Lesson 10 - H-closed H-fields

$$
\mathscr{L}:=\{0,1,+,-, \cdot, \partial, \leqslant, \leqslant\} .
$$

H-closed H-fields

$$
\mathscr{L}:=\{0,1,+,-, \cdot, \partial, \leqslant, \leqslant\} .
$$

Definition
An H-field K is \boldsymbol{H}-closed if it is ω-free, newtonian, and Liouville closed.

$$
\mathscr{L}:=\{0,1,+,-, \cdot \partial, \leqslant, \leqslant\} .
$$

Definition

An H-field K is \boldsymbol{H}-closed if it is ω-free, newtonian, and Liouville closed.

Theorem

The \mathscr{L}-theory T^{nl} of H-closed H-fields is model complete. It is the model companion of the \mathscr{b}-theory of H -fields.

$$
\mathscr{L}:=\{0,1,+,-, \cdot, \partial, \leqslant, \leqslant\} .
$$

Definition

An H-field K is \boldsymbol{H}-closed if it is ω-free, newtonian, and Liouville closed.

Theorem

The \mathscr{L}-theory T^{nl} of H-closed H-fields is model complete. It is the model companion of the \mathscr{L}-theory of H -fields.
Proof. Follows from the following embedding lemma.

$$
\mathscr{L}:=\{0,1,+,-, \cdot \partial, \leqslant, \leqslant\} .
$$

Definition

An H-field K is \boldsymbol{H}-closed if it is ω-free, newtonian, and Liouville closed.

Theorem

The \mathscr{L}-theory T^{nl} of H -closed H-fields is model complete.
It is the model companion of the \mathscr{L}-theory of H -fields.
Proof. Follows from the following embedding lemma.

Lemma

Let E be an ω-free H-subfield of an H-closed H-field K and let $\varphi: E \rightarrow F$ be an embedding of E into a $|K|^{+}$-saturated H-closed H-field F. Then φ extends to an embedding $\varphi: K \rightarrow F$.

Obstruction to quantifier elimination

$$
\mathrm{I}(K):=\left\{y^{\prime}: y \in K^{<1}\right\}
$$

Proposition

Let K be an ω-free real closed H-field. Then $\mathrm{I}(\mathrm{K})$ is not qf-definable in the \mathscr{L}_{K}-structure K.

Obstruction to quantifier elimination

$$
\mathrm{I}(K):=\left\{y^{\prime}: y \in K^{<1}\right\}
$$

Proposition

Let K be an ω-free real closed H-field. Then $\mathrm{I}(\mathrm{K})$ is not qf-definable in the \mathscr{L}_{K}-structure K.
Proof. Take $\ell>0$ in an elementary extension K^{*} of K with $1 \prec \ell<K^{\succ}$.

Obstruction to quantifier elimination

$$
I(K):=\left\{y^{\prime}: y \in K^{<1}\right\}
$$

Proposition

Let K be an ω-free real closed H-field. Then $\mathrm{I}(\mathrm{K})$ is not qf-definable in the \mathscr{L}_{K}-structure K.
Proof. Take $\ell>0$ in an elementary extension K^{*} of K with $1<\ell<K^{>}$.
Consider the immediate extensions $K\{\lambda\rangle$ and $K\langle\lambda+\gamma\rangle$ of K with $\gamma:=\ell^{\dagger}, \lambda:=-\gamma^{\dagger}$.

$$
\lambda=\frac{1}{x}+\frac{1}{x \log x}+\cdots, \quad \lambda+\gamma=\frac{1}{x}+\frac{1}{x \log x}+\cdots+\frac{1}{x \log x \log _{2} x \cdots}
$$

Obstruction to quantifier elimination

$$
I(K):=\left\{y^{\prime}: y \in K^{<1}\right\}
$$

Proposition

Let K be an ω-free real closed H-field. Then $\mathrm{I}(\mathrm{K})$ is not qf-definable in the \mathscr{L}_{K}-structure K.
Proof. Take $\ell>0$ in an elementary extension K^{*} of K with $1<\ell<K^{>}$. Consider the immediate extensions $K\{\lambda\rangle$ and $K\langle\lambda+\gamma\rangle$ of K with $\gamma:=\ell^{\dagger}, \lambda:=-\gamma^{\dagger}$.

Obstruction to quantifier elimination

$$
I(K):=\left\{y^{\prime}: y \in K^{<1}\right\}
$$

Proposition

Let K be an ω-free real closed H-field. Then $\mathrm{I}(\mathrm{K})$ is not qf-definable in the \mathscr{L}_{K}-structure K.
Proof. Take $\ell>0$ in an elementary extension K^{*} of K with $1<\ell<K^{>}$. Consider the immediate extensions $K\{\lambda\rangle$ and $K\langle\lambda+\gamma\rangle$ of K with $\gamma:=\ell^{\dagger}, \lambda:=-\gamma^{\dagger}$. One verifies that they are isomorphic as H-fields over K via $\lambda \longmapsto \lambda+\gamma$.

Obstruction to quantifier elimination

$$
I(K):=\left\{y^{\prime}: y \in K^{<1}\right\}
$$

Proposition

Let K be an ω-free real closed H-field. Then $\mathrm{I}(\mathrm{K})$ is not qf-definable in the \mathscr{L}_{K}-structure K.
Proof. Take $\ell>0$ in an elementary extension K^{*} of K with $1<\ell<K^{>}$.
Consider the immediate extensions $K\{\lambda\rangle$ and $K\langle\lambda+\gamma\rangle$ of K with $\gamma:=\ell^{\dagger}, \lambda:=-\gamma^{\dagger}$. One verifies that they are isomorphic as H-fields over K via $\lambda \longmapsto \lambda+\gamma$. Let $f:=(1 / \ell)^{\dagger}=-\gamma \notin \mathrm{I}\left(K^{*}\right)$ and $g:=(1 / \ell)^{\prime}=-\gamma / \ell \in \mathrm{I}\left(K^{*}\right)$ with $f^{\dagger}=-\lambda, g^{\dagger}=-(\lambda+\gamma)$.

$$
f=\frac{-1}{x \log x \log _{2} x \cdots}, \quad g=\frac{-1}{x \log x \log _{2} x \cdots \ell}
$$

Obstruction to quantifier elimination

$$
I(K):=\left\{y^{\prime}: y \in K^{<1}\right\}
$$

Proposition

Let K be an ω-free real closed H-field. Then $\mathrm{I}(\mathrm{K})$ is not qf-definable in the \mathscr{L}_{K}-structure K.
Proof. Take $\ell>0$ in an elementary extension K^{*} of K with $1<\ell<K^{>}$. Consider the immediate extensions $K\{\lambda\rangle$ and $K\langle\lambda+\gamma\rangle$ of K with $\gamma:=\ell^{\dagger}, \lambda:=-\gamma^{\dagger}$. One verifies that they are isomorphic as H-fields over K via $\lambda \longmapsto \lambda+\gamma$. Let $f:=(1 / \ell)^{\dagger}=-\gamma \notin \mathrm{I}\left(K^{*}\right)$ and $g:=(1 / \ell)^{\prime}=-\gamma / \ell \in \mathrm{I}\left(K^{*}\right)$ with $f^{\dagger}=-\lambda, g^{\dagger}=-(\lambda+\gamma)$.

Obstruction to quantifier elimination

$$
I(K):=\left\{y^{\prime}: y \in K^{<1}\right\}
$$

Proposition

Let K be an ω-free real closed H-field. Then $\mathrm{I}(\mathrm{K})$ is not qf-definable in the \mathscr{L}_{K}-structure K.
Proof. Take $\ell>0$ in an elementary extension K^{*} of K with $1<\ell<K^{>}$.
Consider the immediate extensions $K\{\lambda\rangle$ and $K\langle\lambda+\gamma\rangle$ of K with $\gamma:=\ell^{\dagger}, \lambda:=-\gamma^{\dagger}$. One verifies that they are isomorphic as H-fields over K via $\lambda \longmapsto \lambda+\gamma$. Let $f:=(1 / \ell)^{\dagger}=-\gamma \notin \mathrm{I}\left(K^{*}\right)$ and $g:=(1 / \ell)^{\prime}=-\gamma / \ell \in \mathrm{I}\left(K^{*}\right)$ with $f^{\dagger}=-\lambda, g^{\dagger}=-(\lambda+\gamma)$. Then $K\langle\lambda, f\rangle \nexists \ell$ and $K\langle\lambda+\gamma, g\rangle \nexists \ell$ are isomorphic via $\lambda \longmapsto \lambda+\gamma$ and $f \longmapsto g$.

Obstruction to quantifier elimination

$$
I(K):=\left\{y^{\prime}: y \in K^{<1}\right\}
$$

Proposition

Let K be an ω-free real closed H-field. Then $\mathrm{I}(\mathrm{K})$ is not qf-definable in the \mathscr{L}_{K}-structure K.
Proof. Take $\ell>0$ in an elementary extension K^{*} of K with $1<\ell<K^{>}$.
Consider the immediate extensions $K\{\lambda\rangle$ and $K\langle\lambda+\gamma\rangle$ of K with $\gamma:=\ell^{\dagger}, \lambda:=-\gamma^{\dagger}$. One verifies that they are isomorphic as H-fields over K via $\lambda \longmapsto \lambda+\gamma$. Let $f:=(1 / \ell)^{\dagger}=-\gamma \notin \mathrm{I}\left(K^{*}\right)$ and $g:=(1 / \ell)^{\prime}=-\gamma / \ell \in \mathrm{I}\left(K^{*}\right)$ with $f^{\dagger}=-\lambda, g^{\dagger}=-(\lambda+\gamma)$. Then $K\langle\lambda, f\rangle \nexists \ell$ and $K\langle\lambda+\gamma, g\rangle \nexists \ell$ are isomorphic via $\lambda \longmapsto \lambda+\gamma$ and $f \longmapsto g$.
Now assume $I(K)=\{y: \varphi(y)\}$, with φ quantifier-free in \mathscr{L}_{K}.

Obstruction to quantifier elimination

$$
\mathrm{I}(K):=\left\{y^{\prime}: y \in K^{<1}\right\}
$$

Proposition

Let K be an ω-free real closed H-field. Then $\mathrm{I}(\mathrm{K})$ is not qf-definable in the \mathscr{L}_{K}-structure K.
Proof. Take $\ell>0$ in an elementary extension K^{*} of K with $1<\ell<K^{>}$.
Consider the immediate extensions $K\{\lambda\rangle$ and $K\langle\lambda+\gamma\rangle$ of K with $\gamma:=\ell^{\dagger}, \lambda:=-\gamma^{\dagger}$. One verifies that they are isomorphic as H-fields over K via $\lambda \longmapsto \lambda+\gamma$.

Let $f:=(1 / \ell)^{\dagger}=-\gamma \notin \mathrm{I}\left(K^{*}\right)$ and $g:=(1 / \ell)^{\prime}=-\gamma / \ell \in \mathrm{I}\left(K^{*}\right)$ with $f^{\dagger}=-\lambda, g^{\dagger}=-(\lambda+\gamma)$. Then $K\langle\lambda, f\rangle \nexists \ell$ and $K\langle\lambda+\gamma, g\rangle \nexists \ell$ are isomorphic via $\lambda \longmapsto \lambda+\gamma$ and $f \longmapsto g$.
Now assume $I(K)=\{y: \varphi(y)\}$, with φ quantifier-free in \mathscr{L}_{K}.
Then $K^{*} \vDash \neg \varphi(f)$ but $K^{*} \vDash \varphi(g)$ implies $K\langle\lambda, \gamma\rangle \vDash \neg \varphi(f)$ but $K\langle\lambda+\gamma, g\rangle \vDash \varphi(g)$.

Obstruction to quantifier elimination

$$
\mathrm{I}(K):=\left\{y^{\prime}: y \in K^{<1}\right\}
$$

Proposition

Let K be an ω-free real closed H-field. Then $\mathrm{I}(\mathrm{K})$ is not qf-definable in the \mathscr{L}_{K}-structure K.
Proof. Take $\ell>0$ in an elementary extension K^{*} of K with $1<\ell<K^{>}$.
Consider the immediate extensions $K\langle\lambda\rangle$ and $K\langle\lambda+\gamma\rangle$ of K with $\gamma:=\ell^{\dagger}, \lambda:=-\gamma^{\dagger}$. One verifies that they are isomorphic as H-fields over K via $\lambda \longmapsto \lambda+\gamma$.

Let $f:=(1 / \ell)^{\dagger}=-\gamma \notin \mathrm{I}\left(K^{*}\right)$ and $g:=(1 / \ell)^{\prime}=-\gamma / \ell \in \mathrm{I}\left(K^{*}\right)$ with $f^{\dagger}=-\lambda, g^{\dagger}=-(\lambda+\gamma)$. Then $K\langle\lambda, f\rangle \nexists \ell$ and $K\langle\lambda+\gamma, g\rangle \nexists \ell$ are isomorphic via $\lambda \longmapsto \lambda+\gamma$ and $f \longmapsto g$.
Now assume $I(K)=\{y: \varphi(y)\}$, with φ quantifier-free in \mathscr{L}_{K}. Then $K^{*} \vDash \neg \varphi(f)$ but $K^{*} \vDash \varphi(g)$ implies $K\langle\lambda, \gamma\rangle \vDash \neg \varphi(f)$ but $K\langle\lambda+\gamma, g\rangle \vDash \varphi(g)$. This violates the isomorphism between $K\langle\lambda, f\rangle$ and $K\langle\lambda+\gamma, g\rangle$.

$$
\mathscr{L}_{\Lambda \Omega}^{\prime}:=\{0,1,+,-, \cdot, \partial, \leqslant, \leqslant, \iota, \Lambda, \Omega\}
$$

$$
\mathscr{L}_{\Lambda \Omega}^{\iota}:=\{0,1,+,-, \cdot, \partial, \leqslant, \leqslant, \iota, \Lambda, \Omega\}
$$

with the semantics

$$
\begin{aligned}
\iota(a) & :=a^{-1} \text { if } a \neq 0, \quad \iota(0):=0 \\
\Lambda(a) & \Leftrightarrow(\exists y<1) \quad a=-y^{++} \\
\Omega(a) & \Leftrightarrow(\exists y \neq 0) \quad 4 y^{\prime \prime}+a y=0
\end{aligned}
$$

This yields a theory $T_{\Lambda \Omega}^{\mathrm{nl}, \iota}$ that extends T^{nl}.

Quantifier elimination

$$
\mathscr{L}_{\Lambda \Omega}^{\iota}:=\{0,1,+,-, \cdot, \partial, \leqslant, \leqslant, \iota, \Lambda, \Omega\}
$$

with the semantics

$$
\begin{aligned}
\iota(a) & :=a^{-1} \text { if } a \neq 0, \quad \iota(0):=0 \\
\Lambda(a) & \Leftrightarrow(\exists y<1) \quad a=-y^{++} \\
\Omega(a) & \Leftrightarrow(\exists y \neq 0) \quad 4 y^{\prime \prime}+a y=0
\end{aligned}
$$

This yields a theory $T_{\Lambda \Omega}^{\mathrm{nl}, \iota}$ that extends T^{nl}.

Theorem

The theory $T_{\Lambda \Omega}^{\mathrm{nl}, \iota}$ eliminates quantifiers.

Quantifier elimination

$$
\mathscr{L}_{\Lambda \Omega}^{\iota}:=\{0,1,+,-, \cdot, \partial, \leqslant, \leqslant, \iota, \Lambda, \Omega\}
$$

with the semantics

$$
\begin{aligned}
\iota(a) & :=a^{-1} \text { if } a \neq 0, \quad \iota(0):=0 \\
\Lambda(a) & \Leftrightarrow(\exists y<1) \quad a=-y^{++} \\
\Omega(a) & \Leftrightarrow(\exists y \neq 0) \quad 4 y^{\prime \prime}+a y=0
\end{aligned}
$$

This yields a theory $T_{\Lambda \Omega}^{\mathrm{nl}, \iota}$ that extends T^{nl}.

Theorem

The theory $T_{\Lambda \Omega}^{\mathrm{nl}, \iota}$ eliminates quantifiers.
Note. For model complete theories, obstruction to qf-elimination is a language issue.

Quantifier elimination - proof

Theorem

The theory $T_{\Lambda \Omega}^{\mathrm{nl}, \ldots}$ eliminates quantifiers.
Proof. Follows from the following embedding result.

Quantifier elimination - proof

Theorem

The theory $T_{\Lambda \Omega}^{\mathrm{nl}, \iota}$ eliminates quantifiers.
Proof. Follows from the following embedding result.
$\boldsymbol{\Lambda} \boldsymbol{\Omega}$-field $:=\mathrm{H}$-field K with additional (ι, Λ, Ω)-structure.

Theorem

Let K and L be ω-free newtonian $\Lambda \Omega$-fields such that L is $|K|^{+}$-saturated. Let E be a substructure of K and let $\varphi: E \rightarrow L$ be an embedding. Then φ can be extended to an embedding $\hat{\varphi}: E \rightarrow L$.

Quantifier elimination - proof

Theorem

The theory $T_{\Lambda \Omega}^{\mathrm{nl}, \iota}$ eliminates quantifiers.
Proof. Follows from the following embedding result.
$\boldsymbol{\Lambda} \boldsymbol{\Omega}$-field $:=\mathrm{H}$-field K with additional (ι, Λ, Ω)-structure.

Theorem

Let K and L be ω-free newtonian $\Lambda \Omega$-fields such that L is $|K|^{+}$-saturated. Let E be a substructure of K and let $\varphi: E \rightarrow L$ be an embedding. Then φ can be extended to an embedding $\hat{\varphi}: E \rightarrow L$.

Proof ideas. Extension lemmas for various individual cases.
The relations Λ, Ω act as switchmen, dictating the direction to take at a fork.
$T_{\text {small }}^{\mathrm{nl}}:=T^{\mathrm{nl}}+$ small derivation
$T_{\text {large }}^{\mathrm{nl}}:=T^{\mathrm{nl}}+$ large derivation

Completeness

$T_{\text {small }}^{\mathrm{nl}}:=T^{\mathrm{nl}}+$ small derivation
$T_{\Lambda \Omega, \text { small }}^{\mathrm{nl}, \iota}:=T_{\Lambda \Omega}^{\mathrm{nl}, \iota}+$ small derivation
$T_{\text {large }}^{\mathrm{nl}}:=T^{\mathrm{nl}}+$ large derivation
$T_{\Lambda \Omega, \text { large }}^{\mathrm{nl}, \ell}:=T_{\Lambda \Omega}^{\mathrm{n}, \ell}+$ large derivation

Theorem

The completions of T^{nl} are the two \mathscr{B}-theories $T_{\text {small }}^{\mathrm{nl}}$ and $T_{\text {large }}^{\mathrm{nl}}$.
The theories $T_{\text {small }}^{\mathrm{nl}}, T_{\text {large, }}^{\mathrm{nl}}$ and T^{nl} are decidable.

Completeness

$T_{\text {small }}^{\mathrm{nl}}:=T^{\mathrm{nl}}+$ small derivation
$T_{\text {large }}^{\mathrm{nl}}:=T^{\mathrm{nl}}+$ large derivation
$T_{\Lambda \Omega, \text { small }}^{\mathrm{nl}, \iota}:=T_{\Lambda \Omega}^{\mathrm{nl}, \ell}+$ small derivation
$T_{\Lambda \Omega, \text { large }}^{\mathrm{nl}, \ell}:=T_{\Lambda \Omega}^{\mathrm{nl}, \iota}+$ large derivation

Theorem

The completions of T^{nl} are the two \mathscr{L}-theories $T_{\text {small }}^{\mathrm{nl}}$ and $T_{\text {large }}^{\mathrm{nl}}$.
The theories $T_{\text {small }}^{\mathrm{nl}}, T_{\text {large }}^{\mathrm{nl}}$ and T^{nl} are decidable.

- Completeness of $T_{\Lambda \Omega, \text { small }}^{\mathrm{nl}, \iota}$ and $T_{\Lambda \Omega, \text { large }}^{\mathrm{nl}, l} \Longrightarrow$ completeness of $T_{\text {small }}^{\mathrm{nl}}$ and $T_{\text {large }}^{\mathrm{nl}}$.

Completeness

$T_{\text {small }}^{\mathrm{nl}}:=T^{\mathrm{nl}}+$ small derivation
$T_{\Lambda \Omega, \text { small }}^{\mathrm{nl}, \iota}:=T_{\Lambda \Omega}^{\mathrm{nl}, \iota}+$ small derivation
$T_{\text {large }}^{\mathrm{nl}}:=T^{\mathrm{nl}}+$ large derivation
$T_{\Lambda \Omega, \text { large }}^{\mathrm{nl}, \ell}:=T_{\Lambda \Omega}^{\mathrm{nl}, \iota}+$ large derivation

Theorem

The completions of T^{nl} are the two \mathscr{B}-theories $T_{\text {small }}^{\mathrm{nl}}$ and $T_{\text {large }}^{\mathrm{nl}}$.
The theories $T_{\text {small }}^{\mathrm{nl}}, T_{\text {large, }}^{\mathrm{nl}}$ and T^{nl} are decidable.

- Completeness of $T_{\Lambda \Omega, \text { small }}^{\mathrm{nl}, \iota}$ and $T_{\Lambda \Omega, \text { large }}^{\mathrm{nl}, l} \Longrightarrow$ completeness of $T_{\text {small }}^{\mathrm{nl}}$ and $T_{\text {large }}^{\mathrm{nl}}$.
- The $\Lambda \Omega$-field $(\mathbb{Q}(x), \partial / \partial x)$ embeds into any model of $T_{\Lambda \Omega, s m a l l}^{\text {nl, }}$.

Completeness

$T_{\text {small }}^{\mathrm{nl}}:=T^{\mathrm{nl}}+$ small derivation
$T_{\text {large }}^{\mathrm{nl}}:=T^{\mathrm{nl}}+$ large derivation
$T_{\Lambda \Omega, \text { small }}^{\mathrm{nl}, \iota}:=T_{\Lambda \Omega}^{\mathrm{nl}, \iota}+$ small derivation
$T_{\Lambda \Omega, \text { large }}^{\mathrm{nl}, \ell}:=T_{\Lambda \Omega}^{\mathrm{nl}, \iota}+$ large derivation

Theorem

The completions of T^{nl} are the two \mathscr{B}-theories $T_{\text {small }}^{\mathrm{nl}}$ and $T_{\text {large }}^{\mathrm{nl}}$.
The theories $T_{\text {small }}^{\mathrm{nl}}, T_{\text {large }}^{\mathrm{nl}}$ and T^{nl} are decidable.

- Completeness of $T_{\Lambda \Omega, \text { small }}^{\mathrm{nn},}$ and $T_{\Lambda \Omega, l \text { large }}^{\mathrm{nl}, \iota} \Longrightarrow$ completeness of $T_{\text {small }}^{\mathrm{nl}}$ and $T_{\text {large }}^{\mathrm{nl}}$.
- The $\Lambda \Omega$-field $(\mathbb{Q}(x), \partial / \partial x)$ embeds into any model of $T_{\Lambda \Omega, s m a l l}^{\text {nll }}$.
- The $\Lambda \Omega$-field $\left(\mathbb{Q}(x), x^{2} \partial / \partial x\right)$ embeds into any model of $T_{\Lambda \Omega, \text {,arge }}^{\text {nl, }}$.

Completeness

$T_{\text {small }}^{\mathrm{nl}}:=T^{\mathrm{nl}}+$ small derivation
$T_{\text {large }}^{\mathrm{nl}}:=T^{\mathrm{nl}}+$ large derivation
$T_{\Lambda \Omega, \text { small }}^{\mathrm{nl}, \iota}:=T_{\Lambda \Omega}^{\mathrm{nl}, \ell}+$ small derivation
$T_{\Lambda \Omega, \text { large }}^{\mathrm{nl}, \ell}:=T_{\Lambda \Omega}^{\mathrm{nl}, \iota}+$ large derivation

Theorem

The completions of T^{nl} are the two \mathscr{B}-theories $T_{\text {small }}^{\mathrm{nl}}$ and $T_{\text {large }}^{\mathrm{nl}}$. The theories $T_{\text {small }}^{\mathrm{nl}}, T_{\text {large }}^{\mathrm{nl}}$, and T^{nl} are decidable.

- Completeness of $T_{\Lambda \Omega, \text { small }}^{\mathrm{nn}, \ell}$ and $T_{\Lambda \Omega, \text { large }}^{\mathrm{nl}, l} \Longrightarrow$ completeness of $T_{\text {small }}^{\mathrm{nl}}$ and $T_{\text {large }}^{\mathrm{nl}}$.
- The $\Lambda \Omega$-field $(\mathbb{Q}(x), \partial / \partial x)$ embeds into any model of $T_{\Lambda \Omega, s m a l l}^{\text {nl, }}$.
- The $\Lambda \Omega$-field $\left(\mathbb{Q}(x), x^{2} \partial / \partial x\right)$ embeds into any model of $T_{\Lambda \Omega, \text { large }}^{\mathrm{nl}, \mathrm{l}}$.
- The axioms of $T_{\text {small, }}^{\mathrm{nl}}, T_{\text {large, }}^{\mathrm{nl}}$ and T^{nl} can effectively be enumerated.

Completeness

$T_{\text {small }}^{\mathrm{nl}}:=T^{\mathrm{nl}}+$ small derivation
$T_{\text {large }}^{\mathrm{nl}}:=T^{\mathrm{nl}}+$ large derivation
$T_{\Lambda \Omega, \text { small }}^{\mathrm{nl}, \iota}:=T_{\Lambda \Omega}^{\mathrm{nl}, \iota}+$ small derivation
$T_{\Lambda \Omega, \text { large }}^{\mathrm{nl},}:=T_{\Lambda \Omega}^{\mathrm{nl}, \iota}+$ large derivation

Theorem

The completions of T^{nl} are the two \mathscr{B}-theories $T_{\text {small }}^{\mathrm{nl}}$ and $T_{\text {large }}^{\mathrm{nl}}$. The theories $T_{\text {small }}^{\mathrm{nl}}, T_{\text {large }}^{\mathrm{nl}}$, and T^{nl} are decidable.

- Completeness of $T_{\Lambda \Omega, \text { small }}^{\mathrm{n}, \ell}$ and $T_{\Lambda \Omega, l \text { large }}^{\mathrm{nl}, \iota} \Longrightarrow$ completeness of $T_{\text {small }}^{\mathrm{nl}}$ and $T_{\text {large }}^{\mathrm{nl}}$.
- The $\Lambda \Omega$-field $(\mathbb{Q}(x), \partial / \partial x)$ embeds into any model of $T_{\Lambda \Omega, s m a l l}^{\text {nl, }}$.
- The $\Lambda \Omega$-field $\left(\mathbb{Q}(x), x^{2} \partial / \partial x\right)$ embeds into any model of $T_{\Lambda \Omega, \text { large }}^{\mathrm{nl}, l}$.
- The axioms of $T_{\text {small, }}^{\mathrm{nl}}, T_{\text {large, }}^{\mathrm{nl}}$ and T^{nl} can effectively be enumerated.

Note. $\mathbb{Q}(x)^{\mathrm{nl}}$ is a prime model of $T_{\text {small }}^{\mathrm{nl}}$ (i.e. it embeds into any other model).

The intermediate value property

Theorem

Let K be an H-closed H-field. Then the differential intermediate value property (DIVP) holds in K : for any $P \in K\{Y\}$ and $f, g \in K$ with $f<g$ and $P(f) P(g)<0$, there exists an $h \in K$ with $f<h<g$ and $P(h)=0$.

The intermediate value property

Theorem

Let K be an H-closed H-field. Then the differential intermediate value property (DIVP) holds in K: for any $P \in K\{Y\}$ and $f, g \in K$ with $f<g$ and $P(f) P(g)<0$, there exists an $h \in K$ with $f<h<g$ and $P(h)=0$.
Proof. We may arrange the derivative on K to be small via $\partial \rightarrow \phi$ д.

The intermediate value property

Theorem

Let K be an H-closed H-field. Then the differential intermediate value property (DIVP) holds in K: for any $P \in K\{Y\}$ and $f, g \in K$ with $f<g$ and $P(f) P(g)<0$, there exists an $h \in K$ with $f<h<g$ and $P(h)=0$.
Proof. We may arrange the derivative on K to be small via $\partial \rightarrow \phi$ д. The grid-based transseries \mathbb{T} form a model of $T_{\text {small }}^{\mathrm{nl}}$.

The intermediate value property

Theorem

Let K be an H-closed H-field. Then the differential intermediate value property (DIVP) holds in K: for any $P \in K\{Y\}$ and $f, g \in K$ with $f<g$ and $P(f) P(g)<0$, there exists an $h \in K$ with $f<h<g$ and $P(h)=0$.
Proof. We may arrange the derivative on K to be small via $\partial \rightarrow \phi$. The grid-based transseries \mathbb{T} form a model of $T_{\text {small }}^{\mathrm{nl}}$. Since $T_{\text {small }}^{\mathrm{nl}}$ is complete, K satisfies the same theory as \mathbb{T}.

The intermediate value property

Theorem

Let K be an H-closed H-field. Then the differential intermediate value property (DIVP) holds in K : for any $P \in K\{Y\}$ and $f, g \in K$ with $f<g$ and $P(f) P(g)<0$, there exists an $h \in K$ with $f<h<g$ and $P(h)=0$.
Proof. We may arrange the derivative on K to be small via $\partial \rightarrow \phi \partial$.
The grid-based transseries \mathbb{T} form a model of $T_{\text {small }}^{\mathrm{nl}}$. Since $T_{\text {small }}^{\mathrm{nl}}$ is complete, K satisfies the same theory as \mathbb{T}.
The intermediate value property holds in \mathbb{T}.

The intermediate value property

Theorem

Let K be an H-closed H-field. Then the differential intermediate value property (DIVP) holds in K : for any $P \in K\{Y\}$ and $f, g \in K$ with $f<g$ and $P(f) P(g)<0$, there exists an $h \in K$ with $f<h<g$ and $P(h)=0$.
Proof. We may arrange the derivative on K to be small via $\partial \rightarrow \phi \partial$.
The grid-based transseries \mathbb{T} form a model of $T_{\text {small }}^{\mathrm{nl}}$.
Since $T_{\text {small }}^{\mathrm{nl}}$ is complete, K satisfies the same theory as \mathbb{T}.
The intermediate value property holds in \mathbb{T}.

Corollary

Any \mathscr{S}-based field of transseries of finite logarithmic depth satisfies DIVP.

The intermediate value property

Theorem

Let K be an H-closed H-field. Then the differential intermediate value property (DIVP) holds in K : for any $P \in K\{Y\}$ and $f, g \in K$ with $f<g$ and $P(f) P(g)<0$, there exists an $h \in K$ with $f<h<g$ and $P(h)=0$.
Proof. We may arrange the derivative on K to be small via $\partial \rightarrow \phi \partial$. The grid-based transseries \mathbb{T} form a model of $T_{\text {small }}^{\mathrm{nl}}$. Since $T_{\text {small }}^{\mathrm{nl}}$ is complete, K satisfies the same theory as \mathbb{T}.
The intermediate value property holds in \mathbb{T}.

Corollary

Any \mathscr{S}-based field of transseries of finite logarithmic depth satisfies DIVP.

Theorem

Let K be a Liouville closed H-field. Then K is H-closed if and only if it satisfies DIVP.

H-closed Hardy fields

Theorem (vdlif)

There is a Hardy field that is isomorphic as an H-field to the prime model $\mathbb{Q}(x)^{\mathrm{nl}}$ of $T_{\mathrm{small}}^{\mathrm{nl}}$.

H-closed Hardy fields

Theorem (vdlit)

There is a Hardy field that is isomorphic as an H-field to the prime model $\mathbb{Q}(x)^{\mathrm{nl}}$ of $T_{\text {small }}^{\mathrm{nl}}$.
Note. We naturally have $\mathbb{Q}(x)^{\mathrm{nl}} \subseteq \mathbb{T}$. A Hardy field that is at the same time regarded as a subfield of \mathbb{T} was called a transserial Hardy field.

H-closed Hardy fields

Theorem (valit)

There is a Hardy field that is isomorphic as an H-field to the prime model $\mathbb{Q}(x)^{\mathrm{nl}}$ of $T_{\text {small }}^{\mathrm{nl}}$.
Note. We naturally have $\mathbb{Q}(x)^{\mathrm{nl}} \subseteq \mathbb{T}$. A Hardy field that is at the same time regarded as a subfield of \mathbb{T} was called a transserial Hardy field.

Theorem (ADHL)

Any maximal Hardy field is H-closed.

H-closed Hardy fields

Theorem (valit)

There is a Hardy field that is isomorphic as an H-field to the prime model $\mathbb{Q}(x)^{\mathrm{nl}}$ of $T_{\text {small }}^{\mathrm{nl}}$.
Note. We naturally have $\mathbb{Q}(x)^{\mathrm{nl}} \subseteq \mathbb{T}$. A Hardy field that is at the same time regarded as a subfield of \mathbb{T} was called a transserial Hardy field.

Theorem (ADHL)

Any maximal Hardy field is H-closed.

Corollary

$\mathbb{R}(x)^{\mathrm{nl}}, \mathbb{T}$, and all maximal Hardy fields are elementary equivalent.

We know that maximal Hardy fields are Liouville closed.
One may check that they are ω-free.
It remains to show that they are newtonian.

We know that maximal Hardy fields are Liouville closed.
One may check that they are ω-free.
It remains to show that they are newtonian.

Idea: minimal complexity argument

Proof ingredient I

We know that maximal Hardy fields are Liouville closed.
One may check that they are ω-free.
It remains to show that they are newtonian.

Idea: minimal complexity argument

Consider an ω-free Liouville closed Hardy field K that is not newtonian.

We know that maximal Hardy fields are Liouville closed.
One may check that they are ω-free.
It remains to show that they are newtonian.

Idea: minimal complexity argument

Consider an ω-free Liouville closed Hardy field K that is not newtonian.
Pick a divergent pc-sequence $\left(y_{\rho}\right)$ of differentially algebraic type.

We know that maximal Hardy fields are Liouville closed.
One may check that they are ω-free.
It remains to show that they are newtonian.

Idea: minimal complexity argument

Consider an ω-free Liouville closed Hardy field K that is not newtonian.
Pick a divergent pc-sequence $\left(y_{\rho}\right)$ of differentially algebraic type.
Pick it of minimal complexity:

We know that maximal Hardy fields are Liouville closed.
One may check that they are ω-free.
It remains to show that they are newtonian.

Idea: minimal complexity argument

Consider an ω-free Liouville closed Hardy field K that is not newtonian.
Pick a divergent pc-sequence $\left(y_{\rho}\right)$ of differentially algebraic type.
Pick it of minimal complexity:
Given $P \in K\{Y\}^{\neq 0}$ of order r and degree d with $P\left(y_{\rho}\right) \leadsto 0$, the triple $\left(r, \operatorname{deg}_{Y^{(r)}} P, d\right)$ is minimal for the lexicographical ordering.

We know that maximal Hardy fields are Liouville closed.
One may check that they are ω-free.
It remains to show that they are newtonian.

Idea: minimal complexity argument

Consider an ω-free Liouville closed Hardy field K that is not newtonian.
Pick a divergent pc-sequence $\left(y_{\rho}\right)$ of differentially algebraic type.
Pick it of minimal complexity:
Given $P \in K\{Y\}^{\neq 0}$ of order r and degree d with $P\left(y_{\rho}\right) \leadsto 0$, the triple $\left(r, \operatorname{deg}_{Y^{(\omega)}} P, d\right)$ is minimal for the lexicographical ordering. Claim: $K\langle y\rangle$ is again a Hardy field for some root y of P with $y_{\rho} \leadsto y$.

Idea: further normalization of quasi-linear equations

$$
\mathrm{e}^{-2 \mathrm{e}^{x}} y^{\prime \prime} y^{3}+\mathrm{e}^{-\mathrm{e}^{x}} y^{2}-y^{\prime \prime \prime}+\mathrm{e}^{x} y^{\prime \prime}-y^{\prime}+\mathrm{e}^{x} y-2023 \mathrm{e}^{-\mathrm{e}^{x}}=0, \quad y<1
$$

Idea: further normalization of quasi-linear equations

$$
\begin{array}{cc}
\mathrm{e}^{-2 \mathrm{e}^{x}} y^{\prime \prime} y^{3}+\mathrm{e}^{-\mathrm{e}^{x}} y^{2}-y^{\prime \prime \prime}+\mathrm{e}^{x} y^{\prime \prime}-y^{\prime}+\mathrm{e}^{x} y-2023 \mathrm{e}^{-\mathrm{e}^{x}}=0, & y \prec 1 \\
y^{\prime \prime \prime}-\mathrm{e}^{x} y^{\prime \prime}+y^{\prime}-\mathrm{e}^{x} y=\mathrm{e}^{-2 \mathrm{e}^{x}} y^{\prime \prime} y^{3}+\mathrm{e}^{-\mathrm{e}^{x}} y^{2}-2023 \mathrm{e}^{-\mathrm{e}^{x}}, & y \prec 1
\end{array}
$$

Idea: further normalization of quasi-linear equations

$$
\begin{gathered}
\mathrm{e}^{-2 \mathrm{e}^{x}} y^{\prime \prime} y^{3}+\mathrm{e}^{-\mathrm{e}^{x}} y^{2}-y^{\prime \prime \prime}+\mathrm{e}^{x} y^{\prime \prime}-y^{\prime}+\mathrm{e}^{x} y-2023 \mathrm{e}^{-\mathrm{e}^{x}}=0, \quad y<1 \\
y^{\prime \prime \prime}-\mathrm{e}^{x} y^{\prime \prime}+y^{\prime}-\mathrm{e}^{x} y=\mathrm{e}^{-2 \mathrm{e}^{x}} y^{\prime \prime} y^{3}+\mathrm{e}^{-\mathrm{e}^{x}} y^{2}-2023 \mathrm{e}^{-\mathrm{e}^{x}}, \quad y<1 \\
\left(\partial-\mathrm{e}^{x}\right)\left(\partial^{2}+1\right) y=\mathrm{e}^{-2 \mathrm{e}^{x}} y^{\prime \prime} y^{3}+\mathrm{e}^{-\mathrm{e}^{x}} y^{2}-2023 \mathrm{e}^{-\mathrm{e}^{x}}, \quad y<1
\end{gathered}
$$

Idea: further normalization of quasi-linear equations

$$
\begin{gathered}
\mathrm{e}^{-2 \mathrm{e}^{x}} y^{\prime \prime} y^{3}+\mathrm{e}^{-\mathrm{e}^{x}} y^{2}-y^{\prime \prime \prime}+\mathrm{e}^{x} y^{\prime \prime}-y^{\prime}+\mathrm{e}^{x} y-2023 \mathrm{e}^{-\mathrm{e}^{x}}=0, \quad y<1 \\
y^{\prime \prime \prime}-\mathrm{e}^{x} y^{\prime \prime}+y^{\prime}-\mathrm{e}^{x} y=\mathrm{e}^{-2 \mathrm{e}^{x}} y^{\prime \prime} y^{3}+\mathrm{e}^{-\mathrm{e}^{x}} y^{2}-2023 \mathrm{e}^{-\mathrm{e}^{x}}, \quad y<1 \\
\left(\partial-\mathrm{e}^{x}\right)\left(\partial^{2}+1\right) y=\mathrm{e}^{-2 \mathrm{e}^{x}} y^{\prime \prime} y^{3}+\mathrm{e}^{-\mathrm{e}^{x}} y^{2}-2023 \mathrm{e}^{-\mathrm{e}^{x}}, \quad y<1 \\
\left(\partial-\mathrm{e}^{x}\right)(\partial+\mathrm{i})(\partial-\mathrm{i}) y=\mathrm{e}^{-2 \mathrm{e}^{x}} y^{\prime \prime} y^{3}+\mathrm{e}^{-\mathrm{e}^{x}} y^{2}-2023 \mathrm{e}^{-\mathrm{e}^{x}}, \quad y<1
\end{gathered}
$$

Idea: analytic fixed-point argument

$$
\left(\partial-\mathrm{e}^{x}\right)(\partial+\mathrm{i})(\partial-\mathrm{i}) y=\mathrm{e}^{-2 \mathrm{e}^{x}} y^{\prime \prime} y^{3}+\mathrm{e}^{-\mathrm{e}^{x}} y^{2}-2023 \mathrm{e}^{-\mathrm{e}^{x}}, \quad y \prec 1
$$

Idea: analytic fixed-point argument

$$
\begin{gathered}
\left(\partial-\mathrm{e}^{x}\right)(\partial+\mathrm{i})(\partial-\mathrm{i}) y=\mathrm{e}^{-2 \mathrm{e}^{x}} y^{\prime \prime} y^{3}+\mathrm{e}^{-\mathrm{e}^{x}} y^{2}-2023 \mathrm{e}^{-\mathrm{e}^{x}}, \quad y<1 \\
y=(\partial-\mathrm{i})^{-1}(\partial+\mathrm{i})^{-1}\left(\partial-\mathrm{e}^{x}\right)^{-1}\left(\mathrm{e}^{-2 \mathrm{e}^{x}} y^{\prime \prime} y^{3}+\mathrm{e}^{-\mathrm{e}^{x}} y^{2}-2023 \mathrm{e}^{-\mathrm{e}^{x}}\right)
\end{gathered}
$$

Idea: analytic fixed-point argument

$$
\begin{gathered}
\left(\partial-\mathrm{e}^{x}\right)(\partial+\mathrm{i})(\partial-\mathrm{i}) y=\mathrm{e}^{-2 \mathrm{e}^{x}} y^{\prime \prime} y^{3}+\mathrm{e}^{-\mathrm{e}^{x}} y^{2}-2023 \mathrm{e}^{-\mathrm{e}^{x}}, \quad y<1 \\
y=(\partial-\mathrm{i})^{-1}(\partial+\mathrm{i})^{-1}\left(\partial-\mathrm{e}^{x}\right)^{-1}\left(\mathrm{e}^{-2 \mathrm{e}^{x}} y^{\prime \prime} y^{3}+\mathrm{e}^{-\mathrm{e}^{x}} y^{2}-2023 \mathrm{e}^{-\mathrm{e}^{x}}\right) \\
\left(\partial-\Phi^{+}\right)^{-1} f=\mathrm{e}^{\Phi(x)} \int_{\square}^{x} \mathrm{e}^{-\Phi(t)} f(t) \mathrm{d} t .
\end{gathered}
$$

Idea: analytic fixed-point argument

$$
\begin{gathered}
\left(\partial-\mathrm{e}^{x}\right)(\partial+\mathrm{i})(\partial-\mathrm{i}) y=\mathrm{e}^{-2 \mathrm{e}^{x}} y^{\prime \prime} y^{3}+\mathrm{e}^{-\mathrm{e}^{x}} y^{2}-2023 \mathrm{e}^{-\mathrm{e}^{x}}, \quad y<1 \\
y=(\partial-\mathrm{i})^{-1}(\partial+\mathrm{i})^{-1}\left(\partial-\mathrm{e}^{x}\right)^{-1}\left(\mathrm{e}^{-2 \mathrm{e}^{x}} y^{\prime \prime} y^{3}+\mathrm{e}^{-\mathrm{e}^{x}} y^{2}-2023 \mathrm{e}^{-\mathrm{e}^{x}}\right) \\
\left(\partial-\Phi^{+}\right)^{-1} f=\mathrm{e}^{\Phi(x)} \int_{\square}^{x} \mathrm{e}^{-\Phi(t)} f(t) \mathrm{d} t .
\end{gathered}
$$

Subtlety

$$
\begin{aligned}
& \mathrm{e}^{-\Phi(t)} \ll 1 \quad \int_{\infty}^{x} \\
& \mathrm{e}^{-\Phi(t)} \gg 1 \quad \int_{x_{0}}^{x}
\end{aligned}
$$

Proof ingredient III

Idea: analytic fixed-point argument

$$
\begin{gathered}
\left(\partial-\mathrm{e}^{x}\right)(\partial+\mathrm{i})(\partial-\mathrm{i}) y=\mathrm{e}^{-2 \mathrm{e}^{x}} y^{\prime \prime} y^{3}+\mathrm{e}^{-\mathrm{e}^{x}} y^{2}-2023 \mathrm{e}^{-\mathrm{e}^{x}}, \quad y<1 \\
y=(\partial-\mathrm{i})^{-1}(\partial+\mathrm{i})^{-1}\left(\partial-\mathrm{e}^{x}\right)^{-1}\left(\mathrm{e}^{-2 \mathrm{e}^{x}} y^{\prime \prime} y^{3}+\mathrm{e}^{-\mathrm{e}^{x}} y^{2}-2023 \mathrm{e}^{-\mathrm{e}^{x}}\right) \\
\left(\partial-\Phi^{+}\right)^{-1} f=\mathrm{e}^{\Phi(x)} \int_{\square}^{x} \mathrm{e}^{-\Phi(t)} f(t) \mathrm{d} t .
\end{gathered}
$$

Subtlety

$$
\begin{aligned}
& \mathrm{e}^{-\Phi(t)} \ll 1 \quad \int_{\infty}^{x} \\
& \mathrm{e}^{-\Phi(t)} \gg 1 \quad \int_{x_{0}}^{x}
\end{aligned}
$$

Done correctly, the process preserves realness and asymptotic properties...

In progress

Theorem.o. (ADH)

Let K be a maximal Hardy field.
Consider countable subsets $L \subseteq K$ and $R \subseteq K$ with $L<R$. Then there exists some $y \in K$ with $L<y<R$.

In progress

Theorem.o. (ADH)

Let K be a maximal Hardy field.
Consider countable subsets $L \subseteq K$ and $R \subseteq K$ with $L<R$.
Then there exists some $y \in K$ with $L<y<R$.

Known Corollary (Boshernitzan)

Given any countable subset $L \subseteq K\left(\right.$ like $\left.L=\left\{x, \mathrm{e}^{x}, \mathrm{e}^{\mathrm{e}^{x}}, \ldots\right\}\right)$, we have $y>L$ for some $y \in K$.

In progress

Theorem.o. (ADH)

Let K be a maximal Hardy field.
Consider countable subsets $L \subseteq K$ and $R \subseteq K$ with $L<R$.
Then there exists some $y \in K$ with $L<y<R$.

Known Corollary (Boshemitzan)

Given any countable subset $L \subseteq K\left(\right.$ like $\left.L=\left\{x, \mathrm{e}^{x}, \mathrm{e}^{\mathrm{e}^{x}}, \ldots\right\}\right)$, we have $y>L$ for some $y \in K$.

Corollary

All maximal Hardy fields are back-and-forth equivalent.
Under the continuum hypothesis, they are all isomorphic.

$$
\tilde{f}(z)=\sum_{n=1}^{\infty}(-1)^{n-1}(n-1)!z^{n}
$$

$$
\tilde{f}(z)=\sum_{n=1}^{\infty}(-1)^{n-1}(n-1)!z^{n}
$$

$$
\hat{f}(\zeta)=\sum_{n=1}^{\infty}(-1)^{n-1} \zeta^{n-1}=\frac{1}{1+\zeta}
$$

$$
\begin{gathered}
\tilde{f}(z)=\sum_{n=1}^{\infty}(-1)^{n-1}(n-1)!z^{n} \\
\text { Formal Borel } \mathscr{B} \\
\qquad \hat{f}(\zeta)=\sum_{n=1}^{\infty}(-1)^{n-1} \zeta^{n-1}=\frac{1}{1+\zeta}
\end{gathered}
$$

$$
\begin{gathered}
\tilde{f}(z)=\sum_{n=1}^{\infty}(-1)^{n-1}(n-1)!z^{n}-\begin{array}{l}
\text { Resummation }
\end{array} f(z)=\int_{0}^{\infty} \frac{\mathrm{e}^{-\zeta / z}}{1+\zeta} \mathrm{d} \zeta \\
\text { Formal Borel } \tilde{\mathscr{B}} \\
\qquad \hat{f}(\zeta)=\sum_{n=1}^{\infty}(-1)^{n-1} \zeta^{n-1}=\frac{1}{1+\zeta}
\end{gathered}
$$

$$
\begin{gathered}
\tilde{f}(z)=\sum_{n=1}^{\infty}(-1)^{n-1}(n-1)!z^{n}-\text { Resummation } \\
\text { Formal Borel } \tilde{B} \quad f(z)=\int_{0}^{\infty} \frac{\mathrm{e}^{-\zeta / z}}{1+\zeta} \mathrm{d} \zeta \\
\qquad \hat{f}(\zeta)=\sum_{n=1}^{\infty}(-1)^{n-1} \zeta^{n-1}=\frac{1}{1+\zeta}
\end{gathered}
$$

More generally accelero-summation of transseries

$$
\begin{aligned}
& \tilde{f}(z)=\sum_{n=1}^{\infty}(-1)^{n-1}(n-1)!z^{n}-\text { Resummation } \rightarrow f(z)=\int_{0}^{\infty} \frac{\mathrm{e}^{-\zeta / z}}{1+\zeta} \mathrm{d} \zeta \\
& \text { Formal Borel } \mathscr{B} \searrow_{\infty} \\
& \hat{f}(\zeta)=\sum_{n=1}^{\infty}(-1)^{n-1} \zeta^{n-1}=\frac{1}{1+\zeta}
\end{aligned}
$$

More generally accelero-summation of transseries Challenge \quad make it work for any $f \in \mathbb{R}(x)^{\mathrm{nl}} \subseteq \mathbb{T}$

$$
\begin{gathered}
\tilde{f}(z)=\sum_{n=1}^{\infty}(-1)^{n-1}(n-1)!z^{n}-\frac{\text { Resummation }}{} \rightarrow-\rightarrow f(z)=\int_{0}^{\infty} \frac{\mathrm{e}^{-\zeta / z}}{1+\zeta} \mathrm{d} \zeta \\
\text { Formal Borel } \tilde{B} \quad \hat{f}(\zeta)=\sum_{n=1}^{\infty}(-1)^{n-1} \zeta^{n-1}=\frac{1}{1+\zeta}
\end{gathered}
$$

More generally accelero-summation of transseries Challenge make it work for any $f \in \mathbb{R}(x)^{\mathrm{nl}} \subseteq \mathbb{T}$ Motivation compatability with composition

$$
\begin{aligned}
& \tilde{f}(z)=\sum_{n=1}^{\infty}(-1)^{n-1}(n-1)!z^{n} \quad \text { Resummation } \ldots f(z)=\int_{0}^{\infty} \frac{\mathrm{e}^{-\zeta / z}}{1+\zeta} \mathrm{d} \zeta \\
& \text { Formal Borel } \mathscr{B} \searrow_{\infty} \\
& \hat{f}(\zeta)=\sum_{n=1}^{\infty}(-1)^{n-1} \zeta^{n-1}=\frac{1}{1+\zeta}
\end{aligned}
$$

More generally accelero-summation of transseries

Challenge
Motivation
make it work for any $f \in \mathbb{R}(x)^{\mathrm{nl}} \subseteq \mathbb{T}$
compatability with composition \longrightarrow o-minimality

Conway's recursive definition

- Given sets $L, R \subseteq$ No with $L<R$, there exists a $\{L \mid R\} \in$ No with $L<\{L \mid R\}<R$
- All numbers in No can be obtained in this way

Conway's recursive definition

- Given sets $L, R \subseteq$ No with $L<R$, there exists a $\{L \mid R\} \in$ No with $L<\{L \mid R\}<R$
- All numbers in No can be obtained in this way

Definition using sign sequences

- On: class of ordinal numbers
- A surreal number x is a sequence $(x[\beta])_{\beta<\alpha} \in\{-,+\}^{\alpha}$ for some $\ell_{x}:=\alpha \in \mathbf{O n}$
- Lexicographical ordering on such sequences (modulo completion with zeros)

Conway's recursive definition

- Given sets $L, R \subseteq$ No with $L<R$, there exists a $\{L \mid R\} \in$ No with $L<\{L \mid R\}<R$
- All numbers in No can be obtained in this way

Definition using sign sequences

- On: class of ordinal numbers
- A surreal number x is a sequence $(x[\beta])_{\beta<\alpha} \in\{-,+\}^{\alpha}$ for some $\ell_{x}:=\alpha \in \mathbf{O n}$
- Lexicographical ordering on such sequences (modulo completion with zeros)

Simplicity relation

$$
x \sqsubseteq y \Longleftrightarrow \ell_{x} \leqslant \ell_{y} \wedge\left(\forall \beta<\ell_{x}, x[\beta]=y[\beta]\right)
$$

Conway's recursive definition

- Given sets $L, R \subseteq$ No with $L<R$, there exists a $\{L \mid R\} \in$ No with $L<\{L \mid R\}<R$
- All numbers in No can be obtained in this way

Definition using sign sequences

- On: class of ordinal numbers
- A surreal number x is a sequence $(x[\beta])_{\beta<\alpha} \in\{-,+\}^{\alpha}$ for some $\ell_{x}:=\alpha \in \mathbf{O n}$
- Lexicographical ordering on such sequences (modulo completion with zeros)

Simplicity relation

$$
x \sqsubseteq y \Longleftrightarrow \ell_{x} \leqslant \ell_{y} \wedge\left(\forall \beta<\ell_{x}, x[\beta]=y[\beta]\right)
$$

Equivalence between ($\mathrm{No}, \leqslant,\{\mid\}$) and $(\mathrm{No}, \leqslant$, 드)

$$
\{L \mid R\}:=\min _{\sqsubseteq}\{a \in \mathbf{N o}: L<a<R\}
$$

Ring structure. For $x=\left\{x_{L} \mid x_{R}\right\}$ and $y=\left\{y_{L} \mid y_{R}\right\}$, we define

$$
\begin{aligned}
0 & :=\{\mid\} \\
1 & :=\{0 \mid\} \\
-x & :=\left\{-x_{R} \mid-x_{L}\right\} \\
x+y & :=\left\{x_{L}+y, x+y_{L} \mid x_{R}+y, x+y_{R}\right\} \\
x y:= & \left\{x^{\prime} y+x y^{\prime}-x^{\prime} y^{\prime}, x^{\prime \prime} y+x y^{\prime \prime}-x^{\prime \prime} y^{\prime \prime} \mid x^{\prime} y+x y^{\prime \prime}-x^{\prime} y^{\prime \prime}, x^{\prime \prime} y+x y^{\prime}-x^{\prime \prime} y^{\prime}\right\} \\
& \quad\left(x^{\prime} \in x_{L}, x^{\prime \prime} \in x_{R}, y^{\prime} \in y_{L}, y^{\prime \prime} \in y_{R}\right) .
\end{aligned}
$$

Ring structure. For $x=\left\{x_{L} \mid x_{R}\right\}$ and $y=\left\{y_{L} \mid y_{R}\right\}$, we define

$$
\begin{aligned}
0 & := \\
1 & :=\{\mid\} \\
-x & :=\left\{-x_{R} \mid-x_{L}\right\} \\
x+y & :=\left\{x_{L}+y, x+y_{L} \mid x_{R}+y, x+y_{R}\right\} \\
x y:= & \left\{x^{\prime} y+x y^{\prime}-x^{\prime} y^{\prime}, x^{\prime \prime} y+x y^{\prime \prime}-x^{\prime \prime} y^{\prime \prime} \mid x^{\prime} y+x y^{\prime \prime}-x^{\prime} y^{\prime \prime}, x^{\prime \prime} y+x y^{\prime}-x^{\prime \prime} y^{\prime}\right\} \\
& \left(x^{\prime} \in x_{L}, x^{\prime \prime} \in x_{R}, y^{\prime} \in y_{L}, y^{\prime \prime} \in y_{R}\right) .
\end{aligned}
$$

Gonshor: exponential and logarithm on No (resp. No ${ }^{\text {- }}$)

Ring structure. For $x=\left\{x_{L} \mid x_{R}\right\}$ and $y=\left\{y_{L} \mid y_{R}\right\}$, we define

$$
\begin{aligned}
0 & := \\
1 & :=\{\mid\} \\
-x & :=\left\{-x_{R} \mid-x_{L}\right\} \\
x+y & :=\left\{x_{L}+y, x+y_{L} \mid x_{R}+y, x+y_{R}\right\} \\
x y:= & \left\{x^{\prime} y+x y^{\prime}-x^{\prime} y^{\prime}, x^{\prime \prime} y+x y^{\prime \prime}-x^{\prime \prime} y^{\prime \prime} \mid x^{\prime} y+x y^{\prime \prime}-x^{\prime} y^{\prime \prime}, x^{\prime \prime} y+x y^{\prime}-x^{\prime \prime} y^{\prime}\right\} \\
& \left(x^{\prime} \in x_{L}, x^{\prime \prime} \in x_{R}, y^{\prime} \in y_{L}, y^{\prime \prime} \in y_{R}\right) .
\end{aligned}
$$

Gonshor: exponential and logarithm on No (resp. No ${ }^{\text {- }}$)
Conway's ω-map (generalizing Cantor's ordinal exponentiation)

$$
\omega^{x}:=\left\{0, \mathbb{R}^{>} \omega^{x_{L}} \mid \mathbb{R}^{>} \omega^{x_{R}}\right\}
$$

Operations on No

Ring structure. For $x=\left\{x_{L} \mid x_{R}\right\}$ and $y=\left\{y_{L} \mid y_{R}\right\}$, we define

$$
\begin{aligned}
0 & :=\{\mid\} \\
1 & :=\{0 \mid\} \\
-x & :=\left\{-x_{R} \mid-x_{L}\right\} \\
x+y & :=\left\{x_{L}+y, x+y_{L} \mid x_{R}+y, x+y_{R}\right\} \\
x y & :=\left\{x^{\prime} y+x y^{\prime}-x^{\prime} y^{\prime}, x^{\prime \prime} y+x y^{\prime \prime}-x^{\prime \prime} y^{\prime \prime} \mid x^{\prime} y+x y^{\prime \prime}-x^{\prime} y^{\prime \prime}, x^{\prime \prime} y+x y^{\prime}-x^{\prime \prime} y^{\prime}\right\} \\
& \quad\left(x^{\prime} \in x_{L}, x^{\prime \prime} \in x_{R}, y^{\prime} \in y_{L}, y^{\prime \prime} \in y_{R}\right) .
\end{aligned}
$$

Gonshor: exponential and logarithm on No (resp. No ${ }^{\text {- }}$)
Conway's ω-map (generalizing Cantor's ordinal exponentiation)

$$
\omega^{x}:=\left\{0, \mathbb{R}^{>} \omega^{x_{L}} \mid \mathbb{R}^{>} \omega^{x_{R}}\right\}
$$

Surreal numbers as Hahn series

$$
\text { No } \cong \mathbb{R}[[\mathbf{M o}]], \quad \text { Mo }:=\omega^{\text {No }}
$$

$$
\begin{aligned}
0 & :=\{\mid\} \\
1 & :=\{0 \mid\} \\
2 & :=\{0,1 \mid\} \\
& \vdots \\
-1 & :=\{\mid 0\} \\
-2 & :=\{\mid-1,0\} \\
& \vdots \\
1 / 2 & :=\{0 \mid 1\} \\
1 / 4 & :=\left\{\left.0\right|^{1} / 2,1\right\} \\
3 / 8 & :=\left\{0,1 /\left.4\right|^{1 / 2}, 1\right\} \\
& \vdots \\
1 / 3 & :=\{0,1 / 4,5 / 16, \ldots \mid \ldots, 3 / 8,1 / 2,1\} \\
\pi & :=\left\{0,1,2,3,3^{1 / 16}, \ldots \mid \ldots, 3^{1 / 4}, 3^{1 / 2}, 4\right\} \\
& \vdots \\
\mathbb{R} & \subseteq \mathbf{N o}
\end{aligned}
$$

$$
\begin{aligned}
0 & :=\{\mid\} \\
1 & ::\{00\} \\
2 & =\{0,1 \mid\} \\
& \vdots \\
\omega & :=\{0,1,2, \ldots \mid\} \\
\omega+1 & :=\{0,1,2, \ldots, \omega \mid\} \\
& \vdots \\
\omega 2 & :=\{0,1,2, \ldots, \omega, \omega+1, \ldots \mid\} \\
& \vdots \\
\omega^{2} & :=\{0,1,2, \ldots, \omega, \ldots, \omega 2, \ldots \mid\} \\
& \vdots \\
\text { On } & \subseteq \text { No } \\
\omega^{-1} & :=\left\{0 \mid \ldots, 1_{4}, 1 / 2,1\right\} \\
\exp \omega & :=\left\{1, \omega, \omega^{2}, \omega^{3}, \ldots \mid\right\}
\end{aligned}
$$

Derivation on the surreal numbers

Theorem (Berarducci-Mantova)

There exists a strong exp-log derivation ∂_{BM} on No with $\partial_{\mathrm{BM}} \omega=1$.

Theorem (Berarducci-Mantova)

There exists a strong exp-log derivation ∂_{BM} on No with $\partial_{\mathrm{BM}} \omega=1$.

Theorem (ADE)

No with ∂_{BM} is H-closed. So is $\mathbf{N o}(\kappa)$ for any uncountable κ.

Theorem (Berarducci-Mantova)

There exists a strong exp-log derivation ∂_{BM} on No with $\partial_{\mathrm{BM}} \omega=1$.

Theorem (ADE)

No with ∂_{BM} is H-closed. So is $\mathbf{N o}(\kappa)$ for any uncountable κ.

However.

- There is a big class of derivations that satisfy the above theorem.

Theorem (Berarducci-Mantova)

There exists a strong exp-log derivation ∂_{BM} on No with $\partial_{\mathrm{BM}} \omega=1$.

Theorem (ADE)

No with ∂_{BM} is H-closed. So is $\mathbf{N o}(\kappa)$ for any uncountable κ.

However.

- There is a big class of derivations that satisfy the above theorem.
- ∂_{BM} is the "simplest" such derivation in a certain sense.

Theorem (Berarducci-Mantova)

There exists a strong exp-log derivation ∂_{BM} on No with $\partial_{\mathrm{BM}} \omega=1$.

Theorem (ADE)

No with ∂_{BM} is H-closed. So is $\mathbf{N o}(\kappa)$ for any uncountable κ.

However.

- There is a big class of derivations that satisfy the above theorem.
- ∂_{BM} is the "simplest" such derivation in a certain sense.
- But ∂_{BM} is not the "right" derivation with respect to ω (see below.)

Theorem (Berarducci-Mantova)

There exists a strong exp-log derivation ∂_{BM} on No with $\partial_{\mathrm{BM}} \omega=1$.

Theorem (ADE)

No with ∂_{BM} is H-closed. So is $\mathbf{N o}(\kappa)$ for any uncountable κ.

However.

- There is a big class of derivations that satisfy the above theorem.
- ∂_{BM} is the "simplest" such derivation in a certain sense.
- But ∂_{BM} is not the "right" derivation with respect to ω (see below.)
- Also: how to define a composition on No?

Missing formal growth rates

Dubois-Reymond, Hardy, Kneser, ...

There exist "regular" functions that grow faster than $x, \mathrm{e}^{x}, \mathrm{e}^{\mathrm{e}^{x}}, \ldots$

$$
E_{\omega}(x+1)=\mathrm{e}^{E_{\omega}(x)}
$$

\longrightarrow Écalle's "Grand Cantor"

Missing formal growth rates

Dubois-Reymond, Hardy, Kneser, ...

There exist "regular" functions that grow faster than $x, \mathrm{e}^{x}, \mathrm{e}^{\mathrm{e}^{x}}, \ldots$

$$
E_{\omega}(x+1)=\mathrm{e}^{E_{\omega}(x)}
$$

\longrightarrow Écalle's "Grand Cantor"

vdH (1997)

No ordinary transseries solutions of

$$
f(x)=\sqrt{x}+\mathrm{e}^{f(\log x)}
$$

Missing formal growth rates

Dubois-Reymond, Hardy, Kneser, ...

There exist "regular" functions that grow faster than $x, \mathrm{e}^{x}, \mathrm{e}^{\mathrm{e}^{x}}, \ldots$

$$
E_{\omega}(x+1)=\mathrm{e}^{E_{\omega}(x)}
$$

\longrightarrow Écalle's "Grand Cantor"

vdH (1997)

No ordinary transseries solutions of

$$
f(x)=\sqrt{x}+\mathrm{e}^{\sqrt{\log x}+\mathrm{e}^{f(\log \log x)}}
$$

Missing formal growth rates

Dubois-Reymond, Hardy, Kneser, ...

There exist "regular" functions that grow faster than $x, \mathrm{e}^{x}, \mathrm{e}^{\mathrm{e}^{x}}, \ldots$

$$
E_{\omega}(x+1)=\mathrm{e}^{E_{\omega}(x)}
$$

\longrightarrow Écalle's "Grand Cantor"

vdH (1997)

No ordinary transseries solutions of

$$
f(x)=\sqrt{x}+\mathrm{e}^{\sqrt{\log x}+\mathrm{e}^{\sqrt{\log \log x}+\mathrm{f}+\log _{g} \log _{\log (\log)}}}
$$

Missing formal growth rates

Dubois-Reymond, Hardy, Kneser, ...

There exist "regular" functions that grow faster than $x, \mathrm{e}^{x}, \mathrm{e}^{\mathrm{e}^{x}}, \ldots$

$$
E_{\omega}(x+1)=\mathrm{e}^{E_{\omega}(x)}
$$

\longrightarrow Écalle's "Grand Cantor"

vdH (1997)

No ordinary transseries like

$$
f(x)=\sqrt{x}+\mathrm{e}^{\sqrt{\log x}+\mathrm{e}^{\sqrt{\log \log x}+e \cdot}}
$$

Missing formal growth rates

Dubois-Reymond, Hardy, Kneser, ...

There exist "regular" functions that grow faster than $x, \mathrm{e}^{x}, \mathrm{e}^{\mathrm{e}^{x}}, \ldots$

$$
E_{\omega}(x+1)=\mathrm{e}^{E_{\omega}(x)}
$$

\longrightarrow Écalle's "Grand Cantor"

vdH (1997)

No ordinary transseries like

$$
f(x)=\sqrt{x}+\mathrm{e}^{\sqrt{\log x}+\mathrm{e}^{\sqrt{\log \log x}+e^{-}}}
$$

Hyperseries: generalization of transseries with

- Hyperexponentials and hyperlogarithm E_{α}, L_{α} of ordinal strength ($E_{1}=\exp$)
- Nested hyperseries

Conjecture (valf1, 2006) \rightarrow Theorem (Bagayoko-vdlif, 2022)

The field \mathbb{H} of hyperseries in $x>1$ (for a suitable definition) is naturally isomorphic to No, via the map $\mathbb{H} \longrightarrow \mathbf{N o} ; f \longmapsto f(\omega)$ that evaluates a hyperseries f at ω. In particular, \mathbb{H} is closed under all hyperexponentials E_{α} and hyperlogarithms L_{α} for ordinal α, and \mathbb{H} contains "nested hyperseries".

Conjecture (vdlf, 2006) \rightarrow Theorem (Bagayoko-vdlt, 2022)

The field \mathbb{H} of hyperseries in $x>1$ (for a suitable definition) is naturally isomorphic to No, via the map $\mathbb{H} \longrightarrow \mathbf{N o} ; f \longmapsto f(\omega)$ that evaluates a hyperseries f at ω. In particular, \mathbb{H} is closed under all hyperexponentials E_{α} and hyperlogarithms L_{α} for ordinal α, and \mathbb{H} contains "nested hyperseries".

Hyperseries

Closed under ∂ (in progress)
Closed under \circ (in progress)

Surreal numbers

Closed under \{ \mid \}
Simplicity relation \sqsubseteq

Conjecture (vdlf, 2006) \rightarrow Theorem (Bagayoko-vdlt, 2022)

The field \mathbb{H} of hyperseries in $x>1$ (for a suitable definition) is naturally isomorphic to No, via the map $\mathbb{H} \longrightarrow \mathbf{N o} ; f \longmapsto f(\omega)$ that evaluates a hyperseries f at ω. In particular, \mathbb{H} is closed under all hyperexponentials E_{α} and hyperlogarithms L_{α} for ordinal α, and \mathbb{H} contains "nested hyperseries".

Problem with $\partial_{\mathrm{BM}}: \partial_{\mathrm{BM}} E_{\omega} E_{\omega} \omega=E_{\omega}^{\prime} E_{\omega} \omega \neq E_{\omega}^{\prime} \omega E_{\omega}^{\prime} E_{\omega} \omega$

Start with logarithmic transseries at an arbitrary level $l \in \mathbb{Z}$:

$$
\begin{aligned}
\mathfrak{T}_{0} & :=\mathfrak{L} \circ \exp _{l} z \\
\mathbb{T}_{0} & :=\mathbb{C} \llbracket \mathfrak{T}_{0} \rrbracket
\end{aligned}
$$

Start with logarithmic transseries at an arbitrary level $l \in \mathbb{Z}$:

$$
\begin{aligned}
\mathfrak{T}_{0} & :=\mathfrak{L} \circ \exp _{l} z \\
\mathbb{T}_{0} & :=\mathbb{C} \llbracket \mathfrak{T}_{0} \rrbracket
\end{aligned}
$$

Close off under exponentiation:

$$
\begin{aligned}
& \mathfrak{T}_{k+1}:=\exp \mathbb{T}_{k,>} \\
& \mathbb{T}_{k+1}:=\mathbb{C} \llbracket \mathfrak{T}_{0} \rrbracket
\end{aligned}
$$

Start with logarithmic transseries at an arbitrary level $l \in \mathbb{Z}$:

$$
\begin{aligned}
& \mathfrak{T}_{0}:=\mathfrak{L} \circ \exp _{l} z \\
& \mathbb{T}_{0}:=\mathbb{C} \llbracket \mathfrak{T}_{0} \rrbracket
\end{aligned}
$$

Close off under exponentiation:

$$
\begin{aligned}
& \mathfrak{T}_{k+1}:=\exp \mathbb{T}_{k,>} \\
& \mathbb{T}_{k+1}:=\mathbb{C} \llbracket \mathfrak{T}_{0} \rrbracket
\end{aligned}
$$

Take any ordering on \mathbb{T}_{k} that

- is compatible with the \mathbb{R}-vector space structure;
- is such that $\mathfrak{m} \leqslant \mathfrak{n} \Longleftrightarrow \log \mathfrak{m} \leqslant \log \mathfrak{n}$ for all $\mathfrak{m}, \mathfrak{n} \in \mathfrak{T}_{k}$.

Start with logarithmic transseries at an arbitrary level $l \in \mathbb{Z}$:

$$
\begin{aligned}
& \mathfrak{T}_{0}:=\mathfrak{L} \circ \exp _{l} z \\
& \mathbb{T}_{0}:=\mathbb{C} \llbracket \mathfrak{T}_{0} \rrbracket
\end{aligned}
$$

Close off under exponentiation:

$$
\begin{aligned}
& \mathfrak{T}_{k+1}:=\exp \mathbb{T}_{k,>} \\
& \mathbb{T}_{k+1}:=\mathbb{C} \llbracket \mathfrak{T}_{0} \rrbracket
\end{aligned}
$$

Take any ordering on \mathbb{T}_{k} that

- is compatible with the \mathbb{R}-vector space structure;
- is such that $\mathfrak{m} \leqslant \mathfrak{n} \Longleftrightarrow \log \mathfrak{m} \leqslant \log \mathfrak{n}$ for all $\mathfrak{m}, \mathfrak{n} \in \mathfrak{T}_{k}$.

Example. We may impose $\mathrm{e}^{\mathrm{i} z}>1, \mathrm{e}^{z^{2}}<1$, and $\mathrm{e}^{\mathrm{i} \mathrm{e}^{\mathrm{i}}}>1$.

$$
\begin{aligned}
& \mathfrak{T}:=\mathfrak{T}_{0} \cup \mathfrak{T}_{1} \cup \cdots \\
& \mathbb{T}:=\mathbb{T}_{0} \cup \mathbb{T}_{1} \cup \cdots=\mathbb{C} \llbracket \mathfrak{T} \rrbracket .
\end{aligned}
$$

Complex transseries - continued

$$
\begin{aligned}
\mathfrak{T} & :=\mathfrak{T}_{0} \cup \mathfrak{T}_{1} \cup \cdots \\
\mathbb{T} & :=\mathbb{T}_{0} \cup \mathbb{T}_{1} \cup \cdots=\mathbb{C} \llbracket \mathfrak{T} \rrbracket
\end{aligned}
$$

However. This only defines a field of complex transseries (depending on \leqslant).

Complex transseries - continued

$$
\begin{aligned}
& \mathfrak{T}:=\mathfrak{T}_{0} \cup \mathfrak{T}_{1} \cup \cdots \\
& \mathbb{T}:=\mathbb{T}_{0} \cup \mathbb{T}_{1} \cup \cdots=\mathbb{C} \llbracket \mathfrak{T} \rrbracket .
\end{aligned}
$$

However. This only defines a field of complex transseries (depending on \leqslant).
Proposition
There exists a unique strong exp-log derivation ∂ on \mathbb{T} with $\partial z=1$.

Complex transseries - continued

$$
\begin{aligned}
& \mathfrak{T}:=\mathfrak{T}_{0} \cup \mathfrak{T}_{1} \cup \cdots \\
& \mathbb{T}:=\mathbb{T}_{0} \cup \mathbb{T}_{1} \cup \cdots=\mathbb{C} \llbracket \mathfrak{T} \rrbracket .
\end{aligned}
$$

However. This only defines a field of complex transseries (depending on \leqslant).

Proposition

There exists a unique strong exp-log derivation ∂ on \mathbb{T} with $\partial z=1$.

Proposition

Given two fields \mathbb{T} and $\tilde{\mathbb{T}}$ of complex transseries, there exists a field isomorphism $\varphi: \mathbb{T} \rightarrow \tilde{\mathbb{T}}$ that preserves monomials and strong summation.

Complex transseries - continued

$$
\begin{aligned}
& \mathfrak{T}:=\mathfrak{T}_{0} \cup \mathfrak{T}_{1} \cup \cdots \\
& \mathbb{T}:=\mathbb{T}_{0} \cup \mathbb{T}_{1} \cup \cdots=\mathbb{C} \llbracket \mathfrak{T} \rrbracket .
\end{aligned}
$$

However. This only defines a field of complex transseries (depending on \leqslant).

Proposition

There exists a unique strong exp-log derivation ∂ on \mathbb{T} with $\partial z=1$.

Proposition

Given two fields \mathbb{T} and $\tilde{\mathbb{T}}$ of complex transseries, there exists a field isomorphism $\varphi: \mathbb{T} \rightarrow \tilde{\mathbb{T}}$ that preserves monomials and strong summation.
However. The isomorphism φ does not preserve exp or ∂. For instance, it might send $\mathrm{e}^{\mathrm{i} z}>_{\mathbb{T}} 1$ to $\mathrm{e}^{-\mathrm{i} z}>_{\mathbb{T}} 1$, but cannot send $\log \left(\mathrm{e}^{\mathrm{i} z}\right)=\mathrm{iz}$ to $-\mathrm{i} z$ or $\left(\mathrm{e}^{\mathrm{i} z}\right)^{\dagger}=\mathrm{i}$ to -i .

$$
\begin{aligned}
& \mathfrak{T}:=\mathfrak{T}_{0} \cup \mathfrak{T}_{1} \cup \cdots \\
& \mathbb{T}:=\mathbb{T}_{0} \cup \mathbb{T}_{1} \cup \cdots=\mathbb{C} \llbracket \mathfrak{T} \rrbracket .
\end{aligned}
$$

However. This only defines a field of complex transseries (depending on \leqslant).

Proposition

There exists a unique strong exp-log derivation ∂ on \mathbb{T} with $\partial z=1$.

Proposition

Given two fields \mathbb{T} and $\tilde{\mathbb{T}}$ of complex transseries, there exists a field isomorphism $\varphi: \mathbb{T} \rightarrow \tilde{\mathbb{T}}$ that preserves monomials and strong summation.
However. The isomorphism φ does not preserve exp or ∂. For instance, it might send $\mathrm{e}^{\mathrm{i} z}>_{\mathbb{T}} 1$ to $\mathrm{e}^{-\mathrm{i} z}>_{\mathbb{T}} 1$, but cannot send $\log \left(\mathrm{e}^{\mathrm{i} z}\right)=\mathrm{iz}$ to $-\mathrm{i} z$ or $\left(\mathrm{e}^{\mathrm{i} z}\right)^{\dagger}=\mathrm{i}$ to -i . However. ∂ is asymptotic, but not ordered: if $0<\mathrm{e}^{\mathrm{iz}}>1$, then $\left(\mathrm{e}^{\mathrm{i} z}\right)^{\prime \prime}=-\mathrm{e}^{\mathrm{i} z}$.

Closure results

Let \mathbb{T} be any field of complex transseries.

Theorem

Any $P \in \mathbb{T}\{Y\} \backslash \mathbb{T}$ has at least one solution in \mathbb{T}.

Let \mathbb{T} be any field of complex transseries.

Theorem

Any $P \in \mathbb{T}\{Y\} \backslash \mathbb{T}$ has at least one solution in \mathbb{T}.
However. There are fields of complex transseries for which only solutions of

$$
y^{3}+\left(y^{\prime}\right)^{2}+y=0
$$

are constant solutions $y=0, \mathrm{i},-\mathrm{i}$ with $y^{3}+y=0$.

Let \mathbb{T} be any field of complex transseries.

Theorem

Any $P \in \mathbb{T}\{Y\} \backslash \mathbb{T}$ has at least one solution in \mathbb{T}.
However. There are fields of complex transseries for which only solutions of

$$
y^{3}+\left(y^{\prime}\right)^{2}+y=0
$$

are constant solutions $y=0, \mathrm{i},-\mathrm{i}$ with $y^{3}+y=0$.

Corollary

The field \mathbb{T} is Picard-Vessiot closed: any $L \in \mathbb{T}[\partial]$ splits into order one factors.

Let \mathbb{T} be any field of complex transseries.

Theorem

Any $P \in \mathbb{T}\{Y\} \backslash \mathbb{T}$ has at least one solution in \mathbb{T}.
However. There are fields of complex transseries for which only solutions of

$$
y^{3}+\left(y^{\prime}\right)^{2}+y=0
$$

are constant solutions $y=0, \mathrm{i},-\mathrm{i}$ with $y^{3}+y=0$.

Corollary

The field \mathbb{T} is Picard-Vessiot closed: any $L \in \mathbb{T}[\partial]$ splits into order one factors.

Question: what is the theory of fields of complex transseries?

Thank you!

http://www.TEXMACs.org

