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A differentialdifferentialdifferential fieldfieldfield is a field K with a derivationderivationderivation ∂:K→K such that, for all a,b∈R,
DDD111... ∂(a+b)=∂a+∂b.
DDD222... ∂(ab)= (∂a)b+a (∂b).
We often write a′≔∂a. The set C=CK≔{c∈K :∂c=0} is a field: the field of constantsconstantsconstants.
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ReparameterizationReparameterizationReparameterization,,, changechangechange ofofof derivationderivationderivation,,, compositionalcompositionalcompositional conjugationconjugationconjugation...
Let K be a differential ring and 𝜑∈K≠0.
Then δ≔𝜙−1∂ is again a derivation on K.
We write K𝜙 for the differential field K but with δ as the derivation.
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A differentialdifferentialdifferential fieldfieldfield is a field K with a derivationderivationderivation ∂:K→K such that, for all a,b∈R,
DDD111... ∂(a+b)=∂a+∂b.
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NoteNoteNote... The set Der(K) of derivations on a field K forms a K-vector space.

ReparameterizationReparameterizationReparameterization,,, changechangechange ofofof derivationderivationderivation,,, compositionalcompositionalcompositional conjugationconjugationconjugation...
Let K be a differential ring and 𝜑∈K≠0.
Then δ≔𝜙−1∂ is again a derivation on K.
We write K𝜙 for the differential field K but with δ as the derivation.
ExampleExampleExample... T with δ≔x∂ is isomorphic to T∘exp with ∂.
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DefinitionDefinitionDefinitionDefinitionDefinition



HHH---fieldsfieldsfields 333///262626

An HHH---fieldfieldfield is an ordered valued field K with a derivation such that
HHH111... y>CK⟹y′>0, for y∈K.
HHH222... 𝒪K=CK+𝒪K.

DefinitionDefinitionDefinitionDefinitionDefinition

NoteNoteNote... For f , g∈Kwith g≭1, these axioms imply f ≺ g⇒ f ′≺ g′ and f ≼ g⇒ f ′≼ g′.
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An HHH---fieldfieldfield is an ordered valued field K with a derivation such that
HHH111... y>CK⟹y′>0, for y∈K.
HHH222... 𝒪K=CK+𝒪K.

DefinitionDefinitionDefinitionDefinitionDefinition

NoteNoteNote... For f , g∈Kwith g≭1, these axioms imply f ≺ g⇒ f ′≺ g′ and f ≼ g⇒ f ′≼ g′.

We say that the derivation on K is smallsmallsmall if 𝜀≺1⟹𝜀′≺1 for any 𝜀≺1.
DefinitionDefinitionDefinitionDefinitionDefinition

NoteNoteNote... The set Der≺(K) of small derivations on K forms a 𝒪K-module.
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• Any Hardy field K⊇R is an H-field.
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HardyHardyHardy fieldsfieldsfields...
• Any Hardy field K⊇R is an H-field.
• More generally: any Hardy field with b∈K≼1⇒lim b∈K.

TransseriesTransseriesTransseries...
• The field T of grid-based transseries is an H-field.
• The field E of exponential grid-based transseries is an H-field.
• Given a “∂-compatible” support type 𝒮,

the field T𝒮 of 𝒮-based transseries of finite logarithmic depth is an H-field.
• Let T0

wb≔Lwb≔R[[𝔏]] and T1
wb≔R[[L≻

wb]].
Then T1

wb is an H-field. It contains γ≔ 1
x log x log2 x ⋅ ⋅ ⋅

.
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HardyHardyHardy fieldsfieldsfields...
• Any Hardy field K⊇R is an H-field.
• More generally: any Hardy field with b∈K≼1⇒lim b∈K.

TransseriesTransseriesTransseries...
• The field T of grid-based transseries is an H-field.
• The field E of exponential grid-based transseries is an H-field.
• Given a “∂-compatible” support type 𝒮,

the field T𝒮 of 𝒮-based transseries of finite logarithmic depth is an H-field.
• Let T0

wb≔Lwb≔R[[𝔏]] and T1
wb≔R[[L≻

wb]].
Then T1

wb is an H-field. It contains γ≔ 1
x log x log2 x ⋅ ⋅ ⋅

.

NoteNoteNote... For each of the above examples, the derivation is small.
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The real closure of any H-field K is again an H-field. If ∂K is small, then so is ∂Krc.
TheoremTheoremTheoremTheoremTheorem
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HHH222... Let y∈Krc with y≼1.
Then P(y)=0 for some P≔D+E with D∈C[Y]≠0 and E∈K[Y]≺1.
Since D(y)≺1 and D splits over Crc=CKrc, we have y∼ c for some c∈CKrc.
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The real closure of any H-field K is again an H-field. If ∂K is small, then so is ∂Krc.
TheoremTheoremTheoremTheoremTheorem

ProofProofProof... Given an H-field K, we already know that Krc is a real closed valued field.
Let P=PdYd+ ⋅ ⋅ ⋅ +P0∈K[Y], y∈Krc with P(y)=0, and ∂P≔ (∂Pd)Yd+ ⋅ ⋅ ⋅ +∂P0.
We must have y′≔−(∂P)(y)/P′(y). This defines a derivation on Krc.
Note that CKrc=Crc.
HHH111... If y∈ (Krc)>C, then yn∼u∈K>C for some n⩾1.
Then (yn)′∼u′, whence y′∼yu†/n>0.
HHH222... Let y∈Krc with y≼1.
Then P(y)=0 for some P≔D+E with D∈C[Y]≠0 and E∈K[Y]≺1.
Since D(y)≺1 and D splits over Crc=CKrc, we have y∼ c for some c∈CKrc.
PreservationPreservationPreservation ofofof smallnesssmallnesssmallness... Exercise. □
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There is a unique map †: Γ≠0→Γ with v(a)†=v(a†) for all a∈K≭1.
We also define 𝛼′≔𝛼+𝛼† for all 𝛼∈Γ≠0.

PropositionPropositionPropositionPropositionProposition

Exactly one of the following situations occurs:
1. (Γ≠0)† has a largest element (we say that K is groundedgroundedgrounded).
2. Γ= (Γ≠0)′ (we say that K has asymptoticasymptoticasymptotic integrationintegrationintegration).
3. Γ= (Γ≠0)†∪{𝛽}∪ (Γ>0)′ with (Γ≠0)†<𝛽< (Γ>0)′ (we say that K has a gapgapgap)

PropositionPropositionPropositionPropositionProposition

1. Example: E, the exponential transseries, max (ΓE≠0)†=v(x−1).
2. Example: T, since any transseries can even be integrated.
3. Example:T1

wb, with 𝛽≔v(γ), γ≔ 1
x log x log2 x ⋅ ⋅ ⋅

. We have 𝜀′≺γ≺𝛿† for any 𝜀,𝛿≺1.
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Consider a formal solution L𝜔 of
L𝜔(log x) = L𝜔(x)−1.
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Consider a formal solution L𝜔 of
L𝜔(log x) = L𝜔(x)−1.

We have L𝜔≻1, but L𝜔≺log l x for all l∈N. Hence,

L𝜔 ∉ T𝛼
wb, for any ordinal 𝛼.

However,
L𝜔′ (log x)

x = L𝜔′ (x),
so

L𝜔′ (x) = 1
x log x log2 x ⋅ ⋅ ⋅

= γ ⊆ T1
wb∖T0

wb.
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Consider a formal solution L𝜔 of
L𝜔(log x) = L𝜔(x)−1.

We have L𝜔≻1, but L𝜔≺log l x for all l∈N. Hence,

L𝜔 ∉ T𝛼
wb, for any ordinal 𝛼.

However,
L𝜔′ (log x)

x = L𝜔′ (x),
so

L𝜔′ (x) = 1
x log x log2 x ⋅ ⋅ ⋅

= γ ⊆ T1
wb∖T0

wb.

Furthermore, T0
wb has asymptotic integration (whence no gap), but

λ ≔ −γ† = 1
x +

1
x log x +

1
x log x log2 x

+ ⋅ ⋅ ⋅ ∈ T0
wb.
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Let K be an H-field with divisible Γ≔ΓK and let C≔CK.
Assume that K is grounded and let ℓ∈K≻1,>0 be such that v(ℓ†) is maximal.
Then δ≔ (ℓ†)−1∂ is a small derivation and Der≺(K)=𝒪Kδ.

Let L≔K(y) with y′= ℓ†. There is a unique ordering on L with y>0 for which L⊇K is
an extension of H-fields. We have CL=C, ΓL=Γ⊕Zv(y), Γ<0<Z>0v(y), (ΓL≠0)†⩽v(y†).
Moreover, if F⊇K is another H-field extension and a∈F>0 satisfies a′ = ℓ†, then there
exists a unique embedding of H-fields 𝜑:L→F with 𝜑(y)=a.

LemmaLemmaLemmaLemmaLemma
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Let K be an H-field with divisible Γ≔ΓK and let C≔CK.
Assume that K is grounded and let ℓ∈K≻1,>0 be such that v(ℓ†) is maximal.
Then δ≔ (ℓ†)−1∂ is a small derivation and Der≺(K)=𝒪Kδ.

Let L≔K(y) with y′= ℓ†. There is a unique ordering on L with y>0 for which L⊇K is
an extension of H-fields. We have CL=C, ΓL=Γ⊕Zv(y), Γ<0<Z>0v(y), (ΓL≠0)†⩽v(y†).
Moreover, if F⊇K is another H-field extension and a∈F>0 satisfies a′ = ℓ†, then there
exists a unique embedding of H-fields 𝜑:L→F with 𝜑(y)=a.

LemmaLemmaLemmaLemmaLemma

ExampleExampleExample... K=E with ℓ=x. Then y′= ℓ†= 1
x , so y∈log x+C, e.g. y=log x.
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Let L≔K(y) with y′=ℓ†. There is a unique ordering on L with y>0 for which L⊇K is an
extension of H-fields. We have CL=C, ΓL=Γ⊕Zv(y), Γ<0<Z>0v(y)<0, (ΓL≠0)†⩽v(y†).
Moreover, if F⊇K is another H-field extension and a∈F>0 satisfies a′ = ℓ†, then there
exists a unique embedding of H-fields 𝜑:L→F with 𝜑(y)=a.

LemmaLemmaLemmaLemmaLemma
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Let L≔K(y) with y′=ℓ†. There is a unique ordering on L with y>0 for which L⊇K is an
extension of H-fields. We have CL=C, ΓL=Γ⊕Zv(y), Γ<0<Z>0v(y)<0, (ΓL≠0)†⩽v(y†).
Moreover, if F⊇K is another H-field extension and a∈F>0 satisfies a′ = ℓ†, then there
exists a unique embedding of H-fields 𝜑:L→F with 𝜑(y)=a.

LemmaLemmaLemmaLemmaLemma

ProofProofProof... We may assume wlog that ∂=δ, whence ℓ†=1 and v(a†)⩽0 for all a∈K≭1.
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Let L≔K(y) with y′=ℓ†. There is a unique ordering on L with y>0 for which L⊇K is an
extension of H-fields. We have CL=C, ΓL=Γ⊕Zv(y), Γ<0<Z>0v(y)<0, (ΓL≠0)†⩽v(y†).
Moreover, if F⊇K is another H-field extension and a∈F>0 satisfies a′ = ℓ†, then there
exists a unique embedding of H-fields 𝜑:L→F with 𝜑(y)=a.

LemmaLemmaLemmaLemmaLemma

ProofProofProof... We may assume wlog that ∂=δ, whence ℓ†=1 and v(a†)⩽0 for all a∈K≭1.
Since y†= ℓ−1≺1, we have Zv(y)∩Γ=∅, so 𝛽≔v(y) lies in a cut over Γ.
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Let L≔K(y) with y′=ℓ†. There is a unique ordering on L with y>0 for which L⊇K is an
extension of H-fields. We have CL=C, ΓL=Γ⊕Zv(y), Γ<0<Z>0v(y)<0, (ΓL≠0)†⩽v(y†).
Moreover, if F⊇K is another H-field extension and a∈F>0 satisfies a′ = ℓ†, then there
exists a unique embedding of H-fields 𝜑:L→F with 𝜑(y)=a.

LemmaLemmaLemmaLemmaLemma

ProofProofProof... We may assume wlog that ∂=δ, whence ℓ†=1 and v(a†)⩽0 for all a∈K≭1.
Since y†= ℓ−1≺1, we have Zv(y)∩Γ=∅, so 𝛽≔v(y) lies in a cut over Γ.
By Lemma TR-VAL from Lesson 8, L has a unique valuation with ΓL=Γ⊕Z𝛽 and
v(y)=𝛽. Moreover, 𝒌L=𝒌K, and for any valued field extension F⊇K and a∈F≠0

with v(a) in the same cut as 𝛽 over K, there exists a unique valued field embedding
𝜑:L→F with 𝜑(y)=a.
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Let L≔K(y) with y′=ℓ†. There is a unique ordering on L with y>0 for which L⊇K is an
extension of H-fields. We have CL=C, ΓL=Γ⊕Zv(y), Γ<0<Z>0v(y)<0, (ΓL≠0)†⩽v(y†).
Moreover, if F⊇K is another H-field extension and a∈F>0 satisfies a′ = ℓ†, then there
exists a unique embedding of H-fields 𝜑:L→F with 𝜑(y)=a.

LemmaLemmaLemmaLemmaLemma

ProofProofProof... We may assume wlog that ∂=δ, whence ℓ†=1 and v(a†)⩽0 for all a∈K≭1.
Since y†= ℓ−1≺1, we have Zv(y)∩Γ=∅, so 𝛽≔v(y) lies in a cut over Γ.
By Lemma TR-VAL from Lesson 8, L has a unique valuation with ΓL=Γ⊕Z𝛽 and
v(y)=𝛽. Moreover, 𝒌L=𝒌K, and for any valued field extension F⊇K and a∈F≠0

with v(a) in the same cut as 𝛽 over K, there exists a unique valued field embedding
𝜑:L→F with 𝜑(y)=a.

ToToTo dododo... Verify that v comes from an ordering that satisfies HHH111 and HHH222.
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Given f∈K(y)≠0, there exist u∈K≠0 and n∈Zwith v( f )=v(u)+n𝛽, whence f∼uyn.
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Given f∈K(y)≠0, there exist u∈K≠0 and n∈Zwith v( f )=v(u)+n𝛽, whence f∼uyn.
We must have f >0⟺u>0 and one verifies that this makes L an ordered field.
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Given f∈K(y)≠0, there exist u∈K≠0 and n∈Zwith v( f )=v(u)+n𝛽, whence f∼uyn.
We must have f >0⟺u>0 and one verifies that this makes L an ordered field.
HHH222... If v( f )=0, then n=0 and v(u)=0, so u∈C+𝒪 and f ∈C+𝒪L.
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Given f∈K(y)≠0, there exist u∈K≠0 and n∈Zwith v( f )=v(u)+n𝛽, whence f∼uyn.
We must have f >0⟺u>0 and one verifies that this makes L an ordered field.
HHH222... If v( f )=0, then n=0 and v(u)=0, so u∈C+𝒪 and f ∈C+𝒪L.
HHH111... Verify first that f >C⟹ f ′>0 for f ∈K≠0yZ.
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Given f∈K(y)≠0, there exist u∈K≠0 and n∈Zwith v( f )=v(u)+n𝛽, whence f∼uyn.
We must have f >0⟺u>0 and one verifies that this makes L an ordered field.
HHH222... If v( f )=0, then n=0 and v(u)=0, so u∈C+𝒪 and f ∈C+𝒪L.
HHH111... Verify first that f >C⟹ f ′>0 for f ∈K≠0yZ.
Also verify that f ≺ g⇒ f ′≺ g′ for f , g∈K≠0yZ with g≭1.
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Given f∈K(y)≠0, there exist u∈K≠0 and n∈Zwith v( f )=v(u)+n𝛽, whence f∼uyn.
We must have f >0⟺u>0 and one verifies that this makes L an ordered field.
HHH222... If v( f )=0, then n=0 and v(u)=0, so u∈C+𝒪 and f ∈C+𝒪L.
HHH111... Verify first that f >C⟹ f ′>0 for f ∈K≠0yZ.
Also verify that f ≺ g⇒ f ′≺ g′ for f , g∈K≠0yZ with g≭1.
Now consider P,Q∈K[Y] with P/Q>0 and P≻Q.
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Given f∈K(y)≠0, there exist u∈K≠0 and n∈Zwith v( f )=v(u)+n𝛽, whence f∼uyn.
We must have f >0⟺u>0 and one verifies that this makes L an ordered field.
HHH222... If v( f )=0, then n=0 and v(u)=0, so u∈C+𝒪 and f ∈C+𝒪L.
HHH111... Verify first that f >C⟹ f ′>0 for f ∈K≠0yZ.
Also verify that f ≺ g⇒ f ′≺ g′ for f , g∈K≠0yZ with g≭1.
Now consider P,Q∈K[Y] with P/Q>0 and P≻Q.
For certain i, j, we then have P(y)∼Piy i, Q(y)∼Qjy j, P(y)′∼ (Piy i)′, Q(y)′∼ (Qiy j)′.
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Given f∈K(y)≠0, there exist u∈K≠0 and n∈Zwith v( f )=v(u)+n𝛽, whence f∼uyn.
We must have f >0⟺u>0 and one verifies that this makes L an ordered field.
HHH222... If v( f )=0, then n=0 and v(u)=0, so u∈C+𝒪 and f ∈C+𝒪L.
HHH111... Verify first that f >C⟹ f ′>0 for f ∈K≠0yZ.
Also verify that f ≺ g⇒ f ′≺ g′ for f , g∈K≠0yZ with g≭1.
Now consider P,Q∈K[Y] with P/Q>0 and P≻Q.
For certain i, j, we then have P(y)∼Piy i, Q(y)∼Qjy j, P(y)′∼ (Piy i)′, Q(y)′∼ (Qiy j)′.
Now (P/Q)′>0⇔P(y)†>Q(y)†⇔ (Piy i)†> (Qjy j)†⟸ ((Pi/Qj)y i− j)†>0.
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Given f∈K(y)≠0, there exist u∈K≠0 and n∈Zwith v( f )=v(u)+n𝛽, whence f∼uyn.
We must have f >0⟺u>0 and one verifies that this makes L an ordered field.
HHH222... If v( f )=0, then n=0 and v(u)=0, so u∈C+𝒪 and f ∈C+𝒪L.
HHH111... Verify first that f >C⟹ f ′>0 for f ∈K≠0yZ.
Also verify that f ≺ g⇒ f ′≺ g′ for f , g∈K≠0yZ with g≭1.
Now consider P,Q∈K[Y] with P/Q>0 and P≻Q.
For certain i, j, we then have P(y)∼Piy i, Q(y)∼Qjy j, P(y)′∼ (Piy i)′, Q(y)′∼ (Qiy j)′.
Now (P/Q)′>0⇔P(y)†>Q(y)†⇔ (Piy i)†> (Qjy j)†⟸ ((Pi/Qj)y i− j)†>0.

EmbeddingEmbeddingEmbedding propertypropertyproperty... We already have the valued field embedding 𝜑with 𝜑(y)=a.
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Given f∈K(y)≠0, there exist u∈K≠0 and n∈Zwith v( f )=v(u)+n𝛽, whence f∼uyn.
We must have f >0⟺u>0 and one verifies that this makes L an ordered field.
HHH222... If v( f )=0, then n=0 and v(u)=0, so u∈C+𝒪 and f ∈C+𝒪L.
HHH111... Verify first that f >C⟹ f ′>0 for f ∈K≠0yZ.
Also verify that f ≺ g⇒ f ′≺ g′ for f , g∈K≠0yZ with g≭1.
Now consider P,Q∈K[Y] with P/Q>0 and P≻Q.
For certain i, j, we then have P(y)∼Piy i, Q(y)∼Qjy j, P(y)′∼ (Piy i)′, Q(y)′∼ (Qiy j)′.
Now (P/Q)′>0⇔P(y)†>Q(y)†⇔ (Piy i)†> (Qjy j)†⟸ ((Pi/Qj)y i− j)†>0.

EmbeddingEmbeddingEmbedding propertypropertyproperty... We already have the valued field embedding 𝜑with 𝜑(y)=a.
Since y′=a′= ℓ†, this embedding preserves ∂.
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Given f∈K(y)≠0, there exist u∈K≠0 and n∈Zwith v( f )=v(u)+n𝛽, whence f∼uyn.
We must have f >0⟺u>0 and one verifies that this makes L an ordered field.
HHH222... If v( f )=0, then n=0 and v(u)=0, so u∈C+𝒪 and f ∈C+𝒪L.
HHH111... Verify first that f >C⟹ f ′>0 for f ∈K≠0yZ.
Also verify that f ≺ g⇒ f ′≺ g′ for f , g∈K≠0yZ with g≭1.
Now consider P,Q∈K[Y] with P/Q>0 and P≻Q.
For certain i, j, we then have P(y)∼Piy i, Q(y)∼Qjy j, P(y)′∼ (Piy i)′, Q(y)′∼ (Qiy j)′.
Now (P/Q)′>0⇔P(y)†>Q(y)†⇔ (Piy i)†> (Qjy j)†⟸ ((Pi/Qj)y i− j)†>0.

EmbeddingEmbeddingEmbedding propertypropertyproperty... We already have the valued field embedding 𝜑with 𝜑(y)=a.
Since y′=a′= ℓ†, this embedding preserves ∂.
Given f ∈K(y)>0, we have f ∼uyn>0 for u∈K≠0 and n∈N.
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Given f∈K(y)≠0, there exist u∈K≠0 and n∈Zwith v( f )=v(u)+n𝛽, whence f∼uyn.
We must have f >0⟺u>0 and one verifies that this makes L an ordered field.
HHH222... If v( f )=0, then n=0 and v(u)=0, so u∈C+𝒪 and f ∈C+𝒪L.
HHH111... Verify first that f >C⟹ f ′>0 for f ∈K≠0yZ.
Also verify that f ≺ g⇒ f ′≺ g′ for f , g∈K≠0yZ with g≭1.
Now consider P,Q∈K[Y] with P/Q>0 and P≻Q.
For certain i, j, we then have P(y)∼Piy i, Q(y)∼Qjy j, P(y)′∼ (Piy i)′, Q(y)′∼ (Qiy j)′.
Now (P/Q)′>0⇔P(y)†>Q(y)†⇔ (Piy i)†> (Qjy j)†⟸ ((Pi/Qj)y i− j)†>0.

EmbeddingEmbeddingEmbedding propertypropertyproperty... We already have the valued field embedding 𝜑with 𝜑(y)=a.
Since y′=a′= ℓ†, this embedding preserves ∂.
Given f ∈K(y)>0, we have f ∼uyn>0 for u∈K≠0 and n∈N.
𝜑 preserves valuation ⇒ 𝜑 preserves ∼ ⇒ 𝜑(y)∼uan>0. □
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Let K be a real closed H-field with Γ≔ΓK and let C≔CK.
Assume that K has asymptotic integration.
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Let K be a real closed H-field with Γ≔ΓK and let C≔CK.
Assume that K has asymptotic integration.

Let L≔K(y), where y′=g∈K∖∂K. Then there exists a unique ordering on L with y≭1,
for which L⊇K is an extension of H-fields. This extension is immediate.
Moreover, if F⊇K is another H-field extension and a∈F satisfies a′=g, then there exists
a unique embedding of H-fields 𝜑:L→F with 𝜑(y)=a.

LemmaLemmaLemmaLemmaLemma
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Let K be a real closed H-field with Γ≔ΓK and let C≔CK.
Assume that K has asymptotic integration.

Let L≔K(y), where y′=g∈K∖∂K. Then there exists a unique ordering on L with y≭1,
for which L⊇K is an extension of H-fields. This extension is immediate.
Moreover, if F⊇K is another H-field extension and a∈F satisfies a′=g, then there exists
a unique embedding of H-fields 𝜑:L→F with 𝜑(y)=a.

LemmaLemmaLemmaLemmaLemma

ProofProofProof... We construct a pc-sequence (y𝜌) that approximates y:
• y0≔0.
• y𝜌+1≔y𝜌+𝛿, where 𝛿′∼ g−y𝜌′.
• y𝜆 ≔ a pseudo-limit of (y𝜌)𝜌<𝜆 if it exists.
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Let K be a real closed H-field with Γ≔ΓK and let C≔CK.
Assume that K has asymptotic integration.

Let L≔K(y), where y′=g∈K∖∂K. Then there exists a unique ordering on L with y≭1,
for which L⊇K is an extension of H-fields. This extension is immediate.
Moreover, if F⊇K is another H-field extension and a∈F satisfies a′=g, then there exists
a unique embedding of H-fields 𝜑:L→F with 𝜑(y)=a.

LemmaLemmaLemmaLemmaLemma

ProofProofProof... We construct a pc-sequence (y𝜌) that approximates y:
• y0≔0.
• y𝜌+1≔y𝜌+𝛿, where 𝛿′∼ g−y𝜌′.
• y𝜆 ≔ a pseudo-limit of (y𝜌)𝜌<𝜆 if it exists.

(y𝜌) is divergent of transcendental type (since K is real closed).



AdjoiningAdjoiningAdjoining immediateimmediateimmediate integralsintegralsintegrals 111111///262626

Let K be a real closed H-field with Γ≔ΓK and let C≔CK.
Assume that K has asymptotic integration.

Let L≔K(y), where y′=g∈K∖∂K. Then there exists a unique ordering on L with y≭1,
for which L⊇K is an extension of H-fields. This extension is immediate.
Moreover, if F⊇K is another H-field extension and a∈F satisfies a′=g, then there exists
a unique embedding of H-fields 𝜑:L→F with 𝜑(y)=a.

LemmaLemmaLemmaLemmaLemma

ProofProofProof... We construct a pc-sequence (y𝜌) that approximates y:
• y0≔0.
• y𝜌+1≔y𝜌+𝛿, where 𝛿′∼ g−y𝜌′.
• y𝜆 ≔ a pseudo-limit of (y𝜌)𝜌<𝜆 if it exists.

(y𝜌) is divergent of transcendental type (since K is real closed).
Conclude by Lemma TR-IMM + “routine verifications”. □
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Let K be a real closed H-field with Γ≔ΓK and let C≔CK.
Assume that γ∈K>0 with (Γ≠0)†<v(γ)< (Γ>0)′.
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Let K be a real closed H-field with Γ≔ΓK and let C≔CK.
Assume that γ∈K>0 with (Γ≠0)†<v(γ)< (Γ>0)′.

Let 𝜖∈{1,−1}.
Let L≔K(y) with y′=γ. There is a unique ordering on L with 𝜖y𝜖>C for which L⊇K
is an extension of H-fields. We have CL=C, ΓL=Γ⊕Zv(y), Γ<0<Zv(y), (ΓL≠0)†⩽v(y†).
Moreover, if F⊇K is another H-field extension and a∈F satisfies 𝜖a𝜖>C and a′=γ, then
there exists a unique embedding of H-fields 𝜑:L→F with 𝜑(y)=a.

LemmaLemmaLemmaLemmaLemma
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Let K be a real closed H-field with Γ≔ΓK and let C≔CK.
Assume that γ∈K>0 with (Γ≠0)†<v(γ)< (Γ>0)′.

Let 𝜖∈{1,−1}.
Let L≔K(y) with y′=γ. There is a unique ordering on L with 𝜖y𝜖>C for which L⊇K
is an extension of H-fields. We have CL=C, ΓL=Γ⊕Zv(y), Γ<0<Zv(y), (ΓL≠0)†⩽v(y†).
Moreover, if F⊇K is another H-field extension and a∈F satisfies 𝜖a𝜖>C and a′=γ, then
there exists a unique embedding of H-fields 𝜑:L→F with 𝜑(y)=a.

LemmaLemmaLemmaLemmaLemma

ExampleExampleExample... K=T1
wb, γ≔ 1

x log x log2 x ⋅ ⋅ ⋅
.
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Let K be a real closed H-field with Γ≔ΓK and let C≔CK.
Assume that γ∈K>0 with (Γ≠0)†<v(γ)< (Γ>0)′.

Let 𝜖∈{1,−1}.
Let L≔K(y) with y′=γ. There is a unique ordering on L with 𝜖y𝜖>C for which L⊇K
is an extension of H-fields. We have CL=C, ΓL=Γ⊕Zv(y), Γ<0<Zv(y), (ΓL≠0)†⩽v(y†).
Moreover, if F⊇K is another H-field extension and a∈F satisfies 𝜖a𝜖>C and a′=γ, then
there exists a unique embedding of H-fields 𝜑:L→F with 𝜑(y)=a.

LemmaLemmaLemmaLemmaLemma

ExampleExampleExample... K=T1
wb, γ≔ 1

x log x log2 x ⋅ ⋅ ⋅
.

ϵϵϵ===111... In the “natural” extension of K with ynat=∫γ, we have ynat≻1.
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Let K be a real closed H-field with Γ≔ΓK and let C≔CK.
Assume that γ∈K>0 with (Γ≠0)†<v(γ)< (Γ>0)′.

Let 𝜖∈{1,−1}.
Let L≔K(y) with y′=γ. There is a unique ordering on L with 𝜖y𝜖>C for which L⊇K
is an extension of H-fields. We have CL=C, ΓL=Γ⊕Zv(y), Γ<0<Zv(y), (ΓL≠0)†⩽v(y†).
Moreover, if F⊇K is another H-field extension and a∈F satisfies 𝜖a𝜖>C and a′=γ, then
there exists a unique embedding of H-fields 𝜑:L→F with 𝜑(y)=a.

LemmaLemmaLemmaLemmaLemma

ExampleExampleExample... K=T1
wb, γ≔ 1

x log x log2 x ⋅ ⋅ ⋅
.

ϵϵϵ===111... In the “natural” extension of K with ynat=∫γ, we have ynat≻1.
ϵϵϵ===−−−111... Then −ynat−1≺1 satisfies (−ynat−1)′=γ/ynat2 .

This “explains” why we may also impose ∫γ≺1.
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Let K be a real closed H-field with Γ≔ΓK and let C≔CK.
Assume that K has asymptotic integration.
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Let K be a real closed H-field with Γ≔ΓK and let C≔CK.
Assume that K has asymptotic integration.

Let L≔K(y), where y†=𝜀′∈K∖(K≠)† for 𝜀≺1. Then there exists a unique ordering on L
with y≭1, for which L⊇K is an extension of H-fields. This extension is immediate.
Moreover, if F⊇K is another H-field extension and a∈F satisfies a†=𝜀′, then there exists
a unique embedding of H-fields 𝜑:L→F with 𝜑(y)=a.

LemmaLemmaLemmaLemmaLemma
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Let K be a real closed H-field with Γ≔ΓK and let C≔CK.
Assume that K has asymptotic integration.

Let L≔K(y), where y†=𝜀′∈K∖(K≠)† for 𝜀≺1. Then there exists a unique ordering on L
with y≭1, for which L⊇K is an extension of H-fields. This extension is immediate.
Moreover, if F⊇K is another H-field extension and a∈F satisfies a†=𝜀′, then there exists
a unique embedding of H-fields 𝜑:L→F with 𝜑(y)=a.

LemmaLemmaLemmaLemmaLemma

ProofProofProof... Similar as for immediate integration. This time (y𝜌) is as follows:
• y0≔1.
• y𝜌+1≔y𝜌 (1+𝛿), where 𝛿′∼𝜀′−y𝜌†.
• y𝜆 ≔ a pseudo-limit of (y𝜌)𝜌<𝜆 if it exists. □
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Let K be an H-field and let Γ≔ΓK, C≔CK.
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Let K be an H-field and let Γ≔ΓK, C≔CK.
For f , g∈K≠0, we have

f ≺ g ⟺ f †+𝒪K′ < g†+𝒪K′ .
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Let K be an H-field and let Γ≔ΓK, C≔CK.
For f , g∈K≠0, we have

f ≺ g ⟺ f †+𝒪K′ < g†+𝒪K′ .
Hence,

Γ ≅ (K≠0)†/≈, f ≈ g ⟺ f − g ∈ 𝒪K′ .
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Let K be an H-field and let Γ≔ΓK, C≔CK.
For f , g∈K≠0, we have

f ≺ g ⟺ f †+𝒪K′ < g†+𝒪K′ .
Hence,

Γ ≅ (K≠0)†/≈, f ≈ g ⟺ f − g ∈ 𝒪K′ .
But there may be elements of K/≈ that are not in (K≠0)†/≈.
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Let K be an H-field and let Γ≔ΓK, C≔CK.
For f , g∈K≠0, we have

f ≺ g ⟺ f †+𝒪K′ < g†+𝒪K′ .
Hence,

Γ ≅ (K≠0)†/≈, f ≈ g ⟺ f − g ∈ 𝒪K′ .
But there may be elements of K/≈ that are not in (K≠0)†/≈.

Assume that Γ is divisible. Let s∈K≠0 be such that s− a†≻𝒪K′ for all a∈K≠0. Consider
the differential field L≔K(y) with y†= s.
There exists a unique ordering on L for which L⊇K is an extension of H-fields with y>0.
We have 𝒌L=𝒌K, ΓL=Γ⊕Zv(y), and ∂L is small whenever ∂K is small.
Moreover, if F⊇K is another H-field extension and a∈F>0 satisfies a†=s, then there exists
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LemmaLemmaLemmaLemmaLemma
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Let K be an H-field and let Γ≔ΓK, C≔CK.

For I={1} or I={1,2}, there exist Liouville closed H-fields Li⊇K, i∈ I with the property
that for any Liouville closed H-field F⊇K, there exists a unique i∈ I for which Li embeds
into F over K, and this embedding is unique. If K contains “no λ element”, then I={1}.

TheoremTheoremTheoremTheoremTheorem
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ProofProofProof sketchsketchsketch... Track the introduction of λ and γ during the extension process.



LiouvilleLiouvilleLiouville closureclosureclosure 151515///262626

Let K be an H-field and let Γ≔ΓK, C≔CK.

For I={1} or I={1,2}, there exist Liouville closed H-fields Li⊇K, i∈ I with the property
that for any Liouville closed H-field F⊇K, there exists a unique i∈ I for which Li embeds
into F over K, and this embedding is unique. If K contains “no λ element”, then I={1}.

TheoremTheoremTheoremTheoremTheorem

ProofProofProof sketchsketchsketch... Track the introduction of λ and γ during the extension process.
• We may only introduce γ through exponential integration of λ.



LiouvilleLiouvilleLiouville closureclosureclosure 151515///262626

Let K be an H-field and let Γ≔ΓK, C≔CK.

For I={1} or I={1,2}, there exist Liouville closed H-fields Li⊇K, i∈ I with the property
that for any Liouville closed H-field F⊇K, there exists a unique i∈ I for which Li embeds
into F over K, and this embedding is unique. If K contains “no λ element”, then I={1}.

TheoremTheoremTheoremTheoremTheorem

ProofProofProof sketchsketchsketch... Track the introduction of λ and γ during the extension process.
• We may only introduce γ through exponential integration of λ.
• Extensions by ∫γ are grounded and do not contain λ.



LiouvilleLiouvilleLiouville closureclosureclosure 151515///262626

Let K be an H-field and let Γ≔ΓK, C≔CK.

For I={1} or I={1,2}, there exist Liouville closed H-fields Li⊇K, i∈ I with the property
that for any Liouville closed H-field F⊇K, there exists a unique i∈ I for which Li embeds
into F over K, and this embedding is unique. If K contains “no λ element”, then I={1}.

TheoremTheoremTheoremTheoremTheorem

ProofProofProof sketchsketchsketch... Track the introduction of λ and γ during the extension process.
• We may only introduce γ through exponential integration of λ.
• Extensions by ∫γ are grounded and do not contain λ.
• We cannot introduce λ through integration:

λ′ ≈ ( 1
x+

1
x log x+

1
x log x log2 x

+⋅⋅⋅)′ = − 1
x2 −

1
x2 log x−

1
x log x log2 x

− ⋅⋅⋅− 1
x2 log2 x− ⋅⋅⋅ ≈ −λ

x .
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• Similarly, λ cannot be introduced through exponentiation or real closure. □
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λ = x†+ (log x)†+ (log2 x)†+ ⋅ ⋅ ⋅ = 1
x +

1
x log x +

1
x log x log2 x

+ ⋅ ⋅ ⋅
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For any P∈R{Y}∖R, the first 𝜔 terms of 𝛼P(λ)+𝛽 coincide with λ or ω, for certain
𝛼,𝛽∈R(x, log x, . . . , logr x).

TheoremTheoremTheoremTheoremTheorem (((((ÉcalleÉcalleÉcalleÉcalleÉcalle,,,,, ADHADHADHADHADH)))))



FirstFirstFirst orderorderorder conditionsconditionsconditions 171717///262626

property of γ (∀𝜀≺1) 𝜀′ ≺ γ ≺ 𝜀†

property of λ (∀𝜀≺1) λ+𝜀†† ≺ 𝜀†

property of ω (∀𝜀≺1) ω−2 (𝜀††)′+ (𝜀††)2 ≺ (𝜀†)2

γγγ---freenessfreenessfreeness (∀s) (∃𝜀≺1) s ≼ 𝜀′ ∨ s ≽ 𝜀†

λλλ---freenessfreenessfreeness (∀s) (∃𝜀≺1) s+𝜀†† ≽ 𝜀†

ωωω---freenessfreenessfreeness (∀s) (∃𝜀≺1) s−2 (𝜀††)′+ (𝜀††)2 ≽ (𝜀†)

ω-freeness ⟹ λ-freeness ⟹ γ-freeness
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We need to generalize:
• Differential Newton polynomials.
• Equalizers.
• Resolution of quasi-linear differential equations.
• Unravelling.
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Consider δ≔𝜙−1∂ with 𝜙∈K>0.

Any P∈K{Y} can be rewritten as a polynomial P𝜙∈K𝜙{Y}=K[Y, δY, δ2Y, . . . ]:
∂ = 𝜙δ
∂2 = 𝜙2δ2+𝜙′δ
∂3 = 𝜙3δ3+3𝜙𝜙′δ2+𝜙′′δ

⋅⋅⋅
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Consider δ≔𝜙−1∂ with 𝜙∈K>0.

Any P∈K{Y} can be rewritten as a polynomial P𝜙∈K𝜙{Y}=K[Y, δY, δ2Y, . . . ]:
∂ = 𝜙δ
∂2 = 𝜙2δ2+𝜙′δ
∂3 = 𝜙3δ3+3𝜙𝜙′δ2+𝜙′′δ

⋅⋅⋅

We call P𝜙 the compositionalcompositionalcompositional conjugateconjugateconjugate of P by 𝜙.
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↑ 𝜙 ≔ 1
x ∂ = 𝜙δ

↑↑ 𝜓 ≔ 1
x log x ∂ = 𝜓θ

P = xYY′′− (Y′)2 P = xY′′− (Y′)2

P↑ = YY′′−YY′
ex − (Y′)2

e2x P𝜙 = Yδ2Y−YδY
x − (δY)2

x2

P↑↑ = YY′′−YY′
eex+2x − YY′

eex+x −
(Y′)2
e2ex+2x P𝜓 = Yθ2Y−YθY

x log2 x − YθY
x log x −

(θY)2
x2 log2 x
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We say that 𝜙 is activeactiveactive if δ≔𝜙−1∂ is small.

A property for P∈K{Y} holds eventuallyeventuallyeventually ⟺
It holds for P𝜙, for all sufficiently small active 𝜙
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Fix a monomial group 𝔐⊆K≠0 ⟹ dominant coefficients well-defined.
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We say that 𝜙 is activeactiveactive if δ≔𝜙−1∂ is small.

A property for P∈K{Y} holds eventuallyeventuallyeventually ⟺
It holds for P𝜙, for all sufficiently small active 𝜙

Fix a monomial group 𝔐⊆K≠0 ⟹ dominant coefficients well-defined.

Given P∈K{Y}≠0, there exists a unique N(P)∈C{Y} with D(P𝜙)=N(P), eventually.
TheoremTheoremTheoremTheoremTheorem
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We say that 𝜙 is activeactiveactive if δ≔𝜙−1∂ is small.

A property for P∈K{Y} holds eventuallyeventuallyeventually ⟺
It holds for P𝜙, for all sufficiently small active 𝜙

Fix a monomial group 𝔐⊆K≠0 ⟹ dominant coefficients well-defined.

Given P∈K{Y}≠0, there exists a unique N(P)∈C{Y} with D(P𝜙)=N(P), eventually.
TheoremTheoremTheoremTheoremTheorem

If K is ω-free, then N(P)∈C[Y] (Y′)N, for all P∈K{Y}.
TheoremTheoremTheoremTheoremTheorem
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We say that 𝜙 is activeactiveactive if δ≔𝜙−1∂ is small.

A property for P∈K{Y} holds eventuallyeventuallyeventually ⟺
It holds for P𝜙, for all sufficiently small active 𝜙

Fix a monomial group 𝔐⊆K≠0 ⟹ dominant coefficients well-defined.

Given P∈K{Y}≠0, there exists a unique N(P)∈C{Y} with D(P𝜙)=N(P), eventually.
TheoremTheoremTheoremTheoremTheorem

If K is ω-free, then N(P)∈C[Y] (Y′)N, for all P∈K{Y}.
TheoremTheoremTheoremTheoremTheorem

P = 2Y′Y′′′−3 (Y′′)2−ω (Y′)2

N(P) = 2Y′Y′′′−3 (Y′′)2



ApplicationsApplicationsApplications ofofof NewtonNewtonNewton polynomialspolynomialspolynomials 222222///262626

(Assuming that K is ω-free)

P(y) = 0, y≺𝔳 (⋆)

𝔪≺𝔳 starting monomial for (⋆) N(P×𝔪)∉CYN

c𝔪≺𝔳 starting term for (⋆) N(P×𝔪)(c)=0
Newton degree of (⋆) deg≺𝔳 P≔valN(P×𝔳)
𝔪 differential starting monomial N(P×𝔪)i≠0, deg≺γRPi,+𝔪†>0
Usual properties of Newton degree 𝜑≺𝔳 ⟹ deg≺𝔳 P+𝜑=deg≺𝔳 P

𝔴≺𝔳 ⟹ deg≺𝔴 P⩽deg≺𝔳 P
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K still ω-free and with a monomial group 𝔐⊆K≠0.

Let P,Q∈K{Y}≠0 be homogeneous of degrees i< j.
Then there exists a unique equalizer 𝔢∈𝔐 such that N((P+Q)×𝔢) is not homogeneous.

TheoremTheoremTheoremTheoremTheorem



TheTheThe equalizerequalizerequalizer theoremtheoremtheorem 232323///262626

K still ω-free and with a monomial group 𝔐⊆K≠0.

Let P,Q∈K{Y}≠0 be homogeneous of degrees i< j.
Then there exists a unique equalizer 𝔢∈𝔐 such that N((P+Q)×𝔢) is not homogeneous.

TheoremTheoremTheoremTheoremTheorem

ProofProofProof... Systematically adopt “eventual” vision.



TheTheThe equalizerequalizerequalizer theoremtheoremtheorem 232323///262626

K still ω-free and with a monomial group 𝔐⊆K≠0.

Let P,Q∈K{Y}≠0 be homogeneous of degrees i< j.
Then there exists a unique equalizer 𝔢∈𝔐 such that N((P+Q)×𝔢) is not homogeneous.
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𝔢≈𝔢approx(P,Q)≔𝔡( ab (a†−b†)i′− j′)1/( j−i)
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Let P,Q∈K{Y}≠0 be homogeneous of degrees i< j.
Then there exists a unique equalizer 𝔢∈𝔐 such that N((P+Q)×𝔢) is not homogeneous.

TheoremTheoremTheoremTheoremTheorem

ProofProofProof... Systematically adopt “eventual” vision.
As in the transseries case, 𝔢 can be approximated well:
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However, this is not good enough for convergence in arbitrary H-fields.. .
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One remedy: use transfinite induction. Or.. .

P×𝔢0 → P×𝔢1 → P×𝔢2 → ⋅ ⋅ ⋅
RP,+𝔢0† → RP,+𝔢1† → RP,+𝔢2† → ⋅ ⋅ ⋅

Q×𝔢0 → Q×𝔢1 → Q×𝔢2 → ⋅ ⋅ ⋅
RQ,+𝔢0† → QP,+𝔢1† → RQ,+𝔢2† → ⋅ ⋅ ⋅
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RP,+𝔢0† → RP,+𝔢1† → RP,+𝔢2† → ⋅ ⋅ ⋅

Q×𝔢0 → Q×𝔢1 → Q×𝔢2 → ⋅ ⋅ ⋅
RQ,+𝔢0† → QP,+𝔢1† → RQ,+𝔢2† → ⋅ ⋅ ⋅

For k⩾1, let dk≔deg≺𝔢k†−𝔢k−1
† RP,+𝔢k† and ek≔deg≺𝔢k†−𝔢k−1

† RP,+𝔢k†

We have d1⩾d2⩾ ⋅ ⋅ ⋅ and e1⩾ e2⩾ ⋅ ⋅ ⋅



TheTheThe equalizerequalizerequalizer theoremtheoremtheorem——— continuedcontinuedcontinued proofproofproof 242424///262626

One remedy: use transfinite induction. Or.. .

P×𝔢0 → P×𝔢1 → P×𝔢2 → ⋅ ⋅ ⋅
RP,+𝔢0† → RP,+𝔢1† → RP,+𝔢2† → ⋅ ⋅ ⋅

Q×𝔢0 → Q×𝔢1 → Q×𝔢2 → ⋅ ⋅ ⋅
RQ,+𝔢0† → QP,+𝔢1† → RQ,+𝔢2† → ⋅ ⋅ ⋅

For k⩾1, let dk≔deg≺𝔢k†−𝔢k−1
† RP,+𝔢k† and ek≔deg≺𝔢k†−𝔢k−1

† RP,+𝔢k†

We have d1⩾d2⩾ ⋅ ⋅ ⋅ and e1⩾ e2⩾ ⋅ ⋅ ⋅
We are done whenever dk= ek=0
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Q×𝔢0 → Q×𝔢1 → Q×𝔢2 → ⋅ ⋅ ⋅
RQ,+𝔢0† → QP,+𝔢1† → RQ,+𝔢2† → ⋅ ⋅ ⋅

For k⩾1, let dk≔deg≺𝔢k†−𝔢k−1
† RP,+𝔢k† and ek≔deg≺𝔢k†−𝔢k−1

† RP,+𝔢k†

We have d1⩾d2⩾ ⋅ ⋅ ⋅ and e1⩾ e2⩾ ⋅ ⋅ ⋅
We are done whenever dk= ek=0
Assume that d=dk=dk+1, e= ek= ek+1= ek+2, and d+ e>0
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One remedy: use transfinite induction. Or.. .
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For k⩾1, let dk≔deg≺𝔢k†−𝔢k−1
† RP,+𝔢k† and ek≔deg≺𝔢k†−𝔢k−1

† RP,+𝔢k†

We have d1⩾d2⩾ ⋅ ⋅ ⋅ and e1⩾ e2⩾ ⋅ ⋅ ⋅
We are done whenever dk= ek=0
Assume that d=dk=dk+1, e= ek= ek+1= ek+2, and d+ e>0
Then RP,+𝔢l†,>d and RQ,+𝔢l†,>e are “negligible” for l⩾k+1
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One remedy: use transfinite induction. Or.. .

P×𝔢0 → P×𝔢1 → P×𝔢2 → ⋅ ⋅ ⋅
RP,+𝔢0† → RP,+𝔢1† → RP,+𝔢2† → ⋅ ⋅ ⋅

Q×𝔢0 → Q×𝔢1 → Q×𝔢2 → ⋅ ⋅ ⋅
RQ,+𝔢0† → QP,+𝔢1† → RQ,+𝔢2† → ⋅ ⋅ ⋅

For k⩾1, let dk≔deg≺𝔢k†−𝔢k−1
† RP,+𝔢k† and ek≔deg≺𝔢k†−𝔢k−1

† RP,+𝔢k†

We have d1⩾d2⩾ ⋅ ⋅ ⋅ and e1⩾ e2⩾ ⋅ ⋅ ⋅
We are done whenever dk= ek=0
Assume that d=dk=dk+1, e= ek= ek+1= ek+2, and d+ e>0
Then RP,+𝔢l†,>d and RQ,+𝔢l†,>e are “negligible” for l⩾k+1
In particular, RP,+𝔢k+2

† ,d∼RP,+𝔢k+1
† ,d and RQ,+𝔢k+2

† ,d∼RQ,+𝔢k+1
† ,d
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One remedy: use transfinite induction. Or.. .

P×𝔢0 → P×𝔢1 → P×𝔢2 → ⋅ ⋅ ⋅
RP,+𝔢0† → RP,+𝔢1† → RP,+𝔢2† → ⋅ ⋅ ⋅

Q×𝔢0 → Q×𝔢1 → Q×𝔢2 → ⋅ ⋅ ⋅
RQ,+𝔢0† → QP,+𝔢1† → RQ,+𝔢2† → ⋅ ⋅ ⋅

For k⩾1, let dk≔deg≺𝔢k†−𝔢k−1
† RP,+𝔢k† and ek≔deg≺𝔢k†−𝔢k−1

† RP,+𝔢k†

We have d1⩾d2⩾ ⋅ ⋅ ⋅ and e1⩾ e2⩾ ⋅ ⋅ ⋅
We are done whenever dk= ek=0
Assume that d=dk=dk+1, e= ek= ek+1= ek+2, and d+ e>0
Then RP,+𝔢l†,>d and RQ,+𝔢l†,>e are “negligible” for l⩾k+1
In particular, RP,+𝔢k+2

† ,d∼RP,+𝔢k+1
† ,d and RQ,+𝔢k+2

† ,d∼RQ,+𝔢k+1
† ,d

Take 𝔢k+2≔ (𝔡(RP,+𝔢k+1
† )/𝔡(RQ,+𝔢k+1

† ))1/( j−i) instead of 𝔢k+2≔𝔢approx(P×𝔢k+1,Q×𝔢k+1)
This ensures that dk+2<dk+1 or ek+2< ek+1. □
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The H-field K is said to be newtoniannewtoniannewtonian if every quasi-linear equation has a solution.
DefinitionDefinitionDefinitionDefinitionDefinition

Let K be an ungrounded ω-free H-field with divisible Γ and real closed C. Then there
exists a newtonian extension Kn⊇K which embeds over K into any newtonian exten-
sion of K. This extension Kn⊇K is immediate, differentially algebraic, and Kn is ω-free.
We call it the newtonizationnewtonizationnewtonization of K.

TheoremTheoremTheoremTheoremTheorem

Let K be an ungrounded ω-free H-field with divisible Γ and real closed C. Then there
exists a newtonian Liouville closed extension Knl⊇K which embeds over K into any new-
tonian Liouville closed extension of K. This extension Knl⊇K is differentially algebraic,
ω-free, and we have CKnl=C. We call Knl the NewtonNewtonNewton---LiouvilleLiouvilleLiouville closureclosureclosure of K.

CorollaryCorollaryCorollaryCorollaryCorollary
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K is asymptoticallyasymptoticallyasymptotically ddd---algebraicallyalgebraicallyalgebraically maximalmaximalmaximal ⟺
There exists no proper immediate d-algebraic H-field extension of K
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K is ω-free, with a divisible monomial group 𝔐⊆K≠0 and small derivation.

Any asymptotic differential equation over K can be unravelled.
TheoremTheoremTheoremTheoremTheorem

K is asymptoticallyasymptoticallyasymptotically ddd---algebraicallyalgebraicallyalgebraically maximalmaximalmaximal ⟺
There exists no proper immediate d-algebraic H-field extension of K

If K is newtonian, then K is asymptotically d-algebraically maximal.
CorollaryCorollaryCorollaryCorollaryCorollary
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