Lesson 9 — H-fields

Joris van der Hoeven

IMS summer school Singapore, July 14, 2023

Definition

A differential field is a field K with a derivation $\partial: K \to K$ such that, for all $a, b \in R$,

- **D1.** $\partial(a+b) = \partial a + \partial b$.
- **D2.** $\partial(ab) = (\partial a)b + a(\partial b).$

We often write $a' := \partial a$ *. The set* $C = C_K := \{c \in K : \partial c = 0\}$ *is a field: the field of* **constants***.*

Definition

A differential field is a field *K* with a derivation $\partial: K \to K$ such that, for all $a, b \in R$, **D1.** $\partial(a+b) = \partial a + \partial b$.

D2. $\partial(ab) = (\partial a)b + a(\partial b).$

We often write $a' := \partial a$. *The set* $C = C_K := \{c \in K : \partial c = 0\}$ *is a field: the field of* **constants**.

Note. The set Der(K) of derivations on a field *K* forms a *K*-vector space.

Definition

A differential field is a field K with a derivation $\partial: K \to K$ such that, for all $a, b \in R$, **D1.** $\partial(a+b) = \partial a + \partial b$.

D2. $\partial(ab) = (\partial a)b + a(\partial b).$

We often write $a' := \partial a$. *The set* $C = C_K := \{c \in K : \partial c = 0\}$ *is a field: the field of* **constants**.

Note. The set Der(*K*) of derivations on a field *K* forms a *K*-vector space.

Reparameterization, change of derivation, compositional conjugation. Let *K* be a differential ring and $\varphi \in K^{\neq 0}$. Then $\delta := \phi^{-1} \partial$ is again a derivation on *K*. We write K^{ϕ} for the differential field *K* but with δ as the derivation.

Definition

A differential field is a field K with a derivation $\partial: K \to K$ such that, for all $a, b \in R$, **D1.** $\partial(a+b) = \partial a + \partial b$.

D2. $\partial(ab) = (\partial a)b + a(\partial b).$

We often write $a' := \partial a$. *The set* $C = C_K := \{c \in K : \partial c = 0\}$ *is a field: the field of* **constants**.

Note. The set Der(*K*) of derivations on a field *K* forms a *K*-vector space.

Reparameterization, change of derivation, compositional conjugation. Let *K* be a differential ring and $\varphi \in K^{\neq 0}$. Then $\delta := \phi^{-1} \partial$ is again a derivation on *K*. We write K^{ϕ} for the differential field *K* but with δ as the derivation.

Example. \mathbb{T} with $\delta := x \partial$ is isomorphic to $\mathbb{T} \circ \exp$ with ∂ .

Definition

An *H-field* is an ordered valued field K with a derivation such that

- **H1.** $y > C_K \Longrightarrow y' > 0$, for $y \in K$.
- **H2.** $\mathcal{O}_K = C_K + \mathcal{O}_K$.

Definition

An *H-field* is an ordered valued field K with a derivation such that

H1.
$$y > C_K \Longrightarrow y' > 0$$
, for $y \in K$.

H2. $\mathcal{O}_K = C_K + \mathcal{O}_K$.

Note. For $f,g \in K$ with $g \neq 1$, these axioms imply $f \prec g \Rightarrow f' \prec g'$ and $f \preccurlyeq g \Rightarrow f' \preccurlyeq g'$.

Definition

An *H-field* is an ordered valued field K with a derivation such that

H1.
$$y > C_K \Longrightarrow y' > 0$$
, for $y \in K$.
H2. $\mathcal{O}_K = C_K + \mathcal{O}_K$.

Note. For $f,g \in K$ with $g \neq 1$, these axioms imply $f \prec g \Rightarrow f' \prec g'$ and $f \preccurlyeq g \Rightarrow f' \preccurlyeq g'$.

Definition

*We say that the derivation on K is small**if* $\varepsilon < 1 \Longrightarrow \varepsilon' < 1$ *for any* $\varepsilon < 1$ *.*

Definition

An **H-field** is an ordered valued field K with a derivation such that

H1.
$$y > C_K \Longrightarrow y' > 0$$
, for $y \in K$.
H2. $\mathcal{O}_K = C_K + \mathcal{O}_K$.

Note. For $f,g \in K$ with $g \neq 1$, these axioms imply $f \prec g \Rightarrow f' \prec g'$ and $f \preccurlyeq g \Rightarrow f' \preccurlyeq g'$.

Definition

*We say that the derivation on K is small**if* $\varepsilon < 1 \Longrightarrow \varepsilon' < 1$ *for any* $\varepsilon < 1$ *.*

Note. The set $\text{Der}_{\prec}(K)$ of small derivations on *K* forms a \mathcal{O}_K -module.

• Any Hardy field $K \supseteq \mathbb{R}$ is an H-field.

- Any Hardy field $K \supseteq \mathbb{R}$ is an H-field.
- More generally: any Hardy field with $b \in K^{\leq 1} \Rightarrow \lim b \in K$.

- Any Hardy field $K \supseteq \mathbb{R}$ is an H-field.
- More generally: any Hardy field with $b \in K^{\leq 1} \Rightarrow \lim b \in K$.

Transseries.

• The field $\mathbb T$ of grid-based transseries is an H-field.

- Any Hardy field $K \supseteq \mathbb{R}$ is an H-field.
- More generally: any Hardy field with $b \in K^{\leq 1} \Rightarrow \lim b \in K$.

Transseries.

- The field \mathbb{T} of grid-based transseries is an H-field.
- The field $\mathbb E$ of exponential grid-based transseries is an H-field.

Examples

Hardy fields.

- Any Hardy field $K \supseteq \mathbb{R}$ is an H-field.
- More generally: any Hardy field with $b \in K^{\leq 1} \Rightarrow \lim b \in K$.

Transseries.

- The field \mathbb{T} of grid-based transseries is an H-field.
- The field \mathbb{E} of exponential grid-based transseries is an H-field.
- Given a "∂-compatible" support type *𝔅*, the field 𝔽_𝔅 of 𝔅-based transseries of finite logarithmic depth is an H-field.

Examples

Hardy fields.

- Any Hardy field $K \supseteq \mathbb{R}$ is an H-field.
- More generally: any Hardy field with $b \in K^{\leq 1} \Rightarrow \lim b \in K$.

Transseries.

- The field $\mathbb T$ of grid-based transseries is an H-field.
- The field \mathbb{E} of exponential grid-based transseries is an H-field.
- Given a "∂-compatible" support type *S*,
 the field T_S of *S*-based transseries of finite logarithmic depth is an H-field.
- Let $\mathbb{T}_0^{wb} := \mathbb{L}^{wb} := \mathbb{R}[[\mathfrak{L}]]$ and $\mathbb{T}_1^{wb} := \mathbb{R}[[\mathbb{L}_{>}^{wb}]].$

Then \mathbb{T}_1^{wb} is an H-field. It contains $\gamma := \frac{1}{x \log x \log_2 x \cdots}$.

Examples

Hardy fields.

- Any Hardy field $K \supseteq \mathbb{R}$ is an H-field.
- More generally: any Hardy field with $b \in K^{\leq 1} \Rightarrow \lim b \in K$.

Transseries.

- The field $\mathbb T$ of grid-based transseries is an H-field.
- The field \mathbb{E} of exponential grid-based transseries is an H-field.
- Given a "∂-compatible" support type *S*,
 the field T_S of *S*-based transseries of finite logarithmic depth is an H-field.
- Let $\mathbb{T}_0^{wb} := \mathbb{L}^{wb} := \mathbb{R}[[\mathfrak{L}]]$ and $\mathbb{T}_1^{wb} := \mathbb{R}[[\mathbb{L}_{>}^{wb}]]$.

Then \mathbb{T}_1^{wb} is an H-field. It contains $\gamma := \frac{1}{x \log x \log_2 x \cdots}$.

Note. For each of the above examples, the derivation is small.

Theorem

The real closure of any H-*field K is again an H*-*field. If* ∂_K *is small, then so is* $\partial_{K^{rc}}$.

Theorem

The real closure of any H-*field K is again an H*-*field. If* ∂_K *is small, then so is* $\partial_{K^{rc}}$ *.*

Proof. Given an H-field *K*, we already know that K^{rc} is a real closed valued field.

Theorem

The real closure of any H-*field K is again an H*-*field. If* ∂_K *is small, then so is* $\partial_{K^{rc}}$.

Proof. Given an H-field *K*, we already know that K^{rc} is a real closed valued field. Let $P = P_d Y^d + \dots + P_0 \in K[Y]$, $y \in K^{rc}$ with P(y) = 0, and $\partial P := (\partial P_d) Y^d + \dots + \partial P_0$.

Theorem

The real closure of any H-*field K is again an H*-*field. If* ∂_K *is small, then so is* $\partial_{K^{rc}}$.

Proof. Given an H-field *K*, we already know that K^{rc} is a real closed valued field. Let $P = P_d Y^d + \cdots + P_0 \in K[Y]$, $y \in K^{rc}$ with P(y) = 0, and $\partial P := (\partial P_d) Y^d + \cdots + \partial P_0$. We must have $y' := -(\partial P)(y) / P'(y)$. This defines a derivation on K^{rc} .

Theorem

The real closure of any H-*field K is again an H*-*field. If* ∂_K *is small, then so is* $\partial_{K^{rc}}$.

Proof. Given an H-field *K*, we already know that K^{rc} is a real closed valued field. Let $P = P_d Y^d + \cdots + P_0 \in K[Y]$, $y \in K^{rc}$ with P(y) = 0, and $\partial P := (\partial P_d) Y^d + \cdots + \partial P_0$. We must have $y' := -(\partial P)(y)/P'(y)$. This defines a derivation on K^{rc} . Note that $C_{K^{rc}} = C^{rc}$.

Theorem

The real closure of any H-*field K is again an H*-*field. If* ∂_K *is small, then so is* $\partial_{K^{rc}}$ *.*

Proof. Given an H-field *K*, we already know that K^{rc} is a real closed valued field. Let $P = P_d Y^d + \cdots + P_0 \in K[Y]$, $y \in K^{rc}$ with P(y) = 0, and $\partial P := (\partial P_d) Y^d + \cdots + \partial P_0$. We must have $y' := -(\partial P)(y)/P'(y)$. This defines a derivation on K^{rc} . Note that $C_{K^{rc}} = C^{rc}$.

H1. If $y \in (K^{\text{rc}})^{>C}$, then $y^n \sim u \in K^{>C}$ for some $n \ge 1$. Then $(y^n)' \sim u'$, whence $y' \sim y u^{\dagger}/n > 0$.

Theorem

The real closure of any H-*field K is again an H*-*field. If* ∂_K *is small, then so is* $\partial_{K^{rc}}$ *.*

Proof. Given an H-field *K*, we already know that K^{rc} is a real closed valued field. Let $P = P_d Y^d + \cdots + P_0 \in K[Y]$, $y \in K^{rc}$ with P(y) = 0, and $\partial P := (\partial P_d) Y^d + \cdots + \partial P_0$. We must have $y' := -(\partial P)(y)/P'(y)$. This defines a derivation on K^{rc} . Note that $C_{K^{rc}} = C^{rc}$.

H1. If $y \in (K^{\text{rc}})^{>C}$, then $y^n \sim u \in K^{>C}$ for some $n \ge 1$. Then $(y^n)' \sim u'$, whence $y' \sim y u^{\dagger}/n > 0$.

H2. Let $y \in K^{rc}$ with $y \leq 1$. Then P(y) = 0 for some P := D + E with $D \in C[Y]^{\neq 0}$ and $E \in K[Y]^{<1}$. Since D(y) < 1 and D splits over $C^{rc} = C_{K^{rc}}$, we have $y \sim c$ for some $c \in C_{K^{rc}}$.

Theorem

The real closure of any H-*field K is again an H*-*field. If* ∂_K *is small, then so is* $\partial_{K^{rc}}$ *.*

Proof. Given an H-field *K*, we already know that K^{rc} is a real closed valued field. Let $P = P_d Y^d + \cdots + P_0 \in K[Y]$, $y \in K^{rc}$ with P(y) = 0, and $\partial P := (\partial P_d) Y^d + \cdots + \partial P_0$. We must have $y' := -(\partial P)(y)/P'(y)$. This defines a derivation on K^{rc} . Note that $C_{K^{rc}} = C^{rc}$.

- **H1.** If $y \in (K^{rc})^{>C}$, then $y^n \sim u \in K^{>C}$ for some $n \ge 1$. Then $(y^n)' \sim u'$, whence $y' \sim y u^{\dagger}/n > 0$.
- **H2.** Let $y \in K^{rc}$ with $y \leq 1$.
- Then P(y) = 0 for some P := D + E with $D \in C[Y]^{\neq 0}$ and $E \in K[Y]^{<1}$. Since D(y) < 1 and D splits over $C^{rc} = C_{K^{rc}}$, we have $y \sim c$ for some $c \in C_{K^{rc}}$.

Preservation of smallness. Exercise.

Gaps

Proposition

There is a unique map ${}^{\dagger}: \Gamma^{\neq 0} \to \Gamma$ *with* $v(a)^{\dagger} = v(a^{\dagger})$ *for all* $a \in K^{\neq 1}$. *We also define* $\alpha' := \alpha + \alpha^{\dagger}$ *for all* $\alpha \in \Gamma^{\neq 0}$.

There is a unique map $^{\dagger}: \Gamma^{\neq 0} \to \Gamma$ *with* $v(a)^{\dagger} = v(a^{\dagger})$ *for all* $a \in K^{\neq 1}$. *We also define* $\alpha' := \alpha + \alpha^{\dagger}$ *for all* $\alpha \in \Gamma^{\neq 0}$.

Proposition

Exactly one of the following situations occurs: 1. $(\Gamma^{\neq 0})^{\dagger}$ has a largest element (we say that K is **grounded**). 2. $\Gamma = (\Gamma^{\neq 0})'$ (we say that K has **asymptotic integration**). 3. $\Gamma = (\Gamma^{\neq 0})^{\dagger} \cup \{\beta\} \cup (\Gamma^{>0})'$ with $(\Gamma^{\neq 0})^{\dagger} < \beta < (\Gamma^{>0})'$ (we say that K has a **gap**)

There is a unique map $^{\dagger}: \Gamma^{\neq 0} \to \Gamma$ *with* $v(a)^{\dagger} = v(a^{\dagger})$ *for all* $a \in K^{\neq 1}$. *We also define* $\alpha' := \alpha + \alpha^{\dagger}$ *for all* $\alpha \in \Gamma^{\neq 0}$.

Proposition

Exactly one of the following situations occurs: 1. $(\Gamma^{\neq 0})^{\dagger}$ has a largest element (we say that K is **grounded**). 2. $\Gamma = (\Gamma^{\neq 0})'$ (we say that K has **asymptotic integration**). 3. $\Gamma = (\Gamma^{\neq 0})^{\dagger} \cup \{\beta\} \cup (\Gamma^{>0})'$ with $(\Gamma^{\neq 0})^{\dagger} < \beta < (\Gamma^{>0})'$ (we say that K has a **gap**)

1. Example: \mathbb{E} , the exponential transseries, max $(\Gamma_{\mathbb{E}}^{\neq 0})^{\dagger} = v(x^{-1})$.

There is a unique map $^{+}: \Gamma^{\neq 0} \to \Gamma$ *with* $v(a)^{+} = v(a^{+})$ *for all* $a \in K^{\neq 1}$. *We also define* $\alpha' := \alpha + \alpha^{+}$ *for all* $\alpha \in \Gamma^{\neq 0}$.

Proposition

Exactly one of the following situations occurs: 1. $(\Gamma^{\neq 0})^{\dagger}$ has a largest element (we say that K is **grounded**). 2. $\Gamma = (\Gamma^{\neq 0})'$ (we say that K has **asymptotic integration**). 3. $\Gamma = (\Gamma^{\neq 0})^{\dagger} \cup \{\beta\} \cup (\Gamma^{>0})'$ with $(\Gamma^{\neq 0})^{\dagger} < \beta < (\Gamma^{>0})'$ (we say that K has a **gap**)

1. Example: \mathbb{E} , the exponential transseries, max $(\Gamma_{\mathbb{E}}^{\neq 0})^{\dagger} = v(x^{-1})$. 2. Example: \mathbb{T} , since any transseries can even be integrated.

There is a unique map $^{\dagger}: \Gamma^{\neq 0} \to \Gamma$ *with* $v(a)^{\dagger} = v(a^{\dagger})$ *for all* $a \in K^{\neq 1}$. *We also define* $\alpha' := \alpha + \alpha^{\dagger}$ *for all* $\alpha \in \Gamma^{\neq 0}$.

Proposition

Exactly one of the following situations occurs: 1. $(\Gamma^{\neq 0})^{\dagger}$ has a largest element (we say that K is **grounded**). 2. $\Gamma = (\Gamma^{\neq 0})'$ (we say that K has **asymptotic integration**). 3. $\Gamma = (\Gamma^{\neq 0})^{\dagger} \cup \{\beta\} \cup (\Gamma^{>0})'$ with $(\Gamma^{\neq 0})^{\dagger} < \beta < (\Gamma^{>0})'$ (we say that K has a **gap**)

1. Example: \mathbb{E} , the exponential transseries, max $(\Gamma_{\mathbb{E}}^{\neq 0})^{\dagger} = v(x^{-1})$.

2. Example: \mathbb{T} , since any transseries can even be integrated.

3. Example: \mathbb{T}_1^{wb} , with $\beta := v(\gamma)$, $\gamma := \frac{1}{x \log x \log_2 x \cdots}$. We have $\varepsilon' < \gamma < \delta^+$ for any $\varepsilon, \delta < 1$.

Consider a formal solution L_{ω} of

 $L_{\omega}(\log x) = L_{\omega}(x) - 1.$

Consider a formal solution L_{ω} of

$$L_{\omega}(\log x) = L_{\omega}(x) - 1.$$

We have $L_{\omega} > 1$, but $L_{\omega} < \log_{l} x$ for all $l \in \mathbb{N}$.

Consider a formal solution L_{ω} of

$$L_{\omega}(\log x) = L_{\omega}(x) - 1.$$

We have $L_{\omega} > 1$, but $L_{\omega} < \log_{l} x$ for all $l \in \mathbb{N}$. Hence,

 $L_{\omega} \notin \mathbb{T}_{\alpha}^{\mathrm{wb}}$, for any ordinal α .

Consider a formal solution L_{ω} of

 $L_{\omega}(\log x) = L_{\omega}(x) - 1.$

We have $L_{\omega} > 1$, but $L_{\omega} < \log_{l} x$ for all $l \in \mathbb{N}$. Hence,

 $L_{\omega} \notin \mathbb{T}_{\alpha}^{\mathrm{wb}}$, for any ordinal α .

However,

$$\frac{L'_{\omega}(\log x)}{x} = L'_{\omega}(x),$$

Consider a formal solution L_{ω} of

 $L_{\omega}(\log x) = L_{\omega}(x) - 1.$

We have $L_{\omega} > 1$, but $L_{\omega} < \log_{l} x$ for all $l \in \mathbb{N}$. Hence,

 $L_{\omega} \notin \mathbb{T}_{\alpha}^{\mathrm{wb}}$, for any ordinal α .

However,

$$\frac{L'_{\omega}(\log x)}{x} = L'_{\omega}(x),$$
$$L'_{\omega}(x) = \frac{1}{x \log x \log_2 x \cdots} = \gamma \subseteq \mathbb{T}_1^{\text{wb}} \setminus \mathbb{T}_0^{\text{wb}}.$$

Consider a formal solution L_{ω} of

$$L_{\omega}(\log x) = L_{\omega}(x) - 1.$$

We have $L_{\omega} > 1$, but $L_{\omega} < \log_l x$ for all $l \in \mathbb{N}$. Hence,

 $L_{\omega} \notin \mathbb{T}_{\alpha}^{\text{wb}}$, for any ordinal α .

However,

$$\frac{L'_{\omega}(\log x)}{x} = L'_{\omega}(x),$$
$$= \frac{1}{1} = \gamma \subseteq \mathbb{T}_{1}^{\mathrm{wb}} \setminus \mathbb{T}_{0}^{\mathrm{wb}}.$$

SO

$$L'_{\omega}(x) = \frac{1}{x \log x \log_2 x \cdots} = \gamma \subseteq \mathbb{T}_1^{\mathrm{wb}} \setminus \mathbb{T}_0^{\mathrm{wb}}.$$

Furthermore, \mathbb{T}_0^{wb} has asymptotic integration (whence no gap), but

$$\lambda := -\gamma^{\dagger} = \frac{1}{x} + \frac{1}{x \log x} + \frac{1}{x \log x \log_2 x} + \dots \in \mathbb{T}_0^{\text{wb}}.$$

Adjoining new logarithms

Let *K* be an *H*-field with divisible $\Gamma := \Gamma_K$ and let $C := C_K$.

Let *K* be an *H*-field with divisible $\Gamma := \Gamma_K$ and let $C := C_K$. Assume that *K* is grounded and let $\ell \in K^{>1,>0}$ be such that $v(\ell^{\dagger})$ is maximal.

Let *K* be an *H*-field with divisible $\Gamma := \Gamma_K$ and let $C := C_K$. Assume that *K* is grounded and let $\ell \in K^{>1,>0}$ be such that $v(\ell^{\dagger})$ is maximal. Then $\delta := (\ell^{\dagger})^{-1} \partial$ is a small derivation and $\text{Der}_{<}(K) = \mathcal{O}_K \delta$.

Let *K* be an *H*-field with divisible $\Gamma := \Gamma_K$ and let $C := C_K$. Assume that *K* is grounded and let $\ell \in K^{>1,>0}$ be such that $v(\ell^{\dagger})$ is maximal. Then $\delta := (\ell^{\dagger})^{-1} \partial$ is a small derivation and $\text{Der}_{<}(K) = \mathcal{O}_K \delta$.

Lemma

Let L := K(y) with $y' = \ell^{\dagger}$. There is a unique ordering on L with y > 0 for which $L \supseteq K$ is an extension of H-fields. We have $C_L = C$, $\Gamma_L = \Gamma \oplus \mathbb{Z}v(y)$, $\Gamma^{<0} < \mathbb{Z}^{>0}v(y)$, $(\Gamma_L^{\neq 0})^{\dagger} \leq v(y^{\dagger})$. Moreover, if $F \supseteq K$ is another H-field extension and $a \in F^{>0}$ satisfies $a' = \ell^{\dagger}$, then there exists a unique embedding of H-fields $\varphi: L \to F$ with $\varphi(y) = a$.

Let *K* be an *H*-field with divisible $\Gamma := \Gamma_K$ and let $C := C_K$. Assume that *K* is grounded and let $\ell \in K^{>1,>0}$ be such that $v(\ell^{\dagger})$ is maximal. Then $\delta := (\ell^{\dagger})^{-1} \partial$ is a small derivation and $\text{Der}_{<}(K) = \mathcal{O}_K \delta$.

Lemma

Let L := K(y) with $y' = \ell^{\dagger}$. There is a unique ordering on L with y > 0 for which $L \supseteq K$ is an extension of H-fields. We have $C_L = C$, $\Gamma_L = \Gamma \oplus \mathbb{Z}v(y)$, $\Gamma^{<0} < \mathbb{Z}^{>0}v(y)$, $(\Gamma_L^{\neq 0})^{\dagger} \leq v(y^{\dagger})$. Moreover, if $F \supseteq K$ is another H-field extension and $a \in F^{>0}$ satisfies $a' = \ell^{\dagger}$, then there exists a unique embedding of H-fields $\varphi: L \to F$ with $\varphi(y) = a$.

Example. $K = \mathbb{E}$ with $\ell = x$. Then $y' = \ell^{\dagger} = \frac{1}{x}$, so $y \in \log x + C$, e.g. $y = \log x$.

Lemma

Let L := K(y) with $y' = \ell^{\dagger}$. There is a unique ordering on L with y > 0 for which $L \supseteq K$ is an extension of H-fields. We have $C_L = C$, $\Gamma_L = \Gamma \oplus \mathbb{Z}v(y)$, $\Gamma^{<0} < \mathbb{Z}^{>0}v(y) < 0$, $(\Gamma_L^{\neq 0})^{\dagger} \leq v(y^{\dagger})$. Moreover, if $F \supseteq K$ is another H-field extension and $a \in F^{>0}$ satisfies $a' = \ell^{\dagger}$, then there exists a unique embedding of H-fields $\varphi: L \to F$ with $\varphi(y) = a$.

Lemma

Let L := K(y) with $y' = \ell^{\dagger}$. There is a unique ordering on L with y > 0 for which $L \supseteq K$ is an extension of H-fields. We have $C_L = C$, $\Gamma_L = \Gamma \oplus \mathbb{Z}v(y)$, $\Gamma^{<0} < \mathbb{Z}^{>0}v(y) < 0$, $(\Gamma_L^{\neq 0})^{\dagger} \leq v(y^{\dagger})$. Moreover, if $F \supseteq K$ is another H-field extension and $a \in F^{>0}$ satisfies $a' = \ell^{\dagger}$, then there exists a unique embedding of H-fields $\varphi: L \to F$ with $\varphi(y) = a$.

Proof. We may assume wlog that $\partial = \delta$, whence $\ell^{\dagger} = 1$ and $v(a^{\dagger}) \leq 0$ for all $a \in K^{\neq 1}$.

Lemma

Let L := K(y) with $y' = \ell^{\dagger}$. There is a unique ordering on L with y > 0 for which $L \supseteq K$ is an extension of H-fields. We have $C_L = C$, $\Gamma_L = \Gamma \oplus \mathbb{Z}v(y)$, $\Gamma^{<0} < \mathbb{Z}^{>0}v(y) < 0$, $(\Gamma_L^{\neq 0})^{\dagger} \leq v(y^{\dagger})$. Moreover, if $F \supseteq K$ is another H-field extension and $a \in F^{>0}$ satisfies $a' = \ell^{\dagger}$, then there exists a unique embedding of H-fields $\varphi: L \to F$ with $\varphi(y) = a$.

Proof. We may assume wlog that $\partial = \delta$, whence $\ell^{\dagger} = 1$ and $v(a^{\dagger}) \leq 0$ for all $a \in K^{\neq 1}$. Since $y^{\dagger} = \ell^{-1} < 1$, we have $\mathbb{Z} v(y) \cap \Gamma = \emptyset$, so $\beta := v(y)$ lies in a cut over Γ .

Lemma

Let L := K(y) with $y' = \ell^{\dagger}$. There is a unique ordering on L with y > 0 for which $L \supseteq K$ is an extension of H-fields. We have $C_L = C$, $\Gamma_L = \Gamma \oplus \mathbb{Z}v(y)$, $\Gamma^{<0} < \mathbb{Z}^{>0}v(y) < 0$, $(\Gamma_L^{\neq 0})^{\dagger} \leq v(y^{\dagger})$. Moreover, if $F \supseteq K$ is another H-field extension and $a \in F^{>0}$ satisfies $a' = \ell^{\dagger}$, then there exists a unique embedding of H-fields $\varphi: L \to F$ with $\varphi(y) = a$.

Proof. We may assume wlog that $\partial = \delta$, whence $\ell^{\dagger} = 1$ and $v(a^{\dagger}) \leq 0$ for all $a \in K^{\neq 1}$. Since $y^{\dagger} = \ell^{-1} < 1$, we have $\mathbb{Z} v(y) \cap \Gamma = \emptyset$, so $\beta := v(y)$ lies in a cut over Γ . By Lemma TR-VAL from Lesson 8, *L* has a unique valuation with $\Gamma_L = \Gamma \oplus \mathbb{Z} \beta$ and $v(y) = \beta$. Moreover, $k_L = k_K$, and for any valued field extension $F \supseteq K$ and $a \in F^{\neq 0}$ with v(a) in the same cut as β over *K*, there exists a unique valued field embedding $\varphi: L \to F$ with $\varphi(y) = a$.

Lemma

Let L := K(y) with $y' = \ell^{\dagger}$. There is a unique ordering on L with y > 0 for which $L \supseteq K$ is an extension of H-fields. We have $C_L = C$, $\Gamma_L = \Gamma \oplus \mathbb{Z}v(y)$, $\Gamma^{<0} < \mathbb{Z}^{>0}v(y) < 0$, $(\Gamma_L^{\neq 0})^{\dagger} \leq v(y^{\dagger})$. Moreover, if $F \supseteq K$ is another H-field extension and $a \in F^{>0}$ satisfies $a' = \ell^{\dagger}$, then there exists a unique embedding of H-fields $\varphi: L \to F$ with $\varphi(y) = a$.

Proof. We may assume wlog that $\partial = \delta$, whence $\ell^{\dagger} = 1$ and $v(a^{\dagger}) \leq 0$ for all $a \in K^{\neq 1}$. Since $y^{\dagger} = \ell^{-1} < 1$, we have $\mathbb{Z} v(y) \cap \Gamma = \emptyset$, so $\beta := v(y)$ lies in a cut over Γ . By Lemma TR-VAL from Lesson 8, *L* has a unique valuation with $\Gamma_L = \Gamma \oplus \mathbb{Z} \beta$ and $v(y) = \beta$. Moreover, $k_L = k_K$, and for any valued field extension $F \supseteq K$ and $a \in F^{\neq 0}$ with v(a) in the same cut as β over *K*, there exists a unique valued field embedding $\varphi: L \to F$ with $\varphi(y) = a$.

To do. Verify that *v* comes from an ordering that satisfies **H1** and **H2**.

Given $f \in K(y)^{\neq 0}$, there exist $u \in K^{\neq 0}$ and $n \in \mathbb{Z}$ with $v(f) = v(u) + n\beta$, whence $f \sim uy^n$.

Given $f \in K(y)^{\neq 0}$, there exist $u \in K^{\neq 0}$ and $n \in \mathbb{Z}$ with $v(f) = v(u) + n\beta$, whence $f \sim uy^n$. We must have $f > 0 \iff u > 0$ and one verifies that this makes *L* an ordered field.

Given $f \in K(y)^{\neq 0}$, there exist $u \in K^{\neq 0}$ and $n \in \mathbb{Z}$ with $v(f) = v(u) + n\beta$, whence $f \sim uy^n$. We must have $f > 0 \iff u > 0$ and one verifies that this makes *L* an ordered field. **H2.** If v(f) = 0, then n = 0 and v(u) = 0, so $u \in C + \emptyset$ and $f \in C + \emptyset_L$.

Given $f \in K(y)^{\neq 0}$, there exist $u \in K^{\neq 0}$ and $n \in \mathbb{Z}$ with $v(f) = v(u) + n\beta$, whence $f \sim uy^n$. We must have $f > 0 \iff u > 0$ and one verifies that this makes *L* an ordered field. **H2.** If v(f) = 0, then n = 0 and v(u) = 0, so $u \in C + \emptyset$ and $f \in C + \emptyset_L$.

H1. Verify first that $f > C \Longrightarrow f' > 0$ for $f \in K^{\neq 0} y^{\mathbb{Z}}$.

Given $f \in K(y)^{\neq 0}$, there exist $u \in K^{\neq 0}$ and $n \in \mathbb{Z}$ with $v(f) = v(u) + n\beta$, whence $f \sim uy^n$. We must have $f > 0 \iff u > 0$ and one verifies that this makes *L* an ordered field. **H2.** If v(f) = 0, then n = 0 and v(u) = 0, so $u \in C + \emptyset$ and $f \in C + \emptyset_L$. **H1.** Verify first that $f > C \Longrightarrow f' > 0$ for $f \in K^{\neq 0}y^{\mathbb{Z}}$. Also verify that $f < g \Rightarrow f' < g'$ for $f, g \in K^{\neq 0}y^{\mathbb{Z}}$ with $g \neq 1$.

Given $f \in K(y)^{\neq 0}$, there exist $u \in K^{\neq 0}$ and $n \in \mathbb{Z}$ with $v(f) = v(u) + n\beta$, whence $f \sim uy^n$. We must have $f > 0 \iff u > 0$ and one verifies that this makes *L* an ordered field. **H2.** If v(f) = 0, then n = 0 and v(u) = 0, so $u \in C + \emptyset$ and $f \in C + \emptyset_L$. **H1.** Verify first that $f > C \Longrightarrow f' > 0$ for $f \in K^{\neq 0}y^{\mathbb{Z}}$. Also verify that $f < g \Rightarrow f' < g'$ for $f, g \in K^{\neq 0}y^{\mathbb{Z}}$ with $g \neq 1$.

Now consider $P, Q \in K[Y]$ with P/Q > 0 and P > Q.

Given $f \in K(y)^{\neq 0}$, there exist $u \in K^{\neq 0}$ and $n \in \mathbb{Z}$ with $v(f) = v(u) + n\beta$, whence $f \sim uy^n$. We must have $f > 0 \iff u > 0$ and one verifies that this makes *L* an ordered field. **H2.** If v(f) = 0, then n = 0 and v(u) = 0, so $u \in C + \emptyset$ and $f \in C + \emptyset_L$.

H1. Verify first that $f > C \Longrightarrow f' > 0$ for $f \in K^{\neq 0} y^{\mathbb{Z}}$. Also verify that $f < g \Rightarrow f' < g'$ for $f, g \in K^{\neq 0} y^{\mathbb{Z}}$ with $g \neq 1$. Now consider $P, Q \in K[Y]$ with P/Q > 0 and P > Q. For certain *i*, *j*, we then have $P(y) \sim P_i y^i$, $Q(y) \sim Q_j y^j$, $P(y)' \sim (P_i y^i)'$, $Q(y)' \sim (Q_i y^j)'$.

Given $f \in K(y)^{\neq 0}$, there exist $u \in K^{\neq 0}$ and $n \in \mathbb{Z}$ with $v(f) = v(u) + n\beta$, whence $f \sim uy^n$. We must have $f > 0 \iff u > 0$ and one verifies that this makes *L* an ordered field. **H2.** If v(f) = 0, then n = 0 and v(u) = 0, so $u \in C + \emptyset$ and $f \in C + \emptyset_L$.

H1. Verify first that $f > C \Longrightarrow f' > 0$ for $f \in K^{\neq 0} y^{\mathbb{Z}}$. Also verify that $f < g \Rightarrow f' < g'$ for $f, g \in K^{\neq 0} y^{\mathbb{Z}}$ with $g \neq 1$. Now consider $P, Q \in K[Y]$ with P/Q > 0 and P > Q. For certain i, j, we then have $P(y) \sim P_i y^i, Q(y) \sim Q_j y^j, P(y)' \sim (P_i y^i)', Q(y)' \sim (Q_i y^j)'$. Now $(P/Q)' > 0 \Leftrightarrow P(y)^{\dagger} > Q(y)^{\dagger} \Leftrightarrow (P_i y^i)^{\dagger} > (Q_j y^j)^{\dagger} \iff ((P_i/Q_j) y^{i-j})^{\dagger} > 0$.

Given $f \in K(y)^{\neq 0}$, there exist $u \in K^{\neq 0}$ and $n \in \mathbb{Z}$ with $v(f) = v(u) + n\beta$, whence $f \sim uy^n$. We must have $f > 0 \iff u > 0$ and one verifies that this makes *L* an ordered field. **H2.** If v(f) = 0, then n = 0 and v(u) = 0, so $u \in C + \emptyset$ and $f \in C + \emptyset_L$.

H1. Verify first that $f > C \Longrightarrow f' > 0$ for $f \in K^{\neq 0} y^{\mathbb{Z}}$. Also verify that $f < g \Rightarrow f' < g'$ for $f, g \in K^{\neq 0} y^{\mathbb{Z}}$ with $g \neq 1$. Now consider $P, Q \in K[Y]$ with P/Q > 0 and P > Q. For certain i, j, we then have $P(y) \sim P_i y^i, Q(y) \sim Q_j y^j, P(y)' \sim (P_i y^i)', Q(y)' \sim (Q_i y^j)'$. Now $(P/Q)' > 0 \Leftrightarrow P(y)^{\dagger} > Q(y)^{\dagger} \Leftrightarrow (P_i y^i)^{\dagger} > (Q_j y^j)^{\dagger} \Leftarrow ((P_i/Q_j) y^{i-j})^{\dagger} > 0$.

Embedding property. We already have the valued field embedding φ with $\varphi(y) = a$.

Given $f \in K(y)^{\neq 0}$, there exist $u \in K^{\neq 0}$ and $n \in \mathbb{Z}$ with $v(f) = v(u) + n\beta$, whence $f \sim uy^n$. We must have $f > 0 \iff u > 0$ and one verifies that this makes *L* an ordered field. **H2.** If v(f) = 0, then n = 0 and v(u) = 0, so $u \in C + \emptyset$ and $f \in C + \emptyset_L$.

H1. Verify first that $f > C \Longrightarrow f' > 0$ for $f \in K^{\neq 0} y^{\mathbb{Z}}$. Also verify that $f < g \Rightarrow f' < g'$ for $f, g \in K^{\neq 0} y^{\mathbb{Z}}$ with $g \neq 1$. Now consider $P, Q \in K[Y]$ with P/Q > 0 and P > Q. For certain i, j, we then have $P(y) \sim P_i y^i, Q(y) \sim Q_j y^j, P(y)' \sim (P_i y^i)', Q(y)' \sim (Q_i y^j)'$. Now $(P/Q)' > 0 \Leftrightarrow P(y)^{\dagger} > Q(y)^{\dagger} \Leftrightarrow (P_i y^i)^{\dagger} > (Q_j y^j)^{\dagger} \rightleftharpoons ((P_i/Q_j) y^{i-j})^{\dagger} > 0$.

Embedding property. We already have the valued field embedding φ with $\varphi(y) = a$. Since $y' = a' = \ell^{\dagger}$, this embedding preserves ∂ .

Given $f \in K(y)^{\neq 0}$, there exist $u \in K^{\neq 0}$ and $n \in \mathbb{Z}$ with $v(f) = v(u) + n\beta$, whence $f \sim uy^n$. We must have $f > 0 \iff u > 0$ and one verifies that this makes *L* an ordered field. **H2.** If v(f) = 0, then n = 0 and v(u) = 0, so $u \in C + \emptyset$ and $f \in C + \emptyset_L$.

H1. Verify first that $f > C \Longrightarrow f' > 0$ for $f \in K^{\neq 0} y^{\mathbb{Z}}$. Also verify that $f < g \Rightarrow f' < g'$ for $f, g \in K^{\neq 0} y^{\mathbb{Z}}$ with $g \neq 1$. Now consider $P, Q \in K[Y]$ with P/Q > 0 and P > Q. For certain i, j, we then have $P(y) \sim P_i y^i, Q(y) \sim Q_j y^j, P(y)' \sim (P_i y^i)', Q(y)' \sim (Q_i y^j)'$. Now $(P/Q)' > 0 \Leftrightarrow P(y)^{\dagger} > Q(y)^{\dagger} \Leftrightarrow (P_i y^i)^{\dagger} > (Q_j y^j)^{\dagger} \Leftarrow ((P_i/Q_j) y^{i-j})^{\dagger} > 0$.

Embedding property. We already have the valued field embedding φ with $\varphi(y) = a$. Since $y' = a' = \ell^{\dagger}$, this embedding preserves ∂ .

Given $f \in K(y)^{>0}$, we have $f \sim u y^n > 0$ for $u \in K^{\neq 0}$ and $n \in \mathbb{N}$.

Given $f \in K(y)^{\neq 0}$, there exist $u \in K^{\neq 0}$ and $n \in \mathbb{Z}$ with $v(f) = v(u) + n\beta$, whence $f \sim uy^n$. We must have $f > 0 \iff u > 0$ and one verifies that this makes *L* an ordered field. **H2.** If v(f) = 0, then n = 0 and v(u) = 0, so $u \in C + \emptyset$ and $f \in C + \emptyset_L$.

H1. Verify first that $f > C \Longrightarrow f' > 0$ for $f \in K^{\neq 0} y^{\mathbb{Z}}$. Also verify that $f < g \Rightarrow f' < g'$ for $f, g \in K^{\neq 0} y^{\mathbb{Z}}$ with $g \neq 1$. Now consider $P, Q \in K[Y]$ with P/Q > 0 and P > Q. For certain i, j, we then have $P(y) \sim P_i y^i, Q(y) \sim Q_j y^j, P(y)' \sim (P_i y^i)', Q(y)' \sim (Q_i y^j)'$. Now $(P/Q)' > 0 \Leftrightarrow P(y)^{\dagger} > Q(y)^{\dagger} \Leftrightarrow (P_i y^i)^{\dagger} > (Q_j y^j)^{\dagger} \Leftarrow ((P_i/Q_j) y^{i-j})^{\dagger} > 0$.

Embedding property. We already have the valued field embedding φ with $\varphi(y) = a$. Since $y' = a' = \ell^{\dagger}$, this embedding preserves ∂ . Given $f \in K(y)^{>0}$, we have $f \sim u y^n > 0$ for $u \in K^{\neq 0}$ and $n \in \mathbb{N}$. φ preserves valuation $\Rightarrow \varphi$ preserves $\sim \Rightarrow \varphi(y) \sim u a^n > 0$.

Let *K* be a real closed *H*-field with $\Gamma := \Gamma_K$ and let $C := C_K$. Assume that *K* has asymptotic integration.

Let *K* be a real closed *H*-field with $\Gamma := \Gamma_K$ and let $C := C_K$. Assume that *K* has asymptotic integration.

Lemma

Let L := K(y), where $y' = g \in K \setminus \partial K$. Then there exists a unique ordering on L with $y \neq 1$, for which $L \supseteq K$ is an extension of H-fields. This extension is immediate.

Moreover, if $F \supseteq K$ *is another* H-*field extension and* $a \in F$ *satisfies* a' = g, *then there exists a unique embedding of* H-*fields* $\varphi: L \to F$ *with* $\varphi(y) = a$.

Let *K* be a real closed *H*-field with $\Gamma := \Gamma_K$ and let $C := C_K$. Assume that *K* has asymptotic integration.

Lemma

Let L := K(y), where $y' = g \in K \setminus \partial K$. Then there exists a unique ordering on L with $y \neq 1$, for which $L \supseteq K$ is an extension of H-fields. This extension is immediate.

Moreover, if $F \supseteq K$ *is another* H-*field extension and* $a \in F$ *satisfies* a' = g*, then there exists a unique embedding of* H-*fields* $\varphi: L \to F$ *with* $\varphi(y) = a$.

Proof. We construct a pc-sequence (y_{ρ}) that approximates *y*:

- $y_0 := 0$.
- $y_{\rho+1} := y_{\rho} + \delta$, where $\delta' \sim g y'_{\rho}$.
- $y_{\lambda} :=$ a pseudo-limit of $(y_{\rho})_{\rho < \lambda}$ if it exists.

Let *K* be a real closed *H*-field with $\Gamma := \Gamma_K$ and let $C := C_K$. Assume that *K* has asymptotic integration.

Lemma

Let L := K(y), where $y' = g \in K \setminus \partial K$. Then there exists a unique ordering on L with $y \neq 1$, for which $L \supseteq K$ is an extension of H-fields. This extension is immediate.

Moreover, if $F \supseteq K$ *is another* H-*field extension and* $a \in F$ *satisfies* a' = g*, then there exists a unique embedding of* H-*fields* $\varphi: L \to F$ *with* $\varphi(y) = a$.

Proof. We construct a pc-sequence (y_{ρ}) that approximates *y*:

- $y_0 := 0$.
- $y_{\rho+1} := y_{\rho} + \delta$, where $\delta' \sim g y'_{\rho}$.
- $y_{\lambda} :=$ a pseudo-limit of $(y_{\rho})_{\rho < \lambda}$ if it exists.

 (y_{ρ}) is divergent of transcendental type (since *K* is real closed).

Let *K* be a real closed *H*-field with $\Gamma := \Gamma_K$ and let $C := C_K$. Assume that *K* has asymptotic integration.

Lemma

Let L := K(y), where $y' = g \in K \setminus \partial K$. Then there exists a unique ordering on L with $y \neq 1$, for which $L \supseteq K$ is an extension of H-fields. This extension is immediate.

Moreover, if $F \supseteq K$ *is another* H-*field extension and* $a \in F$ *satisfies* a' = g*, then there exists a unique embedding of* H-*fields* $\varphi: L \to F$ *with* $\varphi(y) = a$.

Proof. We construct a pc-sequence (y_{ρ}) that approximates *y*:

- $y_0 := 0$.
- $y_{\rho+1} := y_{\rho} + \delta$, where $\delta' \sim g y'_{\rho}$.
- $y_{\lambda} :=$ a pseudo-limit of $(y_{\rho})_{\rho < \lambda}$ if it exists.

 (y_{ρ}) is divergent of transcendental type (since *K* is real closed). Conclude by Lemma TR-IMM + "routine verifications".

Let *K* be a real closed *H*-field with $\Gamma := \Gamma_K$ and let $C := C_K$. Assume that $\gamma \in K^{>0}$ with $(\Gamma^{\neq 0})^{\dagger} < v(\gamma) < (\Gamma^{>0})'$.

Let *K* be a real closed *H*-field with $\Gamma := \Gamma_K$ and let $C := C_K$. Assume that $\gamma \in K^{>0}$ with $(\Gamma^{\neq 0})^{\dagger} < v(\gamma) < (\Gamma^{>0})'$.

Lemma

Let $\epsilon \in \{1, -1\}$ *.*

Let L := K(y) with $y' = \gamma$. There is a unique ordering on L with $\epsilon y^{\epsilon} > C$ for which $L \supseteq K$ is an extension of H-fields. We have $C_L = C$, $\Gamma_L = \Gamma \oplus \mathbb{Z}v(y)$, $\Gamma^{<0} < \mathbb{Z}v(y)$, $(\Gamma_L^{\neq 0})^{\dagger} \leq v(y^{\dagger})$. Moreover, if $F \supseteq K$ is another H-field extension and $a \in F$ satisfies $\epsilon a^{\epsilon} > C$ and $a' = \gamma$, then there exists a unique embedding of H-fields $\varphi: L \to F$ with $\varphi(y) = a$.

Let *K* be a real closed *H*-field with $\Gamma := \Gamma_K$ and let $C := C_K$. Assume that $\gamma \in K^{>0}$ with $(\Gamma^{\neq 0})^{\dagger} < v(\gamma) < (\Gamma^{>0})'$.

Lemma

Let $\epsilon \in \{1, -1\}$ *.*

Let L := K(y) with $y' = \gamma$. There is a unique ordering on L with $\epsilon y^{\epsilon} > C$ for which $L \supseteq K$ is an extension of H-fields. We have $C_L = C$, $\Gamma_L = \Gamma \oplus \mathbb{Z}v(y)$, $\Gamma^{<0} < \mathbb{Z}v(y)$, $(\Gamma_L^{\neq 0})^{\dagger} \leq v(y^{\dagger})$. Moreover, if $F \supseteq K$ is another H-field extension and $a \in F$ satisfies $\epsilon a^{\epsilon} > C$ and $a' = \gamma$, then there exists a unique embedding of H-fields $\varphi: L \to F$ with $\varphi(y) = a$.

Example.
$$K = \mathbb{T}_1^{\text{wb}}, \gamma := \frac{1}{x \log x \log_2 x \cdots}.$$

Let *K* be a real closed *H*-field with $\Gamma := \Gamma_K$ and let $C := C_K$. Assume that $\gamma \in K^{>0}$ with $(\Gamma^{\neq 0})^{\dagger} < v(\gamma) < (\Gamma^{>0})'$.

Lemma

Let $\epsilon \in \{1, -1\}$ *.*

Let L := K(y) with $y' = \gamma$. There is a unique ordering on L with $\epsilon y^{\epsilon} > C$ for which $L \supseteq K$ is an extension of H-fields. We have $C_L = C$, $\Gamma_L = \Gamma \oplus \mathbb{Z}v(y)$, $\Gamma^{<0} < \mathbb{Z}v(y)$, $(\Gamma_L^{\neq 0})^{\dagger} \leq v(y^{\dagger})$. Moreover, if $F \supseteq K$ is another H-field extension and $a \in F$ satisfies $\epsilon a^{\epsilon} > C$ and $a' = \gamma$, then there exists a unique embedding of H-fields $\varphi: L \to F$ with $\varphi(y) = a$.

Example.
$$K = \mathbb{T}_1^{\text{wb}}, \gamma := \frac{1}{x \log x \log_2 x \cdots}.$$

 $\epsilon = 1$. In the "natural" extension of *K* with $y_{nat} = \int \gamma$, we have $y_{nat} > 1$.

Let *K* be a real closed *H*-field with $\Gamma := \Gamma_K$ and let $C := C_K$. Assume that $\gamma \in K^{>0}$ with $(\Gamma^{\neq 0})^{\dagger} < v(\gamma) < (\Gamma^{>0})'$.

Lemma

Let $\epsilon \in \{1, -1\}$ *.*

Let L := K(y) with $y' = \gamma$. There is a unique ordering on L with $\epsilon y^{\epsilon} > C$ for which $L \supseteq K$ is an extension of H-fields. We have $C_L = C$, $\Gamma_L = \Gamma \oplus \mathbb{Z}v(y)$, $\Gamma^{<0} < \mathbb{Z}v(y)$, $(\Gamma_L^{\neq 0})^{\dagger} \leq v(y^{\dagger})$. Moreover, if $F \supseteq K$ is another H-field extension and $a \in F$ satisfies $\epsilon a^{\epsilon} > C$ and $a' = \gamma$, then there exists a unique embedding of H-fields $\varphi: L \to F$ with $\varphi(y) = a$.

Example.
$$K = \mathbb{T}_1^{\text{wb}}, \gamma := \frac{1}{x \log x \log_2 x \cdots}.$$

 $\epsilon = 1$. In the "natural" extension of *K* with $y_{nat} = \int \gamma$, we have $y_{nat} > 1$.

$$\varepsilon = -1$$
. Then $-y_{\text{nat}}^{-1} < 1$ satisfies $(-y_{\text{nat}}^{-1})' = \gamma / y_{\text{nat}}^2$.

This "explains" why we may also impose $\int \gamma < 1$.

Adjoining immediate exponentials

Let *K* be a real closed *H*-field with $\Gamma := \Gamma_K$ and let $C := C_K$. Assume that *K* has asymptotic integration.

Adjoining immediate exponentials

Let *K* be a real closed *H*-field with $\Gamma := \Gamma_K$ and let $C := C_K$. Assume that *K* has asymptotic integration.

Lemma

Let L := K(y), where $y^{\dagger} = \varepsilon' \in K \setminus (K^{\neq})^{\dagger}$ for $\varepsilon < 1$. Then there exists a unique ordering on L with $y \neq 1$, for which $L \supseteq K$ is an extension of H-fields. This extension is immediate. Moreover, if $F \supseteq K$ is another H-field extension and $a \in F$ satisfies $a^{\dagger} = \varepsilon'$, then there exists a unique embedding of H-fields $\varphi: L \to F$ with $\varphi(y) = a$.

Adjoining immediate exponentials

Let *K* be a real closed *H*-field with $\Gamma := \Gamma_K$ and let $C := C_K$. Assume that *K* has asymptotic integration.

Lemma

Let L := K(y), where $y^{\dagger} = \varepsilon' \in K \setminus (K^{\neq})^{\dagger}$ for $\varepsilon < 1$. Then there exists a unique ordering on L with $y \neq 1$, for which $L \supseteq K$ is an extension of H-fields. This extension is immediate. Moreover, if $F \supseteq K$ is another H-field extension and $a \in F$ satisfies $a^{\dagger} = \varepsilon'$, then there exists a unique embedding of H-fields $\varphi: L \to F$ with $\varphi(y) = a$.

Proof. Similar as for immediate integration. This time (y_{ρ}) is as follows:

- $y_0 := 1$.
- $y_{\rho+1} := y_{\rho}(1+\delta)$, where $\delta' \sim \varepsilon' y_{\rho}^{\dagger}$.
- $y_{\lambda} :=$ a pseudo-limit of $(y_{\rho})_{\rho < \lambda}$ if it exists.

Adjoining non-immediate exponential integrals 14/26

Let *K* be an *H*-field and let $\Gamma := \Gamma_K$, $C := C_K$.

Adjoining non-immediate exponential integrals 14/26

Let *K* be an *H*-field and let $\Gamma := \Gamma_K$, $C := C_K$. For $f, g \in K^{\neq 0}$, we have

$$f \prec g \iff f^{\dagger} + \mathcal{O}'_K < g^{\dagger} + \mathcal{O}'_K.$$

Adjoining non-immediate exponential integrals 14/26

Let *K* be an *H*-field and let $\Gamma := \Gamma_K$, $C := C_K$. For $f, g \in K^{\neq 0}$, we have

$$f \prec g \iff f^{\dagger} + \mathcal{O}'_K < g^{\dagger} + \mathcal{O}'_K.$$

Hence,

$$\Gamma \cong (K^{\neq 0})^{\dagger} / \approx, \qquad f \approx g \iff f - g \in \mathcal{O}'_K.$$

Adjoining non-immediate exponential integrals 14/26

Let *K* be an *H*-field and let $\Gamma := \Gamma_K$, $C := C_K$. For $f, g \in K^{\neq 0}$, we have

$$f \prec g \iff f^{\dagger} + \mathcal{O}'_K < g^{\dagger} + \mathcal{O}'_K.$$

Hence,

$$\Gamma \cong (K^{\neq 0})^{\dagger} / \approx, \quad f \approx g \iff f - g \in \mathcal{O}'_K.$$

But there may be elements of K / \approx that are not in $(K^{\neq 0})^{\dagger} / \approx$.

Adjoining non-immediate exponential integrals 14/26

Let *K* be an *H*-field and let $\Gamma := \Gamma_K$, $C := C_K$. For $f, g \in K^{\neq 0}$, we have

$$f \prec g \iff f^{\dagger} + \mathcal{O}'_K < g^{\dagger} + \mathcal{O}'_K.$$

Hence,

$$\Gamma \cong (K^{\neq 0})^{\dagger} / \approx, \qquad f \approx g \iff f - g \in \mathcal{O}'_K.$$

But there may be elements of K / \approx that are not in $(K^{\neq 0})^{\dagger} / \approx$.

Lemma

Assume that Γ is divisible. Let $s \in K^{\neq 0}$ be such that $s - a^{\dagger} > \mathcal{O}'_K$ for all $a \in K^{\neq 0}$. Consider the differential field L := K(y) with $y^{\dagger} = s$.

There exists a unique ordering on L for which $L \supseteq K$ *is an extension of H*-*fields with* y > 0. *We have* $\mathbf{k}_L = \mathbf{k}_K$, $\Gamma_L = \Gamma \oplus \mathbb{Z} v(y)$, and ∂_L *is small whenever* ∂_K *is small.*

Moreover, if $F \supseteq K$ *is another* H-*field extension and* $a \in F^{>0}$ *satisfies* $a^{\dagger} = s$, *then there exists a unique embedding of* H-*fields* $\varphi: L \to F$ *with* $\varphi(y) = a$.

Let *K* be an *H*-field and let $\Gamma := \Gamma_K$, $C := C_K$.

Theorem

For $I = \{1\}$ or $I = \{1,2\}$, there exist Liouville closed H-fields $L_i \supseteq K$, $i \in I$ with the property that for any Liouville closed H-field $F \supseteq K$, there exists a unique $i \in I$ for which L_i embeds into F over K, and this embedding is unique. If K contains "no λ element", then $I = \{1\}$.

Let *K* be an *H*-field and let $\Gamma := \Gamma_K$, $C := C_K$.

Theorem

For $I = \{1\}$ or $I = \{1,2\}$, there exist Liouville closed H-fields $L_i \supseteq K$, $i \in I$ with the property that for any Liouville closed H-field $F \supseteq K$, there exists a unique $i \in I$ for which L_i embeds into F over K, and this embedding is unique. If K contains "no λ element", then $I = \{1\}$.

Proof sketch. Track the introduction of λ and γ during the extension process.

Let *K* be an *H*-field and let $\Gamma := \Gamma_K$, $C := C_K$.

Theorem

For $I = \{1\}$ or $I = \{1,2\}$, there exist Liouville closed H-fields $L_i \supseteq K$, $i \in I$ with the property that for any Liouville closed H-field $F \supseteq K$, there exists a unique $i \in I$ for which L_i embeds into F over K, and this embedding is unique. If K contains "no λ element", then $I = \{1\}$.

Proof sketch. Track the introduction of λ and γ during the extension process.

• We may only introduce γ through exponential integration of λ .

Let *K* be an *H*-field and let $\Gamma := \Gamma_K$, $C := C_K$.

Theorem

For $I = \{1\}$ or $I = \{1,2\}$, there exist Liouville closed H-fields $L_i \supseteq K$, $i \in I$ with the property that for any Liouville closed H-field $F \supseteq K$, there exists a unique $i \in I$ for which L_i embeds into F over K, and this embedding is unique. If K contains "no λ element", then $I = \{1\}$.

Proof sketch. Track the introduction of λ and γ during the extension process.

- We may only introduce γ through exponential integration of λ .
- Extensions by $\int \gamma$ are grounded and do not contain λ .

Let *K* be an *H*-field and let $\Gamma := \Gamma_K$, $C := C_K$.

Theorem

For $I = \{1\}$ or $I = \{1,2\}$, there exist Liouville closed H-fields $L_i \supseteq K$, $i \in I$ with the property that for any Liouville closed H-field $F \supseteq K$, there exists a unique $i \in I$ for which L_i embeds into F over K, and this embedding is unique. If K contains "no λ element", then $I = \{1\}$.

Proof sketch. Track the introduction of λ and γ during the extension process.

- We may only introduce γ through exponential integration of λ .
- Extensions by $\int \gamma$ are grounded and do not contain λ .
- We *cannot* introduce λ through integration:

$$\lambda' \approx \left(\frac{1}{x} + \frac{1}{x \log x} + \frac{1}{x \log x \log_2 x} + \cdots\right)' = -\frac{1}{x^2} - \frac{1}{x^2 \log x} - \frac{1}{x \log x \log_2 x} - \cdots - \frac{1}{x^2 \log^2 x} - \cdots \approx \frac{-\lambda}{x}.$$

Let *K* be an *H*-field and let $\Gamma := \Gamma_K$, $C := C_K$.

Theorem

For $I = \{1\}$ or $I = \{1,2\}$, there exist Liouville closed H-fields $L_i \supseteq K$, $i \in I$ with the property that for any Liouville closed H-field $F \supseteq K$, there exists a unique $i \in I$ for which L_i embeds into F over K, and this embedding is unique. If K contains "no λ element", then $I = \{1\}$.

Proof sketch. Track the introduction of λ and γ during the extension process.

- We may only introduce γ through exponential integration of λ .
- Extensions by $\int \gamma$ are grounded and do not contain λ .
- We *cannot* introduce λ through integration:

$$\lambda' \approx \left(\frac{1}{x} + \frac{1}{x \log x} + \frac{1}{x \log x \log_2 x} + \cdots\right)' = -\frac{1}{x^2} - \frac{1}{x^2 \log x} - \frac{1}{x \log x \log_2 x} - \cdots - \frac{1}{x^2 \log^2 x} - \cdots \approx \frac{-\lambda}{x}.$$

• Similarly, λ cannot be introduced through exponentiation or real closure.

$$\lambda = x^{\dagger} + (\log x)^{\dagger} + (\log_2 x)^{\dagger} + \dots = \frac{1}{x} + \frac{1}{x \log x} + \frac{1}{x \log x \log_2 x} + \dots$$

$$\lambda = x^{\dagger} + (\log x)^{\dagger} + (\log_2 x)^{\dagger} + \dots = \frac{1}{x} + \frac{1}{x \log x} + \frac{1}{x \log x \log_2 x} + \dots$$
$$\lambda' = \sum_{i \in \mathbb{N}} \left(\frac{1}{x \log x \dots \log_i x} \right)' = \sum_{i \in \mathbb{N}} \sum_{j \leq i} \frac{-(\log_j x)^{\dagger}}{x \log x \dots \log_i x} = -\sum_{i \in \mathbb{N}} \sum_{j \leq i} (\log_i x)^{\dagger} (\log_j x)^{\dagger}$$

$$\lambda = x^{\dagger} + (\log x)^{\dagger} + (\log_2 x)^{\dagger} + \dots = \frac{1}{x} + \frac{1}{x \log x} + \frac{1}{x \log x \log_2 x} + \dots$$
$$\lambda' = \sum_{i \in \mathbb{N}} \left(\frac{1}{x \log x \dots \log_i x} \right)' = \sum_{i \in \mathbb{N}} \sum_{j \leq i} \frac{-(\log_j x)^{\dagger}}{x \log x \dots \log_i x} = -\sum_{i \in \mathbb{N}} \sum_{j \leq i} (\log_i x)^{\dagger} (\log_j x)^{\dagger}$$
$$\lambda^2 = \sum_{i \in \mathbb{N}} \sum_{j \in \mathbb{N}} (\log_i x)^{\dagger} (\log_j x)^{\dagger}$$

$$\lambda = x^{\dagger} + (\log x)^{\dagger} + (\log_2 x)^{\dagger} + \dots = \frac{1}{x} + \frac{1}{x \log x} + \frac{1}{x \log x \log_2 x} + \dots$$
$$\lambda' = \sum_{i \in \mathbb{N}} \left(\frac{1}{x \log x \dots \log_i x} \right)' = \sum_{i \in \mathbb{N}} \sum_{j \leqslant i} \frac{-(\log_j x)^{\dagger}}{x \log x \dots \log_i x} = -\sum_{i \in \mathbb{N}} \sum_{j \leqslant i} (\log_i x)^{\dagger} (\log_j x)^{\dagger}$$
$$\lambda^2 = \sum_{i \in \mathbb{N}} \sum_{j \in \mathbb{N}} (\log_i x)^{\dagger} (\log_j x)^{\dagger}$$
$$\omega := -2\lambda' - \lambda^2 = \sum_{i \in \mathbb{N}} ((\log_i x)^{\dagger})^2 = \frac{1}{x^2} + \frac{1}{x^2 \log^2 x} + \frac{1}{x^2 \log^2 x \log_2^2 x} + \dots$$

$$\lambda = x^{\dagger} + (\log x)^{\dagger} + (\log_2 x)^{\dagger} + \dots = \frac{1}{x} + \frac{1}{x \log x} + \frac{1}{x \log x \log_2 x} + \dots$$
$$\lambda' = \sum_{i \in \mathbb{N}} \left(\frac{1}{x \log x \dots \log_i x} \right)' = \sum_{i \in \mathbb{N}} \sum_{j \leq i} \frac{-(\log_j x)^{\dagger}}{x \log x \dots \log_i x} = -\sum_{i \in \mathbb{N}} \sum_{j \leq i} (\log_i x)^{\dagger} (\log_j x)^{\dagger}$$
$$\lambda^2 = \sum_{i \in \mathbb{N}} \sum_{j \in \mathbb{N}} (\log_i x)^{\dagger} (\log_j x)^{\dagger}$$
$$\omega := -2\lambda' - \lambda^2 = \sum_{i \in \mathbb{N}} ((\log_i x)^{\dagger})^2 = \frac{1}{x^2} + \frac{1}{x^2 \log^2 x} + \frac{1}{x^2 \log^2 x \log_2^2 x} + \dots$$

Theorem (Écalle, ADH)

For any $P \in \mathbb{R}{Y} \setminus \mathbb{R}$ *, the first* ω *terms of* $\alpha P(\lambda) + \beta$ *coincide with* λ *or* ω *, for certain* $\alpha, \beta \in \mathbb{R}(x, \log x, ..., \log_r x)$.

First order conditions

property of γ property of λ property of ω

$$\begin{aligned} (\forall \varepsilon < 1) \quad \varepsilon' < \gamma < \varepsilon^{\dagger} \\ (\forall \varepsilon < 1) \quad \lambda + \varepsilon^{\dagger \dagger} < \varepsilon^{\dagger} \\ (\forall \varepsilon < 1) \quad \omega - 2(\varepsilon^{\dagger \dagger})' + (\varepsilon^{\dagger \dagger})^2 < (\varepsilon^{\dagger})^2 \end{aligned}$$

γ-freeness λ-freeness ω-freeness

$$\begin{aligned} (\forall s) \ (\exists \varepsilon < 1) & s \leqslant \varepsilon' \lor s \geqslant \varepsilon^{\dagger} \\ (\forall s) \ (\exists \varepsilon < 1) & s + \varepsilon^{\dagger \dagger} \geqslant \varepsilon^{\dagger} \\ (\forall s) \ (\exists \varepsilon < 1) & s - 2(\varepsilon^{\dagger \dagger})' + (\varepsilon^{\dagger \dagger})^2 \geqslant (\varepsilon^{\dagger}) \end{aligned}$$

 ω -freeness $\implies \lambda$ -freeness $\implies \gamma$ -freeness

Differential Newton polygon method

We need to generalize:

- Differential Newton polynomials.
- Equalizers.
- Resolution of quasi-linear differential equations.
- Unravelling.

Compositional conjugation

Consider $\delta := \phi^{-1} \partial$ with $\phi \in K^{>0}$.

Compositional conjugation

Consider $\delta := \phi^{-1} \partial$ with $\phi \in K^{>0}$.

Any $P \in K{Y}$ can be rewritten as a polynomial $P^{\phi} \in K^{\phi}{Y} = K[Y, \delta Y, \delta^2 Y, ...]$:

$$\partial = \phi \delta$$

$$\partial^{2} = \phi^{2} \delta^{2} + \phi' \delta$$

$$\partial^{3} = \phi^{3} \delta^{3} + 3 \phi \phi' \delta^{2} + \phi'' \delta$$

$$\vdots$$

Compositional conjugation

Consider $\delta := \phi^{-1} \partial$ with $\phi \in K^{>0}$.

Any $P \in K{Y}$ can be rewritten as a polynomial $P^{\phi} \in K^{\phi}{Y} = K[Y, \delta Y, \delta^2 Y, ...]$:

$$\partial = \phi \delta$$

$$\partial^{2} = \phi^{2} \delta^{2} + \phi' \delta$$

$$\partial^{3} = \phi^{3} \delta^{3} + 3 \phi \phi' \delta^{2} + \phi'' \delta$$

$$\vdots$$

We call P^{ϕ} the **compositional conjugate** of *P* by ϕ .

Link with upward shifting

$$\uparrow \qquad \phi := \frac{1}{x} \qquad \partial = \phi \delta$$
$$\uparrow \uparrow \qquad \psi := \frac{1}{x \log x} \qquad \partial = \psi \theta$$

$$P = xYY'' - (Y')^{2} \qquad P = xY'' - (Y')^{2}$$

$$P^{\uparrow} = \frac{YY'' - YY'}{e^{x}} - \frac{(Y')^{2}}{e^{2x}} \qquad P^{\phi} = \frac{Y\delta^{2}Y - Y\deltaY}{x} - \frac{(\delta Y)^{2}}{x^{2}}$$

$$P^{\uparrow\uparrow} = \frac{YY'' - YY'}{e^{e^{x} + 2x}} - \frac{YY'}{e^{e^{x} + x}} - \frac{(Y')^{2}}{e^{2e^{x} + 2x}} \qquad P^{\psi} = \frac{Y\theta^{2}Y - Y\thetaY}{x\log^{2}x} - \frac{Y\thetaY}{x\log x} - \frac{(\theta Y)^{2}}{x^{2}\log^{2}x}$$

We say that ϕ is **active** if $\delta := \phi^{-1} \partial$ is small.

We say that ϕ is **active** if $\delta := \phi^{-1} \partial$ is small.

- A property for $P \in K{Y}$ holds **eventually** \iff
- It holds for P^{ϕ} , for all sufficiently small active ϕ

- We say that ϕ is **active** if $\delta := \phi^{-1} \partial$ is small.
- A property for $P \in K{Y}$ holds **eventually** \Leftrightarrow
- It holds for P^{ϕ} , for all sufficiently small active ϕ
- Fix a monomial group $\mathfrak{M} \subseteq K^{\neq 0} \implies$ dominant coefficients well-defined.

We say that ϕ is **active** if $\delta := \phi^{-1} \partial$ is small.

- A property for $P \in K{Y}$ holds **eventually** \Leftrightarrow
- It holds for P^{ϕ} , for all sufficiently small active ϕ

Fix a monomial group $\mathfrak{M} \subseteq K^{\neq 0} \implies$ dominant coefficients well-defined.

Theorem

Given $P \in K\{Y\}^{\neq 0}$, there exists a unique $N(P) \in C\{Y\}$ with $D(P^{\phi}) = N(P)$, eventually.

We say that ϕ is **active** if $\delta := \phi^{-1} \partial$ is small.

- A property for $P \in K{Y}$ holds **eventually** \Leftrightarrow
- It holds for P^{ϕ} , for all sufficiently small active ϕ

Fix a monomial group $\mathfrak{M} \subseteq K^{\neq 0} \implies$ dominant coefficients well-defined.

Theorem

Given $P \in K\{Y\}^{\neq 0}$, there exists a unique $N(P) \in C\{Y\}$ with $D(P^{\phi}) = N(P)$, eventually.

Theorem

If K is ω -free, then $N(P) \in C[Y](Y')^{\mathbb{N}}$, for all $P \in K\{Y\}$.

We say that ϕ is **active** if $\delta := \phi^{-1} \partial$ is small.

- A property for $P \in K{Y}$ holds **eventually** \Leftrightarrow
- It holds for P^{ϕ} , for all sufficiently small active ϕ

Fix a monomial group $\mathfrak{M} \subseteq K^{\neq 0} \implies$ dominant coefficients well-defined.

Theorem

Given $P \in K{Y}^{\neq 0}$, there exists a unique $N(P) \in C{Y}$ with $D(P^{\phi}) = N(P)$, eventually.

Theorem

If K is ω -free, then $N(P) \in C[Y](Y')^{\mathbb{N}}$, for all $P \in K\{Y\}$.

$$P = 2Y'Y''' - 3(Y'')^2 - \omega(Y')^2$$
$$N(P) = 2Y'Y''' - 3(Y'')^2$$

(Assuming that *K* is ω -free)

$$P(y) = 0, \qquad y < \mathfrak{v} \tag{(*)}$$

 $\mathfrak{m} \prec \mathfrak{v}$ starting monomial for (\star) $N(P_{\times \mathfrak{m}}) \notin CY^{\mathbb{N}}$ $c \mathfrak{m} \prec \mathfrak{v}$ starting term for (\star) $N(P_{\times \mathfrak{m}})(c) = 0$

(Assuming that *K* is ω -free)

$$P(y) = 0, \qquad y < \mathfrak{v} \tag{(*)}$$

 $\mathfrak{m} \prec \mathfrak{v}$ starting monomial for (*) $c \mathfrak{m} \prec \mathfrak{v}$ starting term for (*) Newton degree of (*) $N(P_{\times \mathfrak{m}}) \notin CY^{\mathbb{N}}$ $N(P_{\times \mathfrak{m}})(c) = 0$ $\deg_{\prec \mathfrak{v}} P := \operatorname{val} N(P_{\times \mathfrak{v}})$

(Assuming that *K* is ω -free)

$$P(y) = 0, \qquad y < v \tag{(*)}$$

 $\mathfrak{m} \prec \mathfrak{v}$ starting monomial for (*) $c \mathfrak{m} \prec \mathfrak{v}$ starting term for (*) Newton degree of (*)

m differential starting monomial

 $N(P_{\times \mathfrak{m}}) \notin CY^{\mathbb{N}}$ $N(P_{\times \mathfrak{m}})(c) = 0$ $\deg_{<\mathfrak{v}} P := \operatorname{val} N(P_{\times \mathfrak{v}})$ $N(P_{\times \mathfrak{m}})_i \neq 0, \quad \deg_{<\gamma} R_{P_{i\nu} + \mathfrak{m}^{\dagger}} > 0$

22/26

(Assuming that *K* is ω -free)

$$P(y) = 0, \qquad y < v \tag{*}$$

 $\mathfrak{m} \prec \mathfrak{v}$ starting monomial for (*) $c \mathfrak{m} \prec \mathfrak{v}$ starting term for (*)

Newton degree of (*)

m differential starting monomial

Usual properties of Newton degree

 $N(P_{\times \mathfrak{m}}) \notin CY^{\mathbb{N}}$ $N(P_{\times \mathfrak{m}})(c) = 0$ $\deg_{<\mathfrak{v}} P := \operatorname{val} N(P_{\times \mathfrak{v}})$ $N(P_{\times \mathfrak{m}})_{i} \neq 0, \quad \deg_{<\gamma} R_{P_{i,r}+\mathfrak{m}^{\dagger}} > 0$ $\varphi < \mathfrak{v} \implies \deg_{<\mathfrak{v}} P_{+\varphi} = \deg_{<\mathfrak{v}} P$ $\mathfrak{w} < \mathfrak{v} \implies \deg_{<\mathfrak{m}} P \leqslant \deg_{<\mathfrak{v}} P$

22/26

K still ω -free and with a monomial group $\mathfrak{M} \subseteq K^{\neq 0}$.

K still ω -free and with a monomial group $\mathfrak{M} \subseteq K^{\neq 0}$.

Theorem

Let $P, Q \in K{Y}^{\neq 0}$ be homogeneous of degrees i < j.

Then there exists a unique equalizer $\mathfrak{e} \in \mathfrak{M}$ *such that* $N((P+Q)_{\times \mathfrak{e}})$ *is not homogeneous.*

K still ω -free and with a monomial group $\mathfrak{M} \subseteq K^{\neq 0}$.

Theorem

Let $P, Q \in K{Y}^{\neq 0}$ be homogeneous of degrees i < j.

Then there exists a unique equalizer $\mathfrak{e} \in \mathfrak{M}$ *such that* $N((P+Q)_{\times \mathfrak{e}})$ *is not homogeneous.*

Proof. Systematically adopt "eventual" vision.

K still ω -free and with a monomial group $\mathfrak{M} \subseteq K^{\neq 0}$.

Theorem

Let $P, Q \in K{Y}^{\neq 0}$ be homogeneous of degrees i < j.

Then there exists a unique equalizer $\mathfrak{e} \in \mathfrak{M}$ *such that* $N((P+Q)_{\times \mathfrak{e}})$ *is not homogeneous.*

Proof. Systematically adopt "eventual" vision.

As in the transseries case, e can be approximated well:

$$P \sim a Y^{i-i'}(Y')^{i'} = a Y^i(Y^{\dagger})^{i'} \text{ and } Q \sim b Y^{j-j'}(Y')^{j'} = b Y^j(Y^{\dagger})$$

$$\mathfrak{e} \approx \mathfrak{e}_{\text{approx}}(P,Q) \coloneqq \mathfrak{d} \left(\frac{a}{b}(a^{\dagger}-b^{\dagger})^{i'-j'}\right)^{1/(j-i)}$$

K still ω -free and with a monomial group $\mathfrak{M} \subseteq K^{\neq 0}$.

Theorem

Let $P, Q \in K{Y}^{\neq 0}$ be homogeneous of degrees i < j.

Then there exists a unique equalizer $\mathfrak{e} \in \mathfrak{M}$ *such that* $N((P+Q)_{\times \mathfrak{e}})$ *is not homogeneous.*

Proof. Systematically adopt "eventual" vision.

As in the transseries case, e can be approximated well:

$$P \sim a Y^{i-i'} (Y')^{i'} = a Y^{i} (Y^{\dagger})^{i'} \text{ and } Q \sim b Y^{j-j'} (Y')^{j'} = b Y^{j} (Y^{\dagger})^{j}$$

$$\mathfrak{e} \approx \mathfrak{e}_{\text{approx}}(P, Q) \coloneqq \mathfrak{d} (\frac{a}{b} (a^{\dagger} - b^{\dagger})^{i'-j'})^{1/(j-i)}$$

$$\mathfrak{e}_{0} \coloneqq 1, \ \mathfrak{e}_{1} \coloneqq \mathfrak{e}_{\text{approx}}(P_{\times \mathfrak{e}_{0}}, Q_{\times \mathfrak{e}_{0}}), \ \mathfrak{e}_{2} \coloneqq \mathfrak{e}_{\text{approx}}(P_{\times \mathfrak{e}_{1}}, Q_{\times \mathfrak{e}_{1}}), \dots$$

K still ω -free and with a monomial group $\mathfrak{M} \subseteq K^{\neq 0}$.

Theorem

Let $P, Q \in K{Y}^{\neq 0}$ be homogeneous of degrees i < j.

Then there exists a unique equalizer $\mathfrak{e} \in \mathfrak{M}$ *such that* $N((P+Q)_{\times \mathfrak{e}})$ *is not homogeneous.*

Proof. Systematically adopt "eventual" vision.

As in the transseries case, e can be approximated well:

$$P \sim a Y^{i-i'}(Y')^{i'} = a Y^{i}(Y^{\dagger})^{i'} \text{ and } Q \sim b Y^{j-j'}(Y')^{j'} = b Y^{j}(Y^{\dagger})^{j}$$

$$\mathfrak{e} \approx \mathfrak{e}_{approx}(P,Q) \coloneqq \mathfrak{d}(\frac{a}{b}(a^{\dagger}-b^{\dagger})^{i'-j'})^{1/(j-i)}$$

$$\mathfrak{e}_{0} \coloneqq 1, \mathfrak{e}_{1} \coloneqq \mathfrak{e}_{approx}(P_{\times \mathfrak{e}_{0}}, Q_{\times \mathfrak{e}_{0}}), \mathfrak{e}_{2} \coloneqq \mathfrak{e}_{approx}(P_{\times \mathfrak{e}_{1}}, Q_{\times \mathfrak{e}_{1}}), \dots$$

$$\mathfrak{e}_{0}/\mathfrak{e} \gg \mathfrak{e}_{1}/\mathfrak{e} \gg \mathfrak{e}_{2}/\mathfrak{e} \gg \cdots \qquad (\mathfrak{m} \gg \mathfrak{n} \Leftrightarrow \log \mathfrak{m} \succeq \mathfrak{n})$$

The equalizer theorem

K still ω -free and with a monomial group $\mathfrak{M} \subseteq K^{\neq 0}$.

Theorem

Let $P, Q \in K{Y}^{\neq 0}$ be homogeneous of degrees i < j.

Then there exists a unique equalizer $\mathfrak{e} \in \mathfrak{M}$ *such that* $N((P+Q)_{\times \mathfrak{e}})$ *is not homogeneous.*

Proof. Systematically adopt "eventual" vision.

As in the transseries case, e can be approximated well:

$$P \sim a Y^{i-i'}(Y')^{i'} = a Y^{i}(Y^{\dagger})^{i'} \text{ and } Q \sim b Y^{j-j'}(Y')^{j'} = b Y^{j}(Y^{\dagger})^{j'}$$

$$\mathfrak{e} \approx \mathfrak{e}_{approx}(P,Q) \coloneqq \mathfrak{d}(\frac{a}{b}(a^{\dagger}-b^{\dagger})^{i'-j'})^{1/(j-i)}$$

$$\mathfrak{e}_{0} \coloneqq 1, \mathfrak{e}_{1} \coloneqq \mathfrak{e}_{approx}(P_{\times \mathfrak{e}_{0}}, Q_{\times \mathfrak{e}_{0}}), \mathfrak{e}_{2} \coloneqq \mathfrak{e}_{approx}(P_{\times \mathfrak{e}_{1}}, Q_{\times \mathfrak{e}_{1}}), \dots$$

$$\mathfrak{e}_{0}/\mathfrak{e} \gg \mathfrak{e}_{1}/\mathfrak{e} \gg \mathfrak{e}_{2}/\mathfrak{e} \gg \cdots \qquad (\mathfrak{m} \gg \mathfrak{n} \Leftrightarrow \log \mathfrak{m} \succeq \mathfrak{n})$$

However, this is not good enough for convergence in arbitrary H-fields...

$$P_{\times \mathfrak{e}_{0}} \rightarrow P_{\times \mathfrak{e}_{1}} \rightarrow P_{\times \mathfrak{e}_{2}} \rightarrow \cdots \qquad \qquad Q_{\times \mathfrak{e}_{0}} \rightarrow Q_{\times \mathfrak{e}_{1}} \rightarrow Q_{\times \mathfrak{e}_{2}} \rightarrow \cdots \\ R_{P,+\mathfrak{e}_{0}^{\dagger}} \rightarrow R_{P,+\mathfrak{e}_{1}^{\dagger}} \rightarrow R_{P,+\mathfrak{e}_{2}^{\dagger}} \rightarrow \cdots \qquad \qquad \qquad R_{Q,+\mathfrak{e}_{0}^{\dagger}} \rightarrow Q_{P,+\mathfrak{e}_{1}^{\dagger}} \rightarrow R_{Q,+\mathfrak{e}_{2}^{\dagger}} \rightarrow \cdots$$

One remedy: use transfinite induction. Or...

For $k \ge 1$, let $d_k := \deg_{\langle \mathfrak{e}_k^\dagger - \mathfrak{e}_{k-1}^\dagger} R_{P, +\mathfrak{e}_k^\dagger}$ and $e_k := \deg_{\langle \mathfrak{e}_k^\dagger - \mathfrak{e}_{k-1}^\dagger} R_{P, +\mathfrak{e}_k^\dagger}$ We have $d_1 \ge d_2 \ge \cdots$ and $e_1 \ge e_2 \ge \cdots$

One remedy: use transfinite induction. Or...

For $k \ge 1$, let $d_k := \deg_{\langle \mathfrak{e}_k^\dagger - \mathfrak{e}_{k-1}^\dagger} R_{P, +\mathfrak{e}_k^\dagger}$ and $e_k := \deg_{\langle \mathfrak{e}_k^\dagger - \mathfrak{e}_{k-1}^\dagger} R_{P, +\mathfrak{e}_k^\dagger}$ We have $d_1 \ge d_2 \ge \cdots$ and $e_1 \ge e_2 \ge \cdots$ We are done whenever $d_k = e_k = 0$

- For $k \ge 1$, let $d_k := \deg_{\langle \mathfrak{e}_k^\dagger \mathfrak{e}_{k-1}^\dagger} R_{P, +\mathfrak{e}_k^\dagger}$ and $e_k := \deg_{\langle \mathfrak{e}_k^\dagger \mathfrak{e}_{k-1}^\dagger} R_{P, +\mathfrak{e}_k^\dagger}$ We have $d_1 \ge d_2 \ge \cdots$ and $e_1 \ge e_2 \ge \cdots$
- We are done whenever $d_k = e_k = 0$
- Assume that $d = d_k = d_{k+1}$, $e = e_k = e_{k+1} = e_{k+2}$, and d + e > 0

- For $k \ge 1$, let $d_k := \deg_{\langle \mathfrak{e}_k^\dagger \mathfrak{e}_{k-1}^\dagger} R_{P, +\mathfrak{e}_k^\dagger}$ and $e_k := \deg_{\langle \mathfrak{e}_k^\dagger \mathfrak{e}_{k-1}^\dagger} R_{P, +\mathfrak{e}_k^\dagger}$ We have $d_1 \ge d_2 \ge \cdots$ and $e_1 \ge e_2 \ge \cdots$
- We are done whenever $d_k = e_k = 0$
- Assume that $d = d_k = d_{k+1}$, $e = e_k = e_{k+1} = e_{k+2}$, and d + e > 0
- Then $R_{P_{i}+\mathfrak{e}_{l}^{\dagger}>d}$ and $R_{Q_{i}+\mathfrak{e}_{l}^{\dagger}>e}$ are "negligible" for $l \ge k+1$

- For $k \ge 1$, let $d_k := \deg_{\langle \mathfrak{e}_k^\dagger \mathfrak{e}_{k-1}^\dagger} R_{P, +\mathfrak{e}_k^\dagger}$ and $e_k := \deg_{\langle \mathfrak{e}_k^\dagger \mathfrak{e}_{k-1}^\dagger} R_{P, +\mathfrak{e}_k^\dagger}$ We have $d_1 \ge d_2 \ge \cdots$ and $e_1 \ge e_2 \ge \cdots$
- We are done whenever $d_k = e_k = 0$
- Assume that $d = d_k = d_{k+1}$, $e = e_k = e_{k+1} = e_{k+2}$, and d + e > 0Then $R_{P,+\mathfrak{e}_l^{\dagger},>d}$ and $R_{Q,+\mathfrak{e}_l^{\dagger},>e}$ are "negligible" for $l \ge k+1$ In particular, $R_{P,+\mathfrak{e}_{k+2}^{\dagger},d} \sim R_{P,+\mathfrak{e}_{k+1}^{\dagger},d}$ and $R_{Q,+\mathfrak{e}_{k+2}^{\dagger},d} \sim R_{Q,+\mathfrak{e}_{k+1}^{\dagger},d}$

One remedy: use transfinite induction. Or...

- For $k \ge 1$, let $d_k := \deg_{\langle \mathfrak{e}_k^\dagger \mathfrak{e}_{k-1}^\dagger} R_{P, +\mathfrak{e}_k^\dagger}$ and $e_k := \deg_{\langle \mathfrak{e}_k^\dagger \mathfrak{e}_{k-1}^\dagger} R_{P, +\mathfrak{e}_k^\dagger}$ We have $d_1 \ge d_2 \ge \cdots$ and $e_1 \ge e_2 \ge \cdots$
- We are done whenever $d_k = e_k = 0$
- Assume that $d = d_k = d_{k+1}$, $e = e_k = e_{k+1} = e_{k+2}$, and d + e > 0Then $R_{P,+\mathfrak{e}_l^{\dagger},>d}$ and $R_{Q,+\mathfrak{e}_l^{\dagger},>e}$ are "negligible" for $l \ge k+1$ In particular, $R_{P,+\mathfrak{e}_{k+2}^{\dagger},d} \sim R_{P,+\mathfrak{e}_{k+1}^{\dagger},d}$ and $R_{Q,+\mathfrak{e}_{k+2}^{\dagger},d} \sim R_{Q,+\mathfrak{e}_{k+1}^{\dagger},d}$
- Take $\mathfrak{e}_{k+2} := (\mathfrak{d}(R_{P_{i}+\mathfrak{e}_{k+1}^{\dagger}})/\mathfrak{d}(R_{Q_{i}+\mathfrak{e}_{k+1}^{\dagger}}))^{1/(j-i)}$ instead of $\mathfrak{e}_{k+2} := \mathfrak{e}_{approx}(P_{\times \mathfrak{e}_{k+1}}, Q_{\times \mathfrak{e}_{k+1}})$ This ensures that $d_{k+2} < d_{k+1}$ or $e_{k+2} < e_{k+1}$.

Quasi-linear equations

Definition

The H-field K is said to be newtonian if every quasi-linear equation has a solution.

Quasi-linear equations

Definition

The H-field K is said to be newtonian if every quasi-linear equation has a solution.

Theorem

Let *K* be an ungrounded ω -free *H*-field with divisible Γ and real closed *C*. Then there exists a newtonian extension $K^n \supseteq K$ which embeds over *K* into any newtonian extension of *K*. This extension $K^n \supseteq K$ is immediate, differentially algebraic, and K^n is ω -free. We call it the **newtonization** of *K*.

Quasi-linear equations

Definition

The H-field K is said to be newtonian if every quasi-linear equation has a solution.

Theorem

Let K be an ungrounded ω -free H-field with divisible Γ and real closed C. Then there exists a newtonian extension $K^n \supseteq K$ which embeds over K into any newtonian extension of K. This extension $K^n \supseteq K$ is immediate, differentially algebraic, and K^n is ω -free. We call it the **newtonization** of K.

Corollary

Let K be an ungrounded ω -free H-field with divisible Γ and real closed C. Then there exists a newtonian Liouville closed extension $K^{nl} \supseteq K$ which embeds over K into any newtonian Liouville closed extension of K. This extension $K^{nl} \supseteq K$ is differentially algebraic, ω -free, and we have $C_{K^{nl}} = C$. We call K^{nl} the **Newton-Liouville closure** of K.

K is ω -free, with a divisible monomial group $\mathfrak{M} \subseteq K^{\neq 0}$ and small derivation.

Unravelling

K is ω -free, with a divisible monomial group $\mathfrak{M} \subseteq K^{\neq 0}$ and small derivation.

Theorem

Any asymptotic differential equation over K can be unravelled.

Unravelling

K is ω -free, with a divisible monomial group $\mathfrak{M} \subseteq K^{\neq 0}$ and small derivation.

Theorem

Any asymptotic differential equation over K can be unravelled.

K is asymptotically d-algebraically maximal \iff

There exists no proper immediate d-algebraic H-field extension of *K*

Unravelling

K is ω -free, with a divisible monomial group $\mathfrak{M} \subseteq K^{\neq 0}$ and small derivation.

Theorem

Any asymptotic differential equation over K can be unravelled.

K is asymptotically d-algebraically maximal \iff

There exists no proper immediate d-algebraic H-field extension of *K*

Corollary

If K is newtonian, then K is asymptotically d-algebraically maximal.