
Algorithms for asymptotic extrapolation
∗

Joris van der Hoeven

CNRS, Département de Mathématiques
Bâtiment 425

Université Paris-Sud
91405 Orsay Cedex

France

Email: joris@texmacs.org

Web: http://www.math.u-psud.fr/~vdhoeven

December 9, 2008

Consider a power series f ∈ R[[z]], which is obtained by a precise mathematical
construction. For instance, f might be the solution to some differential or functional
initial value problem or the diagonal of the solution to a partial differential equation.
In cases when no suitable method is beforehand for determining the asymptotics
of the coefficients fn, but when many such coefficients can be computed with high
accuracy, it would be useful if a plausible asymptotic expansion for fn could be
guessed automatically.

In this paper, we will present a general scheme for the design of such “asymptotic
extrapolation algorithms”. Roughly speaking, using discrete differentiation and tech-
niques from automatic asymptotics, we strip off the terms of the asymptotic expansion
one by one. The knowledge of more terms of the asymptotic expansion will then allow
us to approximate the coefficients in the expansion with high accuracy.

Keywords: extrapolation, asymptotic expansion, algorithm, guessing

A.M.S. subject classification: 41A05, 41A60, 65B05, 68W30

1. Introduction

Consider an infinite sequence f0, f1,� of real numbers. If f0, f1,� are the coefficients of
a formal power series f ∈R[[z]], then it is well-known [Pól37, Wil04, FS96] that a lot of
information about the behaviour of f near its dominant singularity can be obtained from
the asymptotic behaviour of the sequence f0, f1,� . However, if f is the solution to some
complicated equation, then it can be hard to compute the asymptotic behaviour using
formal methods. On the other hand, the coefficients f0, f1,� of such a solution f can often
be computed numerically up to a high order [vdH02a]. This raises the question of how to
guess the asymptotic behaviour of f0, f1,� , based on this numerical evidence.

Assume for instance that we have fixed a class E of “admissible asymptotic extrapola-
tions”, such as all expressions of the form

ϕ=
(

c0 +� +
ck

nk

)

nα eβn
γ
. (1)

Given the first coefficients f0,� , fN of f , the problem of asymptotic extrapolation is to find
a “simple” expression ϕ∈E , which approximates f̃ well in the sense that the relative error

εf̃ ,ϕ= max
k∈{L,� ,N }

|fn− ϕn|
|fn|+ |ϕn|

(2)

∗. This work has partially been supported by the ANR Gecko project.

1

is small. Here L < N is a suitably chosen number, such as L = N/2. In general, we
are just interested in a good extrapolation formula, and not necessarily in the best one
in the class E . It is also important that the extrapolation continues to provide good
approximations for n≫N , even though we have no direct means of verification.

A good measure for the complexity of an expression ϕ∈E is its number νϕ of continuous
parameters . For instance, taking ϕ as in the formula (1), the continuous parameters are
c0,� , ck, α, β and γ, whence νϕ=k+4. Another possible measure is the size σϕ of ϕ as an
expression. For our sample expression ϕ from (1), this yields σϕ=9+6k, when counting 1
for each of the operations +, ×, /, ^, exp, as well as 1 for n and each of the constants. Since
the expression size σϕ depends on the way operations are encoded, the measure νϕ should
generally be preferred. Notice also that one usually has σϕ6Cνϕ for a fixed constant C.

In fact, the systematic integration of “guessing tools” into symbolic computation pack-
ages would be a useful thing. Indeed, current systems can be quite good at all kinds of
formal manipulations. However, in the daily practice of scientific discovery, it would be
helpful if these systems could also detect hidden properties, which may not be directly
apparent or expected, and whose validity generally depends on heuristics. Some well-
known guessing tools in this direction are the LLL-algorithm [LLL82] and algorithms for
the computation of Padé-Hermite forms [BL94, Der94], with an implementation in the
Gfun package [SZ94]. Padé-Hermite forms are used byGfun in order to guess closed form
formulas for sequences of which only a finite number of coefficients are known.

In the area of numerical analysis, several algorithms have been developed for acceler-
ating the convergence of sequences, with applications to asymptotic extrapolation. One
of the best available tools is the E-algorithm [Wen01, BZ91], which can be used when E
consists of linear expressions of the form

ϕ= c1 ψ1 +� + ckψk, (3)

with continuous parameters c1, � , ck, and where ψ1 ≻ � ≻ ψk are general functions,
possibly subject to some growth conditions at infinity. Here we use the standard notations
f ≺ g⇔ f = o(g), f 4 g⇔ f =O(g) and f ≍ g⇔ f 4 g4 f . Notice that the E-algorithm
can sometimes be used indirectly: if γ=1 in (1), then

log ϕ= βn+α logn+ c0
′ +� +

ck
′

nk
+� ,

with c0
′ = log c0, c1

′ = c1/c0, etc., is asymptotically of the required form (3).

We are aware of little work beyond the identification of parameters which occur linearly
in a known expression. A so called “Gevreytiseur” is under development [CDFT01] for
recognizing expansions of Gevrey type and with an asymptotic behaviour

fn=Cnα eβn (n!)γ+� . (4)

One of the referees also made us aware of work [JG99, CGJ+05] on extrapolations of the
form

ϕ= c1n
α1 +� + ckn

αk, (α1>� >αk)

where, in addition to the coefficients c1,� , ck, some of the exponents αi may be unknown
(even though guesses often exist, in which case one only has to determine whether the
corresponding coefficient ci vanishes).

2 Algorithms for asymptotic extrapolation

In this paper, we will be concerned with the case when E is the set of exp-log expressions.
An exp-log expression is constructed from the rational numbers, real parameters and n

using field operations, exponentiation and logarithm. It was already pointed out by Hardy
that the asymptotic behaviour of many functions occurring in analysis, combinatorics and
number theory can be expressed in asymptotic scales formed by exp-log functions [Har10,
Har11, Sha90, Sal91, RSSvdH96]. More generally, the field of transseries (which can be
seen as the “exp-log completion” of the field of germs of exp-log functions at infinity) enjoys
remarkable closure properties [vdH06c, Éca92].

The main problem with naive approaches for asymptotic extrapolation is that, even
when we have a good algorithm for the determination of the dominant term τ of the
expansion of fn, it makes little sense to recurse the algorithm for the difference fn − τ .
Indeed, a small error in the determination of C, α, β and γ for an expansion of type (4)
will result in a difference fn − τ which is either asymptotic to fn or τ . Even if we com-
puted f0,� , fN with great accuracy, this will be of little help with current extrapolation
techniques. Without further knowledge about the remainder Rn = fn−C nα eβn (n!)γ, it
is also hard to obtain approximations for C, α, β, γ with relative errors less than Rn/fn,
no matter which classical or clever numerical algorithm is used.

Instead of directly searching the dominant term τ of the asymptotic expansion of f
and subtracting it from f , a better idea is to search for a transformation f� Φ(f) which
kills the dominant term, and recursively apply asymptotic extrapolation to the transformed
sequence Φ(f). For instance, if fn= c0 + c1n

−1 +� , then we may take

fn
[1]

= Φ(f)n= ∆(f)n= fn+1− fn=− c1
n2

+�
as our first transformation and f [1]� ∆(n2 f [1]) for the second transformation. Similarly,
if fn= c0 ec1n+� , then we may take

fn
[1]

=Φ(f)n=Q(f)n= log

(

fn+1

fn

)

= c1 +�
and proceed with the transformation ∆. After a finite number of transformations

f [k] =(Φk ◦� ◦Φ1)(f),

the resulting sequence f [k] looses its accuracy, and we brutally extrapolate it by zero

f [k]≈ f̃ [k] = 0.

Following the transformations in the opposite way, we next solve the equations

Φi(f̃
[i−1]) = f̃ [i] (5)

for i= k,� , 1. The resolution of (5) involves the numeric determination of the continuous
parameter ci (or parameters ci,1,� , ci,ri, in general) which was killed by Φi. For decreasing
i = k, � , 1 the accuracy of the so-computed parameters ci and extrapolations f̃ [i] ≈ f [i]

tends to increase. The end-result f̃ [0] is the desired extrapolation of f .
The above approach is actually a “meta-algorithm” in the sense that we have not yet

specified the precise transformations which are applied. In section 2, we will discuss in more
detail some of the “atomic” transformations which can be used. Each atomic transformation
comes with a numeric criterion whether it makes sense to apply it. For instance, the finite
difference operator ∆ should be used on sequences which are not far from being constant.
In section 3, we next describe our main asymptotic extrapolation algorithm, based on the
prior choice of a finite number of atomic transformations.

Joris van der Hoeven 3

A priori , the main algorithm either returns the extrapolation in a numeric form or as
a sequence of inverses of atomic transformations. However, such extrapolations are not
necessarily readable from a human point of view. In [vdH08], it is shown how to solve the
equations (5) in the field of formal transseries. Finite truncations of these transseries then
yield exp-log extrapolations for f , as will be detailed in section 4. Once the shape of a
good exp-log extrapolation is known, the continuous parameters may be refined a posteriori

using iterative improvements.
The new extrapolation algorithms have been implemented (but not yet documented)

in the Mathemagix system [vdH02b]. A more manual version of the algorithm has been
used extensively in [PMFB06, PF07, Pau07] and produced satisfactory extrapolations in
this context. In section 5, we will present some examples on which we have tested our
implementation. Of course, problems occur when the atomic transformations and corre-
sponding numeric criteria have not been chosen with care. In section 6, we examine such
problems and possible remedies in more detail. In the last section 7, we outline some
possible generalizations of the algorithm.

Combining both ad hoc and classical techniques, such as the E-algorithm, experts will
be able to obtain most of the asymptotic extrapolations considered in this paper by hand.
Indeed, the right transformations to be applied at each stage are usually clear on practical
examples. Nevertheless, we believe that a more systematic and automatic approach is
a welcome contribution. Despite several difficulties which remain to be settled, our current
algorithm manages to correctly extrapolate sequences with various forms of asymptotic
behaviour. Our algorithm also raises some intriguing problems about appropriate sets of
atomic transformations and the approximation of sequences with regular behaviour at
infinity by linear combinations of other sequences of the same kind.

Remark 1. The present article is a completely reworked version of [vdH06a]. We adopted
a more systematic exposition, centered around the notion of atomic transformations. We
also optimized our propositions for good sets of atomic transformations and implemented
the exp-log extrapolation algorithm.

2. Atomic transformations

As explained in the introduction, our main approach for finding an asymptotic extrapo-
lation for fn is through the application of a finite number of atomic transformations Φ
on the sequence fn. Each time that we expect fn to satisfy a specific kind of asymptotic
behaviour, we apply the corresponding atomic transformation. For instance, if we expect fn
to tend to a constant, which corresponds to an asymptotic behaviour of the form fn=c+Rn
with Rn≺ 1, then we may apply the finite difference operator ∆.

More generally, we are thus confronted to the following subproblem: given a suspected
asymptotic behaviour

fn= ϕc1,� ,cr(Rn), (6)

where c1,� , cr are continuous parameters and Rn is a remainder sequence, we should

1. Find a numeric criterion for deciding whether fn potentially admits an asymptotic
behaviour of the form (6), or very likely does not have such a behaviour.

2. Find a sequence transformation g=Φ(f), such that g only depends on Rn, but not
on the continuous parameters c1,� , cr.

3. Find a way to numerically solve the equation Φ(f̃) = g̃ , when a numerical extrap-
olation g̃ ≈ g for g is known.

4 Algorithms for asymptotic extrapolation

In this section, we will solve this subproblem for several basic types of asymptotic
behaviour (6). In the next section, we will show how to combine the corresponding atomic
transformations into a full asymptotic extrapolation algorithm. If a sequence fn satis-
fies the numeric criterion associated to the atomic transformation Φ, then we say that
Φ is acceptable for fn.

Finite limits. When fn tends to a finite limit c, we have

fn= c+Rn (Rn≺ 1). (7)

A simple numerical criterion for this situation is

εf ,fN <δ1 (8)

for a suitable threshold δ1> 0. The continuous parameter c is killed by the finite difference
operator ∆:

gn= ∆(f)n= fn+1− fn=Rn+1−Rn.

Given an asymptotic extrapolation g̃ ≈ g for g, we may extrapolate f by

f̃n ≈ a+
∑

06i<n

gi

a = fN −
∑

06i<N

gi

In compact form, we thus have f̃ = ∆fN;N
−1 (g̃), where ∆ν;N

−1 is the inverse of ∆ for which
the N -th coefficient is given by ν.

Explicit dominant behaviour. Assume that we expect fn to be of the form

fn=Rnψn (Rn≍ 1), (9)

where ψn is a simple explicit function, such as ψn = n, ψn = n−1 or ψn = n−2. A simple
numeric criterion for this situation is

ε
f ,
fN
ψN

ψ
<δψ (10)

for a suitable threshold δψ>0. We usually take δψ<δ1. More generally, δψ is taken smaller
for more complicated functions. For instance, one might take δn = 0.1, but δ n

√ = 0.025.
Whenever fn is of the form (9), it is natural to apply the scaling operator ×ψ−1: f→ f/ψ

to f . Given an extrapolation g̃ for gn= fn/ψn, we simply scale back g̃ � ψ g̃ in order to
obtain the extrapolation for f .

Other regular behaviour at infinity. In cases when fn has a regular asymptotic
behaviour, which does not fall into any special case, then we may write

fn=± eRn (Rn≻ 1).

The only necessary condition for this to work is that the sign of fn ultimately does not
change. The corresponding numeric criterion can simply taken to be

fn
fN

> 0 (n=L,� ,N),

with the optional exclusion of the other cases (8) and (10). If the criterion is satisfied, then
we may apply the transformation f � Log f = log(f/sign(fN)), whose inverse is given by
ExpfN;N= sign(fN)exp. As a variant, we may consider an asymptotic behaviour of the form

fn= c eRn,

Joris van der Hoeven 5

and use the atomic transformation Q=∆ ◦Log: fn� log(fn+1/fn) =Rn+1−Rn.

Composite transformations. Sometimes, it is useful to combine the above basic
atomic combinations in order to detect more specific types of asymptotic behaviour. For
instance, if

fn= c1 ψ1,n+� + ckψk,n+Rn (ψ1≻� ≻ ψk≻Rn), (11)

then we may successively apply the operators

Φi=∆ ◦×Φi−1(ψi)−1

for i = 1, � , k, and where Φ0 = Id. This is equivalent to the E-algorithm and related to
the “all-in-one” transformation given by

fn	 ∣

∣

∣

∣

∣

∣

∣

∣

fn fn+1 � fn+k

ψ1,n ψ1,n+1 � ψ1,n+k

ψk,n ψk,n+1 � ψk,n+k

∣

∣

∣

∣

∣

∣

∣

∣

/

∣

∣

∣

∣

∣

∣

∣

∣

1 1 � 1
ψ1,n ψ1,n+1 � ψ1,n+k

ψk,n ψk,n+1 � ψk,n+k

∣

∣

∣

∣

∣

∣

∣

∣

.

Of course, Ψ ◦Φ is acceptable for f if and only if Φ and Ψ are acceptable for f resp. Φ(f).
Another example is given by asymptotic behaviour of the type

fn= c1n
c2 +Rn (Rn≺ 1). (12)

In that case, we may apply the transformation ∆ ◦ ×n ◦ Q. More generally, the loga-
rithmic/exponential transformations can be rather violent, so it is often useful to restrict
their acceptability.

Transformation synthesis. If we are confronted to any other kind of asymptotic
behaviour (6), which does not fall in the above cases, then we may investigate system-
atic ways to synthesize an appropriate atomic transformation Φ, such that the dominant
asymptotic behaviour of Φ(f) depends on Rn. The main trouble comes from the fact
that we need a transformation of the form f � ξ(f ,� ,∆k f).

Indeed, consider the modified problem, when f is an infinitely differentiable function
on [0, N] rather than a sequence. For simplicity, we will also assume that ϕc1,� ,cr(Rn) =
ψc1,� ,cr+Rn, where ψ is an exp-log function in c1,� , cr and n. Since the set of algebraically
differential functions forms a field which is closed under composition, ψ satisfies an alge-
braic differential equation P (ψ, � , ψ(s)) = 0 in n and we simply take f � P (f , � , f (s))
for our atomic transformation. If g is sufficiently small, then the intermediate value the-
orem for transseries [vdH06c, Chapter 9] ensures the existence of a transseries solution to
P (f ,� , f (s)) = g, which can actually be given an analytic meaning [vdH06b].

Unfortunately, the field of functions which satisfy an algebraic difference equation is
not closed under composition. In particular, let us consider the sequence nc, where c is
a formal parameter. We claim that this sequence does not satisfy an algebraic difference
equation. Indeed, assume the contrary and let

P (nc,� , (n+ s)c) = 0

be a relation of minimal order and minimal degree. Considering n as a complex number,
turning around the singularity at n=−s results in a new relation

P (nc,� , (n+ s− 1)c, e2pic (n+ s)c)= 0

6 Algorithms for asymptotic extrapolation

Combining this relation with the previous one, we obtain a relation of smaller degree or
order. In particular, this shows that for an asymptotic behaviour of the form (12), there
exists no algebraic atomic transformation Φ which will completely eliminate c1 nc2 and
make Rn apparent in the dominant behaviour of Φ(f).

3. A meta-algorithm for asymptotic extrapolation

Throughout this section we assume that we have fixed a finite set Φ of atomic transfor-
mations. One possible choice for Φ is {∆, Q, ×n−1 , ×n , ×n2 }, but other selections will
be discussed below. Each transformation Φ ∈Φ comes with a criterion for acceptability.
Furthermore, given an asymptotic extrapolation g̃ for g = Φ(f), we assume that we may
compute the inverse operator Φπ

−1=ΦfN−rΦ+1,� ,fN;N
−1 of Φ, for which f̃ =Φπ

−1(g̃) coincides

with f on the last rΦ known coefficients fN−rΦ+1,� , fN.
Given an input series f and an “extrapolation order” l, the asymptotic extrapolation

algorithm simply attempts to apply all composite transformations Φk ◦� ◦Φ1 on f , where
Φ1, � , Φk ∈ Φ and k 6 l. The algorithm returns a set of possible extrapolations. Each
asymptotic extrapolation is returned in the form of a recipe Ψ = Φ1,π1

−1 ◦ � ◦ Φk,πk
−1 , for

suitable parameters π1,� , πk. When applying this recipe to the zero sequence, we obtain
a numeric extrapolation f̃ = Φ(0) of f . In particular, the resulting extrapolations can
optionally be sorted on the relative error εf ,f̃ , after which we may keep only the best or K
best results. The inverse Φk ◦� ◦Φ1 of a recipe will be called a reductor .

Algorithm extrapolate(f , l)

Input: a finite sequence f0,� , fN and the extrapolation order l

Output: a set of extrapolations of the form (f̃ ,Ψ) for f

Let E4 {Id}
For each Φ∈Φ such that Φ is acceptable for f and rΦ > l do

E ′4 extrapolate(Φ(f), l− rΦ)

For each Ψ′∈E ′ do
Compute parameters π with fi= f̃i= (Φπ

−1 ◦Ψ′)(0)i for i=N − rΦ +1,� ,N
Set E4 E ∪ {Φπ

−1 ◦Ψ′}
Return E

Remark 2. In practice, Φ={Φ1,� ,Φt} is often designed in such a way that no more than
one transformation Φi is acceptable at a time. For instance, the criterion for acceptability
by Φimight include the condition that Φj is not acceptable for any j <i. Indeed, it is impor-
tant to keep the number of accepted transformations small at each stage, in order to prevent
combinatorial explosion. For some additional considerations, we refer to section 6.3.

Remark 3. In order to increase control over the accuracy, it is possible to perform all
computations using interval arithmetic [Moo66, AH83, GPR03]. In that case, the coef-
ficients f0, � , fN are intervals instead of floating point numbers, and the deterioration
of the relative precision will be more explicit during the application of the successive
transformations. As to the actual extrapolation, one should replace 0 by the smallest
interval which contains fL, � , fN at the last step, and similarly for the determination of
the other continuous parameters. Again, this has the advantage of giving a more precise
idea on the accuracy of the continuous parameters.

Joris van der Hoeven 7

Clearly, the choice of Φ and the corresponding criteria is primordial for the success of
our extrapolation method under various circumstances. Reduced sets Φ of transformations
and strict criteria are recommended in the case when the user already has some idea about
possible shapes for the asymptotic expansion. Larger sets Φ and looser criteria may allow
the detection of more complex asymptotic behaviours, at the risk of finding incorrect
extrapolations. Let us discuss a few other possible choices for Φ in more detail.

Power series expansions. Assume that the sequence fn admits an asymptotic expan-
sion in the form of a power series

fn≈ c0 +
c1
n

+
c2
n2

+� (13)

Applying the transformation ×n2 ◦∆ on this expansion, we obtain

(×n2 ◦∆f)n≈−c1 +
c1− 2 c2

n
+

− c1 +3 c2− 3 c3
n2 +� ,

which has a similar shape. Assuming that none of the coefficients ci vanishes, the set
Φ = {×n2 ◦∆} or Φ = {∆, ×n2} therefore suffices for the extrapolation of f . In the case
when some of the coefficients vanish, we should rather take Φ= {∆,×n2,� ,×np}.
Logarithmic coefficients. Assume now that f has an asymptotic expansion

fn≈
∑

i=0

∞
∑

j=0

ωi

ci,j
(logn)j

ni
.

If L=⌊λN ⌋ for a fixed constant 0<λ<1, then the relative error ε1,(logn)j tends to zero for
N→∞ and fixed j. In particular, if ∆∈Φ, then the asymptotic extrapolation algorithm
will attempt to apply ∆ on any sequence fn with fn≍ (logn)j. Since

n∆(logn)j = j (logn)j−1 +� ,
it follows that the set Φ={∆,×n ,� ,×np} usually suffices for the asymptotic extrapolation
of f (assuming that N is sufficiently large).

Unknown exponents. In the previous section, we have seen that the operator ∆◦×n◦Q
allows us to detect asymptotic behaviours of the form (12). More generally, assume that fn
admits a generalized power series expansion with unknown (real) exponents

fn≈ c0
nα0

+
c1
nα1

+
c2
nα2

+� (c0<c1<c2<�).

Then the set Φ={∆,∆◦×n◦Q,×n,×n2} will suffice for the asymptotic extrapolation of f .

Simple tails. It often occurs that the asymptotic expansion of f is the product of a
complicated “transmonomial” and a simple power series expansion, as in (1). In that case,
we may slightly modify our extrapolation algorithm in order to allow for a larger set
Φ= {∆, Q,×n−1 ,×n ,×n2} for the first few steps and a reduced set Φ= {∆,×n2,� ,×np}
for later steps.

4. Asymptotic extrapolations in exp-log form

Asymptotic extrapolations of f , as computed in the previous section, are given either
numerically, or using a recipe in terms of the inverses of the operators in Φ. For instance,
in the case of a power series expansion (13), the computed recipe is typically of the form

∆a1;N
−1 ◦ ×n−2 ◦� ◦∆ak;N+1−k

−1 ◦ ×n−2. (14)

8 Algorithms for asymptotic extrapolation

Unfortunately, the corresponding values of c0,� , ck−1 can not directly be read off from this
recipe. In this section, we will discuss techniques for obtaining asymptotic extrapolations
in a symbolic and more human readable form.

Remark 4. Of course, “human readability” is a subjective notion. In a sense, recipes of
the form (14) are already symbolic expressions for the asymptotics.

Remark 5. Sometimes, asymptotic extrapolation is used for the accurate computation
of some parameters, such as the radius of convergence, rather than a complete asymptotic
expansion. In such cases, symbolic post-treatment is not necessary and may even deterio-
rate the accuracy of the extrapolation.

A convenient and quite general setting for the computation with asymptotic expan-
sions is to restrict our attention to exp-log functions or transseries. An exp-log function

is constructed from the constants and an infinitely large indeterminate n using the field
operations, exponentiation and logarithm. Several algorithms exist for the computa-
tion with exp-log functions at infinity [Sha89, Sal91, RSSvdH96, Sha96, Gru96, vdH97].
A transseries is formed in a similar way, except that, under certain support conditions,
we allow additions to be replaced by infinite summations. An example of a transseries is

1!n−1 e
n+

n

log n
+

n

log2n
+�

+2!n−2 e
n+

n

log n
+

n

log2n
+�

+3!n−3 e
n+

n

log n
+

n

log2n
+�

+� .
The field of formal transseries at infinity is stable under many operations, such as differen-
tiation, integration, composition and functional inversion. However, transseries are formal
objects and often divergent. Techniques for the computation with transseries can be found
in [Éca92, RSSvdH96, vdH97, vdH06c, vdH08].

The aim of this paper is not to go into details about the computational aspects of
transseries. A heuristic approach, which is particularly well adapted to the present context,
is described in [vdH08]. From the computational point of view, we recall that a transseries f
is approximated by an infinite sum

f =
∑

k=0

∞
fk, (15)

where each fk is a finite linear combination of transmonomials. Each transmonomial is
either an iterated logarithm or the exponential of another transseries. Furthermore, it is
described in [vdH08] how to perform common operations on transseries, such as differenti-
ation, integration, composition, as well as discrete summation ∆−1. Finally, we notice that
the technique of summation up to the least term [Poi93] can be used recursively for the
approximate numeric evaluation of (15), even if f is divergent. Whenever g̃ extrapolates
g = ∆ f , this allows us in particular to compute ∆fN;N

−1 (g̃) = ∆−1(g̃) + a, with a =
fN −∆−1(g̃)(N).

Returning to our asymptotic extrapolation algorithm, it follows that the inverses of the
atomic transformations from section 2 can systematically be applied to transseries instead
of numeric sequences. In other words, given the recipe Ψ of an asymptotic extrapolation,
we simply compute Ψ(0) as a transseries. If we want an exp-log extrapolation, then we
truncate f ≈ f0 +� + fk for the order k which yields the best numeric extrapolation. Of
course, the truncations are done recursively, for all transseries whose exponentials occur
as transmonomials in the expansions of f0,� , fk.

Joris van der Hoeven 9

Several techniques can be used to enhance the quality of the returned exp-log extrapo-
lations. Indeed, due to truncation and the process of summation up to the least term, the
accuracies of the numeric parameters in the exp-log extrapolation may be deteriorated with
respect to those in the original recipe. Let f̃a1,� ,ak be an exp-log extrapolation depending
on parameters a1,� ,ak. One way to enhance the quality of our extrapolation is by iterative
improvement. For instance, we may use Newton’s method for searching the zeros of the
function





a1

ak



�





f̃a1,� ,ak(N − k+1)− fN−k+1

f̃a1,� ,ak(N)− fN






.

Alternatively, we may perform a least square fit on the range {L, � , N }. Another
approach to a posteriori enhancement is to search closed form expressions for the param-
eters a1,� , ak, such as integers, rational numbers or simple linear combinations of known
constants p, e, etc. Such closed form expressions can be guessed by continuous fraction
expansion or using the LLL-algorithm [LLL82]. In cases of success, it may be worthy
to adjust the set of atomic transformations and rerun the extrapolation algorithm. For
instance, if we find an extrapolation such as

f ≈ 1.5904324561n1.5000000032+� ,
then we may add ×

n−3/2 as an atomic transformation. This spares the determination of
one continuous parameter, which increases the accuracy of the successive transformed
sequences.

5. Examples

In this section, we will present the results of running our algorithm on a series of explicit
examples, as well as an example from [CGJ+05] suggested by one of the referees. We have
tried several sets of atomic transformations Φ, using various criteria and thresholds. In
what follows, we systematically take L= ⌊N/2⌋, and the algorithm works as follows:

1. If εLog f ,logn<0.25, εn∆Log f,1<0.05 and |(×log2n◦∆◦×n◦∆◦Log)(f)|<0.5 (where
norms are taken on {L,� ,N }), we apply the transformation Π=∆◦×n◦∆◦Log in
order to detect expansions of the form f≈cnp+� . Moreover, if the last coefficient p
of the sequence (×n ◦∆ ◦Log)(f) is close to an integer |p−⌊p⌉|<N−1/2, then we
rather apply ∆ ◦ ×n−p

2. If step 1 does not succeed and εf ,np<0.25 for some p∈{−2,−1,0,1}, then we apply
the transformation ∆p=∆ ◦ ×n−p.

3. If steps 1 and 2 do not succeed and f does not change sign on {L,� ,N }, then we
apply Q=∆ ◦Log.

In other words, we first check whether f has an expansion of the form f ≈ c np+� , with
a high degree of certainty. If not, then we still try for p = {−2, −1, 0, 1} with a bit less
certainty. In cases of panic, we fall back on the transformation Q.

We want to emphasize that the above choices are preliminary. We are still investigating
better choices for L and the thresholds, and more particular transformations for the detec-
tion of common expansion patterns.

5.1. Explicit sequences

For our first series of examples, we took N=1000 and considered several explicit sequences.
The results have been summarized in table 1 below. For all examples we used a precision
of 512 bits, except for fIV, in which case we used 4096 bits.

10 Algorithms for asymptotic extrapolation

The first sequence fI = exp(n−1) is an ordinary power series in n−1, which is well
recognized (3 decimal digits per iteration, as expected). Notice the remarkable presence
of a ∆4-transformation. The second sequence fII= np + n+ 1 demonstrates the ability to
detect expansions in n with arbitrary exponents. The third sequence fIII = n! reduces to
an ordinary power series expansion after the transformation ∆1 ◦∆0 ◦ Q and is therefore
well recognized. The fourth sequence fIV = ζ(n) shows that we are also able to detect
expansions in e−n with arbitrary exponents. The next two sequences fV and fVI essentially
concern the detection of expansions of the form

∑

k
(ak log n+ bk) n

−k. This works well
for a few iterations, but the presence of log n tends to slow down the convergence and
becomes problematic at higher orders. Finally, we considered an expansion in (log n)−1,
which should be hopeless for our algorithm due to the slow increase of logn.

Function Order Reductor Relative error

fI = e
1

n 10 ∆2
7 ◦∆4 ◦∆2 ◦∆0 7.284930271 · 10−34

fII=np +n+1 6 Π ◦∆2 ◦∆2 ◦Π 1.079457292 · 10−12

fIII=n! 10 ∆2
6 ◦∆1 ◦∆0 ◦Q 8.054709905 · 10−21

fIV= ζ(n) 9 (∆0 ◦Q)4 ◦∆0 3.272054867 · 10−350

fV =n+ log(n+ 1) 4 ∆0 ◦∆1 ◦∆2 ◦∆−1 8.417894011 · 10−9

fVI=n e n
√

7 Q ◦∆0 ◦∆2 ◦Π ◦∆1 ◦Q 2.035560080 · 10−11

fVII=
1

logn+ 1
6 ∆1

3 ◦Q ◦∆1 ◦∆0 2.481662714 · 10−9

Table 1. Results when applying our algorithm to several explicit sequences for N =1000 and order
10. In the table, we have shown the order of the best reductor and the corresponding relative error.

Having obtained the recipes for each of the sequences, we next applied the post-treat-
ment of section 4 in order to find asymptotic expansions in the more readable exp-log form.
The results are shown below:

fI ≈ 1.000000000+
1.000000000

n
+

0.5000000000
n2

+
0.1666666667

n3
+

0.04166666667
n4

+
0.008333333333

n5
+

0.001388888889
n6

+�
fII ≈ 1.00000000n3.14159265− 0.000001308n2.14159265+ 0.0451432651n1.14159265+

0.999749239n0.982199533− 0.903748123n0.141592654+
2.12789974
n0.0178004671

+�
fIII ≈ 2.506628275 e1.0000000000nlog(n)−1.0000000000n+0.5000000000log(n) +

0.2088856896 e1.0000000000nlog(n)−1.0000000000n+0.5000000000log(n)

n
+�

fIV ≈ 1.000000000+
1.000000000
e0.6931471806n

+
1.000000000
e1.098612289n

+

1.000000000
e1.386294361n

− 0.5714285714
e1.504077397n

+
0.5714285714
e1.504077397n

+�
fV ≈ 0.0000009101n log(n) + 0.9999911895n+ 1.002816158 log(n)−

0.01863317212+
0.5014080791 log(n)

n
− 0.7614285530

n
+�

Joris van der Hoeven 11

fVI ≈5 0.9949758928 e0.9929778942n
0.2504215280+1.003963496log(n) +

0.2405363359 e0.9929778942n
0.2504215280+1.003963496log(n)

n0.7495784720
−

0.4994597378 e0.9929778942n
0.2504215280+1.003963496log(n)

n
+�

fVII ≈5
79.57941000n e0.02189743996log(n)

2−1.677515325log(n)

log(n)2
+

2462.217956n e0.02189743996log(n)2−1.677515325log(n)

log(n)3
+

62587.76904n e0.02189743996log(n)2−1.677515325log(n)

log(n)4
+�

The obtained expansions are remarkably accurate in the cases of fI, fIII and fIV. We
were particularly happy to recover Stirling’s formula in a completely automatic numeric-
symbolic manner. The expansions for fII, fV and fVI are also close to the correct ones, when
neglecting terms with small coefficients. The last expansion is more problematic; errors
typically occur when a numerically small expression on {L,� , N } is incorrectly assumed
to be infinitesimal. Such mistakes may lead to the computation of absurdly complicated
transseries expansions, which occasionally fail to terminate. For instance, we only obtained
exp-log expansions for extrapolations at order 5 in the last two examples.

5.2. Self avoiding walks on a triangular lattice

Let us now consider the sequence fn, where fn is the number of self-avoiding walks of size n
on a triangular lattice [CGJ+05]. The terms f0,� , fN with N = 40 are as follows:

0, 6, 30, 138, 618, 2730, 11946, 51882, 224130, 964134, 4133166, 17668938, 75355206,
320734686, 1362791250, 5781765582, 24497330322, 103673967882, 438296739594,
1851231376374, 7812439620678, 32944292555934, 138825972053046, 584633909268402,
2460608873366142, 10350620543447034, 43518414461742966, 182885110185537558,
768238944740191374, 3225816257263972170, 13540031558144097474,
56812878384768195282, 238303459915216614558, 999260857527692075370,
4188901721505679738374, 17555021735786491637790, 73551075748132902085986,
308084020607224317094182, 1290171266649477440877690,
5401678666643658402327390, 22610911672575426510653226

It is theoretically known that

fn≈ µnn
11

32 (a0 +�) (16)

and the authors of [CGJ+05] actually expect an expansion of the type

fn≈ µnn11/32
(

a0 +
a1

n
+

a2

n3/2
+
a3

n2 +
a4

n5/2
+
a5

n3 +�)

. (17)

In view of (16), we have applied our asymptotic extrapolation algorithm on f , by forcing
the transformation Log ◦ ×

n−11/32 at the start. This yields the expansion

0.2852276870 e1.423300582n+
0.04609972489 e1.423300582n

n1.000000000
− 0.1672827822 e1.423300582n

n1.644753856
+

0.2440961517 e1.423300582n

n2.000000000
− 0.3967446855 e1.423300582n

n2.644753856
+

0.2828049628 e1.423300582n

n3.000000000
+�

12 Algorithms for asymptotic extrapolation

which is quite close to the expected expansion. The corresponding reductor is given by

∆1 ◦Q ◦∆2 ◦∆2 ◦∆−1 ◦Log ◦ ×n−11/32

As explained in [CGJ+05], the detection of the exponent −3/2 for a2 is somewhat critical

due to the possible appearance of an additional term ã0n
−59/32= ã0n

−1.84375. The authors
argue that it is difficult to confirm or refute the presence of such a term, based on numerical
evidence up to order N = 40 only. We agree with this analysis. Nevertheless, it is striking
that the exponent returned by our algorithm is not far from the mean value −1.671875
of −1.5 and −1.84375. Also, the algorithm failed to detect a clean Π-transformation, which
might indicate the presence of two terms with close exponents.

6. Possible improvements

There is still significant room for improving our choice of Φ in section 5, and the corre-
sponding criteria for acceptability. Failures to detect the expected form of asymptotic
expansion can be due to the following main reasons:

1. Even for N →∞, the set Φ of transforms does not allow for the detection of the
correct asymptotic expansion.

2. At a certain step of the extrapolation process, the wrong atomic transformation is
applied.

3. A recipe is found for the asymptotic extrapolation, but the corresponding exp-log
extrapolation is incorrect or too hard to compute.

In this section, we will discuss the different types of failure in more detail and examine
what can be done about them.

6.1. Inadequate transformations

Of course, the class of asymptotic expansions which can be guessed by our extrapolation
algorithm is closely related to the choice of Φ. Asymptotic behaviour for which no adequate
atomic transformation is available will therefore not be detected. For instance, none of the
transformations discussed so far can be used for the detection of oscillatory sequences such
as fn= sin(αn).

A more subtle sequence which cannot be detected using Φ= {∆, Q,×n−1 ,×n ,×n2} is
fn= (log n)−1. In order to detect fn= (logn)−1, we might add the transformation ×logn.
However, the corresponding criterion should be designed with care: as noticed in section 3,
sequences of the form (log n)α are easily mistaken for constant sequences, when taking
L = ⌊λ N/2⌋ for a fixed λ ∈ (0, 1). A more robust criterion might require εf logn,1 < δ,
εn∆f−1,1<δ as well as εn∆(f logn),1 ≮ δ for a suitable threshold δ.

Another more intricate difficulty occurs when the various transformations introduce an
infinite number of parasite terms. For instance, consider the expansion

fn≈α+
β

n
+e−n+� . (18)

When applying one ∆-transformation, we obtain

(∆f)n≈ −b
n2

+
b

n3
− b

n4
+� +

(

1− 1
e

)

e−n+� . (19)

Joris van der Hoeven 13

The extrapolation of (19) therefore leads to an infinite number of ∆2-transformations, in
order to clear the infinity of terms which were introduced by the first ∆-transformation. In
particular, the presence of the e−n will not be detected. The phenomenon aggravates when
parasite logarithmic terms are introduced. For instance, if we start the extrapolation of

fn≈αnnβ
(

c0 +
c1
n

+
c2
n2 +�)

with the transformation ×n2◦∆−1◦Log instead of Q, then we are lead to the extrapolation
of an expansion of the form

(×n2 ◦∆−1 ◦Log f)n≈ β logn+
λ1 logn+ µ1

n
+
λ2 logn+ µ2

n2 +� .
We have seen in the previous section (examples fV and fVI) that such expansions are
much harder to detect than ordinary power series expansions. This is why we often prefer
the Q-transformation over Log.

The real reason behind the above difficulty is that “nice” expansions in exp-log form,
such as (18), do not coincide with “nice” expansions constructed using the inverses of
operators in Φ. For instance, the expansion

fn≈− 1
n
− 1

2n2 −
1

6n3 +
1

30n5 −
1

42n7 +
1

30n9 −
5

66n11
+

691
2730n13

− 7

6n15
+� +e−n

is “nice” in the second sense, since

∆f ≈ 1

n2
+

(

1− 1

e

)

e−n

∆2 ∆f ≈ −
(

1
e
− 1

)2

n2 e−n+�
In order to detect “nice” exp-log expansions, we have to adapt the set ∆ so as to kill
several continuous parameters at a time. In the case of linear combinations (11), this can
be done using the transformations of the E-algorithm, modulo prior determination of the
functions ψi. In general, the required transformations cease to be simple; see the discussion
at the end of section 2. One idea might be to use the relation

∂= log(1 + ∆),

in combination with summation up to the least term, in order to replace the finite difference
operator by a genuine derivation.

6.2. Inadequate criteria

One particular strength of our asymptotic extrapolation algorithm is that it is strongly
guided by the asymptotic behaviour of the original sequence and its successive trans-
formations. If the asymptotic expansion of the sequence is given by a transseries, then
this property is preserved during the extrapolation process. Theoretically, it is therefore
possible to always select the right transformation at each stage.

In practice however, the asymptotic regime is not necessarily reached. Furthermore,
numerical tests on the dominant asymptotic behaviour of a sequence have to be designed
with care. If bad luck or bad design result in the selection of the wrong transformation
at a certain stage, then the obtained extrapolation will be incorrect from the asymptotic
view. Nevertheless, its numeric relative error on the range {L, � , N } may still be very
small, which can make it hard to detect that something went wrong.

14 Algorithms for asymptotic extrapolation

Let us first consider the situation in which the asymptotic regime is not necessarily
reached. This is typically the case for expansions such as

fn≈ 1− 1000
n

+� . (20)

For N≪ 1000, our algorithm will incorrectly assume that fn≈ 1000n−1. The sequence fV
from section 5 leads to a similar situation:

(∆2 ∆1 ∆2 ∆−1 fV) ≈ log(n)− 6− 7 log(n)
n

+
95
2n

+
31 log(n)

n2
−� (21)

((∆2 ∆1)
2 ∆2 ∆−1 fV) ≈ −7 log(n) + 62+

145 log(n)
n

− 2677
2n

− 1549 log(n)

n2
+� (22)

This explains our problems to detect the right expansion, even for large values of N such
as N ≈ e6≈ 403.429 or N ≈ e9≈ 8103.08.

The best remedy is to add an atomic transformation which detects the two leading
terms together. For instance, we may use the transformation ∆0 ◦ ∆1 in (20) and ∆1 ◦
∆0 in (21) and (22). Of course, in order to gain something, we also need to adjust the
acceptability criteria. For instance, in the cases of (21) and (22), we may simply require
that ε∆0 f ,1<δ for a suitable threshold δ, instead of the combined requirements εf ,logn<δ
(or εf ,1< δ) and ε∆0 f ,1< δ. Of course, a drawback of our remedy is that there are many
possibilities for the subdominant term(s) to be killed. Consequently, we will only be able
to correct cancellations on or near the range {L,� ,N } in a few special cases which occur
frequently in practice. For the time being, it seems that polynomials in logn or n−1 deserve
special treatment, but more experimentation is needed in order to complete this list.

Another major problem is the determination of a suitable value for L and good thresh-
olds δ for tests εf ,g<δ on the relative error. Let us first examine some frequent mistakes,
due to inadequate thresholds. As we have seen before, our algorithm frequently assumes
sequences of the form (log n)k to be constant on the range {L, � , N }. Fortunately, this
is a rather harmless mistake, because we usually want to apply ∆ both for 1 and (logn)k,
k ∈ N. A more annoying mistake is to consider nε as a constant for small ε � 0. This
typically happens when δ is too large. Conversely, if δ is too small, then we may fail to
recognize that fn= a+ b (logn)−1≍ 1.

An interesting experiment for quantifying the risk of mistakes is to examine how well
basic functions, such as nα, log n, eαn, are approximated by other basic functions on the
range {L,�N }. More precisely, given sequences fn and g1,n,� , gk,n, we solve the system





g1,n1 � gk,n1

g1,nk � gk,nk









λ1

λk



=





fn1

fnk





for L=n1<� <nk=N and consider the relative error

ηf ;g1,� ,gk= εf ,λ1g1+�+λkgk

of the obtained approximation of f by λ1 g1+� +λkgk. Some results are shown in table 2,
where we took the ni equally spaced. The table shows a significant risk of confusions
for L = ⌊N/2⌋ and the quasi-absence of confusions for L = ⌊ N

√
⌋. Unfortunately, when

taking L too small, we often fail to be in the asymptotic regime and we will either need
to increase the thresholds δ or improve the detection of several terms in the expansion
at once. We may also start check the criteria several times for increasing values of L:
transformations which are accepted for smaller values of L can be applied with a greater
degree of confidence.

Joris van der Hoeven 15

ηf ;g1,� ,gk for N = 1024 and L= 32,� , 512
fn g1,n,� , gk,n 32 64 128 256 512

logn 1, n−1 0.24759 0.15592 0.08616 0.037406 0.009053

n−1/2 1, n−1 0.33294 0.22222 0.12927 0.058875 0.014939

e−n 1, n−1 2.00000 2.00000 2.00000 2.000000 2.000000

n−1 logn, 1 1.14526 0.82157 0.50005 0.233013 0.059642

logn 1, n−1 0.24759 0.15592 0.08616 0.037406 0.009053

logn 1, n−1, n−2 1.72035 0.35513 0.08644 0.016122 0.001272

logn 1, n−1, n−2, n−3 1.44191 0.59469 0.10606 0.009455 0.000250

logn 1, n−1, n−2, n−3, n−4 2.00000 2.00000 0.20042 0.006680 0.000059

n−1/2 1, n−1 0.33294 0.22222 0.12927 0.058875 0.014939

n−1/2 1, n−1, n−2 0.29686 0.14843 0.05718 0.014348 0.001399

n−1/2 1, n−1, n−2, n−3 2.00000 0.35220 0.05846 0.006534 0.000220

n−1/2 1, n−1, n−2, n−3, n−4 1.52100 0.57069 0.07160 0.003784 0.000044

Table 2. Approximation error of a given sequence f by a linear combination λ1 g1+� +λn gn of
other given sequences g1,� , gk on the range {L,� , N }, as a function of L.

6.3. Multiple acceptable transformations

A final point about the design of a good setΦ of atomic transformations is whether we allow
several transformations to be acceptable for the same sequence (as in our meta-algorithm),
or rather insist on immediately finding the right transformation at each step. For instance,
in section 6.1, we argued that Q-transformations are usually preferable over Log-trans-
formations. However, in section 5.2, starting with Q ◦ ×

n−11/32 instead of Log ◦ ×
n−11/32

leads to an extrapolation of inferior quality. More generally, it is not rare that a better
extrapolation is found using a slightly different transformation. This might be due to subtle
cancellations in the asymptotic expansion which occur only for one of the transformations.

However, a systematic search for magic transformations is quite time-consuming, so
we strongly recommend to restrict such searches to the first few iterations. Moreover, one
should avoid using the increased flexibility for loosening the acceptability criteria: a better
relative error for a numeric extrapolation is no guarantee for a better asymptotic quality.
For instance, in the case of an expansion

fn≈
∑

k>0

ak,5 (logn)5 +� + ak,0

nk
,

with N = 1000 and L= 500, we can only hope to gain 3 decimal digits modulo an increase
of the extrapolation order by 6. A simple interpolation

fn≈
∑

k>0

bk
nk

on the range {L,�N } will often yield better results at the same order. Nevertheless, we
may expect (×n ◦∆)k f to be exceptionally small whenever k=6, 12, 18,� , which should
never be the case for transformations of the form ×n ◦∆ ◦ (×n2 ◦∆)k f . Be guided by the
asymptotics at appropriate moments!

16 Algorithms for asymptotic extrapolation

6.4. Incorrect exp-log extrapolations

Whenever the asymptotic extrapolation algorithms returns an incorrect answer, the com-
puted exp-log extrapolations quickly tend to become absurd. Typically, we retrieve expan-
sions of the type eεn or nε instead of 1 + ε n or 1 + ε log n, where ε ≈ 0 is a small
non-zero numeric parameter, which really should vanish from a theoretic point of view.
In section 5.1, we have seen an example fVII of this phenomenon. Actually, the computation
of exp-log extrapolations frequently does not terminate at all. We probably should abort
computations when the transseries extrapolations involve too many asymptotic scales.

The above phenomenon is interesting in itself, because it might enable us to improve
the detection of incorrect expansions: when incorporating the computation of the exp-log
extrapolations into the main algorithm, we may check a posteriori that the asymptotic
assumptions made on the sequence are still satisfied by the resulting extrapolation. In this
way, we might get rid of all extrapolations which are good from a numeric point of view
on the range {L,� ,N }, but incorrect for large n≫N . However, we have not investigated
in detail yet whether our algorithms for the computation with transseries may themselves
be a source of errors, especially in the case when we use summation up to the least term.

7. Possible generalizations

Our algorithm may be generalized along several lines. First of all, the restriction to real-
valued sequences is not really essential. Most of the ideas generalize in a straightforward
way to complex sequences. Only the transformation f→ log f requires a bit more care. In
order to compute g= log f , we first compute gN = log fN using the principal determination
of the logarithm. We next compute the other terms using

gi= gi+1 + log fi

fi+1
.

For more information about complex transseries, we refer to [vdH01]. Notice that the
present algorithms will only work well for complex transseries expansions which do not
essentially involve oscillation. The expansion

f =n2+i +3n1+5i +n−7i +
logn
n

+�
will typically fall in our setting, but our algorithms will fail to recognize a sequence as
simple as fn= sinn. One approach for removing this drawback is discussed in [PF07].

Another direction for generalization is to consider multivariate power series. For
instance, assume that the coefficients fn1,n2 of a bivariate power series are known up
to n1 + n2 6 N . Then one may pick N1 and N2 with N1 + N2 = N and apply the
algorithm to the sequences fN1+k1,n2 in n2 for different small values of k1 ∈ Z. One
may next try to interpolate the resulting expansions as a function of k1. Alternatively, one
might investigate a generalization of the algorithm where discrete differentiation is applied
in an alternate fashion with respect to n1 and n2. Of course, in the multivariate case,
it is expected that there are several asymptotic regions, according to the choice of (N1,N2).

In fact, the dependency of the asymptotic expansion on the choice of (N1, N2) does
not only occur in the multivariate case: for the algorithms presented here, it would be
of interest to study the dependency of the obtained expansion as a function of N . For
instance, consider the sequence

fn=
1

1−n−1− 100n−logn
,

Joris van der Hoeven 17

which admits a transfinite asymptotic expansion

fn = 1 +
1
n

+
1

n2
+� +

100
nlogn

+
100

nlogn+1
+

100
nlogn+2

+� +

10000
n2logn

+
10000
n2logn+1

+
10000
n2logn+2

+� +

Depending on the value of n some of the a priori invisible terms 100 n−logn, etc. may
suddenly become dominant from a numerical point of view. This phenomenon is best
illustrated by reordering the terms in the expansion as a function of their magnitude, for
different values of n:

f10 ≈ 1 +
100
nlogn

+
10000
n2logn

+
106

n3logn
+

1
n

+
108

n4logn
+

100
nlogn+1

+
1010

n5logn
+

10000
n2logn+1

+�
f25 ≈ 1 +

1
n

+
100
nlogn

+
1
n2

+
100

nlogn+1
+

1
n3

+
10000
n2logn

+
100

nlogn+2
+

1
n4

+
10000
n2logn+1

+�
f100 ≈ 1 +

1
n

+
1

n2
+

1

n3
+

100
nlogn

+
1

n4
+

100
nlogn+1

+
1

n5
+

100
nlogn+2

+
1

n6
+

100
nlogn+3

+�
f250 ≈ 1 +

1
n

+
1

n2
+

1

n3
+

1

n4
+

100
nlogn

+
1

n5
+

100
nlogn+1

+
1

n6
+

100
nlogn+2

+
1

n7
+�

f1000 ≈ 1 +
1
n

+
1
n2 +

1
n3 +

1
n4 +

1
n5 +

1
n6 +

100
nlogn

+
1
n7 +

100
nlogn+1

+
1
n8 +

100
nlogn+2

+�
f2500 ≈ 1 +

1
n

+
1

n2
+

1

n3
+

1

n4
+

1

n5
+

1

n6
+

1

n7
+

100
nlogn

+
1

n8
+

100
nlogn+1

+
1

n9
+�

f10000 ≈ 1 +
1
n

+
1

n2
+

1

n3
+

1

n4
+

1

n5
+

1

n6
+

1

n7
+

1

n8
+

100
nlogn

+
1

n9
+

100
nlogn+1

+�
It may therefore be interesting to apply the asymptotic extrapolation algorithm for dif-
ferent values of N and try to reconstruct the complete transfinite expansion by combining
the different results. Here we notice that the detection of a term like 100/nlogn in the
expansion for N = 10 may help for the detection of the term 1/n in the second expansion
for N = 25, since we may subtract it from the expansion (and vice versa).

Acknowledgment. We would like to thank U. Frisch and W. Pauls for various stim-
ulating conversations and for their comments on a draft of this paper. We also thank the
anonymous referees for their remarks and references.

18 Algorithms for asymptotic extrapolation

Bibliography

[AH83] G. Alefeld and J. Herzberger. Introduction to interval analysis . Academic Press, New York,
1983.

[BL94] B. Beckermann and G. Labahn. A uniform approach for the fast computation of matrix-type
Padé approximants. SIAM J. Matrix Analysis and Applications , pages 804–823, 1994.

[BZ91] C. Brezinski and R. Zaglia. Extrapolation Methods. Theory and Practice . North-Holland,
Amsterdam, 1991.

[CDFT01] M. Canalis-Durand, F. Michel F., and M. Teisseyre. Algorithms for formal reduction of
vector field singularities. Journal of Dynamical and Control Systems , 7(1):101–125, January 2001.

[CGJ+05] S. Caracciolo, A. J. Guttmann, I. Jensen, A. Pelissetto, A. N. Rogers, and A. D. Sokal.
Correction-to-scaling exponents for two-dimensional self-avoiding walks. J. Stat. Phys., 120:1037–
1100, 2005.

[Der94] H. Derksen. An algorithm to compute generalized padé-hermite forms. Technical Report
Rep. 9403, Catholic University Nijmegen, January 1994.

[Éca92] J. Écalle. Introduction aux fonctions analysables et preuve constructive de la conjecture de

Dulac. Hermann, collection: Actualités mathématiques, 1992.

[FS96] P. Flajolet and R. Sedgewick. An introduction to the analysis of algorithms . Addison Wesley,
Reading, Massachusetts, 1996.

[GPR03] M. Grimmer, K. Petras, and N. Revol. Multiple precision interval packages: Comparing
different approaches. Technical Report RR 2003-32, LIP, École Normale Supérieure de Lyon, 2003.

[Gru96] D. Gruntz. On computing limits in a symbolic manipulation system . PhD thesis, E.T.H.
Zürich, Switzerland, 1996.

[Har10] G.H. Hardy. Orders of infinity . Cambridge Univ. Press, 1910.

[Har11] G.H. Hardy. Properties of logarithmico-exponential functions. Proceedings of the London

Mathematical Society , 10(2):54–90, 1911.

[JG99] I. Jensen and A. J. Guttmann. Self-avoiding polygons on the square lattice. J. Phys., 32:4867–
4876, 1999.

[LLL82] A.K. Lenstra, H.W. Lenstra, and L. Lovász. Factoring polynomials with rational coefficients.
Math. Ann., 261:515–534, 1982.

[Moo66] R.E. Moore. Interval analysis . Prentice Hall, Englewood Cliffs, N.J., 1966.

[Pau07] W. Pauls. Complex singularities of ideal incompressibles flows . PhD thesis, University Nice-
Sophia Antipolis, 2007.

[PF07] W. Pauls and U. Frisch. A Borel transform method for locating singularities of Taylor and
Fourier series. J. Stat. Phys , 127:1095–1119, 2007.

[PMFB06] W. Pauls, T. Matsumoto, U. Frisch, and J. Bec. Nature of complex singularities for the
2D Euler equation. Technical report, 2006.

[Poi93] H. Poincaré. Les méthodes nouvelles de la mécanique céleste , volume Tôme II. Gauthier-
Villars, Paris, 1893.

[Pól37] G. Pólya. Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische
Verbindungen. Acta Mathematica , 68:145–254, 1937.

[RSSvdH96] D. Richardson, B. Salvy, J. Shackell, and J. van der Hoeven. Expansions of exp-log
functions. In Y.N. Lakhsman, editor, Proc. ISSAC ’96 , pages 309–313, Zürich, Switzerland, July
1996.

[Sal91] B. Salvy. Asymptotique automatique et fonctions génératrices . PhD thesis, École Polytech-
nique, France, 1991.

[Sha89] J. Shackell. A differential-equations approach to functional equivalence. In Proc. ISSAC ’89 ,
pages 7–10, Portland, Oregon, A.C.M., New York, 1989. ACM Press.

[Sha90] J. Shackell. Growth estimates for exp-log functions. Journal of Symbolic Computation ,
10:611–632, 1990.

Joris van der Hoeven 19

[Sha96] J. Shackell. Limits of Liouvillian functions. Proc. of the London Math. Soc., 72:124–156,
1996. Appeared in 1991 as a technical report at the Univ. of Kent, Canterbury.

[SZ94] B. Salvy and P. Zimmermann. Gfun: a Maple package for the manipulation of generating and
holonomic functions in one variable. ACM Trans. on Math. Software , 20(2):163–177, 1994.

[vdH97] J. van der Hoeven. Automatic asymptotics . PhD thesis, École polytechnique, Palaiseau,
France, 1997.

[vdH01] J. van der Hoeven. Complex transseries solutions to algebraic differential equations. Tech-
nical Report 2001-34, Univ. d’Orsay, 2001.

[vdH02a] J. van der Hoeven. Relax, but don’t be too lazy. JSC , 34:479–542, 2002.

[vdH02b] J. van der Hoeven et al. Mathemagix, 2002. http://www.mathemagix.org.

[vdH06a] J. van der Hoeven. Algorithms for asymptotic interpolation. Technical Report 2006-12,
Univ. Paris-Sud, 2006.

[vdH06b] J. van der Hoeven. Transserial Hardy fields. Technical Report 2006-37, Univ. Paris-Sud,
2006. Accepted for publication.

[vdH06c] J. van der Hoeven. Transseries and real differential algebra , volume 1888 of Lecture Notes

in Mathematics . Springer-Verlag, 2006.

[vdH08] J. van der Hoeven. Meta-expansion of transseries. Technical Report 2008-03, Université
Paris-Sud, Orsay, France, 2008. Short version presented at ROGICS 2008, Mahdia, Tunesia.

[Wen01] E. J. Weniger. Nonlinear sequence transformations: Computational tools for the acceleration
of convergence and the summation of divergent series. Technical Report math.CA/0107080, Arxiv,
2001.

[Wil04] H.S. Wilf. Generatingfunctionology . Academic Press, 2nd edition, 2004.
http://www.math.upenn.edu/~wilf/DownldGF.html.

20 Algorithms for asymptotic extrapolation

