
Automatic numerical expansions

by Joris van der Hoeven

LIX
École Polytechnique
91128, Palaiseau

France

Email: vdhoeven@lix.polytechnique.fr

October 1994

Real numbers and Computers, Saint-Etienne 1995 1

Automatic numerical expansions
by Joris van der Hoeven

LIX
École Polytechnique
91128, Palaiseau

France

Email: vdhoeven@lix.polytechnique.fr

Abstract

Let exp-log constants be those real numbers which are built up from the
rationals by field operations, exponentiation and logarithm. Theoretically, the
sign of an exp-log constant can be determined by floating point computations,
whenever we can decide whether the constant is zero or not. However, this
method has a complexity which is worse than any iterated exponential, even
in concrete cases. We propose an algorithm, combining floating point eval-
uations with asymptotic methods, which is expected to be efficient in practice.

Key words: Numerical expansion, exp-log constant, floating point evalua-
tion, asymptotics, algorithm.

1 Introduction

Let exp-log constants be those real numbers which are built up from the rationals
by field operations, exponentiation and logarithm. The zero equivalence problem
of these constants is related to very hard conjectures in number theory, notably
Schanuel’s conjecture (see [CavPr 78]). Modulo this conjecture, Richardson estab-
lished a zero equivalence algorithm (see [Rich 92], [Rich 94]). We consider the
problem of determining the signs of exp-log constants, assuming that we are given
a zero equivalence algorithm.

Theoretically, this can be done by floating point computations. However, this
method has a complexity which is worse than any iterated exponential. For instance,
consider constants like

eexpn x+(expn x)−1

− eexpn x.

Here expn x denotes the n-th iterated exponential of x. In some cases, where impor-
tant simplifications take place for number theoretical reasons, we do not expect that
there exist good alternatives to floating point evaluations. However, in the above
example, the simplifications are rather of a formal nature. The object of this article
is to show that in such cases it is possible to combine floating point methods with
asymptotic methods to yield an efficient algorithm.

2 J. van der Hoeven

More precisely, we will adapt the asymptotic expansion algorithm for exp-log
functions from [VdH 94a], which generalizes Gonnet and Gruntz’ algorithm (see
[GoGr 92]. See also [GeGo 88], [Sh 90]). We will briefly recall this algorithm in
section 2. We discuss how to adapt the symbolic algorithm to the numerical case
in section 3. The “numerical expansion” algorithm for exp-log constants is given
in section 4. In fact, numerical expansions contain much more detailed information
than just the sign of a constant. See also section 5 for a discussion.

An implementation of Richardson’s zero-test algorithm together with the numer-
ical expansion algorithm should be available before the end of 1995.

2 Recall of the symbolic expansion algorithm

During this section T denotes the field of exp-log functions , that is, the set of func-
tions built up from x and Q by field operations, exponentiation and logarithm (of
positive elements). Modulo Schanuel’s conjecture (see section 5) all the above opera-
tions, as well as zero-equivalence testing, can be performed algorithmically in T (see
[Rich 94], [Sh 89]). In [VdH 94a] we generalized the limit computation algorithm
due to Gonnet and Gruntz (see [GoGr 92]) to yield a symbolic expansion algorithm.
We will briefly recall this algorithm, without going into details. All expansions will
be done in a neighbourhood of +∞. An example of how the algorithm works is
given at the end of this section.

We start with some definitions. Let A be some abelian totally ordered group.
We will say that a subset S ⊆ A is finitely generated , if there exist x1, · · · , xn > 0 in
A and a1, · · · , an in Z, such that each x ∈ S can be written as x = b1x1+ · · ·+ bnxn,
with ai ≤ bi ∈ Z, for each 1 ≤ i ≤ n.

If f and g are exp-log functions, then we will write f≺≺≺g, whenever ln |f | =
o(ln |g|). Intuitively, this means that f is of a smaller asymptotic scale than g (for
example ex≺≺≺xx, but x≺≺≺x100 is false). Suppose now that g1≺≺≺ · · ·≺≺≺gn are positive
infinitely big exp-log functions. Then a multiseries in g−1

1 , · · · , g−1
n over a subfield

K of T is a series f of the form

f =
∑

α1,··· ,αn∈R

fα1,··· ,αn
g−α1
1 · · · g−αn

n ,

with finitely generated support, and the fα1,··· ,αn
’s in K. Here the support (i.e.

those (α1, · · · , αn)’s, with fα1,··· ,αn
6= 0) is a finitely generated subset of Rn with the

lexicographical ordering. The set K[[g−1
1 ; · · · ; g−1

n]] forms a field: in fact, multiseries
slightly generalize formal power series and all operations on multiseries are defined
by the usual formulas.

Automatic numerical expansions 3

We remark that a multiseries f ∈ K[[g−1
1 ; · · · ; g−1

n]] can also be interpreted as
a multiseries in K[[g−1

1 ; · · · ; g−1
n−1]][[g

−1
n]]. If g1, · · · , gn and f are exp-log functions,

we say that f is an automatic multiseries , if

(a) The elements of its support in g−1
n are in T and can be listed in increasing

order by some algorithm.
(b) The corresponding coefficients are exp-log functions, which can be computed

effectively.
(c) The coefficients are automatic multiseries in g−1

1 , · · · , g−1
n−1.

By convention, f is assumed to be a constant if n = 0. We emphasize that an au-
tomatic multiseries is merely an algorithm, capable of expanding the multiseries to
any desired order. The automatic multiseries also form a field, stable under expo-
nentiation of bounded elements and logarithm of elements with a strictly positive
limit.

The problem of expanding an exp-log function f now reduces to finding ap-
propriate g1≺≺≺ · · ·≺≺≺gn, such that f is an automatic multiseries in g−1

1 , · · · , g−1
n .

Moreover, the gi’s need to be of a special form, so that we can read all relevant
asymptotic information from the expansion. More precisely, the gi’s are assumed to
be either iterated logarithms or of the form ehi, where hi is an automatic multiseries
in g−1

1 , · · · , g−1
i−1. Such a set B = {g1, · · · , gn} is called a normal base.

The expansion algorithm takes an exp-log expression f (considered as a tree)
as input. Then it expands all subexpressions of f , starting with the leafs. The
algorithm disposes of a global variable B which contains a normal base, which is
gradually enlarged during the execution. In fact, except when we need to insert a
new iterated logarithm or a new exponential into B, all operations are trivial.

The result of the expansion algorithm is another exp-log expression, from which
the expansion of f can be reconstructed in a straightforward way. More precisely,
all logarithms occuring in the result are iterated logarithms of x or logarithms of
the form ln(1 + ε), with ε≺≺1. Similarly, exponentials are either constant powers of
elements from the normal base, or of the form exp ε, with bounded ε. Therefore,
the expansion of f to any order can be computed from the result by using only
operations on multiseries.

Algorithm expand(f). The algorithm takes an exp-log expression f on input and
rewrites it to an expression from which the expansion of f to any order can be
reconstructed by using only operations on multiseries. The algorithm uses a global
variable B, which is initialized by B := {x}.

case f = x or f ∈ Q: return f .

case f = f1⊤f2, ⊤∈{+,−, ·, /}:
if ⊤ = / and f2 = 0 then raise “division by zero”
return expand(f1)⊤ expand(f2)

4 J. van der Hoeven

case f = ln f1:
•Compute the expansion of f1 and denote {g1 = eh1, · · · , gn = ehn} = B.
•Compute c, α1, · · · , αn, with f1 = cgα1

1 · · · gαn
n (1 + ε), where ε≺≺1.

if f1 = 0 or c < 0 then raise “logarithm: out of domain”
if α1 6= 0 then B := B ∪ {h1}
return ln(1 + expand(ε)) + ln c+ α1expand(h1) + · · ·+ αnexpand(hn)

case f = exp f1:
•Compute the expansion of f1 and denote {g1 = eh1, · · · , gn = ehn} = B.
if f1 is bounded then return exp(expand(f1))
if ∃1≤ i≤n f1 ≍ hi then

•Compute λ = lim f1/hi.
return gλi expand(exp(f1 − λhi))

•Compute ϕ and ε, such that f1 = ϕ+ ε and ϕ = (f1)
0,

n+1−i times
··· ,0

.

B := B ∪ {exp |ϕ|}
return (exp |ϕ|)signϕ exp expand(ε)

Remark. The computations of c, α1, · · · , αn in the case f = ln f1 can be done
recursively. Indeed, we already know how to expand f1. Similarly, in the case of
exponentiation, we can check whether f1 is bounded, whether it is asymptotic to
one of the hi’s, etc.

Example 1. Suppose that we wish to expand

f(x) = ln ln(xee
x

+ 1)− exp exp

(

ln ln x+
1

xex

)

.

At the beginning, B := {x}. The expansions of the subexpressions are computed in
the following order, keeping track of the changes of B:

B := {x}
x → x
ex → ex

B := {x, ex} (x is not asymptotic to ln x)
ee

x

→ ee
x

B := {x, ex, ee
x

} (ex is not asymptotic to ln x nor to x)
xee

x

→ xee
x

1 → 1
xee

x

+ 1 → xee
x

+ 1

ln(xee
x

+ 1) → ex + ln x+ ln

(

1 +
1

xeex

)

= ex + lnx+
1

xeex
+ · · ·

B := {ln x, x, ex, ee
x

} (ln x is not yet in B)

Automatic numerical expansions 5

ln ln(xee
x

+ 1) → x+ ln

(

1 +
1

ex

[

ln x+ ln

(

1 +
1

xeex

)])

= x+
ln x

ex
−

ln2 x

2e2x
+ · · ·+

1

xexeex
+ · · ·

lnx → ln x
ln ln x → ln ln x

B := {ln lnx, ln x, x, ex, ee
x

} (ln lnx is not yet in B)
xex → xex

1

xex
→

1

xex

ln ln x+
1

xex
→ ln ln x+

1

xex

exp

(

ln ln x+
1

xex

)

→ lnx exp

(

ln ln x+
1

xex
− ln ln x

)

= ln x+
ln x

xex
+

ln x

2x2e2x
+ · · ·

exp exp

(

ln ln x+
1

xex

)

→ x exp

[

ln x exp

(

1

xex

)

− ln x

]

= x+
ln x

ex
+

ln2 x

2xe2x
+

ln x

2xe2x
+ · · ·

f(x) → x+ ln
(

1 + 1
ex

[

ln x+ ln
(

1 + 1
xeex

)])

− x exp
[

ln x exp
(

1
xex

)

− ln x
]

= −
ln2 x

2e2x
−

ln2 x

2xe2x
+ · · ·

3 The exp-log constant comparison problem

Let us now consider the problem of comparing exp-log constants. Under the hy-
pothesis that we have a zero-equivalence algorithm, it suffices to do floating point
arithmetic at a sufficient precision. However, these floating point operations might
be very expensive in time. The first reason is number theoretical: we do not have
bounds how close we can come to zero with non-zero exp-log constant expressions
of bounded size, and such that |f | is bounded as well for all subexpressions of the
form ef . A second reason is that whenever we take an exp-log function f(x) and we
substitute a very large constant C for x, then the sign of f(C) is expected to be as
hard to determine as the sign of f(x).

The number theoretic problem is expected to be very hard, because good bounds
would in particular imply Schanuel’s conjecture (see section 5). However, the sec-
ond reason shows us that brute force floating point arithmetic is a method that
is expected to fail frequently, even in practical situations such as the introductory
example. In fact, it is possible to refine the floating point method, by adapting the
symbolic expansion algorithm. Algorithms, which are obtained in this way will be
called numerical expansion algorithms . The analogies between symbolic expansions

6 J. van der Hoeven

and numerical expansions are given by the following table:

symbolic numerical

exp-log function exp-log constant
exp-log constant exp-log constant c, with 2−D < |c| < 2D

D: Precision in number of digits.
f≺≺g |f | ≤ (2N2 + 2)|g|
f≺≺≺g | ln |f || ≤ (2N2 + 2)| ln |g||
f ≍ g |g|/N ≤ |f | ≤ N |g|

N : Maximal length and density of multiseries.
B = {g1, · · · , gn} normal base B = {g1, · · · , gn} normal base.
1≺≺gi, 0 < gi 2(2N+1)D ≤ gi.

g1≺≺≺ · · ·≺≺≺gn g2N
2+2

1 ≤ g2, · · · , g
2N2+2
n−1 ≤ gn.

Clearly, the “constants” in numerical expansions have to be small, without being
too small. Otherwise, later terms in the expansion might contribute more than
earlier terms. We will call this phenomenon numerical interference. The above kind
of numerical interference is due to the fact that D was chosen too small.

Similarly, only the first terms of a numerical multiseries make sense, in contrast
to the case of usual expansions. Indeed, consider the numerical expansion of

e−100 100 times
· · · e−100 − 2e−10000,

where D = 8, N = 5, g1 = e100, g2 = e10000. Here e−100 100 times
· · · e−100 will be inter-

preted as g−100
1 , while e−10000 will be interpreted as g−1

2 . We have again numerical
interference between the asymptotic scales, because of g−100

1 , which occurs before
g−1
2 in the expansion, although they have the same order. In fact, the “length” of
the multiseries in g1 is too big here (100 > 5), which is due to the fact that N
was chosen too small. This length is defined to be the maximal absolute value of
an exponent of g1, occuring in the relevant part of the expansion. By relevant we
mean that we only need to look at those terms which are actually needed in the
computation.

There is a last, more troublesome kind of numerical interference. Consider for
example the numerical expansion of

e100+
1

100 − e
1
99 e100,

with D = 8, N = 5 and g1 = e100. If we had directly translated the symbolic expan-
sion algorithm, the above expression would have been expanded as g1.00011 − e1/99g1
and we would have been unable to determine the sign from this numerical expansion.
This is due to the fact that a multiseries is not just a generalized Laurent series, as
we may have non integer exponents. In the above case, the “density” of the relevant
terms of the multiseries is too high (1/(1.0001−1) > N = 5). Here, the density in g1

Automatic numerical expansions 7

is the maximal inverse value of the differences between exponents of g1 occuring in
the relevant part of the expansion. In the above example, we only need to consider
g1.00011 and g1. This type of numerical interference is more troublesome, because it is
not efficient to merely increase N . Instead, e100.01 should be expanded as e100e0.01.

Let us now discuss how to adapt the symbolic expansion algorithm. One thing
becomes simpler in the numerical case: we do not need analogues for the iterated
logarithms of x in the normal base. Indeed, as they are all small, they are computed
numerically. In particular, the normal base is empty at the beginning. The main
difficulty with respect to the symbolic case is that we should be able to read the sign
of an exp-log constant from its numerical expansion. This means that we need to
ensure that no numerical interference occurs and that we should be able to obtain
error bounds. In fact, the three kinds of numerical interference mentioned above
correspond to three types of exceptions: “numerical”, “series length” and “series
density”. The two first can be captured in a main loop, in which D, resp. N is
augmented whenever a “numerical”, resp. “series length” exception is raised. The
third type of exception needs a more subtile treatment.

First, we need to encode information in a different way. Instead of rewriting
the input exp-log function f into another exp-log function, from which the ex-
pansion of f can be reconstructed by operations on multiseries only, we will store
the dominant monomial of each exponential occuring in the computation in a so
called exponentiation table T . More precisely, whenever we expand ef , we can
write f = α1h1 + · · · + αnhn + b, after a potential insertion of a new element into
the normal base. Here b is a “bounded element” (that is |b| ≤ D ln 2). Then set
T [f] := gα1

1 · · · gαn
n . As before, the exponentiation table allows us to reconstruct all

relevant numerical expansions by doing operations on multiseries only.

Moreover, we can extract generators for the supports of all multiseries from
the exponentiation table. Indeed, denote by γ1, · · · , γp the different γj’s, so that
g
γj
i occurs in (array elements of) T . Then the support of each multiseries in gi
which can potentially be considered during the computations is in the additive
subgroup generated by the γj’s. Moreover, we can compute integers k1, · · · , kp,
with α = k1γ1 + · · ·+ kpγp, for each α in the support of such a multiseries. Indeed,
it suffices to propagate this knowledge during the expansion. Alternatively, the
LLL-algorithm can be used (see [LLL 82]).

Now suppose that we encountered a “series density” exception during our com-
putations. This is due to the fact that two consecutive terms of a multiseries in gi
have exponents which differ by a number ε ≤ 1/N . If this is the case, we can write
ε = k1γ1 + · · ·+ kpγp, with the above notations. Without loss of generality, we may
assume that kp 6= 0 and γp 6= 1. Then it suffices to systematically replace g

γp
i by

T [εhi/kp]g
−(k1γ1+···+kp−1γp−1)/kp
i in T , after having expanded exp(εhi/kp). In the case

of the above example, this will replace g1.00011 by T [g0.00011]g1 = g1.

We finally need to discuss how we obtain error bounds, which will ensure that

8 J. van der Hoeven

the sign of an expression is the same as the sign of the dominant coefficient of its
numerical expansion. In fact, this is almost automatically the case in absence of
numerical interference. More rigourously, a precise bound for the sum of the rest
terms of an expansion can be computed, as we will show in the next section. If this
bound is insufficient, an exception raised.

4 The numerical expansion algorithm

In this section we describe the actual numerical expansion algorithm. Taking into ac-
count the discussion from the previous section, we have four global variables D,N,B
and T . Here D contains the numerical precision in the number of digits and N the
maximal length as well as density of a numerical multiseries. Furthermore, B is
the normal base and T stands for the exponentiation table. Finally, we will use a
raise -catch formalism for our exception handling: errors can be raised using raise
at any place in any subalgorithm, where an argument indicating the nature of the
exception is given. Errors are captured by the catch statement, where the variable
’exception’ contains the nature of the exception.

Algorithm main loop(f). The algorithm takes an exp-log constant f on input and
computes its sign.

D := 32, N := 4, B := ©/, T := ©/
while catch

expand(f)
s := sign(f)

do
if exception=”numerical” then D := 2D
if exception=”series length” then N := 4N
if exception 6∈ {“numerical”,“series length”} then raise exception
B := ©/, T := ©/

return s

The subalgorithm ’expand’ is the adaptation of the symbolical expansion algo-
rithm to the numerical case and the subalgorithm ’sign’ computes the sign of f using
its numerical expansion. Modulo Schanuel’s conjecture and the correctness of these
subalgorithms, the above algorithm terminates. Indeed, if N is very big, then the
normal base is empty and only floating point operations will be used. From that
moment on, D increases until the necessary floating point precision is reached.

Algorithm expand(f). The algorithm takes an exp-log constant f on input and
extends the exponentiation table T , so that a numerical expansion of f can be re-
constructed from T .

Automatic numerical expansions 9

case f ∈ Q: Do nothing.

case f = f1⊤f2, ⊤∈{+,−, ·, /}:
if ⊤ = / and f2 = 0 then raise “division by zero”
expand(f1)
expand(f2)

case f = ln f1:
if f1 ≤ 0 then raise “logarithm: out of domain”
expand(f1)

case f = exp f1:
•Compute the expansion of f1 and denote {g1 = eh1, · · · , gn = ehn} = B.
if |f1| ≤ D ln 2 then T [f1] := 1, return
if |f1| ≤ (2N + 1)D ln 2 then raise “numerical”
if ∃1≤ i≤n hi/N ≤ |f1| ≤ Nhi then

•Compute the dominant coefficient λ of f1/hi.
expand(exp(f1 − λhi)), T [f1] := gλi T [f1 − λhi], return

if ∃1≤ i≤n hi/(2N
2 + 2) ≤ |f1| ≤ (2N2 + 2)hi then raise “series length”

•Compute ϕ and ε, such that f1 = ϕ+ ε and ϕ = (f1)
0,

n+1−i times
··· ,0

.

B := B ∪ {exp |ϕ|}
T [f1] := (exp |ϕ|)signϕ.

As before, tests for inequalities, which reduce to sign computations, can be re-
solved recursively. Indeed, we first apply ’expand’ to the expression whose sign has
to be determined, and then apply ’sign’ to determine its sign.

The “series density” exception is handled in ’sign’ (and more generally in every
algorithm, which exploits numerical expansions). Whenever this exception is raised,
ε and i are passed as arguments, where ε < 1/N denotes the difference between
two exponents, encountered during a computation with a multiseries in g−1

i . The
exception is handled by changing T as described in the previous section and by
reexecuting ’sign’ afterwards.

Algorithm sign(f). Computes the sign of f , after having applied ’expand’ to f .

while catch
c := f
for i:=n downto 1 do

α := lazy next exponent(c, i,−∞)
dummy := lazy bound(c, i, α)
c := lazy coefficient(c, i, α)

return sign c

10 J. van der Hoeven

do
if exception 6= “series density” then raise exception
(ε, i) := exception arguments
•Let γ1, · · · , γp be those exponents of gi occuring in the exponentiation table
T .

•Compute integers k1, · · · , kp, such that ε = k1γ1 + · · · + kpγp and with kp
minimal, such that γp 6= 1.

expand(exp(ε/kp))

•Systematically replace all occurences of g
γp
i by T [εhi/kp]g

−(k1γ1+···+kp−1γp−1)/kp
i

in the exponentiation table T .

We need to specify ’lazy next exponent’, ’lazy coefficient’ and ’lazy bound’.
lazy next exponent(f, i, α) determines the first exponent bigger than α in the ex-
pansion of f with respect to g−1

i and lazy coefficient(f, i, α) computes the coefficient
of g−α

i in f . They can be implemented in a straightforward way by using the usual
formulas for series expansions. We will not detail them any further here, although
we mention their additional features:

(a) Whenever a “constant” coefficient is encountered, which exceeds 2D or 2−D in
absolute value, a “numerical” exception is raised.

(b) Whenever an exponent in the support of a multiseries is encountered, which
exceeds N in absolute value, a “series length” exception is raised.

(c) Whevener two exponents in the support of a multiseries in g−1
i are encountered,

which have a distance 0 < ε ≤ 1/N , a “series density” exception is raised, with
ε and i as arguments.

(d) The algorithms use Richardson’s algebraic zero-test algorithm for exp-log con-
stants. It is convenient to use it only, when the first terms of the expansion
cancel. This avoids performing unnecessary and expensive zero-tests.

Finally, lazy bound(f, i, α) computes an admissible upper bound Mf,α for

|
∑

β>α fβg
−β
i |, where f is a multiseries in g−1

1 , · · · , g−1
i . Here an admissible bound

is a bound of the form Mf,α = cg−β1

1 · · · g−βi

i , where c ≤ 2D, βi − α > 1/N and such
that none of the |βi|’s exceeds N . We use admissible bounds for technical reasons,
as will become clear from the proof of theorem 1 below. If no admissible bound can
be obtained, an exception is raised. We remark that we merely need the existence
of a good bound of the sum of the rest terms in ’sign’, so that we do not care about
its value, which explains the use of the dummy variable in the algorithm.

Algorithm lazy bound(f, i, α): At the input, we have an expression which is a
numerical multiseries in g1, · · · , gi, where B = {g1, · · · , gn}. The algorithm returns
an admissible bound Mf,α for |

∑

β>α fβg
−β
i |.

Automatic numerical expansions 11

case f = cg−β1

1 · · · g−βi

i :
if α ≥ βi then return 0
if βi − α ≤ 1/N then raise “series density”(βi − α, i)
return f

case f = f1 ± f2: return bound(lazy bound(f1, i, α) + lazy bound(f2, i, α))

case f = f1f2:
b := 0
µ1 := lazy next exponent(f1, i,−∞)
µ2 := lazy next exponent(f2, i,−∞)

while µ2 + µ1 ≤ α do
b1 := lazy bound(lazy coefficient(f1, i, µ1), i− 1,−∞)
b2 := lazy bound(f2, i, α− µ1)
b := bound(b+ b1b2)
µ1 := lazy next exponent(f1, i, µ1)

return bound(b+ lazy bound(f1, i, µ1)lazy bound(f2, i, α− µ1))

case f = 1/(1− ε) (|ε| < 2−D):
µ := lazy next exponent(ε, i,−∞)
if µ = 0 then

ε0 := lazy coefficient(ε, i, 0)
εr := ε− ε0
Q := 1

1−ε0

return lazy bound
(

Q 1
1−Qεr

)

Mε := lazy bound(ε, i, 0)
if α < 0 then return bound(1 + 2−D)
k := ⌊α/µ⌋

S :=
∑k

i=0 ε
i

return bound(lazy bound(S, i, α) + (1 + 2−D)Mk+1
ε)

case f = ln(1 + ε), f = exp ε (|ε| < 2−D): Similar to the above case.

The subalgorithm ’bound’ is used to compute admissible bounds for sums and
products of admissible bounds. The implementation is straightforward and an ex-
ception is raised if no admissible bound can be obtained.

Remark. All computations on the “small but not too small exp-log constants”
(which replace the exp-log constants from the symbolical expansion) in this section
are done by floating point computations. All computations with exponents occuring
in the multiseries are done in a similar way. During these computations, we keep
track of the numerical inprecision and whenever we test for exceptions, the most
pessimistic estimate is used.

12 J. van der Hoeven

Theorem 1. Modulo Schanuel’s conjecture, the above algorithm computes the sign

of any exp-log constant f .

Proof. Let us prove the termination of our algorithm (modulo Schanuel’s conjec-
ture). Assume that we enter in an infinite loop for fixed values of D and N . From
a certain moment on, more and more elements are inserted into the normal base,
each of which are smaller than elements which are already in the normal base. This
is impossible.

Let us finally prove the correctness of our algorithm. Let us denote f (n) = f and
denote by f (i−1) the dominant coefficient of the multiseries f (i) in g−1

i and µ(i) the
corresponding exponent. We claim that the signs of f (n) and f (0) are the same. Now
we have an admissible error bound Mf(i),µ(i) = cg−β1

1 · · · g−βi

i for
∑

α>µ(i) f
(i)
α g−α

i . In

particular, βi − µ(i) > 1/N . Let us show that

cg−β1

1 · · · g−βi

i

f (0)g−µ(1)

1 · · · g−µ(i)

i

≤ g
−1/N
i−1 .

By convention, g0 = 2ND. We have

g−βi−µ(i)

i ≤ g
−(2N+1/N)
i−1 g

−1/N
i−1

g
−(βi−1−µ(i−1)+2N+1/N)
i−1 ≤ g

−(2N+1/N)
i−2

g
−(βi−2−µ(i−2)+2N+1/N)
i−2 ≤ g

−(2N+1/N)
i−3

...

c/f (0)g
−1/N
1 ≤ 2−D = g

−1/N
0

The relation we just proved can be reformulated:

f (i)g−µ(i+1)

i+1 · · · g−µ(n)

n − f (i−1)g−µ(i)

i · · · g−µ(n)

n

f (0)g−µ(1)

1 · · · g−µ(n)

n

≤ g
−1/N
i−1 .

Now our claim follows by applying the triangular inequality.

5 Perspectives and conclusion

Let us now discuss the complexity of our algorithm. Theoretically, we do not even
know whether the algorithm terminates. This shows that it will be very hard to
obtain good bounds for the complexity. Indeed, we have proved correctness and
termination of the algorithm modulo Schanuel’s conjecture:

Automatic numerical expansions 13

Conjecture 1. (Schanuel) If α1, · · · , αn are Q-linearly independent complex

numbers, then the transcendence degree of Q[α1, · · · , αn, e
α1 , · · · , eαn] over Q is at

least n.

In fact, a feature of Richardson’s zero-test algorithm is that it only fails (in
the sense that it does not terminate) if we gave a counterexample to Schanuel’s
conjecture on input. This shows that the algorithm is expected to fail extremely
seldomly, and that in practice, all failures will rather be due to expression swell.

A more relevant question is to examine in which practical cases our algorithm is
expected to be slow. Two situations, in which the algorithm is slow, are intrinsic to
the type of method used. First, suppose that we have a very small exp-log constant,
whose subexpressions are all “small without being to small”. Then floating point
computations at a very high precision are needed to determine its sign. Secondly,
it can happen that Taylor series expansion is exponential in time, as shows the
following example:

1

1− ε
−

1

1− ε2
−

ε

1− ε4
− · · · −

ε2
n−1−1

1− ε2n
.

Another case in which our numerical expansion algorithm is expected to be slow,
is when we have a lot of “numerical interference between the different asymptotic
scales”. Consider for example the numerical expansion of

e+ e2 + e4 + · · ·+ e2
n

This constant is expanded by using floating point computations only. This is not very
efficient, if we merely want to compute its sign. Similarly, if we want to compute
the sign of the sum of a number and a much smaller number, then we do not
really need to compute a complete numerical expansion for the smaller number. In
fact, in the case of sign computations we are only interested in the first term of a
numerical expansion and a convenient error bound. We have some new results for
optimizing the sign computation algorithm in this direction, which will be presented
in a forthcoming paper.

An important advantage of our numerical expansion algorithm is that if f(x) is
an exp-log function and C a huge constant, then the numerical expansion of f(C)
usually takes about the same time as the symbolic expansion of f(x). This shows
that for this type of constant our algorithm is very efficient. Despite the drawbacks
of our algorithm mentioned above, we expect that it behaves correctly for interme-
diate cases between floating point computations and the above situation. We will
check this, as soon as we have implementations.

To conclude, the main point of this article is to combine numerical and symbolic
computation methods to solve problems. Probably due to technical reasons, few
such algorithms have been developed until now. However, both numerical analysis

14 J. van der Hoeven

and computer algebra could potentially benefit from a successfull combination of
these methods. Numerical computations can often be accelerated by decomposing
numbers in parts of different orders of magnitude. Symbolic computations can often
be accelerated if we dispose of some numerical information. For instance, if we have
a positive lower bound of a function on some domain, we know that the function
does not vanish on this domain. We expect that such combinations of methods will
become more and more frequent in the future.

Acknowledgement

We would like to thank the referees for many detailed corrections and suggestions.

6 Bibliography

[CavPr 78] B.F. Caviness, M.J. Prelle. A note on algebraic independence of logarithmic and

exponential constants. SIGSAM Bulletin 12, (p 18-20).

[Ec 92] J. Ecalle. Introduction aux fonctions analysables et preuve constructive de la conjec-

ture de Dulac. Hermann, collection: Actualités mathématiques.

[GeGo 88] K.O. Geddes, G.H. Gonnet. A new algorithm for computing symbolic limits using

hierarchical series. Proc. ISSAC 1988, Lecture notes in computer science 358, (p

490-495).

[GoGr 92] G.H. Gonnet, D. Gruntz. Limit computation in computer algebra. Report technique

187 du ETH, Zürich.

[LLL 82] A.K. Lenstra, H.W. Lenstra, L. Lovász. Factoring polynomials with rational coeffi-

cients. Math. Ann. 261 (p 515-534).

[Rich 92] D. Richardson. The elementary constant problem. Proc. ISSAC 92 (p 108-116).

[Rich 94] D. Richardson. How to recognize zero. Preprint, University of Bath, England.

[Sal 91] B. Salvy. Asymptotique automatique et fonctions génératrices. PhD. Thesis, Ecole

Polytechnique (Appendix B), France.

[Sh 89] J. Shackell. A differential-equations approach to functional equivalence. Proc. ISSAC

89, Portland, Oregon, A.C.M., New York, (p 7-10).

[Sh 90] J. Shackell. Growth estimates for exp-log functions. Journal of symbolic computation

10 (p 611-632).

[VdH 94a] J. van der Hoeven. General algorithms in asymptotics I, Gonnet and Gruntz’s algo-

rithm. Research report LIX/RR/94/10, Ecole Polytechnique, France.

[VdH 94b] J. van der Hoeven. General algorithms in asymptotics II, Common operations. Re-

search report LIX/RR/94/10, Ecole Polytechnique, France.

