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Abstract

The Chinese remainder theorem is a key tool for the design of e�cient
multi-modular algorithms. In this paper, we study the case when the
moduli m1; :::;m` are �xed and can even be chosen by the user. If ` is
small or moderately large, then we show how to choose gentle moduli
that allow for speedier Chinese remaindering. The multiplication of
integer matrices is one typical application where we expect practical
gains for various common matrix dimensions and bitsizes of the coe�-
cients.
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1 Introduction

Modular reduction is an important tool for speeding up computations in com-
puter arithmetic, symbolic computation, and elsewhere. The technique allows to
reduce a problem that involves large integer or polynomial coe�cients to one or
more similar problems that only involve small modular coe�cients. Depending
on the application, the solution to the initial problem is reconstructed via the
Chinese remainder theorem or Hensel's lemma. We refer to [9, chapter 5] for a
gentle introduction to this topic.

In this paper, we will mainly be concerned with multi-modular algorithms
over the integers that rely on the Chinese remainder theorem. Given a; m 2 Z
with m> 1, we will denote by a remm 2Rm := f0; :::; m¡ 1g the remainder of
the Euclidean division of a by m. Given an r� r matrix A2Zr�r with integer
coe�cients, we will also denote A remm2Zr�r for the matrix with coe�cients
(A remm)i;j=Ai;j remm.

One typical application of Chinese remaindering is the multiplication of r�
r integer matrices A; B 2 Zr�r. Assuming that we have a bound M with
2 j(AB)i;j j<M for all i; j, we proceed as follows:

0. Select moduli m1; :::;m` with m1 ���m`>M that are mutually coprime.

1. Compute A remmk and B remmk for k=1; :::; `.

2. Multiply C remmk := (A remmk) (B remmk) remmk for k=1; :::; `.
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3. Reconstruct C remM from the C remmk with k=1; :::; `.

The simultaneous computation of Ai;j rem mk from Ai;j for all k = 1; :::; ` is
called the problem of multi-modular reduction. In step 1, we need to perform
2 r2 multi-modular reductions for the coe�cients of A and B. The inverse
problem of reconstructing Ci;j remM from the Ci;j remmk with k = 1; :::; ` is
called the problem of multi-modular reconstruction. We need to perform r2

such reconstructions in step 3. Our hypothesis on M allows us to recover C
from C remM .

Let us quickly examine when and why the above strategy pays o�. In this
paper, the number ` should be small or moderately large, say `664. The moduli
m1; :::;m` typically �t into a machine word. Denoting by � the bitsize of a
machine word (say �=32 or �=64), the coe�cients of A and B should therefore
be of bitsize �` �/2.

For small `, integer multiplications of bitsize � `/2 are usually carried out
using a naive algorithm, of complexity �(`2). If we directly compute the product
AB using r3 naive integer multiplications, the computation time is therefore of
order �(r3 `2). In comparison, as we will see, one naive multi-modular reduc-
tion or reconstruction for ` moduli roughly requires �(`2) machine operations,
whereas an r � r matrix multiplication modulo any of the mk can be done in
time �(r3). Altogether, this means that the above multi-modular algorithm for
integer matrix multiplication has running time �(`2 r2+ r3 `), which is �(min (`;
r)) times faster than the naive algorithm.

If `� r, then the cost �(`2 r2) of steps 1 and 3 is negligible with respect to
the cost �(r3 `) of step 2. However, if ` and r are of the same order of magnitude,
then Chinese remaindering may take an important part of the computation time;
the main purpose of this paper is to reduce this cost. If `� r, then we notice
that other algorithms for matrix multiplication usually become faster, such as
naive multiplication for small `, Karatsuba multiplication [13] for larger `, or
FFT-based techniques [6] for very large `.

Two observations are crucial for reducing the cost of Chinese remaindering.
First of all, the moduli m1; :::; m` are the same for all 2 r2 multi-modular
reductions and r2 multi-modular reconstructions in steps 1 and 3. If r is large,
then this means that we can essentially assume that m1; :::; m` were �xed once
and for all. Secondly, we are free to choosem1; :::;m` in any way that suits us. We
will exploit these observations by precomputing gentle moduli for which Chinese
remaindering can be performed more e�ciently than for ordinary moduli.

The �rst idea behind gentle moduli is to consider moduli mi of the form
2sw ¡ "i

2, where w is somewhat smaller than �, where s is even, and "i
2 < 2w.

In section 3.1, we will show that multi-modular reduction and reconstruction
both become a lot simpler for such moduli. Secondly, each mi can be factored
as mi= (2sw/2¡ "i) (2

sw/2+ "i) and, if we are lucky, then both 2sw/2¡ "i and
2sw/2+ "i can be factored into s/2 moduli of bitsize <�. If we are very lucky,
then this allows us to obtain w ` moduli mi;j of bitsize �w that are mutually
coprime and for which Chinese remaindering can be implemented e�ciently.
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Let us brie�y outline the structure of this paper. In section 2, we rapidly
recall basic facts about Chinese remaindering and naive algorithms for this task.
In section 3, we introduce gentle moduli and describe how to speed up Chinese
remaindering with respect to such moduli. The last section 4 is dedicated to
the brute force search of gentle moduli for speci�c values of s and w. We imple-
mented a sieving method in Mathemagix which allowed us to compute tables
with gentle moduli. For practical purposes, it turns out that gentle moduli
exist in su�cient number for s6 8. We expect our technique to be e�cient for
`. s2, but this still needs to be con�rmed via an actual implementation. The
application to integer matrix multiplication in section 4.3 also has not been
implemented yet.

Let us �nally discuss a few related results. In this paper, we have chosen
to highlight integer matrix multiplication as one typical application in com-
puter algebra. Multi-modular methods are used in many other areas and the
operations of multi-modular reduction and reconstruction are also known as con-
versions between the positional number system (PNS) and the residue number
system (RNS). Asymptotically fast algorithms are based on remainder trees [8,
14, 3], with recent improvements in [4, 2, 10]; we expect such algorithms to
become more e�cient when ` exceeds s2.

Special moduli of the form 2n¡" are also known as pseudo-Mersenne moduli .
They have been exploited before in cryptography [1] in a similar way as in
section 3.1, but with a slightly di�erent focus: whereas the authors of [1] are keen
on reducing the number of additions (good for circuit complexity), we rather
optimize the number of machine instructions on recent general purpose CPUs
(good for software implementations). Our idea to choose moduli 2n¡ " that can
be factored into smaller moduli is new.

Other algorithms for speeding up multiple multi-modular reductions and
reconstructions for the same moduli (while allowing for additional pre-compu-
tations) have recently been proposed in [7]. These algorithms essentially replace
all divisions by simple multiplications and can be used in conjunction with our
new algorithms for conversions between residues modulo mi=mi;1 ���mi;s and
residues modulo mi;1; :::;mi;s.

2 Chinese remaindering

2.1 The Chinese remainder theorem

For any integer m > 1, we recall that Rm = f0; :::; m ¡ 1g. For machine
computations, it is convenient to use the following e�ective version of the Chinese
remainder theorem:

Chinese Remainder Theorem. Let m1; :::; m` be positive integers that are
mutually coprime and denoteM=m1 ���mm. There exist c1; :::; c`2RM such that
for any a12Rm1; :::; a`2Rm`, the number

x = (c1 a1+ ���+ c` a`) remM
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satis�es x remmi= ai for i=1; :::; `.

Proof. For each i = 1; :::; `, let �i =M /mi. Since �i and mi are coprime, �i
admits an inverse ui modulo mi in Rmi. We claim that we may take ci= �i ui.
Indeed, for x=(c1 a1+ ���+ c` a`) remM and any i2f1; :::; `g, we have

x � a1�1u1+ ���+ a`�`u` (modmi)

Since �j is divisible by mi for all j=/ i, this congruence relation simpli�es into

x � ai �i ui � ai (modmi):

This proves our claim and the theorem. �

Notation. We call c1; :::; c` the cofactors for m1; :::; m` in M and also denote
these numbers by cm1;M = c1; :::; cm`;M = c`.

2.2 Modular arithmetic

For practical computations, the moduli mi are usually chosen such that they �t
into single machine words. Let � denote the bitsize of a machine word, so that
we typically have �= 32 or �= 64. It depends on speci�cs of the processor how
basic arithmetic operations modulo mi can be implemented most e�ciently.

For instance, some processors have instructions for multiplying two �-bit
integers and return the exact (2 �)-bit product. If not, then we rather have
to assume that the moduli mi �t into �/2 instead of � bits, or replace � by
�/2. Some processors do not provide e�cient integer arithmetic at all. In that
case, one might rather wish to rely on �oating point arithmetic and take �= 52
(assuming that we have hardware support for double precision). For �oating
point arithmetic it also matters whether the processor o�ers a �fused-multiply-
add� (FMA) instruction; this essentially provides us with an e�cient way to
multiply two �-bit integers exactly using �oating point arithmetic.

It is also recommended to choose moduli mi that �t into slightly less than
� bits whenever possible. Such extra bits can be used to signi�cantly accelerate
implementations of modular arithmetic. For a more detailed survey of practically
e�cient algorithms for modular arithmetic, we refer to [12].

2.3 Naive multi-modular reduction and reconstruction

Let m1; :::; m`, M =m1 ���m`, a1 2Rm1; :::; a` 2Rm` and x 2 RM be as in the
Chinese remainder theorem. We will refer to the computation of a1; :::; a` as a
function of x as the problem of multi-modular reduction. The inverse problem
is called multi-modular reconstruction . In what follows, we assume that m1; :::;
m` have been �xed once and for all.
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The simplest way to perform multi-modular reduction is to simply take

ai := x remmi (i=1; :::; `): (1)

Inversely, the Chinese remainder theorem provides us with a formula for multi-
modular reconstruction:

x := (cm1;M a1+ ���+ cm`;M a`) remM: (2)

Since m1; :::; m` are fixed, the computation of the cofactors cm1;M can be
regarded as a precomputation.

Assume that our hardware provides an instruction for the exact multipli-
cation of two integers that �t into a machine word. If mi �ts into a machine
word, then so does the remainder ai= x remmi. Cutting cmi;M into ` machine
words, it follows that the product cmi;M ai can be computed using ` hardware
products and ` hardware additions. Inversely, the Euclidean division of an `-
word integer x by mi can be done using 2 `+O(1) multiplications and 2 `+O(1)
additions/subtractions: we essentially have to multiply the quotient by mi and
subtract the result from x; each next word of the quotient is obtained through
a one word multiplication with an approximate inverse of mi.

The above analysis shows that the naive algorithm for multi-modular reduc-
tion of x modulo m1; :::;m` requires 2 `2 + O(`) hardware multiplications and
2 `2 + O(`) additions. The multi-modular reconstruction of x rem M can be
done using only `2 + O(`) multiplications and `2 + O(`) additions. Depending
on the hardware, the moduli mi, and the way we implement things, O(`2) more
operations may be required for the carry handling�but it is beyond the scope
of this paper to go into this level of detail.

3 Gentle moduli

3.1 The naive algorithms revisited for special moduli

Let us now reconsider the naive algorithms from section 2.3, but in the case when
the moduli m1; :::;m` are all close to a speci�c power of two. More precisely, we
assume that

mi = 2sw+ �i (i=1; :::; `); (3)

where j�ij 6 2w¡1 and s > 2 a small number. As usual, we assume that the
mi are pairwise coprime and we let M = m1 ��� m`. We also assume that w is
slightly smaller than � and that we have a hardware instruction for the exact
multiplication of �-bit integers.
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For moduli mi as in (3), the naive algorithm for the Euclidean division of
a number x2R2`sw bymi becomes particularly simple and essentially boils down
to the multiplication of �i with the quotient of this division. In other words, the
remainder can be computed using �` s hardware multiplications. In comparison,
the algorithm from section 2.3 requires �2 ` s2 multiplication when applied
to (s w)-bit (instead of w-bit) integers. More generally, the computation of `
remainders a1= x remm1; :::; a`= x remm` can be done using �`2 s instead of
�2 `2 s2 multiplications. This leads to a potential gain of a factor 2 s, although
the remainders are (s w)-bit integers instead of w-bit integers, for the time being.

Multi-modular reconstruction can also be done faster, as follows, using sim-
ilar techniques as in [1, 5]. Let x2RM. Besides the usual binary representation of
x and the multi-modular representation (a1; :::; a`)= (x remm1; :::; x remm`), it
is also possible to use the mixed radix representation (or Newton representation)

x = b1+ b2m1+ b3m1m2+ ���+ b`m1 ���m`¡1;

where bi 2 Rmi. Let us now show how to obtain (b1; :::; b`) e�ciently from
(a1; :::; a`). Since x remm1= b1= a1, we must take b1= a1. Assume that b1; :::;
bi¡1 have been computed. For j= i¡ 1; :::; 1 we next compute

uj;i = (bj+ bj+1mj+ ���+ bi¡1mj ���mi¡2) remmi

using ui¡1;i= bi¡1 and

uj;i = (bj+uj+1;imj) remmi

= (bj+uj+1;i � (�j¡ �i)) remmi (j= i¡ 2; :::; 1):

Notice that ui¡1;i; :::; u1;i can be computed using (i ¡ 1) (s + 1) hardware
multiplications. We have

x remmi = (u1;i+ bim1 ���mi¡1) remmi = ai:

Now the inverse vi of m1 ���mi¡1 modulo mi can be precomputed. We �nally
compute

bi = vi (ai¡u1;i) remmi;

which requires s2+O(s) multiplications. For small values of i, we notice that
it may be faster to divide successively by m1; :::; mi¡1 modulo mi instead of
multiplying with vi. In total, the computation of the mixed radix representation
(b1; :::; b`) can be done using

�
`
2

�
(s+ 1) + ` s2+O(` s) multiplications. Having

computed the mixed radix representation, we next compute

xi = bi+ bi+1mi+ ���+ b`mi ���m`¡1
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for i= `; :::; 1, using the recurrence relation

xi = bi+xi+1mi:

Since xi+1 2R2(`¡i)sw, the computation of xi requires (`¡ i) s multiplications.
Altogether, the computation of x = x1 from (a1; :::; a`) can therefore be done
using

�
`
2

�
(2 s+1)+ ` s2� ` s (`+ s) hardware multiplications.

3.2 Combining special moduli into gentle moduli

For practical applications, we usually wish to work with moduli that �t into one
word (instead of s words). With the mi as in the previous subsection, this means
that we need to impose the further requirement that each modulus mi can be
factored

mi = mi;1 ���mi;s;

with mi;1; :::;mi;s<2
�. If this is possible, then the mi are called s-gentle moduli .

For given bitsizes w and s>2, the main questions are now: do such moduli indeed
exist? If so, then how to �nd them?

If s=2, then it is easy to construct s-gentle moduli mi=22w+ �i by taking
�i=¡"i2, where 06 "i< 2(w¡1)/2 is odd. Indeed,

22w¡ "i2 = (2w+ "i) (2
w¡ "i)

and gcd(2w+ "i; 2w¡ "i) = gcd(2w+ "i; 2 "i) = gcd(2w+ "i; "i) = gcd(2w; "i) = 1.
Unfortunately, this trick does not generalize to higher values s > 3. Indeed,
consider a product

(2w+ �1) ��� (2w+ �s) = 2sw+(�1+ ���+ �s) 2
(s¡1)w+

((�1+ ���+ �s)
2¡ (�12+ ���+ �s

2)) 2(s¡2)w¡1+ ���;

where �1; :::; �s are small compared to 2w. If the coe�cient �1+ ���+ �s of 2(s¡1)w

vanishes, then the coe�cient of 2(s¡2)w¡1 becomes the opposite ¡(�12+ ���+ �s
2)

of a sum of squares. In particular, both coe�cients cannot vanish simultaneously,
unless �1= ���= �s=0.

If s> 2, then we are left with the option to search s-gentle moduli by brute
force. As long as s is �reasonably small� (say s6 8), the probability to hit an s-
gentle modulus for a randomly chosen �i often remains signi�cantly larger than
2¡w. We may then use sieving to �nd such moduli. By what precedes, it is
also desirable to systematically take �i=¡"i2 for 06 "i< 2(w¡1)/2. This has the
additional bene�t that we �only� have to consider 2(w¡1)/2 possibilities for "i.
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We will discuss sieving in more detail in the next section. Assuming that we
indeed have found s-gentle moduli m1; :::; m`, we may use the naive algorithms
from section 2.3 to compute (x remmi;1; :::; x remmi;s) from x remmi and vice
versa for i=1; :::; `. Given x remmi for all i=1; :::; `, this allows us to compute
all remainders x remmi;j using 2 ` s2+O(` s) hardware multiplications, whereas
the opposite conversion only requires ` s2+O(` s) multiplications. Altogether,
we may thus obtain the remainders x remmi;j from xremM and vice versa using
�` s (`+2 s) multiplications.

4 The gentle modulus hunt

4.1 The sieving procedure

We implemented a sieving procedure in Mathemagix [11] that uses the Mpari
package with an interface to Pari-GP [15]. Given parameters s; w; w 0 and �,
the goal of our procedure is to �nd s-gentle moduli of the form

M = (2sw/2+ ") (2sw/2¡ ") = m1 ���ms

with the constraints that

mi < 2w
0

gcd(mi; 2
�!) = 1;

for i=1; :::; s, and m16 ���6ms. The parameter s is small and even. One should
interpret w and w 0 as the intended and maximal bitsize of the small moduli mi.
The parameter � stands for the minimal bitsize of a prime factor of mi. The
parameter " should be such that 4 "2 �ts into a machine word.

In Table 1 below we have shown some experimental results for this sieving
procedure in the case when s= 6, w= 22, w 0= 25 and �= 4. For " < 1000000,
the table provides us with ", the moduli m1; :::; ms, as well as the smallest
prime power factors of the product M . Many hits admit small prime factors,
which increases the risk that di�erent hits are not coprime. For instance, the
number 17 divides both 2132¡3113852 and 2132¡3765632, whence these 6-gentle
moduli cannot be selected simultaneously (except if one is ready to sacri�ce
a few bits by working modulo lcm(2132 ¡ 3113852; 2132 ¡ 3765632) instead of
(2132¡ 3113852) � (2132¡ 3765632)).

In the case when we use multi-modular arithmetic for computations with
rational numbers instead of integers (see [9, section 5 and, more particularly,
section 5.10]), then small prime factors should completely be prohibited, since
they increase the probability of divisions by zero. For such applications, it is
therefore desirable that m1; :::; ms are all prime. In our table, this occurs for
"= 57267 (we indicated this by highlighting the list of prime factors of M).
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In order to make multi-modular reduction and reconstruction as e�cient as
possible, a desirable property of the modulimi is that they either divide 2sw/2¡"
or 2sw/2+". In our table, we highlighted the " for which this happens. We notice
that this is automatically the case if m1; :::; ms are all prime. If only a small
number of mi (say a single one) do not divide either 2sw/2¡ " or 2sw/2+ ", then
we remark that it should still be possible to design reasonably e�cient ad hoc
algorithms for multi-modular reduction and reconstruction.

Another desirable property of the moduli m1 6 ��� 6 ms is that ms is as
small as possible: the spare bits can for instance be used to speed up matrix
multiplication modulo ms. Notice however that one �occasional� large modulus
ms only impacts on one out of s modular matrix products; this alleviates the
negative impact of such moduli. We refer to section 4.3 below for more details.

For actual applications, one should select gentle moduli that combine all
desirable properties mentioned above. If not enough such moduli can be found,
then it it depends on the application which criteria are most important and
which ones can be released.

" m1 m2 m3 m4 m5 m6 p1
�1; p2

�2; :::

27657 28867 4365919 6343559 13248371 20526577 25042063 29; 41; 43;547; :::
57267 416459 1278617 2041469 6879443 25754563 28268089 416459; :::
77565 7759 8077463 8261833 18751793 19509473 28741799 59;641; :::
95253 724567 965411 3993107 4382527 19140643 23236813 43; 724567; :::
294537 190297 283729 8804561 19522819 19861189 29537129 232;151; 1879; :::
311385 145991 4440391 4888427 6812881 7796203 32346631 17; 79;131; :::
348597 114299 643619 6190673 11389121 32355397 32442427 31;277; :::
376563 175897 1785527 2715133 7047419 30030061 30168739 17;127; 1471; :::
462165 39841 3746641 7550339 13195943 18119681 20203643 67;641;907; :::
559713 353201 873023 2595031 11217163 18624077 32569529 19;59;14797; :::
649485 21727 1186571 14199517 15248119 31033397 31430173 19;109;227; :::
656997 233341 1523807 5654437 8563679 17566069 18001723 79;89;63533; :::
735753 115151 923207 3040187 23655187 26289379 27088541 53;17419; :::
801687 873767 1136111 3245041 7357871 8826871 26023391 23; 383777; :::
826863 187177 943099 6839467 11439319 12923753 30502721 73;157; 6007; :::
862143 15373 3115219 11890829 18563267 19622017 26248351 31; 83;157; :::
877623 514649 654749 4034687 4276583 27931549 33525223 41;98407; :::
892455 91453 2660297 3448999 12237457 21065299 25169783 29;397; 2141; :::

Table 1. List of 6-gentle moduli for w= 22, w0= 25, �=4 and " < 1000000.

4.2 In�uence of the parameters s, w and w0

Ideally speaking, we want s to be as large as possible. Furthermore, in order to
waste as few bits as possible, w 0 should be close to the word size (or half of it)
and w 0 ¡ w should be minimized. When using double precision �oating point
arithmetic, this means that we wish to take w 02f24;25;26;50;51;52g. Whenever
we have e�cient hardware support for integer arithmetic, then we might prefer
w2f30; 31; 32; 62; 63; 64g.

The gentle modulus hunt 9



Let us start by studying the in�uence of w 0 ¡ w on the number of hits. In
Table 2, we have increased w by one with respect to Table 1. This results in an
approximate 5% increase of the �capacity� s w of the modulus M . On the one
hand, we observe that the hit rate of the sieve procedure roughly decreases by a
factor of thirty. On the other hand, we notice that the rare gentle moduli that
we do �nd are often of high quality (on four occasions the moduli m1; :::;ms are
all prime in Table 2).

" m1 m2 m3 m4 m5 m6 p1
�1; p2

�2; :::
936465 543889 4920329 12408421 15115957 24645539 28167253 19;59; 417721; :::
2475879 867689 4051001 11023091 13219163 24046943 28290833 867689; :::
3205689 110161 12290741 16762897 22976783 25740731 25958183 59; 79; 509; :::
3932205 4244431 5180213 5474789 8058377 14140817 25402873 4244431; :::
5665359 241739 5084221 18693097 21474613 23893447 29558531 31; 41; 137; :::
5998191 30971 21307063 21919111 22953967 31415123 33407281 101;911; 941; :::
6762459 3905819 5996041 7513223 7911173 8584189 29160587 43;137;90833; :::
9245919 2749717 4002833 8274689 9800633 15046937 25943587 2749717; :::
9655335 119809 9512309 20179259 21664469 22954369 30468101 17; 89; 149; :::
12356475 1842887 2720359 7216357 13607779 23538769 30069449 1842887; :::
15257781 1012619 5408467 9547273 11431841 20472121 28474807 31; 660391; :::

Table 2. List of 6-gentle moduli for w= 23, w0= 25, �=4 and " < 16000000.

Without surprise, the hit rate also sharply decreases if we attempt to increase
s. The results for s=8 and w= 22 are shown in Table 3. A further infortunate
side e�ect is that the quality of the gentle moduli that we do �nd also decreases.
Indeed, on the one hand, M tends to systematically admit at least one small
prime factor. On the other hand, it is rarely the case that each mi divides either
2sw/2¡ " or 2sw/2+ " (this might nevertheless happen for other recombinations
of the prime factors of M , but only modulo a further increase of ms).

" m1 m2 m3 m4 m5 m6 m7 m8 p1
�1; p2

�2; :::

889305 50551 1146547 4312709 5888899 14533283 16044143 16257529 17164793 17; 31; 31; 59; :::
2447427 53407 689303 3666613 4837253 7944481 21607589 25976179 32897273 31; 61; 103; :::
2674557 109841 1843447 2624971 5653049 7030883 8334373 18557837 29313433 103; 223; 659; :::
3964365 10501 2464403 6335801 9625841 10329269 13186219 17436197 25553771 23; 163; 607; :::
4237383 10859 3248809 5940709 6557599 9566959 11249039 22707323 28518509 23; 163; 1709; :::
5312763 517877 616529 879169 4689089 9034687 11849077 24539909 27699229 43; 616529; :::
6785367 22013 1408219 4466089 7867589 9176941 12150997 26724877 29507689 23; 41; 197; :::
7929033 30781 730859 4756351 9404807 13807231 15433939 19766077 22596193 31; 307; 503; :::
8168565 10667 3133103 3245621 6663029 15270019 18957559 20791819 22018021 43; 409; 467; :::
8186205 41047 2122039 2410867 6611533 9515951 14582849 16507739 30115277 23; 167; 251; :::

Table 3. List of 8-gentle moduli for w= 22, w0= 25, �=4 and " < 10000000.

An increase of w 0 while maintaining s and w 0 ¡ w �xed also results in a
decrease of the hit rate. Nevertheless, when going from w 0= 25 (�oating point
arithmetic) to w 0= 31 (integer arithmetic), this is counterbalanced by the fact
that " can also be taken larger (namely " < 2w

0
); see Table 4 for a concrete

example. When doubling w and w 0 while keeping the same upper bound for ",
the hit rate remains more or less unchanged, but the rate of high quality hits
tends to decrease somewhat: see Table 5.
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It should be possible to analyze the hit rate as a function of the parameters
s, w, w 0 and � from a probabilistic point of view, using the idea that a random
number n is prime with probability (logn)¡1. However, from a practical perspec-
tive, the priority is to focus on the case when w 06 64. For the most signi�cant
choices of parameters � < w < w 0 6 64 and s, it should be possible to compile
full tables of s-gentle moduli. Unfortunately, our current implementation is
still somewhat ine�cient for w 0>32. A helpful feature for upcoming versions of
Pari would be a function to �nd all prime factors of an integer below a speci�ed
maximum 2w

0
(the current version only does this for prime factors that can be

tabulated).

" m1 m2 m3 m4 m5 m6 p1
�1; p2

�2; :::

303513 42947057 53568313 331496959 382981453 1089261409 1176003149 292; 1480933; :::
851463 10195123 213437143 470595299 522887483 692654273 1008798563 17; 41; 67; :::

1001373 307261 611187931 936166801 1137875633 1196117147 1563634747 47; 151; :::
1422507 3950603 349507391 490215667 684876553 693342113 1164052193 29; 211; 349; :::
1446963 7068563 94667021 313871791 877885639 1009764377 2009551553 23; 71; 241; :::
1551267 303551 383417351 610444753 1178193077 2101890797 2126487631 29; 43; 2293; :::
1555365 16360997 65165071 369550981 507979403 1067200639 1751653069 17; 23; 67; :::

4003545 20601941 144707873 203956547 624375041 655374931 1503716491 47; 67; :::
4325475 11677753 139113383 210843443 659463289 936654347 1768402001 19; 41; :::
4702665 8221903 131321017 296701997 496437899 1485084431 1584149417 8221903; :::
5231445 25265791 49122743 433700843 474825677 907918279 1612324823 17; 1486223; :::
5425527 37197571 145692101 250849363 291039937 456174539 2072965393 37197571; :::
6883797 97798097 124868683 180349291 234776683 842430863 858917923 97798097; :::
7989543 4833137 50181011 604045619 638131951 1986024421 2015143349 23; 367; :::

Table 4. List of 6-gentle moduli forw=28,w 0=31, �=4 and "<1600000. Followed by
some of the next gentle moduli for which eachmi divides either 2sw/2¡� or 2sw/2+�.

" m1 m2 ��� m5 m6 p1
�1; p2

�2; :::

15123 380344780931 774267432193 ��� 463904018985637 591951338196847 37; 47; 239; :::
34023 9053503517 13181369695139 ��� 680835893479031 723236090375863 29; 35617; :::
40617 3500059133 510738813367 ��� 824394263006533 1039946916817703 23; 61; 347; :::
87363 745270007 55797244348441 ��� 224580313861483 886387548974947 71; 9209; :::
95007 40134716987 2565724842229 ��� 130760921456911 393701833767607 19; 67; :::

101307 72633113401 12070694419543 ��� 95036720090209 183377870340761 41; 401; :::
140313 13370367761 202513228811 ��� 397041457462499 897476961701171 379; 1187; :::
193533 35210831 15416115621749 ��� 727365428298107 770048329509499 59; 79; :::

519747 34123521053 685883716741 ��� 705516472454581 836861326275781 127; 587; :::
637863 554285276371 1345202287357 ��� 344203886091451 463103013579761 79; 1979; :::
775173 322131291353 379775454593 ��� 194236314135719 1026557288284007 322131291353; :::
913113 704777248393 1413212491811 ��� 217740328855369 261977228819083 37; 163; 677; :::

1400583 21426322331 42328735049 ��� 411780268096919 626448556280293 21426322331; :::

Table 5. List of 6-gentle moduli for w=44, w 0=50, �=4 and "<200000. Followed by
some of the next gentle moduli for which eachmi divides either 2sw/2¡� or 2sw/2+�.

4.3 Application to matrix multiplication

Let us �nally return to our favourite application of multi-modular arithmetic
to the multiplication of integer matrices A;B 2Zr�r. From a practical point of
view, the second step of the algorithm from the introduction can be implemented
very e�ciently if rmi

2 �ts into the size of a word.
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When using �oating point arithmetic, this means that we should have rmi
2<

252 for all i. For large values of r, this is unrealistic; in that case, we subdivide the
r� r matrices into smaller ri�ri matrices with rimi

2<252. The fact that ri may
depend on i is very signi�cant. First of all, the larger we can take ri, the faster
we can multiply matrices modulo mi. Secondly, the mi in the tables from the
previous sections often vary in bitsize. It frequently happens that we may take
all ri large except for the last modulus m`. The fact that matrix multiplications
modulo the worst modulus m` are somewhat slower is compensated by the fact
that they only account for one out of every ` modular matrix products.

Several of the tables in the previous subsections were made with the applica-
tion to integer matrix multiplication in mind. Consider for instance the modulus
M = m1 ��� m6 = 2132 ¡ 6569972 from Table 1. When using �oating point
arithmetic, we obtain r16 82713, r26 1939, r36 140, r46 61, r56 14 and r66
13. Clearly, there is a trade-o� between the e�ciency of the modular matrix
multiplications (high values of ri are better) and the bitsize �` w of M (larger
capacities are better).
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