
Computations with e�ective real numbers

Joris van der Hoeven

D�pt� de Math�matiques �B�t� ����
Universit� Paris�Sud
	
��� Orsay Cedex

France
Email� joris�texmacs�org

January �� ����

A real number x is said to be e�ective if there exists an algorithm which� given
a required tolerance � � Z �

Z� returns a binary approximation x� � Z �
Z for x

with jx�� xj� �� In this paper� we review several techniques for computations with
such numbers� and we will present some new ones�

�� Introduction

A dyadic number is a number of the form x � k �p with k� p � Z� We denote by

D�Z �Z the set of dyadic numbers and D�� fx�D�x� �g� Given x�R and ��D� an
��approximation for x is a number x� �D with jx� � xj � �� An approximation algorithm

for x � R is an algorithm which takes a tolerance � � D on input and which returns
an ��approximation for x� A real number x � R is said to be e�ective if it admits an
approximation algorithm� The aim of this paper is to review several recent techniques for
computations with e�ective real numbers and to present a few new ones�

E�ective real numbers can be useful in areas of numerical analysis where numerical
instability is a major problem like singularity theory� In such areas multiple precision
arithmetic is often necessary and the required precisions for auxiliary computations may
heavily vary� We hope that the development of an adequate computational theory for
e�ective real numbers will both allow us to automatically perform the error analysis and
compute the required precisions at which computations have to take place�

We recall that their exists no general zero�test for e�ective real numbers� Nevertheless
exact or heuristically reliable zero�tests do exist for interesting sub�elds which contain
transcendental constants� However this topic will not be studied in this paper and we refer
to �Ric	� vdH�
� for some recent work on this matter�

In an object�oriented language like C�� a natural way to represent an e�ective real
number is by an abstract object with a method which corresponds to the approximation
algorithm� When using this representation which will be discussed in more detail in sec�
tion � it is natural to perform a priori error estimations for common operations on real
numbers� In other words if we want to compute y � f �x�� � � xr� with precision � then
we determine tolerances ��� � � �r such that the multiple precision evaluation of f at any
�i�approximations for the xi always yields an ��approximation for y�

In some cases a priori error estimates are quite pessimistic� An alternative technique
for computing with e�ective real numbers is interval arithmetic� In this case we approxi�
mate an e�ective real number x by an interval �x�x� which contains x� Then the evaluation
of y� f�x��� � xr� comes down to the determination of an interval �y� y� with

f��x�� x���� � �xr� xr��� �y� y��

For continuous functions f when starting with a very precise approximation of x �i�e� x�x

is very small� the obtained a posteriori error estimate for y will also become as small as
desired� In section � this technique of a posteriori error estimates will be reviewed in more
detail as well as an e�cient representation for high�precision intervals�

Unfortunately in some cases both a priori and a posteriori error estimates are quite
pessimistic� In sections � and � we will therefore present two new techniques for the
computation of �adaptive error estimates�� These techniques combine the advantages of
a priori and a posteriori error estimates while eliminating their major disadvantages�
Moreover this new technique remains reasonably easy to implement in a general purpose
system for computations with e�ective real numbers� Under certain restrictions the new
techniques are also close to being optimal� This point will be discussed in section ��

The approaches presented in sections � and � have been proposed often indepen�
dently by several authors �BBH�
 Bla�� GPR��� and we notice the existence of several
similarities with the theory of e�ective power series �vdH	�a vdH���� In the past we
experimentally implemented the approaches of sections � and � in the case of power series
�not o�cially distributed� resp� real numbers �vdH		�� We are currently working on a more
robust C�� library based on the ideas in this paper �vdH���� Currently this library con�
tains the basic arithmetic operations� Some other implementations with similar objectives
are currently known to the author �M�l�� Rev���� All these implementations are free
software and they are mainly based on the Gmp and Mpfr libraries �GO�� HLRZ����

�� A priori error estimates

A natural way to represent an e�ective real number x is by its approximation algorithm�
Conceptually speaking this means that we view x as a black box which can be asked for
approximations up to any desired precision�

tolerance � � x � ��approximation x� for x

In an object oriented language like C�� this can be implemented using an abstract base
class real�rep with a virtual method for the approximation algorithm� E�ective real
numbers will then be pointers to real�rep� For instance

class real�rep �

public�

virtual dyadic approx �const dyadic� tol� � 	

�

typedef real�rep� real

Here dyadic stands for the class of dyadic numbers� In practice these may be taken to
be arbitrary precision �oating point numbers� For simplicity we also do not care about
memory management� In a real implementation one would need a mechanism for reference
counting or conservative garbage collection�

Now assume that we want to evaluate y � f�x�� � � xr� for a given tolerance � �D�
where x��� � xr are e�ective real numbers and f is an operation like 	 � or exp� In order
to make f e�ective we need to construct an approximation algorithm for y as a function
of x��� � xr� This both involves the dyadic approximation of the evaluation of f in dyadic
approximations of the xi and the determination of tolerances ��� � � �r for the dyadic
approximations of the xi� More precisely ���� � �r should be such that for any x���� � x�r�D
with jx�i� xij��i �i�
�� � r� we have

jf���x���� � x�r�� f�x��� � xr�j���

� Computations with e�ective real numbers

where f�� stands for a dyadic approximation algorithm for f which depends on the tol�
erance �� For instance in the case when f is the addition we may use exact arithmetic
on D �so that f��� f for all �� and take �� � �� � ���� This yields the following class for
representing sums of real numbers�

class add�real�rep� public real�rep �

real x y

public�

add�real�rep �const real� x� const real� y���

x �x�� y �y�� ��

dyadic approx �const dyadic� tol� �

return x��approx �tol �� �� � y��approx �tol �� ��
 �

�

The addition can now be implemented as follows�

inline real operator � �const real� x const real� y� �

return new add�real�rep �x y�
 �

Notice that in a sense we have really represented the sum of x and y by the expres�
sion x 	 y �more generally such expressions are dags�� Nevertheless the representation
using an abstract class real�rep provides additional �exibility� For instance we may
attach additional information to the class real�rep like the best currently known approx�
imation for the number �thereby avoiding unnecessary recomputations�� In practice it is
also good to provide an additional abstract method for computing a rough upper bound
for the number� This gives a �ne�grained control over potential cancellations�

The above approach heavily relies on the computation of a priori error estimates �i�e�
the computation of the �i�� If no additional techniques are used then this leads to the
following disadvantages�

P�� We do not take advantage of the fact that the numeric evaluation of f���x���� � x�r�
may lead to an approximation of y which is far better than the required tolerance ��
Indeed multiple precision computations are usually done with a precision which is
a multiple of the number of bits W in a machine word� �On average� we therefore
gain something like W�� bits of precision� In section � we will show that it may
actually pro�table to systematically compute more than necessary�

P�� The error estimates may be pessimistic due to badly balanced expressions� For
instance consider the ��approximation of a sum x�	 �x�	 �x�	� 	 �xr��� which
corresponds to a tree

	

x� 	

� 	

xr�� xr

Joris van der Hoeven �

Then the above technique would lead to the computation of an ����i��approximation
of xi for i � r and an ����r����approximation of xr� If r is large then ���r�� is
unnecessarily small since a mere ���r��approximation for each xi would do� In sec�
tion � we will consider a general technique for computing �balanced error estimates��

�� A posteriori error estimates

An alternative technique for computing with e�ective real numbers is interval arith�
metic� The idea is to systematically compute intervals approximations instead of �oating
point approximations� These intervals must be such that the real numbers we are interested
in are certi�ed to lie in their respective interval approximations�

More precisely given x�R and ��D� an ��interval for x is a closed interval �x�x� with
x� x �D� and x� x � � �� Concretely speaking we may represent such intervals by their
endpoints x and x� Alternatively if the precisions of x and x are large then it may be more
e�cient to represent the interval by its center �x	x��� and its radius �x�x���� Indeed the
exact endpoints of the interval are not that important� Hence modulo a slight increase of
the radius we may always assume that the radius can be stored in a �single precision dyadic

number� r � f�� � � �W �
g �Z where W is the number of bits in a machine word� This
trick allows to reduce the number of multiple precision computations by a factor of two�

Now assume that we want to compute an ��approximation for y� f�x��� � xr� where
x��� � xr are e�ective real numbers and where f is a continuous function� Assume also that
we have reasonable initial �i�intervals for the xi� Then starting with a low precision p�W
we �rst compute ��i��

p��intervals �xi� xi� for the xi� We next evaluate f using interval
arithmetic� This yields an interval �y� y� with

f��x�� x���� � �xr� xr��� �y� y��

If y � y � � � then �y 	 y��� is an ��approximation for y� Otherwise we increase the
precisions p and repeat the computations� Under relatively mild assumptions on the way
we evaluate f this procedure will eventually stop since f is continuous�

Although this technique of a posteriori error estimates does solve the problems
P� and P� raised in the previous section it also induces some new problems� Most
importantly we have lost the �ne�grained control over the precisions in intermediate com�
putations during the evaluation of f�x�� � � xr�� Indeed we have only control over the
overall starting precision p� This disadvantage is re�ected in two ways�

P�� It is not clear how to increase p� Ideally speaking p should be increased in such
a way that the computation time of �y� y� is doubled at each iteration� In that case
�see section �� the overall computation time is bounded by a constant time the
computation time w�r�t� the least precision p which leads to an ��computation for x�
Now the problem is that this �overall computation time� of f can be estimated well
by hand for elementary operations like 	 � exp etc� but not necessarily for more
complicated functions�

P�� Consider the case when somewhere during the evaluation of f we need to com�
pute the sum u	 v of a very large number u and a very small number v� Assume
moreover that u can be approximated very fast but that the approximation of v
requires a lot of time� Since v is very small w�r�t� u it will then be possible to skip
the computation of v by setting u 	 v � u unless p is very large� However the
above technique of a posteriori error estimates does not allow for this optimization�

� Computations with e�ective real numbers

�� Relaxed evaluation

Relaxed evaluation can be used in order to �combine the good ideas� of sections � and ��
The idea is to endow real�rep with an extra �eld interval best which corresponds
to the best currently known interval approximation of the real number� Moreover when
requesting for a better approximation we will actually compute a much better approx�
imation so as to avoid expensive recomputations when we repeatedly ask for slightly
better approximations� This anticipating strategy was �rst introduced in the case of power
series where it leads to important algorithmic gains �vdH	�b vdH���� In our context the
proposed method is quite di�erent though because of the problem with carries�

More precisely assume that we have an r�ary operation f such that the n�digit approx�
imation of f �x��� � xr� at dyadic numbers with �n digits has time complexity T �n�� The
complexity T �n� for an elementary operation is usually a well�understood regular function
�in general T �n��n is increasing etc��� For instance we have T �n���n for addition and

T �n���n�n for multiplication where ���n�
 and �n decreases slowly from � to
�
Now assume that we have an n�digit approximation of y � f�x�� � � xr� and that we

request a slightly better approximation� Then we let n� � n be such that T �n��� � T �n�
and we replace our n�digit approximation by an n��digit approximation� This strategy has
the property that the successive evaluation of f�x��� � xn� at
�� � n digits requires a time
T ��n�� T �n�� 	� 	 T �nk� where n��� �nk are such that nk�n and T �ni���� � T �ni�
for i�
�� � n�
� Consequently

T ��n��T �nk� 	

�
T �nk�	

�
T �nk�	� � �T �nk�� �T �nk���� � T �n��

More generally the evaluation of f �x��� � xr� at di�erent precisions n��� � nk requires at
most four times as much time as the evaluation of f�x��� � xr� at precision maxfn��� � nkg�

The combination of a priori and a posteriori error estimates in the relaxed strategy
clearly solves problems P� and P�� Furthermore at the level of the class real�rep we
have a �ne�grained control over how to increase the computational precision� Moreover we
have shown how to perform this increase in an e�cient way as a function of T �n�� This
will avoid expensive recomputations when y occurs many times in a dag� In other words
the relaxed technique also solves problem P��

Let us illustrate the relaxed strategy on the concrete example of the computation of the
sine function� We assume that we have implemented a suitable class interval for certi�ed
arbitrary precision computations with intervals� First of all real�rep now becomes�

class real�rep �

protected�

interval best

public�

inline real�rep ��� best �interval��fuzzy� ��

virtual interval approx �const dyadic� tol� � 	

�

Here interval��fuzzy stands for the interval ������� Sines of numbers are represented
by instances of the following class�

class sin�real�rep� public real�rep �

real x

public�
inline sin�real�rep �const real� x��� x �x�� �

best� interval ��� ��
 �

interval approx �const dyadic� tol�

�

Joris van der Hoeven �

The approximation algorithm is given by

interval sin�real�rep��approx �const dyadic� tol� �

if �tol � radius �best�� �

interval xa� x��approx �tol � �� � DELTA��

int required�prec� � � expo �tol�

int proposed�prec� next�prec ��expo �radius �best���

xa� truncate �xa max �required�prec proposed�prec��

best� sin �xa�

�

return best

�

This algorithm needs some explanations� First of all DELTA stands for a small number

like ���W where W is the machine word size� We use DELTA for countering the e�ect of
rounding errors in the subsequent computations� Next expo stands for the function which

gives the exponent of a dyadic number� We have �expo�x� � x � �expo�x��� for all x � D�
The function next�prec �see below� applied to a precision n computes the precision n��n

such that T �n�� � � T �n� where T �n� stands for the complexity of the evaluation of the
sine function� Now we recall that xa may contain an approximation for x which is much
better than the approximation we need� We therefore truncate the precision of xa at the
precision we need before computing the next approximation for the sine of x� The function
next�prec may for instance be implemented as follows�

int next�prec �int prec� �

if �prec �� ��� � WORD�SIZE�� return ���� � prec � WORD�SIZE

else if �prec �� ��� � WORD�SIZE� return ���� � prec

else if �prec �� �	�� � WORD�SIZE� return ���� � prec

else return � � prec

�

The di�erent thresholds correspond to the precisions where we use naive multiplication
Karatsuba multiplication and two ranges of F�F�T� multiplication� We �nally have the
following algorithm for computing sines�

inline real sin �const real� x� �

return new sin�real�rep �x�
 �

�� Balanced error estimates

One of the main problems with a priori error estimates that we have mentioned in
section � are badly balanced expressions which lead to overly pessimistic bounds� In this
section we introduce the general technique of �balanced error estimates� which solve this
problem as well as possible in a general purpose system� The idea behind balanced error
estimates is to �distribute the required tolerance over the subexpressions in a way which
is proportional to their weights�� Here leafs have weight
 and the wt y of an expression
y� f�x��� � xn� is given by wt y�wtx�	� 	wt xn�

Remark �� We recall that expressions are really dags so the size of an expression may
be exponentially smaller than its weight� Indeed this can be seen by constructing an
expression using repeated squarings x�x�x� It is therefore important to represent the weight
by a dyadic number with exponent �W where W is the size of a machine word�

� Computations with e�ective real numbers

Let us �rst illustrate the strategy of balanced error estimates in the case of addition�
So assume that we want to compute an ��interval for a sum x 	 y where x has weight

p as an expression and y has weight q� Then we will compute a
p �

p� q
�interval for x and

a
q �

p� q
�interval for x� For example in case of the expression
 	 ��� 	 � 	 �� 	 �� 	 ����

a tolerance of � is distributed as follows�

	

 	

	

�

	

� 	

� �

� �

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

Subtraction is treated in a similar way as addition�

In the case of multiplication the above additive distribution of tolerances cannot longer
be used and one has to resort to �relative tolerances�� Here a relative tolerance � for x
corresponds to an absolute tolerance of �� � jxj� Now let x and y be e�ective real numbers
of sizes p and q� Assume for simplicity that we are in the regular case when we have good
starting approximations x�� y��D for x and y say of relative tolerances ���W where W is
the machine word size� Then in order to compute an ��interval for xy we �rst distribute

��
�

jx	y	j
�
� ���W� over �x�

p �

p� q
and �y�

q �

p� q
 and then compute a ��x jxj��interval for

x and a ��y jy j��interval for y� The product of these approximations yields an ��interval
for x y�

More generally assume that x��� � xr are e�ective real numbers of weights p��� � pr and
that we want to compute an ��interval for y � f�x��� � xr� where f is a di�erentiable r�
ary operation for which we are given an arbitrary precision evaluation algorithm at dyadic
intervals� Before balancing tolerances as above we �rst have to determine the numbers
which have to be subdivided �i�e� � in the case of addition and � �really � jxj and � jy j as
we will see below� in the case of multiplication��

We de�ne the typical tolerances for x��� � xr to be the minimal numbers 	��� � 	r such
that for any intervals �x�� x���� � �xr� xr� with

f��x�� x���� � �xr� xr��� �y� �� y	 ��� �
�

we have xi� xi� 	i �i�
�� � r�� Let us for simplicity that we are in the regular case when
there exist �computable� bounds

��
Bi

�
�

�
�
�
�

f

xi
�x���� � x�r�

�
�
�
�� �Bi�

which are valid for x�i� �xi�
� �

Bi

� xi	
� �

Bi

� �i�
�� � r�� Then �
� implies in particular that

xi� xi�
� �

Bi

for i�
�� � r� Conversely xi� xi�
�

rBi

�i�
�� � r� implies �
�� This proves

that
�

� rBi

� 	i�
� �

Bi

� For instance in the case of addition we may take B��B��
 and we

obtain 	� � 	� �
� In the case of multiplication we may take B� � jx�j and B� � jy�j and
obtain 	��

�

jx	j
and 	��

�

jy	j
�

Joris van der Hoeven �

Now assuming that we have sharp lower bounds 	�i for the 	i �like 	�i �
�

� rBi

� we

compute a
�	i pi

p��� � pr
�interval for each xi� Then we obtain the requested ��interval for y by

evaluating f at these intervals at a su�cient precision�

�� Optimal error estimates and the irregular case

Let us now show that our technique of adaptive error estimates �i�e� the combination of
relaxed evaluation and balanced error estimates� is often close to being optimal� In order to
make this statement more precise assume that we have a library of e�ective real functions
f�� � � fl some of which have arity �� Then any computation using this library involves
only a �nite number ���� � �p of expressions constructed using the fi� These expressions
actually correspond to an acyclic graph since they may share common subexpressions�

Assume that the aim of the computation is to obtain an �i�approximation for each �i
with
� i� q� p� A certi�ed solution to this problem consists of assigning a dyadic interval
to each node of the acyclic graph such that

� The interval ��i� �i� associated to each �i with i� q satis�es �i� �i� � �i�

� For each subexpression fi���� � � �r� with r � � the interval associated to fi is
obtained by evaluating fi at the intervals associated ���� � �r�

The certi�ed solution is said to be optimal if the time needed to compute all interval
labels is minimal� Modulo rounding errors �nding such an optimal solution corresponds
to determining optimal tolerances for the leafs of the acyclic graph �which is equivalent to
determining the lengths of the intervals associated to the leafs��

Remark �� The above modelization does simplify reality a bit� in practice some of the
expressions ��� � � �p may depend themselves on the way we compute things� Also we
may require ��approximations for the �i during the intermediate computations and in an
arbitrary order� Nevertheless we expect that the above theoretical notion of optimality
corresponds quite well to what happens in practice�

Let us now compare the times T opt resp� T we need for the approximation of ���� � �q
depending on whether we use an optimal strategy or our strategy of adaptive error esti�

mates� We may decompose T opt�
P

�
T�
opt and T �

P
�
T� according to the times which

are spent at the computation of each node � For each node we denote by f� � fi� the
corresponding function and by Tf� its time complexity� Since we use the relaxed strategy

we have T�
opt � Tf��k�

opt� and T� � � Tf��k�� where k�
opt and k� stand for the �maximal�

precision at which we evaluate f� using the respective strategies�
Now let w denote the sum of the weights of the expressions ���� � �q� Using structural

induction we observe that the minimal balanced tolerances used at each node of the acyclic
graph are at most O�w� times smaller than the tolerances for the optimal solution� In other
words there exists a constant C with k�� k�

opt	C logw for all � Denoting

��max
�

Tf��k�
opt	C logw�

Tf��k�
opt�

�

we obtain T � � � T opt� In particular if the ��� � � �p are �xed and we are interested in
obtaining n�digit approximations for ��� � � �q then the regularity hypothesis implies

that k�
opt � k� � n for large n� Consequently if Tf��n 	 log w� � Tf��n� for all and

large n �which is the case for most usual operations like 	 � exp etc�� then T �

��	o�
��T opt� More generally if the optimal algorithm essentially spends its time in high
precision computations then one has T � �T opt�

	 Computations with e�ective real numbers

This analysis shows that the strategy of adaptive error estimates is close to being
optimal for high precision computations and in the regular case� In the irregular case the
complexity analysis is more involved and we have only some partial results� It is instructive
to well understand the case of multiplication �rst� the other operations can probably be
treated in a similar way�

So assume that we want to compute a product xy� Let us �rst consider the semi�regular
case when we still have a good initial approximation for one of the arguments say x but

not for the other� Then we �rst compute a �
�

jx	j
�
 � ���W���interval for y with similar

notations as before� In case when this yields an approximation y� for y with a good relative
tolerance then we may proceed as in the regular case� Otherwise we obtain at least an
upper bound for jy j and we let this upper bound play the role of jy�j�

This leaves us with the purely irregular case when we neither have strictly positive
lower bounds for jxj nor jy j� In this case we have the choice between computing a more
precise approximation for x or for y but it is not clear a priori which choice is optimal
from the complexity point of view� One solution to this problem may be to continuously
improve the precisions of the approximations for both x and y while distributing the
available computation time equally over x and y� It is not clear yet to us how to estimate
the complexity of such an algorithm� Another solution which is easier to implement is to
use rough upper bounds for jxj and jy j instead of jx�j and jy�j while increasing the precision
continuously� However this strategy is certainly not optimal in some cases�

Bibliography

�BBH��� J� Blanck� V� Brattka� and P� Hertling� editors� Computability and complexity in analysis�
volume �
�� of Lect� Notes in Comp� Sc� Springer� �

��

�Bla��� J� Blanck� General purpose exact real arithmetic� Technical Report CSR ����

� Lule Uni�
versity of Technology� Sweden� �

�� http���www�sm�luth�se��jens��

�GO��� T� Granlund and Others� GMP� the GNU multiple precision arithmetic library�
http���www�swox�com�gmp� ������

��

�GPR��� M� Grimmer� K� Petras� and N� Revol� Multiple precision interval packages� Comparing
di�erent approaches� Technical Report RR �

����� LIP� �cole Normale Sup�rieure de Lyon� �

��

�HLRZ��� G� Hanrot� V� Lef�vre� K� Ryde� and P� Zimmermann� MPFR� a c library for multiple�
precision �oating�point computations with exact rounding� http���www�mpfr�org� �

��

��

�M�l��� N� M�ller� iRRAM� exact arithmetic in C��� http���www�informatik�uni�

trier�de�iRRAM�� �

��

��

�Rev��� N� Revol� MPFI� a multiple precision interval arithmetic library� http���perso�ens�

lyon�fr�nathalie�revol�software�html� �

���

��

�Ric�	� D� Richardson� How to recognize zero� J�S�C�� ����������� �����

�vdH�	a� J� van der Hoeven� Automatic asymptotics � PhD thesis� �cole polytechnique� France� �����

�vdH�	b� J� van der Hoeven� Lazy multiplication of formal power series� In W� W� K�chlin� editor�
Proc� ISSAC ��� � pages ����
� Maui� Hawaii� July �����

�vdH��� J� van der Hoeven� GMPX� a C�extension library for gmp� http���www�math�u�

psud�fr��vdhoeven�� ����� No longer maintained�

�vdH��� J� van der Hoeven� Zero�testing� witness conjectures and di�erential diophantine approxi�
mation� Technical Report �

����� Pr�publications d�Orsay� �

��

�vdH��� Joris van der Hoeven� Relax� but don�t be too lazy� JSC � ����������� �

��

�vdH��� J� van der Hoeven� Mmxlib� a C�� core library for Mathemagix� http���www�math�u�

psud�fr��vdhoeven�� �

���

��

Joris van der Hoeven �

