Lesson 9 - H-fields

Definition

A differential field is a field K with a derivation $\partial: K \rightarrow K$ such that, for all $a, b \in R$, D1. $\partial(a+b)=\partial a+\partial b$.
D2. $\partial(a b)=(\partial a) b+a(\partial b)$.
We often write $a^{\prime}:=\partial a$. The set $C=C_{K}:=\{c \in K: \partial c=0\}$ is a field: the field of constants.

Definition

A differential field is a field K with a derivation $\partial: K \rightarrow K$ such that, for all $a, b \in R$, D1. $\partial(a+b)=\partial a+\partial b$.
D2. $\partial(a b)=(\partial a) b+a(\partial b)$.
We often write $a^{\prime}:=\partial a$. The set $C=C_{K}:=\{c \in K: \partial c=0\}$ is a field: the field of constants.
Note. The set $\operatorname{Der}(K)$ of derivations on a field K forms a K-vector space.

Definition

A differential field is a field K with a derivation $\partial: K \rightarrow K$ such that, for all $a, b \in R$, D1. $\partial(a+b)=\partial a+\partial b$.
D2. $\partial(a b)=(\partial a) b+a(\partial b)$.
We often write $a^{\prime}:=\partial a$. The set $C=C_{K}:=\{c \in K: \partial c=0\}$ is a field: the field of constants.
Note. The set $\operatorname{Der}(K)$ of derivations on a field K forms a K-vector space.
Reparameterization, change of derivation, compositional conjugation.
Let K be a differential ring and $\varphi \in K^{\neq 0}$.
Then $\delta:=\phi^{-1} \partial$ is again a derivation on K.
We write K^{ϕ} for the differential field K but with δ as the derivation.

Definition

A differential field is a field K with a derivation $\partial: K \rightarrow K$ such that, for all $a, b \in R$, D1. $\partial(a+b)=\partial a+\partial b$.
D2. $\partial(a b)=(\partial a) b+a(\partial b)$.
We often write $a^{\prime}:=\partial a$. The set $C=C_{K}:=\{c \in K: \partial c=0\}$ is a field: the field of constants.
Note. The set $\operatorname{Der}(K)$ of derivations on a field K forms a K-vector space.
Reparameterization, change of derivation, compositional conjugation.
Let K be a differential ring and $\varphi \in K^{\neq 0}$.
Then $\delta:=\phi^{-1} \partial$ is again a derivation on K.
We write K^{ϕ} for the differential field K but with δ as the derivation.
Example. \mathbb{T} with $\delta:=x \partial$ is isomorphic to $\mathbb{T} \circ \exp$ with ∂.

H-fields

Definition

An \mathbf{H}-field is an ordered valued field K with a derivation such that H1. $y>C_{K} \Rightarrow y^{\prime}>0$, for $y \in K$.
H2. $\mathcal{O}_{K}=C_{K}+\mathcal{O}_{K}$.

Definition

An \boldsymbol{H}-field is an ordered valued field K with a derivation such that
H1. $y>C_{K} \Longrightarrow y^{\prime}>0$, for $y \in K$.
H2. $\mathcal{O}_{K}=C_{K}+\mathcal{O}_{K}$.
Note. For $f, g \in K$ with $g \neq 1$, these axioms imply $f \prec g \Rightarrow f^{\prime} \prec g^{\prime}$ and $f \preccurlyeq g \Rightarrow f^{\prime} \preccurlyeq g^{\prime}$.

H-fields

Definition

An \boldsymbol{H}-field is an ordered valued field K with a derivation such that H1. $y>C_{K} \Longrightarrow y^{\prime}>0$, for $y \in K$.
H2. $\mathcal{O}_{K}=C_{K}+\mathcal{O}_{K}$.
Note. For $f, g \in K$ with $g \neq 1$, these axioms imply $f \prec g \Rightarrow f^{\prime} \prec g^{\prime}$ and $f \leqslant g \Rightarrow f^{\prime} \leqslant g^{\prime}$.

Definition

We say that the derivation on K is small if $\varepsilon<1 \Longrightarrow \varepsilon^{\prime}<1$ for any $\varepsilon<1$.

Definition

An \mathbf{H}-field is an ordered valued field K with a derivation such that
H1. $y>C_{K} \Rightarrow y^{\prime}>0$, for $y \in K$.
H2. $\mathcal{O}_{K}=C_{K}+\mathcal{O}_{K}$.
Note. For $f, g \in K$ with $g \neq 1$, these axioms imply $f<g \Rightarrow f^{\prime}<g^{\prime}$ and $f \leqslant g \Rightarrow f^{\prime} \leqslant g^{\prime}$.

Definition

We say that the derivation on K is small if $\varepsilon<1 \Longrightarrow \varepsilon^{\prime}<1$ for any $\varepsilon<1$.
Note. The set $\operatorname{Der}_{<}(K)$ of small derivations on K forms a \mathscr{O}_{K}-module.

Hardy fields.

- Any Hardy field $K \supseteq \mathbb{R}$ is an H -field.

Hardy fields.

- Any Hardy field $K \supseteq \mathbb{R}$ is an H -field.
- More generally: any Hardy field with $b \in K^{\leqslant 1} \Rightarrow \lim b \in K$.

Hardy fields.

- Any Hardy field $K \supseteq \mathbb{R}$ is an H -field.
- More generally: any Hardy field with $b \in K^{\leqslant 1} \Rightarrow \lim b \in K$.

Transseries.

- The field \mathbb{T} of grid-based transseries is an H -field.

Hardy fields.

- Any Hardy field $K \supseteq \mathbb{R}$ is an H -field.
- More generally: any Hardy field with $b \in K^{\leqslant 1} \Rightarrow \lim b \in K$.

Transseries.

- The field \mathbb{T} of grid-based transseries is an H -field.
- The field \mathbb{E} of exponential grid-based transseries is an H -field.

Hardy fields.

- Any Hardy field $K \supseteq \mathbb{R}$ is an H -field.
- More generally: any Hardy field with $b \in K^{\kappa 1} \Rightarrow \lim b \in K$.

Transseries.

- The field \mathbb{T} of grid-based transseries is an H-field.
- The field \mathbb{E} of exponential grid-based transseries is an H -field.
- Given a "д-compatible" support type \mathscr{S}, the field $\mathbb{T}_{\mathscr{L}}$ of \mathscr{S}-based transseries of finite logarithmic depth is an H -field.

Hardy fields.

- Any Hardy field $K \supseteq \mathbb{R}$ is an H -field.
- More generally: any Hardy field with $b \in K^{\kappa 1} \Rightarrow \lim b \in K$.

Transseries.

- The field \mathbb{T} of grid-based transseries is an H -field.
- The field \mathbb{E} of exponential grid-based transseries is an H -field.
- Given a "д-compatible" support type \mathscr{S}, the field $\mathbb{T}_{\mathscr{L}}$ of $\mathscr{\mathscr { L }}$-based transseries of finite logarithmic depth is an H -field.
- Let $\mathbb{T}_{0}^{\mathrm{wb}}:=\mathbb{L}^{\mathrm{wb}}:=\mathbb{R}[[\mathfrak{L}]]$ and $\mathbb{T}_{1}^{\mathrm{wb}}:=\mathbb{R}\left[\left[\mathbb{L}_{>}^{\mathrm{wb}}\right]\right]$.

Then $\mathbb{T}_{1}^{\mathrm{wb}}$ is an H -field. It contains $\gamma:=\frac{1}{x \log _{x} \log _{2} x \cdots}$.

Hardy fields.

- Any Hardy field $K \supseteq \mathbb{R}$ is an H -field.
- More generally: any Hardy field with $b \in K^{〔 1} \Rightarrow \lim b \in K$.

Transseries.

- The field \mathbb{T} of grid-based transseries is an H -field.
- The field \mathbb{E} of exponential grid-based transseries is an H -field.
- Given a "д-compatible" support type \mathscr{S}, the field $\mathbb{T}_{\mathscr{L}}$ of $\mathscr{\mathscr { L }}$-based transseries of finite logarithmic depth is an H -field.
- Let $\mathbb{T}_{0}^{\mathrm{wb}}:=\mathbb{L}^{\mathrm{wb}}:=\mathbb{R}[[\mathfrak{L}]]$ and $\mathbb{T}_{1}^{\mathrm{wb}}:=\mathbb{R}\left[\left[\mathbb{L}_{>}^{\mathrm{wb}}\right]\right]$.

Then $\mathbb{T}_{1}^{\mathrm{wb}}$ is an H -field. It contains $\gamma:=\frac{1}{x \log _{x} \log _{2} x \cdots}$.
Note. For each of the above examples, the derivation is small.

Theorem

The real closure of any H-field K is again an H-field. If ∂_{K} is small, then so is $\partial_{K^{r .}}$.

Theorem

The real closure of any H-field K is again an H-field. If ∂_{K} is small, then so is $\partial_{K^{\kappa}}$.
Proof. Given an H -field K, we already know that K^{rc} is a real closed valued field.

Theorem

The real closure of any H-field K is again an H-field. If ∂_{K} is small, then so is $\partial_{K^{\mathrm{rc}}}$.
Proof. Given an H-field K, we already know that K^{rc} is a real closed valued field. Let $P=P_{d} Y^{d}+\cdots+P_{0} \in K[Y], y \in K^{\mathrm{rc}}$ with $P(y)=0$, and $\partial P:=\left(\partial P_{d}\right) Y^{d}+\cdots+\partial P_{0}$.

Theorem

The real closure of any H-field K is again an H-field. If ∂_{K} is small, then so is $\partial_{K^{\kappa}}$.
Proof. Given an H -field K, we already know that K^{rc} is a real closed valued field. Let $P=P_{d} Y^{d}+\cdots+P_{0} \in K[Y], y \in K^{\mathrm{rc}}$ with $P(y)=0$, and $\partial P:=\left(\partial P_{d}\right) Y^{d}+\cdots+\partial P_{0}$. We must have $y^{\prime}:=-(\partial P)(y) / P^{\prime}(y)$. This defines a derivation on K^{rc}.

Theorem

The real closure of any H-field K is again an H-field. If ∂_{K} is small, then so is $\partial_{K^{\kappa}}$.
Proof. Given an H -field K, we already know that K^{rc} is a real closed valued field. Let $P=P_{d} Y^{d}+\cdots+P_{0} \in K[Y], y \in K^{\mathrm{rc}}$ with $P(y)=0$, and $\partial P:=\left(\partial P_{d}\right) Y^{d}+\cdots+\partial P_{0}$. We must have $y^{\prime}:=-(\partial P)(y) / P^{\prime}(y)$. This defines a derivation on $K^{\text {rc }}$. Note that $C_{K^{r c}}=C^{r c}$.

Theorem

The real closure of any H-field K is again an H-field. If ∂_{K} is small, then so is $\partial_{K^{\kappa}}$.
Proof. Given an H -field K, we already know that K^{rc} is a real closed valued field. Let $P=P_{d} Y^{d}+\cdots+P_{0} \in K[Y], y \in K^{\mathrm{rc}}$ with $P(y)=0$, and $\partial P:=\left(\partial P_{d}\right) Y^{d}+\cdots+\partial P_{0}$. We must have $y^{\prime}:=-(\partial P)(y) / P^{\prime}(y)$. This defines a derivation on $K^{\text {rc }}$. Note that $C_{K^{\mathrm{rc}}}=C^{\mathrm{rc}}$.
H1. If $y \in\left(K^{\mathrm{rc}}\right)^{>C}$, then $y^{n} \sim u \in K^{>C}$ for some $n \geqslant 1$.
Then $\left(y^{n}\right)^{\prime} \sim u^{\prime}$, whence $y^{\prime} \sim y u^{\dagger} / n>0$.

Theorem

The real closure of any H-field K is again an H-field. If ∂_{K} is small, then so is $\partial_{K^{\kappa}}$.
Proof. Given an H -field K, we already know that K^{rc} is a real closed valued field. Let $P=P_{d} Y^{d}+\cdots+P_{0} \in K[Y], y \in K^{\mathrm{rc}}$ with $P(y)=0$, and $\partial P:=\left(\partial P_{d}\right) Y^{d}+\cdots+\partial P_{0}$. We must have $y^{\prime}:=-(\partial P)(y) / P^{\prime}(y)$. This defines a derivation on $K^{\text {rc }}$. Note that $C_{K^{r c}}=C^{\text {rc }}$.
H1. If $y \in\left(K^{\mathrm{rc}}\right)^{>C}$, then $y^{n} \sim u \in K^{>C}$ for some $n \geqslant 1$.
Then $\left(y^{n}\right)^{\prime} \sim u^{\prime}$, whence $y^{\prime} \sim y u^{\dagger} / n>0$.
H2. Let $y \in K^{\mathrm{rc}}$ with $y \leqslant 1$.
Then $P(y)=0$ for some $P:=D+E$ with $D \in C[Y]^{\neq 0}$ and $E \in K[Y]^{<1}$. Since $D(y)<1$ and D splits over $C^{\text {rc }}=C_{K^{\mathrm{r}}}$, we have $y \sim \mathcal{c}$ for some $c \in C_{K^{\text {re }}}$.

Theorem

The real closure of any H-field K is again an H-field. If ∂_{K} is small, then so is $\partial_{K^{\kappa}}$.
Proof. Given an H -field K, we already know that K^{rc} is a real closed valued field. Let $P=P_{d} Y^{d}+\cdots+P_{0} \in K[Y], y \in K^{\mathrm{rc}}$ with $P(y)=0$, and $\partial P:=\left(\partial P_{d}\right) Y^{d}+\cdots+\partial P_{0}$. We must have $y^{\prime}:=-(\partial P)(y) / P^{\prime}(y)$. This defines a derivation on $K^{\text {rc }}$. Note that $C_{K^{r c}}=C^{\text {rc }}$.
H1. If $y \in\left(K^{\mathrm{rc}}\right)^{>C}$, then $y^{n} \sim u \in K^{>C}$ for some $n \geqslant 1$.
Then $\left(y^{n}\right)^{\prime} \sim u^{\prime}$, whence $y^{\prime} \sim y u^{\dagger} / n>0$.
H2. Let $y \in K^{\mathrm{rc}}$ with $y \leqslant 1$.
Then $P(y)=0$ for some $P:=D+E$ with $D \in C[Y]^{\neq 0}$ and $E \in K[Y]^{<1}$. Since $D(y)<1$ and D splits over $C^{\text {rc }}=C_{K^{\mathrm{r}}}$, we have $y \sim c$ for some $c \in C_{K^{\mathrm{r}}}$.
Preservation of smallness. Exercise.

Gaps

Proposition

There is a unique map ${ }^{\dagger}: \Gamma^{\neq 0} \rightarrow \Gamma$ with $v(a)^{\dagger}=v\left(a^{\dagger}\right)$ for all $a \in K^{\neq 1}$.
We also define $\alpha^{\prime}:=\alpha+\alpha^{+}$for all $\alpha \in \Gamma^{\neq 0}$.

Gaps

Proposition

There is a unique map ${ }^{\dagger}: \Gamma^{\neq 0} \rightarrow \Gamma$ with $v(a)^{\dagger}=v\left(a^{\dagger}\right)$ for all $a \in K^{\neq 1}$.
We also define $\alpha^{\prime}:=\alpha+\alpha^{\dagger}$ for all $\alpha \in \Gamma^{\neq 0}$.

Proposition

Exactly one of the following situations occurs:

1. $\left(\Gamma^{\neq 0}\right)^{\dagger}$ has a largest element (we say that K is grounded).
2. $\Gamma=\left(\Gamma^{\neq 0}\right)^{\prime}$ (we say that K has asymptotic integration).
3. $\Gamma=\left(\Gamma^{\neq 0}\right)^{\dagger} \cup\{\beta\} \cup\left(\Gamma^{>0}\right)^{\prime}$ with $\left(\Gamma^{\neq 0}\right)^{\dagger}<\beta<\left(\Gamma^{>0}\right)^{\prime}$ (we say that K has a gap)

Gaps

Proposition

There is a unique map ${ }^{\dagger}: \Gamma^{\neq 0} \rightarrow \Gamma$ with $v(a)^{\dagger}=v\left(a^{\dagger}\right)$ for all $a \in K^{\neq 1}$.
We also define $\alpha^{\prime}:=\alpha+\alpha^{+}$for all $\alpha \in \Gamma^{\neq 0}$.

Proposition

Exactly one of the following situations occurs:

1. $\left(\Gamma^{\neq 0}\right)^{\dagger}$ has a largest element (we say that K is grounded).
2. $\Gamma=\left(\Gamma^{\neq 0}\right)^{\prime}$ (we say that K has asymptotic integration).
3. $\Gamma=\left(\Gamma^{\neq 0}\right)^{\dagger} \cup\{\beta\} \cup\left(\Gamma^{>0}\right)^{\prime}$ with $\left(\Gamma^{\neq 0}\right)^{\dagger}<\beta<\left(\Gamma^{>0}\right)^{\prime}$ (we say that K has a gap)
4. Example: \mathbb{E}, the exponential transseries, $\max \left(\Gamma_{\mathbb{E}}^{\neq 0}\right)^{\dagger}=v\left(x^{-1}\right)$.

Gaps

Proposition

There is a unique map ${ }^{\dagger}: \Gamma^{\neq 0} \rightarrow \Gamma$ with $v(a)^{\dagger}=v\left(a^{\dagger}\right)$ for all $a \in K^{\neq 1}$.
We also define $\alpha^{\prime}:=\alpha+\alpha^{+}$for all $\alpha \in \Gamma^{\neq 0}$.

Proposition

Exactly one of the following situations occurs:

1. $\left(\Gamma^{\neq 0}\right)^{\dagger}$ has a largest element (we say that K is grounded).
2. $\Gamma=\left(\Gamma^{\neq 0}\right)^{\prime}$ (we say that K has asymptotic integration).
3. $\Gamma=\left(\Gamma^{\neq 0}\right)^{\dagger} \cup\{\beta\} \cup\left(\Gamma^{>0}\right)^{\prime}$ with $\left(\Gamma^{\neq 0}\right)^{\dagger}<\beta<\left(\Gamma^{>0}\right)^{\prime}$ (we say that K has a gap)
4. Example: \mathbb{E}, the exponential transseries, $\max \left(\Gamma_{\mathbb{E}}^{\neq 0}\right)^{\dagger}=v\left(x^{-1}\right)$.
5. Example: \mathbb{T}, since any transseries can even be integrated.

Gaps

Proposition

There is a unique map ${ }^{\dagger}: \Gamma^{\neq 0} \rightarrow \Gamma$ with $v(a)^{\dagger}=v\left(a^{\dagger}\right)$ for all $a \in K^{\neq 1}$.
We also define $\alpha^{\prime}:=\alpha+\alpha^{+}$for all $\alpha \in \Gamma^{\neq 0}$.

Proposition

Exactly one of the following situations occurs:

1. $\left(\Gamma^{\neq 0}\right)^{\dagger}$ has a largest element (we say that K is grounded).
2. $\Gamma=\left(\Gamma^{\neq 0}\right)^{\prime}$ (we say that K has asymptotic integration).
3. $\Gamma=\left(\Gamma^{\neq 0}\right)^{\dagger} \cup\{\beta\} \cup\left(\Gamma^{>0}\right)^{\prime}$ with $\left(\Gamma^{\neq 0}\right)^{\dagger}<\beta<\left(\Gamma^{>0}\right)^{\prime}$ (we say that K has a gap)
4. Example: \mathbb{E}, the exponential transseries, $\max \left(\Gamma_{\mathbb{E}}^{\neq 0}\right)^{\dagger}=v\left(x^{-1}\right)$.
5. Example: \mathbb{T}, since any transseries can even be integrated.
6. Example: $\mathbb{T}_{1}^{\mathrm{wb}}$, with $\beta:=v(\gamma), \gamma:=\frac{1}{x \log ^{x} \log _{2} x \cdots}$. We have $\varepsilon^{\prime}<\gamma<\delta^{\dagger}$ for any $\varepsilon, \delta<1$.

Gaps - continued

Consider a formal solution L_{ω} of

$$
L_{\omega}(\log x)=L_{\omega}(x)-1 .
$$

Gaps - continued

Consider a formal solution L_{ω} of

$$
L_{\omega}(\log x)=L_{\omega}(x)-1
$$

We have $L_{\omega}>1$, but $L_{\omega} \prec \log _{l} x$ for all $l \in \mathbb{N}$.

Gaps - continued

Consider a formal solution L_{ω} of

$$
L_{\omega}(\log x)=L_{\omega}(x)-1
$$

We have $L_{\omega}>1$, but $L_{\omega} \prec \log _{l} x$ for all $l \in \mathbb{N}$. Hence,

$$
L_{\omega} \notin \mathbb{T}_{\alpha}^{\mathrm{wb}}, \quad \text { for any ordinal } \alpha
$$

Gaps - continued

Consider a formal solution L_{ω} of

$$
L_{\omega}(\log x)=L_{\omega}(x)-1
$$

We have $L_{\omega}>1$, but $L_{\omega}<\log _{l} x$ for all $l \in \mathbb{N}$. Hence,

$$
L_{\omega} \notin \mathbb{T}_{\alpha}^{\mathrm{wb}}, \quad \text { for any ordinal } \alpha
$$

However,

$$
\frac{L_{\omega}^{\prime}(\log x)}{x}=L_{\omega}^{\prime}(x),
$$

Gaps - continued

Consider a formal solution L_{ω} of

$$
L_{\omega}(\log x)=L_{\omega}(x)-1 .
$$

We have $L_{\omega}>1$, but $L_{\omega}<\log _{l} x$ for all $l \in \mathbb{N}$. Hence,

$$
L_{\omega} \notin \mathbb{T}_{\alpha}^{\mathrm{wb}}, \quad \text { for any ordinal } \alpha
$$

However,

$$
\frac{L_{\omega}^{\prime}(\log x)}{x}=L_{\omega}^{\prime}(x),
$$

$$
L_{\omega}^{\prime}(x)=\frac{1}{x \log x \log _{2} x \cdots}=\gamma \subseteq \mathbb{T}_{1}^{\mathrm{wb}} \backslash \mathbb{T}_{0}^{\mathrm{wb}}
$$

Gaps - continued

Consider a formal solution L_{ω} of

$$
L_{\omega}(\log x)=L_{\omega}(x)-1 .
$$

We have $L_{\omega}>1$, but $L_{\omega}<\log _{l} x$ for all $l \in \mathbb{N}$. Hence,

$$
L_{\omega} \notin \mathbb{T}_{\alpha}^{\mathrm{wb}}, \quad \text { for any ordinal } \alpha .
$$

However,

$$
\frac{L_{\omega}^{\prime}(\log x)}{x}=L_{\omega}^{\prime}(x)
$$

so

$$
L_{\omega}^{\prime}(x)=\frac{1}{x \log x \log _{2} x \cdots}=\gamma \subseteq \mathbb{T}_{1}^{\mathrm{wb}} \backslash \mathbb{T}_{0}^{\mathrm{wb}} .
$$

Furthermore, $\mathbb{T}_{0}^{\mathrm{wb}}$ has asymptotic integration (whence no gap), but

$$
\lambda:=-\gamma^{+}=\frac{1}{x}+\frac{1}{x \log x}+\frac{1}{x \log x \log _{2} x}+\cdots \in \mathbb{T}_{0}^{\mathrm{wb}}
$$

Adjoining new logarithms

Let K be an H-field with divisible $\Gamma:=\Gamma_{K}$ and let $C:=C_{K}$.

Adjoining new logarithms

Let K be an H-field with divisible $\Gamma:=\Gamma_{K}$ and let $C:=C_{K}$.
Assume that K is grounded and let $\ell \in K^{>1,>0}$ be such that $v\left(\ell^{\dagger}\right)$ is maximal.

Adjoining new logarithms

Let K be an H-field with divisible $\Gamma:=\Gamma_{K}$ and let $C:=C_{K}$.
Assume that K is grounded and let $\ell \in K^{>1,>0}$ be such that $v\left(\ell^{\dagger}\right)$ is maximal. Then $\delta:=\left(\ell^{+}\right)^{-1} \partial$ is a small derivation and $\operatorname{Der}_{<}(K)=\mathcal{O}_{K} \delta$.

Adjoining new logarithms

Let K be an H-field with divisible $\Gamma:=\Gamma_{K}$ and let $C:=C_{K}$.
Assume that K is grounded and let $\ell \in K^{>1,>0}$ be such that $v\left(\ell^{\dagger}\right)$ is maximal. Then $\delta:=\left(\ell^{\dagger}\right)^{-1} \partial$ is a small derivation and $\operatorname{Der}_{<}(K)=\mathcal{O}_{K} \delta$.

Lemma

Let $L:=K(y)$ with $y^{\prime}=\ell^{+}$. There is a unique ordering on L with $y>0$ for which $L \supseteq K$ is an extension of H-fields. We have $C_{L}=C, \Gamma_{L}=\Gamma \oplus \mathbb{Z} v(y), \Gamma^{<0}<\mathbb{Z}^{>0} v(y),\left(\Gamma_{L}^{\neq 0}\right)^{\dagger} \leqslant v\left(y^{\dagger}\right)$. Moreover, if $F \supseteq K$ is another H-field extension and $a \in F^{>0}$ satisfies $a^{\prime}=\ell^{\dagger}$, then there exists a unique embedding of H-fields $\varphi: L \rightarrow F$ with $\varphi(y)=a$.

Adjoining new logarithms

Let K be an H-field with divisible $\Gamma:=\Gamma_{K}$ and let $C:=C_{K}$.
Assume that K is grounded and let $\ell \in K^{>1,>0}$ be such that $v\left(\ell^{\dagger}\right)$ is maximal. Then $\delta:=\left(\ell^{\dagger}\right)^{-1} \partial$ is a small derivation and $\operatorname{Der}_{<}(K)=\mathcal{O}_{K} \delta$.

Lemma

Let $L:=K(y)$ with $y^{\prime}=\ell^{+}$. There is a unique ordering on L with $y>0$ for which $L \supseteq K$ is an extension of H-fields. We have $C_{L}=C, \Gamma_{L}=\Gamma \oplus \mathbb{Z} v(y), \Gamma^{<0}<\mathbb{Z}^{>0} v(y),\left(\Gamma_{L}^{\neq 0}\right)^{\dagger} \leqslant v\left(y^{\dagger}\right)$. Moreover, if $F \supseteq K$ is another H-field extension and $a \in F^{>0}$ satisfies $a^{\prime}=\ell^{\dagger}$, then there exists a unique embedding of H-fields $\varphi: L \rightarrow F$ with $\varphi(y)=a$.
Example. $K=\mathbb{E}$ with $\ell=x$. Then $y^{\prime}=\ell^{\dagger}=\frac{1}{x^{\prime}}$, so $y \in \log x+C$, e.g. $y=\log x$.

Adjoining new logarithms

Lemma

Let $L:=K(y)$ with $y^{\prime}=\ell^{+}$. There is a unique ordering on L with $y>0$ for which $L \supseteq K$ is an extension of H-fields. We have $C_{L}=C, \Gamma_{L}=\Gamma \oplus \mathbb{Z} v(y), \Gamma^{<0}<\mathbb{Z}^{>0} v(y)<0,\left(\Gamma_{L}^{\neq 0}\right)^{\dagger} \leqslant v\left(y^{\dagger}\right)$. Moreover, if $F \supseteq K$ is another H-field extension and $a \in F^{>0}$ satisfies $a^{\prime}=\ell^{\dagger}$, then there exists a unique embedding of H-fields $\varphi: L \rightarrow F$ with $\varphi(y)=a$.

Adjoining new logarithms

Lemma

Let $L:=K(y)$ with $y^{\prime}=\ell^{+}$. There is a unique ordering on L with $y>0$ for which $L \supseteq K$ is an extension of H-fields. We have $C_{L}=C, \Gamma_{L}=\Gamma \oplus \mathbb{Z} v(y), \Gamma^{<0}<\mathbb{Z}^{>0} v(y)<0,\left(\Gamma_{L}^{\neq 0}\right)^{\dagger} \leqslant v\left(y^{\dagger}\right)$. Moreover, if $F \supseteq K$ is another H-field extension and $a \in F^{>0}$ satisfies $a^{\prime}=\ell^{\dagger}$, then there exists a unique embedding of H-fields $\varphi: L \rightarrow F$ with $\varphi(y)=a$.

Proof. We may assume wlog that $\partial=\delta$, whence $\ell^{\dagger}=1$ and $v\left(a^{\dagger}\right) \leqslant 0$ for all $a \in K^{\neq 1}$.

Lemma

Let $L:=K(y)$ with $y^{\prime}=\ell^{+}$. There is a unique ordering on L with $y>0$ for which $L \supseteq K$ is an extension of H-fields. We have $C_{L}=C, \Gamma_{L}=\Gamma \oplus \mathbb{Z} v(y), \Gamma^{<0}<\mathbb{Z}^{>0} v(y)<0,\left(\Gamma_{L}^{\neq 0}\right)^{\dagger} \leqslant v\left(y^{\dagger}\right)$. Moreover, if $F \supseteq K$ is another H-field extension and $a \in F^{>0}$ satisfies $a^{\prime}=\ell^{\dagger}$, then there exists a unique embedding of H-fields $\varphi: L \rightarrow F$ with $\varphi(y)=a$.

Proof. We may assume wlog that $\partial=\delta$, whence $\ell^{\dagger}=1$ and $v\left(a^{\dagger}\right) \leqslant 0$ for all $a \in K^{\neq 1}$. Since $y^{\dagger}=\ell^{-1}<1$, we have $\mathbb{Z} v(y) \cap \Gamma=\emptyset$, so $\beta:=v(y)$ lies in a cut over Γ.

Adjoining new logarithms

Lemma

Let $L:=K(y)$ with $y^{\prime}=\ell^{+}$. There is a unique ordering on L with $y>0$ for which $L \supseteq K$ is an extension of H-fields. We have $C_{L}=C, \Gamma_{L}=\Gamma \oplus \mathbb{Z} v(y), \Gamma^{<0}<\mathbb{Z}^{>0} v(y)<0,\left(\Gamma_{L}^{\neq 0}\right)^{\dagger} \leqslant v\left(y^{\dagger}\right)$. Moreover, if $F \supseteq K$ is another H-field extension and $a \in F^{>0}$ satisfies $a^{\prime}=\ell^{\dagger}$, then there exists a unique embedding of H-fields $\varphi: L \rightarrow F$ with $\varphi(y)=a$.

Proof. We may assume wlog that $\partial=\delta$, whence $\ell^{\dagger}=1$ and $v\left(a^{\dagger}\right) \leqslant 0$ for all $a \in K^{\neq 1}$. Since $y^{\dagger}=\ell^{-1}<1$, we have $\mathbb{Z} v(y) \cap \Gamma=\varnothing$, so $\beta:=v(y)$ lies in a cut over Γ.
By Lemma TR-VAL from Lesson $8, L$ has a unique valuation with $\Gamma_{L}=\Gamma \oplus \mathbb{Z} \beta$ and $v(y)=\beta$. Moreover, $\boldsymbol{k}_{L}=\boldsymbol{k}_{K}$, and for any valued field extension $F \supseteq K$ and $a \in F^{\neq 0}$ with $v(a)$ in the same cut as β over K, there exists a unique valued field embedding $\varphi: L \rightarrow F$ with $\varphi(y)=a$.

Adjoining new logarithms

Lemma

Let $L:=K(y)$ with $y^{\prime}=\ell^{\dagger}$. There is a unique ordering on L with $y>0$ for which $L \supseteq K$ is an extension of H-fields. We have $C_{L}=C, \Gamma_{L}=\Gamma \oplus \mathbb{Z} v(y), \Gamma^{<0}<\mathbb{Z}^{>0} v(y)<0,\left(\Gamma_{L}^{\neq 0}\right)^{\dagger} \leqslant v\left(y^{\dagger}\right)$. Moreover, if $F \supseteq K$ is another H-field extension and $a \in F^{>0}$ satisfies $a^{\prime}=\ell^{\dagger}$, then there exists a unique embedding of H-fields $\varphi: L \rightarrow F$ with $\varphi(y)=a$.

Proof. We may assume wlog that $\partial=\delta$, whence $\ell^{\dagger}=1$ and $v\left(a^{\dagger}\right) \leqslant 0$ for all $a \in K^{* 1}$. Since $y^{\dagger}=\ell^{-1}<1$, we have $\mathbb{Z} v(y) \cap \Gamma=\varnothing$, so $\beta:=v(y)$ lies in a cut over Γ. By Lemma TR-VAL from Lesson $8, L$ has a unique valuation with $\Gamma_{L}=\Gamma \oplus \mathbb{Z} \beta$ and $v(y)=\beta$. Moreover, $\boldsymbol{k}_{L}=\boldsymbol{k}_{K}$, and for any valued field extension $F \supseteq K$ and $a \in F^{\neq 0}$ with $v(a)$ in the same cut as β over K, there exists a unique valued field embedding $\varphi: L \rightarrow F$ with $\varphi(y)=a$.

To do. Verify that v comes from an ordering that satisfies $\mathbf{H 1}$ and $\mathbf{H 2}$.

Given $f \in K(y)^{\neq 0}$, there exist $u \in K^{\neq 0}$ and $n \in \mathbb{Z}$ with $v(f)=v(u)+n \beta$, whence $f \sim u y^{n}$.

Adjoining new logarithms - continued proof

Given $f \in K(y)^{\neq 0}$, there exist $u \in K^{\neq 0}$ and $n \in \mathbb{Z}$ with $v(f)=v(u)+n \beta$, whence $f \sim u y^{n}$. We must have $f>0 \Longleftrightarrow u>0$ and one verifies that this makes L an ordered field.

Adjoining new logarithms - continued proof

Given $f \in K(y)^{\neq 0}$, there exist $u \in K^{\neq 0}$ and $n \in \mathbb{Z}$ with $v(f)=v(u)+n \beta$, whence $f \sim u y^{n}$. We must have $f>0 \Longleftrightarrow u>0$ and one verifies that this makes L an ordered field. H2. If $v(f)=0$, then $n=0$ and $v(u)=0$, so $u \in C+\odot$ and $f \in C+\Theta_{L}$.

Given $f \in K(y)^{\neq 0}$, there exist $u \in K^{\neq 0}$ and $n \in \mathbb{Z}$ with $v(f)=v(u)+n \beta$, whence $f \sim u y^{n}$. We must have $f>0 \Longleftrightarrow u>0$ and one verifies that this makes L an ordered field. H2. If $v(f)=0$, then $n=0$ and $v(u)=0$, so $u \in C+\vartheta$ and $f \in C+\mathcal{O}_{L}$.
H1. Verify first that $f>C \Longrightarrow f^{\prime}>0$ for $f \in K^{\neq 0} y^{\mathbb{Z}}$.

Given $f \in K(y)^{\neq 0}$, there exist $u \in K^{\neq 0}$ and $n \in \mathbb{Z}$ with $v(f)=v(u)+n \beta$, whence $f \sim u y^{n}$. We must have $f>0 \Longleftrightarrow u>0$ and one verifies that this makes L an ordered field. H2. If $v(f)=0$, then $n=0$ and $v(u)=0$, so $u \in C+\mathcal{O}$ and $f \in C+\mathcal{O}_{L}$.
H1. Verify first that $f>C \Longrightarrow f^{\prime}>0$ for $f \in K^{\neq 0} y^{Z}$.
Also verify that $f<g \Rightarrow f^{\prime}<g^{\prime}$ for $f, g \in K^{\neq 0} y^{\mathbb{Z}}$ with $g \neq 1$.

Given $f \in K(y)^{\neq 0}$, there exist $u \in K^{\neq 0}$ and $n \in \mathbb{Z}$ with $v(f)=v(u)+n \beta$, whence $f \sim u y^{n}$. We must have $f>0 \Longleftrightarrow u>0$ and one verifies that this makes L an ordered field. H2. If $v(f)=0$, then $n=0$ and $v(u)=0$, so $u \in C+O$ and $f \in C+O_{L}$.
H1. Verify first that $f>C \Longrightarrow f^{\prime}>0$ for $f \in K^{\neq 0} y^{\mathbb{Z}}$.
Also verify that $f<g \Rightarrow f^{\prime}<g^{\prime}$ for $f, g \in K^{\neq 0} y^{\mathbb{Z}}$ with $g \neq 1$. Now consider $P, Q \in K[Y]$ with $P / Q>0$ and $P>Q$.

Given $f \in K(y)^{\neq 0}$, there exist $u \in K^{\neq 0}$ and $n \in \mathbb{Z}$ with $v(f)=v(u)+n \beta$, whence $f \sim u y^{n}$. We must have $f>0 \Longleftrightarrow u>0$ and one verifies that this makes L an ordered field. H2. If $v(f)=0$, then $n=0$ and $v(u)=0$, so $u \in C+O$ and $f \in C+O_{L}$.
H1. Verify first that $f>C \Longrightarrow f^{\prime}>0$ for $f \in K^{\neq 0} y^{\mathbb{Z}}$.
Also verify that $f<g \Rightarrow f^{\prime}<g^{\prime}$ for $f, g \in K^{\neq 0} y^{\mathbb{Z}}$ with $g \neq 1$. Now consider $P, Q \in K[Y]$ with $P / Q>0$ and $P>Q$.
For certain i, j, we then have $P(y) \sim P_{i} y^{i}, Q(y) \sim Q_{j} y^{j}, P(y)^{\prime} \sim\left(P_{i} y^{i}\right)^{\prime}, Q(y)^{\prime} \sim\left(Q_{i} y^{j}\right)^{\prime}$.

Given $f \in K(y)^{\neq 0}$, there exist $u \in K^{\neq 0}$ and $n \in \mathbb{Z}$ with $v(f)=v(u)+n \beta$, whence $f \sim u y^{n}$. We must have $f>0 \Longleftrightarrow u>0$ and one verifies that this makes L an ordered field.
H2. If $v(f)=0$, then $n=0$ and $v(u)=0$, so $u \in C+O$ and $f \in C+O_{L}$.
H1. Verify first that $f>C \Longrightarrow f^{\prime}>0$ for $f \in K^{\neq 0} y^{\mathbb{Z}}$.
Also verify that $f<g \Rightarrow f^{\prime}<g^{\prime}$ for $f, g \in K^{\neq 0} y^{\mathbb{Z}}$ with $g \neq 1$.
Now consider $P, Q \in K[Y]$ with $P / Q>0$ and $P>Q$.
For certain i, j, we then have $P(y) \sim P_{i} y^{i}, Q(y) \sim Q_{j} y^{j}, P(y)^{\prime} \sim\left(P_{i} y^{i}\right)^{\prime}, Q(y)^{\prime} \sim\left(Q_{i} y^{j}\right)^{\prime}$.
$\operatorname{Now}(P / Q)^{\prime}>0 \Leftrightarrow P(y)^{\dagger}>Q(y)^{\dagger} \Leftrightarrow\left(P_{i} y^{i}\right)^{\dagger}>\left(Q_{j} y^{j}\right)^{\dagger} \Longleftarrow\left(\left(P_{i} / Q_{j}\right) y^{i-j}\right)^{\dagger}>0$.

Given $f \in K(y)^{\neq 0}$, there exist $u \in K^{\neq 0}$ and $n \in \mathbb{Z}$ with $v(f)=v(u)+n \beta$, whence $f \sim u y^{n}$. We must have $f>0 \Longleftrightarrow u>0$ and one verifies that this makes L an ordered field.
H2. If $v(f)=0$, then $n=0$ and $v(u)=0$, so $u \in C+O$ and $f \in C+O_{L}$.
H1. Verify first that $f>C \Longrightarrow f^{\prime}>0$ for $f \in K^{\neq 0} y^{\mathbb{Z}}$.
Also verify that $f<g \Rightarrow f^{\prime}<g^{\prime}$ for $f, g \in K^{\neq 0} y^{\mathbb{Z}}$ with $g \neq 1$.
Now consider $P, Q \in K[Y]$ with $P / Q>0$ and $P>Q$.
For certain i, j, we then have $P(y) \sim P_{i} y^{i}, Q(y) \sim Q_{j} y^{j}, P(y)^{\prime} \sim\left(P_{i} y^{i}\right)^{\prime}, Q(y)^{\prime} \sim\left(Q_{i} y^{j}\right)^{\prime}$. $\operatorname{Now}(P / Q)^{\prime}>0 \Leftrightarrow P(y)^{\dagger}>Q(y)^{\dagger} \Leftrightarrow\left(P_{i} y^{i}\right)^{\dagger}>\left(Q_{j} y^{j}\right)^{\dagger} \Longleftarrow\left(\left(P_{i} / Q_{j}\right) y^{i-j}\right)^{\dagger}>0$.
Embedding property. We already have the valued field embedding φ with $\varphi(y)=a$.

Given $f \in K(y)^{\neq 0}$, there exist $u \in K^{\neq 0}$ and $n \in \mathbb{Z}$ with $v(f)=v(u)+n \beta$, whence $f \sim u y^{n}$. We must have $f>0 \Longleftrightarrow u>0$ and one verifies that this makes L an ordered field.
H2. If $v(f)=0$, then $n=0$ and $v(u)=0$, so $u \in C+O$ and $f \in C+O_{L}$.
H1. Verify first that $f>C \Longrightarrow f^{\prime}>0$ for $f \in K^{\neq 0} y^{\mathbb{Z}}$.
Also verify that $f<g \Rightarrow f^{\prime}<g^{\prime}$ for $f, g \in K^{\neq 0} y^{\mathbb{Z}}$ with $g \neq 1$.
Now consider $P, Q \in K[Y]$ with $P / Q>0$ and $P>Q$.
For certain i, j, we then have $P(y) \sim P_{i} y^{i}, Q(y) \sim Q_{j} y^{j}, P(y)^{\prime} \sim\left(P_{i} y^{i}\right)^{\prime}, Q(y)^{\prime} \sim\left(Q_{i} y^{j}\right)^{\prime}$.
$\operatorname{Now}(P / Q)^{\prime}>0 \Leftrightarrow P(y)^{\dagger}>Q(y)^{\dagger} \Leftrightarrow\left(P_{i} y^{i}\right)^{\dagger}>\left(Q_{j} y^{j}\right)^{\dagger} \Longleftarrow\left(\left(P_{i} / Q_{j}\right) y^{i-j}\right)^{\dagger}>0$.
Embedding property. We already have the valued field embedding φ with $\varphi(y)=a$. Since $y^{\prime}=a^{\prime}=\ell^{\dagger}$, this embedding preserves ∂.

Given $f \in K(y)^{\neq 0}$, there exist $u \in K^{\neq 0}$ and $n \in \mathbb{Z}$ with $v(f)=v(u)+n \beta$, whence $f \sim u y^{n}$. We must have $f>0 \Longleftrightarrow u>0$ and one verifies that this makes L an ordered field.
H2. If $v(f)=0$, then $n=0$ and $v(u)=0$, so $u \in C+O$ and $f \in C+O_{L}$.
H1. Verify first that $f>C \Longrightarrow f^{\prime}>0$ for $f \in K^{\neq 0} y^{\mathbb{Z}}$.
Also verify that $f<g \Rightarrow f^{\prime}<g^{\prime}$ for $f, g \in K^{\neq 0} y^{\mathbb{Z}}$ with $g \neq 1$.
Now consider $P, Q \in K[Y]$ with $P / Q>0$ and $P>Q$.
For certain i, j, we then have $P(y) \sim P_{i} y^{i}, Q(y) \sim Q_{j} y^{j}, P(y)^{\prime} \sim\left(P_{i} y^{i}\right)^{\prime}, Q(y)^{\prime} \sim\left(Q_{i} y^{j}\right)^{\prime}$.
$\operatorname{Now}(P / Q)^{\prime}>0 \Leftrightarrow P(y)^{\dagger}>Q(y)^{\dagger} \Leftrightarrow\left(P_{i} y^{i}\right)^{\dagger}>\left(Q_{j} y^{j}\right)^{\dagger} \Longleftarrow\left(\left(P_{i} / Q_{j}\right) y^{i-j}\right)^{\dagger}>0$.
Embedding property. We already have the valued field embedding φ with $\varphi(y)=a$. Since $y^{\prime}=a^{\prime}=\ell^{\dagger}$, this embedding preserves ∂.
Given $f \in K(y)^{>0}$, we have $f \sim u y^{n}>0$ for $u \in K^{\neq 0}$ and $n \in \mathbb{N}$.

Given $f \in K(y)^{\neq 0}$, there exist $u \in K^{\neq 0}$ and $n \in \mathbb{Z}$ with $v(f)=v(u)+n \beta$, whence $f \sim u y^{n}$. We must have $f>0 \Longleftrightarrow u>0$ and one verifies that this makes L an ordered field.
H2. If $v(f)=0$, then $n=0$ and $v(u)=0$, so $u \in C+\mathcal{O}$ and $f \in C+\mathcal{O}_{L}$.
H1. Verify first that $f>C \Longrightarrow f^{\prime}>0$ for $f \in K^{\neq 0} y^{\mathbb{Z}}$.
Also verify that $f<g \Rightarrow f^{\prime}<g^{\prime}$ for $f, g \in K^{\neq 0} y^{\mathbb{Z}}$ with $g \neq 1$.
Now consider $P, Q \in K[Y]$ with $P / Q>0$ and $P>Q$.
For certain i, j, we then have $P(y) \sim P_{i} y^{i}, Q(y) \sim Q_{j} y^{j}, P(y)^{\prime} \sim\left(P_{i} y^{i}\right)^{\prime}, Q(y)^{\prime} \sim\left(Q_{i} y^{j}\right)^{\prime}$.
$\operatorname{Now}(P / Q)^{\prime}>0 \Leftrightarrow P(y)^{\dagger}>Q(y)^{\dagger} \Leftrightarrow\left(P_{i} y^{i}\right)^{\dagger}>\left(Q_{j} y^{j}\right)^{\dagger} \Longleftarrow\left(\left(P_{i} / Q_{j}\right) y^{i-j}\right)^{\dagger}>0$.
Embedding property. We already have the valued field embedding φ with $\varphi(y)=a$. Since $y^{\prime}=a^{\prime}=\ell^{\dagger}$, this embedding preserves ∂.
Given $f \in K(y)^{>0}$, we have $f \sim u y^{n}>0$ for $u \in K^{\neq 0}$ and $n \in \mathbb{N}$. φ preserves valuation $\Rightarrow \varphi$ preserves $\sim \Rightarrow \varphi(y) \sim u a^{n}>0$.

Let K be a real closed H-field with $\Gamma:=\Gamma_{K}$ and let $C:=C_{K}$. Assume that K has asymptotic integration.

Adjoining immediate integrals

Let K be a real closed H-field with $\Gamma:=\Gamma_{K}$ and let $C:=C_{K}$. Assume that K has asymptotic integration.

Lemma

Let $L:=K(y)$, where $y^{\prime}=g \in K \backslash \partial K$. Then there exists a unique ordering on L with $y \neq 1$, for which $L \supseteq K$ is an extension of H-fields. This extension is immediate.
Moreover, if $F \supseteq K$ is another H-field extension and $a \in F$ satisfies $a^{\prime}=g$, then there exists a unique embedding of H-fields $\varphi: L \rightarrow F$ with $\varphi(y)=a$.

Adjoining immediate integrals

Let K be a real closed H-field with $\Gamma:=\Gamma_{K}$ and let $C:=C_{K}$. Assume that K has asymptotic integration.

Lemma

Let $L:=K(y)$, where $y^{\prime}=g \in K \backslash \partial K$. Then there exists a unique ordering on L with $y \neq 1$, for which $L \supseteq K$ is an extension of H-fields. This extension is immediate.
Moreover, if $F \supseteq K$ is another H-field extension and $a \in F$ satisfies $a^{\prime}=g$, then there exists a unique embedding of H-fields $\varphi: L \rightarrow F$ with $\varphi(y)=a$.
Proof. We construct a pc-sequence $\left(y_{\rho}\right)$ that approximates y :

- $y_{0}:=0$.
- $y_{\rho+1}:=y_{\rho}+\delta$, where $\delta^{\prime} \sim g-y_{\rho}^{\prime}$.
- $y_{\lambda}:=$ a pseudo-limit of $\left(y_{\rho}\right)_{\rho<\lambda}$ if it exists.

Adjoining immediate integrals

Let K be a real closed H-field with $\Gamma:=\Gamma_{K}$ and let $C:=C_{K}$. Assume that K has asymptotic integration.

Lemma

Let $L:=K(y)$, where $y^{\prime}=g \in K \backslash \partial K$. Then there exists a unique ordering on L with $y \neq 1$, for which $L \supseteq K$ is an extension of H-fields. This extension is immediate.
Moreover, if $F \supseteq K$ is another H-field extension and $a \in F$ satisfies $a^{\prime}=g$, then there exists a unique embedding of H-fields $\varphi: L \rightarrow F$ with $\varphi(y)=a$.
Proof. We construct a pc-sequence $\left(y_{\rho}\right)$ that approximates y :

- $y_{0}:=0$.
- $y_{\rho+1}:=y_{\rho}+\delta$, where $\delta^{\prime} \sim g-y_{\rho}^{\prime}$.
- $y_{\lambda}:=$ a pseudo-limit of $\left(y_{\rho}\right)_{\rho<\lambda}$ if it exists.
$\left(y_{\rho}\right)$ is divergent of transcendental type (since K is real closed).

Adjoining immediate integrals

Let K be a real closed H-field with $\Gamma:=\Gamma_{K}$ and let $C:=C_{K}$. Assume that K has asymptotic integration.

Lemma

Let $L:=K(y)$, where $y^{\prime}=g \in K \backslash \partial K$. Then there exists a unique ordering on L with $y \neq 1$, for which $L \supseteq K$ is an extension of H-fields. This extension is immediate.
Moreover, if $F \supseteq K$ is another H-field extension and $a \in F$ satisfies $a^{\prime}=g$, then there exists a unique embedding of H-fields $\varphi: L \rightarrow F$ with $\varphi(y)=a$.

Proof. We construct a pc-sequence $\left(y_{\rho}\right)$ that approximates y :

- $y_{0}:=0$.
- $y_{\rho+1}:=y_{\rho}+\delta$, where $\delta^{\prime} \sim g-y_{\rho}^{\prime}$.
- $y_{\lambda}:=$ a pseudo-limit of $\left(y_{\rho}\right)_{\rho<\lambda}$ if it exists.
$\left(y_{\rho}\right)$ is divergent of transcendental type (since K is real closed).
Conclude by Lemma TR-IMM + "routine verifications".

Let K be a real closed H-field with $\Gamma:=\Gamma_{K}$ and let $C:=C_{K}$. Assume that $\gamma \in K^{>0}$ with $\left(\Gamma^{\neq 0}\right)^{\dagger}<v(\gamma)<\left(\Gamma^{>0}\right)^{\prime}$.

Let K be a real closed H-field with $\Gamma:=\Gamma_{K}$ and let $C:=C_{K}$. Assume that $\gamma \in K^{>0}$ with $\left(\Gamma^{\neq 0}\right)^{\dagger}<v(\gamma)<\left(\Gamma^{>0}\right)^{\prime}$.

Lemma

Let $\epsilon \in\{1,-1\}$.
Let $L:=K(y)$ with $y^{\prime}=\gamma$. There is a unique ordering on L with $\in y^{\epsilon}>C$ for which $L \supseteq K$ is an extension of H-fields. We have $C_{L}=C, \Gamma_{L}=\Gamma \oplus \mathbb{Z} v(y), \Gamma^{<0}<\mathbb{Z} v(y),\left(\Gamma_{L}^{\neq 0}\right)^{\dagger} \leqslant v\left(y^{\dagger}\right)$. Moreover, if $F \supseteq K$ is another H-field extension and $a \in F$ satisfies $\epsilon a^{\epsilon}>C$ and $a^{\prime}=\gamma$, then there exists a unique embedding of H-fields $\varphi: L \rightarrow F$ with $\varphi(y)=a$.

Let K be a real closed H-field with $\Gamma:=\Gamma_{K}$ and let $C:=C_{K}$. Assume that $\gamma \in K^{>0}$ with $\left(\Gamma^{\neq 0}\right)^{\dagger}<v(\gamma)<\left(\Gamma^{>0}\right)^{\prime}$.

Lemma

Let $\epsilon \in\{1,-1\}$.
Let $L:=K(y)$ with $y^{\prime}=\gamma$. There is a unique ordering on L with $\epsilon y^{\epsilon}>C$ for which $L \supseteq K$ is an extension of H-fields. We have $C_{L}=C, \Gamma_{L}=\Gamma \oplus \mathbb{Z} v(y), \Gamma^{<0}<\mathbb{Z} v(y),\left(\Gamma_{L}^{\neq 0}\right)^{\dagger} \leqslant v\left(y^{\dagger}\right)$. Moreover, if $F \supseteq K$ is another H-field extension and $a \in F$ satisfies $\in a^{\epsilon}>C$ and $a^{\prime}=\gamma$, then there exists a unique embedding of H-fields $\varphi: L \rightarrow F$ with $\varphi(y)=a$.
Example. $K=\mathbb{T}_{1}^{\mathrm{wb}}, \gamma:=\frac{1}{x \log x \log _{2} x \cdots}$.

Let K be a real closed H-field with $\Gamma:=\Gamma_{K}$ and let $C:=C_{K}$. Assume that $\gamma \in K^{>0}$ with $\left(\Gamma^{\neq 0}\right)^{\dagger}<v(\gamma)<\left(\Gamma^{>0}\right)^{\prime}$.

Lemma

Let $\epsilon \in\{1,-1\}$.
Let $L:=K(y)$ with $y^{\prime}=\gamma$. There is a unique ordering on L with $\in y^{\epsilon}>C$ for which $L \supseteq K$ is an extension of H-fields. We have $C_{L}=C, \Gamma_{L}=\Gamma \oplus \mathbb{Z} v(y), \Gamma^{<0}<\mathbb{Z} v(y),\left(\Gamma_{L}^{\neq 0}\right)^{\dagger} \leqslant v\left(y^{\dagger}\right)$. Moreover, if $F \supseteq K$ is another H-field extension and $a \in F$ satisfies $\in a^{\epsilon}>C$ and $a^{\prime}=\gamma$, then there exists a unique embedding of H-fields $\varphi: L \rightarrow F$ with $\varphi(y)=a$.
Example. $K=\mathbb{T}_{1}^{\mathrm{wb}}, \gamma:=\frac{1}{x \log x \log _{2} x \cdots}$.
$\boldsymbol{\epsilon}=1$. In the "natural" extension of K with $y_{\text {nat }}=\int \gamma$, we have $y_{\text {nat }}>1$.

Let K be a real closed H-field with $\Gamma:=\Gamma_{K}$ and let $C:=C_{K}$. Assume that $\gamma \in K^{>0}$ with $\left(\Gamma^{\neq 0}\right)^{\dagger}<v(\gamma)<\left(\Gamma^{>0}\right)^{\prime}$.

Lemma

Let $\epsilon \in\{1,-1\}$.
Let $L:=K(y)$ with $y^{\prime}=\gamma$. There is a unique ordering on L with $\in y^{\epsilon}>C$ for which $L \supseteq K$ is an extension of H-fields. We have $C_{L}=C, \Gamma_{L}=\Gamma \oplus \mathbb{Z} v(y), \Gamma^{<0}<\mathbb{Z} v(y),\left(\Gamma_{L}^{\neq 0}\right)^{\dagger} \leqslant v\left(y^{+}\right)$. Moreover, if $F \supseteq K$ is another H-field extension and $a \in F$ satisfies $\epsilon a^{\epsilon}>C$ and $a^{\prime}=\gamma$, then there exists a unique embedding of H-fields $\varphi: L \rightarrow F$ with $\varphi(y)=a$.
Example. $K=\mathbb{T}_{1}^{\mathrm{wb}}, \gamma:=\frac{1}{x \log x \log _{2} x \cdots}$.
$\boldsymbol{\epsilon}=1$. In the "natural" extension of K with $y_{\text {nat }}=\int \gamma$, we have $y_{\text {nat }}>1$.
$\boldsymbol{\epsilon}=\boldsymbol{- 1}$. Then $-y_{\text {nat }}^{-1}<1$ satisfies $\left(-y_{\text {nat }}^{-1}\right)^{\prime}=\gamma / y_{\text {nat }}^{2}$.
This "explains" why we may also impose $\int \gamma<1$.

Adjoining immediate exponentials

Let K be a real closed H-field with $\Gamma:=\Gamma_{K}$ and let $C:=C_{K}$. Assume that K has asymptotic integration.

Adjoining immediate exponentials

Let K be a real closed H-field with $\Gamma:=\Gamma_{K}$ and let $C:=C_{K}$. Assume that K has asymptotic integration.

Lemma

Let $L:=K(y)$, where $y^{\dagger}=\varepsilon^{\prime} \in K \backslash\left(K^{\neq}\right)^{\dagger}$ for $\varepsilon<1$. Then there exists a unique ordering on L with $y \neq 1$, for which $L \supseteq K$ is an extension of H-fields. This extension is immediate.
Moreover, if $F \supseteq K$ is another H-field extension and $a \in F$ satisfies $a^{\dagger}=\varepsilon^{\prime}$, then there exists a unique embedding of H-fields $\varphi: L \rightarrow F$ with $\varphi(y)=a$.

Adjoining immediate exponentials

Let K be a real closed H-field with $\Gamma:=\Gamma_{K}$ and let $C:=C_{K}$. Assume that K has asymptotic integration.

Lemma

Let $L:=K(y)$, where $y^{\dagger}=\varepsilon^{\prime} \in K \backslash\left(K^{\neq}\right)^{\dagger}$ for $\varepsilon<1$. Then there exists a unique ordering on L with $y \neq 1$, for which $L \supseteq K$ is an extension of H-fields. This extension is immediate.
Moreover, if $F \supseteq K$ is another H-field extension and $a \in F$ satisfies $a^{\dagger}=\varepsilon^{\prime}$, then there exists a unique embedding of H-fields $\varphi: L \rightarrow F$ with $\varphi(y)=a$.

Proof. Similar as for immediate integration. This time $\left(y_{\rho}\right)$ is as follows:

- $y_{0}:=1$.
- $y_{\rho+1}:=y_{\rho}(1+\delta)$, where $\delta^{\prime} \sim \varepsilon^{\prime}-y_{\rho}^{\dagger}$.
- $y_{\lambda}:=$ a pseudo-limit of $\left(y_{\rho}\right)_{\rho<\lambda}$ if it exists.

Adjoining non-immediate exponential integrals

Let K be an H-field and let $\Gamma:=\Gamma_{K}, C:=C_{K}$.

Adjoining non-immediate exponential integrals

Let K be an H-field and let $\Gamma:=\Gamma_{K}, C:=C_{K}$. For $f, g \in K^{\neq 0}$, we have

$$
f \prec g \Longleftrightarrow f^{\dagger}+\mathscr{O}_{K}^{\prime}<g^{\dagger}+\mathscr{O}_{K}^{\prime} .
$$

Adjoining non-immediate exponential integrals

Let K be an H-field and let $\Gamma:=\Gamma_{K}, C:=C_{K}$. For $f, g \in K^{\neq 0}$, we have

$$
f \prec g \Longleftrightarrow f^{\dagger}+O_{K}^{\prime}<g^{\dagger}+O_{K}^{\prime} .
$$

Hence,

$$
\Gamma \cong\left(K^{\neq 0}\right)^{\dagger} / \approx, \quad f \approx g \Longleftrightarrow f-g \in \mathscr{O}_{K}^{\prime} .
$$

Let K be an H-field and let $\Gamma:=\Gamma_{K}, C:=C_{K}$.
For $f, g \in K^{\neq 0}$, we have

$$
f \prec g \Longleftrightarrow f^{\dagger}+O_{K}^{\prime}<g^{\dagger}+O_{K}^{\prime} .
$$

Hence,

$$
\Gamma \cong\left(K^{\neq 0}\right)^{\dagger} / \approx, \quad f \approx g \Longleftrightarrow f-g \in \mathcal{O}_{K}^{\prime}
$$

But there may be elements of K / \approx that are not in $\left(K^{\neq 0}\right)^{\dagger} / \approx$.

Adjoining non-immediate exponential integrals

Let K be an H-field and let $\Gamma:=\Gamma_{K}, C:=C_{K}$.
For $f, g \in K^{\neq 0}$, we have

$$
f \prec g \Longleftrightarrow f^{\dagger}+\mathscr{O}_{K}^{\prime}<g^{\dagger}+\mathscr{O}_{K}^{\prime} .
$$

Hence,

$$
\Gamma \cong\left(K^{\neq 0}\right)^{\dagger} / \approx, \quad f \approx g \Longleftrightarrow f-g \in \mathcal{O}_{K}^{\prime} .
$$

But there may be elements of K / \approx that are not in $\left(K^{\neq 0}\right)^{\dagger} / \approx$.

Lemma

Assume that Γ is divisible. Let $s \in K^{\neq 0}$ be such that $s-a^{\dagger}>\mathcal{O}_{K}^{\prime}$ for all $a \in K^{\neq 0}$. Consider the differential field $L:=K(y)$ with $y^{\dagger}=s$.
There exists a unique ordering on L for which $L \supseteq K$ is an extension of H-fields with $y>0$. We have $k_{L}=k_{K}, \Gamma_{L}=\Gamma \oplus \mathbb{Z} v(y)$, and ∂_{L} is small whenever ∂_{K} is small.
Moreover, if $F \supseteq K$ is another H-field extension and $a \in F^{>0}$ satisfies $a^{\dagger}=s$, then there exists a unique embedding of H-fields $\varphi: L \rightarrow F$ with $\varphi(y)=a$.

Let K be an H-field and let $\Gamma:=\Gamma_{K}, C:=C_{K}$.

Theorem

For $I=\{1\}$ or $I=\{1,2\}$, there exist Liouville closed H-fields $L_{i} \supseteq K, i \in I$ with the property that for any Liouville closed H-field $F \supseteq K$, there exists a unique $i \in I$ for which L_{i} embeds into F over K, and this embedding is unique. If K contains "no λ element", then $I=\{1\}$.

Let K be an H-field and let $\Gamma:=\Gamma_{K}, C:=C_{K}$.

Theorem

For $I=\{1\}$ or $I=\{1,2\}$, there exist Liouville closed H-fields $L_{i} \supseteq K, i \in I$ with the property that for any Liouville closed H-field $F \supseteq K$, there exists a unique $i \in I$ for which L_{i} embeds into F over K, and this embedding is unique. If K contains "no λ element", then $I=\{1\}$.

Proof sketch. Track the introduction of λ and γ during the extension process.

Let K be an H-field and let $\Gamma:=\Gamma_{K}, C:=C_{K}$.

Theorem

For $I=\{1\}$ or $I=\{1,2\}$, there exist Liouville closed H-fields $L_{i} \supseteq K, i \in I$ with the property that for any Liouville closed H-field $F \supseteq K$, there exists a unique $i \in I$ for which L_{i} embeds into F over K, and this embedding is unique. If K contains "no λ element", then $I=\{1\}$.

Proof sketch. Track the introduction of λ and γ during the extension process.

- We may only introduce γ through exponential integration of λ.

Let K be an H-field and let $\Gamma:=\Gamma_{K}, C:=C_{K}$.

Theorem

For $I=\{1\}$ or $I=\{1,2\}$, there exist Liouville closed H-fields $L_{i} \supseteq K, i \in I$ with the property that for any Liouville closed H-field $F \supseteq K$, there exists a unique $i \in I$ for which L_{i} embeds into F over K, and this embedding is unique. If K contains "no λ element", then $I=\{1\}$.

Proof sketch. Track the introduction of λ and γ during the extension process.

- We may only introduce γ through exponential integration of λ.
- Extensions by $\int \gamma$ are grounded and do not contain λ.

Let K be an H-field and let $\Gamma:=\Gamma_{K}, C:=C_{K}$.

Theorem

For $I=\{1\}$ or $I=\{1,2\}$, there exist Liouville closed H-fields $L_{i} \supseteq K, i \in I$ with the property that for any Liouville closed H-field $F \supseteq K$, there exists a unique $i \in I$ for which L_{i} embeds into F over K, and this embedding is unique. If K contains "no λ element", then $I=\{1\}$.

Proof sketch. Track the introduction of λ and γ during the extension process.

- We may only introduce γ through exponential integration of λ.
- Extensions by $\int \gamma$ are grounded and do not contain λ.
- We cannot introduce λ through integration:

$$
\lambda^{\prime} \approx\left(\frac{1}{x}+\frac{1}{x \log x}+\frac{1}{x \log x \log _{2} x}+\cdots\right)^{\prime}=-\frac{1}{x^{2}}-\frac{1}{x^{2} \log x}-\frac{1}{x \log x \log _{2} x}-\cdots-\frac{1}{x^{2} \log ^{2} x}-\cdots \approx \frac{-\lambda}{x} .
$$

Let K be an H-field and let $\Gamma:=\Gamma_{K}, C:=C_{K}$.

Theorem

For $I=\{1\}$ or $I=\{1,2\}$, there exist Liouville closed H-fields $L_{i} \supseteq K, i \in I$ with the property that for any Liouville closed H-field $F \supseteq K$, there exists a unique $i \in I$ for which L_{i} embeds into F over K, and this embedding is unique. If K contains "no λ element", then $I=\{1\}$.

Proof sketch. Track the introduction of λ and γ during the extension process.

- We may only introduce γ through exponential integration of λ.
- Extensions by $\int \gamma$ are grounded and do not contain λ.
- We cannot introduce λ through integration:

$$
\lambda^{\prime} \approx\left(\frac{1}{x}+\frac{1}{x \log x}+\frac{1}{x \log x \log _{2} x}+\cdots\right)^{\prime}=-\frac{1}{x^{2}}-\frac{1}{x^{2} \log x}-\frac{1}{x \log x \log _{2} x}-\cdots-\frac{1}{x^{2} \log ^{2} x}-\cdots \approx \frac{-\lambda}{x} .
$$

- Similarly, λ cannot be introduced through exponentiation or real closure.

$$
\lambda=x^{\dagger}+(\log x)^{\dagger}+\left(\log _{2} x\right)^{\dagger}+\cdots=\frac{1}{x}+\frac{1}{x \log x}+\frac{1}{x \log x \log _{2} x}+\cdots
$$

$$
\begin{gathered}
\lambda=x^{\dagger}+(\log x)^{\dagger}+\left(\log _{2} x\right)^{\dagger}+\cdots=\frac{1}{x}+\frac{1}{x \log x}+\frac{1}{x \log x \log _{2} x}+\cdots \\
\lambda^{\prime}=\sum_{i \in \mathbb{N}}\left(\frac{1}{x \log x \cdots \log _{i} x}\right)^{\prime}=\sum_{i \in \mathbb{N}} \sum_{j \leqslant i} \frac{-\left(\log _{j} x\right)^{\dagger}}{x \log x \cdots \log _{i} x}=-\sum_{i \in \mathbb{N}} \sum_{j \leqslant i}\left(\log _{i} x\right)^{\dagger}\left(\log _{j} x\right)^{\dagger}
\end{gathered}
$$

$$
\begin{gathered}
\lambda=x^{\dagger}+(\log x)^{\dagger}+\left(\log _{2} x\right)^{\dagger}+\cdots=\frac{1}{x}+\frac{1}{x \log x}+\frac{1}{x \log x \log _{2} x}+\cdots \\
\lambda^{\prime}=\sum_{i \in \mathbb{N}}\left(\frac{1}{x \log x \cdots \log _{i} x}\right)^{\prime}=\sum_{i \in \mathbb{N}} \sum_{j \leqslant i} \frac{-\left(\log _{j} x\right)^{\dagger}}{x \log x \cdots \log _{i} x}=-\sum_{i \in \mathbb{N}} \sum_{j \leqslant i}\left(\log _{i} x\right)^{\dagger}\left(\log _{j} x\right)^{\dagger} \\
\lambda^{2}=\sum_{i \in \mathbb{N}} \sum_{j \in \mathbb{N}}\left(\log _{i} x\right)^{\dagger}\left(\log _{j} x\right)^{+}
\end{gathered}
$$

$$
\begin{gathered}
\lambda=x^{\dagger}+(\log x)^{\dagger}+\left(\log _{2} x\right)^{\dagger}+\cdots=\frac{1}{x}+\frac{1}{x \log _{x}}+\frac{1}{x \log _{x} \log _{2} x}+\cdots \\
\lambda^{\prime}=\sum_{i \in \mathbb{N}}\left(\frac{1}{x \log x \cdots \log _{i} x}\right)^{\prime}=\sum_{i \in \mathbb{N}} \sum_{j \leqslant i} \frac{-\left(\log _{j} x\right)^{\dagger}}{x \log _{x} \cdots \log _{i} x}=-\sum_{i \in \mathbb{N}} \sum_{j \leqslant i}\left(\log _{i} x\right)^{\dagger}\left(\log _{j} x\right)^{\dagger} \\
\lambda^{2}=\sum_{i \in \mathbb{N}} \sum_{j \in \mathbb{N}}\left(\log _{i} x\right)^{\dagger}\left(\log _{j} x\right)^{\dagger} \\
\omega:=-2 \lambda^{\prime}-\lambda^{2}=\sum_{i \in \mathbb{N}}\left(\left(\log _{i} x\right)^{\dagger}\right)^{2}=\frac{1}{x^{2}}+\frac{1}{x^{2} \log ^{2} x}+\frac{1}{x^{2} \log ^{2} x \log _{2}^{2} x}+\cdots
\end{gathered}
$$

$$
\begin{gathered}
\lambda=x^{\dagger}+(\log x)^{\dagger}+\left(\log _{2} x\right)^{\dagger}+\cdots=\frac{1}{x}+\frac{1}{x \log x}+\frac{1}{x \log x \log _{2} x}+\cdots \\
\lambda^{\prime}=\sum_{i \in \mathbb{N}}\left(\frac{1}{x \log x \cdots \log _{i} x}\right)^{\prime}=\sum_{i \in \mathbb{N}} \sum_{j \leqslant i} \frac{-\left(\log _{j} x\right)^{\dagger}}{x \log x \cdots \log _{i} x}=-\sum_{i \in \mathbb{N}} \sum_{j \leqslant i}\left(\log _{i} x\right)^{\dagger}\left(\log _{j} x\right)^{\dagger} \\
\lambda^{2}=\sum_{i \in \mathbb{N}} \sum_{j \in \mathbb{N}}\left(\log _{i} x\right)^{\dagger}\left(\log _{j} x\right)^{\dagger} \\
\omega:=-2 \lambda^{\prime}-\lambda^{2}=\sum_{i \in \mathbb{N}}\left(\left(\log _{i} x\right)^{\dagger}\right)^{2}=\frac{1}{x^{2}}+\frac{1}{x^{2} \log ^{2} x}+\frac{1}{x^{2} \log ^{2} x \log _{2}^{2} x}+\cdots
\end{gathered}
$$

Theorem (Ecalle, ADEI)

For any $P \in \mathbb{R}\{Y\} \backslash \mathbb{R}$, the first ω terms of $\alpha P(\lambda)+\beta$ coincide with λ or ω, for certain $\alpha, \beta \in \mathbb{R}\left(x, \log x, \ldots, \log _{r} x\right)$.
property of $\gamma \quad(\forall \varepsilon<1) \quad \varepsilon^{\prime}<\gamma<\varepsilon^{\dagger}$
property of $\lambda \quad(\forall \varepsilon<1) \quad \lambda+\varepsilon^{++}<\varepsilon^{\dagger}$
property of $\omega \quad(\forall \varepsilon<1) \omega-2\left(\varepsilon^{+\dagger}\right)^{\prime}+\left(\varepsilon^{+\dagger}\right)^{2}<\left(\varepsilon^{\dagger}\right)^{2}$
γ-freeness
λ-freeness
ω-freeness
$(\forall s)(\exists \varepsilon<1) \quad s \preccurlyeq \varepsilon^{\prime} \vee s \geqslant \varepsilon^{\dagger}$
$(\forall s)(\exists \varepsilon<1) s+\varepsilon^{+\dagger} \geqslant \varepsilon^{\dagger}$
($\forall s)(\exists \varepsilon<1) s-2\left(\varepsilon^{+\dagger}\right)^{\prime}+\left(\varepsilon^{+\dagger}\right)^{2} \geqslant\left(\varepsilon^{\dagger}\right)$
ω-freeness $\Longrightarrow \lambda$-freeness $\Longrightarrow \gamma$-freeness

Differential Newton polygon method

We need to generalize:

- Differential Newton polynomials.
- Equalizers.
- Resolution of quasi-linear differential equations.
- Unravelling.

Compositional conjugation

Consider $\delta:=\phi^{-1} \partial$ with $\phi \in K^{>0}$.

Compositional conjugation

Consider $\delta:=\phi^{-1} \partial$ with $\phi \in K^{>0}$.
Any $P \in K\{Y\}$ can be rewritten as a polynomial $P^{\phi} \in K^{\phi}\{Y\}=K\left[Y, \delta Y, \delta^{2} Y, \ldots\right]$:

$$
\begin{aligned}
\partial & =\phi \delta \\
\partial^{2} & =\phi^{2} \delta^{2}+\phi^{\prime} \delta \\
\partial^{3} & =\phi^{3} \delta^{3}+3 \phi \phi^{\prime} \delta^{2}+\phi^{\prime \prime} \delta
\end{aligned}
$$

Compositional conjugation

Consider $\delta:=\phi^{-1} \partial$ with $\phi \in K^{>0}$.
Any $P \in K\{Y\}$ can be rewritten as a polynomial $P^{\phi} \in K^{\phi}\{Y\}=K\left[Y, \delta Y, \delta^{2} Y, \ldots\right]$:

$$
\begin{aligned}
\partial & =\phi \delta \\
\partial^{2} & =\phi^{2} \delta^{2}+\phi^{\prime} \delta \\
\partial^{3} & =\phi^{3} \delta^{3}+3 \phi \phi^{\prime} \delta^{2}+\phi^{\prime \prime} \delta
\end{aligned}
$$

We call P^{ϕ} the compositional conjugate of P by ϕ.

$$
\begin{array}{ccc}
\uparrow & \phi:=\frac{1}{x} & \partial=\phi \delta \\
\uparrow \uparrow & \psi:=\frac{1}{x \log x} & \partial=\psi \theta \\
P=x Y Y^{\prime \prime}-\left(Y^{\prime}\right)^{2} & P=x Y^{\prime \prime}-\left(Y^{\prime}\right)^{2} \\
P \uparrow=\frac{Y Y^{\prime \prime}-Y Y^{\prime}}{\mathrm{e}^{x}}-\frac{\left(Y^{\prime}\right)^{2}}{\mathrm{e}^{2 x}} & P^{\phi}=\frac{Y \delta^{2} Y-Y \delta Y}{x}-\frac{(\delta Y)^{2}}{x^{2}} \\
P \uparrow \uparrow=\frac{Y Y^{\prime \prime}-Y Y^{\prime}}{\mathrm{e}^{\mathrm{e}^{x}+2 x}}-\frac{Y Y^{\prime}}{\mathrm{e}^{\mathrm{e}^{x}+x}}-\frac{\left(Y^{\prime}\right)^{2}}{\mathrm{e}^{2 \mathrm{e}^{x}+2 x}} & P^{\psi}=\frac{Y \theta^{2} Y-Y \theta Y}{x \log ^{2} x}-\frac{Y \theta Y}{x \log x}-\frac{(\theta Y)^{2}}{x^{2} \log ^{2} x}
\end{array}
$$

Differential Newton polynomials

We say that ϕ is active if $\delta:=\phi^{-1} \partial$ is small.

Differential Newton polynomials

We say that ϕ is active if $\delta:=\phi^{-1} \partial$ is small.
A property for $P \in K\{Y\}$ holds eventually \Longleftrightarrow
It holds for P^{ϕ}, for all sufficiently small active ϕ

We say that ϕ is active if $\delta:=\phi^{-1} \partial$ is small.
A property for $P \in K\{Y\}$ holds eventually \Longleftrightarrow
It holds for P^{ϕ}, for all sufficiently small active ϕ
Fix a monomial group $\mathfrak{M} \subseteq K^{\neq 0} \Longrightarrow$ dominant coefficients well-defined.

Differential Newton polynomials

We say that ϕ is active if $\delta:=\phi^{-1} \partial$ is small.
A property for $P \in K\{Y\}$ holds eventually \Longleftrightarrow
It holds for P^{ϕ}, for all sufficiently small active ϕ
Fix a monomial group $\mathfrak{M} \subseteq K^{\neq 0} \Longrightarrow$ dominant coefficients well-defined.

Theorem

Given $P \in K\{Y\}^{\neq 0}$, there exists a unique $N(P) \in C\{Y\}$ with $D\left(P^{\phi}\right)=N(P)$, eventually.

We say that ϕ is active if $\delta:=\phi^{-1} \partial$ is small.
A property for $P \in K\{Y\}$ holds eventually \Longleftrightarrow
It holds for P^{ϕ}, for all sufficiently small active ϕ
Fix a monomial group $\mathfrak{M} \subseteq K^{\neq 0} \Longrightarrow$ dominant coefficients well-defined.

Theorem

Given $P \in K\{Y\}^{\neq 0}$, there exists a unique $N(P) \in C\{Y\}$ with $D\left(P^{\phi}\right)=N(P)$, eventually.

Theorem

If K is ω-free, then $N(P) \in C[Y]\left(Y^{\prime}\right)^{\mathbb{N}}$, for all $P \in K\{Y\}$.

We say that ϕ is active if $\delta:=\phi^{-1} \partial$ is small.
A property for $P \in K\{Y\}$ holds eventually \Longleftrightarrow
It holds for P^{ϕ}, for all sufficiently small active ϕ
Fix a monomial group $\mathfrak{M} \subseteq K^{\neq 0} \Longrightarrow$ dominant coefficients well-defined.

Theorem

Given $P \in K\{Y\}^{\neq 0}$, there exists a unique $N(P) \in C\{Y\}$ with $D\left(P^{\phi}\right)=N(P)$, eventually.

Theorem

If K is ω-free, then $N(P) \in C[Y]\left(Y^{\prime}\right)^{\mathbb{N}}$, for all $P \in K\{Y\}$.

$$
\begin{aligned}
P & =2 Y^{\prime} Y^{\prime \prime \prime}-3\left(Y^{\prime \prime}\right)^{2}-\omega\left(Y^{\prime}\right)^{2} \\
N(P) & =2 Y^{\prime} Y^{\prime \prime \prime}-3\left(Y^{\prime \prime}\right)^{2}
\end{aligned}
$$

Applications of Newton polynomials

(Assuming that K is ω-free)

$$
P(y)=0, \quad y<\mathfrak{v}
$$

$\mathfrak{m}<\mathfrak{v}$ starting monomial for (\star)

$$
N\left(P_{\times m}\right) \notin C Y^{\mathbb{N}}
$$

$\mathfrak{c} \mathfrak{m}<\mathfrak{v}$ starting term for ($*$)
$N\left(P_{x m}\right)(c)=0$

Applications of Newton polynomials

(Assuming that K is ω-free)

$$
\begin{equation*}
P(y)=0, \quad y<\mathfrak{v} \tag{*}
\end{equation*}
$$

$\mathfrak{m}<\mathfrak{v}$ starting monomial for (\star)

$$
N\left(P_{\times m}\right) \notin C Y^{\mathbb{N}}
$$

$\mathfrak{c m}<\mathfrak{v}$ starting term for ($*$)
$N\left(P_{x m}\right)(c)=0$
Newton degree of (\star)

$$
\operatorname{deg}_{<v} P:=\operatorname{val} N\left(P_{x v}\right)
$$

Applications of Newton polynomials

(Assuming that K is ω-free)

$$
\begin{equation*}
P(y)=0, \quad y<\mathfrak{v} \tag{*}
\end{equation*}
$$

$\mathfrak{m}<\mathfrak{v}$ starting monomial for ($*$)

$$
\text { Newton degree of }(\star)
$$

$$
\begin{aligned}
& N\left(P_{\times \mathfrak{m}}\right) \notin C Y^{\mathbb{N}} \\
& N\left(P_{\times \mathfrak{m}}\right)(c)=0 \\
& \operatorname{deg}_{<\mathfrak{v}} P:=\operatorname{val} N\left(P_{\times \mathfrak{v}}\right) \\
& N\left(P_{\times \mathfrak{m}}\right)_{i} \neq 0, \quad \operatorname{deg}_{<\gamma} R_{P_{i}+\mathfrak{m}^{+}}>0
\end{aligned}
$$

\mathfrak{m} differential starting monomial

Applications of Newton polynomials

(Assuming that K is ω-free)

$$
P(y)=0, \quad y<\mathfrak{v}
$$

$\mathfrak{m} \prec \mathfrak{v}$ starting monomial for (\star)
$\mathfrak{c} \mathfrak{m} \prec \mathfrak{v}$ starting term for (\star)
Newton degree of (\star)
\mathfrak{m} differential starting monomial
Usual properties of Newton degree

$$
\begin{aligned}
& N\left(P_{\times \mathfrak{m}}\right) \notin C Y^{\mathbb{N}} \\
& N\left(P_{\times \mathfrak{m}}\right)(c)=0 \\
& \operatorname{deg}_{<\mathfrak{v}} P:=\operatorname{val} N\left(P_{\times \mathfrak{v}}\right) \\
& N\left(P_{\times \mathfrak{m}}\right)_{i} \neq 0, \quad \operatorname{deg}_{<\gamma} R_{P_{i,}, \mathfrak{m}^{+}}>0 \\
& \varphi<\mathfrak{v} \Longrightarrow \operatorname{deg}_{<\mathfrak{v}} P_{+\varphi}=\operatorname{deg}_{<\mathfrak{v}} P \\
& \mathfrak{w}<\mathfrak{v} \Longrightarrow \operatorname{deg}_{<\mathfrak{w}} P \leqslant \operatorname{deg}_{<\mathfrak{v}} P
\end{aligned}
$$

K still ω-free and with a monomial group $\mathfrak{M} \subseteq K^{\neq 0}$.
K still ω-free and with a monomial group $\mathfrak{M} \subseteq K^{\neq 0}$.

Theorem

Let $P, Q \in K\{Y\}^{\neq 0}$ be homogeneous of degrees $i<j$.
Then there exists a unique equalizer $\mathfrak{e} \in \mathfrak{M}$ such that $N\left((P+Q)_{\times e}\right)$ is not homogeneous.
K still ω-free and with a monomial group $\mathfrak{M} \subseteq K^{\neq 0}$.

Theorem

Let $P, Q \in K\{Y\}^{\neq 0}$ be homogeneous of degrees $i<j$.
Then there exists a unique equalizer $\mathfrak{e} \in \mathfrak{M}$ such that $N\left((P+Q)_{\times e}\right)$ is not homogeneous.
Proof. Systematically adopt "eventual" vision.
K still ω-free and with a monomial group $\mathfrak{M} \subseteq K^{\neq 0}$.

Theorem

Let $P, Q \in K\{Y\}^{\neq 0}$ be homogeneous of degrees $i<j$.
Then there exists a unique equalizer $\mathfrak{e} \in \mathfrak{M}$ such that $N\left((P+Q)_{\times e}\right)$ is not homogeneous.
Proof. Systematically adopt "eventual" vision.
As in the transseries case, \mathfrak{e} can be approximated well:

$$
\begin{aligned}
& P \sim a Y^{i-i^{\prime}}\left(Y^{\prime}\right)^{i^{\prime}}=a Y^{i}\left(Y^{+}\right)^{i^{\prime}} \text { and } Q \sim b Y^{j-j^{\prime}}\left(Y^{\prime}\right)^{j^{\prime}}=b Y^{j}\left(Y^{+}\right)^{j^{\prime}} \\
& \mathfrak{e} \approx \mathfrak{e}_{\text {approx }}(P, Q):=\mathfrak{d}\left(\frac{a}{b}\left(a^{+}-b^{+}\right)^{i^{-}-j^{\prime}}\right)^{1 /(j-i)}
\end{aligned}
$$

K still ω-free and with a monomial group $\mathfrak{M} \subseteq K^{\neq 0}$.

Theorem

Let $P, Q \in K\{Y\}^{\neq 0}$ be homogeneous of degrees $i<j$.
Then there exists a unique equalizer $\mathfrak{e} \in \mathfrak{M}$ such that $N\left((P+Q)_{\times e}\right)$ is not homogeneous.
Proof. Systematically adopt "eventual" vision.
As in the transseries case, \mathfrak{e} can be approximated well:

$$
\begin{aligned}
& P \sim a Y^{i-i^{\prime}}\left(Y^{\prime}\right)^{i^{\prime}}=a Y^{i}\left(Y^{+}\right)^{i^{\prime}} \text { and } Q \sim b Y^{j-j^{\prime}}\left(Y^{\prime}\right)^{j^{\prime}}=b Y^{j}\left(Y^{+}\right)^{j^{\prime}} \\
& \mathfrak{e} \approx \mathfrak{e}_{\text {approx }}(P, Q):=\mathfrak{d}\left(\frac{a}{b}\left(a^{+}-b^{+}\right)^{\prime}-j^{\prime}\right)^{1 /(j-i)} \\
& \mathfrak{e}_{0}:=1, \mathfrak{e}_{1}:=\mathfrak{e}_{\text {approx }}\left(P_{\times \mathfrak{e}_{0}} Q_{\times \mathfrak{e}_{0}}\right), \mathfrak{e}_{2}:=\mathfrak{e}_{\text {approx }}\left(P_{\times \mathfrak{c}_{1}} Q_{\times \mathfrak{e}_{1}}\right), \ldots
\end{aligned}
$$

K still ω-free and with a monomial group $\mathfrak{M} \subseteq K^{\neq 0}$.

Theorem

Let $P, Q \in K\{Y\}^{\neq 0}$ be homogeneous of degrees $i<j$.
Then there exists a unique equalizer $\mathfrak{e} \in \mathfrak{M}$ such that $N\left((P+Q)_{\times e}\right)$ is not homogeneous.
Proof. Systematically adopt "eventual" vision.
As in the transseries case, \mathfrak{e} can be approximated well:

$$
\begin{aligned}
& P \sim a Y^{i-i^{\prime}}\left(Y^{\prime}\right)^{i^{\prime}}=a Y^{i}\left(Y^{\dagger}\right)^{i^{\prime}} \text { and } Q \sim b Y^{j-j^{\prime}}\left(Y^{\prime}\right)^{j^{\prime}}=b Y^{j}\left(Y^{\dagger}\right)^{j^{\prime}} \\
& \mathfrak{e} \approx \mathfrak{e}_{\text {approx }}(P, Q):=\mathfrak{d}\left(\frac{a}{b}\left(a^{\dagger}-b^{+}\right)^{i^{\prime}-j^{\prime}}\right)^{1 /(j-i)} \\
& \mathfrak{e}_{0}:=1, \mathfrak{e}_{1}:=\mathfrak{e}_{\text {approx }}\left(P_{\times \mathfrak{e}_{0}} Q_{\times \mathfrak{e}_{0}}\right), \mathfrak{e}_{2}:=\mathfrak{e}_{\text {approx }}\left(P_{\times \mathfrak{e}_{1}} Q_{\mathfrak{e}_{1} 1}\right), \ldots \\
& \mathfrak{e}_{0} / \mathfrak{e} \gg \mathfrak{e}_{1} / \mathfrak{e} \gg \mathfrak{e}_{2} / \mathfrak{e} \ggg \quad(\mathfrak{m} \gg \mathfrak{n} \Leftrightarrow \log \mathfrak{m} \geqq \mathfrak{n})
\end{aligned}
$$

K still ω-free and with a monomial group $\mathfrak{M} \subseteq K^{\neq 0}$.

Theorem

Let $P, Q \in K\{Y\}^{\neq 0}$ be homogeneous of degrees $i<j$.
Then there exists a unique equalizer $\mathfrak{e} \in \mathfrak{M}$ such that $N\left((P+Q)_{\times e}\right)$ is not homogeneous.
Proof. Systematically adopt "eventual" vision.
As in the transseries case, \mathfrak{e} can be approximated well:

$$
\begin{aligned}
& P \sim a Y^{i-i^{\prime}}\left(Y^{\prime}\right)^{i^{\prime}}=a Y^{i}\left(Y^{\dagger}\right)^{i^{\prime}} \text { and } Q \sim b Y^{j-j^{\prime}}\left(Y^{\prime}\right)^{j^{\prime}}=b Y^{j}\left(Y^{\dagger}\right)^{j^{\prime}} \\
& \mathfrak{e} \approx \mathfrak{e}_{\text {approx }}(P, Q):=\mathfrak{d}\left(\frac{a}{b}\left(a^{\dagger}-b^{+}\right)^{i^{\prime}-j^{\prime}}\right)^{1 /(j-i)} \\
& \mathfrak{e}_{0}:=1, \mathfrak{e}_{1}:=\mathfrak{e}_{\text {approx }}\left(P_{\times \mathfrak{e}_{0}} Q_{\times \mathfrak{e}_{0}}\right), \mathfrak{e}_{2}:=\mathfrak{e}_{\text {approx }}\left(P_{\times \mathfrak{e}_{1}} Q_{\mathfrak{e}_{1} 1}\right), \ldots \\
& \mathfrak{e}_{0} / \mathfrak{e} \gg \mathfrak{e}_{1} / \mathfrak{e} \gg \mathfrak{e}_{2} / \mathfrak{e} \ggg \quad(\mathfrak{m} \gg \mathfrak{n} \Leftrightarrow \log \mathfrak{m} \geqq \mathfrak{n})
\end{aligned}
$$

However, this is not good enough for convergence in arbitrary H-fields...

The equalizer theorem - continued proof

One remedy: use transfinite induction.

The equalizer theorem - continued proof

One remedy: use transfinite induction. Or...

One remedy: use transfinite induction. Or...

$$
\begin{array}{ll}
P_{\times e_{0}} \rightarrow P_{\times e_{1}} \rightarrow P_{\times e_{2}} \rightarrow \cdots & Q_{\times \mathrm{c}_{0}} \rightarrow Q_{\times e_{1}} \rightarrow Q_{\times e_{2}} \rightarrow \cdots \\
R_{P,+e_{0}^{+}} \rightarrow R_{P,+c_{1}^{+}} \rightarrow R_{P,+e_{2}^{+}} \rightarrow \cdots & R_{Q,+e_{0}^{+}} \rightarrow Q_{P,+e_{1}^{+}} \rightarrow R_{Q,+e_{2}^{+}} \rightarrow \cdots
\end{array}
$$

The equalizer theorem - continued proof

One remedy: use transfinite induction. Or...

$$
\begin{array}{ll}
P_{\times \mathfrak{e}_{0}} & \rightarrow P_{\times \mathfrak{e}_{1}} \rightarrow P_{\times \mathfrak{e}_{2}} \rightarrow \cdots \\
R_{P,+\mathfrak{e}_{0}^{+}} \rightarrow R_{P,+\mathfrak{e}_{1}^{+}} \rightarrow R_{P,+\mathfrak{e}_{2}^{+}} \rightarrow \cdots & Q_{\times \mathfrak{e}_{0}} \rightarrow Q_{\times \mathfrak{e}_{1}} \rightarrow Q_{\times \mathfrak{e}_{2}} \rightarrow \cdots \\
R_{Q,+\mathfrak{e}_{0}^{+}} \rightarrow Q_{P,+\mathfrak{e}_{1}^{+}} \rightarrow R_{Q,+\mathfrak{e}_{2}^{+}} \rightarrow \cdots
\end{array}
$$

For $k \geqslant 1$, let $d_{k}:=\operatorname{deg}_{\left\langle e_{k}^{+}-e_{k-1}^{+}\right.} R_{P,+e_{k}^{+}}$and $e_{k}:=\operatorname{deg}\left\langle\varepsilon_{k}^{+}-e_{k-1}^{+} R_{P,+e_{k}^{+}}\right.$
We have $d_{1} \geqslant d_{2} \geqslant \cdots$ and $e_{1} \geqslant e_{2} \geqslant \cdots$

The equalizer theorem - continued proof

One remedy: use transfinite induction. Or...

$$
\begin{array}{ll}
P_{\times \mathfrak{e}_{0}} & \rightarrow P_{\times \mathfrak{e}_{1}} \rightarrow P_{\times \mathfrak{e}_{2}} \rightarrow \cdots \\
R_{P,+\mathfrak{e}_{0}^{+}} \rightarrow R_{P,+\mathfrak{e}_{1}^{+}} \rightarrow R_{P,+\mathfrak{e}_{2}^{+}} \rightarrow \cdots & Q_{\times \mathfrak{e}_{0}} \rightarrow Q_{\times \mathfrak{e}_{1}} \rightarrow Q_{\times \mathfrak{e}_{2}} \rightarrow \cdots \\
R_{Q,+\mathfrak{e}_{0}^{+}} \rightarrow Q_{P,+\mathfrak{e}_{1}^{+}} \rightarrow R_{Q,+\mathfrak{e}_{2}^{+}} \rightarrow \cdots
\end{array}
$$

For $k \geqslant 1$, let $d_{k}:=\operatorname{deg}_{\left\langle e_{k}^{+}-e_{k-1}^{+}\right.} R_{P,+e_{k}^{+}}$and $e_{k}:=\operatorname{deg}\left\langle\varepsilon_{k}^{+}-e_{k-1}^{+} R_{P,+e_{k}^{+}}\right.$
We have $d_{1} \geqslant d_{2} \geqslant \cdots$ and $e_{1} \geqslant e_{2} \geqslant \cdots$
We are done whenever $d_{k}=e_{k}=0$

The equalizer theorem - continued proof

One remedy: use transfinite induction. Or...

$$
\begin{array}{ll}
P_{\times e_{0}} \rightarrow P_{\times e_{1}} \rightarrow P_{\times e_{2}} \rightarrow \cdots & Q_{\times e_{0}} \rightarrow Q_{\times e_{1}} \rightarrow Q_{\times e_{2}} \rightarrow \cdots \\
R_{P,+c_{0}^{+}} \rightarrow R_{P,+c_{1}^{+}} \rightarrow R_{P,+c_{2}^{+}} \rightarrow \cdots & R_{Q,+c_{0}^{+}} \rightarrow Q_{P,+c_{1}^{+}} \rightarrow R_{Q,+c_{2}^{+}} \rightarrow \cdots
\end{array}
$$

For $k \geqslant 1$, let $d_{k}:=\operatorname{deg}_{\left\langle c_{k}^{-}-c_{k-1}^{-1}\right.} R_{P,+c_{k}^{+}}$and $e_{k}:=\operatorname{deg}_{\left\langle c_{k}^{+}-c_{k-1}^{t}\right.} R_{P,+c_{k}^{+}}$
We have $d_{1} \geqslant d_{2} \geqslant \cdots$ and $e_{1} \geqslant e_{2} \geqslant \cdots$
We are done whenever $d_{k}=e_{k}=0$
Assume that $d=d_{k}=d_{k+1}, e=e_{k}=e_{k+1}=e_{k+2}$, and $d+e>0$

The equalizer theorem - continued proof

One remedy: use transfinite induction. Or...

$$
\begin{aligned}
& P_{\mathrm{xe}_{0}} \rightarrow P_{\mathrm{xe}_{1}} \rightarrow P_{\mathrm{xe}_{2}} \rightarrow \cdots \quad Q_{x \mathrm{e}_{0}} \rightarrow Q_{\mathrm{xe}_{1}} \rightarrow Q_{\mathrm{xe}_{2}} \rightarrow \cdots \\
& R_{P,+c_{0}^{+}} \rightarrow R_{P,+c_{1}^{+}} \rightarrow R_{P,+c_{2}^{+}} \rightarrow \cdots \quad R_{Q,+c_{0}^{+}} \rightarrow Q_{P,+c_{1}^{+}} \rightarrow R_{Q,+c_{2}^{+}} \rightarrow \cdots
\end{aligned}
$$

For $k \geqslant 1$, let $d_{k}:=\operatorname{deg}_{\left\langle c_{k}^{+}-c_{k-1}^{+}\right.} R_{P,+c_{k}^{+}}$and $e_{k}:=\operatorname{deg}_{\left\langle c_{k}^{t}-c_{k-1}^{t}\right.} R_{P,+c_{k}^{+}}$
We have $d_{1} \geqslant d_{2} \geqslant \cdots$ and $e_{1} \geqslant e_{2} \geqslant \cdots$
We are done whenever $d_{k}=e_{k}=0$
Assume that $d=d_{k}=d_{k+1}, e=e_{k}=e_{k+1}=e_{k+2}$, and $d+e>0$
Then $R_{P,+c_{l}^{t},>d}$ and $R_{Q,+c_{1}^{t},>e}$ are "negligible" for $l \geqslant k+1$

The equalizer theorem - continued proof

One remedy: use transfinite induction. Or...

$$
\begin{aligned}
& P_{x_{e_{0}}} \rightarrow P_{x_{e_{1}}} \rightarrow P_{x_{e_{2}}} \rightarrow \cdots \quad Q_{\times e_{0}} \rightarrow Q_{x_{e_{1}}} \rightarrow Q_{x e_{2}} \rightarrow \cdots \\
& R_{P,+c_{0}^{+}} \rightarrow R_{P,+c_{1}^{+}} \rightarrow R_{P,+c_{2}^{+}} \rightarrow \cdots \quad R_{Q,+c_{0}^{+}} \rightarrow Q_{P,+c_{1}^{+}} \rightarrow R_{Q,+c_{2}^{+}} \rightarrow \cdots
\end{aligned}
$$

For $k \geqslant 1$, let $d_{k}:=\operatorname{deg}_{\left\langle c_{k}^{+}-c_{k-1}^{t}\right.} R_{P,+c_{k}^{+}}$and $e_{k}:=\operatorname{deg}_{\left\langle c_{k}^{t}-c_{k-1}^{t}\right.} R_{P,+c_{k}^{t}}$
We have $d_{1} \geqslant d_{2} \geqslant \cdots$ and $e_{1} \geqslant e_{2} \geqslant \cdots$
We are done whenever $d_{k}=e_{k}=0$
Assume that $d=d_{k}=d_{k+1}, e=e_{k}=e_{k+1}=e_{k+2}$, and $d+e>0$
Then $R_{P,+c_{l}^{t},>d}$ and $R_{Q,+c_{1}^{t},>e}$ are "negligible" for $l \geqslant k+1$
In particular, $R_{P,+\mathrm{c}_{k+2, d}^{+}} \sim R_{P,+\mathrm{c}_{k+1}^{+}, d}$ and $R_{Q,+\mathrm{c}_{k+2}^{+}, d} \sim R_{Q,+\mathrm{c}_{k+1}^{+}, d}$

The equalizer theorem - continued proof

One remedy: use transfinite induction. Or...

$$
\begin{array}{ll}
P_{\times e_{0}} & \rightarrow P_{\times e_{1}} \rightarrow P_{\times e_{2}} \rightarrow \cdots \\
R_{P,+c_{0}^{+}} \rightarrow R_{P,+c_{1}^{+}} \rightarrow R_{P,+e_{2}^{+}} \rightarrow \cdots & Q_{\times e_{0}} \rightarrow Q_{\times e_{1}} \rightarrow Q_{\times e_{2}} \rightarrow \cdots \\
& R_{Q,+e_{0}^{+}} \rightarrow Q_{P,+c_{1}^{+}} \rightarrow R_{Q,+e_{2}^{+}} \rightarrow \cdots
\end{array}
$$

For $k \geqslant 1$, let $d_{k}:=\operatorname{deg}_{\left\langle c_{k}^{+}-c_{k-1}^{+}\right.} R_{P,+c_{k}^{+}}$and $e_{k}:=\operatorname{deg}_{\left\langle c_{k}^{t}-c_{k-1}^{t}\right.} R_{P,+c_{k}^{+}}$
We have $d_{1} \geqslant d_{2} \geqslant \cdots$ and $e_{1} \geqslant e_{2} \geqslant \cdots$
We are done whenever $d_{k}=e_{k}=0$
Assume that $d=d_{k}=d_{k+1}, e=e_{k}=e_{k+1}=e_{k+2}$, and $d+e>0$
Then $R_{P,+c_{l}^{t},>d}$ and $R_{Q,+c_{1}^{+},>e}$ are "negligible" for $l \geqslant k+1$
In particular, $R_{P,+\mathrm{c}_{k+2, d}^{+}} \sim R_{P,+\mathrm{c}_{k+1}^{+}, d}$ and $R_{Q,+\mathrm{c}_{k+2}^{+}, d} \sim R_{Q,+\mathrm{e}_{k+1,}^{+}, d}$
Take $\mathfrak{e}_{k+2}:=\left(\mathfrak{d}\left(R_{P,+\mathfrak{e}_{k+1}^{+}}\right) / \mathfrak{d}\left(R_{Q,+\mathfrak{e}_{k+1}^{+}}\right)\right)^{1 /(j-i)}$ instead of $\mathfrak{e}_{k+2}:=\mathfrak{e}_{\text {approx }}\left(P_{\times \mathfrak{e}_{k+1}} Q_{x_{e_{k+1}}}\right)$
This ensures that $d_{k+2}<d_{k+1}$ or $e_{k+2}<e_{k+1}$.

Quasi-linear equations

Definition

The H-field K is said to be newtonian if every quasi-linear equation has a solution.

Quasi-linear equations

Definition

The H-field K is said to be newtonian if every quasi-linear equation has a solution.

Theorem

Let K be an ungrounded ω-free H-field with divisible Γ and real closed C. Then there exists a newtonian extension $K^{n} \supseteq К$ which embeds over K into any newtonian extension of K. This extension $K^{n} \supseteq K$ is immediate, differentially algebraic, and K^{n} is ω-free. We call it the newtonization of K.

Definition

The H-field K is said to be newtonian if every quasi-linear equation has a solution.

Theorem

Let K be an ungrounded ω-free H-field with divisible Γ and real closed C. Then there exists a newtonian extension $K^{\mathrm{n}} \supseteq K$ which embeds over K into any newtonian extension of K. This extension $K^{\mathrm{n}} \supseteq K$ is immediate, differentially algebraic, and K^{n} is ω-free. We call it the newtonization of K.

Corollary

Let K be an ungrounded ω-free H-field with divisible Γ and real closed C. Then there exists a newtonian Liouville closed extension $K^{\mathrm{nl}} \supseteq K$ which embeds over K into any newtonian Liouville closed extension of K. This extension $K^{\mathrm{nl}} \supseteq K$ is differentially algebraic, ω-free, and we have $C_{K^{n}}=C$. We call K^{nl} the Newton-Liouville closure of K.
K is ω-free, with a divisible monomial group $\mathfrak{M} \subseteq K^{\neq 0}$ and small derivation.
K is ω-free, with a divisible monomial group $\mathfrak{M} \subseteq K^{\neq 0}$ and small derivation.
Theorem
Any asymptotic differential equation over K can be unravelled.
K is ω-free, with a divisible monomial group $\mathfrak{M} \subseteq K^{\neq 0}$ and small derivation.

Theorem

Any asymptotic differential equation over K can be unravelled.
K is asymptotically d-algebraically maximal \Longleftrightarrow
There exists no proper immediate d-algebraic H -field extension of K
K is ω-free, with a divisible monomial group $\mathfrak{M} \subseteq K^{\neq 0}$ and small derivation.

Theorem

Any asymptotic differential equation over K can be unravelled.
K is asymptotically d-algebraically maximal \Longleftrightarrow
There exists no proper immediate d-algebraic H -field extension of K

Corollary

If K is newtonian, then K is asymptotically d-algebraically maximal.

