Lesson 10 — H-closed H-fields

Joris van der Hoeven

IMS summer school Singapore, July 14, 2023

THE REPORT OF TAXABLE PARTY OF TAXABLE PARTY OF TAXABLE PARTY.

$$\mathscr{L} := \{0, 1, +, -, \cdot, \partial, \leq, \leq\}.$$

$$\mathscr{L} := \{0, 1, +, -, \cdot, \partial, \leqslant, \leqslant\}.$$

Definition

An H-field K is **H-closed** if it is ω -free, newtonian, and Liouville closed.

$$\mathscr{L} := \{0, 1, +, -, \cdot, \partial, \leqslant, \leqslant\}.$$

Definition

An H-field K is **H-closed** if it is ω -free, newtonian, and Liouville closed.

Theorem

The \mathcal{L} -theory T^{nl} of H-closed H-fields is model complete. It is the model companion of the \mathcal{L} -theory of H-fields.

$$\mathscr{L} := \{0, 1, +, -, \cdot, \partial, \leqslant, \leqslant\}.$$

Definition

An H-field K is **H-closed** if it is ω -free, newtonian, and Liouville closed.

Theorem

The \mathcal{L} -theory T^{nl} of H-closed H-fields is model complete. It is the model companion of the \mathcal{L} -theory of H-fields.

Proof. Follows from the following embedding lemma.

$$\mathscr{L} := \{0, 1, +, -, \cdot, \partial, \leqslant, \leqslant\}.$$

Definition

An H-field K is **H-closed** if it is ω -free, newtonian, and Liouville closed.

Theorem

The \mathcal{L} -theory T^{nl} of H-closed H-fields is model complete. It is the model companion of the \mathcal{L} -theory of H-fields.

Proof. Follows from the following embedding lemma.

Lemma

Let E be an ω *-free H*-*subfield of an H*-*closed H*-*field K and let* φ : $E \to F$ *be an embedding of E into* $a |K|^+$ -*saturated H*-*closed H*-*field F*. *Then* φ *extends to an embedding* φ : $K \to F$.

$$\mathbf{I}(K) := \{ y' : y \in K^{< 1} \}$$

Proposition

Let K be an ω -free real closed H-field. Then I(K) is not qf-definable in the \mathscr{L}_K -structure K.

$$\mathbf{I}(K) := \{ y' : y \in K^{< 1} \}$$

Proposition

Let K be an ω -free real closed H-field. Then I(K) is not qf-definable in the \mathscr{L}_K -structure K.

Proof. Take $\ell > 0$ in an elementary extension K^* of K with $1 < \ell < K^>$.

$$\mathbf{I}(K) := \{ y' : y \in K^{< 1} \}$$

Proposition

Let K be an ω *-free real closed H-field. Then* I(*K*) *is not qf-definable in the* \mathscr{L}_K *-structure K.*

Proof. Take $\ell > 0$ in an elementary extension K^* of K with $1 < \ell < K^>$. Consider the immediate extensions $K(\lambda)$ and $K(\lambda + \gamma)$ of K with $\gamma := \ell^{\dagger}$, $\lambda := -\gamma^{\dagger}$.

$$\lambda = \frac{1}{x} + \frac{1}{x \log x} + \cdots, \qquad \lambda + \gamma = \frac{1}{x} + \frac{1}{x \log x} + \cdots + \frac{1}{x \log x \log_2 x \cdots}$$

$$\mathbf{I}(K) := \{ y' : y \in K^{< 1} \}$$

Proposition

Let K be an ω -free real closed H-field. Then I(K) is not qf-definable in the \mathscr{L}_K -structure K.

Proof. Take $\ell > 0$ in an elementary extension K^* of K with $1 < \ell < K^>$.

Consider the immediate extensions $K(\lambda)$ and $K(\lambda + \gamma)$ of K with $\gamma := \ell^{\dagger}$, $\lambda := -\gamma^{\dagger}$.

$$\mathbf{I}(K) := \{ y' : y \in K^{< 1} \}$$

Proposition

Let K be an ω *-free real closed H-field. Then* I(*K*) *is not qf-definable in the* \mathscr{L}_K *-structure K.*

Proof. Take $\ell > 0$ in an elementary extension K^* of K with $1 < \ell < K^>$. Consider the immediate extensions $K(\lambda)$ and $K(\lambda + \gamma)$ of K with $\gamma := \ell^+, \lambda := -\gamma^+$. One verifies that they are isomorphic as H-fields over K via $\lambda \mapsto \lambda + \gamma$.

$$\mathbf{I}(K) := \{ y' : y \in K^{< 1} \}$$

Proposition

Let K be an ω *-free real closed H-field. Then* I(*K*) *is not qf-definable in the* \mathscr{L}_K *-structure K.*

Proof. Take $\ell > 0$ in an elementary extension K^* of K with $1 < \ell < K^>$. Consider the immediate extensions $K(\lambda)$ and $K(\lambda + \gamma)$ of K with $\gamma := \ell^+$, $\lambda := -\gamma^+$. One verifies that they are isomorphic as H-fields over K via $\lambda \mapsto \lambda + \gamma$.

Let $f := (1/\ell)^{\dagger} = -\gamma \notin I(K^*)$ and $g := (1/\ell)' = -\gamma/\ell \in I(K^*)$ with $f^{\dagger} = -\lambda, g^{\dagger} = -(\lambda + \gamma)$. $f = \frac{-1}{x \log x \log_2 x \cdots}, \qquad g = \frac{-1}{x \log x \log_2 x \cdots \ell}$

$$\mathbf{I}(K) := \{ y' : y \in K^{< 1} \}$$

Proposition

Let K be an ω *-free real closed H-field. Then* I(*K*) *is not qf-definable in the* \mathscr{L}_K *-structure K.*

Proof. Take $\ell > 0$ in an elementary extension K^* of K with $1 < \ell < K^>$. Consider the immediate extensions $K(\lambda)$ and $K(\lambda + \gamma)$ of K with $\gamma := \ell^+$, $\lambda := -\gamma^+$. One verifies that they are isomorphic as H-fields over K via $\lambda \mapsto \lambda + \gamma$.

Let $f := (1/\ell)^{\dagger} = -\gamma \notin I(K^*)$ and $g := (1/\ell)' = -\gamma/\ell \in I(K^*)$ with $f^{\dagger} = -\lambda$, $g^{\dagger} = -(\lambda + \gamma)$.

$$\mathbf{I}(K) := \{ y' : y \in K^{< 1} \}$$

Proposition

Let K be an ω *-free real closed H-field. Then* I(*K*) *is not qf-definable in the* \mathscr{L}_K *-structure K.*

Proof. Take $\ell > 0$ in an elementary extension K^* of K with $1 < \ell < K^>$. Consider the immediate extensions $K(\lambda)$ and $K(\lambda + \gamma)$ of K with $\gamma := \ell^+$, $\lambda := -\gamma^+$. One verifies that they are isomorphic as H-fields over K via $\lambda \mapsto \lambda + \gamma$.

Let $f := (1/\ell)^{\dagger} = -\gamma \notin I(K^*)$ and $g := (1/\ell)' = -\gamma/\ell \in I(K^*)$ with $f^{\dagger} = -\lambda$, $g^{\dagger} = -(\lambda + \gamma)$. Then $K(\lambda, f) \not \ni \ell$ and $K(\lambda + \gamma, g) \not \ni \ell$ are isomorphic via $\lambda \mapsto \lambda + \gamma$ and $f \mapsto g$.

$$\mathbf{I}(K) := \{ y' : y \in K^{< 1} \}$$

Proposition

Let K be an ω *-free real closed H-field. Then* I(*K*) *is not qf-definable in the* \mathscr{L}_K *-structure K.*

Proof. Take $\ell > 0$ in an elementary extension K^* of K with $1 < \ell < K^>$. Consider the immediate extensions $K(\lambda)$ and $K(\lambda + \gamma)$ of K with $\gamma := \ell^+$, $\lambda := -\gamma^+$. One verifies that they are isomorphic as H-fields over K via $\lambda \mapsto \lambda + \gamma$.

Let $f := (1/\ell)^{\dagger} = -\gamma \notin I(K^*)$ and $g := (1/\ell)' = -\gamma/\ell \in I(K^*)$ with $f^{\dagger} = -\lambda$, $g^{\dagger} = -(\lambda + \gamma)$. Then $K(\lambda, f) \not \ni \ell$ and $K(\lambda + \gamma, g) \not \ni \ell$ are isomorphic via $\lambda \mapsto \lambda + \gamma$ and $f \mapsto g$.

Now assume $I(K) = \{y : \varphi(y)\}$, with φ quantifier-free in \mathcal{L}_K .

$$\mathbf{I}(K) := \{ y' : y \in K^{< 1} \}$$

Proposition

Let K be an ω *-free real closed H-field. Then* I(*K*) *is not qf-definable in the* \mathscr{L}_K *-structure K.*

Proof. Take $\ell > 0$ in an elementary extension K^* of K with $1 < \ell < K^>$. Consider the immediate extensions $K(\lambda)$ and $K(\lambda + \gamma)$ of K with $\gamma := \ell^+$, $\lambda := -\gamma^+$. One verifies that they are isomorphic as H-fields over K via $\lambda \mapsto \lambda + \gamma$.

Let $f := (1/\ell)^{\dagger} = -\gamma \notin I(K^*)$ and $g := (1/\ell)' = -\gamma/\ell \in I(K^*)$ with $f^{\dagger} = -\lambda$, $g^{\dagger} = -(\lambda + \gamma)$. Then $K(\lambda, f) \not \ni \ell$ and $K(\lambda + \gamma, g) \not \ni \ell$ are isomorphic via $\lambda \mapsto \lambda + \gamma$ and $f \mapsto g$.

Now assume I(*K*) = { $y: \varphi(y)$ }, with φ quantifier-free in \mathscr{L}_K . Then $K^* \models \neg \varphi(f)$ but $K^* \models \varphi(g)$ implies $K(\lambda, \gamma) \models \neg \varphi(f)$ but $K(\lambda + \gamma, g) \models \varphi(g)$.

$$\mathbf{I}(K) := \{ y' : y \in K^{< 1} \}$$

Proposition

Let K be an ω *-free real closed H-field. Then* I(*K*) *is not qf-definable in the* \mathscr{L}_K *-structure K.*

Proof. Take $\ell > 0$ in an elementary extension K^* of K with $1 < \ell < K^>$. Consider the immediate extensions $K(\lambda)$ and $K(\lambda + \gamma)$ of K with $\gamma := \ell^+$, $\lambda := -\gamma^+$. One verifies that they are isomorphic as H-fields over K via $\lambda \mapsto \lambda + \gamma$.

Let $f := (1/\ell)^{\dagger} = -\gamma \notin I(K^*)$ and $g := (1/\ell)' = -\gamma/\ell \in I(K^*)$ with $f^{\dagger} = -\lambda$, $g^{\dagger} = -(\lambda + \gamma)$. Then $K(\lambda, f) \not \ni \ell$ and $K(\lambda + \gamma, g) \not \ni \ell$ are isomorphic via $\lambda \mapsto \lambda + \gamma$ and $f \mapsto g$.

Now assume $I(K) = \{y : \varphi(y)\}$, with φ quantifier-free in \mathscr{L}_K . Then $K^* \models \neg \varphi(f)$ but $K^* \models \varphi(g)$ implies $K(\lambda, \gamma) \models \neg \varphi(f)$ but $K(\lambda + \gamma, g) \models \varphi(g)$. This violates the isomorphism between $K(\lambda, f)$ and $K(\lambda + \gamma, g)$.

 $\mathscr{L}^{\iota}_{\Lambda\Omega} := \{0, 1, +, -, \cdot, \partial, \leq, \leq, \iota, \Lambda, \Omega\}$

$$\mathscr{L}^{\iota}_{\Lambda\Omega} := \{0, 1, +, -, \cdot, \partial, \leq, \leq, \iota, \Lambda, \Omega\}$$

with the semantics

$$\iota(a) := a^{-1} \text{ if } a \neq 0, \qquad \iota(0) := 0$$

$$\Lambda(a) \Leftrightarrow (\exists y < 1) \quad a = -y^{\dagger \dagger}$$

$$\Omega(a) \Leftrightarrow (\exists y \neq 0) \quad 4y^{\prime \prime} + ay = 0.$$

This yields a theory $T_{\Lambda\Omega}^{nl,\iota}$ that extends T^{nl} .

$$\mathscr{L}^{\iota}_{\Lambda\Omega} := \{0, 1, +, -, \cdot, \partial, \leq, \leq, \iota, \Lambda, \Omega\}$$

with the semantics

$$\iota(a) := a^{-1} \text{ if } a \neq 0, \qquad \iota(0) := 0$$

$$\Lambda(a) \Leftrightarrow (\exists y < 1) \quad a = -y^{\dagger \dagger}$$

$$\Omega(a) \Leftrightarrow (\exists y \neq 0) \quad 4y^{\prime \prime} + ay = 0.$$

This yields a theory $T_{\Lambda\Omega}^{nl,\iota}$ that extends T^{nl} .

Theorem

The theory $T^{nl,\iota}_{\Lambda\Omega}$ *eliminates quantifiers.*

$$\mathscr{L}^{\iota}_{\Lambda\Omega} := \{0, 1, +, -, \cdot, \partial, \leq, \leq, \iota, \Lambda, \Omega\}$$

with the semantics

$$\iota(a) := a^{-1} \text{ if } a \neq 0, \qquad \iota(0) := 0$$

$$\Lambda(a) \Leftrightarrow (\exists y < 1) \quad a = -y^{\dagger \dagger}$$

$$\Omega(a) \Leftrightarrow (\exists y \neq 0) \quad 4y^{\prime \prime} + ay = 0.$$

This yields a theory $T_{\Lambda\Omega}^{nl,\iota}$ that extends T^{nl} .

Theorem

The theory $T^{nl,\iota}_{\Lambda\Omega}$ *eliminates quantifiers.*

Note. For model complete theories, obstruction to qf-elimination is a language issue.

Quantifier elimination — proof

Theorem

The theory $T^{nl,\iota}_{\Lambda\Omega}$ *eliminates quantifiers.*

Proof. Follows from the following embedding result.

Quantifier elimination — proof

Theorem

The theory $T^{nl,\iota}_{\Lambda\Omega}$ *eliminates quantifiers.*

Proof. Follows from the following embedding result.

ΛΩ-field := H-field *K* with additional (ι , Λ, Ω)-structure.

Theorem

Let K and L be ω -free newtonian $\Lambda\Omega$ -fields such that L is $|K|^+$ -saturated. Let E be a substructure of K and let $\varphi: E \to L$ be an embedding. Then φ can be extended to an embedding $\hat{\varphi}: E \to L$.

Quantifier elimination — proof

5/23

Theorem

The theory $T^{nl,\iota}_{\Lambda\Omega}$ *eliminates quantifiers.*

Proof. Follows from the following embedding result.

ΛΩ-field := H-field *K* with additional (ι , Λ, Ω)-structure.

Theorem

Let K and L be ω -free newtonian $\Lambda\Omega$ -fields such that L is $|K|^+$ -saturated. Let E be a substructure of K and let $\varphi: E \to L$ be an embedding. Then φ can be extended to an embedding $\hat{\varphi}: E \to L$.

Proof ideas. Extension lemmas for various individual cases.

The relations Λ , Ω act as switchmen, dictating the direction to take at a fork.

 $T_{\text{small}}^{\text{nl}} := T^{\text{nl}} + \text{small derivation}$ $T_{\text{large}}^{\text{nl}} := T^{\text{nl}} + \text{large derivation}$ $T^{\mathrm{nl},\iota}_{\Lambda\Omega,\mathrm{small}} := T^{\mathrm{nl},\iota}_{\Lambda\Omega} + \mathrm{small} \mathrm{ derivation}$ $T^{\mathrm{nl},\iota}_{\Lambda\Omega,\mathrm{large}} := T^{\mathrm{nl},\iota}_{\Lambda\Omega} + \mathrm{large} \mathrm{ derivation}$

 $T_{\text{small}}^{\text{nl}} := T^{\text{nl}} + \text{small derivation} \qquad T_{\Lambda\Omega,\text{small}}^{\text{nl},\iota} := T_{\Lambda\Omega}^{\text{nl},\iota} + \text{small derivation} \\ T_{\text{large}}^{\text{nl}} := T^{\text{nl}} + \text{large derivation} \qquad T_{\Lambda\Omega,\text{large}}^{\text{nl},\iota} := T_{\Lambda\Omega}^{\text{nl},\iota} + \text{large derivation}$

Theorem

 $T_{\text{small}}^{\text{nl}} := T^{\text{nl}} + \text{small derivation} \qquad T_{\Lambda\Omega,\text{small}}^{\text{nl},\iota} := T_{\Lambda\Omega}^{\text{nl},\iota} + \text{small derivation} \\ T_{\text{large}}^{\text{nl}} := T^{\text{nl}} + \text{large derivation} \qquad T_{\Lambda\Omega,\text{large}}^{\text{nl},\iota} := T_{\Lambda\Omega}^{\text{nl},\iota} + \text{large derivation}$

Theorem

The completions of T^{nl} are the two \mathscr{L} -theories T^{nl}_{small} and T^{nl}_{large} . The theories T^{nl}_{small} , T^{nl}_{large} , and T^{nl} are decidable.

• Completeness of $T_{\Lambda\Omega,\text{small}}^{\text{nl},\iota}$ and $T_{\Lambda\Omega,\text{large}}^{\text{nl},\iota} \Longrightarrow$ completeness of $T_{\text{small}}^{\text{nl}}$ and $T_{\text{large}}^{\text{nl}}$.

 $T_{\text{small}}^{\text{nl}} := T^{\text{nl}} + \text{small derivation} \qquad T_{\Lambda\Omega,\text{small}}^{\text{nl},\iota} := T_{\Lambda\Omega}^{\text{nl},\iota} + \text{small derivation} \\ T_{\text{large}}^{\text{nl}} := T^{\text{nl}} + \text{large derivation} \qquad T_{\Lambda\Omega,\text{large}}^{\text{nl},\iota} := T_{\Lambda\Omega}^{\text{nl},\iota} + \text{large derivation}$

Theorem

- Completeness of $T_{\Lambda\Omega,\text{small}}^{\text{nl},\iota}$ and $T_{\Lambda\Omega,\text{large}}^{\text{nl},\iota} \Longrightarrow$ completeness of $T_{\text{small}}^{\text{nl}}$ and $T_{\text{large}}^{\text{nl}}$.
- The $\Lambda\Omega$ -field ($\mathbb{Q}(x), \partial/\partial x$) embeds into any model of $T_{\Lambda\Omega,\text{small}}^{\text{nl},\iota}$.

 $T_{\text{small}}^{\text{nl}} := T^{\text{nl}} + \text{small derivation} \qquad T_{\Lambda\Omega,\text{small}}^{\text{nl},\iota} := T_{\Lambda\Omega}^{\text{nl},\iota} + \text{small derivation} \\ T_{\text{large}}^{\text{nl}} := T^{\text{nl}} + \text{large derivation} \qquad T_{\Lambda\Omega,\text{large}}^{\text{nl},\iota} := T_{\Lambda\Omega}^{\text{nl},\iota} + \text{large derivation}$

Theorem

- Completeness of $T_{\Lambda\Omega,\text{small}}^{\text{nl},\iota}$ and $T_{\Lambda\Omega,\text{large}}^{\text{nl},\iota} \Longrightarrow$ completeness of $T_{\text{small}}^{\text{nl}}$ and $T_{\text{large}}^{\text{nl}}$.
- The $\Lambda\Omega$ -field ($\mathbb{Q}(x), \partial/\partial x$) embeds into any model of $T_{\Lambda\Omega,\text{small}}^{\text{nl},\iota}$.
- The $\Lambda\Omega$ -field ($\mathbb{Q}(x), x^2 \partial / \partial x$) embeds into any model of $T^{nl,\iota}_{\Lambda\Omega,large}$.

 $T_{\text{small}}^{\text{nl}} := T^{\text{nl}} + \text{small derivation} \qquad T_{\Lambda\Omega,\text{small}}^{\text{nl},\iota} := T_{\Lambda\Omega}^{\text{nl},\iota} + \text{small derivation} \\ T_{\text{large}}^{\text{nl}} := T^{\text{nl}} + \text{large derivation} \qquad T_{\Lambda\Omega,\text{large}}^{\text{nl},\iota} := T_{\Lambda\Omega}^{\text{nl},\iota} + \text{large derivation}$

Theorem

- Completeness of $T_{\Lambda\Omega,\text{small}}^{\text{nl},\iota}$ and $T_{\Lambda\Omega,\text{large}}^{\text{nl},\iota} \Longrightarrow$ completeness of $T_{\text{small}}^{\text{nl}}$ and $T_{\text{large}}^{\text{nl}}$.
- The $\Lambda\Omega$ -field ($\mathbb{Q}(x), \partial/\partial x$) embeds into any model of $T_{\Lambda\Omega,\text{small}}^{\text{nl},\iota}$.
- The $\Lambda\Omega$ -field ($\mathbb{Q}(x), x^2 \partial / \partial x$) embeds into any model of $T_{\Lambda\Omega, \text{large}}^{\text{nl}, \iota}$.
- The axioms of $T_{\text{small}}^{\text{nl}}$, $T_{\text{large}}^{\text{nl}}$, and T^{nl} can effectively be enumerated.

 $T_{\text{small}}^{\text{nl}} := T^{\text{nl}} + \text{small derivation} \qquad T_{\Lambda\Omega,\text{small}}^{\text{nl},\iota} := T_{\Lambda\Omega}^{\text{nl},\iota} + \text{small derivation} \\ T_{\text{large}}^{\text{nl}} := T^{\text{nl}} + \text{large derivation} \qquad T_{\Lambda\Omega,\text{large}}^{\text{nl},\iota} := T_{\Lambda\Omega}^{\text{nl},\iota} + \text{large derivation}$

Theorem

The completions of T^{nl} are the two \mathscr{L} -theories T^{nl}_{small} and T^{nl}_{large} . The theories T^{nl}_{small} , T^{nl}_{large} , and T^{nl} are decidable.

- Completeness of $T_{\Lambda\Omega,\text{small}}^{\text{nl},\iota}$ and $T_{\Lambda\Omega,\text{large}}^{\text{nl},\iota} \Longrightarrow$ completeness of $T_{\text{small}}^{\text{nl}}$ and $T_{\text{large}}^{\text{nl}}$.
- The $\Lambda\Omega$ -field ($\mathbb{Q}(x), \partial/\partial x$) embeds into any model of $T_{\Lambda\Omega,\text{small}}^{\text{nl},\iota}$.
- The $\Lambda\Omega$ -field ($\mathbb{Q}(x), x^2 \partial / \partial x$) embeds into any model of $T^{nl, \iota}_{\Lambda\Omega, large}$.
- The axioms of $T_{\text{small}}^{\text{nl}}$, $T_{\text{large}}^{\text{nl}}$, and T^{nl} can effectively be enumerated.

Note. $\mathbb{Q}(x)^{nl}$ is a **prime model** of T_{small}^{nl} (i.e. it embeds into any other model).

Theorem

Let *K* be an *H*-closed *H*-field. Then the differential intermediate value property (*DIVP*) holds in *K*: for any $P \in K{Y}$ and $f, g \in K$ with f < g and P(f)P(g) < 0, there exists an $h \in K$ with f < h < g and P(h) = 0.

Theorem

Let *K* be an *H*-closed *H*-field. Then the differential intermediate value property (*DIVP*) holds in *K*: for any $P \in K{Y}$ and $f, g \in K$ with f < g and P(f)P(g) < 0, there exists an $h \in K$ with f < h < g and P(h) = 0.

Proof. We may arrange the derivative on *K* to be small via $\partial \rightarrow \phi \partial$.

Theorem

Let *K* be an *H*-closed *H*-field. Then the differential intermediate value property (*DIVP*) holds in *K*: for any $P \in K{Y}$ and $f, g \in K$ with f < g and P(f)P(g) < 0, there exists an $h \in K$ with f < h < g and P(h) = 0.

Proof. We may arrange the derivative on *K* to be small via $\partial \rightarrow \phi \partial$. The grid-based transseries \mathbb{T} form a model of $T_{\text{small}}^{\text{nl}}$.

Theorem

Let *K* be an *H*-closed *H*-field. Then the differential intermediate value property (*DIVP*) holds in *K*: for any $P \in K{Y}$ and $f, g \in K$ with f < g and P(f)P(g) < 0, there exists an $h \in K$ with f < h < g and P(h) = 0.

Proof. We may arrange the derivative on *K* to be small via $\partial \rightarrow \phi \partial$. The grid-based transseries \mathbb{T} form a model of $T_{\text{small}}^{\text{nl}}$.

Since $T_{\text{small}}^{\text{nl}}$ is complete, *K* satisfies the same theory as \mathbb{T} .

Theorem

Let *K* be an *H*-closed *H*-field. Then the differential intermediate value property (*DIVP*) holds in *K*: for any $P \in K{Y}$ and $f, g \in K$ with f < g and P(f)P(g) < 0, there exists an $h \in K$ with f < h < g and P(h) = 0.

Proof. We may arrange the derivative on *K* to be small via $\partial \rightarrow \phi \partial$. The grid-based transseries \mathbb{T} form a model of $T_{\text{small}}^{\text{nl}}$. Since $T_{\text{small}}^{\text{nl}}$ is complete, *K* satisfies the same theory as \mathbb{T} . The intermediate value property holds in \mathbb{T} .
The intermediate value property

Theorem

Let *K* be an *H*-closed *H*-field. Then the differential intermediate value property (*DIVP*) holds in *K*: for any $P \in K{Y}$ and $f, g \in K$ with f < g and P(f)P(g) < 0, there exists an $h \in K$ with f < h < g and P(h) = 0.

Proof. We may arrange the derivative on *K* to be small via $\partial \rightarrow \phi \partial$. The grid-based transseries \mathbb{T} form a model of $T_{\text{small}}^{\text{nl}}$.

Since $T_{\text{small}}^{\text{nl}}$ is complete, *K* satisfies the same theory as \mathbb{T} . The intermediate value property holds in \mathbb{T} .

Corollary

Any \mathcal{S} -based field of transseries of finite logarithmic depth satisfies DIVP.

The intermediate value property

Theorem

Let *K* be an *H*-closed *H*-field. Then the differential intermediate value property (*DIVP*) holds in *K*: for any $P \in K{Y}$ and $f, g \in K$ with f < g and P(f)P(g) < 0, there exists an $h \in K$ with f < h < g and P(h) = 0.

Proof. We may arrange the derivative on *K* to be small via $\partial \rightarrow \phi \partial$. The grid-based transseries \mathbb{T} form a model of $T_{\text{small}}^{\text{nl}}$. Since $T_{\text{small}}^{\text{nl}}$ is complete, *K* satisfies the same theory as \mathbb{T} . The intermediate value property holds in \mathbb{T} .

Corollary

Any \mathscr{S} -based field of transseries of finite logarithmic depth satisfies DIVP.

Theorem

Let K be a Liouville closed H-field. Then K is H-closed if and only if it satisfies DIVP.

Theorem (vdH)

There is a Hardy field that is isomorphic as an H-field to the prime model $\mathbb{Q}(x)^{nl}$ *of* T_{small}^{nl} .

Theorem (vdH)

There is a Hardy field that is isomorphic as an H-field to the prime model $\mathbb{Q}(x)^{nl}$ *of* T_{small}^{nl} .

Note. We naturally have $\mathbb{Q}(x)^{nl} \subseteq \mathbb{T}$. A Hardy field that is at the same time regarded as a subfield of \mathbb{T} was called a **transserial Hardy field**.

Theorem (vdH)

There is a Hardy field that is isomorphic as an H-field to the prime model $\mathbb{Q}(x)^{nl}$ *of* T_{small}^{nl} .

Note. We naturally have $\mathbb{Q}(x)^{nl} \subseteq \mathbb{T}$. A Hardy field that is at the same time regarded as a subfield of \mathbb{T} was called a **transserial Hardy field**.

Theorem (ADH)

Any maximal Hardy field is H-closed.

Theorem (vdH)

There is a Hardy field that is isomorphic as an H-field to the prime model $\mathbb{Q}(x)^{nl}$ *of* T_{small}^{nl} .

Note. We naturally have $\mathbb{Q}(x)^{nl} \subseteq \mathbb{T}$. A Hardy field that is at the same time regarded as a subfield of \mathbb{T} was called a **transserial Hardy field**.

Theorem (ADH)

Any maximal Hardy field is H-closed.

Corollary

 $\mathbb{R}(x)^{nl}$, \mathbb{T} , and all maximal Hardy fields are elementary equivalent.

- We know that maximal Hardy fields are Liouville closed.
- One may check that they are ω -free.
- It remains to show that they are newtonian.

We know that maximal Hardy fields are Liouville closed. One may check that they are ω -free. It remains to show that they are newtonian.

Idea: minimal complexity argument

- We know that maximal Hardy fields are Liouville closed.
- One may check that they are ω -free.
- It remains to show that they are newtonian.

Idea: minimal complexity argument

Consider an ω -free Liouville closed Hardy field *K* that is not newtonian.

- We know that maximal Hardy fields are Liouville closed.
- One may check that they are ω -free.
- It remains to show that they are newtonian.

Idea: minimal complexity argument

Consider an ω -free Liouville closed Hardy field *K* that is not newtonian. Pick a divergent pc-sequence (y_{ρ}) of differentially algebraic type.

- We know that maximal Hardy fields are Liouville closed.
- One may check that they are ω -free.
- It remains to show that they are newtonian.

Idea: minimal complexity argument

Consider an ω -free Liouville closed Hardy field *K* that is not newtonian. Pick a divergent pc-sequence (y_{ρ}) of differentially algebraic type. Pick it of minimal complexity:

- We know that maximal Hardy fields are Liouville closed.
- One may check that they are ω -free.
- It remains to show that they are newtonian.

Idea: minimal complexity argument

- Consider an ω -free Liouville closed Hardy field *K* that is not newtonian. Pick a divergent pc-sequence (y_{ρ}) of differentially algebraic type. Pick it of minimal complexity:
 - Given $P \in K{Y}^{\neq 0}$ of order *r* and degree *d* with $P(y_{\rho}) \rightarrow 0$,
 - the triple $(r, \deg_{Y^{(r)}} P, d)$ is minimal for the lexicographical ordering.

- We know that maximal Hardy fields are Liouville closed.
- One may check that they are ω -free.
- It remains to show that they are newtonian.

Idea: minimal complexity argument

- Consider an ω -free Liouville closed Hardy field *K* that is not newtonian. Pick a divergent pc-sequence (y_{ρ}) of differentially algebraic type. Pick it of minimal complexity:
 - Given $P \in K{Y}^{\neq 0}$ of order *r* and degree *d* with $P(y_{\rho}) \rightarrow 0$,
- the triple $(r, \deg_{Y^{(r)}} P, d)$ is minimal for the lexicographical ordering. Claim: K(y) is again a Hardy field for some root y of P with $y_{\rho} \rightsquigarrow y$.

$$e^{-2e^{x}}y''y^{3} + e^{-e^{x}}y^{2} - y''' + e^{x}y'' - y' + e^{x}y - 2023e^{-e^{x}} = 0, \qquad y < 1$$

$$e^{-2e^{x}}y''y^{3} + e^{-e^{x}}y^{2} - y''' + e^{x}y'' - y' + e^{x}y - 2023e^{-e^{x}} = 0, \quad y < 1$$

$$y''' - e^{x}y'' + y' - e^{x}y = e^{-2e^{x}}y''y^{3} + e^{-e^{x}}y^{2} - 2023e^{-e^{x}}, \quad y < 1$$

$$e^{-2e^{x}}y''y^{3} + e^{-e^{x}}y^{2} - y''' + e^{x}y'' - y' + e^{x}y - 2023e^{-e^{x}} = 0, \quad y < 1$$

$$y''' - e^{x}y'' + y' - e^{x}y = e^{-2e^{x}}y''y^{3} + e^{-e^{x}}y^{2} - 2023e^{-e^{x}}, \qquad y < 1$$

$$(\partial - e^x)(\partial^2 + 1)y = e^{-2e^x}y''y^3 + e^{-e^x}y^2 - 2023e^{-e^x}, \quad y < 1$$

$$e^{-2e^{x}}y''y^{3} + e^{-e^{x}}y^{2} - y''' + e^{x}y'' - y' + e^{x}y - 2023e^{-e^{x}} = 0, \qquad y < 1$$

$$y''' - e^{x}y'' + y' - e^{x}y = e^{-2e^{x}}y''y^{3} + e^{-e^{x}}y^{2} - 2023e^{-e^{x}}, \qquad y < 1$$

$$(\partial - e^x)(\partial^2 + 1)y = e^{-2e^x}y''y^3 + e^{-e^x}y^2 - 2023e^{-e^x}, \quad y < 1$$

$$(\partial - e^x)(\partial + i)(\partial - i)y = e^{-2e^x}y''y^3 + e^{-e^x}y^2 - 2023e^{-e^x}, \quad y < 1$$

Idea: analytic fixed-point argument

$$(\partial - e^x)(\partial + i)(\partial - i)y = e^{-2e^x}y''y^3 + e^{-e^x}y^2 - 2023e^{-e^x}, \quad y < 1$$

Idea: analytic fixed-point argument

$$(\partial - e^{x})(\partial + i)(\partial - i)y = e^{-2e^{x}}y''y^{3} + e^{-e^{x}}y^{2} - 2023e^{-e^{x}}, \quad y < 1$$
$$y = (\partial - i)^{-1}(\partial + i)^{-1}(\partial - e^{x})^{-1}(e^{-2e^{x}}y''y^{3} + e^{-e^{x}}y^{2} - 2023e^{-e^{x}})$$

Idea: analytic fixed-point argument

$$\begin{aligned} (\partial - e^x)(\partial + i)(\partial - i)y &= e^{-2e^x}y''y^3 + e^{-e^x}y^2 - 2023e^{-e^x}, \quad y < 1 \\ y &= (\partial - i)^{-1}(\partial + i)^{-1}(\partial - e^x)^{-1}(e^{-2e^x}y''y^3 + e^{-e^x}y^2 - 2023e^{-e^x}) \\ (\partial - \Phi^{\dagger})^{-1}f &= e^{\Phi(x)} \int_{\Box}^x e^{-\Phi(t)}f(t) dt. \end{aligned}$$

Idea: analytic fixed-point argument

$$\begin{aligned} (\partial - e^x)(\partial + i)(\partial - i)y &= e^{-2e^x}y''y^3 + e^{-e^x}y^2 - 2023e^{-e^x}, \quad y < 1 \\ y &= (\partial - i)^{-1}(\partial + i)^{-1}(\partial - e^x)^{-1}(e^{-2e^x}y''y^3 + e^{-e^x}y^2 - 2023e^{-e^x}) \\ (\partial - \Phi^{\dagger})^{-1}f &= e^{\Phi(x)}\int_{\Box}^x e^{-\Phi(t)}f(t)dt. \end{aligned}$$

Subtlety

$$e^{-\Phi(t)} \ll 1 \quad \rightsquigarrow \quad \int_{\infty}^{x} e^{-\Phi(t)} \gg 1 \quad \rightsquigarrow \quad \int_{x_0}^{x} e^{-\Phi(t)} = 0$$

Idea: analytic fixed-point argument

$$\begin{aligned} (\partial - e^x)(\partial + i)(\partial - i)y &= e^{-2e^x}y''y^3 + e^{-e^x}y^2 - 2023e^{-e^x}, \quad y < 1 \\ y &= (\partial - i)^{-1}(\partial + i)^{-1}(\partial - e^x)^{-1}(e^{-2e^x}y''y^3 + e^{-e^x}y^2 - 2023e^{-e^x}) \\ (\partial - \Phi^{\dagger})^{-1}f &= e^{\Phi(x)} \int_{\Box}^x e^{-\Phi(t)}f(t) dt. \end{aligned}$$

Subtlety

$$e^{-\Phi(t)} \ll 1 \quad \rightsquigarrow \quad \int_{\infty}^{x} e^{-\Phi(t)} \gg 1 \quad \rightsquigarrow \quad \int_{x_0}^{x} e^{-\Phi(t)} = 0$$

Done correctly, the process preserves realness and asymptotic properties...

Theorem... (ADH)

Let K be a maximal Hardy field. Consider countable subsets $L \subseteq K$ and $R \subseteq K$ with L < R. Then there exists some $y \in K$ with L < y < R.

Theorem... (ADH)

Let K be a maximal Hardy field. Consider countable subsets $L \subseteq K$ and $R \subseteq K$ with L < R. Then there exists some $y \in K$ with L < y < R.

Known Corollary (Boshernitzan)

Given any countable subset $L \subseteq K$ (*like* $L = \{x, e^x, e^{e^x}, ...\}$), we have y > L for some $y \in K$.

Theorem... (ADH)

Let K be a maximal Hardy field. Consider countable subsets $L \subseteq K$ and $R \subseteq K$ with L < R. Then there exists some $y \in K$ with L < y < R.

Known Corollary (Boshernitzan)

Given any countable subset $L \subseteq K$ (*like* $L = \{x, e^x, e^{e^x}, ...\}$), we have y > L for some $y \in K$.

Corollary

All maximal Hardy fields are back-and-forth equivalent. Under the continuum hypothesis, they are all isomorphic.

$$\tilde{f}(z) = \sum_{n=1}^{\infty} (-1)^{n-1} (n-1)! z^n$$

$$\tilde{f}(z) = \sum_{n=1}^{\infty} (-1)^{n-1} (n-1)! z^n$$

Formal Borel $\tilde{\mathscr{B}}$
$$\hat{f}(\zeta) = \sum_{n=1}^{\infty} (-1)^{n-1} \zeta^{n-1} = \frac{1}{1+\zeta}$$

$$\tilde{f}(z) = \sum_{n=1}^{\infty} (-1)^{n-1} (n-1)! z^n \qquad \qquad f(z) = \int_0^{\infty} \frac{e^{-\zeta/z}}{1+\zeta} d\zeta$$
Formal Borel $\tilde{\mathscr{B}}$

$$\hat{f}(\zeta) = \sum_{n=1}^{\infty} (-1)^{n-1} \zeta^{n-1} = \frac{1}{1+\zeta}$$

More generally accelero-summation of transseries

More generallyaccelero-summation of transseriesChallengemake it work for any $f \in \mathbb{R}(x)^{nl} \subseteq \mathbb{T}$

More generallyaccelero-summation of transseriesChallengemake it work for any $f \in \mathbb{R}(x)^{nl} \subseteq \mathbb{T}$ Motivationcompatability with composition

13/23

More generallyaccelero-summation of transseriesChallengemake it work for any $f \in \mathbb{R}(x)^{nl} \subseteq \mathbb{T}$ Motivationcompatability with composition \rightarrow o-minimality

Surreal numbers

Conway's recursive definition

- Given sets $L, R \subseteq No$ with L < R, there exists a $\{L | R\} \in No$ with $L < \{L | R\} < R$
- All numbers in **No** can be obtained in this way

Surreal numbers

Conway's recursive definition

- Given sets $L, R \subseteq No$ with L < R, there exists a $\{L | R\} \in No$ with $L < \{L | R\} < R$
- All numbers in **No** can be obtained in this way

Definition using sign sequences

- On: class of ordinal numbers
- A surreal number *x* is a sequence $(x[\beta])_{\beta < \alpha} \in \{-, +\}^{\alpha}$ for some $\ell_x := \alpha \in \mathbf{On}$
- Lexicographical ordering on such sequences (modulo completion with zeros)

Surreal numbers

Conway's recursive definition

- Given sets $L, R \subseteq No$ with L < R, there exists a $\{L | R\} \in No$ with $L < \{L | R\} < R$
- All numbers in **No** can be obtained in this way

Definition using sign sequences

- On: class of ordinal numbers
- A surreal number *x* is a sequence $(x[\beta])_{\beta < \alpha} \in \{-, +\}^{\alpha}$ for some $\ell_x := \alpha \in \mathbf{On}$
- Lexicographical ordering on such sequences (modulo completion with zeros)

Simplicity relation

$$x \sqsubseteq y \iff \ell_x \leqslant \ell_y \land (\forall \beta < \ell_x, x[\beta] = y[\beta])$$
Surreal numbers

Conway's recursive definition

- Given sets $L, R \subseteq No$ with L < R, there exists a $\{L | R\} \in No$ with $L < \{L | R\} < R$
- All numbers in **No** can be obtained in this way

Definition using sign sequences

- On: class of ordinal numbers
- A surreal number *x* is a sequence $(x[\beta])_{\beta < \alpha} \in \{-, +\}^{\alpha}$ for some $\ell_x := \alpha \in \mathbf{On}$
- Lexicographical ordering on such sequences (modulo completion with zeros)

Simplicity relation

$$x \sqsubseteq y \iff \ell_x \leqslant \ell_y \land (\forall \beta < \ell_x, x[\beta] = y[\beta])$$

Equivalence between $(No, \leq, \{|\})$ and (No, \leq, \subseteq)

 $\{L | R\} := \min_{\sqsubseteq} \{a \in \mathbf{No} : L < a < R\}$

Ring structure. For $x = \{x_L | x_R\}$ and $y = \{y_L | y_R\}$, we define $0 := \{ | \}$ $1 := \{0 | \}$ $-x := \{-x_R | -x_L\}$ $x + y := \{x_L + y, x + y_L | x_R + y, x + y_R\}$ $xy := \{x'y + xy' - x'y', x''y + xy'' - x''y'' | x'y + xy'' - x'y'', x''y + xy' - x''y'\}$ $(x' \in x_L, x'' \in x_R, y' \in y_L, y'' \in y_R).$

Ring structure. For $x = \{x_L | x_R\}$ and $y = \{y_L | y_R\}$, we define $0 := \{ | \}$ $1 := \{0 | \}$ $-x := \{-x_R | -x_L\}$ $x + y := \{x_L + y, x + y_L | x_R + y, x + y_R\}$ $xy := \{x'y + xy' - x'y', x''y + xy'' - x''y'' | x'y + xy'' - x'y'', x''y + xy' - x''y'\}$ $(x' \in x_L, x'' \in x_R, y' \in y_L, y'' \in y_R).$

Gonshor: exponential and logarithm on **No** (resp. **No**[>])

Ring structure. For $x = \{x_L | x_R\}$ and $y = \{y_L | y_R\}$, we define $0 := \{ | \}$ $1 := \{0 | \}$ $-x := \{-x_R | -x_L\}$ $x + y := \{x_L + y, x + y_L | x_R + y, x + y_R\}$ $xy := \{x'y + xy' - x'y', x''y + xy'' - x''y'' | x'y + xy'' - x'y'', x''y + xy' - x''y'\}$ $(x' \in x_L, x'' \in x_R, y' \in y_L, y'' \in y_R).$

Gonshor: exponential and logarithm on No (resp. No[>]) **Conway's** ω -map (generalizing Cantor's ordinal exponentiation) $\omega^x := \{0, \mathbb{R}^> \omega^{x_L} | \mathbb{R}^> \omega^{x_R} \}$

Ring structure. For $x = \{x_L | x_R\}$ and $y = \{y_L | y_R\}$, we define $0 := \{ | \}$ $1 := \{0 | \}$ $-x := \{-x_R | -x_L\}$ $x + y := \{x_L + y, x + y_L | x_R + y, x + y_R\}$ $xy := \{x'y + xy' - x'y', x''y + xy'' - x''y'' | x'y + xy'' - x'y'', x''y + xy' - x''y'\}$ $(x' \in x_L, x'' \in x_R, y' \in y_L, y'' \in y_R).$

Gonshor: exponential and logarithm on No (resp. No[>]) **Conway's** ω -map (generalizing Cantor's ordinal exponentiation) $\omega^x := \{0, \mathbb{R}^> \omega^{x_L} | \mathbb{R}^> \omega^{x_R} \}$

Surreal numbers as Hahn series

No $\cong \mathbb{R}[[Mo]],$ Mo $\coloneqq \omega^{No}$

Examples

 $0 := \{ | \}$ $1 := \{0\}$ $2 := \{0, 1\}$: $-1 := \{ |0 \}$ $-2 := \{|-1,0\}$ • $\frac{1}{2} := \{0|1\}$ $\frac{1}{4} := \{0 | \frac{1}{2}, 1\}$ $^{3}/_{8} := \{0, \frac{1}{4} | \frac{1}{2}, 1\}$ $1/_3 := \{0, 1/_4, 5/_{16}, \dots | \dots, 3/_8, 1/_2, 1\}$ $\pi := \{0, 1, 2, 3, 3^{1/_{16}}, \dots | \dots, 3^{1/_4}, 3^{1/_2}, 4\}$ $\mathbb{R} \subseteq \mathbf{No}$

$$0 := \{|\} \\
1 := \{0|\} \\
2 := \{0,1|\} \\
\vdots \\
\omega := \{0,1,2,...\} \\
\omega+1 := \{0,1,2,...,\omega|\} \\
\vdots \\
\omega^2 := \{0,1,2,...,\omega,\omega+1,...|\} \\
\vdots \\
\omega^2 := \{0,1,2,...,\omega,\omega+1,...|\} \\
\vdots \\
On \subseteq No \\
\omega^{-1} := \{0|...,\frac{1}{4},\frac{1}{2},1\} \\
\exp \omega := \{1,\omega,\omega^2,\omega^3,...\}$$

Theorem (Berarducci-Mantova)

There exists a strong exp-log derivation ∂_{BM} *on* **No** *with* $\partial_{BM} \omega = 1$ *.*

Theorem (Berarducci-Mantova)

There exists a strong exp-log derivation ∂_{BM} *on* **No** *with* $\partial_{BM} \omega = 1$.

Theorem (ADH)

No with ∂_{BM} is *H*-closed. So is **No**(κ) for any uncountable κ .

Theorem (Berarducci-Mantova)

There exists a strong exp-log derivation ∂_{BM} *on* **No** *with* $\partial_{BM} \omega = 1$.

Theorem (ADH)

No with ∂_{BM} is *H*-closed. So is **No**(κ) for any uncountable κ .

However.

• There is a big class of derivations that satisfy the above theorem.

Theorem (Berarducci-Mantova)

There exists a strong exp-log derivation ∂_{BM} *on* **No** *with* $\partial_{BM} \omega = 1$ *.*

Theorem (ADH)

No with ∂_{BM} is *H*-closed. So is **No**(κ) for any uncountable κ .

However.

- There is a big class of derivations that satisfy the above theorem.
- ∂_{BM} is the "simplest" such derivation in a certain sense.

Theorem (Berarducci-Mantova)

There exists a strong exp-log derivation ∂_{BM} *on* **No** *with* $\partial_{BM} \omega = 1$ *.*

Theorem (ADH)

No with ∂_{BM} is *H*-closed. So is **No**(κ) for any uncountable κ .

However.

- There is a big class of derivations that satisfy the above theorem.
- ∂_{BM} is the "simplest" such derivation in a certain sense.
- But ∂_{BM} is **not** the "right" derivation with respect to ω (see below.)

Theorem (Berarducci-Mantova)

There exists a strong exp-log derivation ∂_{BM} *on* **No** *with* $\partial_{BM} \omega = 1$ *.*

Theorem (ADH)

No with ∂_{BM} is *H*-closed. So is **No**(κ) for any uncountable κ .

However.

- There is a big class of derivations that satisfy the above theorem.
- ∂_{BM} is the "simplest" such derivation in a certain sense.
- But ∂_{BM} is **not** the "right" derivation with respect to ω (see below.)
- Also: how to define a composition on **No**?

Dubois-Reymond, Hardy, Kneser, ...

There exist "regular" functions that grow faster than x, e^x , e^{e^x} , ...

$$E_{\omega}(x+1) = e^{E_{\omega}(x)}$$

 \rightarrow Écalle's "Grand Cantor"

Dubois-Reymond, Hardy, Kneser, ...

There exist "regular" functions that grow faster than x, e^x , e^{e^x} , ...

 $E_{\omega}(x+1) = \mathrm{e}^{E_{\omega}(x)}$

 \rightarrow Écalle's "Grand Cantor"

vdH (1997)

No ordinary transseries solutions of

$$f(x) = \sqrt{x} + e^{f(\log x)}$$

Dubois-Reymond, Hardy, Kneser, ...

There exist "regular" functions that grow faster than x, e^x , e^{e^x} , ...

 $E_{\omega}(x+1) = \mathrm{e}^{E_{\omega}(x)}$

 \rightarrow Écalle's "Grand Cantor"

vdH (1997)

No ordinary transseries solutions of

$$f(x) = \sqrt{x} + e^{\sqrt{\log x} + e^{f(\log \log x)}}$$

Dubois-Reymond, Hardy, Kneser, ...

There exist "regular" functions that grow faster than x, e^x , e^{e^x} , ...

 $E_{\omega}(x+1) = \mathrm{e}^{E_{\omega}(x)}$

 \rightarrow Écalle's "Grand Cantor"

vdH (1997)

No ordinary transseries solutions of

$$f(x) = \sqrt{x} + e^{\sqrt{\log \log x} + e^{\sqrt{\log \log x} + e^{f(\log \log \log \log x)}}}$$

Dubois-Reymond, Hardy, Kneser, ...

There exist "regular" functions that grow faster than x, e^x , e^{e^x} , ...

 $E_{\omega}(x+1) = \mathrm{e}^{E_{\omega}(x)}$

 \rightarrow Écalle's "Grand Cantor"

vdH (1997)

No ordinary transseries like

$$f(x) = \sqrt{x} + e^{\sqrt{\log \log x} + e^{\sqrt{\log \log x} + e^{\cdot}}}$$

Dubois-Reymond, Hardy, Kneser, ...

There exist "regular" functions that grow faster than x, e^x , e^{e^x} , ...

 $E_{\omega}(x+1) = \mathrm{e}^{E_{\omega}(x)}$

 \rightarrow Écalle's "Grand Cantor"

vdH (1997)

No ordinary transseries like

$$f(x) = \sqrt{x} + e^{\sqrt{\log \log x} + e^{\sqrt{\log \log x} + e^{x^2}}}$$

Hyperseries: generalization of transseries with

- Hyperexponentials and hyperlogarithm E_{α} , L_{α} of ordinal strength ($E_1 = \exp$)
- Nested hyperseries

Grand unification

Conjecture (vdH, 2006) \rightarrow Theorem (Bagayoko-vdH, 2022)

The field \mathbb{H} *of hyperseries in* x > 1 (*for a suitable definition*) *is naturally isomorphic to* **No***, via the map* $\mathbb{H} \longrightarrow \mathbf{No}$; $f \longmapsto f(\omega)$ *that evaluates a hyperseries f at* ω .

In particular, \mathbb{H} is closed under all **hyperexponentials** E_{α} and **hyperlogarithms** L_{α} for ordinal α , and \mathbb{H} contains "**nested hyperseries**".

Grand unification

Conjecture (vdH, 2006) → Theorem (Bagayoko-vdH, 2022)

The field \mathbb{H} *of hyperseries in* x > 1 (*for a suitable definition*) *is naturally isomorphic to* **No***, via the map* $\mathbb{H} \longrightarrow \mathbf{No}$; $f \longmapsto f(\omega)$ *that evaluates a hyperseries f at* ω .

In particular, \mathbb{H} is closed under all **hyperexponentials** E_{α} and **hyperlogarithms** L_{α} for ordinal α , and \mathbb{H} contains "**nested hyperseries**".

Hyperseries	Surreal numbers
Closed under ∂ (in progress)	Closed under { }
Closed under • (in progress)	Simplicity relation \sqsubseteq

Grand unification

Conjecture (vdH, 2006) → Theorem (Bagayoko-vdH, 2022)

The field \mathbb{H} *of hyperseries in* x > 1 (*for a suitable definition*) *is naturally isomorphic to* **No**, *via the map* $\mathbb{H} \longrightarrow \mathbf{No}$; $f \longmapsto f(\omega)$ *that evaluates a hyperseries f at* ω .

In particular, \mathbb{H} is closed under all **hyperexponentials** E_{α} and **hyperlogarithms** L_{α} for ordinal α , and \mathbb{H} contains "**nested hyperseries**".

Hyperseries	Surreal numbers
Closed under ∂ (in progress)	Closed under { }
Closed under • (in progress)	Simplicity relation \sqsubseteq

Problem with ∂_{BM} : $\partial_{BM} E_{\omega} E_{\omega} \omega = E'_{\omega} E_{\omega} \omega \neq E'_{\omega} \omega E'_{\omega} E_{\omega} \omega$

Start with logarithmic transseries at an arbitrary level $l \in \mathbb{Z}$:

$$\mathfrak{T}_0 := \mathfrak{L} \circ \exp_l z$$
$$\mathbb{T}_0 := \mathbb{C}[[\mathfrak{T}_0]]$$

Start with logarithmic transseries at an arbitrary level $l \in \mathbb{Z}$:

$$\mathfrak{T}_0 := \mathfrak{L} \circ \exp_l z$$
$$\mathbb{T}_0 := \mathbb{C}[[\mathfrak{T}_0]]$$

Close off under exponentiation:

$$\begin{aligned} \mathfrak{T}_{k+1} &\coloneqq \exp \mathbb{T}_{k,\succ} \\ \mathbb{T}_{k+1} &\coloneqq \mathbb{C}[[\mathfrak{T}_0]] \end{aligned}$$

Start with logarithmic transseries at an arbitrary level $l \in \mathbb{Z}$:

$$\mathfrak{T}_0 := \mathfrak{L} \circ \exp_l z$$
$$\mathbb{T}_0 := \mathbb{C}[[\mathfrak{T}_0]]$$

Close off under exponentiation:

 $\mathfrak{T}_{k+1} := \exp \mathbb{T}_{k,>}$ $\mathbb{T}_{k+1} := \mathbb{C}[[\mathfrak{T}_0]]$

Take any ordering on \mathbb{T}_k that

- is compatible with the \mathbb{R} -vector space structure;
- is such that $\mathfrak{m} \leq \mathfrak{n} \iff \log \mathfrak{m} \leq \log \mathfrak{n}$ for all $\mathfrak{m}, \mathfrak{n} \in \mathfrak{T}_k$.

Start with logarithmic transseries at an arbitrary level $l \in \mathbb{Z}$:

$$\mathfrak{T}_0 := \mathfrak{L} \circ \exp_l z$$
$$\mathbb{T}_0 := \mathbb{C}[[\mathfrak{T}_0]]$$

Close off under exponentiation:

 $\mathfrak{T}_{k+1} := \exp \mathbb{T}_{k,>}$ $\mathbb{T}_{k+1} := \mathbb{C}[[\mathfrak{T}_0]]$

Take any ordering on \mathbb{T}_k that

- is compatible with the \mathbb{R} -vector space structure;
- is such that $\mathfrak{m} \leq \mathfrak{n} \iff \log \mathfrak{m} \leq \log \mathfrak{n}$ for all $\mathfrak{m}, \mathfrak{n} \in \mathfrak{T}_k$.

Example. We may impose $e^{iz} > 1$, $e^{z^2} < 1$, and $e^{ie^{iz}} > 1$.

$$\mathfrak{T} := \mathfrak{T}_0 \cup \mathfrak{T}_1 \cup \cdots$$
$$\mathbb{T} := \mathbb{T}_0 \cup \mathbb{T}_1 \cup \cdots = \mathbb{C}[[\mathfrak{T}]].$$

$$\mathfrak{T} := \mathfrak{T}_0 \cup \mathfrak{T}_1 \cup \cdots$$
$$\mathbb{T} := \mathbb{T}_0 \cup \mathbb{T}_1 \cup \cdots = \mathbb{C}[[\mathfrak{T}]].$$

However. This only defines **a** field of complex transseries (depending on \leq).

$$\mathfrak{T} := \mathfrak{T}_0 \cup \mathfrak{T}_1 \cup \cdots$$
$$\mathbb{T} := \mathbb{T}_0 \cup \mathbb{T}_1 \cup \cdots = \mathbb{C}[[\mathfrak{T}]].$$

However. This only defines **a** field of complex transseries (depending on \leq).

Proposition

There exists a unique strong exp-log derivation ∂ *on* \mathbb{T} *with* $\partial z = 1$ *.*

 $\mathfrak{T} := \mathfrak{T}_0 \cup \mathfrak{T}_1 \cup \cdots$ $\mathbb{T} := \mathbb{T}_0 \cup \mathbb{T}_1 \cup \cdots = \mathbb{C}[[\mathfrak{T}]].$

However. This only defines **a** field of complex transseries (depending on \leq).

Proposition

There exists a unique strong exp-log derivation ∂ *on* \mathbb{T} *with* $\partial z = 1$ *.*

Proposition

Given two fields \mathbb{T} *and* $\tilde{\mathbb{T}}$ *of complex transseries, there exists a field isomorphism* $\varphi: \mathbb{T} \to \tilde{\mathbb{T}}$ *that preserves monomials and strong summation.*

 $\mathfrak{T} := \mathfrak{T}_0 \cup \mathfrak{T}_1 \cup \cdots$ $\mathbb{T} := \mathbb{T}_0 \cup \mathbb{T}_1 \cup \cdots = \mathbb{C}[[\mathfrak{T}]].$

However. This only defines **a** field of complex transseries (depending on \leq).

Proposition

There exists a unique strong exp-log derivation ∂ *on* \mathbb{T} *with* $\partial z = 1$ *.*

Proposition

Given two fields \mathbb{T} *and* $\tilde{\mathbb{T}}$ *of complex transseries, there exists a field isomorphism* $\varphi: \mathbb{T} \to \tilde{\mathbb{T}}$ *that preserves monomials and strong summation.*

However. The isomorphism φ does not preserve exp or ∂ . For instance, it might send $e^{iz} >_{\mathbb{T}} 1$ to $e^{-iz} >_{\tilde{\mathbb{T}}} 1$, but cannot send $\log(e^{iz}) = iz$ to -iz or $(e^{iz})^{\dagger} = i$ to -i.

 $\mathfrak{T} := \mathfrak{T}_0 \cup \mathfrak{T}_1 \cup \cdots$ $\mathbb{T} := \mathbb{T}_0 \cup \mathbb{T}_1 \cup \cdots = \mathbb{C}[[\mathfrak{T}]].$

However. This only defines **a** field of complex transseries (depending on \leq).

Proposition

There exists a unique strong exp-log derivation ∂ *on* \mathbb{T} *with* $\partial z = 1$ *.*

Proposition

Given two fields \mathbb{T} *and* $\tilde{\mathbb{T}}$ *of complex transseries, there exists a field isomorphism* $\varphi: \mathbb{T} \to \tilde{\mathbb{T}}$ *that preserves monomials and strong summation.*

However. The isomorphism φ does not preserve exp or ∂ . For instance, it might send $e^{iz} >_{\mathbb{T}} 1$ to $e^{-iz} >_{\tilde{\mathbb{T}}} 1$, but cannot send $\log(e^{iz}) = iz$ to -iz or $(e^{iz})^{\dagger} = i$ to -i. **However.** ∂ is asymptotic, but not ordered: if $0 < e^{iz} > 1$, then $(e^{iz})'' = -e^{iz}$.

Let \mathbb{T} be any field of complex transseries.

Theorem

Any $P \in \mathbb{T}{Y} \setminus \mathbb{T}$ *has at least one solution in* \mathbb{T} *.*

Let \mathbb{T} be any field of complex transseries.

Theorem

Any $P \in \mathbb{T}{Y} \setminus \mathbb{T}$ *has at least one solution in* \mathbb{T} *.*

However. There are fields of complex transseries for which only solutions of

 $y^3 + (y')^2 + y = 0$

are constant solutions y = 0, i, -i with $y^3 + y = 0$.

Let \mathbb{T} be any field of complex transseries.

Theorem

Any $P \in \mathbb{T}{Y} \setminus \mathbb{T}$ *has at least one solution in* \mathbb{T} *.*

However. There are fields of complex transseries for which only solutions of

$$y^3 + (y')^2 + y = 0$$

are constant solutions y = 0, i, -i with $y^3 + y = 0$.

Corollary

The field \mathbb{T} *is Picard-Vessiot closed: any* $L \in \mathbb{T}[\partial]$ *splits into order one factors.*

Let \mathbb{T} be any field of complex transseries.

Theorem

Any $P \in \mathbb{T}{Y} \setminus \mathbb{T}$ *has at least one solution in* \mathbb{T} *.*

However. There are fields of complex transseries for which only solutions of

 $y^3 + (y')^2 + y = 0$

are constant solutions y = 0, i, -i with $y^3 + y = 0$.

Corollary

The field \mathbb{T} *is Picard-Vessiot closed: any* $L \in \mathbb{T}[\partial]$ *splits into order one factors.*

Question: what is the theory of fields of complex transseries?
Thank you !

 $http://www.T_EX_{MACS.org}$