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Abstract

In this paper, we will present several algorithms for computing with D-algebraic power
series. Such power series are specified by one or more algebraic differential equations
and a sufficient number of initial conditions. The emphasis is not on the efficient
computation of coefficients of such power series (various techniques are known for
that), but rather on the ability to decide whether expressions involving D-algebraic
power series are zero. We will both consider univariate and multivariate series and,
besides the usual ring operations and differentiation, we will also consider composi-
tion, implicitly determined power series and monomial transformations.
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1 Introduction

General introduction

Let K be a field of characteristic zero. A power series f 2K[[z]] is said to be D-algebraic
if it satisfies a non-trivial differential equation P (f(z); f 0(z); :::; f (r)(z)) = 0, where P is
a polynomial with coefficients in K. The set of D-algebraic power series contains many
classical transcendental functions, such as exp z, log z, }(z), etc., and it is closed under
the ring operations, restricted division, differentiation and composition. This makes the
differential ring of D-algebraic power series suitable as a framework for exact computations
with mathematical expressions that involve transcendental functions.

The notion of D-algebraic power series has a straightforward generalization to the multi-
variate context. In this case, we require the satisfaction of a non-trivial algebraic differential
equation with respect to each of the partial derivatives. The multivariate context allows
for some additional operations, such as the resolution of implicit power series equations
and general monomial transformations with rational powers. Again, the set of D-algebraic
power series is stable under such operations.

There are two main aspects about computations with formal power series. On the one
hand, we need fast algorithms for the computation of coefficients. There is an important
literature on this subject and the asymptotically fastest methods either rely on Newton's
method [2, 1, 9] or on relaxed power series evaluation [8, 6, 10].

�. This work has been supported by the ANR-10-BLAN 0109 LEDA project.
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On the other hand, there is the problem of deciding whether a given power series is
zero. This problem is hard in the sense that we need to check the cancellation of an infinite
number of coefficients. Therefore, a related question is how to represent power series in
such a way that we can design such zero tests. We also notice the asymmetric aspect of
the problem: given a non-zero series f , it is usually easy to prove that f =/ 0: it suffices to
compute a non-zero coefficient. However, if f vanishes, then it is potentially difficult to
establish a formal proof of this fact.

In this paper, we will focus on the second aspect. We will consider various representa-
tions for D-algebraic power series, show how to perform common operations on power series
when using these representations, and also present several zero tests. All representations
are based on a combination of differential equations satisfied by the power series and
initial conditions. However, depending on additional properties of these equations, some
representations are more suitable for performing common operations and zero testing.

For global computations with algebraic differential equations, it is convenient to use the
classical framework of differential algebra [17, 14]. In addition, we need some technology in
order to deal with initial conditions. One key ingredient is the determination of the number
of initial conditions which are needed in order to guarantee that a power series solution of
a system of differential equations is unique. For this, we will use a similar technique as the
one introduced by Denef and Lipshitz in [4, 5], and develop this technique in further detail.

Structure of the paper and main results

Apart from a first section 2 with some reminders from differential algebra, the paper
is subdivided into three main parts. In section 3, we first focus on the univariate case
and the representation of a D-algebraic series f by a single differential polynomial that
annihilates f together with a sufficient number of initial conditions. In section 4, we
remain in the univariate setting, but switch to more flexible representations of D-algebraic
series as solutions to systems of algebraic differential equations with sufficiently many
initial conditions. In section 5, we generalize our results to the multivariate setting and
also consider the additional operations of solving implicit equations, composition, and
monomial transformations.

In section 3, we effectively represent D-algebraic power series by a pair (f ; P ), where
f 2K[[z]] is a computable power series (meaning that the function n 7! fn is computable)
and a non-zero differential polynomial P 2KfF g such that P (f)=0. Specializing a more
general result from [4, 5], we will show how to compute a number � 2 N (called a root
separation bound for P at f) with the property that the equation P (g) = 0 has no other
solutions g with v(g ¡ f)> � (where v denotes the usual valuation in z). Moreover, if f
is a �non-degenerate root� of P (in the sense that SP(f) =/ 0, where SP is a simpler non-
zero differential polynomial, called the separant of P ), then we actually obtain an explicit
recurrence relation for fn in terms of f0; :::; fn¡1 for n>�.

In section 3.3, we will exploit the existence of such a recurrence relation in the non-
degenerate case, by giving a first zero test for series in the differential field K hf i generated
by f . We will next strengthen the root separation bound by not only looking for other
solutions of P (g) = 0 in K[[z]], but also in K[log z][[z]]. In section 3.4, this allows us to
simplify the zero test (along similar lines as in [7]) and also widen its scope to power series
that depend on a finite number of parameters (Remark 9). We finally consider the case
when f is ill specified as a degenerate root of P . In sections 3.5 and 3.6, we give algorithms
for computing root separation bounds in this case, as well as non-degenerate annihilators.

2 Section 1



In principle, annihilators of complex D-algebraic series (such as large expressions in
other D-algebraic series) can be computed using brute force (Proposition 13). However,
this technique is, in general, very inefficient. For this reason, we introduce the more flexible
framework of D-domains in section 4. In this framework, we express D-algebraic series
as rational functions in a finite number of D-algebraic series that satisfy a special kind of
system of algebraic differential equations with initial conditions. We show how to adopt
the major results from section 3 to this setting.

In section 5, we turn our attention to multivariate D-algebraic series. We will start by
showing how to interpret a multivariate D-algebraic series in K[[z1; :::; zn]] as a D-algebraic
series in zn whose coefficients are D-algebraic series in K[[z1; :::; zn¡1]]. We next generalize
the notion of a D-domain and show that the above reduction to the univariate case can be
done at the level of D-domains. We conclude by giving some algorithms for some typical
multivariate operations: the resolution of implicit equations, composition, and monomial
transformations. In each of these cases, we will show how to avoid the computation of
differential annihilators as much as possible, by remaining in the framework of multivariate
D-domains.

Comparison with previous work

There are several approaches to the zero test problem for D-algebraic power series [16,
4, 5, 13, 18, 19, 15, 12] and we refer to [7] for a brief discussion. From a logical point
of view, the most important decision problems for power series solutions to algebraic
differential equations with initial conditions were settled in [4, 5]. One essential tool in this
paper is the computation of a generalization of root separation bounds for more general
decision problems. In a sense, this paper merely consists of specializations of these results
to more specific problems. Nevertheless, we think that we introduced some noteworthy
improvements that we will point out now.

It should first be emphasized that the papers [4, 5] are based on a more general decision
procedure for testing whether systems of differential equations and inequations with initial
conditions has solutions. Efficiency is not the major concern here. The authors also do
not attempt to state their results in terms of classical differential algebra, even though
they are aware of this possibility. From our point of view, one main contribution of this
paper is to isolate the part of the problem that can be dealt with using classical differential
algebra techniques from the part where initial conditions and root separation bounds come
in (notice that [15] provides an interesting alternative way to achieve this goal). This allows
us to explicitly state our zero test algorithms, which we also believe to be more efficient
than the ones from [4, 5].

Our approach also contains a few theoretical improvements. First of all, we mainly work
over a so called �effective power series domain� A�K[[z]] instead of the constant field K.
For instance, we may take A=K h'i \K[[z]], where

'=
X
n>2

(¡1)nBn

n (n¡ 1) z
n¡1

is the differentially transcendental power series involved in the Euler-Maclaurin formula
for the ¡-function. Similarly, the conditions on the constant field K are slightly weaker:
we merely require an effective constant field K with an algorithm for the computation of
all positive integer roots of univariate polynomials with coefficients in K. The improved
zero test from section 3.4 also allows for power series that depend on parameters.
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These theoretical improvements were actually introduced in [7], but the current presen-
tation is simpler and more systematic. In particular, we only need to consider logarithmic
power series instead of logarithmic transseries in the correctness proof of the improved zero
test from section 3.4. Furthermore, we included algorithms for the computation of non-
degenerate annihilators and root separation bounds in the degenerate case.

Section 4 contains no theoretical improvements, but we expect the more flexible frame-
work of D-domains to be most suitable for practical computations. It is interesting to see
that the root separation bounds and both zero tests from section 3 can be generalized to
this setting. In particular, for the computation of root separation bounds, we introduce
the dominant Hermite normal form, which seems interesting in its own right.

As we show in section 5, a multivariate D-algebraic series in K[[z1; :::; zn]] can always
be regarded as a D-algebraic series in zn whose coefficients are D-algebraic series in
K[[z1; :::; zn¡1]]. From the logical point of view, decision problems for such series there-
fore reduce to their univariate counterparts. However, there are a few additional operations,
such as solving implicit equations, extraction of coefficients and monomial transforma-
tions. Not only do we present algorithms for carrying out such operations, but we also
discuss ways to make this efficient, in the framework of multivariate D-domains.

2 Reminders from differential algebra

2.1 Ritt reduction
Let us recall some standard notations from differential algebra. Let K be a field of charac-
teristic zero and let A be a differential K-algebra that is also an integral domain. We will
mainly work with respect to a single derivation �. Given a finite number of indeterminates
F1; :::; Fk, we will denote by AfF1; :::; Fkg or simply by AfF g the differential ring of
differential polynomials in F1; :::; Fk and by AhF1; :::; Fki or AhF i its fraction field.

We will assume an admissible ranking 4 on the set V = f�j Fi : i 2 f1; :::; kg; j 2Ng.
For instance, we may take �j Fi4 �j

0
Fi0 whenever j < j 0 or j = j 0 and i < i0. Given such

a ranking, the leader of a differential polynomial P 2 AfF g n A is the highest variable
�jFi occurring in P when P is considered as a polynomial in V . We will denote by `P the
leader of P . Considering P as a polynomial in P̀ , the leading coefficient IP is called the
initial of P , SP =@P /@ P̀ the separant, and we will denote HP = IPSP . If P has degree d
in `P , then the pair rankP := (`P ; d) is called the Ritt rank of P and such pairs are ordered
lexicographically. We will also denote P̀

� =`Pd in that case. It is convenient to further extend
the definition by setting rankP :=¡1 for polynomials P 2A.

Given P ; Q1; :::; Ql2AfF g nA, we say that P is reducible with respect to Q1; :::; Ql if
there exists an i such that `P 2 �Nnf0g `Qi or `= P̀ = `Qi and deg`P >deg`Qi. The process
of Ritt reduction provides us with a relation of the form

IQ1
�1 ��� IQl

�l SQ1
�1 ���SQl

�l P = �1Q1+ ���+�kQk+R;

where �1; :::;�l; �1; :::; �l2N, �1; :::;�k2AfF g[�], R2AfF g and where R is reduced with
respect to Q1; :::; Ql. We will denote R=P remQ=P rem (Q1; :::; Ql).

Given Q1; :::; Ql2AfF g, we recall that [Q]= [Q1; :::; Ql]=A[�]Q1+ ���+A[�]Ql stands
for the differential ideal generated by Q1; :::; Ql. If Q1; :::; Ql 2 AfF g n A, then we also
denote HQ=HQ1 ���HQl and recall that

[Q] :HQ
1 = fP 2AfF g :9n2N; HQ

n P 2 [Q]g
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forms a differential ideal. We say that Q1; :::; Ql forms an autoreduced sequence if Qi Ritt
reduces to itself with respect to Q1; :::; Qi¡1; Qi; :::; Ql for each i. In that case the set of
differential polynomials that reduce to zero with respect to Q1; :::; Ql coincides with the
differential ideal [Q] :HQ

1.
In section 5, we will also consider differential rings and differential polynomials with

respect to a finite number of pairwise commuting derivations �1; :::; �n. In that case, V has
to be replaced with the set of all expressions �1

j1 ��� �n
jnFi with i2f1; :::; kg and j1; :::; jn2N.

The notion of admissible rankings and Ritt reduction can be extended to this setting and
we refer to classical textbooks on differential algebra [17, 14] for more details.

2.2 Decompositions of differential polynomials
In order to explicitly write down a differential polynomial P 2AfF g, it is convenient to
use vector notation. We will index differential monomials by vectors i= (i1; :::; ik) where
each ij is itself a finite sequence ij=(ij ;0; :::; ij ;rj) that may be padded with zeros whenever
necessary. We denote

�iF =
Y
p;q

(�qFp)ip;q;

after which we may write

P =
X
i

Pi �
iF ;

with Pi2A. For a fixed degree d2N, it will be convenient to denote by Pd the homogeneous
component of P of degree d:

Pd =
X
jij=d

Pi �
iF

jij =
X
p;q

ip;q:

The largest d with Pd =/ 0 will be called the degree of P and we will denote it by deg P .
The smallest d with Pd=/ 0 will be called the differential valuation of P and we denote it by
valP . It will also be convenient to denote P<d=P0+ ���+Pd¡1 and P>d=Pd+1+ ���+PdegP .

2.3 Additive conjugation
Given a differential polynomial P 2 AfF g and a �point� f = (f1; :::; fk) 2 Ak, it is often
convenient to consider the additive conjugate of P by f , which is defined to be the unique
differential polynomial P+f 2AfF g with

P+f(")=P (f + ")

for all " 2 Ak. The coefficients P+f ;i= (P+f)i of P+f can be expressed directly by using
a Taylor series expansion:

P+f ;i = 1

i!
P (i)(f)

P (i) = @jijPQ
p;q (@(�

qFp))ip;q

i! =
Y
p;q

ip;q!:

In particular, we get Pi= i!¡1P (i)(0).
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2.4 Differential polynomials with power series coefficients
Assume now thatA�K[[z]] and �=z @ /@z. Given f 2A, we will denote by v(f)2N[f1g
its valuation in z. This valuation naturally extends to differential polynomials in AfF g
via the inclusion K[[z]]fF g�KfF g[[z]]. Notice that v should not be confused with val.

Assume now that k= 1 and let P 2A[F ; :::; �r F ] n f0g be a homogeneous differential
polynomial in a single variable of degree d. Then we will denote by JP 2K[N ] the poly-
nomial with

JP(n) =
X
i

(Pi)v(P )nkik

kik = i1+2 i2+ ���+ r ir:

For any series f 2K[[z]], we then have

P (f)v(P )+dv(f) = JP(v(f)) fv(f)
d :

We will also denote by ZP the largest root of P in N, while taking ZP =¡1 if no such root
exists. We define ZP :=1 whenever JP =0. If d=1 and P =/ 0, then we necessarily have
JP =/ 0 and JP 2N[f¡1g. If d> 1, then we note that JP =0 for P =F �2F ¡ (�F )2.

2.5 Logarithmic power series
For some purposes, we will occasionally consider logarithmic power series f 2K[log z][[z]].
Such series can still be considered as power series f = f0+ f1 z+ ��� in z and we will still
denote by v(f) the valuation of f in z. The coefficients fi are polynomials in K[log z], and
we will write fi= fi;degfi (log z)

degfi+ ���+ fi;0. Notice that � maps K[log z] zi into itself
for each i.

Proposition 1. Consider a non-zero linear differential operator L 2 K[�] and write
L = Lr �

r + ��� + Ls �
s with Lr =/ 0 and Ls =/ 0. Then there exists a unique operator

L¡1:K[log z]!K[log z] (log z)s with LL¡1 g= g for every g 2K[log z].

Proof. Let us first prove the existence of L¡1. If s=0, then we may write L=L0(1¡R)
with R2K[�] �, and the equation Lf = g has the solution

f = (1+R+R2+ ���) g

L0
;

since degR(h)< deg h for every h 2K[log z]. For general L, we may write L=L~ �s with
L~0=/ 0 and take L¡1 g= �¡sL~¡1 g with

�¡s
�X

i

hi (log z)i
�

=
X
i

hi+s
(i+ s) ��� (i+1)

(log z)i+s:

This proves the existence of L¡1. For any f 2K[log z] of degree d>s in log z, we also note
that (Lf)d¡s= d ��� (d¡ (s¡ 1))Ls fd=/ 0. This implies the uniqueness of L¡1. �

3 D-algebraic power series

3.1 Univariate D-algebraic power series
Let K be a field. Let A � K[[z]] be a differential K-subalgebra of K[[z]] for � with the
property that for all f 2A and g 2A n f0g such that f /g 2K[[z]], we have f /g 2A. We
will also call A a power series domain.
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A series f 2K[[z]] is said to be D-algebraic over A if it satisfies a non-trivial differential
equation P (f)=0 with P 2AfF gnA. In positive characteristic p>0, any series f 2K[[z]]
satisfies the linear differential equation

[� (�¡ 1) ��� (�¡ (p¡ 1))](f) = 0;

whence any series is D-algebraic (indeed, � ¡ i annihilates all series in zi K[[zp]]). From
now on, we will therefore assume that K has characteristic zero.

Proposition 2. The series f 2K[[z]] is D-algebraic if and only if Aff g has finite tran-
scendence degree over A.

Proof. Assuming that f 2K[[z]] is D-algebraic over A, pick P 2AfF gnA of minimal Ritt
rank (�rF ; d) with P (f) = 0. Then SP(f) =/ 0 and B =A[f ; :::; �r¡1 f ; SP(f)¡1] is stable
under the derivation �, whence Aff g=�B and trdegAAff g6 r + 1. Conversely, assume
that trdegAAff g= r. Then f ; :::; �(r) f satisfy a non-trivial algebraic relation, whence f
is D-algebraic. �

Proposition 3. The set Adalg of D-algebraic series over A forms a power series domain.

Proof. Let f ; g 2 Adalg. Then Aff + gg � Aff g + Afgg, whence trdegA Aff + gg 6
trdegA Aff g + trdegA Afgg <1 and f + g 2 Adalg. Similarly, Aff gg � Aff g Afgg,
whence trdegA Aff gg 6 trdegA Aff g + trdegA Afgg < 1 and f g 2 Adalg. Clearly,
Af�f g�Aff g, so trdegAAf�f g6trdegAAff g and �f 2Adalg. Assume finally that f / g2
K[[z]]. Then Aff / gg � (Aff g Afgg)[g¡1], whence trdegA Aff / gg 6 trdegA Aff g +
trdegAAfgg+1<1, so that f /g 2Adalg. �

Assume now that A is an effective power series domain. The most obvious way to
effectively represent a D-algebraic power series in Adalg is to represent it by a pair (f ; P )
where f is a computable series and P 2AfF g nA a non-trivial annihilator with P (f)=0.
We define the multiplicity of P as an annihilator of f to be valP+f. We also say that the
annihilator P is non-degenerate if SP(f) =/ 0, and notice that the multiplicity of a non-
degenerate annihilator is one. In order to make Proposition 3 effective, we will need a way
to compute a non-degenerate annihilator as a function of an arbitrary annihilator. This is
not completely immediate, and we will postpone the presentation of an algorithm for doing
so to the end of this section.

3.2 Root separation bounds
Let f 2K[[z]] be D-algebraic over A with annihilator P 2AfF g nA. Assume that there
exists a number � 2N such that for any f~2K[[z]] with P (f~) = 0 and v(f~¡ f)> �, we
have f~= f . Then the smallest such number � will be denoted by �P ;f and we call it the
root separation of P at f (we set �P ;f =+1 if no such number exists). It corresponds to
the number of initial conditions that should be known in order to determine f in a unique
way as a root of P . In fact �P ;f 2N as soon as JP+d;valP+f =/ 0, which is in particular the
case when valP+f=1. In the next section, we will give an algorithm to compute �P ;f under
suitable assumptions.

Proposition 4. Assume that f is D-algebraic over A with annihilator P 2AfF gnA. Then
the following root separation bound holds:

�P ;f 6max
¡
v(P+f ;valP+f); ZP+f ;valP+f

�
+1: (1)
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Proof. Let d=valP+f and �d= v(P+f ;d). Given f~= f + "2K[[z]] with n= v(")<1, we
have

[P+f ;d(")]�d+dn = JP+f ;d(n) "n
d: (2)

Now assume that n>max (�d; ZP+f ;d)+1. Then

v(P+f ;>d(")) > (d+1)n > �d+ dn;

whence

[P (f~)]�d+dn = JP+f ;d(n) "n
d :

Since n>ZP+f ;d, we get JP+f ;d(n)=/ 0, which entails P (f~)=/ 0. �

The following proposition also provides us with a partial converse.

Proposition 5. Let P 2 AfF g n A and f 2 K[[z]]. Assume that SP(f) =/ 0 and that
v(P (f)) > 2 �, with � > max (v(P+f ;1); ZP+f ;1) + 1. Then there exists a unique root
f~2K[[z]] of P with v(f~¡ f)>�.

Proof. Notice that SP(f) =/ 0 implies that P+f ;1 =/ 0, so that max (v(P+f ;1); ZP+f ;1) is
finite. Let �1= v(P+f ;1)<�. We have to show the existence of a unique series "2K[[z]]
with v(")>� and P+f(")= 0. We may decompose

P+f = H¡�;
H = (P+f ;1)�1 z

�1:

Extracting the coefficient of z�1+n in the relation H(")=�(") now yields

JH(n) "n = �(")�1+n: (3)

For all n>�, we have JH(n)=/ 0 and �(")�1+n only depends on "0; :::; "n¡1. In other words,
the relation (3) actually provides us with a recurrence relation for the computation of ". �

3.3 A first effective zero test
We say that K is effective if its elements can be represented effectively and if all field
operations can be carried out by algorithms. We will call K an effective diophantine field
if all positive integer roots of polynomials over K can be determined by algorithm. In
particular, this means that K has an effective zero test, i.e. there exists an algorithm which
takes an element x of K on input and which returns true if x=0 and false otherwise.

A power series f 2 K[[z]] is said to be computable, if there exists an algorithm for
computing fn as a function of n2N. The power series domain A will said to be effective,
if its elements are all effective power series and if the differential K-algebra operations can
be carried out by algorithms. We notice that the differential K-algebra K[[z]]com of all
computable series is effective, although it does not have an effective zero test.

Assume now that we are given an effective power series domain A with an effective
zero test over an effective diophantine field K. Assume also that we are given an effective
D-algebraic power series f 2K[[z]] and an annihilator P 2AfF gnA for f . Assume finally
that the annihilator P has multiplicity one, so that we may compute v(P+f ;1) and ZP+f ;1
by expanding the power series coefficients of P+f ;1. In other words, the bound (1) from
Proposition 4 provides us with an effective upper bound for �P ;f .
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Given polynomiasl Q1; :::; Qn 2 AfF g, we will now give an algorithm ZeroTest (or
ZeroTestP ;f when we want to make the dependency on P and f explicit) for testing
whether Q1; :::; Qn simultaneously vanish at f . In particular, this will shows that the
A-algebra Ahf i \K[[z]] is again an effective power series domain.

Algorithm ZeroTest(Q1; :::; Qn)
Input: Q1; :::; Qn2AfF gnf0g, ordered by non-decreasing Ritt rank
Output: true if Q1(f)= ���=Qn(f)= 0 and false otherwise

1 If Q :=Q12A then return false
2 If ZeroTest(IQ) then return ZeroTest(IQ; Q1; :::; Qn)
3 If ZeroTest(SQ) then return ZeroTest(SQ; Q1; :::; Qn)
4 If 9J 2fQ2; :::; Qn; P g; J remQ=/ 0 then return ZeroTest(J remQ; Q1; :::; Qn)
5 Let � :=max (v(P+f ;1); ZP+f ;1; v(IQ(f)); v(SQ(f)); v(Q+f ;1); ZQ+f ;1)+1
6 Return the result of the test v(Q(f))> 2�

Proof. In steps 2, 3, and 4, the Ritt rank of the first argument of ZeroTest always strictly
decreases; this proves the termination of the algorithm. Furthermore, if one of the tests
in steps 2, 3, or 4 succeeds, then the algorithm is clearly correct. In step 1, note that we
assumed that Q1=/ 0 as an element of AfF g. So if Q12A, then Q1(f)=Q1=/ 0.

Assume now that we reach step 5. By construction, this means that HQ(f) =/ 0 and
J remQ for all J 2fQ2; :::; Qn;P g. In particular, Ritt reduction of P by Q yields a relation

IQ
j SQ

k P = U0Q+ ���+Ur �rQ; (4)

where j ; k 2N and U0; :::; Ur 2 AfF g. If v(Q(f))6 2 �, then we clearly have Q(f) =/ 0,
so assume that v(Q(f)) > 2 �. Applying Proposition 5, we obtain a unique power series
f~ 2 K[[z]] with Q(f~) = 0 and v(f~ ¡ f) > �. It follows that v(P+f~;1) = v(P+f ;1) < �,
ZP+f~;1=ZP+f ;1<�, v(IQ(f

~))=v(IQ(f))<�, and v(SQ(f~))=v(SQ(f))<�. Evaluating (4)

at f~, we obtain P (f~) = 0. Applying Proposition 4 to f~, we obtain the bound �P ;f~6 �.
Since v(f~¡ f)>�, we conclude that f~= f . From Q(f)=0, Ritt reduction of J by Q also
yields J(f)= 0 for all J 2fQ2; :::; Qng. �

Remark 6. One drawback of the above zero test is that it does not apply to power series
that depend on a finite number of parameters �1; :::; �l in K. Indeed, this would require
a root separation bound that is uniform in these parameters. Unfortunately, the largest
integer root of a simple polynomial such as N ¡ �1 can become arbitrarily large, so the
best uniform root separation bounds are usually +1.

3.4 An improved zero test
In practical applications, the series f is often the solution of a classical initial value problem,
in which case ZP+f ;1 = ¡1. One disadvantage of the zero test from section 3.3 is that
ZQ+f ;1 still depends on Q in quite an unpredictable way. In particular, even for simple Q,
this quantity might a priori become arbitrarily large. In this section, we will give an
improved version of our algorithm that does not have this drawback. The idea is to not
only consider ordinary power series solutions to our differential equations, but also log-
arithmic power series solutions in K[log z][[z]], as introduced in section 2.5.

Let f 2K[[z]] be D-algebraic over A with annihilator P 2AfF gnA. Assume that there
exists a number � 2N such that for any f~2K[log z][[z]] with P (f~)=0 and v(f~¡ f)>�,
we have f~= f . Then the smallest such number � will be denoted by �P ;f� and we call it
the strong root separation of P at f . Proposition 4 naturally strengthens to this setting:
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Proposition 7. Assume that f is D-algebraic over A with annihilator P 2AfF gnA. Then
the following strong root separation bound holds:

�P ;f
� 6max

¡
v(P+f ;valP+f); ZP+f ;valP+f

�
+1: (5)

Proof. The proof is similar to the proof of Proposition 4 with the following change. Writing
"n= "n;k (log z)k+ ���+ "n;0 with "n;k=/ 0, we now have

[P+f ;d(")]�d+dn = JP+f ;d(n) "n;k
d (log z)dk+O((log z)dk¡1) (6)

instead of (2), and where O((log z)dk¡1) stands for a polynomial of degree at most d k¡ 1
in K[log z]. �

The consideration of logarithmic solutions leads to a better bound for the existence
part of Proposition 5.

Proposition 8. Let P 2 AfF g n A and f 2 K[[z]]. Assume that SP(f) =/ 0 and that
v(P (f))> 2 �, with � > v(P+f ;1) + 1. Then there exists a root f~2K[log z][[z]] of P with
v(f~¡ f)>�.

Proof. The proof is analogous to the proof of Proposition 5, with the exception that (3)
should be replaced by

JH(�+n) "n = �(")�1+n: (7)

For all n > �, the right hand side �(")�1+n again only depends on "0; :::; "n¡1, but the
constant term L0 of the differential operator L=Lk �k+ ���+L0 := JH(�+ n)2K[�] may
vanish if JH(n)=0. Yet, Proposition 1 still implies that the equation L"n= g has a solution
in K[log z] for any g 2K[log z], which is sufficient for the existence of a solution " to the
equation P (f + ")= 0. �

In the proof of the algorithm ZeroTest, we only needed the existence of the solution
f~2K[[z]] with Q(f~)=0 and v(f~¡ f)>�. In view of what precedes, we may thus improve
the algorithm as follows:

Algorithm ZeroTest�(Q1; :::; Qn)
Input: Q1; :::; Qn2AfF gnf0g, ordered by non-decreasing Ritt rank
Output: true if Q1(f)= ���=Qn(f)= 0 and false otherwise

1 If Q :=Q12A then return false
2 If ZeroTest�(IQ) then return ZeroTest�(IQ; Q1; :::; Qn)
3 If ZeroTest�(SQ) then return ZeroTest�(SQ; Q1; :::; Qn)
4 If 9J 2fQ2; :::; Qn; P g; J remQ=/ 0 then return ZeroTest�(J remQ; Q1; :::; Qn)
5 Let � :=max (v(P+f ;1); ZP+f ;1; v(IQ(f)); v(SQ(f)); v(Q+f ;1))+ 1
6 Return the result of the test v(Q(f))> 2�

Remark 9. Recall from Remark 6 that the zero test from the previous section does not
work if P or Q depends on a finite number of parameters �1; :::; �p in K. One interesting
aspect of the improved zero test is that we no longer require any root separation bounds
which depend on Q, so the zero test still works if Q depends on parameters (when using
the technique of dynamic evaluation [3] for examining the finite number of branches that
can occur depending on algebraic conditions on the parameters). In fact, the original
equation P may also depend on parameters, as long as we have a uniform bound for ZP+f ;1.
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3.5 Effective root separation bounds

Assume that we are given an effective power series domain A with an effective zero test over
an effective diophantine field K. Assume also that we are given an effective D-algebraic
power series f 2K[[z]] and an annihilator P 2AfF g nA for f . Let us show how the zero
test algorithm from the previous section can be used in order to compute valP+f, thereby
providing an effective bound for �P ;f via Proposition 4.

Algorithm RootSeparationBound(P ; f)
Input: a computable D-algebraic series f and P 2AfF g nA with P (f)= 0
Output: an upper bound � for �P ;f .

1 Let i is an index with (P (i)(f))v(P+f)=/ 0

2 Repeat the following
3 Let d := jij and � :=max (v(P+f ;d); ZP+f ;d)+ 1

4 If d=1 then return �

5 Let j and k be indices with i= j+k, jj j= d¡ 1, jkj=1, and set Q :=P (j)

6 Let � :=max (v(Q+f ;1); ZQ+f ;1)+1

7 If v(Q(f))> 2max (�; � ) then

8 Let f~2K[[z]] be such that Q(f~)=0 and v(f~¡ f)>max (�; �)

9 If ZeroTestQ;f~(P (l) : jlj<d; P (l)=/ 0) then return �

10 Let i be an index with (P<d
(i)(f))v(P<d;+f)=/ 0

Proof. We first notice that d strictly decreases at every iteration of the main loop, which
implies the termination of our algorithm. As a loop invariant, we also notice that P (i)(f)=/ 0
(whence P+f ;d=/ 0) whenever we are at line 3, which means that we indeed have an algo-
rithm for the computation of � 2N. If d= 1, then the correctness of line 4 follows from
Proposition 4. Otherwise, we construct Q such that Q(k)(f)=P (i)(f)=/ 0 and Q+f ;1=/ 0,
whence the computability of � at line 6. If v(Q(f))> 2max (�; �) at line 7, then Propo-
sition 5 implies the existence and uniqueness of f~ at line 8, and the relation (3) actually
provides us with an algorithm to compute the coefficients of f~. Moreover Q and f~ satisfy
the assumptions for applying the algorithm ZeroTestQ;f~ to P and its derivatives at line 9.

Now if val P+f = d, then in particular Q(f) = 0 and f~ = f by the uniqueness of f~.
Consequently, the zerotests ZeroTestQ;f~(P (l)) will indeed all succeed at line 9 and we
will return a correct bound � by Proposition 4. Conversely, if ZeroTestQ;f~(P (l)) holds
for all l with jlj < d and P (l) =/ 0, then in particular P (f~) = 0. Since v(f ¡ f~) > �, we
also have v(P+f~;d) = v(P+f ;d) and ZP+f~;d = ZP+f ;d, whence f = f~ by Proposition 4 and
val P+f = val P+f~= d. If val P+f < d, then this means that we will reach line 10 and find
an index i with jij<d and P (i)(f)=/ 0. �

Remark 10. If d > 1, then it may happen that ZP+f ;d = 1, whence the algorithm
potentially returns the useless bound �61. This happens for instance in the case when
P = F �2 F ¡ (�F )2. However, in this case, f~= zn is actually a solution of P (f~) = 0 for
every n2N, so �P ;f =1 for f =0. This situation is generic: if JP+f ;d=0 for d= valP+f,
then for any n2N, there always exists a logarithmic transseries solution to P (f~)=0 with
f~¡ f=zn+o(zn); generically, we may take f~ to be a power series (in which case �P ;f=1).
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3.6 Non-degenerate annihilators

Proposition 11. There exists an algorithm which, given a computable D-algebraic series f
and P 2AfF g with P (f)=0, computes an annihilator P~2AfF g for f of multiplicity one.

Proof. Wemay use a variant of the algorithmRootSeparationBound. Indeed, it suffices
to return P instead of � in step 4, and Q instead of � in step 9. �

Proposition 12. There exists an algorithm which, given a computable D-algebraic series f
and P 2AfF g with P (f)=0, computes a non-degenerate annihilator P~2AfF g for f.

Proof. Using the previous proposition, we may assume without loss of generality that
P has multiplicity one. In particular, we have a zero test for elements in Aff g. Now let
Q := P and keep replacing Q := SQ as long as SQ(f) = 0. Then we will end up with a Q
such that Q(f)=0 and SQ(f)=/ 0. �

We are now in a position to make Proposition 3 effective. We first need a general
algorithm for computing algebraic dependencies.

Proposition 13. Let A be an effective integral domain with an effective zero test. There
exists an algorithm which takes r + 1 polynomials P0; :::; Pr 2A[G1; :::; Gr] on input, and
which produces a relation �2A[F0; :::; Fr] with �(P0; :::; Pr)= 0.

Proof. Let d = maxi deg Pi. Given n 2 N, the set of power products Pn = fP i :
i 2 Ing with In = fi 2 Nr+1 : i0 + ��� + ir 6 ng and P i = P0

i0 ��� Pr
ir contains at most�

n+ r+1
r+1

�
� nr+1 elements. The degree of any polynomial in Pn is bounded by n d, and

the space of polynomials in A[G1; :::;Gr] of degree 6d r has rank
�
n d+ r
r

�
�nr as a free A-

module. Taking n 2 N minimal such that
�
n+ r+1
r+1

�
>

�
nd+ r
r

�
, it follows that the set Pn

contains a non-trivial A-linear dependency
P

i2In�iP
i=0, which we may compute using

linear algebra. �

If f is a D-algebraic power series with non-degenerate annihilator P 2AfF g of order r,
then the A-algebra Aff g is contained in the A-algebra B=A[f ; :::; �r¡1 f ;SP(f)¡1],which
is stable under �.

Proposition 14. The set Adalg of D-algebraic series over A forms an effective power series
domain.

Proof. Let f1; f2 2 Adalg be represented by pairs (f1; P1) and (f2; P2) with P1(f1) =
P2(f2)=0. Applying Proposition 12, we may assume without loss of generality that the
annihilators P1 and P2 are non-degenerate, of orders r1 and r2. Then

B = A[f1; :::; �r1¡1 f1; SP1(f1)
¡1; f2; :::; �

r2¡1 f2; SP2(f2)
¡1]

is an effective A-algebra which is stable under �. For g2ff1+ f2; f1 f2; �f1g�B, we may
use Proposition 13 in order to compute an A-algebraic relation between g; �g; :::; �r1+r2+2 g.
Similarly, assuming that g= f1/f22B with f2=/ 0, the algebra B[1/f2] is stable under �,
so we may compute an A-algebraic relation between g; �g; :::; �r1+r2+3 g. �

Of course, the algorithm from the proof of Proposition 13 uses brute force for for
finding algebraic relations, so any algorithm that relies on this method is deemed to be
quite inefficient. In the section 4 below, we will discuss algorithms that avoid relying on
Proposition 13 for the computation with D-algebraic series.
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4 D-domains
In the algorithms from the previous sections, we essentially represent D-algebraic power
series by elements of Ahf i\K[[z]], where f 2K[[z]] is a computable root of a differential
polynomial P 2AfF gnA. SinceAhf i\K[[z]] is itself an effective power series domain with
an effective zero test, we may also form towers Ahf1i���hfli and represent D-algebraic power
series by elements of such towers. This generalization is useful for representing expressions
involving z, the K-algebra operations, and other D-algebraic operations such as exp, log,
etc. Indeed, differential polynomials that annihilate such expression can quickly become
quite large. In this section, we will introduce an even more convenient representation based
on differential algebra, which generalizes the construction of towers and provides more
flexibility for representing solutions to implicit equations at the end of section 5.5.

4.1 Definition of a D-domain
An abstract D-domain over A is a differential algebra B over A of finite transcendence
degree r over A together with a differential A-algebra morphism �:B!K[[z]] which we will
call the evaluation mapping . A second abstract D-domain B~ with evaluation mapping �~ is
said to be equivalent to B if �~ has the same image as �. Assuming that A is an effective
power series domain with an effective zero test over an effective diophantine field K, we
say that � is effective if � is computable and �(P ) is computable for each P ; in that case,
we also say that B is an effective D-domain.

A D-domain is an abstract D-domain B of the form

B = AfF1; :::; Fkg/I
I = [P1; :::; Pk] : (HP1 ���HPk)

1;

where P1; :::; Pk2AfF1; :::; Fkg are such that

�(HP1 ���HPk+ I) =/ 0;

and where the leaders of P1; :::; Pk are �r1F1; :::; �rkFk for certain r1; :::; rk2N. It will be
convenient to lift the evaluation mapping � to AfF1; :::; Fkg using �(Q)= �(Q+ I). Then
� becomes simply the evaluation mapping at f = (�(F1); :::; �(Fk)). In particular, � is
effective as soon as f is a tuple of computable power series. We will call the D-domain B
unmixed if Pi2AfFig for each i. We will call the D-domain B Pfaffian if Pi is of the form
Pi=Si �Fi¡Ri with Si; Ri2A[F1; :::; Fk] for all i.

Proposition 15.

a) Given any D-domain B over A and P 2B, the series �(P ) is D-algebraic over A.
If B is effective, then we may effectively compute an annihilator for �(P ).

b) Any D-algebraic series f over A is represented by an element of an unmixed
D-domain B over A. If A is effective and f 2Adalg, then we may effectively com-
pute such a B.

Proof. Given a D-algebraic domain B over A and P 2 B, the sequence P ; �P ; �2 P ; :::
contains non-trivial algebraic dependencies which can be computed using Proposition 13.
This proves a). Inversely, given f 2Adalg, we may compute a non-degenerate annihilator
P 2AfF g for f using Proposition 12. Then B=AfF g/([P ] :HP

1) with �(F )= f defines
an unmixed D-domain in which F represents f . �

Proposition 16. Any D-domain B is equivalent to an unmixed D-domain. If B is effective,
then this reduction is effective.
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Proof. Let f1; :::; fk2B be generators of the A-algebra B and let r be the transcendence
degree of B over A. For each fi, we may compute a non-degenerate annihilator Pi for fi
using Proposition 12. Then B~ =AfF1; :::; Fkg/([P1; :::; Pk] : (HP1 ���HPk)

1) with �(Fi)= fi
defines an unmixed D-domain that is equivalent to B. �

Proposition 17. Any D-domain B is equivalent to a Pfaffian D-domain. If B is effective,
then this reduction is effective.

Proof. Let us first show that B is equivalent to a D-domain with orders ri= 1. Modulo
the replacement of Pi by �i Pi, we may assume without loss of generality that ri> 1 and
deg�riFi Pi= 1 for all i. Now consider formal variables Fi;j with 16 i6 k and 06 j < ri.
Let F = f�jFi : i6 k; j 6 rig, F~ = fFi;j : i6 k; j < rig [ f�Fi;ri¡1 : i6 kg and consider the
A-algebra morphism �:A[F ]!A[F~], with �(�jFi)=Fi;j for j <ri and �(�riFi)= �Fi;ri¡1.
Consider the set P of all polynomials Pi;j 2A[F~] with Pi;j = �Fi;j ¡ Fi;j+1 if j < ri and
Pi;ri= �(Pi). Let 4 be the ranking on V = f�j Fi : i6 k; j 2Ng. We define a ranking on
W = f�kFi;j : i6 k; j < ri; k 2Ng by setting �kFi;j4 �k

0
Fi0;j whenever �j+kFi� �j

0+k 0Fi0

or �j+k Fi= �j
0+k 0 Fi0 and k < k 0. Then the D-domain B~ =AfF~g/I~ with I~= [P] :HP1 is

equivalent to B.
Assuming that ri = 1 and deg�riFi Pi = 1 for all i, let us now show that B is equiva-

lent to a Pfaffian D-domain. We may assume that we ordered the variables Fi such that
F1� ����Fk. In particular, this implies that P1= S1 �F1¡R1 with S1; R1 2A[F1; :::; Fk].
Let us prove by induction over i that we may replace Pi by a differential polynomial of the
form Pi=Si �Fi¡Ri with Si;Ri2A[F1; :::; Fk]. So assume that the induction hypothesis is
satisfied for all smaller i. We have Pi=D�Fi¡N with N;D2A[F1; :::; Fk; �F1; :::; �Fi¡1].
Let d be the maximum of the degrees of D and N , and S<i=S1 ��� Si¡1. Then substitution
of Rj/Sj for each �Fj with j < i in S<id D and S<id N yields two polynomials Si and Ri in
A[F1; :::;Fk] such that S<id Pi¡(Si �Fi¡Ri)2 [P1; :::;Pi¡1]. This means that we may replace
Pi by Si �Fi¡Ri. �

4.2 Dominant Hermite normal forms
Before we generalize the zero test algorithms from section 3, we will need a way to asymp-
totically normalize systems of linear differential equations with power series coefficients.
The normalization that we will use is an asymptotic variant of the Hermite normal form.

Let us first consider a square k�k matrix M 2K[�]k�k. We say that M is in Hermite
normal form if M is upper triangular and there exist integers 16 p1< ���<pl6k such that

� Mi;j=0 whenever i> l or j < p1.

� degMi0;pi< degMi;pi for all i
0<i6 l.

If M has maximal rank k, then we must have pi= i for each i. It can be shown that there
exists a unique unimodular matrix U 2K[�]k�k such that UM is in Hermite normal form.
Moreover, U¡1 2K[�]k�k and there is an algorithm for the computation of U if K is an
effective field.

Let us now consider a matrixM 2K[�][[z]]k�k of rank k. Recall that P 2K[�] commutes
with zi following the law P (�) zi= zi P (� + i). For each i we will denote by Mi 2K[[z]]k
the i-th row of M and by

D(Mi)= ((z¡vMi;1)0; :::; (z¡vMi;k)0)2Kk

its �skew dominant coefficient�, where

v := v(Mi) :=min (v(Mi;1); :::; v(Mi;k)):
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If Mi=0, then we understand that D(Mi)=0. The matrix Drow(M) with rows D(M1); :::;
D(Mk) will be called the row dominant matrix of M . We say that M is in dominant Her-
mite normal form if Drow(M) is in Hermite normal form. Any matrix T 2K[�][z; z¡1]k�k

with an inverse in K[�][z; z¡1]k�k and such that TM is in dominant Hermite normal form
will be called a normalization matrix . We claim that such a matrix always exists. What
is more, if the entries of M are computable power series, then we may use the following
algorithm to compute T .

Algorithm NormalizationMatrix(M)
Input: a matrix M 2K[�][[z]]k�k with computable coefficients and rank k
Output: a normalization matrix in K[�][z; z¡1] for M

1 Let D :=Drow(M)
2 Let T 2K[�]k�k be such that TD is in Hermite normal form

3 Let U 2K[�][z; z¡1]k�k be such that Ui;j= zv(Mj)Ti;j z
¡v(Mi)

4 If T has rank k then return U
5 Otherwise return NormalizationMatrix(UM)U

Proof. If rankU=k, then U is a normalization matrix of M by construction. If rankU <k,
and assuming that U 0 is a normalization matrix of U M , then U 0 U is a normalization
matrix of UM , since U is always invertible. This proves the correctness of the algorithm.

As to its termination, let r= rankU and let i1< ���<ir be minimal such that the matrix
with rows Di1; :::;Dij has rank j for each j6 r. We claim that r can only increase and that
the r-tuple (i1; :::; ir) can only decrease for the lexicographical ordering, once r stabilizes.

Indeed, letM 0=UM , D 0=Drow(M 0), r 0= rankM 0 and let i1
0 < ���<ir 00 be minimal such

that the matrix with rows Di1
0
0 ; :::;Dij

0
0 has rank j for each j6 r 0. Then the rows Di1

0 ; :::;Dir
0

are precisely the first r rows of the Hermite normal form TD, and therefore form a matrix
of rank r. This shows that rankM 0> r and ij0 6 ij for each j.

Having proved our claims, we may assume without loss of generality that r and (i1; :::; ir)
have stabilized. Since the degrees of the polynomials entries of Di1; :::; Dir can only
decrease, we may also assume that Di1; :::;Dir whenceMi1; :::;Mir have stabilized. Further-
more, we may assume that our rows were ordered in such a way that ij= j for all j. Modulo
division of M1; :::;Mr by powers of z, we may finally assume that v(M1)= ���= v(Mr)=0.
Then U 2K[�][z] and v(Mj

0)> v(Mj) for all j > r. This is repeatedly possible only if Mj

lies in the K[�][[z]] module spanned by M1; :::;Mr for each j >r. SinceM has rank k, this
means that we must have r= k, which completes the termination proof. �

4.3 Root separation bounds for D-domains
Given an abstract D-domain B, we claim that there exists a number � 2N such that for
any alternative evaluation mapping �~ on B, we have �~= � whenever v(�~(P )¡ �(P ))>� for
all P 2B. The minimal such number will be called the root separation for B and we denote
it by �B. Our claim clearly holds when B =AfF g/([P ] :HP

1) is an unmixed D-domain.
Indeed, in this case, we have

�B6max (�P1;�(F1); :::; �Pk;�(Fk));

with the notations from above. The general case reduces to this particular case by applying
Proposition 16. However, since the computation of univariate differential polynomials that
annihilate given elements of B may be quite expensive, we would like to have a more direct
bound. We first need a few preliminaries.
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Consider k linear differential polynomials P1; :::; Pk 2 K[[z]]fF1; :::; Fkg1. Any such
polynomial can formally be viewed as an element of K[�][[z]] F1 � ��� � K[�][[z]] Fk. Let
M 2 K[�][[z]]k�k be the matrix with Pi = Mi;1 F1 + ��� + Mi;k Fk. Assuming that this
matrix has rank k over K[�][[z]], we may use the method from section 4.2 to compute
a normalization matrix T 2K[�][z; z¡1]k�k for M . We will call such a T a normalization
matrix for P1; :::; Pk. Applying T to the column vector with entries P1; :::; Pk we obtain
a new column vector with �dominant reduced� entries P~1; :::; P~k. By construction, the
dominant coefficient P~i;v(P~i) of P~i is a polynomial of the form

P~i;v(P~i)=�i;iFi+ ���+�i;kFk

with �i;i; :::;�i;k2K[�]. We will denote by JP~i2K[N ] the polynomial with JP~i(�)Fi=�i;i.
We also denote by ZP~i the largest root of JP~i in N, or ¡1 if no such root exists.

Now consider a D-domain B = AfF g / ([P ] : HP
1) with evaluation mapping �. Let

f=(f1; :::; fk)= �(F )=(�(F1); :::; �(Fk)). SinceHP(f)=/ 0, each Pi;+f ;1 is non-zero and has
the same leader �riFi as Pi. In particular, the polynomials Pi;+f ;1 are linearly independent
over K(�)[[z]]. Consequently, there exists a normalization matrix T for P+f ;1, whence
JP+f ;i;1 and ZP+f ;i;1 are well defined for all i.

Proposition 18. Let B = AfF g/([P ] :HP
1) be a D-domain with evaluation mapping �

and f = �(F ). Let T be a normalization matrix for P+f ;1 and P~=TP. Then

�B 6 max (v(P~1;1); :::; v(P~k;1); ZP~1;1; :::; ZP~k;1)+1:

Proof. Let �i := v(P~i;1) for each i. Given f~= f + " 2K[[z]]k with n= v(") <1, there
exists a largest index i with v("i)=n. We have

[P~i;1(")]�i+n = JP~i;1(n) ("i)n:

Assuming that n>max (�1; :::; �k; ZP~1;1; :::; ZP~k;1)+1, we also have

v(P~i;>1("i)) > 2n > �i+n;

whence

[P~i("i)]�i+n = JP~i;1(n) ("i)n:

Since n>ZP~i;1, we get JP~i;1(n)=/ 0, which entails P~i("i)=/ 0, P~(")=/ 0 and P+f(")=/ 0. �

4.4 An effective zero test for D-domains
In order to generalize the zero test from section 3.3 to the setting of D-domains, we first
need a suitable counterpart of Proposition 5 in addition to Proposition 18.

Assume that we are given a differential ring B = AfF g / ([P ] : HP
1) where P1; :::;

Pk 2 AfF g n A are such that P̀i = �ri Fi for certain r1; :::; rk 2 N. Given f 2 K[[z]]k

and n 2 N, we would like to solve the system of equations P (f + ") = 0 for " 2 K[[z]]k
with v(") > n. Assuming that HPi(fi) =/ 0 for each i, we may define T and P~ as in the
previous section. Since T is a normalization matrix, there also exists a matrix U 2K[�][z;
z¡1]k�k with U T = Idk. Then we have P (f + ") = 0 ) P~(") = T P+f(") = 0 and
P~(")=0)P (f + ")=UP~(")= 0. Now consider

�P1;:::;Pk;f1;:::;fk :=max (v(P~1;1); :::; v(P~k;1); ZP~1;1; :::; ZP~k;1)+ 1:

We have the following analogue of Proposition 5 for solving the equation P~(") = 0 for
sufficiently small ".
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Proposition 19. With the above notations, if �>�P1;:::;Pk;f1;:::;fk and v(P (f))>2 �, then
there exists a unique f~2K[[z]]k with P (f~)= 0 and v(f~¡ f)>�.

Proof. By what precedes, it suffices to show that the equation P~(") = 0 has a unique
solution with v(")>�. Let �i := v(P~i;1)<� for each i. Recall that we may write

(P~i;1)�i = �i;iFi+ ���+�i;kFk

for each i, with �i;j 2K[�]. We now decompose each P~i as

P~i = Hi¡�i;

Hi = �i;iFi z�i:

Extracting the coefficient of z�i+n in the relation Hi("i)=�("i) now yields

JHi(n) ("i)n = �i(")�i+n: (8)

For all n > �, we have JHi(n) =/ 0 and �i(")�i+n only depends on coefficients ("j)m with
m< n and coefficients ("j)n with j > i. Hence (8) provides us with a recurrence relation
for the computation of ". �

Algorithm ZeroTest(Q1; :::; Qn)
Input: Q1; :::; Qn2AfF gnf0g, ordered by non-decreasing Ritt rank
Output: true if Q1(f)= ���=Qn(f)= 0 and false otherwise

1 If Q :=Q12A then return false
2 If ZeroTest(IQ) then return ZeroTest(IQ; Q1; :::; Qn)
3 If ZeroTest(SQ) then return ZeroTest(SQ; Q1; :::; Qn)
4 If 9J 2fQ2; :::; Qn; P g; J remQ=/ 0 then return ZeroTest(J remQ; Q1; :::; Qn)
5 Let �12N be an upper bound for �B
6 Let i be such that `Q= ��Fi for some �2N

7 Let �2 :=�P1;:::;Pi¡1;Q;Pi+1;:::;Pk;f1;:::;fk
8 Return the result of the test v(Q(f))> 2max (�1; �2)

Proof. The proof is analogous to the proof of the zero test algorithm from section 3.3. �

4.5 An improved zero test for D-domains
The zero test from the previous section may be further improved along similar lines as
what we did in section 3.4. Given an abstract D-domain B, the strong root separation
for B is the smallest number � = �B

� such that for any alternative �evaluation� mapping
�~:B!K[log z][[z]], we have �~= � whenever v(�~(P )¡ �(P ))>� for all P 2B. The existence
of such a number is shown in the same way as before and for D-domains we have the usual
explicit bound:

Proposition 20. Let B = AfF g/([P ] :HP
1) be a D-domain with evaluation mapping �

and f = �(F ). Let T be a normalization matrix for P+f ;1 and P~=TP. Then

�B
� 6 max (v(P~1;1); :::; v(P~k;1); ZP~1;1; :::; ZP~k;1)+1:

Proof. The proof is similar to the proof of Proposition 18. This time, " 2K[log z][[z]]k,
we again pick i to be the largest index i with v("i) = n, so that we may write ("i)n =
"i;n;` log` z+ ���+ "i;n;0 with "i;n;`=/ 0. In the same way as before, we now get

[P~i("i)]�i+n = JP~i;1(n) "i;n;` log
` z+O(log`¡1 z):
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For n>ZP~i;1, we again get JP~i;1(n)=/ 0, P~i("i)=/ 0, P~(")=/ 0 and P+f(")=/ 0. �

For the analogue of Proposition 19, we define

�P1;:::;Pk;f1;:::;fk
� := max (v(P~1;1); :::; v(P~k;1))+1:

Proposition 21. With the above notations, if �>�P1;:::;Pk;f1;:::;fk� and v(P (f))>2 �, then
there exists an f~2K[log z][[z]]k with P (f~)=0 and v(f~¡ f)>�.

Proof. The proof is similar to the proof of Proposition 19, except that (8) should be
replaced by

("i)n = JHi(�+n)¡1�i(")�i+n; (9)

where JHi(�+n)
¡1 is the operator inverse of JHi(�+n) from Proposition 1. �

In the algorithm ZeroTest from the previous section, it is now possible to replace
�P1;:::;Pk;f1;:::;fk by �P1;:::;Pk;f1;:::;fk

� in the definition of �2.

5 Multivariate D-algebraic series

5.1 Multivariate power series domains and closure properties
Given a subring A�K[[z]]=K[[z1; :::; zn]], we will denote by Afr the intersection of K[[z]]
with the fraction field of A. We say that A � K[[z]] is a power series domain if A is
a differential ring with respect to the derivations �i= zi @/@zi such that Afr=A and A is
stable under the substitutions �i: zi 7! 0.

A power series domain A is said to be effective, if the differential K-algebra operations
can be carried out by algorithms and for each i2f1; :::; ng we have a computable mapping
which takes f 2A on input and returns f as a computable power series in �i(A)[[zi]]. In
particular, this means that every f 2 A can be regarded as an computable power series
in the sense that there exists an algorithm which takes i 2 Nn on input and returns the
coefficient fi of zi = z1

i1 ��� zn
in in f on output. We also notice that the quotient field of

an effective power series domain is an effective differential field, when representing fractions
in the usual way. In particular, Afr is an effective differential A-algebra.

The above definitions can be generalized to countable dimension as follows. We let
K[[z1; z2; :::]] =K [K[[z1]] [K[[z1; z2]] [ ���, where we regard each K[[z1; :::; zn]] as being
naturally included into K[[z1; :::; zn+1]]. A subset A�K[[z1; z2; :::]] is said to be a power
series domain if An :=A\K[[z1; :::; zn]] is a power series domain for each n. We say that
A is effective if each An is and if we have an algorithm for computing an upper bound for
the dimension n of any given series f 2A.

Given f 2 K[[z]], we let f(0) 2 K denote the evaluation of f at 0 = (0; :::; 0).
Given f 2 K[[z]] and g1; :::; gn 2 K[[u]] = K[[u1; :::; up]] with g1(0)= ���= gn(0)=0, we
define the composition f � g = f � (g1; :::; gn) of f and g to be the unique power series
f � g 2K[[u1; :::; up]] with

(f � g)(u1; :::; up)= f(g(u1; :::; up); :::; g(u1; :::; up)):

We say that a power series domain A � K[[z1; z2; :::]] is stable under composition if
f � (g1; :::; gn)2A for any f 2An and g1; :::; gn2A with g1(0)= ���= gn(0). If we also have
an algorithm for the computation of f � (g1; :::; gn), then we say that A is effectively stable
under composition.
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Let '1; :::; 'm2K[[z1; :::; zn]] with p=n¡m> 0 and '1(0)= ���= 'm(0)= 0. Assume
that the matrix formed by the first m columns of the scalar matrix

@'
@z

(0) =

0BBBBBB@
@'1
@z1

(0) ��� @'1
@zn

(0)
��� ���

@'m
@z1

(0) ��� @'m
@zn

(0)

1CCCCCCA
is invertible. Then the implicit function theorem implies that there exist unique power
series  1; :::;  m 2 K[[z1; :::; zp]], such that the completed vector  = ( 1; :::;  n)
with  m+1 = z1; :::;  n = zp satisfies ' �  = 0. We say that a power series domain
A�K[[z1; z2; :::]] satisfies the implicit function theorem if  1; :::;  m 2 A for the above
solution of ' �  = 0, whenever '1; :::; 'm 2 An. We say that A effectively satisfies the
implicit function theorem if we also have an algorithm to compute  1; :::;  m as a function
of '1; :::; 'm.

Consider an invertible n � n matrix M 2 Qn�n with rational coefficients. Then the
transformation

� � zM: z1
Q ��� zn

Q ¡! z1
Q ��� zn

Q

zi 7¡! zM �i

is called a monomial transformation, where we consider i 2 Qn as a column vector. For
a power series f 2 K[[z1; :::; zn]] whose support supp f = fi 2 Nn : fi =/ 0g satisfies
M � supp f �Nn, we may apply the monomial transformation to f as well:

f � zM =
X
i2Nn

fi z
M �i:

A power series domain A � K[[z1; :::; zn]] is said to be stable under monomial transfor-
mations if for any f 2A and invertible matrix M 2Qn�n with M � supp f �Nn, we have
f � zM 2A. We say that A is effectively stable under monomial transformations if we also
have an algorithm to compute f � zM as a function of f and M . Notice that we do not
require the existence of a test whether M � supp f �Nn in this case (the behaviour of the
algorithm being unspecified whenever M � supp f *Nn).

Given an effective power series domain that effectively satisfies each of the above clo-
sure properties (composition, implicit functions, and monomial transformations), it can
be shown that an effective version of the Weierstrass preparation theorem holds. We refer
to [11] for details.

5.2 Multivariate D-algebraic power series
Let A�K[[z]]=K[[z1; :::; zn]] be a multivariate power series domain. Given a power series
f 2K[[z]] =K[[z1; :::; zn]] and i2f1; :::; ng, we may consider f as a power series

f = [zi0] f +([zi1] f) zi+([zi2] f) zi2+ ���

in zi with coefficients in �i(K[[z]]), and also as a power series in zi with coefficients in the
fraction field of �i(K[[z]]). If f is D-algebraic over A for this latter interpretation of f ,
then we say that f is D-algebraic in zi (or with respect to �i). We say that f is D-algebraic
over A if f is D-algebraic in each of the variables z1; :::; zn.

Proposition 22. Given f 2K[[z]] is D-algebraic over A and i2f1; :::; ng, each coefficient
[zik] f of the power series expansion of f in zi is D-algebraic over �i(A).
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Proof. Given j=/ i, let Pj(f)=0 be a non-trivial differential equation satisfied by f in �j.

Let vi(Pj) denote the valuation of Pj in zi. Modulo division of Pj by zi
vi(Pj), we may assume

without loss of generality that vi(Pj) = 0. Now �i(f) satisfies the non-trivial equation
�i(Pj)(�i(f))= 0. This shows that [zi0] f is D-algebraic over �i(A).

For k > 0, we will prove by induction that [zik] f is D-algebraic over �i(A). So assume
that [zi0] f ; :::; [zi

k¡1] f are D-algebraic over �i(A), whence over A. Given j=/ i, the series

g= f ¡ [zi0] f ¡ ��� ¡ ([zik¡1] f) zik¡1

zi
k

is D-algebraic in �j over A, by Proposition 3. By what precedes, it follows that [zik] f=�i(g)
is D-algebraic in �j. �

Proposition 23. The set Adalg of D-algebraic power series over A forms a multivariate
power series domain.

Proof. The stability of Adalg under the differential ring operations and division (when
defined) directly follows from Proposition 3. The stability under the projections �i follows
from Proposition 22. �

From now on, AfF g denotes the set of differential polynomials with respect to the
pairwise commuting derivations �1; :::; �n. Proposition 2 also has a natural generalization:

Proposition 24. The series f 2 K[[z]] is D-algebraic if and only if Aff g has a finite
transcendence degree over A.

Proof. Assuming that f 2K[[z]] is D-algebraic over A, let Pi2A[F ; �iF ; �i2F ; :::] nA be
of minimal Ritt rank (�irF ; di) with Pi(f) = 0, for each i. Let F = f�1

i1 ��� �n
in f : i1<r1; :::;

in<rng. Then SPi(f)=/ 0 for each i and B=A[F ;SP1(f)¡1; :::;SPn(f)¡1] is stable under the
derivations �1; :::; �n. Consequently, Aff g=�B and trdegAAff g6r1 ��� rn+n. Conversely,
assume that trdegAAff g= r. Then f ; :::; �i

r f satisfy a non-trivial algebraic relation for
each i, whence f is D-algebraic. �

Assume now that A is an effective multivariate power series domain. We may effectively
represent a D-algebraic series ' 2 Adalg over A by a tuple (f ; P1; :::; Pn) where f is
a computable power series inK[[z]] and Pi an annihilator for f with respect to �i, for each i.

Proposition 25. Assume that A�K[[z]]=K[[z1; :::; zn]] is an effective multivariate power
series domain over an effective diophantine field K with an effective zero test. Then Adalg

is an effective multivariate power series domain with an effective zero test. Moreover, for
any i2f1; :::;ng, there exists an algorithm for computing the coefficients [zik] f of the power
series expansion of a given f 2Adalg with respect to zi.

Proof. We prove the proposition by induction over n. For n= 0, the result is trivial, so
assume that n> 0 and that we proved the result for all smaller n.

Given i2f1; :::; ng, let us first show how to compute the coefficients [zik] f of the power
series expansion of a given f 2 A with respect to zi. The induction hypothesis provides
us with a zero test in �i(Adalg) = �i(A)dalg. In the proof of Proposition 22, we thus have
an algorithm for the computation of the valuation vi(Pj), and the remainder of this proof
is constructive.
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Let L denote the quotient field of �n(Adalg)=�n(A)dalg. We claim that L is an effective
diophantine field. Indeed, given a polynomial H 2L[�], an integer �2N is a root of H if
and only if � is a root of H multiplied by the denominators of its coefficients. Without
loss of generality, we may therefore assume that H 2 �n(Adalg)[�]. After this reduction,
� 2N is a root of H if and only if � is a root of the coefficient [z1

i1 ��� zn¡1
in¡1] P 2K[�] of

z1
i1 ��� zn¡1

in¡1 in P for all i1; :::; in¡12N. Let i1; :::; in¡12N be such that this coefficient Q
is non-zero and let � be its largest root in N (or ¡1 if no such root exists). We may now
check whether H(k)=0 for k=0; :::; � and compute the largest root of H in N.

Any series f in Adalg may be regarded as a univariate series in zn with coefficients in L.
By what precedes, L is an effective diophantine field and we have an algorithm for the
computation of the coefficients of f . The zero tests from section 3 can therefore be used
as zero tests for f . �

5.3 Multivariate D-domains
Let A � K[[z]] = K[[z1; :::; zn]] be a multivariate power series domain. An abstract
multivariate D-domain over A is a differential A-algebra B for �1; :::; �n together with
a differential A-algebra morphism �: B!K[[z]]. A multivariate D-domain over A is an
abstract multivariate D-domain B over A of the form

B = AfF1; :::; Fkg/I
I = [P1;1; :::; P1;k; :::; Pn;1; :::; Pn;k] : (HP1;1 ���HP1;k ���HPn;1 ���HPn;k)

1;

where P1;1; :::; P1;k; :::; Pn;1; :::; Pn;k2AfF1; :::; Fkg are such that

�(HP1;1 ���HP1;k ���HPn;1 ���HPn;k+ I) =/ 0;

and where each Pi;j only involves derivations of the form �i and has a leader of the form
�i
ri;jFj for certain ri;j2N. We will denote by Bfr those elements P /Q of the fraction field

of B such that �(P /Q) := �(P )/ �(Q) 2K[[z]]. We will also write �(P ) = �(P + I) for
P 2AfF1; :::; Fkg. We say that B is effective if A is an effective power series domain and
�(P ) is computable for each P 2B. We say that B is unmixed if Pi;j2A[Fj ; �iFj ; �i2Fj ; :::]
for all i and j. We say that B is Pfaffian if Pi;j is of the form Pi;j=Si;j �iFj¡Ri;j with
Si;j ; Ri;j 2A[F1; :::; Fk] for all i; j.

The proof of the following proposition is analogous to the proof of Proposition 15:

Proposition 26.

a) Given any multivariate D-domain B over A and any P 2 B, the series �(P ) is
D-algebraic over A. If B is effective, then we may effectively compute �(P )2Adalg.

b) Any multivariate D-algebraic series f over A is the element of a multivariate
D-domain B over A. If A is effective and f 2Adalg, then we may effectively com-
pute B. �

Corollary 27. Let B be an effective multivariate D-domain over A�K[[z1; :::; zn]]. Then
there exists an algorithm for testing whether �(P )=0, for given P 2B.

Proof. This follows from Proposition 26 and the existence of a zero test in Adalg (Propo-
sition 25). �

The proofs of the following propositions are analogous to the proofs of Propositions 16
and 17:
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Proposition 28. Any multivariate D-domain B is equivalent to an unmixed D-domain.
If B is effective, then this reduction is effective. �

Proposition 29. Any multivariate D-domain B is equivalent to a Pfaffian D-domain. If B
is effective, then this reduction is effective. �

Consider P ; Q2AfF1; :::; Fkg with P̀ = �pFj and `Q= �qFj. Let m2Nn be such that
mi =max (pi; qi) for all i 2 f1; :::; ng and assume that m 2/ fp; qg. Then we recall from
differential algebra [17, 14] that the �-polynomial �P ;Q of P and Q is defined by

�P ;Q = SQ �m¡pP ¡SP �m¡qQ:

Given a D-domain B as above, we say that B is coherent if �Pi;j ;Pi0;j 2 I for all i; i0; j.
Given an arbitrary effective D-domain B, we may compute an equivalent effective coherent
D-domain using the algorithm below, where we make use of the effective zero test from
Corollary 27:

Algorithm MakeCoherent(B)
Input: An effective multivariate D-domain B
Output: A coherent effective multivariate D-domain that is equivalent to B

1 Let P := fPi;j : 16 i6n; j6 16 kg
2 Repeat the following
3 Let P� := fP 2P : �(P )=/ 0; �(HP)=/ 0g
4 If there exists P 2P with P remP� n fP g=0, then set P :=P n fP g
5 Else if 9 P 2P with R :=P remP� n fP g=/ P and R2/ P, then set P :=P [fRg
6 Else if 9 P ; Q2P with R :=�P ;Q remP�=/ 0 and R2/ P, then set P :=P [fRg
7 Else if 9 P 2P with �(IP)=0 and IP 2/ P, then set P :=P [fIP g
8 Else if 9 P 2P with �(SP)= 0 and SP 2/ P, then set P :=P [fSP g
9 Else return AfF1; :::; Fkg/([P] :HP1) with the evaluation induced by �

Proof. The main loop invariant states that P only contains annihilators for the point
�(F )=(�(F1); :::; �(Fk)), and each of the original differential polynomials Pi;j Ritt reduces
to zero with respect to P�. The termination follows from the fact that we only add new
elements of smaller and smaller Ritt ranks to P. At the end, the set P is necessarily
coherent and autoreduced, and such that �(HP) =/ 0. Since each original polynomial Pi;j
reduces to zero modulo P�=P , there must exist a corresponding polynomial Qi;j2P with
leader �i

siFj and si6ri. This shows that AfF1; :::;Fkg/([P] :HP1) is indeed a D-domain. �

5.4 Extraction of coefficients and application to zero testing
By Proposition 25, there exists an algorithm for extracting the coefficients of multivariate
D-algebraic power series with respect to a single variable zi. In the case of power series
that are represented by elements of a D-domain B, it would be nice to have a more efficient
and systematic algorithm. In particular, given i 2 f1; :::; ng and l 2N, we would like to
effectively construct a D-domain B6l such that for any P 2 B and any m 6 l, we can
produce a Q= [zim]P 2B6lfr with [zim] �(P ) = �(Q). For this, it suffices that B6l

fr contains
all coefficients of the form [zim]Fj with j 2f1; :::; kg and m6 l.

Theoretically speaking, we may construct B6l using Proposition 25. As a first opti-
mization, we claim that there exists a computable finite set L�N such that we can take
B6l=B<l :=B6l¡1 whenever l2/ L. Indeed, for any f 2 �(B), we may regard f as a power
series in zi with coefficients in the quotient field of �i(K[[z]]). For sufficiently large l, the
coefficients of this power series are determined by a recurrence relation of type (3).
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As a second optimization, assume that B is Pfaffian and regular in zi, meaning that
the valuations vi(�(SPi;j)) of the �(SPi;j) in zi all vanish. We will take

B6l=B<lf[zil]F1; :::; [zil]Fkg/Il;

with �([zil] Fj) = [zil] �(Fj) for all j, and where the differential ideal Il is constructed as
follows. Given i0=/ i and j 2f1; :::; kg, let

Fi0;j ;l= f[zim]Fj 0 :m6 l; 16 j 06 kg[f�i0([zim]Fj) :m<lg:

Since vi(�(Si0;j))=0, extracting the coefficient of zil in the equation

�(Si0;j) �(�i0Fj) = �(Ri0;j)

yields a relation

([zi0] �(Si0;j)) ([zil] �(�i0Fj)) = Ri0;j ;l;

for some Ri0;j;l2A[Fi0;j ;l]. Now let Pl be the set of all differential polynomials of the form
Pi0;j ;l= ([zi0] Si0;j) �i0([zil] Fj)¡Ri0;j ;l. Then we may take Il=AfPlg/([Pl] :HPl

1). Notice
that B6l is again Pfaffian if B<l is Pfaffian. However, regularity in the other variables zi0
is not necessarily preserved. Nevertheless, if �(SPi;j(0)) =/ 0 for all i; j, then the recursive
extraction of coefficients only yields regular Pfaffian D-domains.

Remark 30. Given a regular D-domain in zi, it can be shown that the reduction to an
equivalent Pfaffian D-domain used in the proof of Proposition 29 actually yields a regular
Pfaffian D-domain in zi.

From what precedes, it follows in particular that there exists a constant L 2 N such
that we may take B6l

fr =B6Lfr for all l>L. Hence for any P 2B and any m 2N, we have
[zim]P 2B6Lfr . We may then reinterpret the D-domain B as a univariate D-domain by only
retaining the relations Pi;1; :::; Pi;k and using coefficients of the form �(Q) 2 �i(�(B))fr
with Q2B6Lfr . This allows us to replace the theoretical zero test from Corollary 27 by one
of the more efficient zero tests from section 4.

5.5 An effective implicit function theorem
Let '1; :::; 'm2K[[z]]=K[[z1; :::; zn]] with m<n and denote

� = @'
@z

=

0BBBBBB@
@'1
@z1

��� @'1
@zn

��� ���
@'m
@z1

��� @'m
@zn

1CCCCCCA:
Let �1 be the submatrix spanned by the firstm columns of � and�2 the submatrix spanned
by the last p=n¡m columns. Assume that �(0)2Km�m is invertible. Then the implicit
function theorem implies that there exist unique power series  1; :::;  m 2K[[u1; :::; up]],
such that the completed vector  =( 1; :::;  n) with  m+1=u1; :::;  n=up satisfies

'�  =0: (10)

Forming the Jacobian matrix 	= @ /@u of  , we let 	1 and 	2 denote the submatrices
spanned by the first m resp. last p rows. Differentiating the relation (10), we obtain

(�1 �  )	1+(�2 �  )	2 = 0:

Since 	2= Idp, this yields

	1 = (¡�1¡1�2) �  :
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Given any f 2 K[[z]], consider the row matrices F1 = (@f / @z1; :::; @f / @zm) and
F2=(@f /@zm+1; :::; @f /@zn). Then

@f �  
@u

= (F1 �  )	1+(F2 �  )

= (F2¡F1�1¡1�2) �  :

Let �1=(�1; :::; �m), �2=(�m+1; :::; �n) and �=(u1@/@u1; :::; up@/@up). Let Z1 and Z2
diagonal matrices with entries z1; :::; zm resp. zm+1; :::; zn. Denoting by �~ =(�~1; :::; �~p) the
row vector of derivations with

�~ f = �2 f ¡�1 fZ1
¡1�1

¡1�2Z2;

the above relation implies

�(f �  ) = (�~ f) �  :

Notice that z1 ��� zm det�1�~ maps power series to row vectors of power series.
Assume now that '1; :::; 'm2B for some effective multivariate D-domain B of dimen-

sion n over A=K with

B = KfF1; :::; Fkg/I
I = [Pi;j : i; j] : (

Q
i;jHPi;j)

1:

Assume also that the coordinate functions z1; :::; zm are among the Fi. We will make
the additional assumption that zi �  =/ 0 for all i 2 f1; :::; mg. In particular, setting
U = z1 ��� zm det�, we have U �  =/ 0. We introduce a new evaluation mapping �~ on B by
taking

�~(Fi) = �(Fi) �  : (11)

We may formally extend �~ into an evaluation from B[U¡1] into K[[u]][(U �  )¡1]. This
evaluation is not compatible with the original derivations �1; :::; �n, but we do have

ui
@ �~(P )
@ui

= �~(�~iP )

for all P 2B[U¡1], and for each of the derivations �~i. Since B[U¡1] is finite dimensional
as a K-algebra, Proposition 13 implies that Fj ; �~iFj ; (�~i)2Fj ; ::: satisfy a computable non-
trivial K-algebraic relation P~i;j for each i and j. Using Proposition 12, we may assume
without loss of generality that these relations are non-degenerate. We now define a new
multivariate D-domain B~ for the derivations �~1; :::; �~p, by taking

B~ = KfF1; :::; Fkg/I~
I~ = [P~i;j : i; j] : (

Q
i;jHP~i;j

)1;

and taking the evaluation mapping �~ as in (11). By construction, �~(zi) =  i for each
i2f1; :::;mg, so  i is D-algebraic.

The additional assumption that  i = zi �  =/ 0 for all i 2 f1; :::; mg is quite benign.
Indeed, for any index i with  i = 0, postcomposition of f 2 K[[z]] with  means in
particular sending zi to 0. This can also be achieved by extracting the coefficient of zi0

in f . Consequently, modulo a finite number of extraction of coefficients, we may assume
without loss of generality that  i=/ 0 for all i2f1; :::;mg. We have proved:

Proposition 31. The set of D-algebraic power series over an effective diophantine field
K is effectively satisfies the implicit function theorem.
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Proposition 32. The set of D-algebraic power series over an effective diophantine field
K is effectively stable under composition.

Proof. Given f 2K[[z1; :::; zn]] and g1; :::; gn2K[[u1; :::; up]] with g1(0)= ���= gn(0)= 0,
consider the power series 'i= zi¡ gi2K[[z1; :::; zn; u1; :::; up]]. The above algorithm allows
us to compute  1; :::;  n+p2K[[u1; :::;up]] with  n+i=ui and '� =0, as well as the result
of the composition f �  (when considering f as an element of K[[z1; :::; zn; u1; :::; up]]),
which coincides with f � g. �

The construction of B~ is somewhat unsatisfactory since the computation of individual
K-algebraic relations P~i;j using Proposition 13 is usually quite expensive. In the frequent
situation that HPi;j �  =/ 0 for all i; j, we may use the following more efficient technique.
Using Proposition 29, we may assume without loss of generality that the original relations
Pi;j are of the form Pi;j = Si;j �i Fj ¡Ri;j with Si;j ; Ri;j 2K[F1; :::; Fk]. By assumption,
we have �(Si;j) �  =/ 0 for all i; j. With the above notations, let � denote the horizontal
concatenation of the matrices Idp and ¡Z1¡1�1¡1�2Z2, so that �~ f =(�f) � for all f and
U � has coefficients in B. Modulo the relations Pi;j, we may then write

�~iFj=
X
i0

(�i0F ) �i0;i=
X
i0

�i0;i
Ri;j

Si;j
:

For each i and j, this means that there exists a power product S~i;j of the Si0;j 0 and
a polynomial R~i;j 2K[F1; :::; Fk] with

US~i;j �~i;jFj = R~i;j:

This allows us to take P~i;j = U S~i;j �~i;j Fj ¡ R~i;j in the construction of the multivariate
D-domain B~ instead of the relation found using Proposition 13.

5.6 Effective monomial transformations

Proposition 33. Let A�K[[z1; :::; zn]] be an effective power series domain over an effec-
tive diophantine field K. Then Adalg is effectively stable under monomial transformations.

Proof. Let B be an effective D-domain over A, let P 2B and f= �(P ). Given an invertible
matrix M 2Qn�n with M � supp f �Nn, we have to show how to compute f � zM. Given
a row vector � 2Qn, we will denote � � � = �1 �1+ ���+ �n �n. Then for any power series
'2K[[z]] and any �2Qn, we notice that

(� � �)(' � zM) = ((�M) � �)(') � zM:

Since trdegAB6 s := r1 ��� rn+n, the elements P ; ((�M) � �)(P ); :::; ((�M) � �)s(P ) satisfy
an A-algebraic dependency which can be computed using Proposition 13. Applying this
result for all � of the form �= ei=

¡
0; :::(i¡1)�; 0;1; 0; :::; 0

�
, we obtain D-algebraic relations

over A for ' � zM in the individual derivations �i. �

The above proposition could in principle be used for computing with monomial trans-
forms of elements in an effective D-domain B. However, in a similar way as it is more
efficient to keep fractions in their symbolic forms when computing with fractions in Bfr,
it is often more efficient to keep monomial transforms in their symbolic form f � zM when
computing with them.

Multivariate D-algebraic series 25



More precisely, we first notice that monomial transformations f 7! f �zM withM 2Nn

are somewhat easier, since they can be computed using our algorithms for composition.
Now two monomial transformations f 7! f � zM1 and f 7! f � zM2 are said to be compatible
if there exist invertible matricesN1;N22Nn�n withM1N1

¡1=M2N2
¡1. Given f1; f22 �(B)

withM1 �supp f1�Nn andM2 �supp f2�Nn, let g1= f1�zN1, g2= f2�zN2 and P =M1N1
¡1.

SinceN1 andN2 have coefficients inN, we may construct a D-domainB 0 with g1; g22 �(B 0).
Now f1 � zM1 = g1 � zP and f2 � zM2 = g2 � zP . In particular, any ' 2 Kff1; f2g can be
represented by '=  � zP for some  2 �(B 0).

From the geometrical point of view, the notion of compatibility can be interpreted
as follows. Let � be an open subset of f� 2 (R>)n n f0g : j�j = 1g and 
 = R> �. Let
K[[z1; :::; zn]]
 be the subset of K[[z1; :::; zn]] of series f with supp f �
. Given a monomial
transformation f 7! f � zM, we call (f0g[M¡1 (R>)n)\ (R>)n its associated cone. Given
two monomial transformations f 7! f � zM1 and f 7! f � zM2 with associated cones 
1
and 
2, it is not hard to check that these transformations are compatible if and only if

1\
2=/ f0g.

5.7 Heuristic zero testing
It should be emphasized that zero testing of power series is a quite asymmetric problem
in the sense that it is usually easy to prove that a non-zero series is indeed non-zero (it
suffices to find a non-zero coefficient), whereas it is often hard to prove vanishing series to
be zero. Since exact zero tests are so slow, it is often preferable to use heuristic zero tests
instead. In fact, heuristic zero tests can be combined with genuine zero tests: for a complex
computation that involves many zero tests, we first perform all zero tests heuristically. At
the end of the computation, we collect all series that were heuristically assumed to be zero
in order to compute the result, and we apply an exact zero test to these series.

The most obvious heuristic zero test for a univariate D-algebraic series is to compute all
coefficients up to a fixed order. Even for large orders, these coefficients can be computed
efficiently using Newton's method or relaxed power series evaluation [2, 8, 1, 9, 6, 10]. In
the case of multivariate D-algebraic series f 2K[[z1; :::; zn]], one simple idea is to generate
a random scalar vector � = (�1; :::; �n) 2 Kn and to test whether the univariate power
series f � (� z) vanishes. The composition f � (� z) can be computed efficiently using the
algorithm(s) from section 5.5. Here we notice the remarkable fact that the derivation

�̂ = �1+ ���+ �n

for which

� (f � (� z)) = (�̂ f) � (� z)

does not depend on �. This makes it actually possible to design another exact zero test
for multivariate D-algebraic series: compute a univariate D-domain capable of representing
f � (� z) where � is treated as a formal parameter, and test whether f � (� z)= 0.
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