾

has exactly deg>𝛾 P solutions in K, when counting with multiplicities.

TheoremTheoremTheoremTheoremTheorem

a) If 𝒌 is algebraically closed, then so is K.
b) If 𝒌 is real closed, then so is K.

CorollaryCorollaryCorollaryCorollaryCorollary

ProofProofProof ofofof (((bbb)))... Since 𝒌[i] is algebraically closed, so is K[i], by (a).
The complex roots of P in K[i] come in conjugate pairs.
If deg P is odd, this means that P has at least one root in K. □
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Given a valued field K, describe the valued field extensions L≔K(y)⊇K.

K

K(y)
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Given a valued field K, describe the valued field extensions L≔K(y)⊇K.

K

K(y)
222 ××× 333 fundamentalfundamentalfundamental kindskindskinds ofofof extensionsextensionsextensions
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Given a valued field K, describe the valued field extensions L≔K(y)⊇K.

K

K(y)
222 ××× 333 fundamentalfundamentalfundamental kindskindskinds ofofof extensionsextensionsextensions
• y is algebraic.
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Given a valued field K, describe the valued field extensions L≔K(y)⊇K.

K

K(y)
222 ××× 333 fundamentalfundamentalfundamental kindskindskinds ofofof extensionsextensionsextensions
• y is algebraic.
• y is transcendental.
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Given a valued field K, describe the valued field extensions L≔K(y)⊇K.

K

K(y)
222 ××× 333 fundamentalfundamentalfundamental kindskindskinds ofofof extensionsextensionsextensions
• y is algebraic.
• y is transcendental.

• 𝒌L=𝒌K, ΓL=ΓK (L⊇K is called an immediateimmediateimmediate extensionextensionextension).
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Given a valued field K, describe the valued field extensions L≔K(y)⊇K.

K

K(y)
222 ××× 333 fundamentalfundamentalfundamental kindskindskinds ofofof extensionsextensionsextensions
• y is algebraic.
• y is transcendental.

• 𝒌L=𝒌K, ΓL=ΓK (L⊇K is called an immediateimmediateimmediate extensionextensionextension).
• 𝒌L⊆/ 𝒌K, ΓL=ΓK with y≼1 and 𝒌L=𝒌K(ȳ).
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Given a valued field K, describe the valued field extensions L≔K(y)⊇K.

K

K(y)
222 ××× 333 fundamentalfundamentalfundamental kindskindskinds ofofof extensionsextensionsextensions
• y is algebraic.
• y is transcendental.

• 𝒌L=𝒌K, ΓL=ΓK (L⊇K is called an immediateimmediateimmediate extensionextensionextension).
• 𝒌L⊆/ 𝒌K, ΓL=ΓK with y≼1 and 𝒌L=𝒌K(ȳ).
• 𝒌L=𝒌K, ΓL⊆/ ΓK with ΓL=ΓK+v(y)Z.
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Given a valued field K, describe the valued field extensions L≔K(y)⊇K.

K

K(y)
222 ××× 333 fundamentalfundamentalfundamental kindskindskinds ofofof extensionsextensionsextensions
• y is algebraic.
• y is transcendental.

• 𝒌L=𝒌K, ΓL=ΓK (L⊇K is called an immediateimmediateimmediate extensionextensionextension).
• 𝒌L⊆/ 𝒌K, ΓL=ΓK with y≼1 and 𝒌L=𝒌K(ȳ).
• 𝒌L=𝒌K, ΓL⊆/ ΓK with ΓL=ΓK+v(y)Z.

How unique is the extension K⊆K(y)?
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Given a valued field K, describe the valued field extensions L≔K(y)⊇K.

K

K(y) F
𝜑 222 ××× 333 fundamentalfundamentalfundamental kindskindskinds ofofof extensionsextensionsextensions

• y is algebraic.
• y is transcendental.

• 𝒌L=𝒌K, ΓL=ΓK (L⊇K is called an immediateimmediateimmediate extensionextensionextension).
• 𝒌L⊆/ 𝒌K, ΓL=ΓK with y≼1 and 𝒌L=𝒌K(ȳ).
• 𝒌L=𝒌K, ΓL⊆/ ΓK with ΓL=ΓK+v(y)Z.

How unique is the extension K⊆K(y)?
Given a valued field extension F⊇K and a∈F of “same type over K” as y,
does there exist a unique embedding of valued fields 𝜑:K(y)→F with 𝜑(y)=a ?
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Let (a𝜌)𝜌<𝛼 ∈K𝛼 or shortly (a𝜌) be a sequence indexed by ordinals smaller than 𝛼.
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Let (a𝜌)𝜌<𝛼 ∈K𝛼 or shortly (a𝜌) be a sequence indexed by ordinals smaller than 𝛼.

We say that (a𝜌) is a pseudopseudopseudo---cauchycauchycauchy sequencesequencesequence (pc-sequence) if
(∃𝜌0) (∀𝜏 >𝜎 >𝜌>𝜌0) a𝜏−a𝜎 ≺ a𝜎 −a𝜌.
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Let (a𝜌)𝜌<𝛼 ∈K𝛼 or shortly (a𝜌) be a sequence indexed by ordinals smaller than 𝛼.

We say that (a𝜌) is a pseudopseudopseudo---cauchycauchycauchy sequencesequencesequence (pc-sequence) if
(∃𝜌0) (∀𝜏 >𝜎 >𝜌>𝜌0) a𝜏−a𝜎 ≺ a𝜎 −a𝜌.

We say that (a𝜌) pseudopseudopseudo---convergesconvergesconverges to a∈K (notation: a𝜌↝a), if
(∃𝜌0) (∀𝜎 >𝜌>𝜌0) a−a𝜎 ≺ a−a𝜌.
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Let (a𝜌)𝜌<𝛼 ∈K𝛼 or shortly (a𝜌) be a sequence indexed by ordinals smaller than 𝛼.

We say that (a𝜌) is a pseudopseudopseudo---cauchycauchycauchy sequencesequencesequence (pc-sequence) if
(∃𝜌0) (∀𝜏 >𝜎 >𝜌>𝜌0) a𝜏−a𝜎 ≺ a𝜎 −a𝜌.

We say that (a𝜌) pseudopseudopseudo---convergesconvergesconverges to a∈K (notation: a𝜌↝a), if
(∃𝜌0) (∀𝜎 >𝜌>𝜌0) a−a𝜎 ≺ a−a𝜌.

• 1, 1+x−1, 1+x−1 +x−2, . . . pseudo-converges to 1+x−1 +x−2 + ⋅ ⋅ ⋅ in R[[x; ex]].
• It also converges to 1+x−1 +x−2 + ⋅ ⋅ ⋅ in R[[x−1]], but not in R[[x; ex]].
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Let (a𝜌)𝜌<𝛼 ∈K𝛼 or shortly (a𝜌) be a sequence indexed by ordinals smaller than 𝛼.

We say that (a𝜌) is a pseudopseudopseudo---cauchycauchycauchy sequencesequencesequence (pc-sequence) if
(∃𝜌0) (∀𝜏 >𝜎 >𝜌>𝜌0) a𝜏−a𝜎 ≺ a𝜎 −a𝜌.

We say that (a𝜌) pseudopseudopseudo---convergesconvergesconverges to a∈K (notation: a𝜌↝a), if
(∃𝜌0) (∀𝜎 >𝜌>𝜌0) a−a𝜎 ≺ a−a𝜌.

• 1, 1+x−1, 1+x−1 +x−2, . . . pseudo-converges to 1+x−1 +x−2 + ⋅ ⋅ ⋅ in R[[x; ex]].
• It also converges to 1+x−1 +x−2 + ⋅ ⋅ ⋅ in R[[x−1]], but not in R[[x; ex]].

If (a𝜌) pseudopseudopseudo---divergesdivergesdiverges, then
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Let (a𝜌)𝜌<𝛼 ∈K𝛼 or shortly (a𝜌) be a sequence indexed by ordinals smaller than 𝛼.

We say that (a𝜌) is a pseudopseudopseudo---cauchycauchycauchy sequencesequencesequence (pc-sequence) if
(∃𝜌0) (∀𝜏 >𝜎 >𝜌>𝜌0) a𝜏−a𝜎 ≺ a𝜎 −a𝜌.

We say that (a𝜌) pseudopseudopseudo---convergesconvergesconverges to a∈K (notation: a𝜌↝a), if
(∃𝜌0) (∀𝜎 >𝜌>𝜌0) a−a𝜎 ≺ a−a𝜌.

• 1, 1+x−1, 1+x−1 +x−2, . . . pseudo-converges to 1+x−1 +x−2 + ⋅ ⋅ ⋅ in R[[x; ex]].
• It also converges to 1+x−1 +x−2 + ⋅ ⋅ ⋅ in R[[x−1]], but not in R[[x; ex]].

If (a𝜌) pseudopseudopseudo---divergesdivergesdiverges, then
• (a𝜌) is of algebraicalgebraicalgebraic typetypetype if there exists a P∈K[Y] with P(a𝜌)↝0
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Let (a𝜌)𝜌<𝛼 ∈K𝛼 or shortly (a𝜌) be a sequence indexed by ordinals smaller than 𝛼.

We say that (a𝜌) is a pseudopseudopseudo---cauchycauchycauchy sequencesequencesequence (pc-sequence) if
(∃𝜌0) (∀𝜏 >𝜎 >𝜌>𝜌0) a𝜏−a𝜎 ≺ a𝜎 −a𝜌.

We say that (a𝜌) pseudopseudopseudo---convergesconvergesconverges to a∈K (notation: a𝜌↝a), if
(∃𝜌0) (∀𝜎 >𝜌>𝜌0) a−a𝜎 ≺ a−a𝜌.

• 1, 1+x−1, 1+x−1 +x−2, . . . pseudo-converges to 1+x−1 +x−2 + ⋅ ⋅ ⋅ in R[[x; ex]].
• It also converges to 1+x−1 +x−2 + ⋅ ⋅ ⋅ in R[[x−1]], but not in R[[x; ex]].

If (a𝜌) pseudopseudopseudo---divergesdivergesdiverges, then
• (a𝜌) is of algebraicalgebraicalgebraic typetypetype if there exists a P∈K[Y] with P(a𝜌)↝0
• Otherwise, (a𝜌) is of transcendentaltranscendentaltranscendental typetypetype.
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Let (a𝜌) be pseudo-divergent of transcendental type. Then v extends to K(Y) via
v(P) ≔ eventual value of v(P(a𝜌)), for any P∈K[Y].

The extension L≔K(Y)⊇K is immediate and a𝜌↝Y in L. Moreover, if a𝜌↝a in another
immediate extension F⊇K, then there is a unique embedding 𝜑:L→F over Kwith 𝜑(Y)=a.

LemmaLemmaLemmaLemmaLemma TRTRTRTRTR-----IMMIMMIMMIMMIMM
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Let (a𝜌) be pseudo-divergent of transcendental type. Then v extends to K(Y) via
v(P) ≔ eventual value of v(P(a𝜌)), for any P∈K[Y].

The extension L≔K(Y)⊇K is immediate and a𝜌↝Y in L. Moreover, if a𝜌↝a in another
immediate extension F⊇K, then there is a unique embedding 𝜑:L→F over Kwith 𝜑(Y)=a.

LemmaLemmaLemmaLemmaLemma TRTRTRTRTR-----IMMIMMIMMIMMIMM

ProofProofProof... Easy: our formula for v(P) yields a valuation with ΓL=ΓK and a𝜌↝Y.
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Let (a𝜌) be pseudo-divergent of transcendental type. Then v extends to K(Y) via
v(P) ≔ eventual value of v(P(a𝜌)), for any P∈K[Y].

The extension L≔K(Y)⊇K is immediate and a𝜌↝Y in L. Moreover, if a𝜌↝a in another
immediate extension F⊇K, then there is a unique embedding 𝜑:L→F over Kwith 𝜑(Y)=a.

LemmaLemmaLemmaLemmaLemma TRTRTRTRTR-----IMMIMMIMMIMMIMM

ProofProofProof... Easy: our formula for v(P) yields a valuation with ΓL=ΓK and a𝜌↝Y.
Given P∈K[Y] with v(P)=0, let us show that P̄∈𝒌K.
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Let (a𝜌) be pseudo-divergent of transcendental type. Then v extends to K(Y) via
v(P) ≔ eventual value of v(P(a𝜌)), for any P∈K[Y].

The extension L≔K(Y)⊇K is immediate and a𝜌↝Y in L. Moreover, if a𝜌↝a in another
immediate extension F⊇K, then there is a unique embedding 𝜑:L→F over Kwith 𝜑(Y)=a.

LemmaLemmaLemmaLemmaLemma TRTRTRTRTR-----IMMIMMIMMIMMIMM

ProofProofProof... Easy: our formula for v(P) yields a valuation with ΓL=ΓK and a𝜌↝Y.

Given P∈K[Y] with v(P)=0, let us show that P̄∈𝒌K. This will imply 𝒌L=𝒌K.
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Let (a𝜌) be pseudo-divergent of transcendental type. Then v extends to K(Y) via
v(P) ≔ eventual value of v(P(a𝜌)), for any P∈K[Y].

The extension L≔K(Y)⊇K is immediate and a𝜌↝Y in L. Moreover, if a𝜌↝a in another
immediate extension F⊇K, then there is a unique embedding 𝜑:L→F over Kwith 𝜑(Y)=a.

LemmaLemmaLemmaLemmaLemma TRTRTRTRTR-----IMMIMMIMMIMMIMM

ProofProofProof... Easy: our formula for v(P) yields a valuation with ΓL=ΓK and a𝜌↝Y.

Given P∈K[Y] with v(P)=0, let us show that P̄∈𝒌K. This will imply 𝒌L=𝒌K.
We have, v(P(a𝜌))=0 and v(P−P(a𝜌))>0, eventually.
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Let (a𝜌) be pseudo-divergent of transcendental type. Then v extends to K(Y) via
v(P) ≔ eventual value of v(P(a𝜌)), for any P∈K[Y].

The extension L≔K(Y)⊇K is immediate and a𝜌↝Y in L. Moreover, if a𝜌↝a in another
immediate extension F⊇K, then there is a unique embedding 𝜑:L→F over Kwith 𝜑(Y)=a.

LemmaLemmaLemmaLemmaLemma TRTRTRTRTR-----IMMIMMIMMIMMIMM

ProofProofProof... Easy: our formula for v(P) yields a valuation with ΓL=ΓK and a𝜌↝Y.

Given P∈K[Y] with v(P)=0, let us show that P̄∈𝒌K. This will imply 𝒌L=𝒌K.
We have, v(P(a𝜌))=0 and v(P−P(a𝜌))>0, eventually.
Let c=P(a𝜌)∈K with v(c)=0 and v(P− c)>0. Then P̄= c̄∈𝒌K.
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Let (a𝜌) be pseudo-divergent of transcendental type. Then v extends to K(Y) via
v(P) ≔ eventual value of v(P(a𝜌)), for any P∈K[Y].

The extension L≔K(Y)⊇K is immediate and a𝜌↝Y in L. Moreover, if a𝜌↝a in another
immediate extension F⊇K, then there is a unique embedding 𝜑:L→F over Kwith 𝜑(Y)=a.

LemmaLemmaLemmaLemmaLemma TRTRTRTRTR-----IMMIMMIMMIMMIMM

ProofProofProof... Easy: our formula for v(P) yields a valuation with ΓL=ΓK and a𝜌↝Y.

Given P∈K[Y] with v(P)=0, let us show that P̄∈𝒌K. This will imply 𝒌L=𝒌K.
We have, v(P(a𝜌))=0 and v(P−P(a𝜌))>0, eventually.
Let c=P(a𝜌)∈K with v(c)=0 and v(P− c)>0. Then P̄= c̄∈𝒌K.

If a𝜌↝a in F⊇K and P∈K[Y]∖K, then P(a𝜌)↝P(a), by Taylor expansion around a.
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Let (a𝜌) be pseudo-divergent of transcendental type. Then v extends to K(Y) via
v(P) ≔ eventual value of v(P(a𝜌)), for any P∈K[Y].

The extension L≔K(Y)⊇K is immediate and a𝜌↝Y in L. Moreover, if a𝜌↝a in another
immediate extension F⊇K, then there is a unique embedding 𝜑:L→F over Kwith 𝜑(Y)=a.

LemmaLemmaLemmaLemmaLemma TRTRTRTRTR-----IMMIMMIMMIMMIMM

ProofProofProof... Easy: our formula for v(P) yields a valuation with ΓL=ΓK and a𝜌↝Y.

Given P∈K[Y] with v(P)=0, let us show that P̄∈𝒌K. This will imply 𝒌L=𝒌K.
We have, v(P(a𝜌))=0 and v(P−P(a𝜌))>0, eventually.
Let c=P(a𝜌)∈K with v(c)=0 and v(P− c)>0. Then P̄= c̄∈𝒌K.

If a𝜌↝a in F⊇K and P∈K[Y]∖K, then P(a𝜌)↝P(a), by Taylor expansion around a.
Hence, v(P(a))=v(P(a𝜌))=v(P), eventually, so P(a)≠0 and a is transcendental.
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Let (a𝜌) be pseudo-divergent of transcendental type. Then v extends to K(Y) via
v(P) ≔ eventual value of v(P(a𝜌)), for any P∈K[Y].

The extension L≔K(Y)⊇K is immediate and a𝜌↝Y in L. Moreover, if a𝜌↝a in another
immediate extension F⊇K, then there is a unique embedding 𝜑:L→F over Kwith 𝜑(Y)=a.

LemmaLemmaLemmaLemmaLemma TRTRTRTRTR-----IMMIMMIMMIMMIMM

ProofProofProof... Easy: our formula for v(P) yields a valuation with ΓL=ΓK and a𝜌↝Y.

Given P∈K[Y] with v(P)=0, let us show that P̄∈𝒌K. This will imply 𝒌L=𝒌K.
We have, v(P(a𝜌))=0 and v(P−P(a𝜌))>0, eventually.
Let c=P(a𝜌)∈K with v(c)=0 and v(P− c)>0. Then P̄= c̄∈𝒌K.

If a𝜌↝a in F⊇K and P∈K[Y]∖K, then P(a𝜌)↝P(a), by Taylor expansion around a.
Hence, v(P(a))=v(P(a𝜌))=v(P), eventually, so P(a)≠0 and a is transcendental.
We conclude that ∃! ring morphism 𝜑:L→F with 𝜑(Y)=a and 𝜑 preserves v. □
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Let (a𝜌) be pseudo-divergent of algebraic type. Let 𝜇 ∈K[Y] be of minimal degree d with
𝜇(a𝜌)↝0. Let L≔K[Y]/(𝜇), y≔Y+ (𝜇), K[Y]d≔{P∈K[Y] : deg P<d}. Then

v(P(y)) ≔ eventual value of v(P(a𝜌)), for any P∈K[Y]d
yields an extension of v to L. This extension L≔K(Y)⊇K is immediate and a𝜌↝y in L.
Moreover, if a𝜌↝ a and 𝜇(a) = 0 for a in another immediate extension F⊇K, there is a
unique embedding 𝜑:L→F over K with 𝜑(y)=a.

LemmaLemmaLemmaLemmaLemma ALGALGALGALGALG-----IMMIMMIMMIMMIMM
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Let (a𝜌) be pseudo-divergent of algebraic type. Let 𝜇 ∈K[Y] be of minimal degree d with
𝜇(a𝜌)↝0. Let L≔K[Y]/(𝜇), y≔Y+ (𝜇), K[Y]d≔{P∈K[Y] : deg P<d}. Then

v(P(y)) ≔ eventual value of v(P(a𝜌)), for any P∈K[Y]d
yields an extension of v to L. This extension L≔K(Y)⊇K is immediate and a𝜌↝y in L.
Moreover, if a𝜌↝ a and 𝜇(a) = 0 for a in another immediate extension F⊇K, there is a
unique embedding 𝜑:L→F over K with 𝜑(y)=a.

LemmaLemmaLemmaLemmaLemma ALGALGALGALGALG-----IMMIMMIMMIMMIMM

ProofProofProof... Mostly similar to previous lemma, except for v(s t)=v(s)+P(t) in L≠0.
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Let (a𝜌) be pseudo-divergent of algebraic type. Let 𝜇 ∈K[Y] be of minimal degree d with
𝜇(a𝜌)↝0. Let L≔K[Y]/(𝜇), y≔Y+ (𝜇), K[Y]d≔{P∈K[Y] : deg P<d}. Then

v(P(y)) ≔ eventual value of v(P(a𝜌)), for any P∈K[Y]d
yields an extension of v to L. This extension L≔K(Y)⊇K is immediate and a𝜌↝y in L.
Moreover, if a𝜌↝ a and 𝜇(a) = 0 for a in another immediate extension F⊇K, there is a
unique embedding 𝜑:L→F over K with 𝜑(y)=a.

LemmaLemmaLemmaLemmaLemma ALGALGALGALGALG-----IMMIMMIMMIMMIMM

ProofProofProof... Mostly similar to previous lemma, except for v(s t)=v(s)+P(t) in L≠0.
Write s=S(y), t∈T(y), S,T∈K[Y]d. ST ≔Q𝜇+R, R∈K[Y]d, so that R(y)= s t.
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Let (a𝜌) be pseudo-divergent of algebraic type. Let 𝜇 ∈K[Y] be of minimal degree d with
𝜇(a𝜌)↝0. Let L≔K[Y]/(𝜇), y≔Y+ (𝜇), K[Y]d≔{P∈K[Y] : deg P<d}. Then

v(P(y)) ≔ eventual value of v(P(a𝜌)), for any P∈K[Y]d
yields an extension of v to L. This extension L≔K(Y)⊇K is immediate and a𝜌↝y in L.
Moreover, if a𝜌↝ a and 𝜇(a) = 0 for a in another immediate extension F⊇K, there is a
unique embedding 𝜑:L→F over K with 𝜑(y)=a.

LemmaLemmaLemmaLemmaLemma ALGALGALGALGALG-----IMMIMMIMMIMMIMM

ProofProofProof... Mostly similar to previous lemma, except for v(s t)=v(s)+P(t) in L≠0.
Write s=S(y), t∈T(y), S,T∈K[Y]d. ST ≔Q𝜇+R, R∈K[Y]d, so that R(y)= s t.
Eventually, v(s t)=v(R(a𝜌))
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Let (a𝜌) be pseudo-divergent of algebraic type. Let 𝜇 ∈K[Y] be of minimal degree d with
𝜇(a𝜌)↝0. Let L≔K[Y]/(𝜇), y≔Y+ (𝜇), K[Y]d≔{P∈K[Y] : deg P<d}. Then

v(P(y)) ≔ eventual value of v(P(a𝜌)), for any P∈K[Y]d
yields an extension of v to L. This extension L≔K(Y)⊇K is immediate and a𝜌↝y in L.
Moreover, if a𝜌↝ a and 𝜇(a) = 0 for a in another immediate extension F⊇K, there is a
unique embedding 𝜑:L→F over K with 𝜑(y)=a.

LemmaLemmaLemmaLemmaLemma ALGALGALGALGALG-----IMMIMMIMMIMMIMM

ProofProofProof... Mostly similar to previous lemma, except for v(s t)=v(s)+P(t) in L≠0.
Write s=S(y), t∈T(y), S,T∈K[Y]d. ST ≔Q𝜇+R, R∈K[Y]d, so that R(y)= s t.
Eventually, v(s t)=v(R(a𝜌)) and v(s)+v(t)=v(S(a𝜌)T(a𝜌))=v(Q(a𝜌)𝜇(a𝜌)+R(a𝜌)).
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Let (a𝜌) be pseudo-divergent of algebraic type. Let 𝜇 ∈K[Y] be of minimal degree d with
𝜇(a𝜌)↝0. Let L≔K[Y]/(𝜇), y≔Y+ (𝜇), K[Y]d≔{P∈K[Y] : deg P<d}. Then

v(P(y)) ≔ eventual value of v(P(a𝜌)), for any P∈K[Y]d
yields an extension of v to L. This extension L≔K(Y)⊇K is immediate and a𝜌↝y in L.
Moreover, if a𝜌↝ a and 𝜇(a) = 0 for a in another immediate extension F⊇K, there is a
unique embedding 𝜑:L→F over K with 𝜑(y)=a.

LemmaLemmaLemmaLemmaLemma ALGALGALGALGALG-----IMMIMMIMMIMMIMM

ProofProofProof... Mostly similar to previous lemma, except for v(s t)=v(s)+P(t) in L≠0.
Write s=S(y), t∈T(y), S,T∈K[Y]d. ST ≔Q𝜇+R, R∈K[Y]d, so that R(y)= s t.
Eventually, v(s t)=v(R(a𝜌)) and v(s)+v(t)=v(S(a𝜌)T(a𝜌))=v(Q(a𝜌)𝜇(a𝜌)+R(a𝜌)).
But Q(a𝜌)𝜇(𝛼𝜌) is eventually increasing or eventually infinite.
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Let (a𝜌) be pseudo-divergent of algebraic type. Let 𝜇 ∈K[Y] be of minimal degree d with
𝜇(a𝜌)↝0. Let L≔K[Y]/(𝜇), y≔Y+ (𝜇), K[Y]d≔{P∈K[Y] : deg P<d}. Then

v(P(y)) ≔ eventual value of v(P(a𝜌)), for any P∈K[Y]d
yields an extension of v to L. This extension L≔K(Y)⊇K is immediate and a𝜌↝y in L.
Moreover, if a𝜌↝ a and 𝜇(a) = 0 for a in another immediate extension F⊇K, there is a
unique embedding 𝜑:L→F over K with 𝜑(y)=a.

LemmaLemmaLemmaLemmaLemma ALGALGALGALGALG-----IMMIMMIMMIMMIMM

ProofProofProof... Mostly similar to previous lemma, except for v(s t)=v(s)+P(t) in L≠0.
Write s=S(y), t∈T(y), S,T∈K[Y]d. ST ≔Q𝜇+R, R∈K[Y]d, so that R(y)= s t.
Eventually, v(s t)=v(R(a𝜌)) and v(s)+v(t)=v(S(a𝜌)T(a𝜌))=v(Q(a𝜌)𝜇(a𝜌)+R(a𝜌)).
But Q(a𝜌)𝜇(𝛼𝜌) is eventually increasing or eventually infinite.
Eventually, this yields v(Q(a𝜌)𝜇(a𝜌))>v(R(a𝜌)) and v(s)+v(t)=v(R(a𝜌))=v(st). □
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A valued field K is said to be sphericallysphericallyspherically completecompletecomplete if every pc-sequence pseudo-converges.
DefinitionDefinitionDefinitionDefinitionDefinition
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A valued field K is said to be sphericallysphericallyspherically completecompletecomplete if every pc-sequence pseudo-converges.
DefinitionDefinitionDefinitionDefinitionDefinition

ExampleExampleExample... If R is a field and 𝔐 totally ordered, then R[[𝔐]] is sperically complete.
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A valued field K is said to be sphericallysphericallyspherically completecompletecomplete if every pc-sequence pseudo-converges.
DefinitionDefinitionDefinitionDefinitionDefinition

ExampleExampleExample... If R is a field and 𝔐 totally ordered, then R[[𝔐]] is sperically complete.

Any valued field K has a unique immediate spherical completion, up to isomorphism.
TheoremTheoremTheoremTheoremTheorem
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A valued field K is said to be sphericallysphericallyspherically completecompletecomplete if every pc-sequence pseudo-converges.
DefinitionDefinitionDefinitionDefinitionDefinition

ExampleExampleExample... If R is a field and 𝔐 totally ordered, then R[[𝔐]] is sperically complete.

Any valued field K has a unique immediate spherical completion, up to isomorphism.
TheoremTheoremTheoremTheoremTheorem

ProofProofProof... Combine Lemmas TR-IMM and ALG-IMM, and apply Zorn. □
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A valued field K is said to be algebraicallyalgebraicallyalgebraically maximalmaximalmaximal if it does not admit any proper
immediate algebraic valued field extension.

DefinitionDefinitionDefinitionDefinitionDefinition
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A valued field K is said to be algebraicallyalgebraicallyalgebraically maximalmaximalmaximal if it does not admit any proper
immediate algebraic valued field extension.

DefinitionDefinitionDefinitionDefinitionDefinition

ExamplesExamplesExamples... Any algebraically closed or spherically complete valued field.
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A valued field K is said to be algebraicallyalgebraicallyalgebraically maximalmaximalmaximal if it does not admit any proper
immediate algebraic valued field extension.

DefinitionDefinitionDefinitionDefinitionDefinition

ExamplesExamplesExamples... Any algebraically closed or spherically complete valued field.

Any valued field K has a unique algebraically maximal extension, up to isomorphism.
TheoremTheoremTheoremTheoremTheorem
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A valued field K is said to be algebraicallyalgebraicallyalgebraically maximalmaximalmaximal if it does not admit any proper
immediate algebraic valued field extension.

DefinitionDefinitionDefinitionDefinitionDefinition

ExamplesExamplesExamples... Any algebraically closed or spherically complete valued field.

Any valued field K has a unique algebraically maximal extension, up to isomorphism.
TheoremTheoremTheoremTheoremTheorem

ProofProofProof... Use Lemma ALG-IMM and Zorn. □
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A valued field K is said to be algebraicallyalgebraicallyalgebraically maximalmaximalmaximal if it does not admit any proper
immediate algebraic valued field extension.

DefinitionDefinitionDefinitionDefinitionDefinition

ExamplesExamplesExamples... Any algebraically closed or spherically complete valued field.

Any valued field K has a unique algebraically maximal extension, up to isomorphism.
TheoremTheoremTheoremTheoremTheorem

ProofProofProof... Use Lemma ALG-IMM and Zorn. □

If K is algebraically maximal, then K is henselian.
PropositionPropositionPropositionPropositionProposition
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A valued field K is said to be algebraicallyalgebraicallyalgebraically maximalmaximalmaximal if it does not admit any proper
immediate algebraic valued field extension.

DefinitionDefinitionDefinitionDefinitionDefinition

ExamplesExamplesExamples... Any algebraically closed or spherically complete valued field.

Any valued field K has a unique algebraically maximal extension, up to isomorphism.
TheoremTheoremTheoremTheoremTheorem

ProofProofProof... Use Lemma ALG-IMM and Zorn. □

If K is algebraically maximal, then K is henselian.
PropositionPropositionPropositionPropositionProposition

ProofProofProof...Any quasi-linear y=P(y), y≺1 with no solution in K gives rise to a divergent
pc-sequence (a𝜌)with P(a𝜌)↝0: a0=0, a𝛼+1=P(a𝛼), a𝜆≔ℓ, whenever (a𝛼)𝛼<𝜆↝ℓ. □
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A valued field K is said to be algebraicallyalgebraicallyalgebraically maximalmaximalmaximal if it does not admit any proper
immediate algebraic valued field extension.

DefinitionDefinitionDefinitionDefinitionDefinition

ExamplesExamplesExamples... Any algebraically closed or spherically complete valued field.

Any valued field K has a unique algebraically maximal extension, up to isomorphism.
TheoremTheoremTheoremTheoremTheorem

ProofProofProof... Use Lemma ALG-IMM and Zorn. □

If charK=char 𝒌=0, then K is algebraically maximal iff K is henselian.
PropositionPropositionPropositionPropositionProposition
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A valued field K is said to be algebraicallyalgebraicallyalgebraically maximalmaximalmaximal if it does not admit any proper
immediate algebraic valued field extension.

DefinitionDefinitionDefinitionDefinitionDefinition

ExamplesExamplesExamples... Any algebraically closed or spherically complete valued field.

Any valued field K has a unique algebraically maximal extension, up to isomorphism.
TheoremTheoremTheoremTheoremTheorem

ProofProofProof... Use Lemma ALG-IMM and Zorn. □

If charK=char 𝒌=0, then K is algebraically maximal iff K is henselian.
PropositionPropositionPropositionPropositionProposition

ProofProofProof... By what precedes and Newton polygon method. □
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Define v:K(Y)≠0 →Γ with v(P/Q)=v(P)−v(Q) for P,Q∈K[Y]≠0 and
v(P) = min (v(P0), . . . ,v(Pd)), for any P=PdYd+ ⋅ ⋅ ⋅ +P0 ∈K[Y].

Then L≔K(Y)⊇K is a valued field extension with 𝒌L=𝒌(Ȳ) and ΓL=ΓK.
For any valued field extension F⊇K with ΓF=ΓK and a∈𝒪L such that ā is transcendental
over 𝒌K, there exists a unique valued field embedding 𝜑:L→F over K with 𝜑(Y)=a.

LemmaLemmaLemmaLemmaLemma TRTRTRTRTR-----RESRESRESRESRES

ProofProofProof... L⊇K is easily seen to be a valued field extension. Clearly, ΓL=ΓK.
Consider A∈L with v(A)=0. We claim that Ā∈𝒌(Ȳ), which proves 𝒌L=𝒌(Ȳ).

Indeed, A=P/Qwith P,Q∈K[Y] such that v(P)=v(Q)=0.
Then P̄, Q̄∈𝒌[Ȳ]≠0, so Ā= P̄/Q̄∈𝒌(Ȳ).

Y, a transcendental over K ⟹ ∃! field embedding L→F over K with 𝜑(Y)=a.
v(a)=0 ⟹ v(P(a))=min (v(P0), . . . ,v(Pd)) for any P=PdYd+ ⋅ ⋅ ⋅ +P0 ∈K[Y]. □
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Let 𝜇∈K[Y] with v(𝜇)=0 and �̄�∈𝒌[Ȳ] irreducible of degree d=deg 𝜇. Then y≔Y+(𝜇)
in L≔K[Y]/(𝜇). Then L⊇K is a valued field extension with 𝒌L=𝒌[ȳ]/(�̄�) and ΓL=ΓK for

v(P(y)) = min (v(P0), . . . ,v(Pd−1)), for any P∈K[Y]d.

For any valued field extension F⊇K with ΓF = ΓK and a∈ 𝒪L such that 𝒌(ā) ≅ 𝒌L, there
exists a unique valued field embedding 𝜑:L→F over K with 𝜑(y)=a.

LemmaLemmaLemmaLemmaLemma ALGALGALGALGALG-----RESRESRESRESRES

NoteNoteNote... 𝜇 is irreducible in K[Y] since �̄� is irreducible in 𝒌[Ȳ], by Gauss' lemma.

ProofProofProof... Similar to previous lemma, except for v(s t)=v(s)+v(t) in L.
Any s∈L can be decomposed s=u s̃ with u∈K and s̃∈L such that v(s̃)=0.
Without loss of generality, we may therefore assume that v(s)=v(t)=0.
Then s̄, t̄∈𝒌L

≠0, so s t= s̄ t̄∈𝒌L
≠0, hence v(s t)=0. □
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Let Δ ⊇ Γ be a totally ordered group and 𝛾 ∈ Δ be such that Δ = Γ ⊕Z𝛾. Then there is
a unique valued field extension L≔K(Y)⊇K with v(Y)=𝛾. It is given by

v(P) ≔ min (v(P0), . . . ,v(Pd)+d𝛾), for all P=PdYd+ ⋅ ⋅ ⋅ +P0 ∈K[Y]≠0.

Moreover, if F⊇K is a valued field extension and a∈F transcendental such that v(a) and 𝛾
lie in the same cut over Γ, then ∃! valued field embedding 𝜑:L→F over K with 𝜑(a)=Y.

LemmaLemmaLemmaLemmaLemma TRTRTRTRTR-----VALVALVALVALVAL

ExerciseExerciseExercise... We also have 𝒌L=𝒌K.
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Let Δ ⊇ Γ be a totally ordered group and 𝛾 ∈ Δ be such that Δ = Γ ⊕Z𝛾. Then there is
a unique valued field extension L≔K(Y)⊇K with v(Y)=𝛾. It is given by

v(P) ≔ min (v(P0), . . . ,v(Pd)+d𝛾), for all P=PdYd+ ⋅ ⋅ ⋅ +P0 ∈K[Y]≠0.

Moreover, if F⊇K is a valued field extension and a∈F transcendental such that v(a) and 𝛾
lie in the same cut over Γ, then ∃! valued field embedding 𝜑:L→F over K with 𝜑(a)=Y.

LemmaLemmaLemmaLemmaLemma TRTRTRTRTR-----VALVALVALVALVAL

ProofProofProof... For P=PdYd+⋅⋅⋅+P0∈K[Y]≠0, there exists exactly one iwith v(P)=v(Pi)+ i𝛾.
Given a second Q∈K[Y]≠0, there is also exactly one j with v(Q)=v(Qj)+ j𝛾.
One verifies that v(PQ)=v(PiQj)+ (i+ j)𝛾 =v(P)+v(Q), so vL is a valuation on L.

Y, a transcendental over K ⟹ ∃! field embedding 𝜑:L→F over K with 𝛾(a)=Y.
v(P(a))=min (v(P0), . . . ,v(Pd)+dv(a)) for all P=PdYd+ ⋅ ⋅ ⋅ +P0 ∈K[Y]≠0.
Hence 𝜑 preserves v, since v(a) and 𝛾 lie in the same cut over Γ. □
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Let 𝛾 ∈d−1 Γ be such that Δ≔Γ+𝛾Z=Γ∪Γ+𝛾 ∪ ⋅ ⋅ ⋅ ∪Γ+ (d−1)𝛾 ⊇/ Γ for d>1. Let
𝜉 ∈K be such that v(𝜉)=d𝛾 and 𝜇 ≔Yd−𝜉 ∈K[Y]. Let L≔K[Y]/(𝜇) and y=Y+ (𝜇).
Then L⊇K is a valued field extension for the valuation defined by

v(P(y)) ≔ min (v(P0), . . . ,v(Pp−1)+ (d−1)𝛾), for all P∈K[Y]d
≠0.

Moreover, if F⊇K is a valued field extension and a∈F satisfies ad= 𝜉, then there exists
a unique valued field embedding 𝜑:L→F over K with 𝜑(a)=y.

LemmaLemmaLemmaLemmaLemma ALGALGALGALGALG-----VALVALVALVALVAL

ExerciseExerciseExercise... We also have 𝒌L=𝒌K.
ProofProofProof... Similar to the previous proof (exercise). □
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If charK=char 𝒌=0, then the valuation on K can be extended to the algebraic closure Ka

of K. Any valued field embedding K→F into another algebraically closed field F extends
to a valued field embedding Ka →F.

TheoremTheoremTheoremTheoremTheorem

ProofProofProof... Lemmas ALG-IMM, ALG-RES, ALG-VAL, and Zorn yield:
• An algebraic valued field extension L⊇K, such that

∘ L is henselian (ALG-IMM).
∘ 𝒌L algebraically closed (ALG-RES).
∘ ΓL is divisible (ALG-VAL).

• Any valued field embedding K→F extends to a valued field embedding Ka→F.
(See also below.)

Newton polygon methods ⟹ L is algebraically closed. □
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LanguagesLanguagesLanguages
Triples ℒ= (S,ℒr,ℒf) of sortssortssorts (e.g. {K, Γ}), relationsrelationsrelations, and functionsfunctionsfunctions.
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Triples ℒ= (S,ℒr,ℒf) of sortssortssorts (e.g. {K, Γ}), relationsrelationsrelations, and functionsfunctionsfunctions.
ℒℒℒ---structuresstructuresstructures
𝑴 = ((Ms)s∈S, (Ri), ( fj)), sets Ms, relations Ri⊆Ms1 × ⋅ ⋅ ⋅ ×Msn,
functions fj:Ms1 × ⋅ ⋅ ⋅ ×Msn →Mt (s1, . . . , sn, t depend on i, j). Morphisms, . . .

ℒℒℒ---formulasformulasformulas
Formed from ℒ, variables of the sorts S, and ⊤, ⊥, ¬, ∨, ∧, =, ∃, ∀.
ℒA ≔ extension of ℒ with constants a∈As of sort s for A= (As)s∈S

ℒℒℒ---theoriestheoriestheories
Let 𝑴 be an ℒ-structure and Σ, Σ′ sets of ℒ-formulas

𝑴 ⊨Σ 𝑴 is a model for Σ Σ⊨Σ′ 𝑴 ⊨Τ whenever 𝑴 ⊨Σ′
Th(𝑴) {𝜎 :𝑴 ⊨𝜎} Th(Σ) {𝜎 :Σ⊨𝜎}
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𝑴 ≡𝑵 Th(𝑴)=Th(𝑵) 𝑴 and 𝑵 are elementaryelementaryelementary equivalentequivalentequivalent
𝑴 ≼𝑵 𝑴 ⊆𝑵 and 𝑴 ≡ℒM𝑵 𝑴 is an elementaryelementaryelementary substructuresubstructuresubstructure of 𝑵
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T is an ℒ-theorytheorytheory Th(T)=T
Σ axiomatizesaxiomatizesaxiomatizes T Th(Σ)=T
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Σ is completecompletecomplete Σ has a model and Σ⊨𝜎 or Σ⊨¬𝜎 for any formula 𝜎
T is an ℒ-theorytheorytheory Th(T)=T
Σ axiomatizesaxiomatizesaxiomatizes T Th(Σ)=T

qfqfqf---formulaformulaformula Formula that does not involve ∀ or ∃
∃∃∃---formulaformulaformula Formula (∃x) 𝜑(x) for some qf-formula 𝜑(x)
𝜑(x) is ΣΣΣ---equivalentequivalentequivalent to 𝜓(x) Σ⊨𝜑(x) ⟺ Σ⊨𝜓(x)
Σ has quantifierquantifierquantifier eliminationeliminationelimination Any formula is Σ-equivalent to a qf-formula
Σ is modelmodelmodel completecompletecomplete Any formula is Σ-equivalent to an ∃-formula
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ℒ : a fixed a language

𝑴 ≡𝑵 Th(𝑴)=Th(𝑵) 𝑴 and 𝑵 are elementaryelementaryelementary equivalentequivalentequivalent
𝑴 ≼𝑵 𝑴 ⊆𝑵 and 𝑴 ≡ℒM𝑵 𝑴 is an elementaryelementaryelementary substructuresubstructuresubstructure of 𝑵

Σ is completecompletecomplete Σ has a model and Σ⊨𝜎 or Σ⊨¬𝜎 for any formula 𝜎
T is an ℒ-theorytheorytheory Th(T)=T
Σ axiomatizesaxiomatizesaxiomatizes T Th(Σ)=T

qfqfqf---formulaformulaformula Formula that does not involve ∀ or ∃
∃∃∃---formulaformulaformula Formula (∃x) 𝜑(x) for some qf-formula 𝜑(x)
𝜑(x) is ΣΣΣ---equivalentequivalentequivalent to 𝜓(x) Σ⊨𝜑(x) ⟺ Σ⊨𝜓(x)
Σ has quantifierquantifierquantifier eliminationeliminationelimination Any formula is Σ-equivalent to a qf-formula
Σ is modelmodelmodel completecompletecomplete Any formula is Σ-equivalent to an ∃-formula
T∗ is a modelmodelmodel companioncompanioncompanion of T T∗ model complete and

Any model of T embeds into a model of T∗
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Let Φ=Φ(x) be a set of formulas depending on free variables x= (xi) of sorts (si)
Let 𝑴 be an ℒ-structure and Mx≔∏i Msi.
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Φ is ΣΣΣ---realizablerealizablerealizable Φ is realized in some model 𝑴 of Σ
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each complete v-type over A in 𝑴 is realized in 𝑴
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Let Φ=Φ(x) be a set of formulas depending on free variables x= (xi) of sorts (si)
Let 𝑴 be an ℒ-structure and Mx≔∏i Msi.
a∈Mx realizesrealizesrealizes Φ in 𝑴 M⊨𝜑(a) for all 𝜑∈Φ
Φ is realizedrealizedrealized in 𝑴 a realizes Φ in M for some a∈Mx
Φ is ΣΣΣ---realizablerealizablerealizable Φ is realized in some model 𝑴 of Σ
Φ is an xxx---typetypetype Φ is realized in some 𝑴
— that is completecompletecomplete either 𝜑∈Φ or ¬𝜑∈Φ for all 𝜑(x)
— overoverover A⊆M in 𝑴 Φ is a Th(𝑴A)-realizable x-type for the language ℒA

𝑴 is κκκ---saturatedsaturatedsaturated For any A⊆M of size <𝜅 and any variable v of ℒ,
each complete v-type over A in 𝑴 is realized in 𝑴

Suppose that 𝑴 is 𝜅-saturated, 𝜅 is infinite, A⊆M and x have size <𝜅.
Then every x-type over A in 𝑴 is realized in 𝑴.

PropositionPropositionPropositionPropositionProposition
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Assume that Σ eliminates quantifiers and also has a model.
Then Σ is complete if and only if some ℒ-structure embeds into every model of Σ.

TheoremTheoremTheoremTheoremTheorem
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Assume that Σ eliminates quantifiers and also has a model.
Then Σ is complete if and only if some ℒ-structure embeds into every model of Σ.

TheoremTheoremTheoremTheoremTheorem

NoteNoteNote::: The ℒ-structure does not need to be a model of Σ.
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Then Σ is complete if and only if some ℒ-structure embeds into every model of Σ.
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NoteNoteNote::: The ℒ-structure does not need to be a model of Σ.

ExampleExampleExample...
• The theory ACF of algebraically closed fields has QE. (See below)
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Then Σ is complete if and only if some ℒ-structure embeds into every model of Σ.

TheoremTheoremTheoremTheoremTheorem

NoteNoteNote::: The ℒ-structure does not need to be a model of Σ.
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• The theory ACF of algebraically closed fields has QE. (See below)
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Assume that Σ eliminates quantifiers and also has a model.
Then Σ is complete if and only if some ℒ-structure embeds into every model of Σ.

TheoremTheoremTheoremTheoremTheorem

NoteNoteNote::: The ℒ-structure does not need to be a model of Σ.

ExampleExampleExample...
• The theory ACF of algebraically closed fields has QE. (See below)
• So does the theory ACF(0) of algebraically closed fields of characteristic zero.
• Z embeds into any (algebraically closed) field of characteristic zero.
• Hence ACF(0) is complete.
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Let Σ be given and suppose that

∀

• 𝑴 ⊨Σ
• proper substructure 𝑨⊆/ 𝑴
• |A|+-saturated model 𝑵 of Σ
• embedding 𝜄:𝑨 ↪←→ 𝑵

∃ • b∈Ms∖As for some s∈S
• an extension 𝜄:𝑨 //b //↪←→ 𝑵 of 𝜄

Then Σ admits quantifier elimination.

TheoremTheoremTheoremTheoremTheorem

𝑨 //b //

𝑨

𝑴 𝑵
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Let Σ be given and suppose that

∀

• 𝑴 ⊨Σ
• 𝑨⊨Σ with 𝑨⊆𝑴
• |A|+-saturated 𝑵 ≽𝑨
• inclusion 𝜄:𝑨 ↪←→ 𝑵

∃ an embedding 𝜄:𝑴 ↪←→ 𝑵 that extends 𝜄

Then Σ is model complete.

TheoremTheoremTheoremTheoremTheorem

𝑨

𝑴 𝑵
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The theory ACF of algebraically closed fields (for ℒ={0,1,+,−, ⋅}) has QE.
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The theory ACF of algebraically closed fields (for ℒ={0,1,+,−, ⋅}) has QE.
TheoremTheoremTheoremTheoremTheorem

ProofProofProof... Let
• E be an algebraically closed field.
• A⊆E a substructure, i.e. an integral domain.
• F an algebraically closed field that is |A|+-saturated.
• An embedding 𝜄:A→F.
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• E be an algebraically closed field.
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• F an algebraically closed field that is |A|+-saturated.
• An embedding 𝜄:A→F.
Problem: construct a∈E∖A + embedding 𝜄:A[a]→F that extends 𝜄.
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The theory ACF of algebraically closed fields (for ℒ={0,1,+,−, ⋅}) has QE.
TheoremTheoremTheoremTheoremTheorem

ProofProofProof... Let
• E be an algebraically closed field.
• A⊆E a substructure, i.e. an integral domain.
• F an algebraically closed field that is |A|+-saturated.
• An embedding 𝜄:A→F.
Problem: construct a∈E∖A + embedding 𝜄:A[a]→F that extends 𝜄.

CaseCaseCase 000... AAA isisis notnotnot aaa fieldfieldfield
Take x∈A≠0 such that a≔x−1 ∈E∖A.
Then 𝜄 uniquely extends into an embedding 𝜄:A[a]=Ax−N→F with 𝜄(a)=𝜄(x)−1.
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The theory ACF of algebraically closed fields (for ℒ={0,1,+,−, ⋅}) has QE.
TheoremTheoremTheoremTheoremTheorem

ProofProofProof... Let
• E be an algebraically closed field.
• A⊆E a substructure, i.e. an integral domain.
• F an algebraically closed field that is |A|+-saturated.
• An embedding 𝜄:A→F.
Problem: construct a∈E∖A + embedding 𝜄:A[a]→F that extends 𝜄.

CaseCaseCase 111... KKK≔≔≔AAA isisis aaa fieldfieldfield thatthatthat isisis notnotnot algebraicallyalgebraicallyalgebraically closedclosedclosed
Take a∈Ka∖K⊆E∖Kwith P(a)=0 for some irreductible 𝜇=𝜇dYd+ ⋅ ⋅ ⋅ +𝜇0 ∈K[Y].
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The theory ACF of algebraically closed fields (for ℒ={0,1,+,−, ⋅}) has QE.
TheoremTheoremTheoremTheoremTheorem

ProofProofProof... Let
• E be an algebraically closed field.
• A⊆E a substructure, i.e. an integral domain.
• F an algebraically closed field that is |A|+-saturated.
• An embedding 𝜄:A→F.
Problem: construct a∈E∖A + embedding 𝜄:A[a]→F that extends 𝜄.

CaseCaseCase 111... KKK≔≔≔AAA isisis aaa fieldfieldfield thatthatthat isisis notnotnot algebraicallyalgebraicallyalgebraically closedclosedclosed
Take a∈Ka∖K⊆E∖Kwith P(a)=0 for some irreductible 𝜇=𝜇dYd+ ⋅ ⋅ ⋅ +𝜇0 ∈K[Y].
Since F is algebraically closed, there exists a b∈F with 𝜄(𝜇d)bd+ ⋅ ⋅ ⋅ + 𝜄(𝜇0)=0.



ApplicationApplicationApplication tototo ACFACFACF 262626///303030

The theory ACF of algebraically closed fields (for ℒ={0,1,+,−, ⋅}) has QE.
TheoremTheoremTheoremTheoremTheorem

ProofProofProof... Let
• E be an algebraically closed field.
• A⊆E a substructure, i.e. an integral domain.
• F an algebraically closed field that is |A|+-saturated.
• An embedding 𝜄:A→F.
Problem: construct a∈E∖A + embedding 𝜄:A[a]→F that extends 𝜄.

CaseCaseCase 111... KKK≔≔≔AAA isisis aaa fieldfieldfield thatthatthat isisis notnotnot algebraicallyalgebraicallyalgebraically closedclosedclosed
Take a∈Ka∖K⊆E∖Kwith P(a)=0 for some irreductible 𝜇=𝜇dYd+ ⋅ ⋅ ⋅ +𝜇0 ∈K[Y].
Since F is algebraically closed, there exists a b∈F with 𝜄(𝜇d)bd+ ⋅ ⋅ ⋅ + 𝜄(𝜇0)=0.
Since K[Y]/(𝜇)≅𝜄(K)(b), we may extend 𝜄 into an embedding 𝜄:K(a)→Fwith 𝜄(a)=b.
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The theory ACF of algebraically closed fields (for ℒ={0,1,+,−, ⋅}) has QE.
TheoremTheoremTheoremTheoremTheorem

ProofProofProof... Let
• E be an algebraically closed field.
• A⊆E a substructure, i.e. an integral domain.
• F an algebraically closed field that is |A|+-saturated.
• An embedding 𝜄:A→F.
Problem: construct a∈E∖A + embedding 𝜄:A[a]→F that extends 𝜄.

CaseCaseCase 222... KKK≔≔≔AAA isisis ananan algebraicallyalgebraicallyalgebraically closedclosedclosed fieldfieldfield
Let a∈E∖K. Then a is transcendental over K.



ApplicationApplicationApplication tototo ACFACFACF 262626///303030

The theory ACF of algebraically closed fields (for ℒ={0,1,+,−, ⋅}) has QE.
TheoremTheoremTheoremTheoremTheorem

ProofProofProof... Let
• E be an algebraically closed field.
• A⊆E a substructure, i.e. an integral domain.
• F an algebraically closed field that is |A|+-saturated.
• An embedding 𝜄:A→F.
Problem: construct a∈E∖A + embedding 𝜄:A[a]→F that extends 𝜄.

CaseCaseCase 222... KKK≔≔≔AAA isisis ananan algebraicallyalgebraicallyalgebraically closedclosedclosed fieldfieldfield
Let a∈E∖K. Then a is transcendental over K.
Saturation ⟹ There exists a transcendental b∈F∖K.
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The theory ACF of algebraically closed fields (for ℒ={0,1,+,−, ⋅}) has QE.
TheoremTheoremTheoremTheoremTheorem

ProofProofProof... Let
• E be an algebraically closed field.
• A⊆E a substructure, i.e. an integral domain.
• F an algebraically closed field that is |A|+-saturated.
• An embedding 𝜄:A→F.
Problem: construct a∈E∖A + embedding 𝜄:A[a]→F that extends 𝜄.

CaseCaseCase 222... KKK≔≔≔AAA isisis ananan algebraicallyalgebraicallyalgebraically closedclosedclosed fieldfieldfield
Let a∈E∖K. Then a is transcendental over K.
Saturation ⟹ There exists a transcendental b∈F∖K.
Then K[a]≅𝜄(K)[b], so we may extend 𝜄 into an embedding 𝜄:K[a]→F. □



ApplicationApplicationApplication tototo ACVFACVFACVF 272727///303030

The theory ACVF of algebraically closed valued fields eliminates quantifiers.
TheoremTheoremTheoremTheoremTheorem

NoteNoteNote... ACVF can be modeled in the language (K, Γ,+,−, ⋅,v,⩽Γ,+Γ,−Γ).
Sometimes: extra sort for 𝒌 (and extra component 𝜄𝒌: 𝒌A→𝒌F).
Alternatively: one-sorted language (K,+,−, ⋅,≼).
ProofProofProof... Let
• E be an algebraically closed valued field.
• A⊆E a substructure, i.e. a “valued integral domain”.
• F an algebraically closed valued field that is |A|+-saturated.
• An embedding 𝜄:A→F.
Problem: construct y∈E∖A + embedding 𝜄:A[y]→F that extends 𝜄.
To easy notations, we may assume wlog that A⊆F and that 𝜄 is the inclusion.
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CaseCaseCase 000... AAA isisis notnotnot aaa fieldfieldfield
Let x be a non-invertible element of A≠0 and take y≔x−1.
Let 𝜄:A[a]=Ax−N→F extend 𝜄 with 𝜄(a)=𝜄(x)−1 (as for ACF).
Any element of A[a] is of the form c an= cx−n for c∈A and n∈N.
Then v(𝜄(c an))=v(cx−n)=v(c)−nv(x), both in ΓA[a] =ΓA and in ΓF⊇ΓA.
Hence the embedding 𝜄 preserves the valuation.

CaseCaseCase 111aaa... KKK ≔≔≔ AAA isisis aaa fieldfieldfield,,, butbutbut kkkKKK isisis notnotnot ACACAC (((algebraicallyalgebraicallyalgebraically closedclosedclosed)))...
Let 𝜇∈K[Y] be monic with 𝜇≼1 and �̄� irreducible in 𝒌K[Y]. Let y∈E be a root of 𝜇.
Since F is AC, ∃ a∈Fwith 𝜇(a)=0. Let 𝜄:K[y]→F extend 𝜄 with 𝜄(y)=a (as for ACF).
Then 𝒌K(ā)≅𝒌K(ȳ) and 𝜄 preserves the valuation by Lemma ALG-RES.

CaseCaseCase 111bbb... KKK ≔≔≔ AAA isisis aaa fieldfieldfield,,, butbutbut ΓΓΓKKK isisis notnotnot divisibledivisibledivisible...
Similar as above, with 𝜇=Yp−𝜉 for p prime and 𝜉 ∈K such that p−1v(𝜉)∉ΓK.
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The valued field K has characteristiccharacteristiccharacteristic (m,n) if charK=m and char 𝒌K=n.

The theory ACV(m,n) of algebraically valued fields of characteristic (m, n) has QE and
it is complete.

TheoremTheoremTheoremTheoremTheorem

QEQEQE... The characteristic of a valued field is conserved under the extensions.
Hence the previous proof goes through for any fixed characteristic.

CompletenessCompletenessCompleteness... Sufficient: a valued ring that embeds into any model of ACV(m,n).
• If m=n=0, then we may take Z with the trivial valuation.
• If m=0 and n=p is prime, then we may take Z with the p-adic valuation.
• If m=n=p is prime, then we may take Fp with the trivial valuation. □
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Let (K,⩽) be an ordered field (soQ⊆K).
Given X⊆K, its convexconvexconvex hullhullhull is {a∈K : (∃x,y∈X) x⩽a⩽y}.

Given a valuation v on K, we say that (K,⩽,v) is an orderedorderedordered valuedvaluedvalued fieldfieldfield if 𝒪K is convex.
DefinitionDefinitionDefinitionDefinitionDefinition

ExampleExampleExample... The “finest” valuation v with 𝒪K=hull(K) and 𝒪K={a∈K : |a|<Q>0}.

The theory RCVF of real closed valued fields eliminates quantifiers and is complete.
TheoremTheoremTheoremTheoremTheorem

ProofProofProof... QE: similar as for ACVF. Completeness: Z embeds into any model. □
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