
Faster relaxed multiplication
∗

Joris van der Hoeven

Dépt. de Mathématiques (Bât. 425)
CNRS, Université Paris-Sud

91405 Orsay Cedex
France

Email: joris@texmacs.org

April 13, 2012

In previous work, we have introduced several fast algorithms for relaxed power
series multiplication (also known under the name on-line multiplication) up till
a given order n. The fastest currently known algorithm works over an effective base
field K with sufficiently many 2p-th roots of unity and has algebraic time complexity
O(n log n e2 log 2log log n

√

). In this note, we will generalize this algorithm to the cases
when K is replaced by an effective ring of positive characteristic or by an effec-
tive ring of characteristic zero, which is also torsion-free as a Z-module and comes
with an additional algorithm for partial division by integers. We will also present
an asymptotically faster algorithm for relaxed multiplication of p-adic numbers.

Keywords: power series, multiplication, on-line algorithm, FFT, computer algebra

A.M.S. subject classification: 68W30, 30B10, 68W25, 33F05, 11Y55, 42-04

1. Introduction

1.1. Relaxed resolution of recursive equations

Let A be an effective (possibly non commutative) ring. That is, we assume data structures
for representing the elements of A and algorithms for performing the ring operations +, −
and ×. The aim of algebraic complexity theory is to study the cost of basic or more complex
algebraic operations overA (such as the multiplication of polynomials or matrices) in terms
of the number of operations in A.

The algebraic complexity usually does not coincide with the bit complexity, which
also takes into account the potential growth of the actual coefficients in A. Neverthe-
less, understanding the algebraic complexity usually constitutes a first useful step towards
understanding the bit complexity. Of course, in the special case when A is a finite field,
both complexities coincide up to a constant factor.

One of the most central operations is polynomial multiplication. We will denote by
MA(n) the number of operations required to multiply two polynomials of degrees <n in
A[x]. If A admits primitive 2p-th roots of unity for all p, then we have MA(x)=O(n logn)
using FFT multiplication, which is based on the fast Fourier transform [CT65]. In general,
it has been shown [SS71, CK91] that MA(n) = O(n log n log log n). The complexities
of most other operations (division, Taylor shift, extended g.c.d., multipoint evaluation,
interpolation, etc.) can be expressed in terms of MA(n). Often, the cost of such other
operations is simply Õ(MA(n)) = Õ(n), where Õ(T (n)) stands for O(T (n) (log n)O(1));
see [AHU74, BP94, GG02] for some classical results along these lines.

∗. This work has been partly supported by the French ANR-09-JCJC-0098-01 MaGiX project, and by the

Digiteo 2009-36HD grant of the Région Ile-de-France.

1

http://www.ams.org/mathscinet/search/mscbrowse.html?sk=default&sk=68W30&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=default&sk=30B10&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=default&sk=68W25&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=default&sk=33F05&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=default&sk=11Y55&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=default&sk=42-04&submit=Search

The complexity of polynomial multiplication is fundamental for studying the cost of
operations on formal power series in A[[z]] up to a given truncation order n. Clearly, it
is possible to perform the multiplication up to order n in time O(MA(n)): it suffices to
multiply the truncated power series at order n and truncate the result. Using Newton’s
method, and assuming thatQ⊆A, it is also possible to compute exp, sin , etc. up to order n
in time O(MA(n)). More generally, it has been shown in [BK78, Hoe02, Sed01, Hoe10] that
the power series solutions of algebraic differential equations with coefficients in A[[z]] can
be computed up to order n in time O(MA(n)). However, in this case, the “O” hides a non
trivial constant factor which depends on the size of the equation that one wants to solve.

The relaxed approach for computations with formal power series makes it possible
to solve equations in quasi-optimal time with respect to the sparse size of the equations.
The idea is to consider power series f ∈A[[z]] as streams of coefficients f0, f1, 	 and to
require that all operations are performed “without delay” on these streams. For instance,
when multiplying h= f g two power series f , g ∈A[[z]], we require that hn is computed as
soon as f0, g0,	 , fn, gn are known. Any algorithm which has this property will be called
a relaxed or on-line algorithm for multiplication.

Given a relaxed algorithm for multiplication, it is possible to let the later coefficients
fn+1, gn+1, fn+2, gn+2, 	 of the input depend on the known coefficients h0, 	 , hn of the
output. For instance, given a power series f ∈K[z] with f0=0, we may compute g= exp f
using the formula

g =

∫

f ′ g. (1)

Indeed, extraction of the coefficient of zn in g and
∫

f ′ g yields

gn =
1
n
(f ′ g)n−1,

and (f ′ g)n−1 only depends on g0,	 , gn−1. More generally, we define an equation of the
form

f = Φ(f) (2)

to be recursive, if Φ(f)n only depends on f0,	 , fn−1. Replacing A by Ar, we notice that
the same terminology applies to systems of r equations. In the case of an implicit equation,
special rewriting techniques can be implied in order transform the input equation into
a recursive equation [Hoe11, Hoe09, BL11].

Let RA(n) denote the cost of performing a relaxed multiplication up to order n. If Φ is
an expression which involves s multiplications and t other “linear time” operations (addi-
tions, integrations, etc.), then it follows that (2) can be solved up to order n in time
O(s RA(n)+ t n). If we had RA(n)=O(MA(n)), then this would yield an optimal algorithm
for solving (2) in the sense that the computation of the solution would essentially require
the same time as its verification.

1.2. Known algorithms for relaxed multiplication

The naive O(n2) algorithm for computing h= f g, based on the formula

hn = f0 gn+ f1 gn−1+
 + fn g0,

is clearly relaxed. Unfortunately, FFT multiplication is not relaxed, since h0, 	 , hn are
computed simultaneously as a function of f0 g0,	 , fn gn, in this case.

2 Faster relaxed multiplication

In [Hoe97, Hoe02] it was remarked that Karatsuba’sO
(

nlog3/log2
)

algorithm [KO63] for
multiplying polynomials can be rewritten in a relaxed manner. For small n, Karatsuba mul-
tiplication and relaxed multiplication thus require exactly the same number of operations.
In [Hoe97, Hoe02], an additional fast relaxed algorithm was presented with time complexity

RA(n) = O(MA(n) logn). (3)

We were recently made aware of the fact that a similar algorithm was first published
in [FS74]. However, this early paper was presented in a different context of on-line (relaxed)
multiplication of integers (instead of power series), and without the application to the
resolution of recursive equations (which is quite crucial from our perspective).

An interesting question remained: can the bound (3) be lowered further, be it by
a constant factor? In [Hoe03], it was first noticed that an approximate factor of two can
be gained if one of the multiplicands is known beforehand. For instance, if we want to
compute g= exp f for a known series f with f0=0, then the coefficients of f ′ are already
known in the product f ′ g in (1), so only one of the inputs depends on the output. An
algorithm for the computation of h= f g is said to be semi-relaxed , if hn is written to the
output as soon as f0,	 , fn are known, but all coefficients of g are known beforehand. We
will denote by SA(n) the complexity of semi-relaxed multiplication. We recall from [Hoe07]
(see also section 3) that relaxed multiplication reduces to semi-relaxed multiplication

RA(n) = O(SA(n)).

The first reduction of (3) by a non constant factor was published in [Hoe07], and uses the
technique of FFT blocking (which has also been used for the multiplication of multivariate
polynomials and power series in [Hoe02, Section 6.3], and for speeding up Newton iterations
in [Ber00, Hoe10]). Under the assumption that A admits primitive 2p-th roots of unity for
all p (or at least for all p with 2p6n), we showed that

RA(n) = O(n logn e2 log2log logn
√

). (4)

Since this complexity will play a central role in the remainder of this paper, it will be
convenient to abbreviate

R∗(n) = n logn e2 log2log logn
√

.

The function e2 log2log logn
√

has slower growth than any strictly positive power of logn. It
will also be convenient to write F (n)=O♭(T (n)) whenever F (n)=O(T (n) (logn)α) for all
α> 0. In particular, it follows that

R∗(n) = O♭(n logn).

In section 3, we will recall the main ideas from [Hoe07] which lead to the complexity
bound (4).

1.3. Improved complexity bounds

We recall that the characteristic of a ring A is the integer k ∈N such that the canonical
ring homomorphism Z→A has kernel Z/kZ. If A is torsion-free as a Z-module, then we
will say that A admits an effective partial division by integers if there exists an algorithm
which takes k ∈Z∗ and x∈ kA on input and which returns the unique y ∈A with x= k y

on output. The main result of this paper is:

Joris van der Hoeven 3

Theorem 1. Assume that one of the following two holds:

• A is an effective ring of characteristic zero, which is torsion-free as a Z-module,
and which admits an effective partial division by integers.

• A is an effective ring of positive characteristic.

Then we have

RA(n) = O♭(n logn). (5)

We notice that the theorem holds in particular if A is an effective field. In Section 7, we
will also consider the relaxed multiplication of p-adic numbers, with p∈N and p>2. If we
denote by I(k) the bit complexity of multiplying two k-bit integers, then [FS74] essentially
provided an algorithm of bit complexity O(I(n) log n) for the relaxed multiplication of
2-adic numbers at order O(2n). Various algorithms and benchmarks for more general
p were presented in [BHL11]. It is also well known [Too63, Coo66, SS71, Für07] that
I(n)=O♭(n logn). Let Rp(n) denote the bit complexity of the relaxed multiplication of two
p-adic numbers modulo pn. In Section 7, we will prove the following new result:

Theorem 2. Let p∈N with p> 2. Then we have

Rp(n) = O♭(n logn log p log log p).

The main idea which allows for the present generalizations is quite straightforward.
In our original algorithm from [Hoe07], the presence of sufficiently many primitive 2p-th
roots of unity in A gives rise to an quasi-optimal evaluation-interpolation strategy for the
multiplication of polynomials. More precisely, given two polynomials of degrees <n, their
FFT-multiplication only requires O(n) evaluation and interpolation points, and both the
evaluation and interpolation steps can be performed fast, using only O(n logn) operations.
Now it has recently been shown [BS05] that quasi-optimal evaluation-interpolation strate-
gies still exist if we evaluate and interpolate at points in geometric progressions instead
of roots of unity. This result is the key to our new complexity bounds, although further
technical details have to be dealt with in order to make things work for various types of
effective rings A. We also notice that the main novelty of [BS05] concerns the interpolation
step. Fast evaluation at geometric progressions was possible before using the so called chirp
transform [RSR69, Blu70]. For effective rings of small characteristic A, this would actually
have been sufficient for the proving the bound (5).

Our paper is structured as follows. Since the algorithms of [BS05] were presented in
the case when A is an effective field, Section 2 starts with their generalization to more
general effective ringsA. These generalizations are purely formal and contain no essentially
new ideas. In Section 3, we give a short survey of the algorithm from [Hoe07], but we
recommentd the reader to download the original paper from our webpage for full technical
details. In Section 4, we prove Theorem 1 in the case when A has characteristic zero. In
Section 5, we turn our attention to the case when A has prime characteristic p. If the
characteristic is sufficiently large, then we may find sufficiently large geometric progressions
in A∩Z in order to generalize the results from Section 4. Otherwise, we have to work over
A⊗Fpk for some sufficiently large k. In Section 6, we complete the prove of Theorem 1; the
case when p is a prime power is a refinement of the result from Section 5. The remaining
case is done via Chinese remaindering. In Section 7, we will prove Theorem 2.

4 Faster relaxed multiplication

2. Multipoint evaluation and interpolation

Let A be an effective integral domain and let K be its quotient field. Assume that K has
characteristic zero. Let M be an effective torsion-free A-module and V=K⊗M. Elements
of K and V are fractions x/s with x∈A (resp. x∈M) and s∈A∗, and the operations −,

+,× on such fractions are as usual:

−x

s
=

−x

s
x

s
+

y

t
=

t x+ s y

s t
x

s

y

t
=

x y

s t

For x/s∈K∗, we also have (x/s)−1= s/x. It follows that K and V are effective fields and
vector spaces. Moreover, all field operations in K (and all vector space operations in V)
can be performed using only O(1) operations in A (resp. A or M).

We will say that M admits an effective partial division, if for every s∈A∗ and x∈ sM,
we can compute the unique y ∈M with x= s y. From now on, we will assume that this is
the case, and we will count any division of the above kind as one operation in M. Given
n∈N, we define

M[z]n = {P ∈M[z]: degP <n}.

Given P ∈A[z]n and Q∈M[z]n, we will denote by MM(n) the number of operations in A

and M which are needed in order to compute the product PQ∈M[z].

Lemma 3. Let A be an effective and commutative integral domain and M an effective
torsion-free A-module with an effective partial division. There exists a constant K, such
that the following holds: for any n > 0, P ∈M[z]n and q ∈A∗ such that 1, q,	 , qn−1 are
pairwise distinct, we have:

a) We may compute P (1),	 , P (qn−1) from P using K MM(n) operations in A and M.

b) We may reconstruct P from P (1), 	 , P (qn−1) using K MM(n) operations in A

and M.

Proof. In the case when A=K is a field of characteristic zero and M=V=K, this result
was first proven in [BS05]. More precisely, the conversions can be done using the algo-
rithms NewtonEvalGeom, NewtonInterpGeom, NewtonToMonomialGeom and
MonomialToNewtonGeom in that paper. Examining these algorithms, we observe that
general elements in A are only multiplied with elements in Q[q] and divided by elements of
the set {q, q− 1, q2− 1,	 , qn−1− 1}. In particular, the algorithms can still be applied in
the more general case whenA=K is a field of characteristic zero andM=V a vector space.

If A is only an effective commutative integral domain of characteristic zero and M

an effective torsion-free A-module with an effective partial division, then we define the
effective field K and the effective vector field V as above, and we may still apply the
generalized algorithms for multipoint evaluation and interpolation in V. In particular,
both multipoint evaluation and interpolation can still be done using O(MV(n)) operations
in K and V, whence O(MM(n)) operations in A and M. If we know that the end-results
of these algorithms are really in the subspace Mn of Vn (or in the subring M[z]n of V[z]n),
then we use the partial division in M to replace their representations in Vn (or V[z]n) by
representations in Mn (or M[z]n). �

Joris van der Hoeven 5

Lemma 4. Let A be an effective and commutative integral domain and M an effec-
tive A-module. There exists a constant K, such that the following holds: for any n> 0,
P ∈M[z]n and q ∈ A such that 1, q, 	 , qn−1 are pairwise distinct and such that q and

q− 1, q2− 1,	 , qn−1− 1 are all invertible in A, we have:

a) We may compute P (1),	 , P (qn−1) from P using K MM(n) operations in A and M.

b) We may reconstruct P from P (1), 	 , P (qn−1) using K MM(n) operations in A

and M.

Proof. We again use straightforward generalizations of the algorithms in [BS05], using
the fact that we only divide by elements in the set {q, q− 1, q2− 1,	 , qn−1− 1}. �

3. Survey of blockwise relaxed multiplication

Let A be an effective (possibly non commutative) ring and recall that

A[z]n = {P ∈A[z]: degP <n}.

Given a power series f ∈A[[z]] and i < j, we will also use the notations

fi;j = fi z
i+
 + fj−1 z

j−1

f;j = f0+
 + fj−1 z
j−1

fi; = fi z
i+ fi+1 z

i+1+
 .

The fast relaxed algorithms from [Hoe07] are all based on two main changes of representa-
tion: “blocking” and the fast Fourier transform. Let us briefly recall these transformations
and how to use them for the design of fast algorithms for relaxed multiplication.

Blocking and unblocking. Given a block size b > 0, the first operation of blocking
rewrites a power series f ∈A[[z]] as a series in y= zb with coefficients in A[z]b

Bb(f) =
∑

i

∑

j<b

fib+j z
j yi ∈ A[z]b[[y]].

Given f , g ∈A[[z]], we may then compute f g using

f g = Bb
−1(Bb(f) Bb(g)),

where Bb(f) Bb(g)∈K[z]2b[[y]] and

Bb
−1:A[z]2b[[y]] → A[[z]]
∑

i

Pi(z) y
i � ∑

i

Pi(z) z
bi.

Discrete Fourier transforms. Assume now that A∋ 1/2, that b ∈ {1, 2, 4, 8, 	 }, and
that A admits a primitive 2 b-th root of unity ω=ω2b. Then the discrete Fourier transform
provides us with an isomorphism

FFTω:A[z]2b → A2b

P � (P (1), P (ω),	 , P (ω2b−1)),

and it is classical [CT65] that both FFTω and FFTω
−1 can be computed using O(b log b)

operations in A. The operations FFTω and FFTω
−1 extend naturally to A[z]2b[[y]] via

FFTω

(

∑

i

fi y
i

)

=
∑

i

FFTω(fi) y
i.

6 Faster relaxed multiplication

This allows us to compute f g using the formula

f g = Bb
−1
(

FFTω
−1(FFTω(Bb(f))FFTω(Bb(g)))

)

. (6)

The first k b coefficients of f g can be computed using at most 2 b MA(k) + O(k b log b)
operations in A.

Relaxed multiplication. In formula (6) the k-th coefficient of the right hand side may
depend on the (k+b−1)-th coefficients of f and g. In order to make (6) suitable for relaxed
multiplication, we have to treat the first b coefficients of f and g apart. Indeed, the formula

f g = f0;b g0;b+ f0;b gb;+ fb; g0;b+

Bb
−1
(

FFTω
−1(FFTω(Bb(fb;))FFTω(Bb(gb;)))

)

allows for the relaxed computation of f g at order k b using at most

RA(k b) 6 RA(b)+ 2 k SA(b)+ 2 bRA(k)+O(k b log b)

operations in A. Similarly, the formula

f g = f0;b g+Bb
−1(FFTω

−1(FFTω(Bb(fb;))FFTω(Bb(g)))
)

allows for the semi-relaxed computation of f g at order k b using at most

SA(k b) 6 k SA(b)+ 2 b SA(k)+O(k b log b)

operations in A. For a given expansion order n, one may take b≈ n
√

, and use the above
formula in a recursive manner. This yields [Hoe07, Theorem 11]

RA(n) = O(n (logn)log3/log2).

Remark 5. Since the block size b is chosen as a function of n, the above method really
describes a relaxed algorithm for computing the product up to an order n∗ which is specified
in advance. In fact, such an algorithm automatically yields a genuine relaxed algorithm
with the same complexity (up to a constant factor), by doubling the order n∗ each time
when needed.

Reducing relaxed to semi-relaxed multiplication. In the above discussion, we both
provided bounds for RA(n) and SA(n). In fact, there exists a straightforward reduction
of relaxed multiplication to semi-relaxed multiplication. First of all, the relaxed multipli-
cation of two power series f , g ∈ A[[z]] up to order O(zn) clearly reduces to the relaxed
multiplication of the two polynomials f0;n and g0;n up to order O(z2n). Now the formula

f0;2n g0;2n = f0;n g0;n+ fn;2n g0;n+ f0;n gn;2n+ fn;2n gn;2n

shows that a relaxed product of two polynomials f0;2n and g0;2n of degrees <2 n reduces
to a relaxed product f0;n g0;n of half the size, two semi-relaxed products fn;2n g0;n,
f0;n gn;2n, and one non-relaxed product fn;2n gn;2n. Under the assumptions that MA(n)/n
and SA(n)/n are increasing, a routine calculation thus yields

RA(n) = O(SA(n)).

Multiple block sizes. Instead of taking a single block size b, we may write n≈n1
 nl,
take l− 1 different block sizes b1=n1<
 <bl−1=n1
 nl−1, and decompose f in l parts
f = f0;b1+ fb1;b2+
 + fbl−1;bl, where bl=+∞. For semi-relaxed multiplication, this yields
the formula

f g = f0;b1 g+
∑

i=1

l−1

Bbi
−1
(

FFTω2bi

−1
(

FFTω2bi
(Bbi(fbi;bi+1

))FFTω2bi
(Bbi(g))

)

)

(7)

Joris van der Hoeven 7

and the complexity bound

SA(n) 6
n

n1
SA(n1)+

2n
n2

SA(n2)+
 +
2n
nl

SA(nl)+O(l n logn). (8)

For n1≈n2≈
 ≈nl and lp≈e log2log p
√

well chosen block sizes (depending on the expansion
order n), the recursive application of this technique yields [Hoe07, Theorem 12]

RA(n) = O(SA(n)).

O(n logn e2 log2log logn
√

).

4. Relaxed multiplication in characteristic zero

Let us now consider the less favourable case when A is an effective ring which does not
necessarily contain primitive 2k-th roots of unity for arbitrarily high k. In this section, we
will first consider the case when A is torsion-free as a Z-module and also admits a partial
algorithm for division by integers.

Given a block size b∈N and q ∈Z \ {−1, 0, 1} (say q=2), we will replace the discrete
Fourier transform FFTω at a (2 b)-th primitive root of unity by multipoint evaluation at
1,	 , q2b−1. More precisely, we define

Eq,2b:A[z]2b → A2b

P � (P (1), P (q),	 , P (q2b−1))

and the inverse transform Eq,2b
−1 : imEq,2b→A[z]2b. By Lemma 3, these transforms can both

be computed using O(M(b)) operations in A. In a similar way as FFTω and FFTω
−1, we

extend Eq,2b and Eq,2b
−1 to power series in y.

Theorem 6. Let A both be an effective ring and an effective torsion-free Z-module. Then

RA(n) = O(R∗(n) log logn
√

)

= O♭(n logn).

Proof. It suffices to prove the complexity bound for semi-relaxed multiplication. We
adapt the multiplication algorithm with l different block sizes from the end of the previous
section, and replace (7) by

f g = f0;b1 g+
∑

i=1

l−1

Bbi
−1
(

Eq,2bi
−1 (Eq,2bi(Bbi(fbi;bi+1

)) Eq,2bi(Bbi(g)))
)

. (9)

This leads to the complexity bound

SA(n) 6
n

n1
SA(n1)+

2n
n2

SA(n2)+
 +
2n
nl

SA(nl)+O(lMA(n)). (10)

We now follow the proof of [Hoe07, Theorem 12]. Denote

U (p) =
SA(2p)

p 2p

and take n1=
 =nl. Using that MA(n)=O(n logn log logn), this leads to

U(l p) 6 2U(p)+O(l log (p l))

8 Faster relaxed multiplication

Applying this relation k times, we obtain

U (lk) 6 2kU(1)+O
(

2k l
(

1+
2

2
+
 +

k

2k

)

log l
)

= O(2k l log l).

Taking

k =
log p
log l

l = e log2log p
√

,

this yields

U(p) = O(log p
√

e2 log2log p
√

).

Re-expressing this bound in terms of SA yields the desired result. �

5. Relaxed multiplication in prime characteristic

Let A now be an effective ring of prime characteristic p. For expansion orders n> p, the
ring A does not necessarily contain n distinct points in geometric progression. Therefore,
in order to apply Lemma 4, we will first replace A by a suitable extension, in which we
can find sufficiently large geometric progressions.

Given n, let k = 2
⌈

log (n+1)

2 log p

⌉

be even such that pk > n. Let Ppk ∈Fp[z] be such that

the finite field Fpk is isomorphic to Fp[z]/(Ppk). Then the ring

Bk 7 A[z]/(Ppk)

has dimension k over A as a vector space, so we have a natural A-linear bijection

Λk:A[z]k → Bk

A � AmodP .

The ring Bk is an effective ring and one addition or subtraction in Bk corresponds to
k additions or subtractions in A. Similarly, one multiplication in Bk can be done using
O(MA(k)) operations in A.

In order to multiply two series f , g ∈ A[[z]] up to order O(zn), the idea is now to

rewrite f and g as series in B[[u]] with u=zk/2. If we want to compute the relaxed product,
then we also have to treat the first k/2 coefficients apart, as we did before for the blocking
strategy. More precisely, we will compute the semi-relaxed product f g using the formula

f g = f0;k/2 g+Bk/2
−1 (Λk

−1(Λk(Bk/2(fk/2;)) Λk(Bk/2(g)))
)

,

where we extended Λk to A[z]k[[u]] in the natural way:

Λk

(

∑

i>0

fiu
i

)

=
∑

i>0

Λk(fi)u
i.

From the complexity point of view, we get

SA(n) 6
2n
k

SA

(

k

2

)

+SB

(

2n
k

)

O(MA(k)). (11)

Since B contains a copy of Fpk, it also contains at least pk − 1 > n points in geometric
progression. For the multiplication up till order 2 n/k of two series with coefficients inB, we
may thus use the blocking strategy combined with multipoint evaluation and interpolation.

Joris van der Hoeven 9

Theorem 7. Let A be an effective ring of prime characteristic p. Then

RA(n) = O(R∗(n) (log logn)3/2 log log logn)

Proof. With the notations from above, we may find a primitive (pk−1)-th root of unity q

in Fpk ⊆B. We may thus use formula (9) for the semi-relaxed multiplication of two series
in B[[z]] up till order 2 n/k6n. In a similar way as in the proof of Theorem 6, we thus get

SB

(

2n
k

)

= O
(

R∗(n)
log logn

√

k

)

.

Using classical fast relaxed multiplication [Hoe97, Hoe02, FS74], we also have

SA

(

k

2

)

= O(k log2 k log log k),

whence (11) simplifies to

SA(n) = O
(

R∗(n)
MA(k)

k
log logn

√)

.

Since MA(k)/k=O(log k log log k) and k=O(logn), the result follows. �

Remark 8. In our complexity analysis, we have not taken into account the computation
of the polynomial Ppk ∈ Fp[z] with Fpk = Fp[z]/(Ppk). Using a randomized algorithm,

such a polynomial can be computed in time Õ(k2 log p); see [GG02, Corollary 14.44]. If
k=O(logn), then this is really a precomputation of negligible cost Õ(log2n).

If we insist on computing Ppk in a deterministic way, then it is better to slightly change
our algorithm, and systematically choose k to be a prime number minus one. Under this
assumption, the cyclotomic polynomial xk +
 + 1 is irreducible over Fp; see [GG02,
Lemma 14.50]. For a fixed n, the first prime number q with pq−1 > n still has size
O(log n), by the prime number theorem, and we may compute it in time Õ(log n) using
the sieve of Eratosthenes. This again shows that a suitable Ppk can be precomputed with
negligible cost.

6. Relaxed multiplication in mixed characteristic

Let us now show that the technique from the previous section actually extends to the case
when A is an arbitrary effective ring of positive characteristic. We first show that the
algorithm still applies when the characteristic of A is a prime power. We then conclude
by showing how to apply Chinese remaindering in our setting.

Theorem 9. Let A be an effective ring of prime power characteristic s= pr. Then

RA(n) = O(R∗(n) (log logn)3/2 log log logn).

Proof. Taking k=2
⌈

log (n+1)

2 log p

⌉

, let P =Ppk be as in the previous section and pick a monic

polynomial P̃ in (Z/sZ)[z] such that the reduction π(P̃) of P̃ modulo p yields P . Then
we get a natural commutative diagram

(Z/sZ)[z]/(P̃) � A[z]/(P̃)#π #π
Fp[z]/(P) � π(A)[z]/(P),

10 Faster relaxed multiplication

where π stands for reduction modulo p. In particular, we have an epimorphism

π: (Z/sZ)[z]/(P̃) → Fp[z]/(P)E Fpk,

with kerπ=(p).
Now let q be an element in Fpk of order pk − 1. Then any lift q̃ ∈ (Z/s Z)[z]/

(

P̃
)

of q with π(q̃) = q has order at least pk − 1. Moreover, q − 1, 	 , qp
k−2 − 1 and q are

all invertible. Consequently, q̃ − 1, 	 , q̃ pk−2 − 1 and q̃ do not lie in ker π = (p), whence
they are invertible as well. It follows that we may still apply multipoint evaluation and

interpolation in A[z]/(P̃) at the sequence 1, q̃ ,	 , q̃ pk−2, whence Theorem 7 generalizes to
the present case. �

Remark 10. For a fixed prime number p, we notice that the complexity bound is uniform
in the following sense: there exists a constant K such that for all effective rings of charac-
teristic pr with r ∈ {1, 2,	 }, we have RA(n)6K R∗(n) (log log n)3/2 log log log n. Indeed,
the choice of k only depends on n and p, and any operation in Fpk or A[z]/(Ppk) in the

case r=1 corresponds to exactly one lifted operation in (Z/sZ)[z]/(P̃) or A[z]/(P̃) in the
general case.

Theorem 11. Let A be an effective ring of non zero characteristic s. Then

RA(n) = O(R∗(n) (log logn)3/2 log log logn)

= O♭(n logn).

Proof. We will prove the theorem by induction on the number of prime divisors of s. If s
is a prime power, then we are done. So assume that s= s1 s2, where s1 and s2 are relatively
prime, and let k1, k2∈Z be such that

k1 s1+ k2 s2 = 1.

Then we may consider the rings

A1 = A/s1A

A2 = A/s2A.

These rings are effective, when representing their elements by elements of A and trans-
porting the operations from A. Of course, the representation of an element x of A1 (or A2)
is not unique, since we may replace it by x+ y for any y ∈ s1A (or y ∈ s2A). But this is
not a problem, since our definition of effective ring did not require unique representability
or the existence of an equality test.

Now let f , g ∈ A[[z]] and let πi(f), πi(g) be their projections in Ai[[z]], for i=1, 2.
Consider the relaxed products πi(f) πi(g), for i = 1, 2. These products are represented
by relaxed series h1, h2 ∈ A[[z]] via πi(h

i) = πi(f) πi(g), for i = 1, 2. By the induction
hypotheses, we may compute h1 and h2 at order n using

O(R∗(n) (log logn)3/2 log log logn)

operations inA. The linear combination h=k2 s2 h
1+k1 s1 h

2∈A[[z]] can still be expanded
up till order n with the same complexity. We claim that h= f g. Indeed,

k2 s2h
1− k2 s2 f g ∈ k2 s2 s1A= {0}

k1 s1h
2− k1 s1 f g ∈ k1 s1 s2A= {0}.

Summing both relations, our claim follows. �

Joris van der Hoeven 11

7. Relaxed multiplication of p-adic numbers

Let p > 1 be an integer, not necessarily a prime number, and denote Np = {0, 	 , p− 1}.
We will regard p-adic numbers a∈Zp as series a0+a1 p+a2 p

2+
 with ai∈Np, and such
that the basic ring operations +, − and × require an additional carry treatment.

In order to multiply two relaxed p-adic numbers a, b∈Zp, we may rewrite them as series
â , b̂ ∈Z[[z]], multiply these series ĉ = â b̂ , and recover the product c∈Zp from the result.
Of course, the coefficients of ĉ may exceed p, so some relaxed carry handling is required
in order to recover c from ĉ . We refer to [BHL11, Section 2.7] for details. In particular,
we prove there that c can be computed up to order O(pn) using O(RZ(n)) ring operations
in Z of bit size O(log p+ logn).

Given k > 0, let Zk = {i ∈ Z: |i|< 2k−1}, and consider two power series f , g ∈ Zk[[z]].
We will denote by RZ(n, k) (resp. SZ(n, k)) the bit complexity of multiplying f and g up
to order O(zn) using a relaxed (resp. semi-relaxed) algorithm.

Lemma 12. We have

RZ(n, k) = O(R∗(n) I(k+ logn) (log logn)3/2 log log logn).

Proof. Let f , g ∈ Zk[[z]] and let p be a prime number (in practice, we recommend to
take p to be a prime number which fits inside one machine word and such that p − 1 is
divisible by a high power of two). Let r=⌈2 k log (2 n)/log p⌉ be sufficiently large such that
n 22k< pr. Let f̂ , ĝ ∈ (Z/prZ)[[z]] be the reductions of f , g modulo pr. Then f g may be
reconstructed up to order O(zn) from the product f̂ ĝ . We thus get

RZ(n, k) 6 I(pr)RZ/prZ(n)

By Theorem 9, we have

RZ/prZ(n) = O(R∗(n) (log logn)3/2 log log logn).

By Remark 10, this bound is uniform in r. Since pr∼n 22k, the result follows. �

For the above strategy to be efficient, it is important that log n=O(k). This can be
achieved by combining it with the technique of p-adic blocking. More precisely, given
a p-adic block size b > 1, then any p-adic number in Zp can naturally be considered as
a pb-adic number inZpb, and vice versa. Assuming that numbers inNp are written in base 2,
the conversion is trivial if p is a power of two. Otherwise, the conversion involves base con-
versions and we refer to [BHL11, Section 4] for more details. In particular, the conversions
in both directions up to order O(pn) can be done in time O

(n

b
I(b log p) log (b log p)

)

.
Let Rp(n) (resp. Sp(n)) the complexity of relaxed (resp. semi-relaxed) multiplication

in Zp up till order O(pn).

Theorem 13. We have

Rp(n) = O
(

R∗(n) log p log (logn+ log p)(log log (n+ log p))O(1)
)

= O♭(n logn log p log log p).

Proof. Let r= ⌈logn/log p⌉, so that

r log p 6 logn+ log p

I(r log p) = O(r log p log (logn+ log p) log log (n+ log p))

I(r (log p+ log r)) = O(r (log p+ logn) log (logn+ log p) log log (n+ log p)).

12 Faster relaxed multiplication

Using the strategy of p-adic blocking, a semi-relaxed product in Zp may then be reduced
to one semi-relaxed product in Zpr and one relaxed multiplication with an integer in
{0,	 , pr− 1}. In other words,

Sp(n) 6
n

r
Sp(r)+Spr

(⌈

n

r

⌉)

+O(n log p),

where Sp(n) stands for the cost of semi-relaxed multiplication of two p-adic numbers in Zp

up till order O(pn). By [BHL11, Proposition 4], we have

Sp(r) = O(I(r (log p+ log r)) log r)

= O(r logn (logn+ log p) log (logn+ log p) log log (n+ log p))

By Lemma 12, we also have

Spr

(⌈

n

r

⌉)

= O
(

I(r log p+ logn)
n

r
logn (log logn)3/2 log log logn e2 log2log logn

√)

= O
(

I(r log p)
n

r
logn (log logn)3/2 log log logn e2 log2log logn

√)

= O
(

n logn log p log (logn+ log p)(log log (n+ log p))O(1) e2 log2log logn
√)

In particular,

n

r
Sp(r) = O

(

Spr

(⌈

n

r

⌉))

,

which completes the proof of the theorem. �

Remark 14. The best previously known bound for relaxed multiplication in Zp was

Rp(n) = O(I(n (log p+ logn)) logn)

=

{

O♭(n log3n) if p=O(n)

O♭(n log2n log p log log p) if n=O(p)

We thus improved the previous bound by a factor logn at least, up to sublogarithmic terms.

8. Final remarks

For the moment, we have not implemented any of the new algorithms in practice. Nev-
ertheless, our old implementation of the algorithm from [Hoe07] allowed us to gain some
insight on the practical usefulness of blockwise relaxed multiplication. Let us briefly discuss
the potential impact of the new results for practical purposes.

Characteristic zero. In characteristic zero, our focus on algebraic complexity makes the
complexity bounds more or less irrelevant from a practical point of view. In practice, two
cases are of particular interest: floating point coefficients (which were already considered
in [Hoe07]) and integer coefficients (rational coefficients can be dealt with similarly after
multiplying by the common denominator).

In the case of integer coefficients, it is best to re-encode the integers as polynomials
in Fp[x] for a prime number which fits into a machine word and such that Fp admits
many 2k-th roots of unity (it is also possible to take several primes p and use Chinese
remaindering). After that, one may again use the old algorithm from [Hoe07]. Also,
integer coefficients usually grow in size with n, so one really should see the power series
as a bivariate power series in Fp[[x, z]] with a triangular support. One may then want
to use TFT-style multiplication [Hoe04, Hoe05] in order to gain another constant factor.

Joris van der Hoeven 13

Finite fields. For large finite fields, it is easy to find large geometric progressions, so
the algorithms of this paper can be applied without the need to consider field extensions.
Moreover, for finite fields of the form Fpk with p sufficiently large and k > 1, it is possible
to choose q∈Fp, thereby speeding up evaluation and interpolation. For small finite fields of
the form Fpk, it is generally necessary to make the initial investment of working in a larger
ring with sufficiently large geometric progressions. Of course, instead of the ring extensions
considered in Section 5, we may directly use field extensions of the form Fpl with l > k.

Semi-relaxed multiplication. In principle, in the semi-relaxed case, it is possible to
gain a factor 2 with respect to the fully relaxed case, using the technique from [Hoe03].
Unfortunately, the middle product is not always easy to implement. For instance, if we rely
on Kronecker substitution for multiplications in Z[z], then we will need to implement an
ad hoc analogue for the middle product. Since we did not use a fast algorithm for middle
products for our benchmarks in [Hoe07, Section 5], the timings for the semi-relaxed product
in were only about 25% instead of 50% better than the timings for the fully relaxed product.
Nevertheless, modulo increased implementation efforts, we stress that a 50% gain should
be achievable.

Cache friendliness. So far, we have not investigated the cache friendliness of blockwise
relaxed multiplication, and it can be feared that a lot of additional work is required in
order to make our algorithms really efficient from this point of view.

Bilinear maps. In order to keep the presentation reasonably simple, we have focussed
on the case when A is an effective ring. In fact, a more general setting for relaxed mul-
tiplication is to consider a bilinear mapping µ: M1 × M2 → M3, where M1, M2 and M3

are effective A-modules, and extend it into a mapping µ̂:M1[[z]] × M2[[z]]→M3[[z]] by
µ̂(f , g) =

∑

i,j
µ(fi, gj) z

i+j. Under suitable hypothesis, the algorithms in this paper
generalize to this setting.

Skew series. The relaxed approach can also be generalized to the case when the coeffi-
cients of the power series are operators which commute with monomials zi in a non trivial
way. More precisely, assume that we have an effective ring homomorphism φ:A→A such
that z a=(φa) z for all a∈K. For instance, one may take A=Q[δ] with δ=z ∂/∂z, so that
P (δ) z=P (δ+1) z. Given a commutation rule of this kind, we define a skew multiplication
on A[[z]] by

[

∑

i>0

fi z
i

][

∑

j>0

gj z
j

]

=
∑

i,j>0

fi (φ
i gj) z

i+j.

If MA(n) denotes the cost of multiplying two polynomials P zi and Q zj in A[z] with
deg P , deg Q < n, then the classical fast relaxed multiplication algorithm from [Hoe02,
FS74] generalizes and still admits the time complexity O(MA(n) log n). However, the
blockwise algorithm from this paper does not generalize to this setting, at least not in
a straightforward way.

Bibliography

[AHU74] A. Aho, J. Hopcroft, and J. Ullman. The Design and Analysis of Computer Algorithms .
Addison-Wesley, Reading, Massachusetts, 1974.

[Ber00] D. Bernstein. Removing redundancy in high precision Newton iteration. Available from
http://cr.yp.to/fastnewton.html, 2000.

[BHL11] J. Berthomieu, J. van der Hoeven, and G. Lecerf. Relaxed algorithms for p-adic numbers.
Journal de Théorie des Nombres de Bordeaux , 23(3):541–577, 2011.

14 Faster relaxed multiplication

[BK78] R.P. Brent and H.T. Kung. Fast algorithms for manipulating formal power series. Journal of
the ACM , 25:581–595, 1978.

[BL11] J. Berthomieu and R. Lebreton. Relaxed p-adic hensel lifting for algebraic systems. Work in
preparation, 2011.

[Blu70] L.I. Bluestein. A linear filtering approach to the computation of the discrete fourier transform.
IEEE Trans. Electroacoustics , AU-18:451–455, 1970.

[BP94] D. Bini and V.Y. Pan. Polynomial and matrix computations. Vol. 1 . Birkhäuser Boston Inc.,
Boston, MA, 1994. Fundamental algorithms.

[BS05] A. Bostan and É. Schost. Polynomial evaluation and interpolation on special sets of points.
Journal of Complexity , 21(4):420–446, August 2005. Festschrift for the 70th Birthday of Arnold
Schönhage.

[CK91] D.G. Cantor and E. Kaltofen. On fast multiplication of polynomials over arbitrary algebras.
Acta Informatica , 28:693–701, 1991.

[Coo66] S.A. Cook. On the minimum computation time of functions . PhD thesis, Harvard University,
1966.

[CT65] J.W. Cooley and J.W. Tukey. An algorithm for the machine calculation of complex Fourier
series. Math. Computat., 19:297–301, 1965.

[FS74] M.J. Fischer and L.J. Stockmeyer. Fast on-line integer multiplication. Proc. 5th ACM Sym-

posium on Theory of Computing , 9:67–72, 1974.

[Für07] M. Fürer. Faster integer multiplication. In Proceedings of the Thirty-Ninth ACM Symposium
on Theory of Computing (STOC 2007), pages 57–66, San Diego, California, 2007.

[GG02] J. von zur Gathen and J. Gerhard. Modern Computer Algebra . Cambridge University Press,
2-nd edition, 2002.

[Hoe97] J. van der Hoeven. Lazy multiplication of formal power series. In W. W. Küchlin, editor, Proc.
ISSAC ’97 , pages 17–20, Maui, Hawaii, July 1997.

[Hoe02] J. van der Hoeven. Relax, but don’t be too lazy. JSC , 34:479–542, 2002.

[Hoe03] J. van der Hoeven. Relaxed multiplication using the middle product. In Manuel Bronstein,
editor, Proc. ISSAC ’03 , pages 143–147, Philadelphia, USA, August 2003.

[Hoe04] J. van der Hoeven. The truncated Fourier transform and applications. In J. Gutierrez, editor,
Proc. ISSAC 2004 , pages 290–296, Univ. of Cantabria, Santander, Spain, July 4–7 2004.

[Hoe05] J. van der Hoeven. Notes on the Truncated Fourier Transform. Technical Report 2005-5,
Université Paris-Sud, Orsay, France, 2005.

[Hoe07] J. van der Hoeven. New algorithms for relaxed multiplication. JSC , 42(8):792–802, 2007.

[Hoe09] J. van der Hoeven. Relaxed resolution of implicit equations. Technical report, HAL, 2009.
http://hal.archives-ouvertes.fr/hal-00441977/fr/.

[Hoe10] J. van der Hoeven. Newton’s method and FFT trading. JSC , 45(8):857–878, 2010.

[Hoe11] J. van der Hoeven. From implicit to recursive equations. Technical report, HAL, 2011.
http://hal.archives-ouvertes.fr/hal-00583125/fr/.

[KO63] A. Karatsuba and J. Ofman. Multiplication of multidigit numbers on automata. Soviet Physics
Doklady , 7:595–596, 1963.

[RSR69] L.R. Rabiner, R.W. Schafer, and C.M. Rader. The chirp z-transform algorithm and its appli-
cation. Bell System Tech. J., 48:1249–1292, 1969.

[Sed01] Alexandre Sedoglavic. Méthodes seminumériques en algèbre différentielle ; applications à

l’étude des propriétés structurelles de systèmes différentiels algébriques en automatique . PhD
thesis, École polytechnique, 2001.

[SS71] A. Schönhage and V. Strassen. Schnelle Multiplikation grosser Zahlen. Computing , 7:281–292,
1971.

[Too63] A.L. Toom. The complexity of a scheme of functional elements realizing the multiplication of
integers. Soviet Mathematics , 4(2):714–716, 1963.

Joris van der Hoeven 15

