EFFECTIVE ANALYTIC FUNCTIONS

JORIS VAN DER HOEVEN

ABSTRACT. One approach for computations with special functions in computer
algebra is the systematic use of analytic functions whenever possible. This
naturally leads to problems of how to answer questions about analytic functions
in a fully effective way. Such questions comprise the determination of the
radius of convergence or the evaluation of the analytic continuation of the
function at the endpoint of a broken like path. In this paper, we propose a
first definition for the notion of an effective analytic function and we show how
to effectively solve several types of differential equations in this context. We
will limit ourselves to functions in one variable.

1. INTRODUCTION

An important problem in computer algebra is how to compute with special func-
tions which are more complicated than polynomials. A systematic approach to this
problem is to recognize that most interesting special functions are analytic, so they
are completely determined by their power series expansions at a point.

Of course, the concept of “special function” is a bit vague. One may for in-
stance study expressions which are built up from a finite number of classical special
functions, like exp, log or erf. But one may also study larger classes of “special
functions”, such as the solutions to systems of algebraic differential equations with
constant, coefficients. Let us assume that we have fixed a class F of such special
functions or expressions for the sequel of this introduction.

In order to develop a satisfactory computational theory for the functions or
expressions in F, one may distinguish the following main subproblems:

e How to test whether f € F locally represents the zero power series?
e How to evaluate f € F safely and efficiently at any point where f may be
defined?

The first subproblem is called the zero-test problem and it has been studied before in
several works [Ris75, DL84, DL89, Kho91, Sha89, Sha93, PG97, SvdHO01, vdHO02b).
For large classes of special functions, it turns out that the zero-test problem for
power series can be reduced to the zero-test problem for constants (see also [vdHO1b]
for a discussion of this latter problem).

In this paper, we will focus on the second subproblem, while leaving aside the
efficiency considerations and restricting our attention to functions in one variable.
By “safe evaluation” of f € F at z, we mean that we want an algorithm which
computes an approximation f € (Z + iZ)27% for f(z) with |f — f(z)| < e for any
e € 27, If such an algorithm exists, then we say that f(z) is an effective complex
number. By “any point where the expression may be defined”, we mean that we
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do not merely plan to study f near the point where a power series expansion was
given, but that we also want to study all possible analytic continuations of f.

In other words, the aim of this paper is to develop an “effective complex analysis”
for computations with analytic functions in a class F which we wish to be as
large as possible. Such computations mainly consist of safe evaluations, bound
computations for convergence radii and absolute values of functions on closed disks,
and analytic continuation. Part of the philosophy behind this paper also occurs in
[BB85, CC90], but without the joint emphasis on effectiveness at all stages and
usefulness from the implementation point of view. In previous papers [vdH99,
vdHO1a], we have also studied in detail the fast and safe evaluation of holonomic
functions. When studying solutions to non-linear differential equations, one must
carefully avoid undecidable problems:

Theorem 1. [DL89] Given a power series f =Y fnz" with rational coefficients,
which is the unique solution of an algebraic differential equation

P(Z7f7"'7f(l)) = 07
with rational coefficients and rational initial conditions, one cannot in general de-
cide whether the radius of convergence p(f) of f is <1 or > 1.

What we will show in this paper, is that whenever we know that an analytic
function f =3 f,2" as in the above theorem may be continued analytically along
an “effective broken line path” v, then the value f(v) of f at the endpoint of
is effective (theorem 3). We will also show that we may “effectively solve” any
monic linear differential equation, without introducing singularities which were not
already present in the coefficients (theorem 2).

In order to prove these results, we will carefully introduce the concept of an
“effective analytic function” in section 2. The idea is that such a function f is
given locally at the origin and that we require algorithms for

e Computing coefficients of the power series expansion;

e Computing a lower bound p for the radius of convergence;

e Computing an upper bound for |f| on any closed disk of radius < p.
e Analytic continuation.

But we will also require additional conditions, which will ensure that the computed
bounds are good enough from a more global point of view. In section 3, we will
show that all analytic functions, which are constructed from the effective complex
numbers and the identity function using +, —,-, /, %, J,exp and log, are effective.
In section 4, we will study the resolution of differential equations.

It is convenient to specify the actual algorithms for computations with effective
analytic functions in an object oriented language with abstract data types (like
C++). Effective types and functions will be indicated through the use of a sans serif
font. We will not detail memory management issues and assume that the garbage
collector takes care of this. The COLUMBUS program is a concrete implementation
of some of the ideas in this paper [vdH02a], although this program works with
double precision instead of effective complex numbers.

2. EFFECTIVE ANALYTIC FUNCTIONS

2.1. Effective numbers and power series. A complex number z € C is said to
be effective, if there exists an algorithm which takes a positive number 0 < & € 2% on
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input and which returns an approximation Z € (Z+iZ)27 for z with | —z| <. We
will also denote the approximation by Z = z... In practice, we will represent z by an
abstract data structure Complex with a method approximate which implements the
above approximation algorithm. The asymptotic complexity of an effective complex
number z € Complex is the asymptotic complexity of its approximation algorithm.

We have a natural subtype Real C Complex of effective real numbers. Recall,
however, that there is no algorithm in order to decide whether an effective complex
number is real. In the sequel, we will use the notations R> = {# € R: 2 > 0} and
R” ={z € R:z > 0}.

Let R be a weakly effective ring, in the sense that all elements of R can be
represented by explicit data structures and that we have algorithms for the ring
operations 0,1, +, — and -. If we also have an effective zero test, then we say that
R is an effective ring.

An effective series over Ris aseries f € R[[z]], such that there exists an algorithm
in order to compute the n-th coefficient of f. Effective series over R are represented
by instances of the abstract data type Series(R), which has a method expand : N —
R[z], which computes the truncation fo + -+ f,—12""' € R[z] of f at order n as
a function of n € N. The asymptotic complexity of f is the asymptotic complexity
of this expansion algorithm. In particular, we have an algorithm to compute the
n-th coefficient f, of an effective series. A survey of efficient methods to compute
with effective series can be found in [vdH02c].

When f is an effective series in Series(Complex), then we denote by f € CJ[[2]] the
actual series which is represented by f. If f is the germ of analytic function, then
we will denote by p(f) the radius of convergence of f and by |f|, the maximum of
|f] on the closed disk B, = {z € C : |z| < r} of radius r, for each r < p(f).

2.2. Effective germs. An effective germ of an analytic function f at 0 is an ab-
stract data structure Germ which inherits from Series(Complex) and with the fol-
lowing additional methods:

e A method radius : () — RealU {400} which returns a lower bound p(f) >0
for p(f). This bound is called the effective radius of convergence of f.
e A method norm : Real — Real which, given 0 < r < p(f), returns an upper

bound |f|, for |f|,. We assume that |f|, is increasing in r.

Remark 1. For the sake of simplicity, we have reused the notations p(f) and |f|,
in order to denote the applications of the methods radius and norm to f. Clearly,
one should carefully distinguish between p(f) resp. |f|, and p(f) resp. |f|-. The
n-th coefficient of f will always be denoted by f,, = f,.

Given an effective germ f, we may implement a method evaluate, which takes
an effective complex number z € Complex with |z| < p(f) on input, and which
computes its effective value f(z) € Complex at z. For this, we have to show how to
compute arbitrarily good approximations for f(z):

Algorithm evaluate-approx(f, z,€)

Input: f € Germ and z € Complex with |z| < p(f), and ¢ € 27
Output: an approximation f for f(z) with |f — f(2)| < e

Step 1. [Compute expansion order]
Let r = (p(f) + |2])/2 and M = ||,
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Let n € N be smallest such that
Mr  (|]z]\" €
—_ < j—
r—lz| \r 2
Step 2. [Approximate the series expansion]

Compute f = fo + fiz+-+++ fan_12""* € Complex
Return fo./»

The correctness of this algorithm follows from Cauchy’s formula:

z" f(w)
PO = oaf
|2]™ M
S 27 ?(w:,, (r—|z|)r"dw
_ Mr [(]z]\"
- = (7
€
<2

2.3. Effective paths. Any (I41)-tuple (2o, ..., 2) of complex numbers determines
a unique affine broken line path or affine path in C, which is denoted by zp — z1 —
v = z1-1 = 2. f 29 =0, then we call y =2z = 21 = -+ = 211 — 2z; a broken
line path or a path of length I, = . We denote by IP the space of all paths and
by P? the space of all affine paths. The trivial path of length 0 is denoted by e.
An affine path zg — -+ — 2z is said to be effective if zg,...,2; € Complex. We
denote by AffinePath the type of all effective affine paths and by Path the type of
all effective paths.

Another notation for the path0 =29 = 21 = -+ = z_1 = 2z7is [z21—20,..., 21—
zi—1]; the first notation is called the usual notation; the second one is called the
incremental notation. Let v = [01,...,0] =0 = 2z = -+ = z1 — z and
v =1[6,...,8,]=0—=2{ = --- = 2z, ; = 2z, be two paths in IP. Then we define
their concatenation v+ ' by

'7"‘7, = [617"'7&)617"'76;’]

= 0oz —2zatz =2 2+2.
We also define the reversion —v of v by

-y = [—61,...,—61]
= 0=z0—z— =2 —21——2.

The norm of v is defined by
[ = 161]+ -+ 0]

Notice that [ — | = |y| and |y + /| = |7 + [7/|.

We say that v is a truncation of 4" if | <1’ and 6; = ¢} for i = 1,...,[. In this
case, we write v < 7' and v —v = [d;,,...,d;], so that (v — )+~ =" (however,
we do not always have y' —~ =" 4+ (—v)). The longest common truncation of two
general paths v and 7' always exists and we denote it by yAv'. If we restrict our
attention to paths z; — -+ — z; such that zq,...,2 are in a subfield of Complex
with an effective zero-test (like Q[i]), then < and A are clearly effective.
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A subdivision of a path v = [d1,...,d] is a path of the form
Y =101, ALk O, N0 - Ak O

where A; ; € (0,1) with Aj1 +---+ X\, = 1 for all 4. If 4’ is a subdivision of v,
then we write v C +'. Given 7,7 and 7" with v C +' and v C +", there exists a
shortest path "' with v C ~"" and 7" C ~". We call "' the shortest common
subdivision of 4" and "' and we denote it by 7" =+' L ~".

Given an analytic function f at the origin, which can be continued analytically
along a path v € P, we will denote by f(-y) the value of f at the endpoint of the path
and by f4. the analytic function at zero, such that fi. () = f(y+e) := f(y+[e]) for
all sufficiently small e. If v = [01,. .., ], then we will also write f1y = fi5,, .14,
The domain Dom f of f is the set of all paths v along which f can be continued
analytically.

2.4. Effective analytic functions. A quasi-effective analytic function is an in-
stance f of the abstract data type AnFunc, which inherits from Germ, and with the
following additional method:

e continue : Complex — AnFunc computes f; . for all z with |z| < p(f).

We will denote by f the analytic function which is represented by f. The domain
Dom f C Dom f of f is the set of all paths [1,...,d;] € Path with

|6l| < p(f+617---7+6i—1)

for all i € {1,...,n}. The functions evaluate and continue may be extended to the
class Path, for all paths which are in the domain of f.

Remark 2. Notice that, similarly as in remark 1, we have reused the notation
f+z in order to denote the application of the method f — continue to z. So f;.
is again a quasi-effective analytic function, which should be distinguished from
fiz= frz- Given v = [61,...,8], we will also denote f(v) = fis,... +6._,(6) and
erW = f+51,---,+5l'

Let f and g be two quasi-effective analytic functions. We will write f = g as
soon as f = g . We say that f and g are strongly equal, and we write f = g, if
Dom f = Domg and p(f1++) = p(9++) and |f1+|r = |g4~|r for all ¥ € Dom f and
r < p(f+~). We say that g is better than f, if Dom f C Dom g, and p(f+) < p(9++)
and |fy|r = |g4+~|r for all ¥ € Dom f and r < p(f+,). We say that a quasi-effective
analytic function f satisfies the homotopy condition, if

EA1. If v, + [01],7 + [01,02],7 + [01 + d2] € Dom f, then f+%+(51+52) =
Jr 401,402
Here we understand that fi. i (s 4s,) o [y if 81 + 62 = 0.

Let f be a quasi-effective analytic function and consider the functions 6 — p(fis)
and (6,7) — |f+s]r- We say that f satisfies the local continuity condition, if there
exist continuous functions

R:B,;y={z€C:|z|<p(f)} = R ;
N:{(6,r) € By;y xR :r <R(§)} — R~

such that p(fis) = R(6) and [fys], = N(d,r) for all 6 € B,y N Complex and
r € Real with 0 <7 < p(fis). We say that f satisfies the continuity condition, if

EA2. f,, satisfies the local continuity condition for each v € Dom f.
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We say that f is an effective analytic function if it both satisfies the homotopy
condition and the continuity condition. In what follows, we will always assume
that instances of the type AnFunc satisfy the conditions EA1 and EA2.

Remark 3. In fact, there are several alternatives for the definition of effective an-
alytic functions, by changing the homotopy and continuity conditions. The future
will learn us which conditions are best suited for complex computations. Never-
theless, there is no doubt that the “spirit” of the definition should be preserved:
quasi-effectiveness plus additional conditions which will allow us to prove global
properties.

2.5. Analytic continuation along subdivided paths. The extended domain
Dom” f of an effective analytic function f is the set of all paths v, such that there
exists a subdivision v’ of v with v/ € Dom f. For a tuple f = (f1, ..., f,) of effective
analytic functions, we also define Dom f = Dom f; N---NDom f, and similarly for
Dom* f and Dom f. We say that an effective analytic function f (or a tuple of such
functions) is faithful, if Dom” f = Dom® f N Path. We say that a subset P of Path
is effective, if there exists an algorithm to decide whether a given effective path
belongs to Path.

Now let us choose constants A,u € (0,1) N Real with A < p and consider an
effective analytic function f. Then the following algorithm may be used in order
to evaluate f at any path v € Dom? f:

Algorithm evaluate-subdiv(f, )
Input: f € AnFunc and v € Path, such that v € Dom* f

Output: f(v)
Step 1. [Handle trivial cases]

If v = e, then return f(0)
Write v = [0] + 9/
Compute an approximation é € Z2% of € = § — £ p(f) with |¢ — ¢] <

1—p

=Ep(f)-
If € < 0 then return evaluate - subdiv(fis,7')

Step 2. [Subdivide path)]
Let ' = Ap(Hl
Return evaluate-subdiv(fys,[0 — &' +7)
We notice that € < 0 implies § < p(f) and € > 0 implies 6 > pp(f). The
correctness proof of this algorithm relies on three lemmas:

Lemma 1. Let v,y € Dom f with v1 C 7. Then fiy, = fi,.

Proof Let us proof the lemma by induction over the difference d of the lengths of 2
and ;. If d = 0, then 71 = 75 and we are done. Otherwise, let 7" be longest, such
that there exist paths 7| and 4 and numbers 61, d> and d3 with v = ) +[61] ++"
and v = 4 + [02,d3] +v". If d > 1, then the induction hypothesis implies

Fire = Frvptisoroalir = Fim-
Otherwise, we have 7] = v} and §; = d2+03. Consequently, the homotopy condition
implies that f+%+[51] = f+Vé+[52y53]’ whence fi,, = fiq,- g

Remark 4. In fact, the above lemma even holds for homotopic paths 7,72 €
Dom f, but we will not need this in what follows.
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Lemma 2. If v,71,72 € Dom f are such that v C v1 and v C 72, then v1 Uy €
Dom f.

Proof Let y1 U~ = [0],...,0;]. Let us prove by induction over i that v} =
[01,...,0]] € Dom f. If i = 0, then we have nothing to do. Assume now that we
have proved the assertion for a given i < [ and let us prove it for s + 1. Since vy; U7
is the shortest common subdivision of y; and 9, there exist a k € {1,2} and a path
v" <, such that 4" E v;. By lemma 1, we have p(fi:) = p(f1~). Therefore,
|6 1l < 8" < p(fyy:), where 6" is such that 4" + [6"] < v, This shows that
Yi+1 € Dom f, as desired. O

Lemma 3. Let v € Dom f. Then there exists a o > 0 such that for any~' € Dom f,
with v' 4 ~" for some ~" J vy, we have p(fiy) > 0.

Proof Writey = [d1,...,0;] andlet ¢ € {1,...,1}. The continuity condition implies
that the function « € [0,0;] N Complex — p(f+s,,...+6:_1,+a) is the restriction of a
continuous function R on the compact set [0, 0;]. Consequently, there exists a lower
bound o; > 0 for R on [0,d;]. On the other hand, any 7' € Dom f, with ' < " for
some " 1+, is a subdivision of a path of the form [0y, ...,d;—1, ] with a € [0, d;].
Taking 0 = min{oy,...,0;}, we conclude by lemma 1. O

Proof *Proof of the algorithmThe algorithm is clearly correct if it terminates.
Assume that the algorithm does not terminate for v = [01,...,0;] and let 7' =
[01,--.,0;] be a subdivision of y in Dom f. Let ¢, 5, ... be the sequence of incre-
ments such that evaluate-subdiv is called successively for f, fis, fis0 16y, ... Let
o > 0 be the constant we find when applying lemma 3 to v'. Since 8 +65 +--- < |7/,
there exists an i with |67, | < Ao

Now let " = [d7, ... 6”] and let j be such that

01, - 50 < 1"

and
16755 G5 ll = Y-
Then
=[01,...,0, 6’+1+6” +0; =8, —---—d%] € Dom f.
By lemma 2, it follows that 4" LIy"" € Dom f. Hence p(f1yn) = ( (y7Uymy) = 0.
This yields the desired contradlctlon since [0 1| = Ap(feyr) = A

3. OPERATIONS ON EFFECTIVE ANALYTIC FUNCTIONS

In this section we will show how to effectively construct elementary analytic
functions from the constants in Complex and the identity function z, using the
operations +,—,-, /, dz, J,exp and log. In our specifications of the correspondlng
concrete data types which inherit from AnFunc, we will omit the algorithms for
computing the coefficients of the series expansions, and refer to [vdH02c] for a
detailed treatment of this matter.

3.1. Basic effective analytic functions. Constant effective analytic functions
are implemented by the following concrete type ConstantAnFunc which derives from
AnFunc (this is reflected through the > symbol below):
Class ConstantAnFunc > AnFunc

e z € Complex
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new : Z € Complex — z := Z
radius : () — oo

norm : 7 > |z|

continue : 6 — ConstantAnFunc(z)

The method new is the constructor for ConstantAnFunc. In the method continue
it is shown how to call the constructor. In a similar way, the following data type
implements the identity function:

Class IdentityAnFunc > AnFunc

e z € Complex

enew: () —z2:=0

e new : Z € Complex > z := 2

e radius: () — oo

e norm: 7 |z|+71

e continue : § — ldentityAnFunc(z + ¢)

The default constructor with zero arguments returns the identity function cen-
tered at 0. The other constructor with one argument z returns the identity function
centered at z.

The conditions EA1 and EA2 are trivially satisfied by the constant functions
and the identity function. They all have domain Path.

3.2. The ring operations. The addition of effective analytic functions is imple-
mented as follows:

Class SumAnFunc > AnFunc

f,9 € AnFunc

new : (f € AnFunc, § € AnFunc) — f := fig:=3
radius : () = min(p(f), p(g))

norm : 7 — |f|. + |g|r

continue : § — SumAnFunc(fis,9+s)

We clearly have Dom(f + ¢g) = Dom f N Domg and (f + g)y = fy + g, for all
paths in Dom(f + g). Consequently, condition EA1 is satisfied by f+ g. Since min
is a continuous function, condition EA2 is also satisfied.

Subtraction is implemented in the same way as addition: only the series compu-
tation changes. Multiplication is implemented as follows:

Class ProductAnFunc > AnFunc

f»9 € AnFunc

new : (f € AnFunc,§ € AnFunc) — f:= fig:=§
radius : () - min(p(f), p(9))

norm : 7+ | fl,|gl-

continue : § — ProductAnFunc(fyis,g+s)

We again have Dom(fg) = Dom f N Dom g and the conditions EA1 and EA2
are verified in a similar way as in the case of addition.
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3.3. Differentiation and integration. In order to differentiate an effective ana-
lytic function f, we have to be able to bound f’ on each disk D, with r < p(f).
Fixing a number A € (0,1) N Real, this can be done as follows:

Class DerAnFunc > AnFunc

f € AnFunc

new : f € AnFunc— f = f

radius : () — p(f)

norm : 7 = 55| fls, where s := p(f) + A(p(f) — 1)
e continue : 6 = DerAnFunc(fs)

Let us show that the bound for the norm is indeed correct. Given the bound |f|s
for s on Dy, Cauchy’s formula implies that |f,,| < |f|s/s™ for all n. Consequently,
for all z € B,:

o0

Z(n +1) for12"
n=0

We have Dom f' = Dom f and the fact that X is a constant, which is fixed once
and for all, ensures that condition EA2 is again satisfied by f’. The actual choice
of X is a compromise between keeping |f|s as small as possible while keeping s — r
as large as possible.

Bounding the value of an integral on a disk is simpler, using the formula

A%w

For the analytic continuation of integrals, we have to keep track of the integration
constant, which can be determined using the evaluation algorithm from section 2.2.
In the algorithm below, this integration constant corresponds to c.

o0

<Zm+mm§%=§§¥my

n=0

1f'(2) =

< [0] max |f(2)]-

z€[0,d]

Class IntAnFunc > AnFunc

f € AnFunc

¢ € Complex

new: fis f:=f, ¢:=0

new : (f € AnFunc,é € Complex) — f:= f,c:=¢
radius : () — p(f)

norm : 7+ |c| + 7| f],

continue : § — IntAnFunc(f;s, this(d))

The domain of [; f(t)dt is the same as the domain of f.

3.4. Inversion. In order to compute the inverse 1/f of an effective analytic func-
tion f with f(0) # 0, we should in particular show how to compute a lower bound
for the norm of the smallest zero. Moreover, this computation should be continuous
as a function of the path. Again, let A € (0,1) N Real be a parameter and consider

Class InvAnFunc > AnFunc

e f € AnFunc i
e new: f € AnFunc— f:=f
e radius : () = min (Ap(f), |£(0)] )

. 1
® Norm 7 rOy =17 T
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e continue : 6 — InvAnFunc(f4s)

Again, the choice of X is a compromise between keeping Ap(f) reasonably large,
while keeping the bound |f'|5,(s) as small as possible. We have

Don 7 = {y € Dom f|f() #0}.

Notice that we cannot necessarily test whether f() = 0. Consequently, Dom* % is
not necessarily effective.

Remark 5. Instead of fixing a A € (0,1) N Real, it is also possible to compute A

such that 0

a |f I|>\p(f),
using a fast algorithm for finding zeros, like the secant method.

3.5. Exponentiation and logarithm. The logarithm of an effective analytic
function f can be computed using the formula
!
t
1@ 4

log £ = log £(0) + [ Z 0

As to exponentiation, we use the following method:

Class ExpAnFunc > AnFunc

f € AnFunc

new : f € AnFunc— f :=f
radius : () — p(f)

norm : 1 — exp |f|r

continue : § — ExpAnFunc(fys)

We have Dom*(log f) = {y € Dom* f|f(v) # 0} and Dom e/ = Dom f.

4. SOLVING DIFFERENTIAL EQUATIONS

In this section, we will show how to effectively solve linear and algebraic dif-
ferential equations. As in the previous section, we will omit the algorithms for
computing the series expansions and refer to [vdH02c]. We will use the classi-
cal majorant technique from Cauchy-Kovalevskaya in order to compute effective
bounds.

Given two power series f,g € C[[z1,...,2,]], we say that f is majored by g, and
we write f < g, if g € R?[[z1,...,2n]] and | fe, .. ko | < Gkr,ok for all kg, ... Ky €
N. If n = 1 and f € AnFunc, then we write f < g if f < g. Given a > 0, we also
denote b, = (1 —az) L.

4.1. Linear differential equations. Let Lyg,...,L[;_; be effective analytic func-
tions and consider the equation
(1) fO =L fD 4o Lof

with initial conditions £(®)(0) = vp,..., f¢"D(0) = v in Complex. We will show
that the unique solution to this equation can again be represented by an effective
analytic function f, with Dom f = Dom LoN---NDom L;_;. Notice that any linear
differential equation of the form L;f() + .- + Lof = g with L;(0) # 0 can be
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reduced to the above form (using division by L;, differentiation, and linearity if
g(0) = 0).

We first notice that the coefficients of f may be computed recursively using the
equation

@) e <V0+/>...<,,,1+/> (LD 4o+ Lof)

Assume that M € R? and a € R> are such that L; < Mb, for all i. Then the
equation

(3) f= <ﬁ0+/>---<ﬁ,1+/> (Mbaf(’*1)+---+M[baf)+R,

is a majorant equation [vK75, Car61] of (2) for any choices of 7y,...,7_1 € R?
and R € R?[[2]], such that |vo| < Do,...,|vi_1] < #_1. Let

h = bMHD/e,
We take 7; = Ch)(0) for all i € {0,...,1 — 1}, where

_ ol Vi1
C = max{|wo|,...,|v-1]} > max { RO(0) " RED(0) f

Now we observe that

Mbah"=Y 4 ... 4 Mb,h

4 M (M_+_1)___(M_+_(l_2)a+l)b&M+la+l)/a_'_____'_Ib&MJraJrl)/a]
N (M + 1) (M+ (l _ 1)a+ I)IbgM—HDH_l)/a

= 0

Therefore, we may take

R= (ao + /) (ﬁl_l + /) (ManCh(l_l) +o 4 MﬂoaC’h) — Ch e R>[[2]).

This choice ensures that (3) has the particularly simple solution Ch. The majorant
technique now implies that f < Ch.

From the algorithmic point of view, let p = min{p(Ly), ..., p(L;—1)} and assume
that we want to compute a bound for | f| on B, for some r < p. Let A € (0,1)NReal
be a fixed constant. Then we may apply the above computation for o = s~ with
s=r+(p—r)A and M = max{|Lols,-..,|Li—1|s}. From the majoration f < Ch,

we deduce in particular that
s (M+1)s
fee(2)
s—r

This leads to the following effective solution of (1):

Class LDEAnFunc > AnFunc

L =(Ly,...,Li_1) € Array(AnFunc)

v = (vo,...,V—1) € Array(Complex)

new : (L € Array(AnFunc), 7 € Array(Complex)) — L := L, v:= i

radius : () — min(p(Lo),...,p(Li—1))

continue : § — LDEAnFunc((Lo 4+, - - -, Li—1,+4), (this(d), . .. this=1) (6))
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Like in C+4+4, the keyword this stands for the current instance of the data type,
which is implicit to the method. The norm method is given by

Method LDEAnFunc — norm(r)
s:=71 4+ A(p(this) —r)

C :=max{|wl,..., |vi_1|}

M := max{|Lo|s,-.-,|Li—1]s}
(M+1)s

Return C (sfr)

We have proved the following theorem:

Theorem 2. Let Lg,...,L; 1 be effective analytic functions and let vy,...,v;_1 €
Complex. Then there exists a faithful effective analytic solution f to (1) with
Dom f = Dom(Ly,...,L;). In particular, if Dom(Ly,...,L;) is effective, then so
is Dom f.

4.2. Systems of algebraic differential equations. Let us now consider a system
of algebraic differential equations

fi Pi(fi,.., fi)
@ 4= :
dz . .
fl Pl(fla'-'afl)
with initial conditions f;(0) = vq,..., fi(0) = v; in Complex, where P,..., P,

are polynomials in [ variables with coefficients in Complex. Modulo the change of
variables

fi = vi+fi
Pi(fl:'-'afl) = pl(f.laaﬁ)
we obtain a new system
f pl(.fl;---;fl)
( dZ ~ o . _ )
fl -Pl(fh"')fl)
with initial conditions f;(0) = --- = f;(0) = 0.

Let M > 0 and « > 0 be such that

Pi(z1,...,z1) < Mbg(z1 + - + 21)

for all 7. Then the system of differential equations

d fi ba(fi + -+ fi)
(6) Az . = o R
fi bo(fi +-- + fi)

with initial conditions f,(0) = --- = £(0) = 0 is a majorant system of (5). The

unique solution of this system therefore satisfies f; < f; for all i. Now the fz really
all satisfy the same first order equation

fl = Mo (f:)
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with the same initial condition fl(O) = 0. The unique solution of this equation is

. R — _
Flo = 1 \/11 2laMz’
a
which is a power series with radius of convergence
1
P = 2l

and positive coefficients, so that | f;(2)| < fi(r) for any r < p.

As to the implementation, we may fix « = 1. We will denote the transformed
polynomials P; by P; = P;,,. We will also write ||P||; for the smallest number
M € R? with P(z1,...,2) < Mba(z1 +---+ 2). The implementation uses a class
ADESystem with information about the entire system of equations and solutions
and a class ADEAnFunc for each of the actual solutions f;.

Class ADESystem

P =(P,...,P) € Array(Polynomial(Complex, 1))

v = (vi,...,v) € Array(Complex)

M € Real y

new: (P,7) — P:=P,v:=0, M := max(||PL +vll1,-- -, | Pr4vl1)
component : 1 < i <1+~ ADEAnFunc(this, )

continue : § — ADESystem(P, (component(1)(),...,component(l)(J))

Class ADEAnFunc > AnFunc

Y, € ADESystem
ie{l,...,l}

new: (£,7) » X :=3%,i:=1i
radius : () — 1/(21(X = M))

norm: 7+ (1 —+/1=2lr(X — M))/l

continue : § — ¥ — continue(d) — component(i)

In contrast with the linear case, the domain of the solution (fi,..., f;) to (4) is
not necessarily effective. Nevertheless, the solution is faithful:

Theorem 3. Let Py,..., P be polynomials with coefficients in Complex and let
vi,...,v € Complex. Then the system (4) admits a faithful effective analytic solu-
tion (f1,..., f1).

Proof Let vy = [01,...,0]] € Dom (f1,..., fi) N Path. Let us prove by induction
over i = {0,...,1} that [01,...,0;] € Domﬁ(fl, ..., fi). For i = 0 we have nothing
to prove, so assume that ¢ > 0. For all ¢ € [0,1], let

’Y;t = [61, ey 6i_1 , téz]
v = (ﬁ(%t), .. >ﬁ(7?t))
M;t = ma‘X(“Pl,-i-V;t”l:--'7||[)l,+l’;t||1)

Then M is a continuous function, which admits a global maximum M}, 1; on [0, 1].
Now let 4" 3 [61,...,0;—1] be such that 4" € Dom f and let 6’ = (§;—d;—1)/n be such
that n € N and 0’| < 1/(21M[9,1)). Then we have v = +'+[¢', 7%, 6'] € Dom f and
" 3 [01,-..,0;]. This proves that [d1,...,d;] € Dom*(f1, ..., fi) and we conclude
by induction. a
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Remark 6. In principle, it is possible to replace the algebraic differential equations
by more general non-linear differential equations, by taking convergent power series
for the P;. However, this would require the generalization of the theory in this
paper to analytic functions in several variables (interesting exceptions are power
series which are polynomial in all but one variable, or entire functions). One would
also need to handle the transformations P; — P; i, with additional care; these
transformations really correspond to the analytic continuation of the P;.

5. CONCLUSION AND FINAL REMARKS

Using a careful definition of effective analytic functions, we have shown how to
answer many numerical problems about analytic solutions to differential equations.
In order to generalize the present theory to analytic functions in several variables or
more general analytic functions, like solutions to convolution equations, we probably
have to weaken the conditions EA1 and EA2. Nevertheless, it is plausible that
further research will lead to a more suitable definition which preserves the spirit of
the present one.

The CoLUMBUS program implements the approach of the present paper in the
weaker setting of double precision complex numbers instead of effective complex
numbers. We plan to describe this program in more details in a forthcoming paper
and in particular the “radar algorithm” which is used to graphically represent
analytic functions (see figure 1). It would be nice to adapt or reimplement the
COLUMBUS program so as to permit computations with effective complex numbers
when desired.

FIGURE 1. Plot of a solution to " = 1+4f3+ f' with the COLUM-
BUS program.

The implementation of the COLUMBUS program has also been instructive for
understanding the complexity of our algorithms. For instance, the lower bound for
the smallest zero in our algorithm for inversion can be extremely bad, as in the

example
1

f= 1 —exp(n — 2)
The problem here is that the effective radius of convergence is of the order of 1,
while the real radius is n. Consequently, the analytic continuation from 0 to n — 1
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will take O(n) steps instead of only 1. In the COLUMBUS program, this problem
has been solved by using a numerical algorithm in order to determine the radius of
convergence instead of the theoretically correct one. In some cases, this leads to an
exponential speedup. Theoretically correct approaches for solving the problem are
to compute the smallest zero of the denominator in an appropriate radius or to use
transseries-like expansions. We plan to explain these approaches in more detail in
a forthcoming paper.

Another trick which can be used in concrete implementations is to override the
default evaluation method from section 2.5 by a more efficient one when possible,
or to implement methods for the evaluation or computation of higher derivatives.
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