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One fundamental problem in symbolic computation is zero testing of expressions that
involve special functions. Several such zero tests have been designed for the case when
such special functions satisfy algebraic differential equations or linear difference equa-
tions. In this paper, we present an algorithm for the case of power series solutions
to certain non-linear difference equations.
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1. INTRODUCTION

How far can we push exact computations with symbolic mathematical expressions?
Starting from polynomial arithmetic, efficient algorithms have been developed for com-
puting with expressions that involve increasingly elaborate algebraic and transcendental
functions. The central problem for such computations is to decide whether two expres-
sions represent the same mathematical function or constant. This problem in turn reduces
to testing whether a given expression represents zero.

One popular traditional approach for zero testing is based on “structure theorems”.
For instance, given a function f that is built up using algebraic functions, exponentia-
tion, and logarithm, we may test whether f = 0 using the Risch structure theorem [10].
Zeilberger's holonomic systems approach [12] is another popular tool for proving equal-
ities, in the restricted setting of solutions to linear differential and difference equations.
A powerful theoretical approach for computations with power series solutions to non-
linear differential equations was proposed by Denef and Lipshitz in [2, 3]. Several more
practical alternative algorithms have also been developed for that purpose [11, 9, 4, 6].

In this paper, we study the zero testing problem for solutions of non-linear difference
equations. For such equations there are two prominent solution spaces: power series
and sequences. In the latter case, there exists a zero-test for a large class of non-linear
algebraic difference equations [8]. We will consider the power series case.

∗. This article has been written using GNU TEXMACS [7].
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In order to state our main result, we need to introduce a few notions. A power series
domain is a K-algebra A ⊆ K[[z]] with A ∋ z and such that A is closed under division
whenever defined. We say that A is a 𝜎-difference power series domain if it is also closed
under the difference operator 𝜎: f ⟼ f ∘ g for some fixed g = z + O(z2) ∈ A. Note that
the standard shift operator x → x + 1 is of this form if one considers the power series
expansion at infinity, that is, z = 1

x (see Example 1). Finally, A is said to be effective if all
these operations can be carried out through algorithms. Now assume that we are given
a power series solution f ∈K[[z]] to the equation

P ( f ,𝜎 f , . . . ,𝜎 r f ) = 0. (1)

for some non-trivial polynomial P ∈ A[F, . . . , 𝜎 r F]. Such a power series f is said to be
𝜎-algebraic over A. A typical example is the power series part of Stirling's asymptotic
expansion for the Γ-function: see section 6.1. Our main result (see section 5) is a zero-test
for elements in A[ f ,𝜎 f , . . .] under assumption ∂P

∂𝜎 r F( f )≠0 (note that this assumption can
be forced by differentiating P a finite number of times). In particular, this implies that
A( f , 𝜎 f , . . . )∩K[[z]] is again an effective 𝜎-difference power series domain.

A similar type of zero-test was designed in [4, 6] for the case when the difference
operator 𝜎 is replaced by differentiation with respect to z. We show that this approach
can indeed be transposed, but there are a few subtleties. The algorithm in the differen-
tial case exploits the fact that a prime univariate differential ideal is defined by a single
differential equation. In the present setting, the main difficulty is that this is not longer
the case in difference algebra, so we have to work with a system of compatible difference
equations (called a coherent autoreduced chain). One of the key ingredients of our algo-
rithm, Proposition 6, is an existence result for a power series solution to such a system of
difference equations.

Another feature of our algorithm is that it integrates an optimization of [6] over [4]:
in order to test whether Q( f , . . . , 𝜎 s f ) = 0 for some Q ∈ A[F, . . . , 𝜎 s F], the number of
coefficients of f that we need to evaluate only depends on s and deg Q, but not on the
individual coefficients of Q.

A proof-of-concept implementation of the algorithm in Julia based on the OSCAR
computer algebra system is available at https://github.com/pogudingleb/
DifferenceZeroTest.

2. REMINDERS FROM DIFFERENCE ALGEBRA

2.1. Ritt reduction
Let us start with some notions from difference algebra. Let K be a field of characteristic
zero. A K-difference algebra is a K-algebra A together with an injective morphism 𝜎:A→A
of K-algebras. In what follows, we will always assume that A is also an integral domain.

Given an indeterminate F, we denote by A{F}≔A[F,𝜎F,𝜎 2 F,...] the difference ring of
difference polynomials in F and by A⟨F⟩≔A(F,𝜎F,𝜎 2 F, . . .) its fraction field. The algebraic
variables F, 𝜎F, 𝜎 2 F, . . . are naturally ordered by 𝜎 i F≼𝜎 j F⟺ i⩽ j.

For a difference polynomial P∈A{F}∖A, the leader ℓP of P is the largest variable 𝜎 r F
that occurs in P, and we set ord P ≔ r. We write P = Pd ℓP

d + ⋅ ⋅ ⋅ + P0 with P0, . . . , Pd ∈
A[F, . . . ,𝜎 r−1 F] and Pd ≠0 and define:

• IP ≔Pd, the initial of P;
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• SP ≔∂P/∂ℓP, the separant of P;

• ℓP
∗≔ ℓP

d, the extended leader of P;

• rank P≔(ℓP,d), the Ritt rank of P.

It is convenient to further extend the definition of Ritt rank by setting rank P≔(−∞,−∞)
for polynomials P∈A. We finally define a total ordering ⩽ and a partial ordering ≼ on
Ritt ranks by

(ℓP,dP) ⩽ (ℓQ,dQ) ⟺ (ℓP ≺ ℓQ ∨(ℓP = ℓQ ∧dP ⩽dQ))
(ℓP,dP) ≼ (ℓQ,dQ) ⟺ (ℓP ≼ ℓQ ∧dP ⩽dQ).

A list of difference polynomials Q1,...,Ql such that rank Q1⩽⋅⋅⋅⩽rank Ql is called a chain.
Given P ∈ A{F} ∖ A, we say that P is ℓ-reducible with respect to a chain Q1, . . . ,Ql if

there exists an i with rank Qi ≼ rank P. For P, Q∈A{F} such that Q∉A, we define the ℓ-
remainder of P with respect to Q denoted by P rem Q as follows:

1. If P is not ℓ-reducible with respect to Q, we set P rem Q≔P;

2. Let P′ be the remainder of the Euclidean pseudo-division of P by 𝜎 ordP−ordQ Q as
univariate polynomials in ℓP. We set P rem Q≔P′ rem Q.

For a chain Q1, . . . ,Ql ∈A{F}\A, we define

P rem (Q1, . . . ,Ql) ≔ (((P rem Ql) rem Ql−1) ⋅ ⋅ ⋅) rem Q1.

If P rem (Q1, . . . ,Ql)=0, we say that P is ℓ-reduced to zero with respect to Q1, . . . ,Ql.
Let us now consider P, Q ∈ A{F} ∖ A such that rank P and rank Q are incomparable

for ≼. So either ℓP ≺ ℓQ and dP >dQ, or ℓP ≻ ℓQ and dP <dQ. If ℓP =𝜎 i F≺ ℓQ =𝜎 j F, then we
define the Δ-polynomial of P and Q by

ΔP,Q ≔ (𝜎 j−i IP) ℓQ
dP−dQ Q− IQ 𝜎 j−i P.

If ℓP ≻ ℓQ, then we define ΔP,Q ≔−ΔQ,P.
We say that the chain Q1,...,Ql is ℓ-autoreduced if Qi is ℓ-reduced with respect to Q1,...,

Qi−1,Qi+1, . . . ,Ql for each i. We say that Q1, . . . ,Ql is coherent if ΔQi,Qj rem (Q1, . . . ,Ql)=0
for all i≠ j such that rank Qi and rank Qj are incomparable for ≼.

2.2. Differential polynomials with power series coefficients
Consider a power series g=z+g𝜅 z𝜅 +g𝜅+1 z𝜅+1 + ⋅ ⋅ ⋅ with g𝜅 ≠0 and 𝜅 ⩾2. Then we may
define an injective homomorphism 𝜎:K[[z]]⟶K[[z]] of K-algebras by

𝜎( f (z)) = f (g(z)),

so K[[z]] is a difference K-algebra with respect to the mapping 𝜎. From now on, we
will assume that A is a difference subalgebra of K[[z]] for 𝜎 (in particular, A is closed
under 𝜎). In addition, we assume that fz−1∈A whenever f ∈zA. This allows us to define
a second operator

𝛿 ≔ 𝜎 −1
z𝜅−1

on A and we note that any operator in A[𝜎] can be rewritten as an operator in A[𝛿] by
substituting 1+z𝜅−1𝛿 for 𝜎.

JORIS VAN DER HOEVEN, GLEB POGUDIN 3



Example 1. For an infinitely large variable x, the shift operator 𝜎: 𝜑(x) ⟼ 𝜑(x + 1) can
be regarded as an injective homomorphism of 𝕂[[x−1]] into itself. Setting z = x−1, this
operator corresponds to the operator 𝜎: f (z)⟼ f � z

1+ z� on 𝕂[[z]].
The corresponding operator 𝛿 in this case will be 𝛿: f (z)→ 1

z � f � z
1+z�− f (z)�. The con-

version between A[𝜎] and A[𝛿] can be performed by formulas

𝜎( f ) = z𝛿( f )+ f , 𝜎 2( f ) = z2

1+ z 𝛿 2( f )+ z (2+ z)
1+z 𝛿( f )+ f .

For example, the operator P≔(1+2z)𝜎 2( f )− f can be written as

P = z2(1+2z)
1+ z 𝛿 2( f )+ z(2+z) (1+2z)

1+z 𝛿( f )+2z f

Given f = ∑i∈ℕ fi zi ∈ A, we will denote by v( f ) ∈ ℕ ∪ {∞} its valuation in z. We
extend this valuation to difference polynomials in A{F} so that v(P) is the minimum of
the valuation of the non-zero coefficients of P if P≠0 and ∞ otherwise. The advantage of
using the operator 𝛿 instead of 𝜎 is that v(𝛿 f )=v( f ) for all f ∈zA. More generally, assume
that P=P[0]F+⋅⋅⋅+P[r]𝛿 r F∈AF+ ⋅⋅⋅ +A𝛿 r F is a linear difference polynomial of order r.
For each i ∈{0, . . . , r}, we have P[i] = ∑j∈ℕ (P[i])j z j. Let v(P) ≔ min (v(P[0]), . . . , v(P[r])).
Then, for any f ∈K[[z]], we have

v(P( f )) ⩾ v(P)+v( f ).

Furthermore, the coefficient in front of zv(P)+v( f ) in P( f ) can be written as

P( f )v(P)v( f) = JP(v( f )) fv( f ), (2)

where JP(n) is the indicial polynomial of P defined by

JP(n) ≔ �
i=1

r

(P[i])v(P) (g𝜅 n)i.

In particular, whenever JP(v( f ))≠0, we have v(P( f ))=v(P)+v( f ), so P does not vanish
at f . We will denote by ZP the largest root of JP in ℕ, while taking ZP=−1 if no such root
exists. This number will be an upper bound for the valuation of a power series solutions
of P=0.

Example 2. (Continuation of Example 1) Consider the operator P from Example 1. We
have v(P[0]) =1, v(P[1]) = 1, v(P[2]) = 2, so v(P)= 1. Then the indicial polynomial will be
JP(n)=−2−2n, so we have ZP =1. This implies that the valuation of every power series
solution of P=0 must be equal to one. Note that there is a solution f = z with v( f )=1.

Given a general difference polynomial P ∈A{F} and a “point” f ∈A, the unique dif-
ference polynomial P+ f ∈A{F} such that

P+ f (g) = P( f +g)

for all g∈A is called the additive conjugate of P by f . This transformation can be thought
as shifting the “origin” to f .

For every difference polynomial P ∈A{F} and i∈ℕ, we define Pi to be the homoge-
neous component of degree i in F, 𝛿F, . . . . If P has total degree d, then P=P0 + ⋅ ⋅ ⋅ +Pd is
the decomposition of P into homogeneous parts. Given f ∈ A, we will use P+ f ,1 as an
abbreviation for (P+ f )1.
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2.3. Logarithmic power series
In order to ensure the existence of solutions to certain difference equations, it is conve-
nient to also consider logarithmic power series f ∈ K[log z][[z]]. Such series can still
be considered as power series f = f0 + f1 z+ ⋅ ⋅ ⋅ in z and we will still denote by v( f ) the
valuation of f in z. The coefficients fi are polynomials in K[log z], and we will write
fi = fi,deg fi (log z)deg fi + ⋅ ⋅ ⋅ + fi,0. Note that, for every p∈K[t] and i∈ℕ, we have

𝛿(p(log z)zi) = gk(p′(log z)+ i p(log z))zi +O(zi+1).

This allows us to generalize (2) to the case when f ∈K[log z][[z]] and P∈K[log z][[z]]{F}
is a homogeneous linear differential polynomial:

P( f )v(P)+v( f ) = JP(v( f )+𝛿) fv( f ), (3)

where 𝛿 acts on K[log z] as the derivation with respect to log z.

3. σ-ALGEBRAIC POWER SERIES

3.1. Univariate σ-algebraic power series
Let K be a field of characteristic zero. Let A ⊆K[[z]] be a 𝜎-difference K-subalgebra of
K[[z]] with corresponding shift operator 𝛿. Assume furthermore that, for all f ∈A and
g∈A∖{0} such that f /g∈K[[z]], we have f /g∈A. We call such an algebra A a 𝜎-differ-
ence power series domain. A series f ∈K[[z]] is said to be 𝜎-algebraic over A if it satisfies
a non-trivial difference equation P( f )=0 with P∈A{F}∖A.

Assume now that A is an effective power series domain. The most obvious way to
effectively represent a 𝜎-algebraic power series over A is to represent it by a pair ( f ,P)
where f is a computable series and P∈A{F}∖ A a non-trivial annihilator with P( f )=0.
We say that the annihilator P is non-degenerate if SP( f )≠0.

3.2. Root separation bounds
Let f ∈ K[[z]] be 𝜎-algebraic over A with annihilator P ∈ A{F} ∖ A. Assume that there
exists a number s∈ℕ such that for any f̃ ∈K[[z]]∖{ f } with v( f̃ − f )⩾s, we have P( f̃ )≠0.
Then we define sP, f to be the smallest such number s and call it the root separation of P
at f . It corresponds to the number of initial conditions that should be known in order
to determine f in a unique way as a root of P.

PROPOSITION 3. Assume that f is 𝜎-algebraic over A with a non-degenerate annihilator
P∈A{F}∖A. Then the following root separation bound holds:

sP, f ⩽ max(v(P+ f ,1),ZP+ f ,1)+1. (4)

Proof. Since SP does not vanish at f , we have P+ f ,1≠0. Let 𝜇≔v(P+ f ,1)⩾v(P+ f ). Given
f̃ = f +𝜀∈K[[z]] with n=v(𝜀)<∞, we have

[P+ f ,1(𝜀)]𝜇+n = JP+ f ,1(n)𝜀n. (5)

Now assume that n⩾max(𝜇,ZP+ f ,1)+1. Then

v(P+ f ,>1(𝜀)) ⩾ 2n > 𝜇+n,
whence

[P( f̃ )]𝜇+n = JP+ f ,1(n)𝜀n .

JORIS VAN DER HOEVEN, GLEB POGUDIN 5



Since n>ZP+ f ,1, we also get JP+ f ,1(n)≠0, which entails P( f̃ )≠0. □

What we will really need is a stronger version of Proposition 3 that also takes care of
logarithmic power series solutions. Assume that there exists a number s ∈ ℕ such that
for any f̃ ∈K[log z][[z]]∖{ f } with v( f̃ − f )⩾s, we have P( f̃ )≠0. Then we define sP, f

∗ to
be the smallest such number s and call it the strong root separation of P at f .

PROPOSITION 4. Assume that f is 𝜎-algebraic over A with non-degenerate annihilator
P∈A{F}∖A. Then the following strong root separation bound holds:

sP, f
∗ ⩽ max(v(P+ f ,1),ZP+ f ,1)+1. (6)

Proof. The proof is similar to the proof of Proposition 3 with the following change.
Writing 𝜀n=𝜀n,k (log z)k + ⋅ ⋅ ⋅ +𝜀n,0 with 𝜀n,k ≠0, we now have

[P+ f ,1(𝜀)]𝜇+n = JP+ f ,1(n) 𝜀n,k (log z)k +O((log z)k−1) (7)

instead of (5), and where O((log z)k−1) stands for a polynomial of degree at most k − 1
in K[log z]. □

Note that in the both propositions above, the non-degeneracy of the annihilator
implies that P+ f ,1 ≠0, so the provided bounds are always finite.

3.3. Existence of logarithmic power series solutions
The following proposition also provides us with a partial converse of Proposition 4.

PROPOSITION 5. Let P∈A{F}∖A and f ∈K[[z]]. Assume that SP( f )≠0 and that v(P( f ))>
2 s, with s⩾v(P+ f ,1)+1. Then there exists a root f̃ ∈K[log z][[z]] of P with v( f̃ − f )>s.

Proof. SP( f )≠0 implies that P+ f ,1≠0. Let 𝜇=v(P+ f ,1)<s. We have to show the existence
of a unique series 𝜀∈K[log z][[z]] with v(𝜀)>s and P+ f (𝜀)=0. We may decompose

P+ f = Η−Δ,
Η = (P+ f ,1)𝜇 z𝜇.

Extracting the coefficient of z𝜇+n in the relation Η(𝜀)=Δ(𝜀) now yields (similarly to (3))

JΗ(n+𝜗) 𝜀n = Δ(𝜀)𝜇+n. (8)

For all n>𝜎, the right hand side Δ(𝜀)𝜇+n only depends on 𝜀0,..., 𝜀n−1, and JH(n+𝜗)∈K[𝜗]
is a non-zero differential operator with 𝜗(log z)=1. Then [6, Proposition 1] implies that
the equation JH(n + 𝜗) 𝜀n = g has a solution in K[log z] for any g ∈ K[log z]. Therefore,
there exists a solution 𝜀 to the equation P( f +𝜀)=0. □

4. EXISTENCE OF SOLUTIONS FOR COHERENT AUTOREDUCED SETS

PROPOSITION 6. Let Q1,Q2,...,Qn be a coherent ℓ-autoreduced chain in K{F}. For every 1⩽ i⩽n,
denote ri ≔ord Qi and di ≔degℓQi

Qi, and assume r1 < r2 < ⋅ ⋅ ⋅ < rn. Let f ∈K[log z][[z]] be a
logarithmic power series and let s∈ℕ be such that

• Q1( f )=0;
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• v(Qi( f ))> s, for i=2, . . . ,n;

• s> max
2⩽i⩽n

((di−1 −di +1)v(IQi( f ))+v(SQi−1( f ))).

Then Q2( f )= ⋅ ⋅ ⋅ =Qn( f )=0.

Proof. Let us prove by induction that Qi( f )=0 for i=1,...,n. The base case i=1 is already
given. Assume that i>1. Since Q1,...,Qn is ℓ-autoreduced, the ℓ-reduction of ΔQi,Qi−1 with
respect to Q1, . . . ,Qn vanishes. Since the leader of ΔQi,Qi−1 is at most X ≔𝜎 ri F, the polyno-
mial ΔQi,Qi−1 also ℓ-reduces to zero with respect to Q1,...,Qi. Setting k≔degX ΔQi,Qi−1<di−1,
the ℓ-reduction of ΔQi,Qi−1 with respect to Qi therefore yields a relation

IQi
k−di+1 ΔQi,Qi−1 = AQi +B,

where degX B < di and the ℓ-reduction of B with respect to Q1, . . . , Qi−1 is zero. Since
degX B < di and dj > di for all j < i, we actually must have degX B = 0. Writing R ≔
𝜎 ri−ri−1 Qi−1, so that

IQi R = ΔQi,Qi−1 +𝜎 ri−ri−1(IQi−1)Xdi−1−di Qi.

we have

IQi
di−1−di+1 R = IQi

di−1−di ΔQi,Qi−1 + IQi
di−1−di 𝜎 ri−ri−1(IQi−1)Xdi−1−di Qi

= �IQi
di−1−(k+1)A+ IQi

di−1−di 𝜎 ri−ri−1(IQi−1)Xdi−1−di�Qi + IQi
di−1−(k+1) B.

This yields a new relation of the form

IQi
di−1−di+1R = CQi +D, (9)

where degX D=0. Differentiating this relation with respect to X yields

IQi
di−1−di+1 𝜎 ri−ri−1(SQi−1) = C′Qi +CSQi.

Now we evaluate this relation at f and compute the valuations of both sides. This yields

s > v�IQi
di−1−di+1( f ) SQi−1( f )� = v(C′( f )Qi( f )+C( f )SQi( f ))

Since v(Qi( f )) > s, we deduce C( f ) SQi( f ) ≠ 0, whence C( f ) ≠ 0. Since the ℓ-reduction
of B with respect to Q1, . . . ,Qi−1 vanishes and IQj( f )≠0 for all j< i, we have B( f )=0 and
D( f )=0. Evaluating (9) at f , we conclude that C( f )Qi( f )=0 and therefore Qi( f )=0. □

5. AN EFFECTIVE ZERO TEST

We say that K is effective if its elements can be represented effectively and if all field
operations can be carried out by algorithms. We call K an effective diophantine field if all
positive integer roots of polynomials over K can be determined by an algorithm. In par-
ticular, this means that K has an effective zero test, i.e. there exists an algorithm which
takes an element x of K on input and which returns true if x=0 and false otherwise.

A power series f ∈ K[[z]] is said to be computable, if there exists an algorithm for
computing fn as a function of n∈ℕ. The power series domain A is said to be effective, if
its elements are all effective power series and if the difference K-algebra operations can
be carried out by algorithms. We notice that the difference K-algebra K[[z]]com of all
computable series is effective, although it does not have an effective zero test.
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Assume now that we are given an effective power series domain A with an effective
zero test over an effective diophantine field K. Assume also that we are given an effective
𝜎-algebraic power series f ∈K[[z]] and an annihilator P∈A{F}∖A for f . Assume finally
that the annihilator P is non-degenerate, that is, SP( f ) ≠ 0. In this case, P+ f ,1 ≠ 0, so we
may compute v(P+ f ,1) and ZP+ f ,1 by expanding the power series coefficients of P+ f ,1. In
other words, the bound (4) from Proposition 3 provides us with an effective upper bound
for sP, f . Proposition 4 also yields an upper bound for sP, f

∗ .
Given difference polynomials Q1, . . . , Qn ∈ A{F}, we will now give an algorithm

ZeroTest for testing whether Q1, . . . , Qn simultaneously vanish at f . In particular, this
will show that the A-algebra A⟨ f ⟩∩K[[z]] is again an effective power series domain.

Algorithm ZeroTestf,P(Q1, . . . , Qn)
INPUT: Q1, . . . ,Qn ∈A{F}\{0}
OUTPUT: true if Q1( f )= ⋅ ⋅ ⋅ =Qn( f )=0 and false otherwise
PARAMETERS: a computable f ∈K[[z]] with non-degenerate annihilator P∈A{F}∖A

1 If {Q1, . . . ,Qn}∩A≠∅, then return false
2 Let R1, . . . , Rr be an ℓ-autoreduced chain consisting of elements of minimal Ritt

rank in {Q1, . . . ,Qn}, and take this chain to be of maximal length
3 For i=1, . . . , r and S∈{IRi,SRi}:
4 S≔S rem (R1, . . . ,Rr)
5 If S≠0, then
6 If ZeroTestf ,P(S,Q1, . . . ,Qn), then return true
7 Expand S( f ),Q1( f ), . . . ,Qn( f ) until a non-zero coefficient is found
8 If this coefficient comes from one of the Qi, then return false
9 For Q∈{Q1, . . . ,Qn,P}:

10 If T ≔Q rem (R1, . . . ,Rr)≠0, then return ZeroTestf ,P(T,Q1, . . . ,Qn)
11 For 2⩽ i⩽ r:
12 If T ≔ΔRi−1,Ri rem (R1, . . . ,Ri)≠0, then return ZeroTestf ,P(T,Q1, . . . ,Qn)
13 Let s0 ≔ max

2⩽i⩽r
((degℓi−1 Ri−1−degℓi Ri +1)v(IRi( f ))+v(SRi−1( f )))

14 Let s≔max(s0,v(P+ f ,1),ZP+ f ,1,v(R+ f ,1))+1, where R≔R1

15 Return the result of the test min(v(R1( f )), . . . ,v(Rr( f )))>2 s

Remark 7. Obviously, the last test in step 15 requires the computation of at most 2 s+1
coefficients of the series R1( f ), . . . ,Rr( f ). Such power series expansions can be done effi-
ciently using relaxed power series arithmetic [5].

THEOREM 8. The algorithm ZeroTest is correct and terminates.

Proof. Let us first prove that the algorithm always terminates. To each input Q1,...,Qn, we
assign the tuple with the Ritt ranks of R1, . . . ,Rr. We order such tuples lexicographically,
and this ordering is well-founded. Then the assigned tuple strictly decreases for this
ordering during any recursive call. This shows that our algorithm always terminates.

In step 1, note that we assumed that Qi ≠0 as an element of A{F} for all i. So if Qi ∈A,
then we indeed have Qi( f ) = Qi ≠0. The correctness of the algorithm is also clear if we
return during one of the steps 6, 8, 10, or 12.

Assume now that we reach step 15. By construction, this means that IRi( f )SRi( f )≠0
for every 1 ⩽ i ⩽ r and Q rem (R1, . . . , Rr) = 0 for every Q ∈{Q1, . . . , Qn, P}. Furthermore,
since we passed step 11, the chain R1, . . . ,Rr is both coherent and ℓ-autoreduced.
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Applying Proposition 5, we obtain a unique logarithmic power series f̃ ∈K[log z][[z]]
with R1( f̃ )=0 and v( f̃ − f )>s. Since s⩾s0, Proposition 6 implies that R2( f̃ )=R3( f̃ )=⋅⋅⋅=
Rr( f̃ ) = 0. Since each of Q1, . . . , Qn, P is ℓ-reducible to zero with respect to R1, . . . , Rr
and none of the initials of R1, . . . ,Rr vanishes at f̃ , we deduce that Q1( f̃ )= ⋅ ⋅ ⋅ =Qn( f̃ )=
P( f̃ ) = 0. Proposition 4 applied to P and its roots f and f̃ implies that f = f̃ whenever
the test succeeds, so the returned result is correct. □

Remark 9. One interesting aspect of the improved zero test is that it still works if Q
depends on parameters 𝜆1,...,𝜆l in K (when using the technique of dynamic evaluation [1]
for examining the finite number of branches that can occur depending on algebraic con-
ditions on the parameters). The original equation P may also depend on parameters, as
long as we have a uniform bound for ZP+ f ,1.

6. EXAMPLES

6.1. Stirling's series
Consider Stirling's series

log n! = log Γ(n+1) = n log n−n+ 1
2 log (2πn)+ �

k⩾1

Sk

nk .

Rewritten in terms of z= 1
n , the rightmost series S(z)≔∑k∈ℕ Sk zk satisfies

z𝜎(S)− zS−z+�1+ z
2� log(1+ z) = 0,

where 𝜎: f (z)↦ f � z
1+ z�. The coefficients of this difference equation belong to

A = ℚ{z, log(1+z)}
= ℚ�z, log(1+z), log�1+ z

1+z�, log�1+ z
2+ z�, . . . �,

where we note that log(1+z) is 𝜎-transcendental over ℚ(z). In particular, A comes with
a natural zero test and our algorithm yields a zero test for A{S}.

One can perform the same computations for functions of the form Γ(𝛼n+𝛽). Having
a zero test for expressions involving the corresponding Stirling series can be used to
prove identities for the gamma function, for example, to formally establish the Legendre
duplication formula:

Γ(n)Γ�n+ 1
2� = 21−2n 𝜋√ Γ(2n). (10)

In order to do this, we inductively construct a zero test for the 𝜎-ring

ℚ�z, log(1+z), log�1+ z
1+ z/2�, log�1+ z

2�,S(z),S� z
1+z/2�,S�z

2��

and then test whether the following expression is zero:

z�S� z
2�−S(z)−S� z

1+ z/2��− log�1+ z
2�+ z

2.

Our implementation allows to do this; the details can be found in the notebook
https://github.com/pogudingleb/DifferenceZeroTest/blob/main/examples/
LegendreDuplication.ipynb.

JORIS VAN DER HOEVEN, GLEB POGUDIN 9

https://github.com/pogudingleb/DifferenceZeroTest/blob/main/examples/LegendreDuplication.ipynb
https://github.com/pogudingleb/DifferenceZeroTest/blob/main/examples/LegendreDuplication.ipynb
https://github.com/pogudingleb/DifferenceZeroTest/blob/main/examples/LegendreDuplication.ipynb
https://github.com/pogudingleb/DifferenceZeroTest/blob/main/examples/LegendreDuplication.ipynb
https://github.com/pogudingleb/DifferenceZeroTest/blob/main/examples/LegendreDuplication.ipynb
https://github.com/pogudingleb/DifferenceZeroTest/blob/main/examples/LegendreDuplication.ipynb
https://github.com/pogudingleb/DifferenceZeroTest/blob/main/examples/LegendreDuplication.ipynb
https://github.com/pogudingleb/DifferenceZeroTest/blob/main/examples/LegendreDuplication.ipynb
https://github.com/pogudingleb/DifferenceZeroTest/blob/main/examples/LegendreDuplication.ipynb
https://github.com/pogudingleb/DifferenceZeroTest/blob/main/examples/LegendreDuplication.ipynb
https://github.com/pogudingleb/DifferenceZeroTest/blob/main/examples/LegendreDuplication.ipynb
https://github.com/pogudingleb/DifferenceZeroTest/blob/main/examples/LegendreDuplication.ipynb
https://github.com/pogudingleb/DifferenceZeroTest/blob/main/examples/LegendreDuplication.ipynb
https://github.com/pogudingleb/DifferenceZeroTest/blob/main/examples/LegendreDuplication.ipynb
https://github.com/pogudingleb/DifferenceZeroTest/blob/main/examples/LegendreDuplication.ipynb


Note that, althought the identity (10) can be proved for integer values of n using the
algorithms for P-recursive sequences, we are not aware of an existing symbolic compu-
tation algorithm that could be used to verify this identity automatically.

6.2. Mixing differential and difference extensions
The example from the previous subsection required the incorporation of logarithms in
our base ring A. Such logarithms are usually construed as solutions to differential equa-
tions. In fact, it is possible to alternate the adjunction of solutions to differential equations
to our base ring A with the adjunction solutions to difference equations, while preserving
our ability to do zero testing. Let us briefly explain how this works.

Assume that A ∋ z is an effective power series domain that is closed under both
𝜎: 𝜑 ↦ 𝜑 ∘ g and differentiation ∂ = ∂/∂z. Given a 𝜎-algebraic power series f over A,
we have seen that A0 = A( f , 𝜎 f , . . . ) ∩ 𝕂[[z]] is an effective power series domain that
is closed under 𝜎. Moreover, there is a polynomial P∈A[F,...,𝜎 r F] with P( f ,...,𝜎 r f )=0.
Differentiating this equation, we get

∂P
∂F( f , . . . , 𝜎 r f ) f ′+ ⋅ ⋅ ⋅ + ∂P

∂ (𝜎 r F)( f , . . . ,𝜎 r f ) (𝜎 r(z))′𝜎 r( f ′) = 0,

so ∂ f is 𝜎-algebraic over A0. Consequently, A1 =A0( f ′, 𝜎 f ′, . . . )∩ 𝕂[[z]] is an effective
power series domain that is closed under 𝜎. By induction, we obtain a sequence (An)n∈ℕ
of effective power series domains with An =An−1( f (n), 𝜎 f (n), . . . )∩ 𝕂[[z]] and such that
each An is closed under 𝜎. We conclude that A∞ =A0∪A1∪ ⋅ ⋅ ⋅ ∋ f is an effective power
series domain that is closed under both 𝜎 and ∂.

In a similar way, given a d-algebraic power series f over A, and in view of the algo-
rithm from [4], we may construct a sequence (An)n∈ℕ of effective power series domains
that are closed under ∂, with A0 = A( f , f ′, . . . ) ∩ 𝕂[[z]] and An = An−1(𝜎 n f , 𝜎 n f ′, . . . ) ∩
𝕂[[z]]. Then A∞=A0∪A1∪⋅⋅⋅∋ f is an effective power series domain that is closed both
under 𝜎 and ∂.

6.3. Barnes G-function and the log-gamma integral
The Barnes G-function is a solution of the difference equation

G(n+1) = Γ(n)G(n)

and the log-gamma integral is defined by

Λ(n) ≔ �
0

n
log Γ(x)dx.

These functions are related via

Λ(n) = n (1−n)
2 + n

2 log (2π)+n log Γ(n)− log G(1+n).

In view of subsection 6.2, such relations can be proved automatically using our algorithm
in combination with the zero test from [4]. Alternatively, we may derive a difference
equation for Λ:

Λ(n+1) = �
0

1
log Γ(x) dx+�

0

n
log Γ(x+1)dx

= �
0

1
log Γ(x) dx+�

0

n
(log x+Γ(x))dx

= Λ(n)+n log n−n+Λ(1).
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After rewriting G and Λ in terms of z, we may then directly use our new algorithm.
Our implementation allows to do this; the details can be found in the notebook
https://github.com/pogudingleb/DifferenceZeroTest/blob/main/examples/
LoggammaIntegral.ipynb.
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