fields

H-closed H-

Lesson 10 —

der Hoeven

ris van

Jo




H-closed H-fields

£ = {011/+1_1'/a/</<}°



H-closed H-fields

£ = {011/+1_1'/a/</<}°

An H-field K is H-closed if it is w-free, newtonian, and Liouville closed.




H-closed H-fields

£ = {011/+1_1'/a/</<}°

Definition

An H-field K is H-closed if it is w-free, newtonian, and Liouville closed.

The %-theory T™ of H-closed H-fields is model complete.
It is the model companion of the %£-theory of H-fields.




H-closed H-fields s

£ = {011/+1_1'/a/</<}°

Definition

An H-field K is H-closed if it is w-free, newtonian, and Liouville closed.

The %-theory T™ of H-closed H-fields is model complete.
It is the model companion of the %£-theory of H-fields.

Proof. Follows from the following embedding lemma. O



H-closed H-fields

£ = {011/+1_1'/a/</<}°

An H-field K is H-closed if it is w-free, newtonian, and Liouville closed.

The %-theory T™ of H-closed H-fields is model complete.
It is the model companion of the %£-theory of H-fields.

Proof. Follows from the following embedding lemma. O

Let E be an w-free H-subfield of an H-closed H-field K and let ¢: E — F be an embedding
of E into a |K|"-saturated H-closed H-field F. Then ¢ extends to an embedding ¢: K — F.
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I(K) = {y":yeK}

Proposition
Let K be an w-free real closed H-field. Then 1(K) is not qf-definable in the % -structure K.

Proof. Take {>0 in an elementary extension K* of K with 1 < /< K”.
Consider the immediate extensions K(\) and K(\ +) of K with «y:= ", A := —/".
One verifies that they are isomorphic as H-fields over K via A — A +1y.

Let f:=(1/0)"=—y&l(K*)and ¢:=(1/0) =—y/L€1(K*) with fT=—\, ¢"=—(A+7).
Then K(A, f) $ ¢ and K(\A +y, g) # ¢ are isomorphic via A — A +vyand f+—g.

Now assume I(K) = {y:¢(y)}, with ¢ quantifier-free in %.

Then K* E —¢(f) but K* = ¢(g) implies K(A,v) E—¢(f) but K(A+y,g) E ().
This violates the isomorphism between K(A, f) and K(A +, g). O
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Lra = {0,1,+,—,-,0,<,X,,A, Q)
with the semantics
Wa) = a=tif a#0, 1(0) := 0
A@a) & Fy<1) a = —y"
Q@) © 3Fy+0) 4y +ay = 0.
This yields a theory Txy that extends T".

Iheorem
The theory Try eliminates quantifiers.

Note. For model complete theories, obstruction to gf-elimination is a language issue.
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Quantifier elimination — proot

The theory Try eliminates quantifiers.

Proof. Follows from the following embedding result. O

AQ-field := H-field K with additional (1, A, ())-structure.

Let K and L be w-free newtonian AQ-fields such that L is |K|"-saturated. Let E be
a substructure of K and let ¢: E — L be an embedding. Then ¢ can be extended to

an embedding ¢:E — L.

Proof ideas. Extension lemmas for various individual cases.
The relations A, () act as switchmen, dictating the direction to take at a fork. O
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Completeness 6/23

Toa = T™ + small derivation T}Q}{ mall = T + small derivation
Tlarge := T" + large derivation T large 1= Try + large derivation

The completz’ons of T™ are the two %-theories TX. and T large

The theories T, Tlarge, and T™ are decidable.

1 1
o Completeness of T\¢) span and TxQ jarqe = completeness of Tihan and Thge.

e The AQ-field (Q(x), d/0x) embeds into any model of TX}’{Ismaﬂ.

e The AQ)-field ((Q(x) x%9/9dx) embeds into any model of Tf\‘é’{llarge.
e The axioms of T2 ..., Tlarge, and T" can effectively be enumerated. O

Note. Q(x)"is a prime model of Thl.u (i.e. it embeds into any other model).



The intermediate value property

Theorem

Let K be an H-closed H-field. Then the differential intermediate value property (DIVDP)
holds in K: for any Pe K{Y} and f,g € K with f < g and P(f) P(g) <0, there exists an
heKwith f <h< g and P(h)=0.




The intermediate value property

Theorem

Let K be an H-closed H-field. Then the differential intermediate value property (DIVDP)
holds in K: for any Pe K{Y} and f,g € K with f < g and P(f) P(g) <0, there exists an
heKwith f <h< g and P(h)=0.

Proof. We may arrange the derivative on K to be small via d — ¢ 9.




The intermediate value property

Let K be an H-closed H-field. Then the differential intermediate value property (DIVDP)
holds in K: for any P K{Y'} and f,g € K with f < g and P(f)P(g) <0, there exists an
heKwith f <h< g and P(h)=0.

Proof. We may arrange the derivative on K to be small via d — ¢ 9.

The grid-based transseries T form a model of T L.




The intermediate value property

Iheorem

Let K be an H-closed H-field. Then the differential intermediate value property (DIVDP)
holds in K: for any Pe K{Y} and f,g € K with f < g and P(f) P(g) <0, there exists an
heKwith f <h< g and P(h)=0.

Proof. We may arrange the derivative on K to be small via d — ¢ 9.

The grid-based transseries T form a model of T L.

nl

Since Tynay is complete, K satisfies the same theory as T.



The intermediate value property

Iheorem

Let K be an H-closed H-field. Then the differential intermediate value property (DIVDP)
holds in K: for any Pe K{Y} and f,g € K with f < g and P(f) P(g) <0, there exists an
heKwith f <h< g and P(h)=0.

Proof. We may arrange the derivative on K to be small via d — ¢ 9.

The grid-based transseries T form a model of T L.

nl

Since Tynay is complete, K satisfies the same theory as T.
The intermediate value property holds in T. O




The intermediate value property /i

Theorem

Let K be an H-closed H-field. Then the differential intermediate value property (DIVDP)
holds in K: for any P K{Y'} and f,g € K with f < g and P(f)P(g) <0, there exists an
heKwith f <h< g and P(h)=0.

Proof. We may arrange the derivative on K to be small via d — ¢ 9.

The grid-based transseries T form a model of T L.

nl

Since Tynay is complete, K satisfies the same theory as T.
The intermediate value property holds in T. O

Corollary

Any F-based field of transseries of finite logarithmic depth satisfies DIVP.




The intermediate value property

Iheorem

Let K be an H-closed H-field. Then the differential intermediate value property (DIVDP)
holds in K: for any Pe K{Y} and f,g € K with f < g and P(f) P(g) <0, there exists an
heKwith f <h< gand P(h)=0.

Proof. We may arrange the derivative on K to be small via 0 — ¢ 0.

The grid-based transseries T form a model of T L.

Since T2 ., is complete, K satisfies the same theory as T.
The intermediate value property holds in T. O

Any F-based field of transseries of finite logarithmic depth satisfies DIVP. |

Let K be a Liouville closed H-field. Then K is H-closed if and only if it satisfies DIVP.
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Theorem (vdH)
There is a Hardy field that is isomorphic as an H-field to the prime model Q(x)™ of Timan.

Note. We naturally have Qx)MCT. A Hardy field thatis at the same time regarded
as a subfield of T was called a transserial Hardy field.

Theorem (ADH)
Any maximal Hardy field is H-closed.

R(x)", T, and all maximal Hardy fields are elementary equivalent. |




Proof ingredient I o123

We know that maximal Hardy fields are Liouville closed.
One may check that they are w-free.
It remains to show that they are newtonian.



Proof ingredient I o123

We know that maximal Hardy fields are Liouville closed.
One may check that they are w-free.
It remains to show that they are newtonian.

Idea: minimal complexity argument



Proof ingredient I o123

We know that maximal Hardy fields are Liouville closed.
One may check that they are w-free.
It remains to show that they are newtonian.

Idea: minimal complexity argument
Consider an w-free Liouville closed Hardy field K that is not newtonian.



Proof ingredient I o123

We know that maximal Hardy fields are Liouville closed.
One may check that they are w-free.
It remains to show that they are newtonian.

Idea: minimal complexity argument
Consider an w-free Liouville closed Hardy field K that is not newtonian.
Pick a divergent pc-sequence (y,) of differentially algebraic type.



Proof ingredient I o123

We know that maximal Hardy fields are Liouville closed.
One may check that they are w-free.
It remains to show that they are newtonian.

Idea: minimal complexity argument
Consider an w-free Liouville closed Hardy field K that is not newtonian.
Pick a divergent pc-sequence (y,) of differentially algebraic type.

Pick it of minimal complexity:



Proof ingredient I o123

We know that maximal Hardy fields are Liouville closed.
One may check that they are w-free.
It remains to show that they are newtonian.

Idea: minimal complexity argument
Consider an w-free Liouville closed Hardy field K that is not newtonian.
Pick a divergent pc-sequence (y,) of differentially algebraic type.

Pick it of minimal complexity:
Given P K{Y}*’ of order r and degree d with P(y,)~>0,

the triple (r,degyw P,d) is minimal for the lexicographical ordering.



Proof ingredient I o123

We know that maximal Hardy fields are Liouville closed.
One may check that they are w-free.
It remains to show that they are newtonian.

Idea: minimal complexity argument
Consider an w-free Liouville closed Hardy field K that is not newtonian.
Pick a divergent pc-sequence (y,) of differentially algebraic type.
Pick it of minimal complexity:
Given P K{Y}*’ of order r and degree d with P(y,)~>0,

the triple (r,degyw P,d) is minimal for the lexicographical ordering.
Claim: K(y) is again a Hardy field for some root y of P with y,~>y.
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Idea: further normalization of quasi-linear equations

7.3 x. I/

ey Y +e Yy’ —y'" +e'y —y +e'y—-2023e =0, y <1
y'"—e'y"+y' —e'y = ey "y +e*y?—2023e7%, y <1
(0—eH(@*+Dy = e >y "y’ +ey>—2023e7°, <1
y vy y y

(@—eM)@+1)@—-1)y = ey "y’ +e*y*—2023e™¢, y <1
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Proof ingredient 111 1125

Idea: analytic fixed-point argument
(0—eM)@+1)@—-1)y = ey "y’ +e®y*-2023e™*, y <1
y = @-i)'@+)T@—-e) ey "y +ey?—2023e7°)

O-®H7f = e D e~®0 f(1)dt.

Subtlety
e « 1 ~ fx

(ee)

X
e ® > 1 ~ f

Xo

Done correctly, the process preserves realness and asymptotic properties...
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In progress

Theorem... (ADH)

Let K be a maximal Hardy field.
Consider countable subsets L. C K and R C K with L < R.
Then there exists some y € K with L <y <R.

Known Corollary (Boshernitzan)

Given any countable subset L. C K (like L= {x,e",e,...}), we have y > L for some y EK.

All maximal Hardy fields are back-and-forth equivalent.
Under the continuum hypothesis, they are all isomorphic.
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f@ =Y -1tz f@ = | 15748
n=1
Formal Borel Analytic Laplace %
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(o]

; n—1n— 1
f(Q) = Z(—l) tert = 57

n=1
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Resummation of divergent power series

- > . . Resummation w @ /2
S Y > @) = || 1374¢
Formal Borel Analytic Laplace %

A _oo_n—ln—l_L
f@—n;(l)é‘—l+€

More generally accelero-summation of transseries

Challenge make it work for any f€R(x)"CT
Motivation compatability with composition — o-minimality
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Conway's recursive definition

e Givensets L,RCNo with L <R, there exists a {L|R} €No with L<{L|R}<R
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Surreal numbers 1425

Conway's recursive definition

e Givensets L,RCNo with L <R, there exists a {L|R} €No with L<{L|R}<R
e All numbers in No can be obtained in this way

Definition using sign sequences

e On: class of ordinal numbers
e A surreal number x is a sequence (x[S])s<, € {—, +}" for some {,:=a € On
e Lexicographical ordering on such sequences (modulo completion with zeros)

Simplicity relation
x Ly e b < b A VBb x[Bl=ylBD
Equivalence between (No, <,{|}) and (No, <,E)
{LIR} := minc {aeNo:L<a<R}



Operations on No

Ring structure. For x = {x;|xz} and y={y.|yr}, we define
0:= {[}
1 :={0]}
—x = {—xg|—xr}
x+y = {xp+y,x+yrlxg+y,x+yg}
xy = {X'y+xy —x"y " y+xy’ —x"y" X y+xy" —x"y" " y+xy’ —x
(x'ex,, x" exg, v ey, vy Eyr).
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Operations on No 15/25

Ring structure. For x = {x;|xz} and y={y.|yr}, we define
0:= {]}
1 := {0])
—x = {—xg|—xr}
x+y = {xp+y,x+yrlxg+y,x+yg}
xy = {X'y+xy' —x"y " y+xy’ —x"y" X y+xy" —x"y" " y+xy’ —x
(x'ex, x"exg, v ey, vy Eyr).

rr ./

Yyl

Gonshor: exponential and logarithm on No (resp. No~)
Conway's w-map (generalizing Cantor's ordinal exponentiation)
w* = {0, R”w™|R” w**}

Surreal numbers as Hahn series
No = R[[Mo]], Mo := wN°






Examples 16/23

0:= {[} 0:= {[}

1 := {0]) 1 := {0]}

2 = {0,1]} 2 = {0,1]}
—1 := {IO} w = {Olllzll}
-2 := {|-1,0} w+1 := {0,1,2,...,w|}

1y = {0]1) w2 :=1{0,1,2,...,w,w+1,...|}
Yy = {0|'%,1) ‘

3 == {0,145, 1) w? = {0,1,2,...,w,...,w2,...|)
1/3 = {0/1/4/5/16/“-|-°-/3/8/1/2/1} On g No

mt == {0,1,2,3,3Y1¢,...1...,3Y4,31%,4)}

C(J_l = {Ol---/1/4/1/2/1}

R C No exp w := {1,w,w2,w3,...|}
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Derivation on the surreal numbers 1725

Theorem (Berarducci-Mantova)

There exists a strong exp-log derivation dgy on No with dgy w =1.

Theorem (ADH)

No with dgy; is H-closed. So is No(x) for any uncountable x.

However.
e There is a big class of derivations that satisfy the above theorem.

e Opy is the “simplest” such derivation in a certain sense.
e But dpy is not the “right” derivation with respect to w (see below.)

e Also: how to define a composition on No?
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Dubois-Reymond, Hardy, Kneser, ...
There exist “regular” functions that grow faster than x, e*, e, ...

E(x+1) = e /
—s Ecalle's “Grand Cantor”

vdH (1997)
No ordinary transseries solutions of

f(x) — ﬁ_i_e logx+e

loglogx +ef (logloglogx)



Missing formal growth rates 15723

Dubois-Reymond, Hardy, Kneser, ...
There exist “regular” functions that grow faster than x, e*, e, ...

E(x+1) = e /
—s Ecalle's “Grand Cantor”

vdH (1997)
No ordinary transseries like

f(x) = J/T+e logx+e

loglogx+e"'
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Dubois-Reymond, Hardy, Kneser, ...
There exist “regular” functions that grow faster than x, e*, e, ...

E(x+1) = e /
—s Ecalle's “Grand Cantor”

vdH (1997)
No ordinary transseries like

Toglogx+e
f(x) = JX+e logx+eV?8®

Hyperseries: generalization of transseries with
e Hyperexponentials and hyperlogarithm E,, L, of ordinal strength (E; =exp)
e Nested hyperseries
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Conjecture (vdH, 2006) — Theorem (Bagayoko-vdH) 2022)

The field H of hyperseries in x > 1 (for a suitable definition) is naturally isomorphic
to No, via the map IH — No; f — f(w) that evaluates a hyperseries f at c.
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ordinal «, and H contains “nested hyperseries”.
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Grand unification 1923

Conjecture (vdH, 2006) — Theorem (Bagayoko-vdH, 2022)

The field TH of hyperseries in x > 1 (for a suitable definition) is naturally isomorphic
to No, via the map IH — No; f — f(w) that evaluates a hyperseries f at .

In particular, IH is closed under all hyperexponentials E, and hyperlogarithms L, for
ordinal «, and H contains “nested hyperseries”.

Hyperseries Surreal numbers
Closed under 9 (in progress) Closed under { |}
Closed under o (in progress) Simplicity relation C

Problem with dgp¢ g ELE,w = E,E,w # E,,w E,E,w
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Complex transseries 20,23

Start with logarithmic transseries at an arbitrary level | € Z:
Lo = Loexp;z
Ty == ClI%,l
Close off under exponentiation:
Trr1 = exp Ti»
Ty = C[To]l

Take any ordering on T that
e is compatible with the R-vector space structure;
e is such that m<n<logm<logn for all m,neT,.

Example. We may impose e*>1, e <1,and ' > 1.
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T = ToUT U

T = TouTu--- = C[%].
However. This only defines a field of complex transseries (depending on <).
Proposition
There exists a unique strong exp-log derivation o on T with dz=1.

Proposition

Given two fields T and T of complex transseries, there exists a field isomorphism ¢@:T — T
that preserves monomials and strong summation.




Complex transseries — continued

T = ToUT U
T = T()U']I‘lu = C[I‘Z]]

However. This only defines a field of complex transseries (depending on <).

Proposition
There exists a unique strong exp-log derivation o on T with dz=1.

Proposition

Given two fields T and T of complex transseries, there exists a field isomorphism ¢@:T — T
that preserves monomials and strong summation.

However. The isomorphism ¢ does not preserve exp or d. For instance, it might
send e”“>11 to e * >4 1, but cannot send log(e'*) =iz to —iz or (e"*)" =i to —i.



Complex transseries — continued

T = ToUT U
T = T()U']I‘lu = C[I‘Z]]

However. This only defines a field of complex transseries (depending on <).

Proposition
There exists a unique strong exp-log derivation o on T with dz=1.

Proposition

Given two fields T and T of complex transseries, there exists a field isomorphism ¢@:T — T
that preserves monomials and strong summation.

However. The isomorphism ¢ does not preserve exp or d. For instance, it might
send e”“>11 to e * >4 1, but cannot send log(e'*) =iz to —iz or (e"*)" =i to —i.

iz

However. 0 is asymptotic, but not ordered: if 0 <e'*>1, then (e")" = —e™.
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Closure results 2223

Let T be any field of complex transseries.

Iheorem
Any PeT{Y} \ T has at least one solution in 'T.

However. There are fields of complex transseries for which only solutions of
v+ )Y+y =0

are constant solutions y=0,1i, —i with y° +y=0.

The field T is Picard-Vessiot closed: any L € T[9] splits into order one factors. |

Question: what is the theory of fields of complex transseries?




Thank you !

http://www.TzXMACS - OTE
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