ON A DIFFERENTIAL INTERMEDIATE VALUE PROPERTY

MATTHIAS ASCHENBRENNER, LOU VAN DEN DRIES, AND JORIS VAN DER HOEVEN

ABSTRACT. Liouville closed H-fields are ordered differential fields whose order-
ing and derivation interact in a natural way and where every linear differential
equation of order 1 has a nontrivial solution. (The introduction gives a precise
definition.) For a Liouville closed H-field K with small derivation we show:
K has the Intermediate Value Property for differential polynomials iff K is
elementarily equivalent to the ordered differential field of transseries. We also
indicate how this applies to Hardy fields.

INTRODUCTION

Throughout this introduction K is an ordered differential field, that is, an ordered
field equipped with a derivation 9: K — K. (We usually write f’ instead of df,
for f € K.) Its constant field

C:={feK: f =0}
yields the (convex) valuation ring
O = {feK:|f|<cforsomeceC}
of K, with maximal ideal
o:={feK:|f|[<cforallc>0inC}.

(It may help to think of the elements of K as germs of real valued functions and
of f € Og and f € og as f = O(g) and f = o(g), respectively.) The above
definitions exhibit C, O, and o as definable in K in the sense of model theory.

Key example: the ordered differential field T of transseries, which contains R
as an ordered subfield, and where C' = R. We refer to [3] for the rather elaborate
construction of T and for any fact about T that gets mentioned without proof.

Other important examples are Hardy fields. (Hardy [6] proved a striking theorem
on logarithmic-exponential functions. Bourbaki [5] put this into the general setting
of what they called Hardy fields.) Here we can give a definition from scratch that
doesn’t take much space. Notation: C is the ring of germs at +oo of continuous
real-valued functions on halflines (a,4+00), a € R. For r = 1,2,..., let C" be the
subring of C consisting of the germs at +o0o of r-times continuously differentiable
real-valued functions on such halflines. This yields the subring

c=> = () ¢

reN=1

Date: May 2021.
The first-named author was partially supported by NSF Grant DMS-1700439. We thank Allen
Gehret for commenting on an earlier version of this paper.

1



2 ASCHENBRENNER, VAN DEN DRIES, AND VAN DER HOEVEN

of C, and C<* is naturally a differential ring. For a germ f € C we let f also denote
any real valued function representing this germ, if this causes no ambiguity. A real
number is identified with the germ of the corresponding constant function: R C C.

A Hardy field is by definition a differential subfield of C<°°. Ezamples:
Q, R, R(z), R(z,e"), R(z,e% logz), R(,T,T” ...),

where x denotes the germ at +oc of the identity function on R. All these are actually
analytic Hardy fields, that is, its elements are germs of real analytic functions.

Let H be a Hardy field. Then H is an ordered differential field: for f € H,
either f(z) > 0 eventually (in which case we set f > 0), or f(z) = 0, eventually,
or f(x) < 0, eventually; this is because f # 0 in H implies f has a multiplicative
inverse in H, so f cannot have arbitrarily large zeros. Also, if f/ < 0, then f is
eventually strictly decreasing; if f' = 0, then f is eventually constant; if f/ > 0,
then f is eventually strictly increasing.

In order to state the main result of this paper we need a bit more terminology: an
H-field is a K (that is, an ordered differential field) such that:

e forall fe K, if f> C, then f' > 0;

e O =C+ o (so C maps isomorphically onto the residue field O/0).
We also say that K has small derivation if for all f € o we have f’ € 0. Hardy
fields have small derivation, and any Hardy field containing R is an H-field.

An H-field K is said to be Liouville closed if it is real closed and for every f € K
there are g,h € K* such that f = ¢’ = h’/h. The ordered differential field T is
a Liouville closed H-field with small derivation. Any Hardy field H O R has a
smallest (with respect to inclusion) Liouville closed Hardy field extension Li(H).
(The notions of “H-field” and “Liouville closed H-field” are introduced in [1]. The
capital H is in honor of Hardy, Hausdorff, and Hahn, who pioneered various aspects
of our topic about a century ago, as did Du Bois-Reymond and Borel even earlier.)

Now a very strong property: we say K has DIVP (the Differential Intermediate
Value Property) if for every polynomial P € K[Yp,...,Y;] and all f < g in K with

P(f,f.....f") <0 < P(g,g,....9")

there exists y € K such that f <y < g and P(y,%/,...,y") = 0. (Existentially
closed ordered differential fields have DIVP by [9] and [10, Proposition 1.5]; this
has limited interest for us since the ordering and derivation in those structures do
not interact.) Actually, DIVP is a bit of an afterthought: in [3] we considered
instead two robust but rather technical properties, ®-freeness and newtonianity,
and proved that T is ®-free and newtonian. (One can think of newtonianity as a
variant of differential-henselianity.) Afterwards we saw that “®-free + newtonian”
is equivalent to DIVP, for Liouville closed H-fields. Our aim is to establish this
equivalence: Theorem 2.7, the main result of this short paper.

We did not consider DIVP in [3], but it is surely an appealing property and easier
to grasp than the more fundamental notions of ®-freeness and newtonianity. (The
latter make sense in a wider setting of valued differential fields where the valuation
does not necessarily arise from an ordering, as is the case for H-fields.)

Besides [3] we shall rely on [7], which focuses on a particular ordered differential
subfield of T, namely T,, consisting of the so-called grid-based transseries; see
also [3, Appendix A]. We summarize what we need from [7] as follows:
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Ty is a newtonian ®-free Liouville closed H-field with small derivation, and Tg
has DIVP. We alert the reader that the terms newtonian and ®-free do not occur
in [7], and that T, there is denoted by T.

We call attention to the fact that K is a Liouville closed H-field iff K |= LiH for a
set LiH (independent of K') of sentences in the language of ordered differential fields.
Also, for H-fields, “w-free” is expressible by a single sentence in the language of
ordered differential fields, and “newtonian” as well as “DIVP” by a set of sentences
in this language. The reason that “@-free + newtonian” is central in [3] are various
theorems proved there, which are also relevant here. To state these theorems, we
consider an H-field K below as an L-structure, where

L= {07 1) +a ) Xaa7 <7—\<}

is the language of ordered valued differential fields. The symbols 0, 1, +, —, X, 9, <
name the usual primitives of K, and < encodes its valuation: for a,b € K,

axb <= aecOb
We can now summarize what we need from [3, Chapters 15, 16] as follows:

The theory of newtonian ®-free Liouville closed H-fields is model complete, and
is the model companion of the theory of H-fields. The theory of newtonian ®-free
Liouwville closed H -fields whose derivation is small is complete and has T as a model.

For an H-field K its valuation ring O and so the binary relation < on K can be
defined in terms of the other primitives by an existential formula independent of K.
However, by [3, Corollary 16.2.6] this cannot be done by a universal such formula
and so for the model completeness above we cannot drop < from the language L.

Corollary 0.1. FEvery newtonian ®-free Liouville closed H-field has DIVP.

Proof. Let K be a newtonian w-free Liouville closed H-field. If the derivation of K
is small, then DIVP follows from the results from [7] quoted earlier and the above
completeness result from [3]. Suppose the derivation of K is not small. Replacing
the derivation 9 of K by a multiple ¢~'9 with ¢ > 0 in K transforms K into its
so-called compositional conjugate K?, which is still a newtonian o-free Liouville
closed H-field, and K has DIVP iff K¢ does. By 4.4.7 and 9.1.5 in [3] we can
choose ¢ > 0 in K such that the derivation ¢~'9 of K? is small. ([

This gives one direction of Theorem 2.7. In the rest of this paper we prove a strong
version, Corollary 2.6, of the other direction, without using [7] but relying heavily
on various parts of [3] with detailed references. Theorem 2.7 and the results quoted
above from [3] yield the result stated in the abstract: a Liouville closed H-field
with small derivation is elementarily equivalent to T iff it has DIVP.

Connection to Hardy fields. Every Hardy field H extends to a Hardy field
H(R) O R, and H(R) is in particular an H-field. We refer to [4] for a discussion
of the conjecture that any Hardy field containing R extends to a mewtonian ®-
free Hardy field. At the end of 2019 we finished the proof of this conjecture by
considerably refining material in [3] and [8]; this amounts to a rather complete
extension theory of Hardy fields. Note that every Hardy field extends to a maximal
Hardy field, by Zorn, and so having established this conjecture we now know that
all maximal Hardy fields are elementarily equivalent to T, as ordered differential
fields. Since C has the cardinality ¢ = 2% of the continuum, there are at most 2°
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many maximal Hardy fields, and we also have a proof that there are exactly that
many. (We thank Ilijas Farah for a useful hint on this point.) These remarks on
Hardy fields serve as an announcement. A rather voluminous work containing the
proof of the conjecture is currently being prepared for publication. We also hope to
include there a proof of DIVP for newtonian w-free H-fields that does not depend
as in the present paper on it being true for T,, whose proof in [7] uses the particular
nature of T,.

We have a second conjecture about Hardy fields in [4], whose proof is not yet
finished at this time (May 2021): for any mazimal Hardy field H and countable
subsets A < B in H there exists y € H such that A < y < B. This means that
the underlying ordered set of a maximal Hardy field is an n;-set in the sense of
Hausdorff. Together with the (now established) first conjecture and results from [3]
it implies: all mazximal Hardy fields are back-and-forth equivalent as ordered differ-
ential fields, and thus isomorphic assuming CH, the Continuum Hypothesis.

1. PRELIMINARIES

In order to make free use of the valuation-theoretic tools from [3] and to make
this paper self-contained modulo references to specific results from the literature
we provide more background in this section before returning to DIVP.

Notation and terminology. Throughout, m, n range over N = {0,1,2,...}.
Given an additively written abelian group A we let A7 := A\ {0}. Rings are
commutative with identity 1, and for a ring R we let R* be the multiplicative
group of units (consisting of the a € R such that ab = 1 for some b € R). A
differential ring will be a ring R containing (an isomorphic copy of) Q as a subring
and equipped with a derivation 9: R — R; note that then Cg := {a €R:9a)= O}
is a subring of R, called the ring of constants of R, and that Q C Cr. If R is a
field, then so is C'r. An ordered differential field is in particular a differential ring.

Let R be a differential ring and ¢ € R. When its derivation 9 is clear from the

context we denote d(a),d%(a),...,9"(a),... by a’,a”,...,a™ ... andif a € R*,
then af denotes a'/a, so (ab)! = at + b for a,b € R*. In Section 2 we need
to consider the function w = wr: R — R given by w(z) = —22' — 22, and the

function ¢ = or: R* — R given by o(y) = w(z) + 32 for z := —y.

We have the differential ring R{Y'} = R[Y,Y’,Y",...] of differential polynomials
in an indeterminate Y over R. We say that P = P(Y) € R{Y} has order at
most » € Nif P € R[Y,Y’,...,Y()].

For ¢ € R* we let R® be the compositional conjugate of R by ¢: the differential
ring with the same underlying ring as R but with derivation ¢~'9 instead of 9. We
then have an R-algebra isomorphism

P P?: R{Y} = R*{Y}

with P?(y) = P(y) for all y € R; see [3, Section 5.7].

For a field K we have K* = K7, and a (Krull) valuation on K is a surjective
map v: K* — T onto an ordered abelian group I' (additively written) satisfying
the usual laws, and extended to v: K — ', :=T'U {00} by v(0) := oo, where the
ordering on I' is extended to a total ordering on I', by v < oo for all v € T

Let K be a valued field: a field (also denoted by K) together with a valuation
ring O of that field. This yields a valuation v: K* — T' on the underlying field
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such that O = {a € K : va > 0} as explained in [3, Section 3.1]. We introduce
various binary relations on the set K by defining for a,b € K:

a=<b &= va=uvb, a<b & va> b, a<b & va> b,
ax>b & b<a, a>b & b<a, a~b & a—b=<a.

It is easy to check that if @ ~ b, then a, b # 0, and that ~ is an equivalence relation
on K*. We also let 0 = {a € K : va > 0} be the maximal ideal of O, so O/0 is the
residue field of the valued field K. A convex subgroup A of the value group I' of v
gives rise to the A-coarsening of the valued field K; see [ADH, 3.4].

H-fields and pre-H-fields. As in [3], a valued differential field is a valued field K
with residue field of characteristic zero and equipped with a derivation 9: K — K.
An ordered valued differential field is a valued differential field K equipped with
an ordering on K making K an ordered field. We consider any H-field K as an
ordered valued differential field whose valuation ring is the convex hull in K of its
constant field C, in accordance with construing it as an L-structure as specified in
the introduction.

A pre-H-field is by definition an ordered valued differential subfield of an H-
field. By [3, Sections 10.1, 10.3, 10.5], an ordered valued differential field K is a
pre- H-field iff the valuation ring O of K is convex in K, f' > 0 for all f > O in K,
and f' < g' forall f,g € K* with f < 1and g < 1. Any Hardy field H is construed
as a pre-H-field by taking the convex hull of Q in H as its valuation ring, giving
rise to the so-called “natural valuation” on H as an ordered field. At the end of
Section 9.1 in [3] we give Q(v2 + z~1) as an example of a Hardy field that is not
an H-field. Any ordered differential field K with the trivial valuation ring O = K
is a pre-H-field (so the valuation ring of a pre-H-field K is not always the convex
hull in K of its constant field, in contrast to Hardy fields and H-fields). If K is
a pre-H-field whose valuation ring is nontrivial, then the valuation topology on K
equals its order topology, by [3, Lemma 2.4.1].

Let K be a pre-H-field. Then the derivation of K and its valuation v: K* — T"
induce an operation 1: I'7 — T, given by ¥ (vf) = v(fT) for f % 1 in K*; the
pair (T',%) is called the H-asymptotic couple of K; see [3, Section 9.1]. Below
we assume some familiarity with (T',4), and properties of K based on it, such
as K having asymptotic integration and K having a gap [3, Sections 9.1, 9.2]. The
flattening of K is the I"-coarsening of K where I” = {vf : f € K*, f' < f}, with
associated binary relations =<, < etc.; see [ADH, 9.4].

2. DIVP

In this section K is a pre-H-field. We let O be its valuation ring, with maximal
ideal o, and corresponding valuation v: K* — I' = v(K*). Let (I',%) be its H-
asymptotic couple, and ¥ := {w(fy) 1y € I‘7ﬁ}. Recall that “K has DIVP” means:
for all P(Y) € K{Y} and f < g in K with P(f) <0 < P(g) there is a y € K such
that f < y < g and P(y) = 0. Restricting this to P of order < r, where r € N,
gives the notion of »-DIVP. Thus K having 0-DIVP is equivalent to K being real
closed as an ordered field. In particular, if K has 0-DIVP, then I' = v(K*) is
divisible. From [3, Section 2.4] recall our convention that K~ = {a € K : a > 0},
and similarly with < replacing >.
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Lemma 2.1. Suppose I' # {0} and K has 1-DIVP. Then 0K = K, (K>)! =
(K<) is a convex subgroup of K, ¥ has no largest element, and ¥ is convex in T

Proof. We have y' = 0 for y = 0, and 3’ takes arbitrarily large positive values in K
as y ranges over K~ = {a € K : a > O}, since by [3, Lemma 9.2.6] the set (I'<)’
is coinitial in I'. Hence y’ takes all positive values on K~, and therefore also all
negative values on K<. Thus 0K = K. Next, let a,b € K-, and suppose s € K lies
strictly between af and bf. Then s = y' for some y € K> strictly between a and b;
this follows by noting that for y = a and y = b the signs of sy — 3y’ are opposite.
Let 8 € ¥ and take a € K with v(a’) = . Then a > 1, since a < 1 would
give v(a’) > ¥. Hence for a = va < 0 we have a +af = 3, so af > 3. Thus ¥ has
no largest element. Therefore the set ¥ is convex in T'. ([

Thus the ordered differential field Tiog of logarithmic transseries [3, Appendix A]
does not have 1-DIVP, although it is a newtonian ®-free H-field.

Does DIVP imply that K is an H-field? No: take an Nyp-saturated elementary
extension of T and let A be as in [3, Example 10.1.7]. Then the A-coarsening of K
is a pre-H-field with DIVP and nontrivial value group, and has a gap, but it is not
an H-field. On the other hand:

Lemma 2.2. Suppose K has 1-DIVP and has no gap. Then K is an H-field.

Proof. In [3, Section 11.8] we defined
I(K) == {ye K: y< f for some f € O},
a convex O-submodule of K. Since K has no gap, we have
do C I(K) = {ye K: y< f for some f € o}.

Also T # {0}, and so (T',9) has asymptotic integration by Lemma 2.1. We show
that K is an H-field by proving I(K) = do, so let g € I(K), g < 0. Since (I'"”)
has no least element we can take positive f € o such that f' = g. Since f’ < 0,
this gives f/ < g. Since (I'”)’ is cofinal in T' we can also take positive h € o such
that b’ < g, which in view of A’ < 0 gives g < h’. Thus f’ < g < h/, and so 1-DIVP
yields a € 0 with g = a’. O

We refer to Sections 11.6 and 14.2 of [3] for the definitions of A-freeness and r-
newtonianity (r € N). From the introduction we recall that w(z) := —22" — 22
Below, compositionally conjugating an H-field K means replacing it by some K¢
with ¢ € K~; this preserves most relevant properties like being an H-field, being
A-free, r-DIVP, and r-newtonianity, and it replaces ¥ by ¥ — v¢.

Lemma 2.3. Suppose K is an H-field, T # {0}, and K has 1-DIVP. Then K is
A-free and 1-newtonian, and the subset w(K) of K is downward closed.

Proof. Note that K has (asymptotic) integration, by Lemma 2.1. Assume towards
a contradiction that K is not A-free. We arrange by compositional conjugation
that K has small derivation, so K has an element x > 1 with 2’ = 1, hence z > C.
A construction in the beginning of [3, Section 11.5] yields by [3, Lemma 11.5.2] a
pseudocauchy sequence (A,) in K with certain properties including A, ~ z~! for
all p. As K is not A-free, (A,) has a pseudolimit A € K by [3, Corollary 11.6.1].
Then s := —A ~ —2~ 1, and s creates a gap over K by [3, Lemma 11.5.14]. Now
note that for P := Y’ + sY we have P(0) = 0 and P(2?) = 2x + s2? ~ z, so by
1-DIVP we have P(y) = 1 for some y € K, contradicting [3, Lemma 11.5.12].
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Let P € K{Y} of order at most 1 have Newton degree 1; we have to show that P
has a zero in O. We know that K is A-free, so by [3, Proposition 13.3.6] we can pass
to an elementary extension, compositionally conjugate, and divide by an element
of K* to arrange that K has small derivation and P = D + R where D = ¢Y +d
or D = ¢Y’ with ¢,d € C, ¢ # 0, and where R <" 1. Then R(a) <" 1 for all a € O.
If D = c¢Y + d, then we can take a,b € C with D(a) < 0 and D(b) > 0, which in
view of R(a) < D(a) and R(b) < D(b) gives P(a) < 0 and P(b) > 0, and so P has a
zero strictly between a and b, and thus a zero in O. Next, suppose D = ¢Y’. Then
we take t € 07 with v(t7) = v(¢t), that is, ¢’ < 2, so

P(t) = ct' + R(t), P(-t) = —ct'+ R(-t), R(t), R(—t) < t.

Hence P(t) and P(—t) have opposite signs, so P has a zero strictly between ¢
and —t, and thus P has a zero in O.

From w(z) = —22 — 22’ we see that w(z) — —00 as z — +o00 and as z — —o0
in K, so w(K) is downward closed by 1-IVP. O

For results involving r-DIVP for r > 2 we need a variant of [3, Lemma 11.8.31]. To
state this variant we introduce as in [3, Section 11.8] the sets

IK) = {a':ae K\O} C K>, AK) := -I'(K) C K.

The superscripts T, | used in the statement of Lemma 2.4 below indicate upward,
respectively downward, closure in the ordered set K, as in [3, Section 2.1].

Lemma 2.4. Let K be an H-field with asymptotic integration. Then
K> = I(K)”Ul(K)", o(K>\TI)") C w(AK))*

Proof. If a € K, a > I(K), then a > b for some b € K1, and thus a € T'(K)".
Next, let s € K> \I'(K)"; we have to show o(s) € w(A(K))*. Note that s € I(K)>
by what we just proved. From [3, 10.2.7 and 10.5.8] we obtain an immediate
H-field extension L of K and a € L™! with s = (1/a)’. As in the proof of [3,
11.8.31] with L instead of K this gives o(s) € w(A(L))¥, where | indicates here
the downward closure in L. It remains to note that w is increasing on A(L) by the
remark preceding [3, 11.8.21], and that A(K) is cofinal in A(L) by [3, 11.8.14]. O

The concept of ®-freeness is introduced in [3, Section 11.7]. If K has asymptotic
integration, then by [3, 11.8.30]: K is o-free & K = w(A(K))* Uo(I(K))T.

The next lemma also mentions the differential field extension K[i] of K where
i2 = —1, as well as linear differential operators over differential fields like K

and Ki]; for this we refer to [3, Sections 5.1, 5.2].

Lemma 2.5. Suppose K is an H-field, T' # {0}, r > 2, and K has r-DIVP. Then
the following hold, with (i), (ii), (iii) using only the case r = 2:
(i) K =w(K)Uo(K”) =w(AK))*Us(T(K))T;
(i) K is o-free and w(K) = w(A(K))¥;
(iii) for all a € K the operator 9> — a splits over K]|il;
(iv) K is r-newtonian.

Proof. For (i) we use the end of [3, Section 11.7] to replace K with a compositional
conjugate so that 0 € ¥. Then K has small derivation, and we have a € K~
such that a % 1 and a' < 1. Replacing a by a~! if necessary this gives at = —¢
with ¢ <1, ¢ >0, s0o a < 1. Then ¢~ 'a’ = —1; replacing K by K¢ and renaming
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the latter as K this means a’ = —1. Let f € K; to get f € w(A(K))*Uo(I(K))T,
note first that 1 = (1/a)’ € T(K), so 0 € A(K). Also w(A(K))* C w(K) by
Lemma 2.3.

If f <0, then w(0) = 0 gives f € w(A(K))*. So assume f > 0; we first show
that then f € o(K~). Now for y € K=, f = o(y) is equivalent (by multiplying
with y?) to P(y) = 0, where

P(Y) = 2YY" - 3(Y")2 +Y* — fY? € K{Y}.
See also [3, Section 13.7]. We have P(0) = 0 and P(y) — 400 as y — +oo (because

of the term y*). In view of 2-DIVP it will suffice to show that for some y > 0 in K
we have P(y) < 0. Now with y € K~ and z := —y' we have

P(y) = Z’/2<U(y)_f) = y2(w(z)+y2—f), hence
P(a) = a®*(w(l)+a®*—f) = a®*(-1+a*—f) < 0,

so f € o(K>). By the second inclusion of Lemma 2.4 this yields f € w(A(K))*
or f € o(I(K)"). But we have o(I'(K)T) C o(I'(K))T, because ¢ is increasing
on ['(K)T by the remark preceding [3, 11.8.30]. This concludes the proof of (i), and
then (ii) follows, using for its second part also the fact stated just before [3, 11.8.29]
that we have w(K) < o(I'(K)).

Now (iii) follows from K = w(K)Uo(K~) by [3, Section 5.2, (5.2.1)]. As to (iv),
let P € K{Y} of order at most r have Newton degree 1; we have to show that P
has a zero in O. For this we repeat the argument in the proof of Lemma 2.3 so that
it applies to our P, using o-freeness instead of A-freeness, [3, Proposition 13.3.13]
instead of [3, Proposition 13.3.6], and r-DIVP instead of 1-DIVP. O

Corollary 2.6. If K is an H-field, T # {0}, and K has DIVP, then K is ®-free
and newtonian.

There are non-Liouville closed H-fields with nontrivial derivation that have DIVP;
see [2, Section 14]. By Lemma 2.3 and Lemma 2.5(iii), Liouville closed H-fields
having 2-DIVP are Schwarz closed as defined in [3, Section 11.8].

Theorem 2.7. Let K be a Liouville closed H-field. Then

K has DIVP «<— K is W-free and newtonian.

Proof. The forward direction is part of Corollary 2.6. The backward direction is
Corollary 0.1. O
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