Lesson 8 - Valued fields

IMS summer school Singapore, July 13, 2023

Definition

Let K be a field and Γ a totally ordered abelian group.
A valuation is a map $v: K \rightarrow \Gamma \cup\{\infty\}$ such that

- $v(a)=\infty$ if and only if $a=0$;
- $v(a b)=v(a)+v(b)$;
- $v(a+b) \geqslant \min (v(a), v(b))$ with equality if $v(b) \neq v(a)$.

In that case, we define

$$
\begin{array}{ll}
\mathcal{O}_{K}:=\{a \in K: v(a) \geqslant 0\} & \text { the valuation ring } \\
\mathcal{O}_{K}:=\{a \in K: v(a)>0\} & \text { its maximal ideal } \\
\boldsymbol{k}_{K}:=\mathcal{O}_{K} / \mathscr{O}_{K} & \text { its residue field }
\end{array}
$$

Convention. We will usually assume that $\Gamma=v\left(K^{\neq 0}\right)$.

Ordered fields. Let K be an ordered field. For $x, y \in K^{\neq 0}$, we define

$$
\begin{aligned}
& x \leqslant y \Longleftrightarrow\left(\exists n \in \mathbb{N}^{>0}\right) \quad|x| \leqslant n|y| \\
& x=y \Longleftrightarrow x \leqslant y \leqslant x
\end{aligned}
$$

Ordered fields. Let K be an ordered field. For $x, y \in K^{\neq 0}$, we define

$$
\begin{array}{lrl}
x \leqslant y & \Longleftrightarrow\left(\exists n \in \mathbb{N}^{>0}\right) & |x| \leqslant n|y| \\
x \asymp y & :=\left\{x \mid \asymp: x \in K^{\neq 0}\right\} \\
x \leqslant y \leqslant x & v(x) & :=x / \asymp
\end{array}
$$

Ordered fields. Let K be an ordered field. For $x, y \in K^{\neq 0}$, we define

$$
\begin{array}{rlrl}
x \leqslant y & \Longleftrightarrow\left(\exists n \in \mathbb{N}^{>0}\right) & |x| \leqslant n|y| & :=\left\{x \mid \asymp: x \in K^{\neq 0}\right\} \\
x \asymp y & \Longleftrightarrow x \leqslant y \leqslant x & v(x) & :=x / \asymp \\
& v(x) \leqslant v(y) & \Longleftrightarrow x \geqslant y
\end{array}
$$

Ordered fields. Let K be an ordered field. For $x, y \in K^{\neq 0}$, we define

$$
\begin{array}{rlrl}
x \leqslant y & \Gamma & :=\left\{x / \asymp: x \in K^{\neq 0}\right\} \\
x=y & \left.\Longleftrightarrow x \leqslant y \in \mathbb{N}^{>0}\right) & |x| \leqslant n|y| & v(x) \\
& :=x / \asymp \\
& v(x) \leqslant v(y) & \Longleftrightarrow x \geqslant y
\end{array}
$$

Hausdorff fields. Any Hausdorff field K is valued as an ordered field with $k_{K} \subseteq \mathbb{R}$.

Ordered fields. Let K be an ordered field. For $x, y \in K^{\neq 0}$, we define

$$
\begin{array}{rlrl}
x \leqslant y & \Gamma & :=\left\{x / \asymp: x \in K^{\neq 0}\right\} \\
x=y & \left.\Longleftrightarrow x \leqslant \mathbb{N}^{>0}\right) & |x| \leqslant n|y| & v(x) \\
& :=x / \asymp \\
& v(x) \leqslant v(y) & \Longleftrightarrow x \geqslant y
\end{array}
$$

Hausdorff fields. Any Hausdorff field K is valued as an ordered field with $k_{K} \subseteq \mathbb{R}$. Well-based series. $K:=R\left[\left[z^{\Gamma}\right]\right], R$ field, Γ totally ordered group.

$$
\begin{aligned}
z^{\alpha} \geqslant z^{\beta} & \Leftrightarrow \alpha \leqslant \beta \\
v(f) & :=\alpha, \quad \text { for } f \in K^{\neq 0} \text { with } \mathfrak{d}_{f}=x^{\alpha} .
\end{aligned}
$$

Ordered fields. Let K be an ordered field. For $x, y \in K^{\neq 0}$, we define

$$
\begin{aligned}
x \leqslant y & \Longleftrightarrow\left(\exists n \in \mathbb{N}^{>0}\right) \\
x \asymp y & \Longleftrightarrow=\{x|\leqslant n| y \mid \\
& \Longleftrightarrow x \leqslant y \leqslant x
\end{aligned}
$$

Hausdorff fields. Any Hausdorff field K is valued as an ordered field with $k_{K} \subseteq \mathbb{R}$. Well-based series. $K:=R\left[\left[z^{\Gamma}\right]\right], R$ field, Γ totally ordered group.

$$
\begin{array}{rll}
z^{\alpha} \geqslant z^{\beta} & \Longleftrightarrow \alpha \leqslant \beta & \\
v(f) & :=\alpha, & \text { for } f \in K^{\neq 0} \text { with } \mathfrak{d}_{f}=x^{\alpha}
\end{array}
$$

p-adic numbers. $K=\mathbb{Q}_{p}, \Gamma:=\mathbb{Z}, p$-adic valuation.

Asymptotic relations

Let K be a valued field. For $x, y \in K$, we define

$$
\begin{aligned}
& x \prec y \Longleftrightarrow v(x)>v(y) \Longleftrightarrow x \in \mathcal{O} y \wedge y \neq 0 \\
& x \preccurlyeq y \Longleftrightarrow v(x) \geqslant v(y) \Longleftrightarrow x \in \mathcal{O} y \\
& x \asymp y \Longleftrightarrow v(x)=v(y) \Longleftrightarrow x \preccurlyeq y \preccurlyeq x \\
& x \sim y \Longleftrightarrow x-y \prec x .
\end{aligned}
$$

Note. The axioms of valued fields can be reformulated in terms of \leqslant. Both points of views are essentially equivalent. Always remind the reversal of the ordering.

Let K be a valued field.

Let K be a valued field.
A monomial group for K is a subgroup $\mathfrak{M} \subseteq K^{\neq 0}$ such that $v_{\mathfrak{M}}$ is a bijection. Given $\gamma \in \Gamma$, we define \mathfrak{z}^{γ} to be the unique element in \mathfrak{M} with $v\left(\mathfrak{z}^{\gamma}\right)=\gamma$.

Monomial groups

Let K be a valued field.
A monomial group for K is a subgroup $\mathfrak{M} \subseteq K^{\neq 0}$ such that $v_{\mathfrak{M}}$ is a bijection. Given $\gamma \in \Gamma$, we define \mathfrak{z}^{γ} to be the unique element in \mathfrak{M} with $v\left(\mathfrak{z}^{\gamma}\right)=\gamma$.

Proposition

Let $G \subseteq K^{\neq 0}$ be divisible with $v(G)=\Gamma$. Then there is a monomial group $\mathfrak{M} \subseteq G$ for K.

Let K be a valued field.
A monomial group for K is a subgroup $\mathfrak{M} \subseteq K^{\neq 0}$ such that $v_{\mid \mathfrak{M}}$ is a bijection. Given $\gamma \in \Gamma$, we define \mathfrak{z}^{γ} to be the unique element in \mathfrak{M} with $v\left(\mathfrak{z}^{\gamma}\right)=\gamma$.

Proposition

Let $G \subseteq K^{\neq 0}$ be divisible with $v(G)=\Gamma$. Then there is a monomial group $\mathfrak{M} \subseteq G$ for K.
Proof. Embed increasingly large subgroups Δ of Γ into G. Given $\Gamma \nsupseteq \Delta \hookrightarrow G$ and $\gamma \in \Gamma \backslash \Delta$, let $k \in \mathbb{N}$ with $k \mathbb{Z}=\{n \in \mathbb{Z}: n \gamma \in \Delta\}$. Take $\mathfrak{z}^{\gamma} \in G$ with $v\left(\mathfrak{z}^{\gamma}\right)=\gamma$ such that $(\mathfrak{z})^{\gamma}=\mathfrak{z}^{k \gamma}$ whenever $k>0$. Apply Zorn.

Let K be a valued field.
A monomial group for K is a subgroup $\mathfrak{M} \subseteq K^{\neq 0}$ such that $v_{\mid \mathfrak{M}}$ is a bijection. Given $\gamma \in \Gamma$, we define \mathfrak{z}^{γ} to be the unique element in \mathfrak{M} with $v\left(\mathfrak{z}^{\gamma}\right)=\gamma$.

Proposition

Let $G \subseteq K^{\neq 0}$ be divisible with $v(G)=\Gamma$. Then there is a monomial group $\mathfrak{M} \subseteq G$ for K.
Proof. Embed increasingly large subgroups Δ of Γ into G. Given $\Gamma \nsupseteq \Delta \hookrightarrow G$ and $\gamma \in \Gamma \backslash \Delta$, let $k \in \mathbb{N}$ with $k \mathbb{Z}=\{n \in \mathbb{Z}: n \gamma \in \Delta\}$. Take $\mathfrak{z}^{\gamma} \in G$ with $v\left(\mathfrak{z}^{\gamma}\right)=\gamma$ such that $\left(\mathfrak{z}^{\gamma}\right)^{k}=\mathfrak{z}^{k \gamma}$ whenever $k>0$. Apply Zorn. Examples:

- $G=K^{\neq 0}$ for an algebraically closed valued field K.

Monomial groups

Let K be a valued field.
A monomial group for K is a subgroup $\mathfrak{M} \subseteq K^{\neq 0}$ such that $v_{\mathfrak{M}}$ is a bijection. Given $\gamma \in \Gamma$, we define \mathfrak{z}^{γ} to be the unique element in \mathfrak{M} with $v\left(\mathfrak{z}^{\gamma}\right)=\gamma$.

Proposition

Let $G \subseteq K^{\neq 0}$ be divisible with $v(G)=\Gamma$. Then there is a monomial group $\mathfrak{M} \subseteq G$ for K.
Proof. Embed increasingly large subgroups Δ of Γ into G.
Given $\Gamma \nsupseteq \Delta \hookrightarrow G$ and $\gamma \in \Gamma \backslash \Delta$, let $k \in \mathbb{N}$ with $k \mathbb{Z}=\{n \in \mathbb{Z}: n \gamma \in \Delta\}$. Take $\mathfrak{z}^{\gamma} \in G$ with $v\left(\mathfrak{z}^{\gamma}\right)=\gamma$ such that $\left(\mathfrak{z}^{\gamma}\right)^{k}=\mathfrak{z}^{k \gamma}$ whenever $k>0$. Apply Zorn.

Examples:

- $G=K^{\neq 0}$ for an algebraically closed valued field K.
- $G=K^{>0}$ for a real closed field K.

Let K be a valued field and $P \in K[Y]^{\neq 0}$. We extend the valuation v to $K[Y]$ by

$$
v\left(P_{d} Y^{d}+\cdots+P_{0}\right):=\min \left(v\left(P_{d}\right), \ldots, v\left(P_{0}\right)\right)
$$

We also define the relation \propto on $k[Y]$ by

$$
A \propto B \Longleftrightarrow\left(\exists \lambda \in \boldsymbol{k}^{\neq 0}\right) B=\lambda A .
$$

The projective Newton polynomial $N_{\alpha}(P) \in k[Y] / \propto$ is defined by

$$
N_{\alpha}(P):=\overline{a P} / \propto, \quad \text { where } a \in K \text { is such that } a P \asymp 1 \text {. }
$$

The monic Newton polynomial $N_{\text {mon }}(P) \in k[Y]$ is the monic polynomial with

$$
N_{\text {mon }}(P) / \propto=N_{\alpha}(P)
$$

If K has a monomial group, then we define the Newton polynomial $N(P) \in k[Y]$ by

$$
N(P):=\overline{\mathfrak{z}^{-v(P)} P} .
$$

Newton degree

Given $P \in K[Y]$ and $\gamma \in \Gamma$, one may consider the asymptotic equation

$$
P(y)=0, \quad v(y)>\gamma .
$$

The Newton degrees of this equation is defined by

$$
\operatorname{deg}_{>\gamma} P:=\operatorname{val} N_{\alpha}\left(P_{\times a}\right)
$$

where $a \in K^{\neq 0}$ is such that $v(a)=\gamma$.
Equations of Newton degree one are said to be quasi-linear.

Definition

We say that K is henselian if any quasi-linear equation has a solution in K.

The Newton polygon method

Let K be a henselian valued field of characteristic zero with a divisible value group Γ.

Let K be a henselian valued field of characteristic zero with a divisible value group Γ.

Theorem

Let $P \in K[Y]^{\neq 0}$ and $\gamma \in \Gamma$. If k is algebraically closed, then

$$
P(y)=0, \quad v(y)>\gamma
$$

has exactly $\mathrm{deg}_{>\gamma} P$ solutions in K, when counting with multiplicities.

Let K be a henselian valued field of characteristic zero with a divisible value group Γ.

Theorem

Let $P \in K[Y]^{\neq 0}$ and $\gamma \in \Gamma$. If k is algebraically closed, then

$$
P(y)=0, \quad v(y)>\gamma
$$

has exactly $\operatorname{deg}_{>\gamma} P$ solutions in K, when counting with multiplicities.
Proof. Straightforward adaptation of proof from Lesson 4.

The Newton polygon method

Let K be a henselian valued field of characteristic zero with a divisible value group Γ.

Theorem

Let $P \in K[Y]^{\neq 0}$ and $\gamma \in \Gamma$. If k is algebraically closed, then

$$
P(y)=0, \quad v(y)>\gamma
$$

has exactly $\mathrm{deg}_{>\gamma} P$ solutions in K, when counting with multiplicities.

Corollary

a) If k is algebraically closed, then so is K.
b) If k is real closed, then so is K.

The Newton polygon method

Let K be a henselian valued field of characteristic zero with a divisible value group Γ.

Theorem

Let $P \in K[Y]^{\neq 0}$ and $\gamma \in \Gamma$. If k is algebraically closed, then

$$
P(y)=0, \quad v(y)>\gamma
$$

has exactly $\mathrm{deg}_{>\gamma} P$ solutions in K, when counting with multiplicities.

Corollary

a) If k is algebraically closed, then so is K.
b) If k is real closed, then so is K.

Proof of (b). Since $k[i]$ is algebraically closed, so is K[i], by (a).

The Newton polygon method

Let K be a henselian valued field of characteristic zero with a divisible value group Γ.

Theorem

Let $P \in K[Y]^{\neq 0}$ and $\gamma \in \Gamma$. If k is algebraically closed, then

$$
P(y)=0, \quad v(y)>\gamma
$$

has exactly $\mathrm{deg}_{>\gamma} P$ solutions in K, when counting with multiplicities.

Corollary

a) If k is algebraically closed, then so is K.
b) If k is real closed, then so is K.

Proof of (b). Since $k[i]$ is algebraically closed, so is K[i], by (a). The complex roots of P in $K[i]$ come in conjugate pairs.

The Newton polygon method

Let K be a henselian valued field of characteristic zero with a divisible value group Γ.

Theorem

Let $P \in K[Y]^{\nexists 0}$ and $\gamma \in \Gamma$. If k is algebraically closed, then

$$
P(y)=0, \quad v(y)>\gamma
$$

has exactly $\mathrm{deg}_{>\gamma} P$ solutions in K, when counting with multiplicities.

Corollary

a) If k is algebraically closed, then so is K.
b) If k is real closed, then so is K.

Proof of (b). Since $k[i]$ is algebraically closed, so is K[i], by (a). The complex roots of P in K[i] come in conjugate pairs. If $\operatorname{deg} P$ is odd, this means that P has at least one root in K.

Given a valued field K, describe the valued field extensions $L:=K(y) \supseteq K$.

Given a valued field K, describe the valued field extensions $L:=K(y) \supseteq K$.
2×3 fundamental kinds of extensions

Given a valued field K, describe the valued field extensions $L:=K(y) \supseteq K$.
2×3 fundamental kinds of extensions

- y is algebraic.

Given a valued field K, describe the valued field extensions $L:=K(y) \supseteq K$.
2×3 fundamental kinds of extensions

- y is algebraic.
- y is transcendental.

Given a valued field K, describe the valued field extensions $L:=K(y) \supseteq K$.
2×3 fundamental kinds of extensions

- y is algebraic.
- y is transcendental.
- $k_{L}=k_{K}, \Gamma_{L}=\Gamma_{K}$ ($L \supseteq K$ is called an immediate extension).

Adjoining single elements to valued fields

Given a valued field K, describe the valued field extensions $L:=K(y) \supseteq K$.
2×3 fundamental kinds of extensions

- y is algebraic.
- y is transcendental.
- $\boldsymbol{k}_{L}=k_{K}, \Gamma_{L}=\Gamma_{K}$ ($L \supseteq K$ is called an immediate extension).
- $\boldsymbol{k}_{L} \mp \boldsymbol{k}_{K}, \Gamma_{L}=\Gamma_{K}$ with $y \leqslant 1$ and $k_{L}=k_{K}(\bar{y})$.

Adjoining single elements to valued fields

Given a valued field K, describe the valued field extensions $L:=K(y) \supseteq K$.
2×3 fundamental kinds of extensions

- y is algebraic.
- y is transcendental.
- $\boldsymbol{k}_{L}=k_{K}, \Gamma_{L}=\Gamma_{K}$ ($L \supseteq K$ is called an immediate extension).
- $k_{L} \mp k_{K}, \Gamma_{L}=\Gamma_{K}$ with $y \leqslant 1$ and $k_{L}=k_{K}(\bar{y})$.
- $k_{L}=k_{K}, \Gamma_{L} \varsubsetneqq \Gamma_{K}$ with $\Gamma_{L}=\Gamma_{K}+v(y) \mathbb{Z}$.

Given a valued field K, describe the valued field extensions $L:=K(y) \supseteq K$.

2×3 fundamental kinds of extensions

- y is algebraic.
- y is transcendental.
- $\boldsymbol{k}_{L}=k_{K}, \Gamma_{L}=\Gamma_{K}$ ($L \supseteq K$ is called an immediate extension).
- $\boldsymbol{k}_{L} \mp \boldsymbol{k}_{K}, \Gamma_{L}=\Gamma_{K}$ with $y \leqslant 1$ and $k_{L}=k_{K}(\bar{y})$.
- $k_{L}=k_{K}, \Gamma_{L} \varsubsetneqq \Gamma_{K}$ with $\Gamma_{L}=\Gamma_{K}+v(y) \mathbb{Z}$.

How unique is the extension $K \subseteq K(y)$?

Adjoining single elements to valued fields

Given a valued field K, describe the valued field extensions $L:=K(y) \supseteq K$.

2×3 fundamental kinds of extensions

- y is algebraic.
- y is transcendental.
- $k_{L}=k_{K}, \Gamma_{L}=\Gamma_{K}$ ($L \supseteq K$ is called an immediate extension).
- $k_{L} \mp k_{K}, \Gamma_{L}=\Gamma_{K}$ with $y \leqslant 1$ and $k_{L}=k_{K}(\bar{y})$.
- $k_{L}=k_{K}, \Gamma_{L} \varsubsetneqq \Gamma_{K}$ with $\Gamma_{L}=\Gamma_{K}+v(y) \mathbb{Z}$.

How unique is the extension $K \subseteq K(y)$?
Given a valued field extension $F \supseteq K$ and $a \in F$ of "same type over K " as y, does there exist a unique embedding of valued fields $\varphi: K(y) \rightarrow F$ with $\varphi(y)=a$?

Let $\left(a_{\rho}\right)_{\rho<\alpha} \in K^{\alpha}$ or shortly $\left(a_{\rho}\right)$ be a sequence indexed by ordinals smaller than α.

Let $\left(a_{\rho}\right)_{\rho<\alpha} \in K^{\alpha}$ or shortly $\left(a_{\rho}\right)$ be a sequence indexed by ordinals smaller than α. We say that $\left(a_{\rho}\right)$ is a pseudo-cauchy sequence (pc-sequence) if

$$
\left(\exists \rho_{0}\right) \quad\left(\forall \tau>\sigma>\rho>\rho_{0}\right) \quad a_{\tau}-a_{\sigma}<a_{\sigma}-a_{\rho}
$$

Let $\left(a_{\rho}\right)_{\rho<\alpha} \in K^{\alpha}$ or shortly $\left(a_{\rho}\right)$ be a sequence indexed by ordinals smaller than α. We say that $\left(a_{\rho}\right)$ is a pseudo-cauchy sequence (pc-sequence) if

$$
\left(\exists \rho_{0}\right) \quad\left(\forall \tau>\sigma>\rho>\rho_{0}\right) \quad a_{\tau}-a_{\sigma}<a_{\sigma}-a_{\rho}
$$

We say that $\left(a_{\rho}\right)$ pseudo-converges to $a \in K$ (notation: $a_{\rho} \leadsto a$), if

$$
\left(\exists \rho_{0}\right) \quad\left(\forall \sigma>\rho>\rho_{0}\right) \quad a-a_{\sigma}<a-a_{\rho} .
$$

Pseudo-convergence

Let $\left(a_{\rho}\right)_{\rho<\alpha} \in K^{\alpha}$ or shortly $\left(a_{\rho}\right)$ be a sequence indexed by ordinals smaller than α. We say that $\left(a_{\rho}\right)$ is a pseudo-cauchy sequence (pc-sequence) if

$$
\left(\exists \rho_{0}\right) \quad\left(\forall \tau>\sigma>\rho>\rho_{0}\right) \quad a_{\tau}-a_{\sigma}<a_{\sigma}-a_{\rho}
$$

We say that $\left(a_{\rho}\right)$ pseudo-converges to $a \in K$ (notation: $a_{\rho} \leadsto a$), if

$$
\left(\exists \rho_{0}\right) \quad\left(\forall \sigma>\rho>\rho_{0}\right) \quad a-a_{\sigma} \prec a-a_{\rho} .
$$

- $1,1+x^{-1}, 1+x^{-1}+x^{-2}, \ldots$ pseudo-converges to $1+x^{-1}+x^{-2}+\cdots$ in $\mathbb{R}\left[\left[x ; \mathrm{e}^{x}\right]\right]$.
- It also converges to $1+x^{-1}+x^{-2}+\cdots$ in $\mathbb{R}\left[\left[x^{-1}\right]\right]$, but not in $\mathbb{R}\left[\left[x ; \mathrm{e}^{x}\right]\right]$.

Pseudo-convergence

Let $\left(a_{\rho}\right)_{\rho<\alpha} \in K^{\alpha}$ or shortly $\left(a_{\rho}\right)$ be a sequence indexed by ordinals smaller than α. We say that $\left(a_{\rho}\right)$ is a pseudo-cauchy sequence (pc-sequence) if

$$
\left(\exists \rho_{0}\right) \quad\left(\forall \tau>\sigma>\rho>\rho_{0}\right) \quad a_{\tau}-a_{\sigma}<a_{\sigma}-a_{\rho}
$$

We say that (a_{ρ}) pseudo-converges to $a \in K$ (notation: $a_{\rho} \leadsto a$), if

$$
\left(\exists \rho_{0}\right) \quad\left(\forall \sigma>\rho>\rho_{0}\right) \quad a-a_{\sigma} \prec a-a_{\rho} .
$$

- $1,1+x^{-1}, 1+x^{-1}+x^{-2}, \ldots$ pseudo-converges to $1+x^{-1}+x^{-2}+\cdots$ in $\mathbb{R}\left[\left[x ; \mathrm{e}^{x}\right]\right]$.
- It also converges to $1+x^{-1}+x^{-2}+\cdots$ in $\mathbb{R}\left[\left[x^{-1}\right]\right]$, but not in $\mathbb{R}\left[\left[x ; \mathrm{e}^{x}\right]\right]$.

If $\left(a_{\rho}\right)$ pseudo-diverges, then

Let $\left(a_{\rho}\right)_{\rho<\alpha} \in K^{\alpha}$ or shortly $\left(a_{\rho}\right)$ be a sequence indexed by ordinals smaller than α. We say that $\left(a_{\rho}\right)$ is a pseudo-cauchy sequence (pc-sequence) if

$$
\left(\exists \rho_{0}\right) \quad\left(\forall \tau>\sigma>\rho>\rho_{0}\right) \quad a_{\tau}-a_{\sigma}<a_{\sigma}-a_{\rho}
$$

We say that $\left(a_{\rho}\right)$ pseudo-converges to $a \in K$ (notation: $a_{\rho} \leadsto a$), if

$$
\left(\exists \rho_{0}\right) \quad\left(\forall \sigma>\rho>\rho_{0}\right) \quad a-a_{\sigma} \prec a-a_{\rho} .
$$

- $1,1+x^{-1}, 1+x^{-1}+x^{-2}, \ldots$ pseudo-converges to $1+x^{-1}+x^{-2}+\cdots$ in $\mathbb{R}\left[\left[x ; \mathrm{e}^{x}\right]\right]$.
- It also converges to $1+x^{-1}+x^{-2}+\cdots$ in $\mathbb{R}\left[\left[x^{-1}\right]\right]$, but not in $\mathbb{R}\left[\left[x ; \mathrm{e}^{x}\right]\right]$.

If $\left(a_{\rho}\right)$ pseudo-diverges, then

- $\left(a_{\rho}\right)$ is of algebraic type if there exists a $P \in K[Y]$ with $P\left(a_{\rho}\right) \sim 0$

Let $\left(a_{\rho}\right)_{\rho<\alpha} \in K^{\alpha}$ or shortly $\left(a_{\rho}\right)$ be a sequence indexed by ordinals smaller than α.
We say that $\left(a_{\rho}\right)$ is a pseudo-cauchy sequence (pc-sequence) if

$$
\left(\exists \rho_{0}\right) \quad\left(\forall \tau>\sigma>\rho>\rho_{0}\right) \quad a_{\tau}-a_{\sigma}<a_{\sigma}-a_{\rho}
$$

We say that $\left(a_{\rho}\right)$ pseudo-converges to $a \in K$ (notation: $a_{\rho} \leadsto a$), if

$$
\left(\exists \rho_{0}\right) \quad\left(\forall \sigma>\rho>\rho_{0}\right) \quad a-a_{\sigma} \prec a-a_{\rho} .
$$

- $1,1+x^{-1}, 1+x^{-1}+x^{-2}, \ldots$ pseudo-converges to $1+x^{-1}+x^{-2}+\cdots$ in $\mathbb{R}\left[\left[x ; \mathrm{e}^{x}\right]\right]$.
- It also converges to $1+x^{-1}+x^{-2}+\cdots$ in $\mathbb{R}\left[\left[x^{-1}\right]\right]$, but not in $\mathbb{R}\left[\left[x ; \mathrm{e}^{x}\right]\right]$.

If $\left(a_{\rho}\right)$ pseudo-diverges, then

- $\left(a_{\rho}\right)$ is of algebraic type if there exists a $P \in K[Y]$ with $P\left(a_{\rho}\right) \sim 0$
- Otherwise, $\left(a_{\rho}\right)$ is of transcendental type.

Lemma TR-IMM

Let $\left(a_{\rho}\right)$ be pseudo-divergent of transcendental type. Then v extends to $K(Y)$ via

$$
v(P):=\text { eventual value of } v\left(P\left(a_{\rho}\right)\right), \quad \text { for any } P \in K[Y]
$$

The extension $L:=K(Y) \supseteq K$ is immediate and $a_{\rho} \leadsto Y$ in L. Moreover, if $a_{\rho} \leadsto a$ in another immediate extension $F \supseteq K$, then there is a unique embedding $\varphi: L \rightarrow$ F over K with $\varphi(Y)=a$.

Lemma TR-IMM

Let $\left(a_{\rho}\right)$ be pseudo-divergent of transcendental type. Then v extends to $K(Y)$ via

$$
v(P):=\text { eventual value of } v\left(P\left(a_{\rho}\right)\right), \quad \text { for any } P \in K[Y]
$$

The extension $L:=K(Y) \supseteq K$ is immediate and $a_{\rho} \leadsto Y$ in L. Moreover, if $a_{\rho} \leadsto a$ in another immediate extension $F \supseteq K$, then there is a unique embedding $\varphi: L \rightarrow$ F over K with $\varphi(Y)=a$.
Proof. Easy: our formula for $v(P)$ yields a valuation with $\Gamma_{L}=\Gamma_{K}$ and $a_{\rho} \leadsto Y$.

Lemma TR-IMM

Let $\left(a_{\rho}\right)$ be pseudo-divergent of transcendental type. Then v extends to $K(Y)$ via

$$
v(P):=\text { eventual value of } v\left(P\left(a_{\rho}\right)\right), \quad \text { for any } P \in K[Y]
$$

The extension $L:=K(Y) \supseteq K$ is immediate and $a_{\rho} \leadsto Y$ in L. Moreover, if $a_{\rho} \leadsto a$ in another immediate extension $F \supseteq K$, then there is a unique embedding $\varphi: L \rightarrow$ F over K with $\varphi(Y)=a$.

Proof. Easy: our formula for $v(P)$ yields a valuation with $\Gamma_{L}=\Gamma_{K}$ and $a_{\rho} \leadsto Y$. Given $P \in K[Y]$ with $v(P)=0$, let us show that $\bar{P} \in \boldsymbol{k}_{K}$.

Lemma TR-IMM

Let $\left(a_{\rho}\right)$ be pseudo-divergent of transcendental type. Then v extends to $K(Y)$ via

$$
v(P):=\text { eventual value of } v\left(P\left(a_{\rho}\right)\right), \quad \text { for any } P \in K[Y]
$$

The extension $L:=K(Y) \supseteq K$ is immediate and $a_{\rho} \leadsto Y$ in L. Moreover, if $a_{\rho} \leadsto a$ in another immediate extension $F \supseteq K$, then there is a unique embedding $\varphi: L \rightarrow$ F over K with $\varphi(Y)=a$.

Proof. Easy: our formula for $v(P)$ yields a valuation with $\Gamma_{L}=\Gamma_{K}$ and $a_{\rho} \leadsto Y$. Given $P \in K[Y]$ with $v(P)=0$, let us show that $\bar{P} \in k_{K}$. This will imply $k_{L}=k_{K}$.

Lemma TR-IMM

Let $\left(a_{\rho}\right)$ be pseudo-divergent of transcendental type. Then v extends to $K(Y)$ via

$$
v(P):=\text { eventual value of } v\left(P\left(a_{\rho}\right)\right), \quad \text { for any } P \in K[Y]
$$

The extension $L:=K(Y) \supseteq K$ is immediate and $a_{\rho} \leadsto Y$ in L. Moreover, if $a_{\rho} \leadsto a$ in another immediate extension $F \supseteq K$, then there is a unique embedding $\varphi: L \rightarrow F$ over K with $\varphi(Y)=a$.

Proof. Easy: our formula for $v(P)$ yields a valuation with $\Gamma_{L}=\Gamma_{K}$ and $a_{\rho} \leadsto Y$. Given $P \in K[Y]$ with $v(P)=0$, let us show that $\bar{P} \in k_{K}$. This will imply $k_{L}=k_{K}$. We have, $v\left(P\left(a_{\rho}\right)\right)=0$ and $v\left(P-P\left(a_{\rho}\right)\right)>0$, eventually.

Lemma TR-IMM

Let $\left(a_{\rho}\right)$ be pseudo-divergent of transcendental type. Then v extends to $K(Y)$ via

$$
v(P):=\text { eventual value of } v\left(P\left(a_{\rho}\right)\right), \quad \text { for any } P \in K[Y]
$$

The extension $L:=K(Y) \supseteq K$ is immediate and $a_{\rho} \leadsto Y$ in L. Moreover, if $a_{\rho} \leadsto a$ in another immediate extension $F \supseteq K$, then there is a unique embedding $\varphi: L \rightarrow F$ over K with $\varphi(Y)=a$.

Proof. Easy: our formula for $v(P)$ yields a valuation with $\Gamma_{L}=\Gamma_{K}$ and $a_{\rho} \leadsto Y$. Given $P \in K[Y]$ with $v(P)=0$, let us show that $\bar{P} \in k_{K}$. This will imply $k_{L}=k_{K}$. We have, $v\left(P\left(a_{\rho}\right)\right)=0$ and $v\left(P-P\left(a_{\rho}\right)\right)>0$, eventually.
Let $c=P\left(a_{\rho}\right) \in K$ with $v(c)=0$ and $v(P-c)>0$. Then $\bar{P}=\bar{c} \in \boldsymbol{k}_{K}$.

Lemma TR-IMM

Let $\left(a_{\rho}\right)$ be pseudo-divergent of transcendental type. Then v extends to $K(Y)$ via

$$
v(P):=\text { eventual value of } v\left(P\left(a_{\rho}\right)\right), \quad \text { for any } P \in K[Y]
$$

The extension $L:=K(Y) \supseteq K$ is immediate and $a_{\rho} \sim Y$ in L. Moreover, if $a_{\rho} \leadsto a$ in another immediate extension $F \supseteq K$, then there is a unique embedding $\varphi: L \rightarrow F$ over K with $\varphi(Y)=a$.
Proof. Easy: our formula for $v(P)$ yields a valuation with $\Gamma_{L}=\Gamma_{K}$ and $a_{\rho} \leadsto Y$. Given $P \in K[Y]$ with $v(P)=0$, let us show that $\bar{P} \in \boldsymbol{k}_{K}$. This will imply $k_{L}=k_{K}$. We have, $v\left(P\left(a_{\rho}\right)\right)=0$ and $v\left(P-P\left(a_{\rho}\right)\right)>0$, eventually.
Let $c=P\left(a_{\rho}\right) \in K$ with $v(c)=0$ and $v(P-c)>0$. Then $\bar{P}=\bar{c} \in k_{K}$.
If $a_{\rho} \leadsto a$ in $F \supseteq K$ and $P \in K[Y] \backslash K$, then $P\left(a_{\rho}\right) \leadsto P(a)$, by Taylor expansion around a.

Lemma TR-IMM

Let $\left(a_{\rho}\right)$ be pseudo-divergent of transcendental type. Then v extends to $K(Y)$ via

$$
v(P):=\text { eventual value of } v\left(P\left(a_{\rho}\right)\right), \quad \text { for any } P \in K[Y]
$$

The extension $L:=K(Y) \supseteq K$ is immediate and $a_{\rho} \sim Y$ in L. Moreover, if $a_{\rho} \leadsto a$ in another immediate extension $F \supseteq K$, then there is a unique embedding $\varphi: L \rightarrow F$ over K with $\varphi(Y)=a$.
Proof. Easy: our formula for $v(P)$ yields a valuation with $\Gamma_{L}=\Gamma_{K}$ and $a_{\rho} \leadsto Y$. Given $P \in K[Y]$ with $v(P)=0$, let us show that $\bar{P} \in k_{K}$. This will imply $k_{L}=\boldsymbol{k}_{K}$. We have, $v\left(P\left(a_{\rho}\right)\right)=0$ and $v\left(P-P\left(a_{\rho}\right)\right)>0$, eventually.
Let $c=P\left(a_{\rho}\right) \in K$ with $v(c)=0$ and $v(P-c)>0$. Then $\bar{P}=\bar{c} \in \boldsymbol{k}_{K}$.
If $a_{\rho} \leadsto a$ in $F \supseteq K$ and $P \in K[Y] \backslash K$, then $P\left(a_{\rho}\right) \leadsto P(a)$, by Taylor expansion around a. Hence, $v(P(a))=v\left(P\left(a_{\rho}\right)\right)=v(P)$, eventually, so $P(a) \neq 0$ and a is transcendental.

Lemma TR-IMM

Let $\left(a_{\rho}\right)$ be pseudo-divergent of transcendental type. Then v extends to $K(Y)$ via

$$
v(P):=\text { eventual value of } v\left(P\left(a_{\rho}\right)\right), \quad \text { for any } P \in K[Y]
$$

The extension $L:=K(Y) \supseteq K$ is immediate and $a_{\rho} \sim Y$ in L. Moreover, if $a_{\rho} \leadsto a$ in another immediate extension $F \supseteq K$, then there is a unique embedding $\varphi: L \rightarrow$ F over K with $\varphi(Y)=a$.
Proof. Easy: our formula for $v(P)$ yields a valuation with $\Gamma_{L}=\Gamma_{K}$ and $a_{\rho} \leadsto Y$. Given $P \in K[Y]$ with $v(P)=0$, let us show that $\bar{P} \in k_{K}$. This will imply $\boldsymbol{k}_{L}=\boldsymbol{k}_{K}$. We have, $v\left(P\left(a_{\rho}\right)\right)=0$ and $v\left(P-P\left(a_{\rho}\right)\right)>0$, eventually.
Let $c=P\left(a_{\rho}\right) \in K$ with $v(c)=0$ and $v(P-c)>0$. Then $\bar{P}=\bar{c} \in k_{K}$.
If $a_{\rho} \leadsto a$ in $F \supseteq K$ and $P \in K[Y] \backslash K$, then $P\left(a_{\rho}\right) \leadsto P(a)$, by Taylor expansion around a. Hence, $v(P(a))=v\left(P\left(a_{\rho}\right)\right)=v(P)$, eventually, so $P(a) \neq 0$ and a is transcendental. We conclude that \exists ! ring morphism $\varphi: L \rightarrow F$ with $\varphi(Y)=a$ and φ preserves v.

Lemma ALG-IMMI

Let $\left(a_{\rho}\right)$ be pseudo-divergent of algebraic type. Let $\mu \in K[Y]$ be of minimal degree d with $\mu\left(a_{\rho}\right) \leadsto 0$. Let $L:=K[Y] /(\mu), y:=Y+(\mu), K[Y]_{d}:=\{P \in K[Y]: \operatorname{deg} P<d\}$. Then

$$
v(P(y)):=\text { eventual value of } v\left(P\left(a_{\rho}\right)\right), \quad \text { for any } P \in K[Y]_{d}
$$

yields an extension of v to L. This extension $L:=K(Y) \supseteq K$ is immediate and $a_{\rho} \leadsto y$ in L. Moreover, if $a_{\rho} \leadsto a$ and $\mu(a)=0$ for a in another immediate extension $F \supseteq K$, there is a unique embedding $\varphi: L \rightarrow F$ over K with $\varphi(y)=a$.

Algebraic immediate extensions

Lemma ALG-IMIMI

Let $\left(a_{\rho}\right)$ be pseudo-divergent of algebraic type. Let $\mu \in K[Y]$ be of minimal degree d with $\mu\left(a_{\rho}\right) \sim 0$. Let $L:=K[Y] /(\mu), y:=Y+(\mu), K[Y]_{d}:=\{P \in K[Y]: \operatorname{deg} P<d\}$. Then

$$
v(P(y)):=\text { eventual value of } v\left(P\left(a_{\rho}\right)\right), \quad \text { for any } P \in K[Y]_{d}
$$

yields an extension of v to L. This extension $L:=K(Y) \supseteq K$ is immediate and $a_{\rho} \leadsto y$ in L. Moreover, if $a_{\rho} \leadsto a$ and $\mu(a)=0$ for a in another immediate extension $F \supseteq K$, there is a unique embedding $\varphi: L \rightarrow F$ over K with $\varphi(y)=a$.

Proof. Mostly similar to previous lemma, except for $v(s t)=v(s)+P(t)$ in $L^{\neq 0}$.

Lemma ALG-IMIMI

Let $\left(a_{\rho}\right)$ be pseudo-divergent of algebraic type. Let $\mu \in K[Y]$ be of minimal degree d with $\mu\left(a_{\rho}\right) \leadsto 0$. Let $L:=K[Y] /(\mu), y:=Y+(\mu), K[Y]_{d}:=\{P \in K[Y]: \operatorname{deg} P<d\}$. Then

$$
v(P(y)):=\text { eventual value of } v\left(P\left(a_{\rho}\right)\right), \quad \text { for any } P \in K[Y]_{d}
$$

yields an extension of v to L. This extension $L:=K(Y) \supseteq K$ is immediate and $a_{\rho} \leadsto y$ in L. Moreover, if $a_{\rho} \leadsto a$ and $\mu(a)=0$ for a in another immediate extension $F \supseteq K$, there is a unique embedding $\varphi: L \rightarrow F$ over K with $\varphi(y)=a$.
Proof. Mostly similar to previous lemma, except for $v(s t)=v(s)+P(t)$ in $L^{\neq 0}$. Write $s=S(y), t \in T(y), S, T \in K[Y]_{d} . S T=: Q \mu+R, R \in K[Y]_{d}$, so that $R(y)=s t$.

Lemma ALG-IMM

Let $\left(a_{\rho}\right)$ be pseudo-divergent of algebraic type. Let $\mu \in K[Y]$ be of minimal degree d with $\mu\left(a_{\rho}\right) \leadsto 0$. Let $L:=K[Y] /(\mu), y:=Y+(\mu), K[Y]_{d}:=\{P \in K[Y]: \operatorname{deg} P<d\}$. Then

$$
v(P(y)):=\text { eventual value of } v\left(P\left(a_{\rho}\right)\right), \quad \text { for any } P \in K[Y]_{d}
$$

yields an extension of v to L. This extension $L:=K(Y) \supseteq K$ is immediate and $a_{\rho} \leadsto y$ in L. Moreover, if $a_{\rho} \leadsto a$ and $\mu(a)=0$ for a in another immediate extension $F \supseteq K$, there is a unique embedding $\varphi: L \rightarrow F$ over K with $\varphi(y)=a$.
Proof. Mostly similar to previous lemma, except for $v(s t)=v(s)+P(t)$ in $L^{\neq 0}$. Write $s=S(y), t \in T(y), S, T \in K[Y]_{d} . S T=: Q \mu+R, R \in K[Y]_{d}$, so that $R(y)=s t$. Eventually, $v(s t)=v\left(R\left(a_{\rho}\right)\right)$

Lemma ALG-IMMI

Let $\left(a_{\rho}\right)$ be pseudo-divergent of algebraic type. Let $\mu \in K[Y]$ be of minimal degree d with $\mu\left(a_{\rho}\right) \leadsto 0$. Let $L:=K[Y] /(\mu), y:=Y+(\mu), K[Y]_{d}:=\{P \in K[Y]: \operatorname{deg} P<d\}$. Then

$$
v(P(y)):=\text { eventual value of } v\left(P\left(a_{\rho}\right)\right), \quad \text { for any } P \in K[Y]_{d}
$$

yields an extension of v to L. This extension $L:=K(Y) \supseteq K$ is immediate and $a_{\rho} \leadsto y$ in L. Moreover, if $a_{\rho} \leadsto a$ and $\mu(a)=0$ for a in another immediate extension $F \supseteq K$, there is a unique embedding $\varphi: L \rightarrow F$ over K with $\varphi(y)=a$.
Proof. Mostly similar to previous lemma, except for $v(s t)=v(s)+P(t)$ in $L^{\neq 0}$. Write $s=S(y), t \in T(y), S, T \in K[Y]_{d} . S T=: Q \mu+R, R \in K[Y]_{d}$, so that $R(y)=s t$. Eventually, $v(s t)=v\left(R\left(a_{\rho}\right)\right)$ and $v(s)+v(t)=v\left(S\left(a_{\rho}\right) T\left(a_{\rho}\right)\right)=v\left(Q\left(a_{\rho}\right) \mu\left(a_{\rho}\right)+R\left(a_{\rho}\right)\right)$.

Lemma ALG-IMIMI

Let $\left(a_{\rho}\right)$ be pseudo-divergent of algebraic type. Let $\mu \in K[Y]$ be of minimal degree d with $\mu\left(a_{\rho}\right) \sim 0$. Let $L:=K[Y] /(\mu), y:=Y+(\mu), K[Y]_{d}:=\{P \in K[Y]: \operatorname{deg} P<d\}$. Then

$$
v(P(y)):=\text { eventual value of } v\left(P\left(a_{\rho}\right)\right), \quad \text { for any } P \in K[Y]_{d}
$$

yields an extension of v to L. This extension $L:=K(Y) \supseteq K$ is immediate and $a_{\rho} \leadsto y$ in L. Moreover, if $a_{\rho} \leadsto a$ and $\mu(a)=0$ for a in another immediate extension $F \supseteq K$, there is a unique embedding $\varphi: L \rightarrow F$ over K with $\varphi(y)=a$.
Proof. Mostly similar to previous lemma, except for $v(s t)=v(s)+P(t)$ in $L^{\neq 0}$. Write $s=S(y), t \in T(y), S, T \in K[Y]_{d} . S T=: Q \mu+R, R \in K[Y]_{d}$, so that $R(y)=s t$. Eventually, $v(s t)=v\left(R\left(a_{\rho}\right)\right)$ and $v(s)+v(t)=v\left(S\left(a_{\rho}\right) T\left(a_{\rho}\right)\right)=v\left(Q\left(a_{\rho}\right) \mu\left(a_{\rho}\right)+R\left(a_{\rho}\right)\right)$. But $Q\left(a_{\rho}\right) \mu\left(\alpha_{\rho}\right)$ is eventually increasing or eventually infinite.

Lemma ALG-IMMI

Let $\left(a_{\rho}\right)$ be pseudo-divergent of algebraic type. Let $\mu \in K[Y]$ be of minimal degree d with $\mu\left(a_{\rho}\right) \leadsto 0$. Let $L:=K[Y] /(\mu), y:=Y+(\mu), K[Y]_{d}:=\{P \in K[Y]: \operatorname{deg} P<d\}$. Then

$$
v(P(y)):=\text { eventual value of } v\left(P\left(a_{\rho}\right)\right), \quad \text { for any } P \in K[Y]_{d}
$$

yields an extension of v to L. This extension $L:=K(Y) \supseteq K$ is immediate and $a_{\rho} \leadsto y$ in L. Moreover, if $a_{\rho} \leadsto a$ and $\mu(a)=0$ for a in another immediate extension $F \supseteq K$, there is a unique embedding $\varphi: L \rightarrow F$ over K with $\varphi(y)=a$.
Proof. Mostly similar to previous lemma, except for $v(s t)=v(s)+P(t)$ in $L^{\neq 0}$. Write $s=S(y), t \in T(y), S, T \in K[Y]_{d} . S T=: Q \mu+R, R \in K[Y]_{d}$, so that $R(y)=s t$. Eventually, $v(s t)=v\left(R\left(a_{\rho}\right)\right)$ and $v(s)+v(t)=v\left(S\left(a_{\rho}\right) T\left(a_{\rho}\right)\right)=v\left(Q\left(a_{\rho}\right) \mu\left(a_{\rho}\right)+R\left(a_{\rho}\right)\right)$. But $Q\left(a_{\rho}\right) \mu\left(\alpha_{\rho}\right)$ is eventually increasing or eventually infinite. Eventually, this yields $v\left(Q\left(a_{\rho}\right) \mu\left(a_{\rho}\right)\right)>v\left(R\left(a_{\rho}\right)\right)$ and $v(s)+v(t)=v\left(R\left(a_{\rho}\right)\right)=v(s t)$.

Definition

A valued field K is said to be spherically complete if every pc-sequence pseudo-converges.

Definition

A valued field K is said to be spherically complete if every pc-sequence pseudo-converges.
Example. If R is a field and \mathfrak{M} totally ordered, then $R[[\mathfrak{M}]]$ is sperically complete.

Definition

A valued field K is said to be spherically complete if every pc-sequence pseudo-converges.
Example. If R is a field and \mathfrak{M} totally ordered, then $R[[\mathfrak{M}]]$ is sperically complete.

Theorem

Any valued field K has a unique immediate spherical completion, up to isomorphism.

Definition

A valued field K is said to be spherically complete if every pc-sequence pseudo-converges.
Example. If R is a field and \mathfrak{M} totally ordered, then $R[[\mathfrak{M}]]$ is sperically complete.

Theorem

Any valued field K has a unique immediate spherical completion, up to isomorphism.
Proof. Combine Lemmas TR-IMM and ALG-IMM, and apply Zorn.

Definition

A valued field K is said to be algebraically maximal if it does not admit any proper immediate algebraic valued field extension.

Definition

A valued field K is said to be algebraically maximal if it does not admit any proper immediate algebraic valued field extension.
Examples. Any algebraically closed or spherically complete valued field.

Definition

A valued field K is said to be algebraically maximal if it does not admit any proper immediate algebraic valued field extension.

Examples. Any algebraically closed or spherically complete valued field.

Theorem

Any valued field K has a unique algebraically maximal extension, up to isomorphism.

Definition

A valued field K is said to be algebraically maximal if it does not admit any proper immediate algebraic valued field extension.

Examples. Any algebraically closed or spherically complete valued field.

Theorem

Any valued field K has a unique algebraically maximal extension, up to isomorphism.
Proof. Use Lemma ALG-IMM and Zorn.

Definition

A valued field K is said to be algebraically maximal if it does not admit any proper immediate algebraic valued field extension.

Examples. Any algebraically closed or spherically complete valued field.

Theorem

Any valued field K has a unique algebraically maximal extension, up to isomorphism.
Proof. Use Lemma ALG-IMM and Zorn.

Proposition

If K is algebraically maximal, then K is henselian.

Definition

A valued field K is said to be algebraically maximal if it does not admit any proper immediate algebraic valued field extension.
Examples. Any algebraically closed or spherically complete valued field.

Theorem

Any valued field K has a unique algebraically maximal extension, up to isomorphism.
Proof. Use Lemma ALG-IMM and Zorn.

Proposition

If K is algebraically maximal, then K is henselian.
Proof. Any quasi-linear $y=P(y), y<1$ with no solution in K gives rise to a divergent pc-sequence $\left(a_{\rho}\right)$ with $P\left(a_{\rho}\right) \leadsto 0: a_{0}=0, a_{\alpha+1}=P\left(a_{\alpha}\right), a_{\lambda}:=\ell$, whenever $\left(a_{\alpha}\right)_{\alpha<\lambda} \leadsto \ell$.

Definition

A valued field K is said to be algebraically maximal if it does not admit any proper immediate algebraic valued field extension.
Examples. Any algebraically closed or spherically complete valued field.

Theorem

Any valued field K has a unique algebraically maximal extension, up to isomorphism.
Proof. Use Lemma ALG-IMM and Zorn.

Proposition

If char $K=$ char $k=0$, then K is algebraically maximal iff K is henselian.

Definition

A valued field K is said to be algebraically maximal if it does not admit any proper immediate algebraic valued field extension.
Examples. Any algebraically closed or spherically complete valued field.

Theorem

Any valued field K has a unique algebraically maximal extension, up to isomorphism.
Proof. Use Lemma ALG-IMM and Zorn.

Proposition

If char $K=$ char $k=0$, then K is algebraically maximal iff K is henselian.
Proof. By what precedes and Newton polygon method.

Lemma TR-RES

Define v: $K(Y)^{\neq 0} \rightarrow \Gamma$ with $v(P / Q)=v(P)-v(Q)$ for $P, Q \in K[Y]^{\neq 0}$ and

$$
v(P)=\min \left(v\left(P_{0}\right), \ldots, v\left(P_{d}\right)\right), \quad \text { for any } P=P_{d} Y^{d}+\cdots+P_{0} \in K[Y] .
$$

Then $L:=K(Y) \supseteq K$ is a valued field extension with $\boldsymbol{k}_{L}=k(\bar{Y})$ and $\Gamma_{L}=\Gamma_{K}$.
For any valued field extension $F \supseteq K$ with $\Gamma_{F}=\Gamma_{K}$ and $a \in \mathcal{O}_{L}$ such that \bar{a} is transcendental over k_{K}, there exists a unique valued field embedding $\varphi: L \rightarrow F$ over K with $\varphi(Y)=a$.
Proof. $L \supseteq K$ is easily seen to be a valued field extension. Clearly, $\Gamma_{L}=\Gamma_{K}$. Consider $A \in L$ with $v(A)=0$. We claim that $\bar{A} \in k(\bar{Y})$, which proves $k_{L}=k(\bar{Y})$.

Indeed, $A=P / Q$ with $P, Q \in K[Y]$ such that $v(P)=v(Q)=0$.
Then $\bar{P}, \bar{Q} \in k[\bar{Y}]^{\neq 0}$, so $\bar{A}=\bar{P} / \bar{Q} \in k(\bar{Y})$.
Y, a transcendental over $K \Longrightarrow \exists$! field embedding $L \rightarrow F$ over K with $\varphi(Y)=a$. $v(a)=0 \Longrightarrow v(P(a))=\min \left(v\left(P_{0}\right), \ldots, v\left(P_{d}\right)\right)$ for any $P=P_{d} Y^{d}+\cdots+P_{0} \in K[Y]$.

Adjoining algebraic residues

Lemma ALG-RES

Let $\mu \in K[Y]$ with $v(\mu)=0$ and $\bar{\mu} \in k[\bar{Y}]$ irreducible of degree $d=\operatorname{deg} \mu$. Then $y:=Y+(\mu)$ in $L:=K[Y] /(\mu)$. Then $L \supseteq K$ is a valued field extension with $k_{L}=k[\bar{y}] /(\bar{\mu})$ and $\Gamma_{L}=\Gamma_{K}$ for

$$
v(P(y))=\min \left(v\left(P_{0}\right), \ldots, v\left(P_{d-1}\right)\right), \quad \text { for any } P \in K[Y]_{d}
$$

For any valued field extension $F \supseteq K$ with $\Gamma_{F}=\Gamma_{K}$ and $a \in \mathcal{O}_{L}$ such that $k(\bar{a}) \cong k_{L}$, there exists a unique valued field embedding $\varphi: L \rightarrow F$ over K with $\varphi(y)=a$.

Note. μ is irreducible in $K[Y]$ since $\bar{\mu}$ is irreducible in $k[\bar{Y}]$, by Gauss' lemma.
Proof. Similar to previous lemma, except for $v(s t)=v(s)+v(t)$ in L. Any $s \in L$ can be decomposed $s=u \tilde{s}$ with $u \in K$ and $\tilde{s} \in L$ such that $v(\tilde{s})=0$. Without loss of generality, we may therefore assume that $v(s)=v(t)=0$. Then $\bar{s}, \bar{t} \in \boldsymbol{k}_{L}^{\neq 0}$, so $\overline{s t}=\bar{s} \bar{t} \in \boldsymbol{k}_{L}^{\neq 0}$, hence $v(s t)=0$.

Lemma TR-VAL

Let $\Delta \supseteq \Gamma$ be a totally ordered group and $\gamma \in \Delta$ be such that $\Delta=\Gamma \oplus \mathbb{Z} \gamma$. Then there is a unique valued field extension $L:=K(Y) \supseteq K$ with $v(Y)=\gamma$. It is given by

$$
v(P):=\min \left(v\left(P_{0}\right), \ldots, v\left(P_{d}\right)+d \gamma\right), \quad \text { for all } P=P_{d} Y^{d}+\cdots+P_{0} \in K[Y]^{\neq 0}
$$

Moreover, if $F \supseteq K$ is a valued field extension and $a \in F$ transcendental such that $v(a)$ and γ lie in the same cut over Γ, then \exists ! valued field embedding $\varphi: L \rightarrow F$ over K with $\varphi(a)=Y$.

Exercise. We also have $\boldsymbol{k}_{L}=\boldsymbol{k}_{K}$.

Lemma TR-VAL

Let $\Delta \supseteq \Gamma$ be a totally ordered group and $\gamma \in \Delta$ be such that $\Delta=\Gamma \oplus \mathbb{Z} \gamma$. Then there is a unique valued field extension $L:=K(Y) \supseteq K$ with $v(Y)=\gamma$. It is given by

$$
v(P):=\min \left(v\left(P_{0}\right), \ldots, v\left(P_{d}\right)+d \gamma\right), \quad \text { for all } P=P_{d} Y^{d}+\cdots+P_{0} \in K[Y]^{\neq 0}
$$

Moreover, if $F \supseteq K$ is a valued field extension and $a \in F$ transcendental such that $v(a)$ and γ lie in the same cut over Γ, then \exists ! valued field embedding $\varphi: L \rightarrow F$ over K with $\varphi(a)=Y$.

Proof. For $P=P_{d} Y^{d}+\cdots+P_{0} \in K[Y]^{\neq 0}$, there exists exactly one i with $v(P)=v\left(P_{i}\right)+i \gamma$. Given a second $Q \in K[Y]^{\neq 0}$, there is also exactly one j with $v(Q)=v\left(Q_{j}\right)+j \gamma$. One verifies that $v(P Q)=v\left(P_{i} Q_{j}\right)+(i+j) \gamma=v(P)+v(Q)$, so v_{L} is a valuation on L. Y, a transcendental over $K \Longrightarrow \exists$! field embedding $\varphi: L \rightarrow F$ over K with $\gamma(a)=Y$. $v(P(a))=\min \left(v\left(P_{0}\right), \ldots, v\left(P_{d}\right)+d v(a)\right)$ for all $P=P_{d} Y^{d}+\cdots+P_{0} \in K[Y]^{\neq 0}$. Hence φ preserves v, since $v(a)$ and γ lie in the same cut over Γ.

Lemma ALG-VAL

Let $\gamma \in d^{-1} \Gamma$ be such that $\Delta:=\Gamma+\gamma \mathbb{Z}=\Gamma \cup \Gamma+\gamma \cup \cdots \cup \Gamma+(d-1) \gamma \supsetneq \Gamma$ for $d>1$. Let $\xi \in K$ be such that $v(\xi)=d \gamma$ and $\mu:=Y^{d}-\xi \in K[Y]$. Let $L:=K[Y] /(\mu)$ and $y=Y+(\mu)$. Then $L \supseteq K$ is a valued field extension for the valuation defined by

$$
v(P(y)):=\min \left(v\left(P_{0}\right), \ldots, v\left(P_{p-1}\right)+(d-1) \gamma\right), \quad \text { for all } P \in K[Y]_{d}^{\neq 0} .
$$

Moreover, if $F \supseteq K$ is a valued field extension and $a \in F$ satisfies $a^{d}=\xi$, then there exists a unique valued field embedding $\varphi: L \rightarrow F$ over K with $\varphi(a)=y$.

Exercise. We also have $k_{L}=k_{K}$.
Proof. Similar to the previous proof (exercise).

Algebraic closure of valued fields

Theorem

If char $K=$ char $k=0$, then the valuation on K can be extended to the algebraic closure K^{a} of K. Any valued field embedding $K \rightarrow F$ into another algebraically closed field F extends to a valued field embedding $K^{a} \rightarrow F$.

Proof. Lemmas ALG-IMM, ALG-RES, ALG-VAL, and Zorn yield:

- An algebraic valued field extension $L \supseteq K$, such that
- L is henselian (ALG-IMM).
- k_{L} algebraically closed (ALG-RES).
- Γ_{L} is divisible (ALG-VAL).
- Any valued field embedding $K \rightarrow F$ extends to a valued field embedding $K^{a} \rightarrow F$. (See also below.)
Newton polygon methods $\Longrightarrow L$ is algebraically closed.

Languages

Triples $\mathscr{L}=\left(S, \mathscr{L}^{\mathrm{r}}, \mathscr{L}^{f}\right)$ of sorts (e.g. $\left.\{K, \Gamma\}\right)$, relations, and functions.

Languages

Triples $\mathscr{L}=\left(S, \mathscr{L}^{\mathrm{r}}, \mathscr{L}^{f}\right)$ of sorts (e.g. $\{K, \Gamma\}$), relations, and functions.
\mathcal{L}-structures
$M=\left(\left(M_{s}\right)_{s \in s},\left(R_{i}\right),\left(f_{j}\right)\right)$, sets M_{s}, relations $R_{i} \subseteq M_{s_{1}} \times \cdots \times M_{s_{n}}$ functions $f_{j}: M_{s_{1}} \times \cdots \times M_{s_{n}} \rightarrow M_{t}\left(s_{1}, \ldots, s_{n}, t\right.$ depend on $\left.i, j\right)$. Morphisms, \ldots

Languages

Triples $\mathscr{L}=\left(S, \mathscr{L}^{\mathrm{r}}, \mathscr{L}^{f}\right)$ of sorts (e.g. $\left.\{K, \Gamma\}\right)$, relations, and functions.
\mathcal{L}-structures
$M=\left(\left(M_{s}\right)_{s \in s},\left(R_{i}\right),\left(f_{j}\right)\right)$, sets M_{s}, relations $R_{i} \subseteq M_{s_{1}} \times \cdots \times M_{s_{n^{\prime}}}$ functions $f_{j}: M_{s_{1}} \times \cdots \times M_{s_{n}} \rightarrow M_{t}\left(s_{1}, \ldots, s_{n}, t\right.$ depend on $\left.i, j\right)$. Morphisms, \ldots \mathcal{L}-formulas
Formed from \mathscr{L}, variables of the sorts S, and $T, \perp, \neg, \vee, \wedge,=, \exists, \forall$. $\mathscr{L}_{A}:=$ extension of \mathscr{L} with constants $a \in A_{s}$ of sort s for $A=\left(A_{s}\right)_{s \in S}$

Languages

Triples $\mathscr{L}=\left(S, \mathscr{L}^{\mathrm{r}}, \mathscr{L}^{f}\right)$ of sorts (e.g. $\left.\{K, \Gamma\}\right)$, relations, and functions.
\mathcal{L}-structures
$M=\left(\left(M_{s}\right)_{s \in s},\left(R_{i}\right),\left(f_{j}\right)\right)$, sets M_{s}, relations $R_{i} \subseteq M_{s_{1}} \times \cdots \times M_{s_{n}}$ functions $f_{j}: M_{s_{1}} \times \cdots \times M_{s_{n}} \rightarrow M_{t}\left(s_{1}, \ldots, s_{n}, t\right.$ depend on $\left.i, j\right)$. Morphisms, \ldots

\mathcal{L}-formulas

Formed from \mathscr{L}, variables of the sorts S, and $T, \perp, \neg, \vee, \wedge,=, \exists, \forall$. $\mathscr{L}_{A}:=$ extension of \mathscr{L} with constants $a \in A_{s}$ of sort s for $A=\left(A_{s}\right)_{s \in S}$

\mathcal{L}-theories

Let M be an \mathscr{L}-structure and Σ, Σ^{\prime} sets of \mathscr{L}-formulas
$M \vDash \Sigma \quad M$ is a model for $\Sigma \quad \Sigma \vDash \Sigma^{\prime} \quad M \vDash T$ whenever $M \vDash \Sigma^{\prime}$
$\operatorname{Th}(M) \quad\{\sigma: M \vDash \sigma\}$
$\operatorname{Th}(\Sigma) \quad\{\sigma: \Sigma \vDash \sigma\}$
\mathscr{L} : a fixed a language
$\mathscr{L}:$ a fixed a language
$M \equiv N \quad \operatorname{Th}(M)=\operatorname{Th}(N) \quad M$ and N are elementary equivalent
$M \preccurlyeq N \quad M \subseteq N$ and $M \equiv \mathscr{L}_{M} N \quad M$ is an elementary substructure of N
\mathscr{L} : a fixed a language
$M \equiv N \quad \operatorname{Th}(M)=\operatorname{Th}(N) \quad M$ and N are elementary equivalent $M \preccurlyeq N \quad M \subseteq N$ and $M \equiv \mathscr{L}_{M} N \quad M$ is an elementary substructure of N
Σ is complete
T is an \mathscr{L}-theory
Σ axiomatizes T
Σ has a model and $\Sigma \models \sigma$ or $\Sigma \models \neg \sigma$ for any formula σ $\operatorname{Th}(T)=T$
$\operatorname{Th}(\Sigma)=T$

Basic concepts from model theory

\mathscr{L} : a fixed a language
$M \equiv N \quad \operatorname{Th}(M)=\operatorname{Th}(N) \quad M$ and N are elementary equivalent
$M \leqslant N \quad M \subseteq N$ and $M \equiv \mathscr{L}_{M} N \quad M$ is an elementary substructure of N
Σ is complete
T is an \mathscr{L}-theory
Σ axiomatizes T
qf-formula
$\varphi(x)$ is $\boldsymbol{\Sigma}$-equivalent to $\psi(x)$
Σ has quantifier elimination

Formula that does not involve \forall or \exists $\Sigma \models \varphi(x) \Longleftrightarrow \Sigma \models \psi(x)$
Any formula is Σ-equivalent to a qf-formula
\mathscr{L} : a fixed a language
$M \equiv N \quad \operatorname{Th}(M)=\operatorname{Th}(N) \quad M$ and N are elementary equivalent
$M \preccurlyeq N \quad M \subseteq N$ and $M \equiv \mathscr{L}_{M} N \quad M$ is an elementary substructure of N

Σ is complete	Σ has a mo
T is an \mathscr{L}-theory	$\operatorname{Th}(T)=T$
Σ axiomatizes T	$\operatorname{Th}(\Sigma)=T$

qf-formula
\exists-formula
$\varphi(x)$ is $\boldsymbol{\Sigma}$-equivalent to $\psi(x)$
Σ has quantifier elimination
Σ is model complete

Formula that does not involve \forall or \exists
Formula ($\exists x) \varphi(x)$ for some qf-formula $\varphi(x)$
$\Sigma \vDash \varphi(x) \Longleftrightarrow \Sigma \vDash \psi(x)$
Any formula is Σ-equivalent to a qf-formula
Any formula is Σ-equivalent to an \exists-formula
\mathscr{L} : a fixed a language

$M \equiv N$	$\operatorname{Th}(M)=\operatorname{Th}(N)$	M and N are elementary equivalent
$M \preccurlyeq N$	$M \subseteq N$ and $M \equiv \mathscr{L}_{M} N$	M is an elementary substructure of N

Σ is complete	Σ has a mo
T is an \mathscr{L}-theory	$\operatorname{Th}(T)=T$
Σ axiomatizes T	$\operatorname{Th}(\Sigma)=T$

qf-formula
\exists-formula
$\varphi(x)$ is $\boldsymbol{\Sigma}$-equivalent to $\psi(x)$
Σ has quantifier elimination
Σ is model complete
T^{*} is a model companion of T

Formula that does not involve \forall or \exists
Formula $(\exists x) \varphi(x)$ for some qf-formula $\varphi(x)$
$\Sigma \vDash \varphi(x) \Longleftrightarrow \Sigma \models \psi(x)$
Any formula is Σ-equivalent to a qf-formula
Any formula is Σ-equivalent to an \exists-formula
T^{*} model complete and
Any model of T embeds into a model of T^{*}

Let $\Phi=\Phi(x)$ be a set of formulas depending on free variables $x=\left(x_{i}\right)$ of sorts $\left(s_{i}\right)$ Let M be an \mathscr{L}-structure and $M_{x}:=\prod_{i} M_{s_{i}}$.

Let $\Phi=\Phi(x)$ be a set of formulas depending on free variables $x=\left(x_{i}\right)$ of sorts $\left(s_{i}\right)$ Let M be an \mathscr{L}-structure and $M_{x}:=\prod_{i} M_{s_{i}}$.
$a \in M_{x}$ realizes Φ in M Φ is realized in M Φ is Σ-realizable
$M \models \varphi(a)$ for all $\varphi \in \Phi$
a realizes Φ in M for some $a \in M_{x}$
Φ is realized in some model M of Σ

Let $\Phi=\Phi(x)$ be a set of formulas depending on free variables $x=\left(x_{i}\right)$ of sorts $\left(s_{i}\right)$ Let M be an \mathscr{L}-structure and $M_{x}:=\prod_{i} M_{s_{i}}$.
$a \in M_{x}$ realizes Φ in M Φ is realized in M Φ is Σ-realizable Φ is an x-type

- that is complete
- over $A \subseteq M$ in M
$M \models \varphi(a)$ for all $\varphi \in \Phi$
a realizes Φ in M for some $a \in M_{x}$
Φ is realized in some model M of Σ
Φ is realized in some M
either $\varphi \in \Phi$ or $\neg \varphi \in \Phi$ for all $\varphi(x)$
Φ is a $\operatorname{Th}\left(\boldsymbol{M}_{A}\right)$-realizable x-type for the language \mathscr{L}_{A}

Let $\Phi=\Phi(x)$ be a set of formulas depending on free variables $x=\left(x_{i}\right)$ of sorts $\left(s_{i}\right)$ Let M be an \mathscr{L}-structure and $M_{x}:=\prod_{i} M_{s_{i}}$.
$a \in M_{x}$ realizes Φ in M Φ is realized in M Φ is Σ-realizable Φ is an x-type

- that is complete
- over $A \subseteq M$ in M
M is κ-saturated
$M \models \varphi(a)$ for all $\varphi \in \Phi$
a realizes Φ in M for some $a \in M_{x}$
Φ is realized in some model M of Σ
Φ is realized in some M
either $\varphi \in \Phi$ or $\neg \varphi \in \Phi$ for all $\varphi(x)$
Φ is a $\operatorname{Th}\left(M_{A}\right)$-realizable x-type for the language \mathscr{L}_{A}
For any $A \subseteq M$ of size $<\kappa$ and any variable v of \mathscr{B}, each complete v-type over A in M is realized in M

Let $\Phi=\Phi(x)$ be a set of formulas depending on free variables $x=\left(x_{i}\right)$ of sorts $\left(s_{i}\right)$ Let M be an \mathscr{L}-structure and $M_{x}:=\prod_{i} M_{s_{i}}$.
$a \in M_{x}$ realizes Φ in M
Φ is realized in M
Φ is Σ-realizable
Φ is an x-type

- that is complete
- over $A \subseteq M$ in M
M is κ-saturated
$M \models \varphi(a)$ for all $\varphi \in \Phi$
a realizes Φ in M for some $a \in M_{x}$
Φ is realized in some model M of Σ
Φ is realized in some M
either $\varphi \in \Phi$ or $\neg \varphi \in \Phi$ for all $\varphi(x)$
Φ is a $\operatorname{Th}\left(M_{A}\right)$-realizable x-type for the language \mathscr{L}_{A}
For any $A \subseteq M$ of size $<\kappa$ and any variable v of \mathscr{B}, each complete v-type over A in M is realized in M

Proposition

Suppose that M is κ-saturated, κ is infinite, $A \subseteq M$ and x have size $<\kappa$.
Then every x-type over A in M is realized in M.

Theorem

Assume that Σ eliminates quantifiers and also has a model.
Then Σ is complete if and only if some \mathscr{L}-structure embeds into every model of Σ.

Abstract

Theorem Assume that Σ eliminates quantifiers and also has a model. Then Σ is complete if and only if some \mathscr{L}-structure embeds into every model of Σ.

Note: The \mathscr{L}-structure does not need to be a model of Σ.

Abstract

Theorem Assume that Σ eliminates quantifiers and also has a model. Then Σ is complete if and only if some \mathscr{L}-structure embeds into every model of Σ.

Note: The \mathscr{L}-structure does not need to be a model of Σ.

Example.

- The theory ACF of algebraically closed fields has QE. (See below)

Abstract

Theorem Assume that Σ eliminates quantifiers and also has a model. Then Σ is complete if and only if some \mathscr{L}-structure embeds into every model of Σ.

Note: The \mathscr{L}-structure does not need to be a model of Σ.

Example.

- The theory ACF of algebraically closed fields has QE. (See below)
- So does the theory $\mathrm{ACF}(0)$ of algebraically closed fields of characteristic zero.

Quantifier elimination and completeness

Theorem
 Assume that Σ eliminates quantifiers and also has a model.
 Then Σ is complete if and only if some \mathscr{L}-structure embeds into every model of Σ.

Note: The \mathscr{L}-structure does not need to be a model of Σ.

Example.

- The theory ACF of algebraically closed fields has QE. (See below)
- So does the theory $\mathrm{ACF}(0)$ of algebraically closed fields of characteristic zero.
- \mathbb{Z} embeds into any (algebraically closed) field of characteristic zero.

Quantifier elimination and completeness

Theorem

Assume that Σ eliminates quantifiers and also has a model.
Then Σ is complete if and only if some \mathscr{b}-structure embeds into every model of Σ.
Note: The \mathscr{L}-structure does not need to be a model of Σ.

Example.

- The theory ACF of algebraically closed fields has QE. (See below)
- So does the theory $\operatorname{ACF}(0)$ of algebraically closed fields of characteristic zero.
- \mathbb{Z} embeds into any (algebraically closed) field of characteristic zero.
- Hence $\mathrm{ACF}(0)$ is complete.

Theorem

Let Σ be given and suppose that

- $M \models \Sigma$
\forall - proper substructure $A \nsubseteq M$
- $|A|^{+}$-saturated model N of Σ
$\exists \bullet b \in M_{s} \backslash A_{s}$ for some $s \in S$
- an extension $\hat{l}: A\langle b\rangle \hookrightarrow N$ of ι
- embedding $t: A \hookrightarrow N$

Then Σ admits quantifier elimination.

Theorem

Let Σ be given and suppose that

- $M \models \Sigma$
\forall • $A \models \Sigma$ with $A \subseteq M$
- $|A|^{+}$-saturated $N \geqslant A$
- inclusion $t: A \hookrightarrow N$

Then Σ is model complete.

Theorem

The theory ACF of algebraically closed fields (for $\mathscr{L}=\{0,1,+,-, \cdot\}$) has $Q E$.

Application to ACF

Theorem

The theory ACF of algebraically closed fields $($ for $\mathscr{L}=\{0,1,+,-, \cdot\})$ has $Q E$.

Proof. Let

- E be an algebraically closed field.
- $A \subseteq E$ a substructure, i.e. an integral domain.
- F an algebraically closed field that is $|A|^{+}$-saturated.
- An embedding $l: A \rightarrow F$.

Application to ACF

Theorem

The theory ACF of algebraically closed fields $($ for $\mathscr{L}=\{0,1,+,-, \cdot\})$ has $Q E$.

Proof. Let

- E be an algebraically closed field.
- $A \subseteq E$ a substructure, i.e. an integral domain.
- F an algebraically closed field that is $|A|^{+}$-saturated.
- An embedding $t: A \rightarrow F$.

Problem: construct $a \in E \backslash A+$ embedding $\hat{l}: A[a] \rightarrow F$ that extends l.

Application to ACF

Theorem

The theory ACF of algebraically closed fields $($ for $\mathscr{L}=\{0,1,+,-, \cdot\})$ has $Q E$.

Proof. Let

- E be an algebraically closed field.
- $A \subseteq E$ a substructure, i.e. an integral domain.
- F an algebraically closed field that is $|A|^{+}$-saturated.
- An embedding $t: A \rightarrow F$.

Problem: construct $a \in E \backslash A+$ embedding $\hat{l}: A[a] \rightarrow F$ that extends ι.

Case 0. A is not a field

Take $x \in A^{\neq 0}$ such that $a:=x^{-1} \in E \backslash A$.

Application to ACF

Theorem

The theory ACF of algebraically closed fields $($ for $\mathscr{L}=\{0,1,+,-, \cdot\})$ has $Q E$.

Proof. Let

- E be an algebraically closed field.
- $A \subseteq E$ a substructure, i.e. an integral domain.
- F an algebraically closed field that is $|A|^{+}$-saturated.
- An embedding $t: A \rightarrow F$.

Problem: construct $a \in E \backslash A+$ embedding $\hat{l}: A[a] \rightarrow F$ that extends l.

Case 0. A is not a field

Take $x \in A^{\neq 0}$ such that $a:=x^{-1} \in E \backslash A$.
Then ι uniquely extends into an embedding $\hat{l}: A[a]=A x^{-\mathbb{N}} \rightarrow F$ with $\hat{\iota}(a)=\iota(x)^{-1}$.

Application to ACF

Theorem

The theory ACF of algebraically closed fields $($ for $\mathscr{L}=\{0,1,+,-, \cdot\})$ has $Q E$.

Proof. Let

- E be an algebraically closed field.
- $A \subseteq E$ a substructure, i.e. an integral domain.
- F an algebraically closed field that is $|A|^{+}$-saturated.
- An embedding $t: A \rightarrow F$.

Problem: construct $a \in E \backslash A+$ embedding $\hat{l}: A[a] \rightarrow F$ that extends l.
Case 1. $K:=A$ is a field that is not algebraically closed
Take $a \in K^{a} \backslash K \subseteq E \backslash K$ with $P(a)=0$ for some irreductible $\mu=\mu_{d} Y^{d}+\cdots+\mu_{0} \in K[Y]$.

Application to ACF

Theorem

The theory ACF of algebraically closed fields (for $\mathscr{L}=\{0,1,+,-, \cdot\}$) has $Q E$.

Proof. Let

- E be an algebraically closed field.
- $A \subseteq E$ a substructure, i.e. an integral domain.
- F an algebraically closed field that is $|A|^{+}$-saturated.
- An embedding $t: A \rightarrow F$.

Problem: construct $a \in E \backslash A+$ embedding $\hat{\imath}: A[a] \rightarrow F$ that extends ι.
Case 1. $K:=A$ is a field that is not algebraically closed
Take $a \in K^{a} \backslash K \subseteq E \backslash K$ with $P(a)=0$ for some irreductible $\mu=\mu_{d} Y^{d}+\cdots+\mu_{0} \in K[Y]$. Since F is algebraically closed, there exists a $b \in F$ with $\iota\left(\mu_{d}\right) b^{d}+\cdots+\iota\left(\mu_{0}\right)=0$.

Application to ACF

Theorem

The theory ACF of algebraically closed fields $($ for $\mathscr{L}=\{0,1,+,-, \cdot\})$ has $Q E$.

Proof. Let

- E be an algebraically closed field.
- $A \subseteq E$ a substructure, i.e. an integral domain.
- F an algebraically closed field that is $|A|^{+}$-saturated.
- An embedding $l: A \rightarrow F$.

Problem: construct $a \in E \backslash A+$ embedding $\hat{l}: A[a] \rightarrow F$ that extends l.
Case 1. $K:=A$ is a field that is not algebraically closed
Take $a \in K^{a} \backslash K \subseteq E \backslash K$ with $P(a)=0$ for some irreductible $\mu=\mu_{d} Y^{d}+\cdots+\mu_{0} \in K[Y]$. Since F is algebraically closed, there exists a $b \in F$ with $\iota\left(\mu_{d}\right) b^{d}+\cdots+\iota\left(\mu_{0}\right)=0$. Since $K[Y] /(\mu) \cong \iota(K)(b)$, we may extend ι into an embedding $\hat{l}: K(a) \rightarrow F$ with $\hat{\iota}(a)=b$.

Application to ACF

Theorem

The theory ACF of algebraically closed fields $($ for $\mathscr{L}=\{0,1,+,-, \cdot\})$ has $Q E$.

Proof. Let

- E be an algebraically closed field.
- $A \subseteq E$ a substructure, i.e. an integral domain.
- F an algebraically closed field that is $|A|^{+}$-saturated.
- An embedding $t: A \rightarrow F$.

Problem: construct $a \in E \backslash A+$ embedding $\hat{l}: A[a] \rightarrow F$ that extends ι.
Case 2. $K:=A$ is an algebraically closed field Let $a \in E \backslash K$. Then a is transcendental over K.

Application to ACF

Theorem

The theory ACF of algebraically closed fields $($ for $\mathscr{L}=\{0,1,+,-, \cdot\})$ has $Q E$.

Proof. Let

- E be an algebraically closed field.
- $A \subseteq E$ a substructure, i.e. an integral domain.
- F an algebraically closed field that is $|A|^{+}$-saturated.
- An embedding $t: A \rightarrow F$.

Problem: construct $a \in E \backslash A+$ embedding $\hat{l}: A[a] \rightarrow F$ that extends l.
Case 2. $K:=A$ is an algebraically closed field
Let $a \in E \backslash K$. Then a is transcendental over K.
Saturation \Longrightarrow There exists a transcendental $b \in F \backslash K$.

Application to ACF

Theorem

The theory ACF of algebraically closed fields (for $\mathscr{L}=\{0,1,+,-, \cdot\}$) has $Q E$.

Proof. Let

- E be an algebraically closed field.
- $A \subseteq E$ a substructure, i.e. an integral domain.
- F an algebraically closed field that is $|A|^{+}$-saturated.
- An embedding $t: A \rightarrow F$.

Problem: construct $a \in E \backslash A+$ embedding $\hat{\imath}: A[a] \rightarrow F$ that extends ι.
Case 2. $K:=A$ is an algebraically closed field
Let $a \in E \backslash K$. Then a is transcendental over K.
Saturation \Longrightarrow There exists a transcendental $b \in F \backslash K$.
Then $K[a] \cong \iota(K)[b]$, so we may extend ι into an embedding $\hat{\imath}: K[a] \rightarrow F$.

Theorem

The theory ACVF of algebraically closed valued fields eliminates quantifiers.
Note. ACVF can be modeled in the language $\left(K, \Gamma,+,-, \cdot, v, \leqslant_{\Gamma},+_{\Gamma},-_{\Gamma}\right)$. Sometimes: extra sort for k (and extra component $\iota_{k}: \boldsymbol{k}_{A} \rightarrow \boldsymbol{k}_{F}$). Alternatively: one-sorted language ($K,+,-, \cdot, \leqslant$).

Proof. Let

- E be an algebraically closed valued field.
- $A \subseteq E$ a substructure, i.e. a "valued integral domain".
- F an algebraically closed valued field that is $|A|^{+}$-saturated.
- An embedding $t: A \rightarrow F$.

Problem: construct $y \in E \backslash A+$ embedding $\hat{l}: A[y] \rightarrow F$ that extends ι.
To easy notations, we may assume wlog that $A \subseteq F$ and that ι is the inclusion.

Case 0 . A is not a field

Let x be a non-invertible element of $A^{\neq 0}$ and take $y:=x^{-1}$.
Let $\hat{l}: A[a]=A x^{-\mathbb{N}} \rightarrow F$ extend ι with $\hat{\iota}(a)=\iota(x)^{-1}$ (as for ACF).
Any element of $A[a]$ is of the form $c a^{n}=c x^{-n}$ for $c \in A$ and $n \in \mathbb{N}$.
Then $v\left(\hat{\imath}\left(c a^{n}\right)\right)=v\left(c x^{-n}\right)=v(c)-n v(x)$, both in $\Gamma_{A[a]}=\Gamma_{A}$ and in $\Gamma_{F} \supseteq \Gamma_{A}$.
Hence the embedding $\hat{\imath}$ preserves the valuation.
Case 1a. $K:=A$ is a field, but k_{K} is not AC (algebraically closed).
Let $\mu \in K[Y]$ be monic with $\mu \leqslant 1$ and $\bar{\mu}$ irreducible in $k_{K}[Y]$. Let $y \in E$ be a root of μ. Since F is AC, $\exists a \in F$ with $\mu(a)=0$. Let $\hat{\imath}: K[y] \rightarrow F$ extend ι with $\hat{\iota}(y)=a$ (as for ACF). Then $k_{K}(\bar{a}) \cong k_{K}(\bar{y})$ and $\hat{\iota}$ preserves the valuation by Lemma ALG-RES.

Case 1b. $K:=A$ is a field, but Γ_{K} is not divisible.
Similar as above, with $\mu=Y^{p}-\xi$ for p prime and $\xi \in K$ such that $p^{-1} v(\xi) \notin \Gamma_{K}$.

Completeness

The valued field K has characteristic (m, n) if char $K=m$ and char $\boldsymbol{k}_{K}=n$.

Theorem

The theory $\mathrm{ACV}_{(m, n)}$ of algebraically valued fields of characteristic (m, n) has $Q E$ and it is complete.

QE. The characteristic of a valued field is conserved under the extensions. Hence the previous proof goes through for any fixed characteristic.

Completeness. Sufficient: a valued ring that embeds into any model of $\mathrm{ACV}_{(m, n)}$.

- If $m=n=0$, then we may take \mathbb{Z} with the trivial valuation.
- If $m=0$ and $n=p$ is prime, then we may take \mathbb{Z} with the p-adic valuation.
- If $m=n=p$ is prime, then we may take \mathbb{F}_{p} with the trivial valuation.

Let (K, \leqslant) be an ordered field (so $\mathbb{Q} \subseteq K$).
Given $X \subseteq K$, its convex hull is $\{a \in K:(\exists x, y \in X) x \leqslant a \leqslant y\}$.

Definition

Given a valuation v on K, we say that (K, \leqslant, v) is an ordered valued field if \mathcal{O}_{K} is convex.
Example. The "finest" valuation v with $\mathcal{O}_{K}=\operatorname{hull}(K)$ and $\mathscr{O}_{K}=\left\{a \in K:|a|<\mathbb{Q}^{>0}\right\}$.

Theorem

The theory RCVF of real closed valued fields eliminates quantifiers and is complete.
Proof. QE: similar as for ACVF. Completeness: \mathbb{Z} embeds into any model.

