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Abstract

It is known that an adaptation of Newton's method allows for the computation of functional
inverses of formal power series. We show that it is possible to successfully use a similar
algorithm in a fairly general analytical framework. This is well suited for functions that
are highly tangent to identity and that can be expanded with respect to asymptotic scales
of �exp-log functions�. We next apply our algorithm to various well-known functions coming
from the world of quantitative finance. In particular, we deduce asymptotic expansions for
the inverses of the Gaussian and the Black�Scholes pricing functions.
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1 Introduction
One notoriously complex problem in finance is the pricing of derivative products that are frequently
traded on financial markets. Practitioners have proposed various sophisticated models for the
dynamics of financial assets. In particular, it has been necessary to account for the existence of
U-shaped �volatility smiles� which play a central role in the pricing of so-called vanilla options.
Some models seem more reasonable than others because they explain not only the volatility smile,
but also have properties that are directly exploitable in practice, notably the existence of easily
implementable pricing formulas involving mathematical parameters that are easy to calibrate.

Subsequently, the volatility smile has been studied in a fairly general way, with a minimum of
hypotheses on the probabilistic distribution of the assets [3, 4, 8, 16, 25]. This has made it possible
to isolate intrinsic behaviours that are shared by a large number of models in the study of volatility
smiles.

The next step has been to study the volatility smile in a model-free setting. This ultimately leads
to focusing not on the Black�Scholes formula itself but on its inverse [10, 14, 30, 36]. A notable
advantage of this approach is that it simplifies pricing problems. Indeed, in the case of vanilla
options, such problems usually do not admit closed form solutions (except in the Black�Scholes
model), so we need to resort to approximate solutions. Different techniques have been proposed to
this purpose: perturbation methods with partial or stochastic differential equations, Lie symmetry
theory, Watanabe theory, heat kernel expansion theory and Minakshisundaran�Pleijel's formula,
large deviation theory, etc. [7, 12, 17, 20, 26, 27]. Most of these techniques give the asymptotics of
price for large or small values of certain parameters involved in the computation of option prices.
The study of the inverse function of the Black�Scholes formula then transforms vanilla option price
asymptotics into implicit volatility asymptotics, which is the quantity of interest.

The problem of inverting Black�Scholes formula is challenging because of its non-analytic boundary
behaviour. In fact, since the Black�Scholes model (as any other stochastic model) uses Brownian
motion, it is not surprising that the asymptotics of the Black-Scholes formula involves logarithms.
More precisely, after a suitable change of variables, the relation between vanilla option price and
volatility can be expressed via an asymptotic expansion

y � x+ �0+
�1
x
+
�2
x2
+ ���; (1)
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where �0; �1; ::: are polynomials in log x [10, 14]. In particular, this means that

y = x+ �0+
�1
x
+ ���+ �n

xn
+O(x−n−1/2); (2)

for every n2N. We are interested in computing a similar expansion for x in terms of y.

In computer algebra, various techniques have been developed for asymptotic expansions in general
asymptotic scales. For instance, several algorithms exist for the asymptotic expansion of �exp-
log� functions [15, 22, 29, 34, 35]. Such functions are built up from the rationals and an infinitely
large variable x!1 using the field operations, exponentiation and logarithm. An example of an
exp-log function is exp(x2−x log x)/log log (xx+3). The theory of transseries [9, 21, 23] makes it
possible to cover asymptotic expansions of an even wider class of functions comprising many formal
solutions to non-linear differential equations.

Several algorithms also exist for the functional inversion of exp-log functions [32, 33]. However,
the right-hand side �(x) := x+ �0+ �1 x

−1+ �2 x
−2 of (1) is usually not an exp-log function, so

these algorithms cannot be applied directly. When considering �(x) as a formal transseries, there
are also methods for computing the formal inverse  = y+ 0+  1 y

−1+ 2 y
−2+ ��� of � [21, 23].

However, a priori , the analytic meaning (2) is lost during such formal computations. In this paper,
we will show how to invert asymptotic expansions of the form (1) from the analytic point of view.

For each n2N, let G n be the ring of n-fold continuously differentiable functions at infinity (x!1).
Then G1 :=

T
n2N G n is a differential ring. We recall that a Hardy field is a differential subfield

K of G1. It is well-known that Hardy fields [5, 18, 19] provide a suitable setting for asymptotic
analysis. In section 2, we will introduce the abstract notion of an �effective Hardy field�, which
formalizes what we need in order to make this asymptotic calculus fully effective. Typical examples
of effective Hardy fields are generated by exp-log functions. For instance, in Sections 2.3 and 2.4,
we will show that Q(log x; x; ex; ex

2
) is effective Hardy field. Using the aforementioned work on

expansions of exp-log functions, it is possible to construct various other effective Hardy fields.

Let K be a Hardy field. We say that � 2K> nR with � = O(1) is steep if for any f 2K, there
exists a c2R with f =O(�c). An element f 2K is said to be highly tangent to identity if there
exists a c> 0 with (f −x)/x=O(�c). For instance, if K =Q(log x; x), then �=x−1 is steep and
x+ logx+3 log2x/x is highly tangent to identity, contrary to x+x/logx. Now assume thatK is an
effective Hardy field. We say that a germ f 2G1 admits an effective asymptotic expansion over K
if for every n2N we can compute an element 'n2K with f −'n=O(�n). If '1 is highly tangent
to identity and f 0=O(1), then we will prove in Section 3 that f admits a functional inverse that
also admits an effective asymptotic expansion over K. Applied to the case when K=Q(log x; x),
this gives an algorithm for inverting asymptotic expansions of the form (1). Our algorithm relies on
two main ingredients: Taylor's formula for right composition with functions that are highly tangent
to identity, and Newton's method for reducing functional inversion to functional composition.

For our application to mathematical finance, it would have sufficed to work with the particular
effective Hardy field K =Q(log x; x). There are several reasons why we have chosen to prove our
main result for general effective Hardy fields. First of all, the more general result may be useful in
other areas such as combinatorics [31]. Indeed, functional inverses frequently occur when analyzing
asymptotic behavior using the saddle point method. Secondly, our general setup only requires
a moderate �investment� in the terminology from Section 2. Finally, it is natural to prove the results
from Section 3 in this setup; the proofs would not become substantially shorter in the special case
when K=Q(log x; x).

This paper contains three main contributions. As far as we are aware, the application of modern
asymptotic expansion algorithms to mathematical finance is new. Secondly, we introduce the
framework of effective Hardy fields which we believe to be of general interest for effective asymptotic
analysis. One major advantage of this framework is that it separates the potentially difficult
question of constructing a suitable effective Hardy field from its actual use. The existing literature
on exp-log functions and transseries can be put to use for such constructions. But for various
other problems, it suffices to assume the effective Hardy field to be given as a blackbox. The third
contribution of this paper is to show that this is particularly the case for the inversion of asymptotic
expansions that are �highly tangent to identity�.

2



Acknowledgment. We are very grateful to Martino Grasselli for his encouragement and for the
careful reading of our work.

2 Effective Hardy fields

2.1 Hardy fields

Consider the differential ring G1 :=
T
n2N G n, where G n denotes the ring of n-fold continuously

differentiable functions at infinity (x!1) for each n. We recall that a Hardy field is a differential
subfield K of G1. Since any non zero element f of Hardy fields is invertible, the sign of f(x) is
ultimately constant for x!1. We define f >0 if f(x) is ultimately positive. It can be shown that
this gives K the structure of an ordered field.

The well-known asymptotic relations 4, �, � and � can be defined in terms of the ordering on K:
given f ; g 2K, we write

f =O(g) () f 4 g () 9B 2Q>; jf j6B jg j
f =O(g) () f � g () 8"2Q>; jf j<" jg j

and

f � g () f 4 g4 f
f � g () f − g� g:

The quasi-ordering 4 is total on K=/ : given f ; g 2K=/ , we have f 4 g, g � f .

Example 1. The set E of exp-log germs at infinity is the smallest subset of G1 that contains Q
and the identity function, and which is closed under +, −, �, /, exp and log. For instance,
exp(xx− x log x)/(x− 3) + p log log x 2 E . In his founding work [18, 19], Hardy showed that E
forms a Hardy field.

Example 2. More generally, given a Hardy field K, its Liouville closure KLi is the smallest subset
of G1 that contains K and that is stable under +, −, �, /, exp, log and integration. It is well
known that KLi is again a Hardy field [5].

2.2 Basic properties

Let K be a Hardy field. Given f ; g 2K, let us show that

f 4 g^ g�/ 1 =) f 04 g 0 (3)
f � g^ g�/ 1 =) f 0� g 0: (4)

Let us first assume that f 0� g 0, whence g 04 f 0, and let x02R and A> 0 be such that jg 0(x)j6
A jf 0(x)j for all x>x0. Modulo a further increase of x0, we may assume without loss of generality
that the signs of g 0(x) and f 0(x) are constant for x>x0. Then, for all �>x0, we have��������Z

�

x

g 0(t) dt

��������= Z
�

x

jg 0(t)j dt6A
Z
�

x

jf 0(t)j dt=A
��������Z

�

x

f 0(t) dt

��������: (5)

Consequently, g+ a4 f + b for suitable integration constants a; b 2R. If g � 1, then this yields
g4 f . If f � 1 and g� 1, then we may take �=1 in (5), so that a= b=0, and we again obtain
g4 f . If f < 1 and g� 1, then we clearly have g� 14 f . This proves that f 0� g 0) f � g_ g� 1,
which implies (4). One proves f 04/ g 0) f 4/ g_ g� 1 and (3) in a similar way.
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2.3 Effective Hardy fields

Let K be a Hardy field. We say that K is effective if its elements can be represented by instances
of a concrete data structure and if we have algorithms for carrying out the basic operations +;−;
�; /; @, as well as effective tests for the relations 6, <, 4 and �.

In particular, the effective inequality test for 6 yields an equality test. Inversely, if we have an
algorithm to compute signs of elements in K, then this yields effective inequality tests for both 6
and <. Similarly, if, given f 2K, we have a way to test whether f 4 1 and f � 1, then this yields
effective tests for the relations 4 and �. Indeed, given f 2K and g2K=/ , we have f 4 g, f /g41
and f � g, f /g� 1.

Example 3. Let us show that K =Q(x) is an effective Hardy field. The basic operations +, −,
�, / and @ can clearly be carried out by algorithm, and it is also clear how to do the equality
test. Now consider f =(Ppxp+ ���+P0)/(Qqxq+ ���+Q0)2K=/ with P0; :::; Pp; Q0; :::; Qq2Q and
Pp=/ 0, Qq=/ 0. Then f � (Pp/Qq) xp−q. Consequently, sign(f) = sign(Pp/Qq) and f 4 1, p6 q
(resp. f � 1, p< q).

Example 4. We claim that K =Q(log x; x) is an effective Hardy field. As above, the basic
operations +, −, �, /, @ and the equality test are straightforward. Now any non zero element
f 2K=/ can be written as a fraction f =(Pp x

p+ ���+P0)/(Qq xq+ ���+Q0)2K=/ with P0; :::; Pp;
Q0; :::; Qq 2Q(log x) and Pp=/ 0, Qq =/ 0. Similarly, we may write Pp/Qq = (Aa (log x)a+ ���+
A0)/(Bb (log x)b+ ���+ B0) 2K=/ with A0; :::; Aa; B0; :::; Bb 2Q and Aa=/ 0, Bb=/ 0. Then f �
(Aa/Bb) x

p−q (log x)b−a. Consequently, sign(f) = sign(Aa/Bb) and f 4 1, (p; a)6 (q; b) (resp.
f � 1, (p; a)< (q; b)). Here we used the lexicographical ordering on pairs: (p; a)6 (q; b) if and
only if p< q or p= q and a6 b.

Example 5. Let K be an effective Hardy field and let '2K be such that '> 0 and '� 1. Then
'0> 0, whence ' is ultimately strictly increasing and invertible for composition. Let  = 'inv be
the inverse of ' and assume that '0 �  2K. Then K � '= ff � ': f 2Kg is again an effective
Hardy field. Indeed, since right composition preserves the field operations and the ordering, K �'
is effectively isomorphic to K as an ordered field. The derivation on K � ' is given by (f � ')0=
(('0 �  ) � f 0) � '.

2.4 Adjunction of steep exponentials

Let f ; g 2K=/ and let �; �=�1 be such that f �< 1, g�< 1. We define the flatness relations ��, ��
and −̀a by

f �� g () 9c2Q>; jf j�4 jg j�c
f �� g () 8c2Q>; jf j�� jg j�c

f −̀a g () f �� g�� f:

Let f y= f 0/f denote the logarithmic derivative of a function f . Taking logarithms, and using (3)
and (4), we observe that

f �� g () log jf j4 log jg j () f y4 g y
f �� g () log jf j � log jg j () f y� g y

f −̀a g () log jf j � log jg j () f y� g y;

for all f 2K=/ and g 2K�/ = fh2K:h�/ 1g.
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An element � 2K> is said to be steep if f �� � (whence f y4 � y) for all f 2K=/ . If � � 1, then
this allows us to define a valuation with respect to �: we set v�(f) = lim (f y/ � y) for f 2K=/

and v�(0) =1. Notice that the corresponding valuation group Γ�= im v� is a subgroup of R. In
particular, Γ� is Archimedean. For f 2K and g 2K=/ , we notice that

f 4 g =) v�(f)> v�(g):

Indeed, since f 4 g, f / g 4 1 and v�(f / g) = v�(f)− v�(g), it suffices to show this for g = 1.
Now assume that c := v�(f)< 0. Then f y>

c

2
� y, whence log jf j> log �c/2+C > log �c/3 for some

constant C 2R. It follows that f > �c/3� 1. If ���x, then we also notice that v�(� y)=0. Indeed,
���x, log � � log x) � y=(log �)0� (log x)0�x−1 and 1/ � y�x) (1/ � y)0� � yy/ � y� 1, whence
v�(� y)= lim � yy/ � y=0.

Two examples of steep elements are x in Q(logx;x) and e−x
2
in Q(logx;x; ex; ex

2
). The aim of the

remainder of this section is to generalize Example 4 and prove in particular that Q(logx;x; ex; ex
2
)

is indeed an effective Hardy field.

Let K be an effective Hardy field and let '2K�=fh2K:h�1g be such that f y�'0 for all f 2K.
By what precedes, this implies that  := e'�� f for all f 2K. We claim that L :=K( ) is again
an effective Hardy field. Modulo the replacement of  by j −1j (and ' by −'), we may assume
without loss of generality that  >0 and  �1. We clearly have algorithms for the field operations
of L. Using the rule  0= ' , it is also straightforward to compute derivatives of elements of L.

Now consider a polynomial P ( ) = Pp  p + ��� + P0 2K[ ]. If Pp =/ 0, then for each i < p, we
have Pi/Pp��  , so that Pi i�Pp p. Hence Pp=/ 0 implies P ( )�Pp p. This also shows that
P ( )=0,P0= ���=Pp=0, which provides us with an effective zero test for K[ ], as well as for L.
Given a rational function P ( )/Q( ) = (Pp p+ ���+P0)/(Qq q+ ���+Q0)2L with Pp=/ 0 and
Qq=/ 0, we also have P ( )/Q( )� (Pp/Qq)  p−q. Consequently, sign(f)= sign(Pp/Qq) and f 41
if and only if p< q or p= q and Pp4Qq. Similarly, f �1 if and only if p< q or p= q and Pp�Qq.

Example 6. Starting with K =Q(log x; x) as in Example 4, applying the above argument twice
shows that both K(ex) and K(ex; ex

2
) =Q(log x; x; ex; ex

2
) are effective Hardy fields. Applying

Example 5 for '= log x, we also obtain that Q(log log x; log x; x; xlogx) is an effective Hardy field.

Remark 7. In order to compute with more general exp-log germs in E , one also needs to show
that fields such as Q(x; ex; e 2

p
x) form effective Hardy fields. One even more difficult problem is to

provide an effective zero test for exp-log constants, i.e. constants formed from the rationals, using
+, −, �, /, exp and log. Provided that Schanuel's conjecture holds, such an algorithm was given
by Richardson [28]. His algorithm always returns correct results, but might not terminate if one
explicitly hits a counterexample to the conjecture. Given a zero-test for exp-log constants, it can
be shown that E forms an effective Hardy field [22].

2.5 Limits and asymptotic scales

Let K be a Hardy field. Given f 2K4=f'2K:'41g, there exists a unique `2R with f − `�1,
which is called the limit of f , and denoted by `= lim f . We say that K is closed under limits
if lim f 2K for all f 2K. If K is effective and lim:K4!K is computable, then we say that K
admits an effective limit map.

An asymptotic scale for K is a multiplicative subgroup M�K> such that M is totally ordered
for 4 and such that there exists a mapping d:K=/!M with d(f)� f for all f 2K=/ . We call d(f)
the dominant monomial of f and notice that d is necessarily a group homomorphism. If K is
effective and d is computable, then we call M an effective asymptotic scale.

Assume thatK is closed under limits and thatK also admits an asymptotic scaleM. Given f 2K=/ ,
we call �(f) = (lim f /d(f)) d(f) the dominant term of f , and notice that f � �(f). If d and lim
are both computable, then the same clearly holds for � .
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Example 8. In Example 3, we have given a method for the explicit computation of an equivalent
in Q=/ xZ= fc xk: c2Q=/ ; k2Zg for any f 2Q(x)=/ . This both shows that Q(x) admits an effective
limit map and that it admits xZ as an effective asymptotic scale. Similarly, Example 4 shows that
the same holds for Q(log x; x), in which case the asymptotic scale becomes (log x)Z xZ.

More generally, let K be an effective Hardy field and let ';  be as in Section 2.4. Assume that K
admits an effective limit map and that M is an effective asymptotic scale. For each f 2K( )=/ , we
have shown how to compute an equivalent f� g k� �(g) k with g2K=/ and k2Z. Since g�� k
for any g 2M and k=/ 0, the group M  Z is totally ordered for 4. This shows that K( ) admits
both an effective limit map and an effective asymptotic scale M  Z.

Example 9. Let K be an effective Hardy field and let ' be as in Example 5. If K admits an
effective limit map, then so does K � ', since lim f � '= lim f for all f 2K=/ . If K admits an
effective asymptotic scale M, then K � ' admits M � ' as an effective asymptotic scale, with
d(f � ')= d(f) � ' for all f 2K=/ .

3 Composition and functional inversion

LetK be a Hardy field which contains the identity function x, as well as a steep element �2K>;�=
f'2K>: '� 1g. If � −̀ax, then also assume that �=x−1.

An element f 2K is said to be highly tangent to identity if there exists a c> 0 with (f −x)/x=
O(�c). Equivalently, this means that f is of the form f =x+ � with v�(�)>v�(x). If �=x−1, then
this is the case when �� �� for some �>−1. If ���x, then we rather should have �� �� for some
� > 0. In particular, in both cases we have � 0� 1 and even v�(�

0)> 0. We will denote by T the
subset of K of all elements that are highly tangent to identity.

Since Hardy fields are not necessarily closed under composition and functional inversion, the
set T does not necessarily form a group. The main aim of this section is to show that a suitable
completion of T does form a group (Theorem 20 below). Moreover, under suitable hypothesis,
there are algorithms for computing asymptotic expansions of compositions and functional inverses.

3.1 First order functional inversion

Lemma 10. Let � 2T −x. Then for any germ � 2G1 with �4 � and � 0� 1, we have

(x+ �)inv−x = O(�):

Proof. Without loss of generality, we may assume that � > 0. For any c 2R, we claim that
� � (x+ c �)� �. Indeed, given "> 0, let x0 be such that � 0(x) has constant sign and j� 0(x)j<" for
x>x0. Assume also that �(x+ c �(x)) is defined for x>x0. Then

j�(x+ c �(x))− �(x)j 6
��������Z

x

x+c�(x)

� 0(t) dt

�������� < " jcj �(x);

for all x>x0. We conclude that � � (x+ c �)− �� �, by letting " tend to zero.

The assumption that � 0�1 implies that (x+ �)0�1, whence '(x) :=x+ �(x) is strictly increasing
for sufficiently large x. This shows that ' indeed admits an inverse function  at infinity. Let
A> 0 be such that j�(x)j6A �(x) for sufficiently large x. Setting l(x) = x− 2A �(x) and r(x) =
x+2A�(x), our claim implies

'(l(x)) = l(x)+ �(l(x)) 6 l(x) +A�(l(x)) < l(x)+ 2A�(x) = x
'(r(x)) = r(x)+ �(r(x)) > r(x)−A�(r(x)) > r(x)− 2A�(x) = x;
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for sufficiently large x. Since ' is strictly increasing, it follows that l(x)<  (x)<r(x). In other
words, j (x)−xj6 2A�(x) for sufficiently large x. �

3.2 First order right composition

Lemma 11. Let f 2K and g=x+"2T. Then for any germs �;�2G1 with �4 f and �4", we have

� � (x+ �) = O(f):

Proof. Since � is a steep element, there exists a constant A > 0 with jf yj 6 A j� yj. We also
notice that � y "� 1. Indeed, this is immediate if �=1/x. If ���x, then "� �c for some c> 0 and
� y "� � y �c� (�c)0� 1, since �c�x.

Let us first show that f � g � f , whenever f � x and g > x. Since f � x implies f 0 � 1, the
function jf 0j is ultimately decreasing. For sufficiently large x, it follows that jf 0(t)j6 jf 0(x)j for
t2 [x; g(x)], whence

jf(g(x))− f(x)j 6
Z
x

g(x)

jf 0(t)j dt 6 jf 0(x)j "(x) 6 A j� y(x)j "(x) jf(x)j:

Since � y "� 1, this shows that f � g� f .

Let us next show that we also have f � g� f in the case when f � x and g < x (so that " < 0).
Then Lemma 10 implies ginv= x+O("), whence x< ginv<x−B " for some B 2R>. Let �> 0.
By what precedes, there exists an x0 with jf(x−B"(x))− f(x)j6� jf(x)j for all x>x0. Modulo
a further increase of x0, we may also arrange that f(x) is monotonic for x> x0. It follows that
jf(ginv(x))− f(x)j6� jf(x)j, whence f � ginv� f . Post-composing with g, we again obtain f � g� f .

Let us finally assume that f <x. Then the above arguments prove that (1/f) � g� (1/f). Con-
sequently, f � g=((1/f) � g)−1� (1/f)−1= f .

The above arguments conclude the proof in the case when �= f and �=". Let us next consider the
case when we still have �= f , but �4" is general. Let B>0 be such that j� j6B j"j. For sufficiently
large x, it follows that f(x+ �(x)) is comprised between f(x−B j"(x)j) and f(x+B j"(x)j), which
are both equivalent to f(x). This shows that f � (x+ �)� f .

As to the general case, let C>0 be such that j� j6C jf j. By what precedes, we have j�(x+ �(x))j6
C jf(x+ �(x))j6 2C jf(x)j for all sufficiently large x. This shows that � � (x+ �)4 f . �

3.3 General composition

Lemma 12. Let f 2K and g2T. Let ';  2K and n2N be such that x+ 2T and f (n) � (g−x)n4
'. Then for any �; "2G1 with �4 ' and "4  , we have

(f + �) � (g+ ") = f + f 0 � (g−x)+ ���+ 1

(n− 1)! f
(n−1) � (g−x)n−1+O(max (j'j; jf 0  j)):

Proof. Let us first consider the case when �= "=0 and consider

� = f + f 0 (g−x) + ���+ 1

(n− 1)! f
(n−1) (g−x)n−1

R = f � g− �

For sufficiently large x, Taylor's formula with integral remainder yields

R(x) =

Z
x

g(x) 1
(n− 1)! f

(n)(t) (g(x)− t)n−1dt:

7



For sufficiently large x, the function f (n) is also monotonic, whence

jR(x)j 6 1

n!
max (jf (n)(x)j; jf (n)(g(x))j) jg(x)−xjn:

By Lemma 11, we have f (n) � g4 f (n), whence R4 f (n) (g−x)n4 '. This completes the proof in
the case when �= "=0.

As to the general case, we have

jf(g(x) + "(x))− f(g(x))j 6
Z
g(x)

g(x)+"(x)

jf 0(t)j dt 6 max(jf 0(g(x))j; jf 0(g(x)+ "(x))j) j"(x)j;

for all sufficiently large x. Now Lemmas 10 and 11 imply '� (g+")='� (x+"� ginv)� g4'� g4'
and similarly f 0 � (g+ ")4 f 0. Consequently,

j(f + �) � (g+ ")− � j 6 j� � (g+ ")j+ jf � (g+ ")− f � g j+ jf � g− � j
4 max (j' � (g+ ")j; jf 0 "j; j'j)
4 max (jf 0 "j; j'j):

This concludes the proof in the general case. �

Lemma 13. For any f 2K, g 2T and '2K=/ , there exists an n2N with f (n) � (g−x)n4 '.

Proof. Let us first consider the case when �= x−1, so that v�(g− x)>−1. For any f 2K=/ , we
have f 0= f y f 4 � y f � f /x, whence v�(f 0)> v�(f)+ 1. Consequently,

v�(f
(n) (g−x)n) > v�(f)+n+nv�(g−x):

It thus suffices to take n> (v�(')−v�(f))/(v�(g−x)+1) in order to ensure that v�(f (n) (g−x)n)>
v�(') and therefore f (n) (g−x)n4 '.
Assume next that � �� x, so that v�(g − x)> 0. We again have f 04 � y f for all f 2K=/ , but this
time, we rather obtain v�(f 0)> v�(f), since v�(� y)= 0. Therefore,

v�(f
(n) (g−x)n) > v�(f) +n v�(g−x):

Taking n> (v�(')− v�(f))/v�(g−x), we again obtain the desired result. �

If K is an effective Hardy field, then the above lemmas lead to the following algorithm for approx-
imate composition:

Algorithm compose(f ; g; ')
Input: f 2K, g 2T and '2K=/ with v�(')>v�(x f 0)
Output: h2K with f � g=h+O(')
Moreover, for all �; "2G1 with �4', "f 04' and v�("/x)>0, we have (f + �)� (g+")=h+O(')

Let n2N be minimal with f (n) � (g−x)n4 '
Return f + ���+ 1

(n− 1)! f
(n−1) � (g−x)n−1

Theorem 14. The algorithm compose is correct.

Proof. The existence of n is ensured by Lemma 13. Since K is effective, we have an algorithm for
doing the test f (n) (g−x)n4', which enables us to compute n. Setting  ='/f 0, our assumption
that v�(')>v�(x f 0) ensures that x+  2T . The result now follows from Lemma 12. �

8



Remark 15. In addition, by considering both cases � = x−1 and � �� x, it can be verified that
v�(h) = v�(f), that f 2T implies h2T , and that v�(f − 1)> 0 implies v�(h− 1)> 0.

3.4 General functional inversion

A well-known way to solve functional equations of the form f � g=x is Newton's method [6]. We
will now show that this method indeed yields a quadratic convergence in our setting.

Lemma 16. Let f ; g2T and "2K be such that f � g−x=O(x") and v�(")>0. Let g~2T be such
that

g~ = g− f � g−x
f 0 � g +O(x "2):

Then f � g~−x=O(x "2).

Proof. Since f�x, we notice that f 0�1 and f 0� g�1. Let �= g− g~= f � g− x

f 0 � g +O(x"2)=O(x").
For all sufficiently large x, we have

f(g~(x)) = f(g(x))− f 0(g(x)) �(x)+
Z
g(x)

g(x)−�(x)
f 00(t) (g(x)− �(x)− t) dt;

whence, using the ultimate monotonicity of f 00 on [g(x); g~(x)],

f � g~ = f � g− (f 0 � g) �+O(max (jf 00 � g j; jf 00 � g~j) �2):

Using Lemma 11, we also have f 00 � g4 f 00 and f 00 � g~4 f 00, whence

f � g~ = f � g− (f 0 � g) �+O(f 00 �2):

Consequently,

f � g~−x = (f � g−x)− (f 0 � g) �+O(f 00 �2)

= (f 0 � g) �+O(x "2)− (f 0 � g) �+O(f 00 �2)

= O(x "2)+O(f 00 �2):

Now f −x�x implies (f −x)0� 1� log x and f 00=(f −x)00�x−1. Consequently,

f � g~−x=O(x "2) +O(f 00 �2)=O(x "2)+O(�2/x)=O(x "2):

This completes the proof. �

If K is an effective Hardy field, then this lemma leads to the following algorithm for the compu-
tation of approximate functional inverses:

Algorithm invert(f ; ")
Input: f 2T and "2K=/ with v�(")> 0
Output: g 2T with f inv= g+O(x ")
Moreover, for any � 2G1 with �4x " and � 0� 1, we have (f + �)inv= g+O(x ")

Let g :=x
repeat

Let h := compose(f ; g; x "2)
If h−x4x " then return g
Let d := compose(f 0; g; x "2)
Let g := g− (h−x)/d

9



Theorem 17. Let �= (f − x)/x. The algorithm invert is correct and terminates after at most
blog(v�(")/v�(�))/ log 2c+1 iterations of the main loop.

Proof. Let us first show that g 2T throughout the algorithm. This is clear at the start. At each
iteration g := g − (h− x)/d, Remark 15 implies v�(h− x)> v�(x) and v�(d− 1)> v�(1), whence
v�((h−x)/d)>v�(x), so that g− (h−x)/d2T .

On termination, we have h = f � g + O(x "2) and h = x + O(x "), whence f � g − x = O(x ").
Applying Lemma 10 with x " and f � g − x in the roles of � and �, we obtain ginv � f inv− x=
(f � g)inv− x= O(x "). Consequently, f inv = g � (ginv � f inv) = g + O(g 0 � (ginv � f inv−x)) = g +

O(x"). Furthermore, (f+�)inv=[(x+�� f inv)� f ]inv=f inv � (x+ � � f inv)inv=f inv � (x+O(�))inv=
f inv � (x+O(x "))inv= f inv � (x+O(x "))= f inv+O((f inv)0x ")= g+O(x ").

As to the termination, consider the quantity

� := v~�

�
f � g−x

x

�
:= sup

n
�2R:

f � g−x
x

=O(��)
o
:

At the very start, we have � = v~�(�) = v�(�)> 0. At every iteration g~ := g − (h− x)/d, we have
g~= g− f � g−x

f 0 � g +O(x "2). Lemma 16 therefore ensures that � doubles at least, whereas the algo-
rithm terminates as soon as � > v�("). This happens after at most blog(v�(")/v�(�))/ log 2c+ 1
iterations. �

3.5 Effective asymptotic expansions

We now extend the definition of high tangency to identity to all germs. We say that a germ f 2G1

is highly tangent to identity if there exists a c>0 with f −x=O(x�c) and f 0=1+O(1). We denote
by T 1 the set of such germs. We say that f admits an asymptotic expansion over K if for every
n2N, there exists an element 'n2K with f −'n=O(�n). If we have an algorithm for computing
'n as a function of n, then we say that f admits an effective asymptotic expansion over K.

Proposition 18. Assume that f 2G1 and g2T 1 admit effective asymptotic expansions over K.
Then so does f � g. If f 2T 1, then f � g 2T 1.

Proof. Given n>1, we may compute 'n2K and  n2T with � := f −'n4 �n and " := g− n4 �n.
Assume that there exists an n0 2N with f 4/ �n0. Then for all n > n0, we must have 'n� �n0

and v�(x 'n
0 )6 n0< n. Consequently, we may compute �n= compose('n;  n; �n), and f � g =

('n+ �) � ( n+ ")= �n+O(�n). If f 4 �n for all n2N, then we also have f � g4 �n for all n2N.

If f 2T 1, then we also get 'n;  n; �n2T , whence v�(f � g−x)=v�(�n−x+O(�n))>min (v�(�n−
x); n)>v�(x). Moreover, (f � g)0= g 0 � f 0 � g= (1+ O(1)) (1 + O(1) � g) = 1+ O(1), whence f � g 2
T 1. �

Proposition 19. Assume that f 2T 1 admits an effective asymptotic expansion over K. Then
so does f inv and f inv2T 1.

Proof. Given n> 1, we may compute 'n2T with � := f − 'n4 �n. Let  n= invert('n; �n/x).
Then f inv= ('n+ �)inv=  n+O(�n). Moreover, (f inv)0= (f 0 � f inv)−1= ((1+ O(1)) � f inv) = 1+

O(1), whence f inv2T 1. �

Combining these two propositions, we have shown the following:

Theorem 20. The set of germs in T 1 that admit effective asymptotic expansions over K forms
a group for functional composition. �
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4 Examples and applications to finance

4.1 Lambert W function

The LambertW function is defined to be the inverse function of x 7!x ex. Using our algorithm, we
can compute the asymptotic expansion of the inverse function W (ex) of x 7! x+ log x. This also
yields the asymptotic expansion of W (x) for large x.

4.2 Gaussian function

Let (	n)n>0 be defined formally by

log

 
1+

X
n>0

anX
n

!
=
X
n>0

	n (a1; :::; an)X
n

and let � be the Gaussian function:

�(x)=

Z
−1

x

'(t)dt; '(t) =
1

2 p
p e

−t2

2 :

For any n2N, we have the well-known relation

1−�(x) =
e
−x2

2

2 p
p

x

 
1+

X
i=1

n
(−1)i (2 i− 1)!!

x2i
+O

�
1
xn

�!
; (6)

where we used the notation

(2 i− 1)!! :=
Y
k=1

i

(2 k− 1):

The relation (6) shows that

f(x) = x+ log x+ '0+
X
i=1

n
'i
xi
+O

�
1
xn

�
; (7)

with x> 0,

f(x) := 2 log (1−�( x
p

))

'0 := 2 log ( 2 p
p

)

'i := −	i(−1; :::; (−1)i (2 i− 1)!!) (i > 0)

Our algorithm now allows us to compute the asymptotic expansion of the inverse function of
Gaussian law at +1. This is potentially of great interest in finance when it comes to calculate
risk measures. The formula (7) gives itself an asymptotic expansion of a Gaussian Value-at-Risk
VaR� in terms of its confidence level �.

4.3 Gaussian expected shortfall

The expected shortfall of a portfolio with confidence level �2 (0;1) is the expected loss conditional
that the loss is greater than the �-th percentile of the loss distribution. When the return of the
portfolio is Gaussian with mean � and volatility �, the expected shortfall is

ES�= �+�
'��−1(�)
1−� :
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With x=�−1(�), the relation (6) yields

'(x)

1−�(x) =
x

1+
P

i=1
n (−1)i (2 i− 1)!!

x2i
+O
( 1

xn

�:
So, for some constants ui2R, we have

ES�− �
�

= x+
X
i=0

n
ui

x2i+1
+O

�
1

x2n+1

�
:

By inverting (7), we get an asymptotic expansion of ES� in terms of �! 1.

4.4 Incomplete Gamma function

Let (uk)k>0 be defined by u0=1 and, for k>0, uk=(a−1) (a−2):::(a−k). A well-known relation
for Γ(a; x) tells that for a2R and x> 0,

Γ(a; x) = xa−1 e−x

 X
k=0

n
uk
xk

+O

�
1
xn

�!
: (8)

Taking logarithms, we get

−logΓ(a; x) = x− (a− 1) log x+
X
k=1

n
'k
xk

+O

�
1

xn

�
; (9)

with 'k=−�k (u1; :::; uk). Considering the CEV process

dF =�F � dW ;

where W is a Brownian motion and F denotes for instance a forward rate, the probability of
absorption at zero before t-time is given by

1
Γ(�)

Γ

 
� ;
2 �2F0

1

�

�2 t

!
; � =

1
2 (1− �) >

1
2
:

Inverting (9) gives a confidence interval where the probability of absorption of F is lower than �,
asymptotically, for �� 1.

4.5 Black�Scholes formula

By definition, a call option is a contract which gives to the owner the value max (ST −K; 0) at
a future T -date (known today) called maturity of the contract, where ST denotes the value at
T -date (unknown today) of an asset (like a stock) whose initial value is S today, andK is a constant
called strike (known today). The initial price of this contract is denoted by C(S;K;T ). In general,
by no-arbitrage arguments, the option price C(S;K;T ) is always greater than the �intrinsic value�
(S −K)+ and lower than the spot value S:

(S −K)+<C(S;K; T )<S

In the Black�Scholes model, the dynamics of (St) is assumed to be log-normal:

dS t = �StdWt
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where (Wt)t2R+ is a Brownian motion and � is a constant parameter called volatility. In this
framework, the well known Black�Scholes formula gives the price of any call option. It can be
shown that

C(S;K; T )=BS(S;K; T ; �);

where

BS(S;K; T ; �) = S �(d+)−K �(d−); d�=
log
�
S

K

�
� �2T

2

� T
p :

For simplicity, we have assumed that the interest rate is 0. If S;K; T are fixed, then it is easy to
see that the function

� 7−! BS(S;K; T ; �) (10)

is non-decreasing and one to one from R+
� to (max (S −K; 0); S). Therefore, in an a priori non

Black�Scholes world and for a given call option price C 2 (max (S −K; 0); S) observed on the
market, there is a unique solution �BS(K;T ) (or simply �BS) of the equation

BS (S;K; T ; �) = C

We call �BS the Black�Scholes implied volatility associated to K and T . For different reasons [10,
30], it is interesting to invert the Black�Scholes function BS in (10). For instance, using techniques
from perturbation theory, sophisticated stochastic models (in a non Black�Scholes world) give only
asymptotic expansions of an option price C in terms of the maturity T , whereas we really need
a formula for the implied volatility [4, 20]. Indeed, call option prices are generally quoted in term
of implied volatilities (and not as prices). This can be achieved in the following manner. In the
Black�Scholes model and under the conditions that T � 1 and K =/ S, it can be proved [14] that
the asymptotic expansion of the �time value� TV of the call price BS(S;K; T ; �), defined by

TV(S;K; T ; �) := BS(S;K; T ; �)− (S −K)+;

is given by

4 p
p e

−u

2

juj

�
TV
S

�
= v3/2 e

−1

v

X
k=0

n
(−1)k
2k

ak

�
u2

8

�
vk+O

(
v2n+5 e

−1

v

�
; (11)

with n2N arbitrarily large,

u := log
�
K
S

�
; v := 2

�2T
u2

ak(z) := (2 k+1)!!; fk(z) :=
X
j=0

k
zj

j! (2 j+1)!!
:

Therefore, setting

x :=
1
v
=

log2
�
K

S

�
2�2T

; y :=−log
�
TV
S

�
;

we have

y = x+
3
2
log x+ '0+

X
i=1

n
'i
xi
+O

�
1
xn

�
; (12)
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for any integer n, where

'0 := −log

 
juj e

u

2

4 p
p

!

'i := −	i
�
−1
2
a1

�
u2

8

�
; :::;

(−1)i
2i

ai

�
u2

8

��
(i > 0)

Formula (12) is nothing but another expression for Black-Scholes formula. Hence we get an asymp-
totic expansion for �2T in terms of log

( TV
S

�
. Note that (12) is an asymptotic expansion of a call

price in terms of x for large x. So, it gives also an asymptotic expansion of a call price when����log(K
S

����� is large i.e. small strike or large strike.

Notice also that there is another direct formula C+S

2S
=�

�
� T
p

2

�
when K = S, which gives an

asymptotic expansion of C in terms of � T
p

.

At the limit when T�1, the first author previously obtained a similar result [14]. Setting this time

CC :=S −BS(S;K; T ; �)

and

x :=
�2T
8
; y :=−log

�
CC
S

�
;

we have

p
p

e
−x

2
CC
S

=
e−x

x
p

X
k=0

n
(−1)k
2k

ck

�
u2

8

�
1

xk
+O

(
x
−n− 3

2 e−x
�
;

where

ck(z) := (2 k− 1)!! gk(z); gk(z) :=
X
j=0

k
zj

j! (2 j − 1)!! :

Therefore, we get

y = x+
1
2
log x+ '0+

X
i=1

n
'i
xi
+O

�
1
xn

�
; (13)

where

'i := −	i
�
−1
2
a1

�
u2

8

�
; :::;

(−1)i
2i

ci

�
u2

8

��
(i > 0)

4.6 Bachelier's formula

In the Bachelier model, the dynamics of (St) is assumed to be normal:

dSt = � dWt;

where (Wt)t2R+ is a Brownian motion and � is a constant parameter called normal volatility. In this
framework, the price C of a call option with strike K and expiry T is given by Bachelier's formula

C =B(S;K; T ; �);

with

B(S;K; T ; �) = (S −K)�
�
S −K
� T
p

�
+� T

p
'

�
S −K
� T
p

�
:
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Denoting as before by

TV(K;T )=C − (S −K)+

the time-value of the call option, we have

TV(T ;K)=
jS −K j
4 p
p Γ

�
−1
2
;
(S −K)2
2�2T

�

for S=K. So, using (8), we deduce an asymptotic expansion of TV(T ;K) in terms of jS −K j
� T
p for

large strike or small maturity in the Bachelier model. By inverting the Gamma function as before,
this gives an asymptotic expansion of the normal volatility in terms of the time-value TV. There-
fore, by comparing with (11), we obtain an equivalence between normal volatility and lognormal
volatility in the cases when T � 1 or K� S. For example, when T � 1, the first terms of the
expansion are given by

�LN =
logm
m− 1 �~N −

(logm) � log
�

m
p

logm
m− 1

�
(m− 1)3 �~N

3 T +O(T 2 log(T )); (14)

where m denotes the �moneyness� m=
K

S
and �~N=

�N
S
. Note that at the money (K=S), we have

a closed form formula [13]:

�N =
2 p
T

r
S

�
2�

�
�LN T

p

2

�
− 1
�
:

In particular, taking the derivative in (14) and then letting K =S gives

�LN =

�
�N −

1
2
�~N

��
1+

1
8
�~N
2 T

�
+ o(T ); (15)

where �LN and �N are the slopes of the smiles of volatility at the money:

�LN=

�
@ �LN
@K

�
K=S

; �N =

�
@ �~N
@K

�
K=S

:

In particular when the volatility smile K 7!�~N is flat at the money (�N =0), we have:

�LN = −1
2
�~N

�
1+

1
8
�~N
2 T

�
+ o(T ):

This is a refinement of a classical result �LN�−1

2
�~N . In general, (15) shows that if �N<

1

2
�~N, then

the slope of the volatility smile for the lognormal volatility is negative and this condition holds
up to order 1 in T [13].

.4.7 Implied volatility of a local volatility process

By inverting (12), we get the implied lognormal volatility �LN from the time-value TV of the call-
option in a model-free setting. In general, thanks to Tanaka's theorem, this time-value can be cal-
culated by integrating the density function of the stochastic process between 0 and the maturity T
of the option. On the other hand, this density function can be obtained using Minakshisun-
daram�Pleijel expansion - modulo conditions of regularity [2]. So, in general this allows to translate
an asymptotic expansion of p for T � 1 in an asymptotic expansion of �LN.
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As an example, let us consider a local volatility model dSt= f(S) dWt. Then Tanaka's formula
reads:

TV(K;T ) =
1
2
f(K)2

Z
0

T

p(S;�; t)dt (16)

In this particular case, the Minakshisundaram�Pleijel expansion gives

p(S;�; t) =
e
−2d(S;�)2

t

2 p t
p

f(�)

 X
i=0

n

ui(S;�) t
i+ o(tn)

!
; (17)

with d(S;�)=
R
S

� du

f(u)
and ui is explictly given by induction [11, 37]. The asymptotic expansion (17)

can be integrated by part and thus give an asymptotic expansion for TV(K; T ) thanks to (16).
Finally, by inverting (12), we get asymptotic expansion of the lognormal implied volatility.

4.8 Constant elasticity of variance model

The stochastic differential equation for the CEV diffusion model is

dS(t) = �S(t)� dW (t)

Let p(S;�; T ) be the probability density function to get state � at T -time starting from S at
time 0. There is a closed form formula for p in terms of the modified Bessel function I:

p(S;�; T ) =
1

2 �2T
e
−S+�

2�2T

�
S
�

�−�/2
Ij�j

�
S �

p

�2T

�
(18)

with �= 1

2(� − 1) (in the most popular cases we have � 2 (0; 1)) and

I� (z) =
X
k=0

1
1

k! Γ(�+ k+1)

�
z
2

�
2k+�

: (19)

The following well known asymptotic expansion for z!1 is due to Hankel:

I�(z) �
ez

2�z
p

�
1− 4�2−1

8z
+
(4�2−1)(4�2−9)

2!(8z)2
− (4�2−1)(4�2−9)(4�2−25)

3!(8z)3
+ ���

�
: (20)

On the other hand, Tanaka's formula shows that the time-value

TV(K;T ) =C(S;K; T )− (S −K)+

of the call-price C(S;K; T ) with strike K and maturity T is given by

TV(K;T ) =
1
2
�2K2�

Z
0

T

p(S;�; u) du (21)

For short maturities T , the combination of (18) and (20) yields an asymptotic expansion of p(S;�; T )
that can be integrated by parts to any order with respect to T . This leads to an asymptotic
expansion of the time-value TV(K; T ) of a call price. Using an asymptotic expansion of the
inverse function of the Black-Scholes function seen in section 4.5, we deduce an asymptotic expan-
sion of the implied lognormal volatility of the CEV model at any order in T .
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4.9 Experimental Mathemagix implementation

We did an experimental implementation of our algorithm in the Mathemagix system [24]. Each
of the above examples comes down to the computation of the functional inverse of a function y(x)
with an asymptotic expansion of the form

y = x+� log x+ '0+
X
i=1

n
'i
xi
+O

�
1

xn

�
:

For n=3, our algorithm yields:

x = y−� log(y)− '0+ (�2 log(y) + '0�− '1) 1y +
( 1
2
�3 log(y)2+('0�

2− ('1+�2)�) log(y) +
1

2
'0
2�− ('0�− '1)�− '1 '0− '2

� 1

y2
+
( 1
3
�4 log(y)3+

( −1
3
(−(2 '0�−�2)�− '0�2)�−

'1�
2− 7

6
�4
�
log(y)2+

(−1
3
(−('02−'0�+ '1)�− (2'0�−�2)'0)�− 1

3
((2'0�−2'1)�+

2 '0 �
2) �+ ('1+ �2) �2− 2 '1 '0 � − '0 �

3+ '1 �
2− 2 '2 �

�
log(y)− (−('0 � − '1) � −

'1 '0− '2)�+ 1

3
('0

2− '0�+ '1) '0�− 1

3
(2 '0�− 2 '1) '0�− ('1− '0�) '1− 1

2
'0
2�2−

'1 '0
2− 2 '2 '0− '3

� 1

y3
+O

�
1

y3

�
:

5 Conclusion

In this paper, we have presented an algorithm for calculating asymptotic expansions of functional
inverses of functions that are highly tangent to identity. In particular, we obtained asymptotic
expansions of the implied volatility of an option call price at any order in a model-free setting.
hen, we have shown how this can be applied to the CEV model. It is envisaged to apply these
techniques to more sophisticated models such as the SABR model [17]. More generally, it would
be interesting to combine our approach with other algorithms for the calculation of heat kernel
coefficients such as [1] to get automatic asymptotic expansion at any order of the implied volatility
of option call prices for a large class of financial models [2].
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