
Modular composition via factorization
JORIS VAN DER HOEVENa, GRÉGOIRE LECERFb

CNRS (UMR 7161, LIX)
Laboratoire d'informatique de l'École polytechnique

Campus de l'École polytechnique
1, rue Honoré d'Estienne d'Orves
Bâtiment Alan Turing, CS35003

91120 Palaiseau, France

a. Email: vdhoeven@lix.polytechnique.fr
b. Email: lecerf@lix.polytechnique.fr

Revised version, May 2, 2018

Modular composition is the problem to compute the composition of two univariate polynomials
modulo a third one. For polynomials with coefficients in a finite field, Kedlaya and Umans
proved in 2008 that the theoretical bit complexity for performing this task could be made arbi-
trarily close to linear. Unfortunately, beyond its major theoretical impact, this result has not
led to practically faster implementations yet. In this article, we explore how polynomial fac-
torization may help modular composition. Most of our algorithms assume that the modulus
is fixed, which allows us to precompute factorizations of the modulus over suitable extension
fields. This significant restriction with respect to Kedlaya and Umans' algorithm is acceptable
whenever we need to perform many compositions modulo the same modulus. For polynomials
over a finite field, we show that compositions modulo a fixed modulus of composite degree are
cheaper than general modular compositions. In some very favourable cases of fixed moduli of
very smooth degree, we show that the complexity even becomes quasi-linear.

1. INTRODUCTION

Let 𝕂 be an effective field. This means that elements of 𝕂 can be represented on a computer and
that we have algorithms for performing the field operations. Given polynomials f ,g,h∈𝕂[x], the
problem of modular composition is to compute f ∘g modulo h. Modular composition is an impor-
tant problem in complexity theory because of its applications to polynomial factorization [29,
30, 31]. It also occurs very naturally whenever one wishes to perform polynomial computations
over 𝕂 inside an algebraic extension of 𝕂. Given two different representations 𝕂[x] / (h(x)) ≅
𝕂[x̃]/(h̃(x̃)) of an algebraic extension of 𝕂, the implementation of an explicit isomorphism boils
down to modular composition as well.

In this paper, we study the problem of composition modulo a fixed polynomial h mostly in
the case when 𝕂 = 𝔽q is a finite field. We assume that h is separable; the case of moduli of the
form h = ℏt is studied in a separate paper [24]. Our results are based on the following simple
observation: if a factorization h = h1 ⋯ ht is known, then composition modulo h reduces to t
composition modulo the hi with i = 1, …, t. Curiously, this observation does not seem to be
exploited in the standard literature on modular composition. In the case when h is irreducible
over 𝕂, but n=degh admits a non trivial divisor m, then the second crucial observation is that h
factors over 𝔽qm. We may then apply the first observation in order to obtain an efficient algorithm
for composition modulo h. Finding the factorizations of h over 𝔽qm can be quite expensive in
general, but such computations can be regarded as pre-computations if the modulus h is fixed.

1

Besides modular composition, we also study the related problem of computing the charac-
teristic polynomial 𝜒 of g modulo h. More precisely, we understand 𝜒 to be the characteristic
polynomial of the multiplication endomorphism by g in 𝕂[x] / (h(x)). In particular, we have
𝜒 ∘g=0 modulo h. Theoretically speaking, the fastest current method relies on the computa-
tion of so-called power projections (see for instance [16, section 2.5]); this task turns out to be
of the same complexity as modular composition in all known cases.

1.1. Previous work
Denote by M𝕂(n) the number of operations in 𝕂 required to multiply two polynomials of 𝕂[x]<n≔
{ f ∈ 𝕂[x]: deg f < n}. Let f , g and h be polynomials in 𝕂[x] of degrees <n, <n and n. The
naive modular composition algorithm takes O(n M𝕂(n)) operations in 𝕂. In 1978, Brent and Kung
gave an algorithm with cost O(n√ M𝕂(n) + n2): their algorithm from [5, section 2.1] actually
concerns the case when h= xn, but it naturally extends to general h. It uses the baby-step giant-
step technique due to Paterson and Stockmeyer [40], and even yields a sub-quadratic cost O(n𝜛+

n√ M𝕂(n)) when using fast linear algebra (see [28, p. 185]). The constant 𝜛 > 1.5 is such that
a n√ × n√ matrix over 𝕂 may be multiplied with another n√ ×n rectangular matrix in time O(n𝜛).
The best current bound 𝜛<1.667 is due to Huang and Pan [26, Theorem 10.1].

When linear algebra benefits from very fast implementations, its contribution is expected to
be smaller than the other polynomial operations, on a certain bounded range for n. In fact, for
fixed values of 𝜛 and M𝕂, the sizes of the “baby” and “giant” steps may be optimized in order to
balance cost contributions of matrix and polynomial operations (this was studied for finite fields in
an unpublished preprint of Shoup and Smolensky in 1992). Further improvements have been pro-
posed in [27], based on the Lagrange inversion formula for the reversion of formal power series.

A major breakthrough has been achieved by Kedlaya and Umans [30, 31] in the case when 𝕂
is the finite field 𝔽q. For any positive 𝜀>0, they have shown that the composition f ∘g modulo h
can be computed using O((n log q)1+𝜀) bit operations. Unfortunately, it remains a major open
problem to turn this theoretical bit complexity bound into practically useful implementations.

In the special case of power series composition (i.e. when h=xn), the best known complexity
bound is again due to Brent and Kung: in [5], they showed that this requires O(n√ M𝕂(n) log1/2n)
operations in 𝕂, under the condition that g′(0) is invertible and that the characteristic is at least
n/ l, where l= ⌈ n/logn√ ⌉. The variant proposed by van der Hoeven [20, section 3.4.3] removes
the condition on g′(0). For fields of small characteristic, Bernstein [1] proposed an algorithm that
is softly linear in the precision n but linear in the characteristic. These algorithms are generalized
to moduli h of the form ℏm in [24]; we show there that the composition reduces to one power series
composition at order n in 𝕂[z] /(ℏ(z)), plusm compositions modulo ℏ, and one characteristic poly-
nomial computation modulo ℏ. Let us finally mention that series with integer, rational or floating
point coefficients can often be composed in quasi-linear time as well in suitable bit complexity
models, as shown by Ritzmann [43]; see also [21].

The expression f ∘ g rem h is linear in f . It is well known that the transposition of the appli-
cation f ↦ f ∘ g rem h corresponds to the power projection task (see section 2.7), which is
an important ingredient for computing minimal and characteristic polynomials. In [46], Shoup
studied the computation of minimal polynomials in algebraic extensions of the form 𝔽q[𝛼] or
𝔽q[𝛼][𝛽], explicitly given by defining polynomials. He designed fast practical algorithms with low
memory consumption, based on a smart combination of “baby-step giant-step” and transposed
algorithms. However his method does not improve upon Brent and Kung's one from the asymp-
totic complexity point of view.

The characteristic polynomial of g modulo h may be obtained from suitable power projections
of g modulo h thanks to the well-known Newton–Girard identities, which involve solving a first
order differential equation to precision n. This is rather elementary when the characteristic is zero
or sufficiently large. Otherwise, p-adic arithmetic is needed. A complete solution is described

2 MODULAR COMPOSITION VIA FACTORIZATION

in [16]. More generally, a framework for using p-adic arithmetic to solve ordinary differential
equations in positive characteristic may be found in [34].

1.2. Contributions and outline of the article
The aim of this article is to show how suitable factorizations of the modulus h can be exploited
to speed up compositions modulo h, as well as the computation of characteristic polynomials
modulo h. Most of the new results are derived from the following simple observation: if h splits
into linear factors in 𝕂, and if its roots are given, then modular composition basically reduces to
evaluating g at the roots of h, evaluating f at these values of g, and interpolate f ∘ g. It is well-
known that each of these steps can be done in softly linear time using multiple point evaluation
and interpolation. More generally, whenever h can be factored into h=h1⋯ht, the computation
of f ∘g rem h reduces to the computations of f ∘g rem hi for i=1,…, t.

Of course, the existence of factorizations of h heavily depends on h itself and on fields over
which we allow ourselves to factor h. For instance, if 𝕂=ℚ, then we might consider computing
the roots of h in ℂ using a sufficient precision, or factoring h over the p-adic numbers ℚp for
some well chosen prime number p. If 𝕂=𝔽q is a finite field, and h is an irreducible polynomial of
composite degree n=m1m2, then we may consider factorizations over the intermediate field 𝔽qm1.
In a separate paper, we study the case when 𝕂 is the field of computable complex numbers [25].
In this paper, we mainly focus on the finite field case.

Concerning the organization of this paper, we first revisit several known techniques in
section 2. This includes the introduction of cost functions for modular composition, power pro-
jection, and the computation of characteristic polynomials. In section 3, we examine howmodular
composition can be accelerated when a factorization of h in 𝕂[x] is given. More precisely, if
the irreducible factorization ℏ1

m1 ⋯ ℏt
mt of the modulus is available, then our method reduces

the composition modulo h to several compositions modulo ℏ1
m1, …, ℏt

mt in softly linear time. A
key ingredient, reused several times in the article, is the simultaneous computation of charac-
teristic polynomials and modular compositions.

In section 4, we turn our attention to the specific situation of an irreducible modulus h∈𝕂[x]
of composite degree n = m1 m2 = deg h over a finite field 𝕂 = 𝔽q. We show how to exploit the
existence of factorizations of h over the intermediate fields 𝔽qm1 into factors of degree m2.

The natural generalization to degrees n=m1⋯mt with t⩾3 will be the subject of sections 5, 6
and 7. One important question is how to represent the elements of the intermediate fields 𝕂i and it
is convenient to introduce the special concept of an effective algebraic tower for this purpose. We
also introduce the notion of a composition tower for h, which formalizes the requirement that we
are given factorizations of h over each of the intermediate fields 𝕂i. In section 5, we generalize
the algorithm from section 4 to arbitrary composition towers. In section 6 we also give a detailed
complexity analysis in the case of triangular towers when each intermediate field 𝕂i admits the
form 𝕂i=𝕂[𝛼1,…,𝛼i] for suitable 𝛼i∈𝕂i.

Section 7 is dedicated to primitive towers, in which case each 𝕂i is generated by a single
primitive element 𝛼i over 𝕂. If the mi are pairwise coprime (see section 7.4), then the field 𝕂i
can be taken to be the composed product of 𝔽qm1,…,𝔽qmi, and computations in the tower become
particularly efficient: in the case when n is “super-smooth” (in the sense that the largest prime-
power divisor d of n satisfies d = (log n)O(1)), we will show that composition modulo h can be
done in quasi-linear time (modulo precomputations). In this very particular situation, our method
is asymptotically faster than Kedlaya–Umans' algorithm. If 𝔽q admits a small characteristic p
and m1=⋯=mt= p, then a similar result holds when using so called Artin–Schreier towers (see
section 7.5). For general smooth n, one may also consider nested towers (see section 7.3) for
which the primitive elements 𝛼i are compositions of polynomials of degrees m1, …, mi over 𝕂.
The existence of such towers for given 𝔽q and n is an interesting open problem, with a generally
positive answer in practice.

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 3

Our main complexity bounds for modular composition are summarized in Table 1.1. In this
table, h is a fixed irreducible polynomial of degree n = m1⋯ mt and m̄=max (m1, …, mt). The
entries correspond to the various types of towers that are considered in sections 6 and 7, while
assuming that all necessary precomputations that depend on h have been done.

This leaves us with the issue of how to conduct the precomputations. This is the subject of
section 8, where we analyze the cost of building composition towers of various types. We will
see that the construction of composition towers for prescribed composite extension degrees n can
usually be done fast. On the other hand, building composition towers for a prescribed modulus h
is of the same order of difficulty as factoring h over the intermediate fields 𝕂i, or finding a root
of h in 𝔽qn for a given representation of the elements of 𝔽qn. Practical algorithms for this task are
well known but their cost is quadratic in n; see [38] for recent theoretical complexity bounds.

Tower type Expected number of operations in 𝕂=𝔽q=𝔽pd

Triangular O(7t M𝕂(m̄ n) log m̄) Proposition 6.4
Primitive O(M𝕂(m̄ n) (m̄2t+logn)) Corollary 7.5
Nested O(t M𝕂(m̄n) logn) Corollary 7.7
Composed O(m̄M𝕂(m̄n) logn) Corollary 7.15
Artin–Schreier O(p2n log3n) when d=1 Corollary 7.18

Table 1.1. Complexity bound for modular composition for various types of towers.

Whether our approach leads to competitive algorithms for modular composition thus depends
on the question whether we require the factorization of h to be part of the complexity or not.
Indeed, if we are doing a large polynomial computation over 𝕂 in the algebraic extension
𝕂[x]/(h(x)), then we typically need to perform many modular compositions fi ∘ gi rem h for
different fi and gi, but for a fixed modulus h. In such cases, it is reasonable to regard the fac-
torization of h as a precomputation. Furthermore, if we want to perform computations in a large
finite field extension 𝕃 ⊇ 𝕂 and if we are free to select a suitable representation for elements
of this finite field, then we may build a modulus h with 𝕃 = 𝕂[x] / (h(x)) using dedicated algo-
rithms; from the asymptotic complexity point of view, these algorithms are usually faster than
finding an irreducible modulus at random.

In fact, we recall that testing the irreducibility of h in 𝔽q[x] reduces to O(log2 n) modular
compositions in degree n over 𝔽q, plus Õ(n log2 q) bit operations (see [31, section 8.2], based
on Rabin's algorithm [41]). In practice, for the fast construction of an irreducible polynomial
of degree n over 𝔽q, it is recommended to use Shoup's algorithm [45], which uses an expected
number of Õ(n2+ n log q) arithmetic operations in 𝔽q. If log q is much smaller than n, then one
may also resort to Couveignes and Lercier's algorithm [9]. Theoretically speaking, this algorithm
admits an expected bit complexity n1+o(1) log5+o(1) q, but it relies on Kedlaya and Umans' algo-
rithm for modular composition.

2. PRELIMINARIES

2.1. Complexity models
Recall that an effective ring is a ring 𝔸 with unity whose elements can be represented on a com-
puter and such that we have algorithms for performing the ring operations. Effective fields 𝕂 and
effective algebras over an effective ring are defined similarly.

Given an effective ring 𝔸, algebraic complexity models express running times in terms of the
number of operations in 𝔸. Unless otherwise stated, we will analyze the costs of the algorithms
in this paper in this way. More precisely, our results both apply for the straight-line program and
computation tree models [6, chapter 4].

4 MODULAR COMPOSITION VIA FACTORIZATION

For randomized algorithms over a finite effective ring 𝔸, we assume a special instruction that
uniformly generates random elements in 𝔸. For simplicity we assume that this instruction has
constant cost. For a given input, the cost of an algorithm is thus a random variable. The expected
cost of an algorithm for input size s is defined as the maximum of the averages of these random
variables over all possible inputs of size ⩽s.

When working over the finite field 𝕂=𝔽q with q elements, we may also analyze the costs of
algorithms in the bit complexity model, which relies on Turing machines with a sufficient number
of tapes [39]. We will not explicitly consider this model in our paper, but most of our complexity
bounds can easily be converted to this setting.

2.2. Polynomial multiplication
Let 𝔸 be an effective ring with unity, let n∈ℕ, and denote

𝔸[x]<n = { f ∈𝔸[x]:deg f <n}.

Given a polynomial or power series f (x)=∑i⩾0 fi xi and l⩽h, it is convenient to write

u(x)l;h = ∑
0⩽i<h−l

ui+l x i

u(x);h = ∑
0⩽i<h

ui xi.

We write M𝔸: ℕ→ℝ⩾ for a cost function such that two polynomials in 𝔸[x]<n can be multiplied
using M𝔸(n) operations in 𝔸. The schoolbook algorithm allows us to take M𝔸(n) = O(n2). The
fastest currently known algorithm [7] yields M𝔸(n) = O(n log n log log n) = Õ(n). Here, the
soft-Oh notation f (n) ∈ Õ(g(n)) means that f (n) = g(n) logO(1) g(n); see [13, section 25.7] for
technical details. If 𝔸 is a field of finite characteristic, then it has been shown [18, 19] thatM𝔸(n)=
O(n log n 4log∗n), where log∗ denotes the iterated logarithm function. In what follows, we will
always assume thatM𝔸(n) /n is an increasing function in n>0. This customary assumption implies
the super-additivity of M𝔸, namely M𝔸(n1)+M𝔸(n2)⩽M𝔸(n1+n2) for all n1>0 and n2>0.

More generally, if 𝔹 is an effective 𝔸-algebra, then it is sometimes convient to denote by
M𝔹/𝔸:ℕ→ℝ⩾ a cost function such that two polynomials in 𝔹[x]<n can be multiplied usingM𝔹/𝔸(n)
operations in 𝔸.

2.3. Univariate arithmetic
Let 𝕂 be an effective field. The remainder (resp. quotient) of the euclidean division of g by h
in 𝕂[x] is denoted by g rem h (resp. by g quo h). For a fixed modulus of degree n, euclidean
divisions by h are usually performed by computing a pre-inverse 𝜑 of h. More precisely, 𝜑 is the
inverse of x−n h in 𝕂[[x−1]], computed at precision O(x−n). Given f ∈𝕂[x]<2n, one obtains the
quotient f quoh by multiplying fn;2n with 𝜑 and the remainder as f rem h= f −(f quoh)h. Given
f ,g∈𝕂[x]<n we may thus compute the modular product f g remh using 3M𝕂(n)+O(n) operations
in 𝕂.

We recall that the greatest common divisor of two polynomials of degrees at most n over 𝕂
can be computed using O(M𝕂(n) logn) operations in 𝕂 [13, Algorithm 11.4].

Let f ∈𝕂[x]<n and consider n points 𝜎1,…,𝜎n∈𝕂. Then the evaluations f (𝜎1),…, f (𝜎n) can
be computed using O(M𝕂(n) logn) operations in 𝕂 [13, chapter 10]. This operation is also called
multipoint evaluation. The inverse operation is the interpolation, which consists of recovering f
from f (𝜎1),…, f (𝜎n); it can be performed with a similar cost. If the 𝜎i are fixed, then it is often
possible to gain a factor log logn using FFT trading [22].

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 5

More generally, if g1,…,gl∈𝕂[x] are polynomials with degg1+⋯+deggl=O(n), then all the
remainders f rem gi can be computed using O(M𝕂(n) log l) operations in 𝕂. The inverse problem,
called Chinese remaindering, again admits the same complexity O(M𝕂(n) log l).

2.4. Bivariate arithmetic
Let 𝔸 be an effective ring. Given a bivariate polynomial f ∈𝔸[z,x], we define its bidegree to be
the pair (m,n) with m=degz f and n=degx f . Using Kronecker substitution [13, section 8.4], two
polynomials of bidegree (m,n) may be multiplied using O(M𝔸(n m)) ring operations in 𝔸.

If h is a monic polynomial of degree m in 𝔸[z], and if f and g are two polynomials in (𝔸[z]/
h(z))[x]<n then their canonical preimages in 𝔸[z]<m[x]<n may be multiplied with O(M𝔸(m n))
operations in 𝔸 before being projected into (𝔸[z] /h(z))[x] with O(n M𝔸(m)) additional operations.
Consequently each ring operation in (𝔸[z] / h(z))[x] in degree ⩽n reduces to O(M𝔸(m n)) opera-
tions in 𝔸. If g is monic in x then f rem g also takes O(M𝔸(m n)) operations in 𝔸.

The computation of bivariate subresultants usually relies on fast evaluation/interpolation, as
in the following well known proposition.

PROPOSITION 2.1. [13, Corollary 11.18] Let 𝕂 be an effective field with >2 m n elements. Any
polynomial subresultant in x of two polynomials A and B in 𝕂[z, x] of bidegrees (m, n) can be
computed using O(n M𝕂(m n) log(m n)) operations in 𝕂.

Proof. The subresultant polynomial Ri of degree i of A and B in 𝕂[z, x] has degree ⩽2m (n− i)
in z. It can be computed by evaluating A and B at O(m n) values for z in 𝕂, computing O(m n)
subresultants in 𝕂[x] of degree ⩽n, and interpolating the coefficients of Ri. In total this costs
O(n2M𝕂(m) logm+mn M𝕂(n) logn+ i M𝕂(m n) log(m n)). □

However for the sake of generality we will rely on the following result.

PROPOSITION 2.2. Let 𝕂 be an effective field. Any polynomial subresultant in x of two polynomials
A and B in 𝕂[z, x] of bidegrees (m, n), with the corresponding Bézout relation, can be computed
using O(M𝕂(m n2) logn) operations in 𝕂 that comprise at most min(degx A,degx B)+1 inversions
in 𝕂.

Proof. This result corresponds to [36, Corollary 26]. The number of inversions comes from the
fact that the underlying algorithm only needs to perform exact divisions by subresultant coeffi-
cients in 𝕂[z]. Each division requires to invert the leading coefficient of the divisor. There exist
at most min (degx A, degx B)+1 such leading coefficients. □

2.5. Finite field arithmetic
Let 𝔽q be the finite field with q elements. One way to represent elements of a finite field extension
𝔽qn is as remainder classes of polynomials in 𝔽q[z]<n modulo a monic reducible polynomial 𝜇 ∈
𝔽q[z] of degree n. We write 𝔽qn=𝔽q[z]/(𝜇(z)) in order to emphasize that we use this representa-
tion. Multiplication in 𝔽qn can be done using 3M𝔽q(n) +O(n) operations in 𝔽q. Given an element
𝛼∈𝔽qn of degree d |n over 𝔽q, we write 𝔽q[𝛼] for the subfield of 𝔽qd generated by 𝛼 over 𝔽q, where
we understand that elements in 𝔽q[𝛼] are represented as evaluations of polynomials in 𝕂[z]<d at
z=𝛼.

For the bulk of the algorithms in this paper, we will work over the finite field 𝕂=𝔽q.
In that case, it can be shown that two polynomials in 𝔽q[x]<n can be multiplied in time
O(n log q log(n log q) 8log∗(nlogq)) on a Turing machine with a sufficient number of tapes [19,
section 8.1]. The algebraic complexity bounds in this paper are easy to adapt to this model: it
mainly suffices to replace M𝔽q(n) by O(n log q log(n log q) 8log∗(nlogq)) in all bounds.[update ref-
erences and bounds]

6 MODULAR COMPOSITION VIA FACTORIZATION

2.6. Matrix multiplication
The constant 𝜔 > 2 represents a feasible exponent for the multiplication cost of matrices: two
square matrices of size n×n can be multiplied usingO(n𝜔) operations in their coefficient ring. The
constant 𝜛>1.5 is defined similarly but for multiplying a n√ × n√ matrix by a n√ ×n rectangular
one. At present time the best known bound 𝜔 < 2.3729 is due to Le Gall [35]. This naturally
yields 𝜛⩽(𝜔+1)/2<1.6865. However the latter bound does not improve upon the earlier bound
𝜛<1.667 due to Huang and Pan [26, Theorem 10.1].

2.7. Modular composition and related operations
Let 𝔸 be an effective ring. Let 𝔹 an effective 𝔸-algebra of dimension d whose elements are
represented by vectors of size d in a given basis. We introduce the following cost functions:
• C𝔸(n): the cost of computing the modular composition f ∘ g rem h, where h∈𝔸[x] is a monic

polynomial of degree n, and f ,g∈𝔸[x]<n.
• C𝔹/𝔸(n): the cost of computing themodular composition f ∘g remh in terms of operations in 𝔸,

where h∈𝔹[x] is a monic polynomial of degree n, and f ,g∈𝔹[x]<n.
• Q𝔸(n): the cost of computing the characteristic polynomial 𝜒 of g∈𝔸[x]<n modulo a monic

polynomial h∈𝔸[x] of degree n. This is the characteristic polynomial 𝜒 ∈𝔸[x] of the multi-
plication endomorphism by gmodh in 𝔸[x]/(h(x)).

• P𝔸(n): the cost of modular power projections, i.e. the cost to compute 𝜑(1), 𝜑(g), …,
𝜑(gn−1 rem h), where h∈𝔸[x] is monic of degree n and 𝜑 is an 𝔸-linear form on 𝔸[x]<n.

Let us recall a few known results about these functions.

THEOREM 2.3. Let h be a monic polynomial of degree n over a ring 𝔸, and let f ,g∈𝔸[x]<n. The
composed polynomial f ∘g rem h may be computed with

1. O(n M𝔸(n)) operations in 𝔸, or

2. O(n𝜛+n1/2M𝔸(n)) or O(n𝜛) operations in 𝔸.

Proof. The first bound is immediate. The proof of the second bound is detailed in [13, sec-
tion 12.2]. □

For a fixed monic polynomial h in 𝔸[x] of degree n, the modular composition f ∘ g rem h is
a linear operation in f . For f and g of degrees <n, the corresponding transposed application is
precisely the operation of modular power projections. If a modular composition algorithm with
cost C𝔸(n) can be transposed in the sense of [3], then this leads to a power projection algorithm
with cost P𝔸(n)=C𝔸(n)+O(n).

THEOREM 2.4. Let h be a monic polynomial of degree n over a ring 𝔸, and let g∈𝔸[x]<n. The
characteristic polynomial 𝜒 of g modulo h can be computed using

1. O(M𝔸(n2) logn+n M𝔸(n) log2n) operations in 𝔸, including divisions in 𝔸 (the partial division
in 𝔸 is supposed to be implemented), or

2. O(M𝔸(n2) logn) operations in 𝔸, if 𝔸 is a field, or
3. O(n M𝔸(n) logn) operations in 𝔸, if 𝔸 is a field with >n elements, or
4. P𝔸(n)+M𝔸(n) operations in 𝔸, if there exist given inverses of 2, 3,…,n in 𝔸.

Proof. See [24, section 2.2]. □

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 7

3. MODULAR COMPOSITION VIA FACTORIZATION

3.1. Separable moduli over algebraically closed fields
Let 𝕂 be an effective field. A monic polynomial h = xn + hn−1 xn−1 +⋯+ h0 ∈ 𝕂[x] is said to
be separable if gcd (h, h′) = 1. We may use the following algorithm for composition modulo h
whenever h is separable and its n pairwise distinct roots 𝜎1,…,𝜎n in 𝕂 are given:

Algorithm 3.1
Input. Polynomials f ,g∈𝕂[x]<n and pairwise distinct 𝜎1,…,𝜎n∈𝕂.
Output. f ∘g rem h, where h=(x−𝜎1)⋯(x−𝜎n).
1. Compute v1=g(𝜎1),…,vn=g(𝜎n) using fast multi-point evaluation.
2. Compute w1= f (v1),…,wn= f (vn) using fast multi-point evaluation.
3. Retrieve 𝜚∈𝕂[x]<n with 𝜚(𝜎1)=v1,…,𝜚(𝜎n)=vn using fast interpolation.
4. Return 𝜚.

THEOREM 3.1. Algorithm 3.1 is correct and requires O(M(n) logn) operations in 𝕂.

Proof. By construction, 𝜚(𝜎i)=(f ∘g)(𝜎i)=(f ∘g remh)(𝜎i) for i=1,…,n. Since deg𝜚<n and the
𝜎i are pairwise distinct, it follows that 𝜚= f ∘g remh. This proves the correctness of the algorithm.
The complexity bound follows from the fact that each of the steps 1, 2 and 3 can be performed in
time O(M𝕂(n) logn). □

3.2. Pairwise coprime moduli
Let 𝕂 again be a general effective field. The algorithm from the previous section may be gener-
alized to composition modulo a polynomial h that can be factored partially as h=h1⋯ht in 𝕂[x],
where the polynomials hi are pairwise coprime (although not necessarily irreducible).

Algorithm 3.2
Input. Pairwise coprime polynomials h1, …, ht in 𝕂[x] such that h = h1⋯ ht has degree n;

Polynomials f ,g in 𝕂[x]<n.
Output. f ∘g rem h, and the characteristic polynomial of g modulo h.
1. Use a multi-remainder algorithm to compute gi=g rem hi, for all 1⩽ i⩽ t.
2. For all 1⩽ i⩽ t, compute the characteristic polynomial 𝜒i of gi modulo hi.
3. Use a multi-remainder algorithm to compute fi= f rem𝜒i, for all 1⩽ i⩽ t.
4. For all 1⩽ i⩽ t, perform the modular composition 𝜚i= fi ∘gi rem hi.
5. Use Chinese remaindering to compute 𝜚 in 𝕂[x] of degree ⩽n−1 such that 𝜚=𝜚imod hi
for all 1⩽ i⩽ t.

6. Return 𝜚 and 𝜒1⋯𝜒t.

PROPOSITION 3.2. Algorithm 3.2 is correct and takes O(M𝕂(n) log t) + ∑i=1
t (Q𝕂(ni) + C𝕂(ni))

operations in 𝕂, where ni=deghi.

Proof. For all 1 ⩽ i⩽ t, the Cayley–Hamilton theorem gives us 𝜒i ∘ g= 0mod hi, which implies
f ∘ g mod hi = (f rem 𝜒i) ∘ (g rem hi) mod hi, whence the correctness of 𝜚 = f ∘ g rem h.
The correctness of the characteristic polynomial of g follows from the usual isomorphism of
𝕂-algebras 𝕂[x]/(h(x))≅𝕂[x]/(h1(x))×⋯×𝕂[x]/(ht(x)).

The costs of steps 1, 3, 5, and 6 are O(M𝕂(n) log t). Step 2 costs ∑i=1
t Q𝕂(ni), and step 4 takes

∑i=1
t C𝕂(ni) operations in 𝕂. □

8 MODULAR COMPOSITION VIA FACTORIZATION

Example 3.3. For some families of polynomials the irreducible factorization is explicitly known.
For instance, the following result is due to Serret [44, section III, chapitre III, pp. 158–162] (see
also [11, pp. 24–27], [37, Theorem 3.2.18]):

Let 𝔽q be a finite field of characteristic p such that q+1=2A u with A⩾2 and
u odd. Let a∈𝔽q be an element of order e. Let t be a multiple of 2A having all its
prime factors dividing e but not (q−1)/e. Then the polynomial x t−a factors into
2A−1 irreducible polynomials of degrees t /2A−1. The irreducible factors may be
described explicitly.

For example, with q= p=7, A=3, u=1, e=2, a=6, t =16, the polynomial x16+1 factors into
irreducible polynomials of degree 2. Taking e=6 instead leads to x16+2 and x16+4.

4. EXPLOITING FACTORIZATIONS OVER ALGEBRAIC EXTENSIONS

4.1. Degree reduction
Let 𝕂 still be an effective field and assume that we wish to compute a modular composition
f ∘g rem h, where f , g, h∈𝕂[x] and h is monic. Let us study what happens if the polynomials f
and g to be composed have degrees larger than n. We clearly have

f ∘g rem h = f ∘ (g rem h) rem h

and we may compute g remh usingO(⌊degg
n ⌋ M𝕂(n)) operations in 𝕂 [13, Exercise 9.16]. Without

loss of generality we may therefore assume that degg<n.
If deg f exceeds n, then it suffices to perform ⌊deg f /n⌋ modular compositions:

f ∘g rem h=(∑
i=0

⌊deg f /n⌋

(fin;(i+1)n ∘g rem h) (gin rem h))rem h.

This requires ⌊deg f
n ⌋ additional compositions modulo h in size n, plus O(⌊deg f

n ⌋ M𝕂(n)) opera-
tions in 𝕂.

Alternatively, given a polynomial 𝜃 with 𝜃∘g remh=0, the following formula provides us with
a more efficient way to reduce the degree of f :

f ∘g rem h=(f rem𝜃) ∘g rem h.

Taking 𝜃 to be the characteristic polynomial 𝜒 of g modulo h, its computation usually admits
a similar cost as modular composition. Therefore it is worth using this method unless deg f =
n+o(n). This is actually one key ingredient for the upcoming algorithms for modular compo-
sition: in order to reduce a composition modulo h to compositions modulo a factor ℏ of h, we
in particular need to compute the characteristic polynomial of g modulo ℏ. At the end of the
recursive calls, one should nevertheless keep in mind that we only need annihilating polynomials,
so that we may also use minimal polynomials. Shoup has given a probabilistic O(n√ M𝕂(n)+n2)
algorithm for computing minimal polynomials [46], which is useful for actual implementations.

4.2. Normal factorizations
In the case when we wish to compute a composition modulo an irreducible polynomial h∈𝕂[x],
we cannot apply the algorithms from sections 3.1 and 3.2. Nevertheless, it might happen that h
admits a non trivial factorization over an algebraic extension of 𝕂. This generically happens when
𝕂 is a finite field and degh is composite. Indeed, we recall the following well known result.

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 9

PROPOSITION 4.1. Let h be a monic irreducible polynomial in 𝔽q[x] of degree n, and let m be
an integer dividing n. Then there exist an irreducible polynomial 𝜇(z) ∈ 𝔽q[z] of degree m, and
a polynomial H(z, x) ∈ 𝔽q[z, x] of bidegree (<m, n / m), monic in x, such that the irreducible
factorization of h(x) over 𝔽q[z]/(𝜇(z)) is exactly ∏𝜇(𝜁)=0H(𝜁,x).

Proof. Since h is irreducible, 𝔽q[y]/(h(y)) is isomorphic to 𝔽qn, which contains 𝔽qm. We may thus
take a generator 𝛼 ∈ 𝔽q[y] / (h(y)) of the image of 𝔽qm in 𝔽q[y] / (h(y)), and write 𝜇(z) ∈ 𝔽q[z] its
minimal polynomial over 𝔽q. Let 𝛽 be the class of y in 𝔽q[y] /(h(y)) and let H(𝛼, x) be its monic
minimal polynomial over 𝔽q[𝛼]. Then H(𝛼, x) divides h and so do its conjugates H(𝛼q i, x) for
i∈{0,…,m−1}. On the other hand, since H(𝛼, 𝛽)=0, we have H(𝛼q i, 𝛽q i)=0, so any root of h
is a root of one of the H(𝛼q i,x), which proves the equality h(x)=∏𝜇(𝜁)=0H(𝜁,x). □

We call factorizations as in this proposition “normal factorizations”. This concept can actually
be defined over arbitrary fields, as follows. Let h be a monic separable polynomial in 𝕂[x], let m
be a divisor of n=degh, and let 𝜇∈𝕂[z] be a monic separable irreducible polynomial of degreem.
We set 𝕃 = 𝕂[z] / (𝜇(z)), and write 𝛼 for the class of z in 𝕃. We say that h admits a normal
factorization over 𝕃 if there exists a bivariate polynomial H(z, x) that is monic in x, of bidegree
(<m,n/m), and such that h factors into ∏𝜇(𝜁)=0H(𝜁,x) over �̄�, with H(𝜁1,x) and H(𝜁2,x) coprime
whenever 𝜁1≠ 𝜁2. We call H(z, x) the normal factor of h over 𝕃. Notice that the polynomials h
and H(𝜁,x) are not required to be irreducible here.

Example 4.2. With 𝕂=𝔽2, h(x)=x6+x+1∈𝔽2[x] is irreducible, and we have 𝔽26≅𝔽2[y]/(h(y)).
For m=2 we take 𝜇(z)= z2+ z+1 and present 𝕃=𝔽22 as 𝔽2[z]/(𝜇(z)). Then h factors over 𝕃 as

h(x)=(x3+x2+𝜁1x+𝜁1+1) (x3+x2+𝜁2 x+𝜁2+1),

where 𝜁1, 𝜁2 are the two roots of 𝜇 in 𝔽22. More precisely for 𝜁1 we may take the class of z in 𝕃,
whereas 𝜁2=𝜁1+1. The normal factor of h is thus H(z,x)=x3+x2+ z x+ z+1.

Example 4.3. When 𝕂 = ℚ the situation is different from the case of finite fields. For instance
h(x) = x6 + x + 1 is irreducible, but it remains irreducible over ℚ[i], ℚ[2√], etc. Nevertheless,
for a prescribed extension degree n, we may randomly pick an irreducible 𝜇(z) of degree m and
a polynomial H(z,x) of bidegree (<m, n/m) that is irreducible as a polynomial in ℚ[z]/(𝜇(z))[x],
and build h(x) as Resz(H(z,x), 𝜇(z)). If h is separable, then it is irreducible in ℚ[x], and H is a
normal factor of h over 𝕃=ℚ[z]/(𝜇(z)).

4.3. Single extensions
Assume that h admits a normal factorization as above. Then the Chinese remainder theorem
yields a natural isomorphism

𝕂[x]/(h(x)) ≅ 𝕂[z,x]/(𝜇(z),H(z,x))

and we may define a(x) as the unique polynomial in 𝕂[x]<n that satisfies H(a(x),x)=0mod h(x)
and 𝜇(a(x))=0modh(x). We may now adapt the algorithm from section 3.2 as follows:

Algorithm 4.1

Input. Polynomials h, 𝜇, H, a as above, and f ,g in 𝕂[x]<n.
Output. f ∘g rem h, and the characteristic polynomial of g modulo h.
1. Compute the remainder G(𝛼,x)=g(x) remH(𝛼,x) in 𝕃[x].

10 MODULAR COMPOSITION VIA FACTORIZATION

2. Compute the characteristic polynomial 𝜒(𝛼,x) of G(𝛼,x) modulo H(𝛼,x) in 𝕃[x].
3. Compute F(𝛼,x)= f (x) rem𝜒(𝛼,x) in 𝕃[x].
4. Perform the modular composition 𝜚(𝛼,x)=F(𝛼,G(𝛼,x)) remH(𝛼,x) in 𝕃[x].
5. Return 𝜚(a(x),x) rem h(x) and Resz(𝜒(z,x),𝜇(z)).

PROPOSITION 4.4. Algorithm 4.1 is correct, and takes

Q𝕃/𝕂(n/m)+C𝕃/𝕂(n/m)+O(M𝕂(m n) logm)

operations in 𝕂.

Proof. We first observe that

(f ∘g)(x) remH(𝛼,x)=(f (x) rem𝜒(𝛼,x)) ∘ (g(x) remH(𝛼,x)) remH(𝛼,x)=𝜚(𝛼,x).

It follows that (f ∘g)(x) remh(x)=𝜚(a(x),x) remh(x), whence f ∘g remh is computed correctly. As
to the characteristic polynomial of g, the argument is the same as for Algorithm 3.2, thanks to the
Poisson formula Resz(𝜒(z,x), 𝜇(z))= (−1)n∏𝜇(𝜁)=0𝜒(𝜁,x).

Now the multiplication of two polynomials in 𝕃[x] of degree n using Kronecker substitution
requires O(M𝕂(m n)) operations in 𝕂. This way, steps 1 and 3 take O(M𝕂(m n)) operations in 𝕂.
Steps 2 and 4 respectively cost Q𝕃/𝕂(n / m) and C𝕃/𝕂(n/m) operations in 𝕂. The computation
of 𝜚(a(x), x) mod h(x) in the last step may be done naively using O(m M𝕂(n)) operations in 𝕂.
The computation of Resz(𝜒(z, x), 𝜇(z)) requires O(M𝕂(m n) logm) further operations by Proposi-
tion 2.2. □

COROLLARY 4.5. With the above notations, and given a normal factorization of h with 𝜇 irre-
ducible, for m=O(n√) and n /m=O(n√), the modular composition f ∘ g rem h can be computed
using O(M𝕂(n3/2) logn) operations in 𝕂.

Proof. We simply apply Algorithm 4.1. For Q𝕃/𝕂(n /m) we use 𝜒(𝛼,y)=Resx(G(𝛼,x)−y,H(𝛼,x)),
which takes O(M𝕂(n2 /m) log n + (n /m) M𝕂(m) log m) operations in 𝕂 by Proposition 2.2. We
perform the computations in step 4 naively, which yields C𝕃/𝕂(n/m)=O((n/m)M𝕂(n)). □

5. COMPOSITION TOWERS

5.1. Effective towers
Corollary 4.5 already illustrates the potential of our ability to factor h non trivially over an exten-
sion field 𝕃⊇𝕂. This idea can be pushed even farther whenever the factors H(𝜁,x) with 𝜇(𝜁)=0
can be factored recursively over a tower of extension fields of 𝕃. In order to carry out this gen-
eralization, we first need to decide how to compute with elements in the successive fields of such
a tower. Instead of privileging particular representations, we rely on the abstract concept of an
effective tower.

DEFINITION 5.1. An effective tower over 𝕂 is a tower of fields

𝕂=𝕂0⊊𝕂1⊊⋯⊊𝕂t

with the following properties:
• Each field 𝕂i comes with a specific way to represent its elements and algorithms for the field

operations.

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 11

• For i = 1, …, t, the field 𝕂i is a finite separable algebraic extension of 𝕂i−1, and we have
precomputed an element 𝛼i ∈ 𝕂i along with its minimal polynomial 𝜇i over 𝕂i−1, such that
mi=deg𝜇i⩾2 and 𝕂i≅𝕂i−1[𝛼i]. We set m̄=max (m1,…,mt).

• For i=1,…, t, we have algorithms for computing the natural bijection Λi, given by

𝕂i−1[z]<mi →→→→→→→→→→→→→→→
Λ i 𝕂i

z ⟼ 𝛼i

and its inverse Λi
−1. We callΛ i and Λi

−1 the upward and downward conversions at level i. The
coefficientwise extensions of Λ i and Λ i

−1 yield mappings 𝕂i−1[z]<mi[x] →𝕂i[x] and 𝕂i[x] →
𝕂i−1[z]<mi[x] that we still denote by Λ i and Λi

−1.

We denote by M𝕂i/𝕂(n) the cost of multiplying two polynomials in 𝕂i[x]<n in terms of the
number of required operations in 𝕂. Similarly, we write D𝕂i/𝕂 for the cost of inverting an element
in 𝕂i in terms of the number of operations in 𝕂. We always assume that additions and subtrac-
tions can be done in linear time. We also let L𝕂i/𝕂 upper bound the costs of both the upward and
downward conversions at level i.

5.2. Composition towers
Let us now return to our particular modulus h∈𝕂[x] and assume that its degree n=degh admits
the factorization n=m1⋯mt with mi⩾2 for i=1,…, t. If t=2, then Algorithm 4.1 shows how to
reduce modular composition modulo h to composition modulo a polynomial over 𝕂1 of degree
n/m1, provided a normal factor of h over 𝕂1 exists and is given. In order to generalize this idea
to the case when t>2, it is useful to introduce the concept of a composition tower.

DEFINITION 5.2. Let (𝕂i)i⩽t be an effective tower. Let h∈𝕂[x] be a monic separable polynomial
of degree n=m1⋯mt. We say that (𝕂i)i⩽t is a composition tower for h over 𝕂 if the following
properties are satisfied:
• We let H0 = h ∈ 𝕂0[x], and for each i = 1, …, t, we have precomputed a monic polynomial

Hi ∈ 𝕂i[x] such that H̆i ≔Λi
−1(Hi) is a normal factor of Hi−1 over 𝕂i. We let ni = deg Hi =

n/(m1⋯mi). For convenience, Hi is also called a normal factor of Hi−1.
• For i=1,…, t, we have the isomorphism

𝕂i−1[x]/(Hi−1(x))≅𝕂i−1[z,x]/(𝜇i(z), H̆i(z,x)),
and we assume we have precomputed a polynomial ai∈𝕂i−1[x]<ni such that

H̆i(ai(x),x) = 0 modHi−1(x)
𝜇i(ai(x)) = 0 modHi−1(x).

5.3. Modular composition using composition towers
Given h∈𝕂[x] monic and separable along with a composition tower (𝕂i)i⩽t, we may now apply
Algorithm 4.1 recursively. Unrolling the recursive calls yields the following algorithm for mod-
ular composition.

Algorithm 5.1

Input. f ,g,h∈𝕂[x] of degrees <n,<n,n and a composition tower (𝕂i)i⩽t for h.
Output. f ∘g rem h, and the characteristic polynomial of g modulo h.
1. Set F0≔ f .

12 MODULAR COMPOSITION VIA FACTORIZATION

2. Let 𝜒t≔ x−g(𝛼t) be the characteristic polynomial of g(𝛼t) modulo Ht over 𝕂t.
3. For i= t−1,…,0 do

Compute 𝜒i(x)≔Resz(Λi+1
−1 (𝜒i+1(x))(z,x), 𝜇i+1(z)).

4. For i=1,…, t, compute Fi≔Λi(Fi−1) rem𝜒i in 𝕂i[x].
5. Let 𝜚t≔Ft.
6. For i= t−1,…,0 do

Compute 𝜚i(x)≔Λ i+1
−1 (𝜚i+1)(ai+1(x),x) remHi(x).

7. Return 𝜚0 and 𝜒0.

THEOREM 5.3. Algorithm 5.1 is correct and takes

O(∑
i=1

t

M𝕂i−1/𝕂(mi ni−1) logmi+∑
i=1

t

M𝕂i/𝕂(mi ni)+∑
i=1

t

mi D𝕂i−1/𝕂+∑
i=1

t

mi ni L𝕂i/𝕂)
operations in 𝕂.

Proof. Let G0 ≔ g, and for i = 1, …, t, let Gi(x) ≔ Λi(Gi−1) rem Hi in 𝕂i[x]. The polyno-
mial 𝜒i in step 3 is the characteristic polynomial of Gi modulo Hi over 𝕂i and we notice that
𝜚i=Fi ∘Gi remHi in step 6. The correctness of the algorithm results from these observations.

The computation of the resultant Resz(Λi+1
−1 (𝜒i+1(x))(z,x),𝜇i+1(z)) in step 3 can be performed

in time O(M𝕂i/𝕂(mi+1
2 ni+1) logmi+1+mi+1D𝕂i/𝕂) by Proposition 2.2. It follows that the complete

step 3 requires

O(∑
i=1

t

(M𝕂i−1/𝕂(mi ni−1) logmi+mi D𝕂i−1/𝕂))+∑
i=1

t

ni L𝕂i/𝕂

operations in 𝕂.
The computation of Λ i(Fi−1(x)) in step 4 can be done in time ni−1 L𝕂i/𝕂. The computation

of the remainder of its division by 𝜒i(x) can be done in time O(M𝕂i/𝕂(ni−1)). Therefore step 4
amounts to

O(∑
i=1

t

M𝕂i/𝕂(ni−1))+∑
i=1

t

ni−1L𝕂i/𝕂

operations in 𝕂.
In step 6, the naive evaluation of Λ i+1

−1 (𝜚i+1(x)) at (ai+1(x), x) modulo Hi(x) using Horner's
method requires O(mi+1M𝕂i/𝕂(ni)) operations in 𝕂. Consequently, step 6 requires

O(∑
i=1

t

mi M𝕂i−1/𝕂(ni−1))+∑
i=1

t

ni L𝕂i/𝕂

operations in 𝕂. The conclusion follows by adding up the above bounds for the costs of the
individual steps. □

Remark 5.4. For certain applications, it might be useful to generalize the algorithm to the case
when h is not necessarily irreducible. In that case, we assume that the tower (𝕂i)i⩽t is only a “par-
tial composition tower”, meaning that we no longer require that nt=1. In Algorithm 5.1, we then
need to make two adjustments:
• In step 2, we compute 𝜒t to be the characteristic polynomial of Gt modulo Ht over 𝕂t.
• In step 5, we compute 𝜚t≔Ft ∘Gt remHt in 𝕂t[x].
These computations lead to an additional term Q𝕂t/𝕂(nt) + C𝕂t/𝕂(nt) in the complexity bound of
Theorem 5.3.

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 13

6. TRIANGULAR TOWERS

Assume that we are given a tower

𝕂⊂𝕂[𝛼1]⊂⋯⊂𝕂[𝛼1,…,𝛼t]

of finite fields such that mi = [𝕂[𝛼1,…, 𝛼i] :𝕂[𝛼1,…, 𝛼i−1]] ⩾ 2 for each i. One obvious way to
represent an element of 𝕂i =𝕂[𝛼1,…, 𝛼i] is to write it as u(𝛼1,…, 𝛼i), where u∈𝕂[z1,…, zi] is
a polynomial with degz1 u<m1,…, degzi u<mi. An effective tower that uses this representation
for the elements of the fields 𝕂i is called a triangular tower. For such towers, the costs of the
upward and downward conversions are zero. Throughout this section it will be convenient to
make the relatively harmless assumption that n log n = O(M𝔸(n)) for all effective rings 𝔸. We
always assume available the following precomputed data:
PRE-T1. For all i⩽ t, the pre-inverse of 𝜇i.

6.1. Complexity analysis for triangular towers

LEMMA 6.1. Let (𝕂i)i⩽t be a triangular tower. Then

M𝕂i/𝕂(n) = O(7i M𝕂(m1⋯mi n)),

for all i∈{1,…, t} and n∈ℕ.

Proof. Let us first show how to reduce polynomial multiplication over 𝕂i to polynomial multipli-
cation over 𝕂i−1. So consider two polynomials u and v in 𝕂i[x]<n, represented as polynomials in
𝕂i−1[z]<mi[x]<n evaluated at z=𝛼i. We may compute their product in 𝕂i[x]<2n as follows: we first
substitute x≔ z2mi in u and v, which yields two polynomials ũ, ṽ∈𝕂i−1[z]<2min. We next compute
their product in w̃∈𝕂i−1[z]<4min. Now (u v)k= (w̃2mik+⋯+ w̃2mi(k+1)−1 z2mi−1) rem𝜇i for each
k∈{0,…,2n−1}. Since each remainder can be computed using two multiplications of elements
in 𝕂i−1[z]<mi using the pre-inverse of 𝜇i, we obtain

M𝕂i/𝕂(n) ⩽ M𝕂i−1/𝕂(2mi n)+4n M𝕂i−1/𝕂(mi)+c0m1⋯mi n,

for a sufficiently large constant c0 independent of i. On the other hand, applying Karatsuba's trick,
there exists a constant c1 such that M(2n)⩽3M(n)+c1n holds for all n.

If i=1 then we have M𝕂1/𝕂(n) ⩽ M𝕂(2m1n)+4M𝕂(m1n)+c0m1n, which yields

M𝕂1/𝕂(n) ⩽ 7M𝕂(m1n)+(c0+c1)m1n.

We claim that

M𝕂i/𝕂(n) ⩽ 7i M𝕂(m1⋯mi n)+ i7i−1 (c0+c1)m1⋯mi n.

The proof is done by induction assuming the inequality holds for i−1:

M𝕂i/𝕂(n) ⩽ 7i−1 (3M𝕂(m1⋯mi n)+c1m1⋯mi n)+2 (i−1)7i−2 (c0+c1)m1⋯mi n
+4(7i−1M𝕂(m1⋯mi n)+(i−1)7i−2 (c0+c1)m1⋯mi n)
+c0m1⋯mi n

⩽ 7i M𝕂(m1⋯mi n)
+(7i−1c1+2(i−1)7i−2 (c0+c1)+4(i−1)7i−2 (c0+c1)+c0)m1⋯mi n

⩽ 7i M𝕂(m1⋯mi n)+(7i−1+2(i−1)7i−2+4(i−1)7i−2)(c0+c1)m1⋯mi n
⩽ 7i M𝕂(m1⋯mi n)+ i7i−1 (c0+c1)m1⋯mi n.

□

14 MODULAR COMPOSITION VIA FACTORIZATION

Remark 6.2. We do not claim the constant 7 to be optimal in the latter lemma, but it is sufficient
for our purposes.

LEMMA 6.3. Let (𝕂i)i⩽t be a triangular tower. Then inverting an element in 𝕂i may be done with
O(7i M𝕂(m1⋯mi) log m̄) operations in 𝕂.

Proof. By Proposition 2.2 the inverse of an element in 𝕂i takes mi D𝕂i−1/𝕂+O(M𝕂i−1/𝕂(mi) logmi)
operations in 𝕂. Combined with the previous lemma, we obtain

D𝕂i/𝕂⩽mi D𝕂i−1/𝕂+c7i−1M𝕂(m1⋯mi) logmi.

for some sufficiently large constant c. This yields the claimed bound. □

PROPOSITION 6.4. Let (𝕂i)i⩽t be a triangular composition tower for h ∈ 𝕂[x] with deg h = n =
m1⋯mt. Given f ,g∈𝕂[x]<n, we may then compute f ∘g rem h and the characteristic polynomial
of g modulo h using

O(7t M𝕂(m̄ n) log m̄)
operations in 𝕂.

Proof. By Lemma 6.1 we have

∑
i=1

t

M𝕂i−1/𝕂(mi ni−1) logmi+∑
i=1

t

M𝕂i/𝕂(mi ni)

= O(∑
i=1

t

7i−1M𝕂(mi n) logmi+∑
i=1

t

7i M𝕂(mi n)) = O(7t M𝕂(m̄n) log m̄).

Then Lemma 6.3 gives

∑
i=1

t

mi D𝕂i−1/𝕂 =O(∑
i=1

t

mi7i−1M𝕂(m1⋯mi−1) log m̄)=O(7t M𝕂(n) log m̄).

The conclusion follows from Theorem 5.3. □

6.2. Smooth degrees over finite fields
Recall that an integer n is said to be b-smooth whenever all its prime factors are at most b.

LEMMA 6.5. Let 𝜀>0. If n is n𝜀-smooth and sufficiently large, then there exist integers m1,…,mt
such that n=m1⋯mt, n𝜀/2<mi⩽n𝜀 for all 1⩽ i⩽ t−1, and mt⩽n𝜀, where t<2/𝜀+1.

Proof. It suffices to gather prime factors, counted with multiplicities, into t − 1 products in the
range (n𝜀/2,n𝜀]. Then n𝜀(t−1)/2<m1⋯mt−1⩽n implies 𝜀 (t−1)<2. □

COROLLARY 6.6. Let 𝜀>0. If n is n𝜀-smooth, and given a suitable triangular composition tower
for h of degree n, then one composition or one characteristic polynomial modulo h may be com-

puted using Õ(𝜀n1+𝜀+
2log7
𝜀logn) operations in 𝕂.

Proof. We appeal to the previous lemma to construct the integer sequence m1,…,mt for which
we precompute a triangular composition tower for h. The cost of Proposition 6.4 simplifies to

O(7t M𝕂(n1+𝜀) logn𝜀)= Õ(𝜀n1+𝜀+
2log7
𝜀logn). □

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 15

Notice that 𝜀 = 𝜂(n) = 2 log7
logn√ minimizes the latter exponent, which leads to the cost

Õ(n1+2𝜂(n))=n1+o(1) provided that n is n𝜂(n)-smooth.

Remark 6.7. It is well known that the number of n𝜀-smooth integers below an integer n is asymp-
totically equal to n 𝜌(1/𝜀) + O(n / log n), where 𝜌 is the Dickman–de Bruijn function defined by
x 𝜌′(x)+𝜌(x−1)=0 with initial condition 𝜌(x)=1 for all x∈[0,1] (see [42] for the original proof).
For 𝜀=1/2, we have 𝜌(2)≈0.31. Then 𝜌 decreases rapidly with 𝜌(3)≈0.049, 𝜌(4)≈0.0049, etc.
Another important consequence of Proposition 6.4 is the following: for more than 30% of large
values of n, modular compositions and characteristic polynomials for irreducible h of degree n
over 𝔽q may be computed using n3/2+o(1) operations in 𝔽q.

6.3. Cyclic modulus of prime degree over a finite field
An interesting application of Proposition 6.4 concerns cyclic moduli h(x)=xn−1 in 𝔽q[x], where
n is a prime number different from the characteristic p.

LEMMA 6.8. If n is a prime number different from p, and if l divides n−1, then the degrees of the
irreducible factors of xn−1 in 𝔽q l[x] divide (n−1)/ l.

Proof. Assume that l divides n−1, and write m=(n−1)/ l. It is well known that the polynomial
x(q l)m− x is the product of the monic irreducible polynomials of 𝔽q l whose degrees divide m. We
obtain gcd(x(q l)m−x,xn−1)=gcd(xqn−1modn−x,xn−1)=xn−1, by using Fermat's little theorem,
which asserts that qn−1=1modn. □

COROLLARY 6.9. Let 𝜀 > 0. If n is a prime number different from p, and if n − 1 is n𝜀-smooth,
then we may precompute suitable triangular composition towers for all irreducible factors
of h(x) = xn − 1, so one composition or characteristic polynomial modulo h may be obtained

using Õ(𝜀n1+𝜀+
2log7
𝜀logn) operations in 𝔽q.

Proof. The modulus h(x) = xn − 1 is separable, and the precomputations first involve the irre-
ducible factorization of h(x) into h1,…,hs, whose respective degrees n1,…,ns divide n−1.

Since n− 1 is n𝜀-smooth, each ni is ni
𝜀i-smooth, where 𝜀i = 𝜀 log n /log ni. Consequently, for

the modulus hi, the cost of Corollary 6.6 simplifies to

Õ(𝜀i ni
1+𝜀i+

2log7
𝜀ilogni)= Õ(𝜀n𝜀ni

1+ 2log7
𝜀logn).

The total cost for all hi is thus Õ(𝜀 n1+𝜀+
2log7
𝜀logn). Applying Proposition 3.2, this leads to the

cost O(M(n) log n) + ∑i=1
s (Q𝕂(ni) + C𝕂(ni)) for one composition or characteristic polynomial

modulo h. □

7. PRIMITIVE TOWERS

Proposition 6.4 shows that the overhead of triangular set arithmetic rapidly grows with the
height t of the tower. In this section we consider an alternative representation for elements in
the fields 𝕂i. This representation allows for faster multiplication inside the fields 𝕂i, but the
upward and downward conversions may become more expensive. One major goal of this sec-
tion is to provide a more precise analysis of the cost of these conversions and to isolate particular
situations in which they can be computed fast.

16 MODULAR COMPOSITION VIA FACTORIZATION

7.1. Primitive towers
An effective tower (𝕂i)i⩽t with 𝕂i≅𝕂i−1[𝛼i] is said to be primitive if 𝕂i=𝕂[𝛼i] for each i. In that
case, we assume that we precomputed the minimal polynomial 𝜈i of each 𝛼i over 𝕂. It follows that

M𝕂i/𝕂(n) = O(M𝕂(m1⋯mi n)) (7.1)
D𝕂i/𝕂 = O(M𝕂(m1⋯mi) log(m1⋯mi)), (7.2)

for i=0,…,n. On the other hand, the upward and downward conversions are more expensive than
in the case of triangular towers. The following consequence of (7.1), (7.2) and Theorem 5.3 will
be of frequent use.

LEMMA 7.1. For a primitive composition tower for h with 𝕂t=𝕂[x]/(h(x)), Algorithm 5.1 takes

O(M𝕂(m̄ n) logn+∑
i=1

t

m ni L𝕂i/𝕂)
operations in 𝕂.

Proof. We have

∑
i=1

t

M𝕂i−1/𝕂(mi ni−1) logmi = O(M𝕂(m̄n) logn)

∑
i=1

t

M𝕂i/𝕂(mi ni) = O(M𝕂(m̄n) logn)

∑
i=1

t

mi D𝕂i−1/𝕂 = ∑
i=1

t

mi M𝕂(m1⋯mi−1) log(m1⋯mi−1) = O(M𝕂(n) logn),

so the conclusion follows from Theorem 5.3. □

7.2. Arbitrary primitive elements
For computing with arbitrary primitive towers, we recall that we always assume available the
following precomputed data:
PRE-P1. For all i⩾ j, the minimal polynomial of 𝛼i over 𝕂j,
PRE-P2. For all i⩾ j⩾1, the minimal polynomial of 𝛼i over 𝕂j−1[𝛼j],
PRE-P3. For all i⩾ j⩾1, the polynomial expression of 𝛼j in terms of 𝛼i over 𝕂j−1.
Assume that 𝕂i =𝕂[𝛼i] for some arbitrary primitive element 𝛼i. For a natural morphism 𝔸→𝔹
for 𝕂-algebras 𝔸 and 𝔹, let C𝕂(𝔸→𝔹) denote the cost of applying the morphism once in terms
of the number of required operations in 𝕂.

LEMMA 7.2. Modulo the above precomputations, we have for all 1⩽ j< i⩽ t,

C𝕂(𝕂j[𝛼i]→𝕂j−1[𝛼i]) = mj+1⋯mi C𝕂(𝕂j→𝕂j−1[𝛼j])+O(mj M𝕂(m1⋯mi)) (7.3)
C𝕂(𝕂j−1[𝛼i]→𝕂j[𝛼i]) = mj+1⋯mi C𝕂(𝕂j−1[𝛼j]→𝕂j)+O(mj M𝕂(m1⋯mi)). (7.4)

Proof. Let ũ(𝛼j, 𝛼i) ∈ 𝕂j[𝛼i] with ũ ∈ 𝕂[zj]<m1⋯mj[zi]<mj+1⋯mi. We may convert ũ(𝛼j, 𝛼i) into
u(𝛼j, 𝛼i) ∈ 𝕂j−1[𝛼j, 𝛼i] with u ∈ 𝕂j−1[zj]<mj[zi]<mj+1⋯mi using mj+1 ⋯ mi C𝕂(𝕂j → 𝕂j−1[𝛼j])
operations in 𝕂. Then we use the precomputed polynomial b∈𝕂j−1[zi]<mj⋯mi with 𝛼j=b(𝛼i), and
also the minimal polynomial w ∈𝕂j−1[zi] of 𝛼i over 𝕂j−1, which has degree mj ⋯ mi. We now
compute 𝜚(x)=u(b(x),x) remw(x) using Horner's method. This requiresO(mj M𝕂j−1/𝕂(mj ⋯mi))=
O(mj M𝕂(m1 ⋯ mi)) operations in 𝕂. The evaluation 𝜚(𝛼i) is the natural image of ũ(𝛼j, 𝛼i) in
𝕂j−1[𝛼i]. This proves (7.3).

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 17

For the opposite direction, consider u(𝛼i) ∈ 𝕂j−1[𝛼i] and reinterpret u(𝛼i) as an element
of 𝕃[𝛼i] with 𝕃 = 𝕂j−1[𝛼j] and u ∈ 𝕃[zi]<mj⋯mi. We use the precomputed minimal polynomial
𝜃 ∈ 𝕃[zi] of 𝛼i over 𝕃, which has degree mj+1⋯mi. We next compute w= u rem 𝜃∈ 𝕃[zi]. This
requires O(mj M𝕃/𝕂(mj+1⋯mi)) =O(mj M𝕂(m1⋯mi)) operations in 𝕂. We finally convert w(𝛼i)
coefficientwise into an element w̃(𝛼i) of 𝕂j[𝛼i]. This requires mj+1⋯mi C𝕂(𝕂j−1[𝛼j]→𝕂j) oper-
ations in 𝕂 and yields the natural image of ũ(𝛼i) in 𝕂j[𝛼i]. This completes the proof of (7.4). □

LEMMA 7.3. Modulo precomputations, we have for all i⩽ t and j,k∈{0,…, i},

C𝕂(𝕂j[𝛼i]→𝕂k[𝛼i]) = O((mi+2mi−1+⋯+2i−1m1)M𝕂(m1⋯mi)).

Proof. It will be convenient to use the following abbreviations:

𝜎j,k = mj+⋯+mk

𝜋j,k = mj⋯mk

Σj,k = 2k− j mj+⋯+2mk−1+mk.

Let c be a constant such that

C𝕂(𝕂j[𝛼i]→𝕂j−1[𝛼i]) ⩽ 𝜋j+1,i C𝕂(𝕂j→𝕂j−1[𝛼j])+c mj M𝕂(𝜋1,i) (7.5)
C𝕂(𝕂j−1[𝛼i]→𝕂j[𝛼i]) ⩽ 𝜋j+1,i C𝕂(𝕂j−1[𝛼j]→𝕂j)+c mj M𝕂(𝜋1,i) (7.6)

in the previous lemma and let us show by induction over i that

C𝕂(𝕂j[𝛼i]→𝕂k[𝛼i]) ⩽ cΣ1,i M𝕂(𝜋1,i). (7.7)

For i=1, we have 𝕂1[𝛼1] =𝕂0[𝛼1], so all possible conversions are trivial and (7.7) holds. Now
assume that the result holds until i−1⩾0. Let us first consider the case when j<k< i. Then (7.6)
yields

C𝕂(𝕂j[𝛼i]→𝕂k[𝛼i]) ⩽ ∑
l= j+1

k

C𝕂(𝕂l−1[𝛼i]→𝕂l[𝛼i])

⩽ ∑
l= j+1

k

𝜋l+1,i C𝕂(𝕂l−1[𝛼l]→𝕂l)+c𝜎j+1,k M𝕂(𝜋1,i)

⩽ ∑
l= j+1

k

c𝜋l+1,iΣ1,l M𝕂(𝜋1,l)+c𝜎j+1,k M𝕂(𝜋1,i)

⩽ ∑
l= j+1

k

cΣ1,l M𝕂(𝜋1,i)+c𝜎j+1,k M𝕂(𝜋1,i)

= c M𝕂(𝜋1,i)(∑
l= j+1

k

Σ1,l+𝜎j+1,k)
⩽ c M𝕂(𝜋1,i)Σ1,i.

Since 𝕂i[𝛼i]=𝕂i=𝕂0[𝛼i], this also deals with the case when k< j= i. If k< j< i, then (7.5) yields

C𝕂(𝕂j[𝛼i]→𝕂k[𝛼i]) ⩽ cΣ1,i M𝕂(𝜋1,i)

in a similar way. This also deals with the case when j<k= i. We conclude by induction. □

COROLLARY 7.4. Modulo precomputations, we have for all i⩽ t,

L𝕂i/𝕂 = O((mi+2mi−1+⋯+2i−1m1)M𝕂(m1⋯mi)).

18 MODULAR COMPOSITION VIA FACTORIZATION

COROLLARY 7.5. Let (𝕂i)i⩽t be a primitive composition tower for h∈𝕂[x] with degh=n. Given
f ,g∈𝕂[x]<n, we may then compute one composition or characteristic polynomial modulo h using

O(M𝕂(m̄ n) (m̄2t+logn))
operations in 𝕂.

Proof. From Corollary 7.4 we deduce

∑
i=1

t

ni L𝕂i/𝕂=O(∑
i=1

t

mi+2mi−1+⋯+2i−1m1)M𝕂(n)=O(m̄2t M𝕂(n)), (7.8)

so the conclusion follows from Lemma 7.1. □

Comparing to Proposition 6.4, using primitive towers thus turns out to be more efficient than
using triangular towers, although it requires more precomputations. Therefore the costs for the
two particular cases studied in sections 6.2 and 6.3 may be revisited and slightly improved.

7.3. Nested towers
We say that a primitive tower (𝕂i)i⩽t with 𝕂i=𝕂[𝛼i] is a nested tower, if there exist 𝜏i, 𝜅i∈𝕂[z]
with deg𝜏i=mi, deg𝜅i=ki⩽mi, 𝜅i(𝛼i)≠0, 𝜏i and 𝜅i coprime, and

𝜏i(𝛼i) = 𝛼i−1𝜅i(𝛼i) (i=2,…, t).

Setting 𝜏1(z)=𝜈1(z) and 𝜅1(z)= z, this also means that

𝜈i = 𝜅i
m1⋯mi−1𝜈i−1(𝜏i/𝜅i) (i=2,…, t),

so that 𝜈i has degree m1⋯mi. For this specific type of towers we require the following precom-
putations:

PRE-N1. 𝜅i
2 j
, 𝜏i

2 j
and 𝜅i

−2 j
mod𝜏i

2 j
for 1⩽ i⩽ t and 0⩽ j< s, where 2s is the smallest power of two

above m1⋯mi.

LEMMA 7.6. Given a nested tower (𝕂i)i⩽t, we have

L𝕂i/𝕂 = O(M𝕂(m1⋯mi) log (m1⋯mi))

for all i∈{1,…, t}.

Proof. Consider an element u(𝛼i−1, 𝛼i) ∈ 𝕂i−1[𝛼i] with u ∈ 𝕂[y]<m1⋯mi−1[z]<mi. Let l be the
smallest power of two above m1⋯mi−1. Then we may compute w̃(z) = 𝜅i(z)l u(𝜏i(z) /𝜅i(z), z) so
that w̃(𝛼i) = 𝜅i(𝛼i)l Λi(u(𝛼i−1, z)). This computation follows the natural “divide and conquer”
strategy: given 𝜑∈𝕂[y]<l[z]<mi, we split it into 𝜑(y, z)=𝜑0(y, z)+yl/2𝜑1(y, z) with degy𝜑0< l/2,
we compute recursively A(z) = 𝜅i(z)l/2𝜑0(𝜏i(z) /𝜅i(z), z) and B(z) = 𝜅i(z)l/2𝜑1(𝜏i(z) /𝜅i(z), z), and
deduce

𝜅i(z)l𝜑(𝜏i(z)
𝜅i(z)

, z)=𝜅i(z)l/2 A(z)+𝜏i(z)l/2B(z).

We may end the recurrence when l = 2, which incurs a cost O(M𝕂(mi)) that is
repeated O(m1 ⋯ mi−1) times in total. For each depth of the recursive calls the total
cost remains O(M𝕂(m1 ⋯ mi)) operations in 𝕂. The overall cost of the method is
O(M𝕂(m1 ⋯ mi) log(m1 ⋯ mi−1)). The computation of the inverse of 𝜅i(𝛼i)l requires
O(M𝕂(m1⋯mi) log(m1⋯mi)) additional operations in 𝕂.

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 19

Conversely, let w(𝛼i)∈𝕂i with w∈𝕂[z]<m1⋯mi, and let l be the smallest power of two above
m1⋯mi. We compute w̃(z)=𝜅i

l(z)w(z) rem𝜈i(z) and look for an expansion of the form

w̃=u0𝜅i
l+u1𝜅i

l−1𝜏i+⋯+ul−1𝜏i
l−1,

where the ui∈𝕂[z]<mi. We again use the “divide and conquer” strategy:

• Compute w̃0=𝜅i
−l/2 w̃mod𝜏i

l/2, and recursively compute the expansion

w̃0=u0𝜅i
l/2+u1𝜅i

l/2−1𝜏i+⋯+ul/2−1𝜅i 𝜏i
l/2−1.

• Compute w̃1=(w̃− w̃0𝜅i
l/2) quo𝜏i

l/2, and recursively compute the expansion

w̃1=ul/2𝜅i
l/2+ul/2+1𝜅i

l/2−1𝜏i+⋯+ul−1𝜏i
l/2−1.

At the end we have w̃=𝜅i
l/2 w̃0+𝜏i

l/2 w̃1, as required. Thanks to the precomputations this expan-
sion requires O(M𝕂(m1 ⋯ mi) log(m1 ⋯ mi−1)) operations in 𝕂. Now we observe that w(𝛼i) =
𝜅i
−l(𝛼i) w̃(𝛼i) = u0(𝛼i) + u1(𝛼i) 𝛼i−1 + ⋯ + ul−1(𝛼i) 𝛼i−1

l−1 = u(𝛼i−1, 𝛼i), where u ∈ 𝕂[y]<l[x]<mi

and u(𝛼i−1, z) = Λi
−1(w(𝛼i)). A final reduction by 𝜈i−1(y) takes O(mi M(m1⋯ mi−1)) operations

in 𝕂. □

COROLLARY 7.7. Let (𝕂i)i⩽t be a nested composition tower for h∈𝕂[x] with degh=n. Then we
may compute one composition or characteristic polynomial modulo h using

O(t M𝕂(m̄n) logn)
operations in 𝕂.

Proof. Lemma 7.6 implies

∑
i=1

t

ni L𝕂i/𝕂=O(∑
i=1

t

ni M𝕂(m1⋯mi) log (m1⋯mi−1))=O(t M𝕂(n) logn). (7.9)

The result now follows from Lemma 7.1. □

The above corollary makes nested composition towers extremely attractive from a complexity
point of view. The existence of such towers only depends on 𝕂 and the degrees m1, …, mt, but
not on h. A practical way to construct nested towers is to pick random monic 𝜏1,…,𝜏t of degrees
m1,…,mt and to check that 𝜏1 ∘⋯∘𝜏i is irreducible for each i∈{1,…, t}. We repeat this process
for random choices of 𝜏1,…,𝜏t until we find a suitable tower. From a heuristic point of view, we
will show below that the probability that we eventually obtain a nested tower is nonzero in most
cases of interest. From a theoretical point of view, the existence problem of nested towers remains
an interesting problem.

In order to analyze the probability that random choices of 𝜏1, …, 𝜏t provide us with a nested
tower, we rely on
• the fact that a random polynomial over 𝕂 of degree d is irreducible with probability ≈1/d;
• the heuristic assumption that 𝜏1 ∘⋯∘𝜏i is again random for i∈{2,…, t}.
In this framework, the probability that 𝜏1 ∘⋯∘𝜏i is irreducible for each i∈{1,…, t} is given by

P = 1
m1

t m2
t−1⋯mt−1

2 mt
.

On the other hand, if 𝕂 has cardinality q, then we have

N = qm1+⋯+mt

20 MODULAR COMPOSITION VIA FACTORIZATION

possible choices for the tuple (𝜏1,…, 𝜏i). For a fixed value of n, we maximize P by taking m1⩽
m2⩽⋯⩽mt. Setting mav=(m1+⋯+mt)/ t, we then have

P ⩾ mav
−(t

2)

N = qtmav.

The existence of a nested tower over 𝕂 with extension degrees m1, …, mt is likely whenever
P N ≫1. Taking logarithms, this happens as soon as

logq > t logmav
2mav

.

The algorithm for finding 𝜏1 ∘⋯ ∘ 𝜏i needs O(m1
t m2

t−1⋯mt) runs before finding a suitable tower.
An obvious optimization is to make a better use of successful guesses of 𝜏1, …, 𝜏i for which
𝜏1 ∘⋯∘𝜏j is irreducible for all j∈ {1,…, i}: instead of starting everything over after one unsuc-
cessful guess of 𝜏i+1, we try at least c m1⋯mi+1 times for some fixed constant c. The expected
number of guesses then drops to O(n).

It is an interesting question whether there exist finite fields 𝕂 and sequences m1, m2, … for
which it is possible to construct monic 𝜏1, 𝜏2,…∈𝕂[x] of degrees m1,m2,… such that 𝜏1 ∘⋯ ∘ 𝜏i
is irreducible for each i. The literature contains specific constructions of nested towers over finite
fields based on [8, Lemma 1] which relates the irreducibility of 𝜅i

m1⋯mi−1 𝜈i−1(𝜏i / 𝜅i) to 𝜏i(z) −
𝛽 𝜅i(z) where 𝜈i−1(𝛽) = 0. We refer the reader to [37, section 3.2] for a nice survey. Let us
exemplify two useful constructions.

Example 7.8. Following [33, Theorem 4], if q=1mod4 is a prime power, and 𝜈1(z)=z2+b z+c∈
𝔽q, where b≠0, and c is a nonzero square and b2−4 c is a non-square in 𝔽q. Then we may build
a nested tower with 𝜏i(z) = z2+ c, 𝜅i(z) = 2 z, [𝕂i :𝕂]=2i. For instance we may take q=5, b=3,
and c=4.

Example 7.9. This following construction is also due to Kyuregyan [32, Theorem 7]. Let 𝜈1(z)
be a monic irreducible polynomial of degree m1⩾1 over 𝔽q, where m1 is even if q=3mod4. Let
b∈ 𝔽q such that 𝜈1(−b /2) is a non-square in 𝔽q. Then we may take 𝜏i(z) = z2+ b z+ b2 /4 − b /2
and 𝜅i(z)=1 for all i⩾2. In this way we have [𝕂i :𝕂]=m12i−1. For instance with q= p=7, we
may take 𝜈1(z)= z4+ z+1, b=3, 𝜏i(z)= z2+3 z+6. Notice that computations with nested towers
simplify a bit in this situation where 𝜅i=1 for all i⩾2.

Example 7.10. One may wonder whether the above examples admit generalizations for which
the 𝜏i are of odd degree ⩾3. A non trivial candidate example of this kind is the sequence 𝜈k ≔
(x3+x2+1)∘k. We verified 𝜈k to be irreducible over 𝔽2 for k⩽11, but does this hold for all k?

7.4. Composed towers
Over finite fields, the situation when the mi are pairwise coprime may be exploited to construct
special towers, relying on the following well-known lemma:

LEMMA 7.11. Let 𝕂 be a finite field and consider two monic irreducible polynomials 𝜈 and 𝜆 in
𝕂[x] whose degrees are coprime. Then the composed product 𝜈⊙𝜆∈𝕂[z], defined by

(𝜈⊙𝜆)(z)= ∏
𝜈(𝜁)=0

∏
𝜆(𝜉)=0

(z−𝜁 𝜉)= ∏
𝜈(𝜁)=0

𝜁 deg𝜆𝜆(𝜁−1 z)= ∏
𝜆(𝜉)=0

𝜉 deg𝜈 𝜈(𝜉−1z),

is irreducible in 𝕂[x] and of degree deg𝜈 deg𝜆.

Proof. See for instance [4, Theorem 2]. □

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 21

Remark 7.12. Given primitive elements 𝛼 and 𝛽 of coprime degrees d and e over 𝕂, an alternative
way to state the lemma is that 𝛼 𝛽 is again a primitive element of degree de over 𝕂.

Remark 7.13. Composed products can be computed in softly linear time [2], by means of the
Newton–Girard identities (see also [16] for handling these identities in small characteristic).

Let (𝕂i)i⩽t be a primitive tower and let 𝛼i, mi and 𝜈i be as usual. We say that (𝕂i)i⩽t is
a composed tower if the mi are pairwise coprime and if there exist monic irreducible polyno-
mials 𝜆1,…,𝜆t∈𝕂[z] of degrees m1,…,mt such that 𝜈1=𝜆1 and 𝜈i=𝜈i−1⊙𝜆i for i=2,…, t.

In that case, the minimal polynomial 𝜇i of 𝛼i over 𝕂i−1 is given by 𝜇1(z) = 𝜈1(z) and 𝜇i(z) =
𝛼i−1

mi 𝜆i(𝛼i−1
−1 z) for i ⩾ 2: if 𝜇i were reducible over 𝕂i−1 then mi would have a proper gcd with

[𝕂i−1 :𝕂]=m1⋯mi−1 which is impossible (see Proposition 4.1).
By construction, we thus have 𝜈i−1(𝛼i−1)=0 and 𝜇i(𝛼i)=0. For each i⩾2, let 𝜉i be a root of 𝜆i

and 𝛼i=𝜉i 𝛼i−1, so that 𝜆i(𝛼i−1
−1 𝛼i)=0. For such composed towers, we assume that the following

precomputations have been done for i∈{1,…, t}:
PRE-C1. z−1mod𝜆i(z),
PRE-C2. the trace map of 𝕂[z]/(𝜆i(z)) over 𝕂 (as a vector of 𝕂mi),

PRE-C3. 𝜈i(z)
𝜈i−1(y−1 z) and its inverse modulo 𝜈i−1(y−1z) and 𝜆i(y).

LEMMA 7.14. Let (𝕂i)i⩽t be a composed tower. Then we have

L𝕂i/𝕂 = O(M𝕂(m1⋯mi−1mi
2)),

for all i∈{1,…, t}.

Proof. Let u(𝛼i) ∈𝕂[𝛼i] with u∈𝕂[z]<m1⋯mi. We wish to compute w(𝛼i−1, z) =Λ i
−1(u(𝛼i)) with

w∈𝕂[y]<m1⋯mi−1[z]<mi. For this purpose we first calculate

w̃(y, z) = (u(y z)mod𝜆i(y))mod𝜈i−1(z)

using O(m1⋯mi M𝕂(mi)+mi M𝕂(m1⋯mi)) operations in 𝕂. Then

w(𝛼i−1, z) = w̃(𝛼i−1
−1 z, 𝛼i−1)mod𝜇i(z)

can be computed using O(mi M(m1⋯mi−1)) additional operations.
Conversely, let w(𝛼i−1, z)∈𝕂[𝛼i−1][z] with w∈𝕂[y]<m1⋯mi−1[z]<mi. The direct image u(𝛼i)=

Λ i(w(𝛼i−1, z)) with u∈𝕂[z]<m1⋯mi is obtained via Chinese remaindering:

u(z)= ∑
𝜆i(𝜉)=0

w(𝜉−1 z, z) 𝜈i(z)
𝜈i−1(𝜉−1 z)((𝜈i(z)

𝜈i−1(𝜉−1z))
−1
mod𝜈i−1(𝜉−1 z)).

In fact we just verify that u(𝛼i)=w(𝜉i
−1𝛼i,𝛼i)=w(𝛼i−1,𝛼i). So if we let 𝕃i=𝕂[y]/(𝜆i(y)), then we

may calculate

u(z)=Tr𝕃i/𝕂(w(y−1z, z) 𝜈i(z)
𝜈i−1(y−1z)((𝜈i(z)

𝜈i−1(y−1 z))
−1
mod𝜈i−1(y−1 z))),

which takes O(M𝕂(m1⋯mi−1mi
2)) operations in 𝕂, when using our assumption that 𝜈i(z)

𝜈i−1(y−1 z) and
its inverse modulo 𝜈i−1(y−1z) and 𝜆i(y) have been precomputed. □

COROLLARY 7.15. Let (𝕂i)i⩽t be a composed composition tower for h∈𝕂[x] with degh=n. Then,
given f ,g∈𝕂[x]<n, we may compute f ∘g rem h using

O(m̄M𝕂(m̄n) logn)

22 MODULAR COMPOSITION VIA FACTORIZATION

operations in 𝕂.

Proof. Lemma 7.14 implies

∑
i=1

t

ni L𝕂i/𝕂=O(∑
i=1

t

ni M𝕂(m1⋯mi−1mi
2))=O(t M𝕂(m̄n)). (7.10)

We conclude by Lemma 7.1. □

Given a number c>0, we say that an integer n>1 is c-super-smooth if for every prime power
m that divides n, we havem⩽2 logcn. For instance, the product of the first 𝜏 prime numbers grows
as e(1+o(1))𝜏log𝜏 (see for instance [17, chapter 22]) and is therefore 1-super-smooth for sufficiently
large 𝜏. Similarly, the number lcm(1,…,k) is 1-super-smooth for every k⩾3. For a fixed modulus
of super-smooth degree, the following corollary shows that modular composition can be done in
softly linear time in this specific situation:

COROLLARY 7.16. Let h∈𝕂[x] be a fixed irreducible polynomial of c-super-smooth degree n over
a finite field 𝕂, and assume a composed composition tower has been precomputed for h. Then,
given any f ,g∈𝕂[x]<n, we may compute f ∘g rem h using O(n (logn)2+2c+o(1)) operations in 𝕂.

Proof. We apply the previous corollary with m̄⩽2logc n and M𝕂(n)=O(n logn log logn). □

7.5. Artin–Schreier towers
Using the composed tower approach, we are left with the question how to deal with algebraic
extensions of prime power degree n=r k. In the case when r coincides with the characteristic p of
the field 𝕂=𝔽p, one may use Artin–Schreier towers instead, as outlined below.

An Artin–Schreier polynomial over a field 𝕂 of characteristic p > 0, is an irreducible poly-
nomial of 𝕂[x] of the form xp− x− a. An Artin–Schreier tower of height t over 𝔽q is a tower of
field extensions 𝔽q ⊂𝔽qp⊂⋯⊂𝔽qpt where each extension 𝔽

qpi+1 is explicitly constructed from an
Artin–Schreier polynomial over 𝔽

qpi.
In order to simplify the presentation, we restrict ourselves to the case when 𝕂= 𝔽p. For the

minimal polynomials of the successive extensions, we take

𝜇1(z) = zp− z−1
𝜇2(z) = zp− z−𝛼1 (i=2, p=2)
𝜇i(z) = zp− z−𝛼i−1

2p−1 (all other cases).

In [10, Theorem 2], it is shown that this defines a primitive tower. The polynomials 𝜈i may be
computed using O(p n logp n+M𝔽p(p n) log p) operations in 𝔽p, according to [10, Theorems 12].
We assume that the following precomputations have been done for i∈{1,…, t} (see [10, end of
section 4]):
PRE-A1. the trace map on 𝔽p[𝛼i−1, z]/(𝜇i(z)) over 𝔽p in the canonical basis,
PRE-A2. (vi′)−1mod𝜈i.
The costs of these precomputations are O(M𝔽p(pi)) and O(M𝔽p(pi) log(pi)), respectively. We now
have the following complexity bound for the upward and downward conversions.

LEMMA 7.17. [10, Theorem 13] Let (𝕂i)i⩽t be an Artin–Schreier tower. Then, modulo precom-
putations, we have

L𝕂i/𝔽p = O(pi+1 logp
2(pi)+ p M𝔽p(pi))

for all i∈{1,…, t}.

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 23

COROLLARY 7.18. Let (𝕂i)i⩽t be an Artin–Schreier composition tower for h∈𝕂[x] with deg h=
n= pt. Then, given f ,g∈𝕂[x]<n, we may compute f ∘g rem h using

O(p2n log3n)
operations in 𝔽p.

Proof. Lemma 7.17 implies

∑
i=1

t

ni L𝕂i/𝔽p = O(∑
i=1

t

pt−i (pi+1 logp
2(pi)+ p M𝔽p(pi)))

= O(t (pt+1 logp
2(pt)+ p M𝔽p(pt))). (7.11)

From Lemma 7.1, it follows that f ∘ g rem h can be computed using O(p2 n log3 n+ p2 M𝔽p(n) +
M𝔽p(p n) log n) operations in 𝔽p. Using the fact that M𝔽p(n) = O(n log n log log n), the result
follows. □

8. BUILDING COMPOSITION TOWERS

Let 𝕂=𝔽q be a given finite field and let h be a given monic irreducible polynomial of degree n=
m1⋯mt over 𝕂. In this section we consider the task of constructing composition towers for h. In
fact, we may distinguish three different problems of increasing complexity:
1. Building an algebraic tower (𝕂i)i⩽t with the prescribed extension degrees mi=[𝕂i :𝕂i−1];
2. Building a composition tower for some monic irreducible h∈𝕂[x] of degree n;
3. Building a composition tower for the prescribed modulus h.
Moreover, one may study these problems for each type of towers that we have encountered so
far. From now on, we drop the study of triangular towers, for simplicity and because primitive
towers are more efficient anyway. Given an effective tower, we notice that the construction of a
primitive tower still requires computing the minimal polynomials 𝜈i over 𝕂 of the 𝛼i. In general,
it is not known how to do this in quasilinear time without using the power projection algorithm by
Kedlaya and Umans.

The traditional solution to the first problem involves computing irreducible polynomials 𝜇i
of “small” degrees mi over “large” field extensions 𝕂i−1. For instance, when using Shoup's algo-
rithm [45], the number of operations in 𝕂i−1 grows with mi logqm1⋯mi−1 (in this case, Couveignes
and Lercier's algorithm [9] is less competitive). In [14, Proposition 4.6] von zur Gathen and
Seroussi proved the lower bound Ω(log q) for factoring polynomials of degree 2 over 𝔽q in the
arithmetic circuit model. Consequently the quadratic cost in n might be difficult to decrease in
general. Theorem 8.2 below shows how to achieve a cost that is quasi-linear in m̄32t n in the case
when n=m1⋯mt.

In this section we mainly focus on the efficient construction of primitive composition towers
for prescribed m1, …, mt. We first describe the general algorithm and then explain possible
speed-ups for nested, composed, and Artin-Schreier towers. Altogether, this yields an efficient
answer to the second problem. Notice that composition towers with no prescribed modulus are
sufficient if we merely need a representation for the finite field 𝔽qn such that polynomials in 𝔽q[x]
can be evaluated efficiently at points in 𝔽qn.

The third problem is more difficult. So far we have not been able to apply the techniques
of this paper to obtain more efficient solutions, even when n is very smooth or in the extremely
favourable case of Artin–Schreier towers. In practice, a straightforward strategy for the construc-
tion of composition towers for h is to factor h over all intermediate fields 𝕂1,…,𝕂t using standard
available algorithms. This is discussed at the end of the section.

24 MODULAR COMPOSITION VIA FACTORIZATION

8.1. Building primitive composition towers
The naive construction of a primitive composition tower with prescribed extension degrees mi
proceeds by induction. Assume the tower is built up to height t − 1. We first construct an irre-
ducible polynomial 𝜇t(z) in 𝕂t−1[z] and set 𝕂t = 𝕂t−1[z] / (𝜇t(z)). If 𝜇t is “sufficiently random”,
then the class 𝛼t of z in 𝕂t is a primitive element over 𝕂. Its minimal polynomial 𝜈t over 𝕂
may simply be obtained as 𝜈t(z) = Resx(�̆�t(x, z), 𝜈t−1(x)) where �̆�t(x, z) ∈ 𝕂[x, z] is the natural
preimage with bidegree (<m1 ⋯ mt−1, mt) that satisfies �̆�t(𝛼t−1, z)=𝜇t(z). The latter resultant
requires roughly (m1⋯mt−1)2 operations in 𝕂 when using the best known algorithms. To com-
plete the composition tower of height t, it remains to compute the sequence of normal factors of
𝜈t(x) over 𝕂1,…,𝕂t−1. Factorization algorithms based on modular composition [31] can achieve
this in time (m1⋯mt−1)1.5, roughly speaking.

In fact, we will show how to build primitive composition towers far more efficiently. We
still proceed by induction. The composition towers naturally share the same underlying effective
subtowers of (𝕂i)i⩽t. More precisely, the subtower of height l consists of the fields (𝕂i)i⩽l and
forms a composition tower for 𝜈l; the successive normal factors are written Hl,0 = 𝜈l, Hl,1, …,
Hl,l=x−𝛼l, and the auxiliary polynomials ai of Definition 5.2 are written al,1,…,al,l.

We begin with constructing an irreducible polynomial 𝜇1(z)∈𝕂[z] of degree m1, so the first
primitive tower is made of 𝜇1,𝜈1=𝜇1, and it is a composition tower for H1,0(x)=𝜈1(x) with normal
factor H1,1(x)=x−𝛼1. The auxiliary polynomial a1,1(x)=x satisfies 𝜇1(a1,1(x))=0modH1,0(x).

For the second composition tower we construct an irreducible polynomial 𝜇2(z) ∈ 𝕂1[z] of
degree m2, which defines 𝛼2 as the class of z in 𝕂2=𝕂1[z]/(𝜇2(z)). If 𝜇2 is “sufficiently random”,
then 𝛼2 is a primitive element of 𝕂2 over 𝕂. We obtain the minimal polynomial of 𝛼2 over 𝕂
as 𝜈2(z) = Resx(�̆�2(x, z), 𝜈1(x)), where �̆�2(𝛼1, z) = 𝜇2(z) and �̆�2 ∈ 𝕂[x]<m1[z]. The normal factor
of H2,0(x) = 𝜈2(x) over 𝕂1 is H2,1(x) =𝜇2(x), and the one of H2,1 over 𝕂2 is H2,2(x) = x−𝛼2. We
clearly have a2,2(x) = x and we obtain a2,1(x) from the subresultant of degree 1 in x of �̆�2(x, z)
and 𝜈1(x) (it necessarily exists because 𝛼2 is a primitive element of 𝕂2 over 𝕂, which implies
that 𝜈2 is separable; this will be detailed below in the general situation). In this way we obtain
a composition tower of height 2.

The third tower again requires building an irreducible polynomial 𝜇3(z) ∈ 𝕂2[z]. This
defines 𝛼3 and 𝕂3 so we have 𝜇3(𝛼3) = 0. We assume that 𝛼3 generates 𝕂3 over 𝕂 and we wish
to obtain the normal factorizations of its minimal polynomial 𝜈3(z)=Resx(�̆�3(x,z),𝜈2(x)). Over 𝕂3
and 𝕂2 the normal factors are respectively H3,3(x) = x − 𝛼3 and H3,2(x) = 𝜇3(x). For H3,1(x),
we use the second composition tower: we compute �̆�3(z, x) = Λ2

−1(𝜇3(x)) such that �̆�3(z, x) ∈
𝕂1[z]<m2[x] and �̆�3(𝛼2, x) = 𝜇3(x), then H3,1(x) = Resz(�̆�3(z, x), 𝜇2(z)) ∈ 𝕂1[x]. Then we obtain
H3,0(x) = Resz(H̆3,1(z, x), 𝜇1(z)), where H̆3,1(z, x) =Λ1

−1(H3,1(x)). The auxiliary polynomials a3,1
and a3,2 are obtained from the corresponding first subresultants.

For general heights, we use the following algorithm for the construction of composition
towers.

Algorithm 8.1
Input. Primitive composition towers (𝕂j)j⩽i for 𝜈i for i⩽ t−1; 𝜇t(z) ∈𝕂t−1[z] irreducible of

degree mt such that any root of 𝜇t has degree m1⋯mt over 𝕂.
Output. The primitive composition tower (𝕂i)i⩽t for 𝜈t with 𝕂t−1[𝛼t] = 𝕂t−1[z] /(𝜇t(z)), and

where 𝜈t is the minimal polynomial of 𝛼t over 𝕂.
Notation. The normal factors of 𝜈l over 𝕂i are written Hl,0,…,Hl,l.
1. Set Ht,t(x)=x−𝛼t, Ht,t−1(x)=𝜇t(x), at,t(x)=x.
2. For l from t−1 down to 1 do

a. Compute Ht,l−1(x)=Resz(H̆t,l(z,x),𝜇l(z)) over 𝕂l−1, where H̆t,l(z,x)=Λ l
−1(Ht,l(x));

b. Compute the subresultant of degree 1 in z of H̆t,l(z, x) and 𝜇l(z) written A(x) z+B(x),
and then set at,l(x)=−A(x)−1B(x)modHt,l−1(x).

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 25

3. Set 𝛼t to the class of z in 𝕂t−1[z]/(𝜇t(z)), and let 𝜈t(z)=Ht,0(z).
Notice that the precomputations PRE-P1 correspond to Ht,1,…,Ht,t; concerning PRE-P2,
we have already computed Λ1

−1(Ht,1),…, Λt−1
−1 (Ht,t−1), and Λ t

−1(Ht,t) is simply x−𝛼t; the
precomputations PRE-P3 correspond to at,1,…,at,t.

4. Return the composition tower (𝕂i)i⩽t for Ht,0(x) made from (𝜇i)i⩽t, (𝜈i)i⩽t, (Ht,i)⩽t, (at,i)i⩽t,
and the other precomputed auxiliary data.

PROPOSITION 8.1. Algorithm 8.1 is correct and takes

O(∑
l=1

t−1

nl L𝕂l/𝕂+M𝕂(m̄ n) logn+ t M𝕂(n) logn)
operations in 𝕂.

Proof. By decreasing induction on lwe prove that 𝕂l,…,𝕂t is a composition tower for Ht,l which
has degree ml+1⋯mt. This is clear for l= t and l= t−1. Assume the induction hypothesis holds
for l⩾1. At the end of step 2.a the polynomial Ht,l−1(x) has degree ml ⋯mt and is the minimal
polynomial of 𝛼t over 𝕂l−1. Since Ht,l is a normal factor of 𝜈t over 𝕂l, the degree of the ideal
generated by (H̆t,l(z,x), 𝜇l(z)) is ml⋯mt.

Since Ht,l−1 is separable it belongs to the Gröbner basis of (H̆t,l(z, x), 𝜇l(z)) for the lexico-
graphic order induced by z > x. In particular a polynomial with leading monomial z belongs to
(H̆t,l(z, x), 𝜇l(z)). This proves that the subresultant of degree 1 of H̆t,l(z, x) and 𝜇l(z) is nonzero,
and that al is well defined, which implies the requested conditions:

Ht,l(at,l(x),x)=0modHt,l−1(x) and 𝜇l(at,l(x))=0modHt,l−1(x).

The induction hypothesis is thus satisfied for l−1.
As to the complexity analysis, we first notice that deg Ht,l = ml+1⋯ mt. The conversions in

step 2.a therefore take

O(∑
l=1

t−1

ml+1⋯mt L𝕂l/𝕂)
operations in 𝕂. The resultant in step 2.a and the subresultant in step 2.b require

O(M𝕂l−1/𝕂(ml
2ml+1⋯mt) logml+ml D𝕂l−1/𝕂)

further operations, by Proposition 2.2, where D𝕂l−1/𝕂=O(M𝕂(m1⋯ml−1) log(m1⋯ml−1)). The
inversion of A modulo Ht,l−1 takes O(M𝕂l−1/𝕂(ml ⋯ mt) log(ml ⋯ mt) + ml ⋯ mt D𝕂l−1/𝕂) further
operations. □

THEOREM 8.2. Let 𝕂=𝔽q. A primitive composition tower of degrees m1,…,mt may be built using

O(m̄M𝕂(m̄ n) (m̄2t+logn) logn+ m̄ M𝕂(n) logq)

expected operations in 𝕂.

Proof. The tower is constructed by natural successive applications of Algorithm 8.1. By Equa-
tion (7.8) the bound from Proposition 8.1 simplifies to

O(m̄2t M𝕂(n)+M𝕂(m̄n) logn+ t M𝕂(n) logn).

It remains to take the construction of the 𝜇i into account for 1⩽ i⩽ t. By Theorem A.4 a random
polynomial 𝜇i can be computed using an expected number of O(mi

2 log(m1⋯mi)) compositions
modulo 𝜈i−1 plus

O(mi C𝕂i−1/𝕂(mi) log(m1⋯mi)+mi M𝕂(m1⋯mi) (logq+log(m1⋯mi) logmi))

26 MODULAR COMPOSITION VIA FACTORIZATION

operations in 𝕂. Thanks to Corollary 7.5 each composition modulo 𝜈i−1 may be done using
O(M𝕂(m̄ m1⋯ mi−1) (m̄ 2i−1 + log(m1⋯ mi−1))) operations in 𝕂. On the other hand we simply
take C𝕂i−1/𝕂(mi)=O(M𝕂(m1⋯mi−1mi

2)). The sum over i yields

O(m̄ M𝕂(m̄n) (m̄2t+logn) logn+ m̄M𝕂(n) logq).

We claim that, with a small uniformly bounded probability, the roots of 𝜇i do not have maximal
degree m1⋯mi over 𝕂. Such a bad 𝜇i is easily detected since the corresponding 𝜈i is not sepa-
rable. In that case we build another 𝜇i at random and the average number of failures is bounded.

To prove the claim, we notice that the roots of 𝜇i do not have maximal degree m1⋯mi over 𝕂
if, and only if, the m1⋯mi−1 conjugates of 𝜇i over 𝕂 are not pairwise distinct. Equivalently this
means that the coefficients of 𝜇i belong to a proper subfield of 𝕂i−1. For each prime factor 𝜋 of
m1⋯mi−1 the field 𝔽qm1⋯mi−1/𝜋 is a maximal proper subfield of 𝕂i−1. All maximal proper subfields
of 𝕂i−1 are obtained is this way, so there exist at most O(log(m1⋯ mi−1)) many of them. The
number of monic irreducible polynomials of degree mi with coefficients in such a subfield is
at most qm1⋯mi−1/2 /mi; the number of monic irreducible polynomials of degree mi over 𝕂i−1 is
at least (qm1⋯mi−1 − 2 qm1⋯mi−1/2) /mi (see for instance [13, Lemma 14.38]). Consequently the
probability that the roots of 𝜇i do not have maximal degree m1⋯mi over 𝕂 is at most

qm1⋯mi−1/2 log(m1⋯mi−1)
qm1⋯mi−1−2qm1⋯mi−1/2 ⩽ log(m1⋯mi−1)

qm1⋯mi−1/2−2
,

which is uniformly bounded by 1/2 as soon as m1⋯mi−1 or q is sufficiently large. □

8.2. Particular cases
Let us now investigate the consequences of Proposition 8.1 in the particular cases of nested,
composed and Artin–Schreier towers. In our analysis, we actually construct all intermediate
subtowers along with the composition tower itself. If one just needs the highest tower, then there
are cases that can be optimized by exploiting the specificities of the types of towers under con-
sideration.

Nested towers.

COROLLARY 8.3. Let 𝕂=𝔽q and assume that we are given a nested tower as in section 7.3, defined
by (𝜏i)1⩽i⩽t and (𝜅i)1⩽i⩽t. Then the nested composition tower for 𝜈t may be built using

O(M𝕂(m̄ n) logn+ t M𝕂(n) logn)

operations in 𝕂.

Proof. The tower is again constructed by natural successive applications of Algorithm 8.1, except
that we replace the precomputations in step 3 by those specified in PRE-N1. These precompu-
tations amount to O(M𝕂(m̄ n) log n). By Equation (7.9), the cost of Proposition 8.1 simplifies to
O(M𝕂(m̄n) logn+ t M𝕂(n) logn). □

Composed towers.

COROLLARY 8.4. Let 𝕂= 𝔽q and assume that we are given a composed tower as in section 7.4,
defined by (𝜆i)1⩽i⩽t. Then the composed composition tower for 𝜈t may be built using

O(M𝕂(m̄ n) logn+ t M𝕂(n) logn)

operations in 𝕂.

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 27

Proof. The tower is again constructed by natural successive applications of Algorithm 8.1, except
that we replace the precomputations in step 3 by those specified in PRE-C1, PRE-C2, and PRE-
C3. These precomputations amount to O(M𝕂(m̄ n) log n). By Equation (7.10), the cost of Propo-
sition 8.1 simplifies to O(M𝕂(m̄n) logn+ t M𝕂(n) logn). □

Artin–Schreier towers.

COROLLARY 8.5. Let 𝕂 = 𝔽p and assume that we are given an Artin–Schreier tower as in sec-
tion 7.5, defined by (𝜇i)1⩽i⩽t. Then the Artin–Schreier composition tower for 𝜈t may be built using

O(t pn log2n+M𝕂(p n) logn+ t M𝕂(n) logn)
operations in 𝔽p.

Proof. The tower is again constructed by natural successive applications of Algorithm 8.1, except
that we replace the precomputations in step 3 by those specified in PRE-A1 and PRE-A2, which
amount to O(M𝕂(nd) log(nd)). By Equation (7.11), the cost of Proposition 8.1 becomes

O(tp n logp
2n+M𝕂(pn) logn+ t M𝕂(n) logn). □

8.3. Building composition towers from roots
Let (𝕂i)i⩽t be an algebraic tower. So far we have shown how to build composition towers for 𝜈t.
Let us now explain how to deduce composition towers for a given h∈𝕂[x] monic and irreducible
of degree n. By standard algorithms, we first compute a root 𝜁 of h in 𝕂t (for example with Rabin's
algorithm; see [13, chapter 14]). Unfortunately we do not know how to exploit a composition
tower to compute 𝜁 more efficiently. We are interested in finding a monic normal factor Hi of h
over each field 𝕂i in the tower. In the extreme case when i= t, we take Ht=x−𝜁.

PROPOSITION 8.6. Given a primitive composition tower for 𝜈t, given an irreducible h ∈ 𝕂[x],
together with a root 𝜁 ∈𝕂t of h, we may compute the minimal polynomials Hi of 𝜁 over 𝕂i along
with the ai from Definition 5.2 for i∈{0,…, t}, with cost

O(∑
i=1

t

ni L𝕂i/𝕂+M𝕂(m̄ n) logn).
Proof. We have Ht=x−𝜁. We compute Hi and ai by descending induction on i from t down to 1.
First we have

Hi−1(x) = Resz(H̆i(z,x),𝜇i(z)) ∈ 𝕂i−1[x],

where H̆i=Λi
−1(Hi)∈𝕂i−1[z]<mi[x]. The first subresultant A(x) z+B(x) of H̆i(z,x) and 𝜇i(z) is well

defined and A(x) is invertible modulo Hi−1(x). Therefore we have

ai(x)=−A(x)−1B(x)modHi−1(x).

According to Proposition 2.2, the resultant and the first subresultant can be computed
using O(M𝕂i−1/𝕂(ni−1 mi) log mi + mi D𝕂i−1/𝕂) operations in 𝕂. Then ai is deduced with
O(M𝕂(ni−1) logni−1) operations in 𝕂. Summing over i, the result follows. □

Remark 8.7. Inversely, given a composition tower (𝕂i)i⩽t, we notice that the polynomial Ht is of
the form x−𝜁 with h(𝜁) = 0. In other words, the computation of a composition tower for h is as
least as hard as finding a root of h in 𝕂t.

28 MODULAR COMPOSITION VIA FACTORIZATION

9. APPLICATIONS AND PERSPECTIVES

We have shown that modular composition and characteristic polynomials for a fixed irreducible
modulus h∈𝔽q[x] can be computed fast if n=degh is smooth, when allowing for precomputations
that depend solely on h. From a practical point of view, we expect that efficient implementations
of our algorithms will lead to speed-ups with respect to state of the art methods as soon as n is
composite and sufficiently large. From a theoretical point of view, the algorithms by Kedlaya and
Umans generally outperform our new algorithms. One notable exception occurs when n is very
smooth, in which case we were able to prove a quasi-linear complexity bound: see Corollary 7.16.

Our new algorithms are only more efficient for fixed moduli h. Nevertheless, the cost of the
required precomputations as a function of h is of a similar order of magnitude as one composition
modulo h without our methods. In other words, if we need to compute s compositions modulo the
same modulus h, then our new methods are already of interest for small values of s. This problem
of multiple modular compositions occurs in various applications:
Factorization over finite fields. A standard application of modular composition over finite fields
is the irreducible factorization of univariate polynomials [29, 31]. In general, the cost of the
precomputations is too expensive for our algorithms to be interesting. Nevertheless, Kaltofen
and Shoup showed in [28] how to reduce the cost of the Cantor–Zassenhaus factorization algo-
rithm in 𝔽pm[x]<n mostly to compositions modulo the defining polynomial h of 𝔽pm over 𝔽p, and
to C𝔽pn(n). Our new algorithms should therefore be useful for factoring polynomials of small
degree n over 𝔽pm. In our appendix we recall the main underlying technique and show how it
concretely applies to the fast construction of irreducible polynomials in this context. We plan to
work out the application to factorization in a future paper.
Roots over large finite fields. One particular instance of factorization over finite fields is the
extraction of k-th roots (i.e. finding the roots of polynomials of the form xk − a). In that case,
one may use [12, Theorem 1.1] in order to reduce the problem of root extraction to modular
composition and the computation of minimal polynomials. The advantage of this method with
respect to a direct use of [28] is that it typically remains fast for larger values of k.
Conversions. It frequently happens that one has to work with different representations of ele-
ments of a finite field. For instance, given distinct irreducible polynomials 𝜑 and 𝜓 of degree n
over 𝔽q, elements of 𝔽qn can both be represented as elements of 𝔽q[x] / (𝜑) and 𝔽q[x] / (𝜓). Con-
verting from the representation in 𝔽q[x] / (𝜑) to the one in 𝔽q[x] / (𝜓) boils down to composition
modulo 𝜓, assuming that the image g of xmod 𝜑 in 𝔽q[x] /(𝜓) is given. We emphasize that this
conversion problem is distinct from finding the polynomial g, which comes down to computing
a root g of 𝜑 in 𝔽q[x]/(𝜓). Fast algorithms have recently been designed for the latter purpose by
Narayanan [38], on top of the Kedlaya–Umans algorithm.

Given a non trivial divisor d of n, yet another representation of elements of 𝔽qn was needed
in [23]. Let 𝛼 be a primitive element of 𝔽qn and 𝛽∈𝔽qn be an element whose minimal polynomial
has degree d. Then 𝔽q[𝛼] and 𝔽q[𝛽][𝛼] are both isomorphic to 𝔽qn and correspond to two different
representations. If 𝛼 and 𝛽 can be chosen “nicely”, then conversions between these representa-
tions can be computed fast, using similar methods as in sections 7.3, 7.4 and 7.5. Using modular
composition, we may reduce the general case to this special case in which we are allowed to
choose 𝛼 and 𝛽.
Frobenius maps. Thanks to von zur Gathen and Shoup's algorithm [15], the Frobenius maps
a↦aq i can be computed efficiently when fast modular composition is available. More precisely,
assume we wish to compute aq i in 𝔽qn=𝔽q[x]/(h(x)). If i=1, then we use binary powering to get
the preimage b(x) of aq. Then, by induction on i, we may compute the canonical preimage c(x)
of aq⌊i/2⌋, so d = c ∘ c rem h is the preimage of aq2⌊i/2⌋. If i is even, then we are done. Otherwise,
we compute d ∘c remh to obtain the preimage of aq2⌊i/2⌋+1=aq i. Overall this method uses O(logn)
compositions modulo h, plus O(M𝕂(n) logq) operations in 𝕂.

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 29

Many intriguing questions remain to be answered. One major open problem is whether our
new techniques can be used to build composition towers for a prescribed irreducible modulus h of
smooth degree n in quasi-linear time. This would give us an unconditional algorithm for compo-
sition modulo h of quasi-linear time complexity. Another natural question is whether there exists
an efficient way to reduce general modular composition to composition modulo irreducible poly-
nomials of smooth degree. This question may be related to generalizations of our algorithms to
modular composition for multivariate polynomials. Besides these fundamental issues, we finally
think that there remains a lot of room for more minor improvements of the techniques in this
paper and for working out various applications in more detail. It would also be interesting to have
efficient implementations of the multiple algorithms that we have presented and investigate under
which conditions they outperform previous algorithms in practice.

APPENDIX A. PSEUDO-TRACE OVER FINITE FIELDS

This appendix is devoted to Kaltofen and Shoup's fast algorithm for pseudo-traces over finite
fields [28], along with its application to building irreducible polynomials (required in our sec-
tion 8). We recall the algorithm for completeness, but also in order to make it work more generally
over any finite field 𝔽q.

Algorithm A.1
Input. h ∈ 𝔽q[z] irreducible of degree m; f (z, x) ∈ 𝔽q[z, x] of bidegree (<m, n) monic in x;

A(z, x) ∈ 𝔽q[z, x] of bidegree (<m, <n); an integer l ⩾ 1; Z1 ∈ 𝔽q[z]<m such that Z1(z) =
zq mod h(z); X1∈ 𝔽q(z, x) of bidegree (<m, <n) such that X1(z, x) = xq mod (h(z), f (z, x));
A1∈𝔽q[z,x] of bidegree (<m,<n) such that A1(z,x)= A(z,x)qmod(h(z), f (z,x)).

Output. Zl ∈ 𝔽q[z]<m such that Zl(z) = zq l mod h(z); Xl ∈ 𝔽q[z, x] of bidegree (<m, <n)
such that Xl(z, x) = xq l mod (h(z), f (z, x)); Al ∈ 𝔽q[z, x] of bidegree (<m, <n) such that
Al(z,x)=A(z,x)q+ A(z,x)q2+⋯+ A(z,x)q lmod(h(z), f (z,x)).

1. If l=1 then return Z1,X1,A1.
2. Let k=⌊l/2⌋, and recursively compute Zk,Xk, Ak.
3. Compute Z2k=Zk ∘Zk rem h.
4. Compute X2k=Xk(Zk,Xk) rem f (z,x) over 𝔽q[z]/(h(z)).
5. Compute A2k= Ak+ Ak(Zk,Xk) rem f (z,x) over 𝔽q[z]/(h(z)).
6. If l is even, then return Z2k,X2k, A2k.
7. Compute and return Zl=Z2k ∘Z1 rem h, Xl=X2k(Z1,X1) rem f (z, x) over 𝔽q[z]/(h(z)), and

Al= A1+A2k(Z1,X1) rem f (z,x) over 𝔽q[z]/(h(z)).

PROPOSITION A.1. Let 𝕂=𝔽q and 𝕃=𝔽q[z]/(h(z)). Algorithm A.1 is correct and takes O(n log l)
compositions modulo h and

O(C𝕃/𝕂(n) log l)
additional operations in 𝕂.

Proof. The proof proceeds by induction on l. The algorithm is clearly correct if l= 1. Assume
that it is correct for l⩾1. By linearity of the q-th power we have

Z2k≡ zq2kmodh(z),

Xk(Zk,Xk)≡xq2kmod(h(z), f (z,x)),

Ak(Zk,Xk)≡ Ak(zqk,xqk)≡ A(z,x)qk+1+ A(z,x)qk+2+⋯+ A(z,x)q2kmod(h(z), f (z,x)).

30 MODULAR COMPOSITION VIA FACTORIZATION

This already proves the correctness by induction when l is even. Otherwise l=2 k+1 and similar
computations yield Z2k ∘Z1=(zq)q2k=Zlmodh(z),

X2k(Z1,X1)≡xq2k+1mod(h(z), f (z,x)),

A2k(Z1,X1)≡A(z,x)q2+A(z,x)q3+⋯+A(z,x)q2k+1mod(h(z), f (z,x)).

This proves the correctness.
The cost for obtaining Zl from Zk is essentially one or two compositions modulo h. If we

write Ak(z,x)=∑i=0
n−1ai(z) xi with ai∈𝕂[z]<m, then we are led to compute ãi=ai ∘Zk rem h for all

0 ⩽ i⩽ n− 1 and then ∑i=0
n−1 ãi(z) Xk

i mod f (z, x) over 𝕃. Overall A2k requires O(n) compositions
modulo h plus O(C𝕃/𝕂(n)) operations in 𝕂. The same bound holds for X2k. If l is odd, then step 7
takes again O(n) compositions modulo h plus O(C𝕃/𝕂(n)) operations in 𝕂. Finally, the depth of
the recursion is O(log l). □

COROLLARY A.2. Let 𝕂= 𝔽q, let h be a monic irreducible polynomial in 𝕂[z] of degree m, and
let 𝕃 = 𝕂[z] / (h(z)). For any monic polynomial f ∈ 𝕃[x] of degree n, and any a ∈ 𝕃[x]<n, the
pseudo-trace ∑i=0

l aq i rem f may be computed using O(n log l) compositions modulo h plus

O(C𝕃/𝕂(n) log l+M𝕂(m n) logq)
operations in 𝕂.

Proof. If suffices to compute Z1, X1, A1 for Algorithm A.1 using O((M𝕃/𝕂(n) + M𝕂(m)) log q)
operations in 𝕂, in order to apply the preceding proposition. □

THEOREM A.3. Let 𝕂=𝔽q, let h be a monic irreducible polynomial in 𝕂[z] of degree m, and let
𝕃=𝕂[z] /(h(z)). Given n and the set of its prime factors of cardinality 𝜛(n) =O(log n), we may
check whether a monic polynomial f ∈ 𝕃[x] of degree n is irreducible using O(n𝜛(n) log(m n))
compositions modulo h plus

O(𝜛(n)C𝕃/𝕂(n) log(mn)+M𝕂(mn) logq)
operations in 𝕂.

Proof. The polynomial f is irreducible if, and only if, xqmn=xmod f (x) and xqmn/𝜋≠xmod f (x) for
all prime divisor 𝜋 of n. We may thus apply the above corollary. □

THEOREM A.4. Let 𝕂=𝔽q, let h be a monic irreducible polynomial in 𝕂[z] of degree m, and let
𝕃=𝕂[z]/(h(z)). A random irreducible polynomial of degree n over 𝕃 may be computed using an
expected number of O(n2 log(m n)) compositions modulo h plus an expected number of

O(n C𝕃/𝕂(n) log(mn)+n M𝕂(m n) (logq+log(mn) logn))
operations in 𝕂.

Proof. We appeal to Ben-Or's algorithm [13, Algorithm 14.40], but use modular composition
instead of the usual modular powering. Let f be a monic random polynomial of degree n over 𝕃.
For i from 1 to ⌊n/2⌋ we compute gi=gcd(xq im−x, f) and stop as soon as gi≠1. In this case f is
reducible, since it admits an irreducible factor of degree i (that divides gi). If all the gi are 1 then
f is necessarily irreducible.

With the notations from Algorithm A.1, the xq im modulo f are computed as follows. First, we
compute Z1(z) and X1(z,x) using O(M𝕂(m n) logq) operations in 𝕂. Second, we obtain Zm(z) and
Xm(z,x) with O(n logm) compositions modulo h and

O(C𝕃/𝕂(n) logm)

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 31

additional operations in 𝕂, by Proposition A.1.
Then we compute Bi∈𝕂[z,x] of bi-degree (<m,<n) such that

Bi(z,x)=xq immod(h(z), f (z,x)).

Notice that B1=Xm. In order to compute Bi+1 from Bi we write

Bi(z,x)=∑
j=0

n−1

bj(z) x j

with bj ∈ 𝕂[z]<m, so we are led to compute b̃j = bj ∘ Zm rem h for all 0 ⩽ j ⩽ n − 1 and then
∑j=0

n−1 b̃j(z) Xm
j mod f (z, x) over 𝕃. The overall computation of Bi+1 requires O(n) compositions

modulo h plus O(C𝕃/𝕂(n)) operations in 𝕂. If the smallest degree of the irreducible factors of f
is l, then testing the irreducibility of f takes O(n (l+logm)) compositions modulo h plus

O((l+logm)C𝕃/𝕂(n)+M𝕂(mn) logq+ l (M𝕃/𝕂(n) logn+n D𝕃/𝕂))
= O((l+logm)C𝕃/𝕂(n)+M𝕂(mn) logq+ l (M𝕂(m n) logn+n M𝕂(m) logm))
= O((l+logm)C𝕃/𝕂(n)+M𝕂(mn) logq+ l M𝕂(m n) log(m n)).

In average,O(n) random trials for f are necessary to find an irreducible one, and the average value
of the smallest degree l is O(logn). Therefore the total expected cost is

O(n C𝕃/𝕂(n) log(mn)+n M𝕂(m n) logq+n M𝕂(mn) log(mn) logn). □

Taking C𝕃/𝕂(n) = Õ(m n𝜛), the expected cost in Theorem A.4 rewrites into O(n2 log(m n))
compositions modulo h and Õ(m n𝜛+1 + m n2 log q) field operations in 𝔽q (thus, without using
the Kedlaya–Umans algorithm). In favorable cases studied in the present paper, we may assume
that one composition modulo h amounts to say O(m1+𝜂) operations in 𝕂 for a fixed, small
number 𝜂>0. The expected cost then reduces to Õ((m𝜂n logq+n𝜛)mn) operations in 𝕂.

As a first comparison, Shoup's algorithm [45] needs Õ((n+m logq)m n) expected operations
in 𝕂 (still without using the Kedlaya–Umans algorithm). For bounded values of n and largem, the
availability of a fast algorithm for composition modulo h makes it possible to improve on Shoup's
algorithm, as was already observed in [28]. In this specific case, Theorem A.4 indeed leads to
a bit cost Õ(m1+𝜂 log2q) instead of Õ(m2 log2q) with Shoup's algorithm.

As a second comparison, let 𝜀(t) be a function such that 𝜀(t) = o(1) in the neigh-
borhood of infinity. Based on Kedlaya and Umans' algorithm, Couveignes and Lercier
designed an algorithm [9] that builds an irreducible polynomial of degree n over 𝕃 in time
O(n1+𝜀(n) log5+𝜀(logqm) qm), when ignoring the cost of conversions to put elements of 𝕃 into their
standard representation in 𝔽qm. To be fair, we may assume fast modular composition for C𝕃/𝕂(n),
so the expected bit cost of Theorem A.4 further reduces to Õ(m1+𝜂 n2+𝜂 log2+𝜂 q). So roughly
speaking, if n ≫ m4 log3 q, then the Couveignes–Lercier algorithm is asymptotically faster; if
n≪m4 log3q, then TheoremA.4 is competitive. A comparison with Shoup's algorithm [45] would
not be fair here unless enhancing it with the Kedlaya–Umans algorithm; for large q, Shoup's
algorithm [45] also remains competitive, of course.

Similar observations hold concerning the complexity of the factorization of polynomials of
degree n in 𝕃[x]. In fact, Kaltofen and Shoup, still in [28], applied their technique (namely
Algorithm A.1) to reduce the cost of the Cantor–Zassenhaus factorization algorithm mostly to
compositions modulo h and to C𝕃/𝕂(n). For bounded n and large m, fast composition modulo
a fixed modulus h is therefore particularly relevant to factorization. We intend to work out the
details of this application in a forthcoming paper.

Acknowledgments. We thank the anonymous referees for their helpful comments.

32 MODULAR COMPOSITION VIA FACTORIZATION

BIBLIOGRAPHY

[1] D. J. Bernstein. Composing power series over a finite ring in essentially linear time. J. Symbolic Comput.,
26(3):339–341, 1998.

[2] A. Bostan, Ph. Flajolet, B. Salvy, and É. Schost. Fast computation of special resultants. J. Symbolic Comput.,
41(1):1–29, 2006.

[3] A. Bostan, G. Lecerf, and É. Schost. Tellegen's principle into practice. In Hoon Hong, editor, Proceedings of the
2003 International Symposium on Symbolic and Algebraic Computation, ISSAC '03, pages 37–44, New York,
NY, USA, 2003. ACM.

[4] J. V. Brawley and L. Carlitz. Irreducibles and the composed product for polynomials over a finite field. Discrete
Math., 65(2):115–139, 1987.

[5] R. P. Brent and H. T. Kung. Fast algorithms for manipulating formal power series. J. ACM, 25(4):581–595, 1978.
[6] P. Bürgisser, M. Clausen, and M. A. Shokrollahi. Algebraic complexity theory, volume 315 of Grundlehren der

Mathematischen Wissenschaften. Springer-Verlag, 1997.
[7] D. G. Cantor and E. Kaltofen. On fast multiplication of polynomials over arbitrary algebras. Acta Infor.,

28(7):693–701, 1991.
[8] S. D. Cohen. On irreducible polynomials of certain types in finite fields. Proc. Camb. Phil. Soc., 66(2):335–344,

1969.
[9] J.-M. Couveignes and R. Lercier. Fast construction of irreducible polynomials over finite fields. Israel J. Math.,

194(1):77–105, 2013.
[10] L. De Feo and É. Schost. Fast arithmetics in Artin-Schreier towers over finite fields. J. Symbolic Comput.,

47(7):771–792, 2012.
[11] L. E. Dickson. Linear Groups: With an Exposition of the Galois Field Theory. Dover Publication Inc., 1958.
[12] J. Doliskani and É. Schost. Taking roots over high extensions of finite fields. Math. Comp., 83(285):435–446,

2014.
[13] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press, 3rd edition, 2013.
[14] J. von zur Gathen and G. Seroussi. Boolean circuits versus arithmetic circuits. Inform. and Comput.,

91(1):142–154, 1991.
[15] J. von zur Gathen and V. Shoup. Computing Frobenius maps and factoring polynomials. Comput. Complexity,

2(3):187–224, 1992.
[16] B. Grenet, J. van der Hoeven, and G. Lecerf. Deterministic root finding over finite fields using Graeffe transforms.

Appl. Alg. Eng. Comm. Comp., 27(3):237–257, 2016.
[17] G. H. Hardy and E. M. Wright. An introduction to the theory of numbers. Oxford University Press, Oxford, 6th

edition, 2008.
[18] D. Harvey and J. van der Hoeven. Faster integer and polynomial multiplication using cyclotomic coefficient rings.

Technical report, ArXiv, 2017. http://arxiv.org/abs/1712.03693.
[19] D. Harvey, J. van der Hoeven, and G. Lecerf. Faster polynomial multiplication over finite fields. J. ACM, 63(6),

2017. Article 52.
[20] J. van der Hoeven. Relax, but don't be too lazy. J. Symbolic Comput., 34(6):479–542, 2002.
[21] J. van der Hoeven. Fast composition of numeric power series. Technical Report 2008-09, Université Paris-Sud,

Orsay, France, 2008.
[22] J. van der Hoeven. Faster Chinese remaindering. Technical report, CNRS & École polytechnique, 2016. http://

hal.archives-ouvertes.fr/hal-01403810.
[23] J. van der Hoeven and R. Larrieu. The Frobenius FFT. In M. Burr, editor, Proceedings of the 2017 ACM on

International Symposium on Symbolic and Algebraic Computation, ISSAC '17, pages 437–444, New York, NY,
USA, 2017. ACM.

[24] J. van der Hoeven and G. Lecerf. Composition modulo powers of polynomials. In M. Burr, editor, Proceedings of
the 2017 ACM on International Symposium on Symbolic and Algebraic Computation, ISSAC '17, pages 445–452,
New York, NY, USA, 2017. ACM.

[25] J. van der Hoeven and G. Lecerf. Modular composition via complex roots. Technical report, CNRS & École
polytechnique, 2017. http://hal.archives-ouvertes.fr/hal-01455731.

[26] Xiaohan Huang and V. Y. Pan. Fast rectangular matrix multiplication and applications. J. Complexity,
14(2):257–299, 1998.

[27] F. Johansson. A fast algorithm for reversion of power series. Math. Comp., 84:475–484, 2015.
[28] E. Kaltofen and V. Shoup. Fast polynomial factorization over high algebraic extensions of finite fields. In

Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation, ISSAC '97, pages
184–188, New York, NY, USA, 1997. ACM.

[29] E. Kaltofen and V. Shoup. Subquadratic-time factoring of polynomials over finite fields. Math. Comp.,
67(223):1179–1197, 1998.

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 33

http://arxiv.org/abs/1712.03693
http://arxiv.org/abs/1712.03693
http://arxiv.org/abs/1712.03693
http://arxiv.org/abs/1712.03693
http://arxiv.org/abs/1712.03693
http://arxiv.org/abs/1712.03693
http://arxiv.org/abs/1712.03693
http://hal.archives-ouvertes.fr/hal-01403810
http://hal.archives-ouvertes.fr/hal-01403810
http://hal.archives-ouvertes.fr/hal-01403810
http://hal.archives-ouvertes.fr/hal-01403810
http://hal.archives-ouvertes.fr/hal-01403810
http://hal.archives-ouvertes.fr/hal-01403810
http://hal.archives-ouvertes.fr/hal-01403810
http://hal.archives-ouvertes.fr/hal-01403810
http://hal.archives-ouvertes.fr/hal-01403810
http://hal.archives-ouvertes.fr/hal-01455731
http://hal.archives-ouvertes.fr/hal-01455731
http://hal.archives-ouvertes.fr/hal-01455731
http://hal.archives-ouvertes.fr/hal-01455731
http://hal.archives-ouvertes.fr/hal-01455731
http://hal.archives-ouvertes.fr/hal-01455731
http://hal.archives-ouvertes.fr/hal-01455731
http://hal.archives-ouvertes.fr/hal-01455731
http://hal.archives-ouvertes.fr/hal-01455731

[30] K. S. Kedlaya and C. Umans. Fast modular composition in any characteristic. In FOCS'08: IEEE Conference on
Foundations of Computer Science, pages 146–155, Washington, DC, USA, 2008. IEEE Computer Society.

[31] K. S. Kedlaya and C. Umans. Fast polynomial factorization and modular composition. SIAM J. Comput.,
40(6):1767–1802, 2011.

[32] M. K. Kyuregyan. Recurrent methods for constructing irreducible polynomials over Fq of odd characteristics.
Finite Fields Appl., 9(1):39–58, 2003.

[33] M. K. Kyuregyan. Recurrent methods for constructing irreducible polynomials over Fq of odd characteristics, II.
Finite Fields Appl., 12(3):357–378, 2006.

[34] P. Lairez and T. Vaccon. On p-adic differential equations with separation of variables. In Proceedings of the ACM
on International Symposium on Symbolic and Algebraic Computation, ISSAC '16, pages 319–323, New York,
NY, USA, 2016. ACM.

[35] F. Le Gall. Powers of tensors and fast matrix multiplication. In Proceedings of the 39th International Symposium
on Symbolic and Algebraic Computation, ISSAC '14, pages 296–303, New York, NY, USA, 2014. ACM.

[36] G. Lecerf. On the complexity of the Lickteig–Roy subresultant algorithm. J. Symbolic Comput., 2018. https://
doi.org/10.1016/j.jsc.2018.04.017.

[37] G. L. Mullen and D. Panario. Handbook of Finite Fields. Discrete Mathematics and Its Applications. Chapman
and Hall/CRC, 2013.

[38] A. K. Narayanan. Fast computation of isomorphisms between finite fields using elliptic curves. Technical report,
arXiv:1604.03072, 2016. https://arxiv.org/abs/1604.03072.

[39] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
[40] M. S. Paterson and L. J. Stockmeyer. On the number of nonscalar multiplications necessary to evaluate polyno-

mials. SIAM J.Comput., 2(1):60–66, 1973.
[41] M. O. Rabin. Probabilistic algorithms in finite fields. SIAM J. Comput., 9(2):273–280, 1980.
[42] V. Ramaswami. On the number of positive integers less than x and free of prime divisors greater than xc. Bull.

Amer. Math. Soc., 55:1122–1127, 1949.
[43] P. Ritzmann. A fast numerical algorithm for the composition of power series with complex coefficients. Theoret.

Comput. Sci., 44:1–16, 1986.
[44] J.-A. Serret. Cours d'algèbre supérieure, volume 2 of Les grands classiques Gauthier-Villars. Jacques Gabay,

4th edition, 1992. Réimpression du tome second de la 4e édition du Cours d'algèbre supérieure de Joseph-Alfred
Serret, publiée par Gauthier-Villars en 1879.

[45] V. Shoup. Fast construction of irreducible polynomials over finite fields. J. Symbolic Comput., 17(5):371–391,
1994.

[46] V. Shoup. Efficient computation of minimal polynomials in algebraic extensions of finite fields. In Proceedings
of the 1999 International Symposium on Symbolic and Algebraic Computation, ISSAC '99, pages 53–58, New
York, NY, USA, 1999. ACM.

34 MODULAR COMPOSITION VIA FACTORIZATION

https://doi.org/10.1016/j.jsc.2018.04.017
https://doi.org/10.1016/j.jsc.2018.04.017
https://doi.org/10.1016/j.jsc.2018.04.017
https://doi.org/10.1016/j.jsc.2018.04.017
https://doi.org/10.1016/j.jsc.2018.04.017
https://doi.org/10.1016/j.jsc.2018.04.017
https://doi.org/10.1016/j.jsc.2018.04.017
https://arxiv.org/abs/1604.03072
https://arxiv.org/abs/1604.03072
https://arxiv.org/abs/1604.03072
https://arxiv.org/abs/1604.03072
https://arxiv.org/abs/1604.03072
https://arxiv.org/abs/1604.03072
https://arxiv.org/abs/1604.03072

	1. Introduction
	1.1. Previous work
	1.2. Contributions and outline of the article

	2. Preliminaries
	2.1. Complexity models
	2.2. Polynomial multiplication
	2.3. Univariate arithmetic
	2.4. Bivariate arithmetic
	2.5. Finite field arithmetic
	2.6. Matrix multiplication
	2.7. Modular composition and related operations

	3. Modular composition via factorization
	3.1. Separable moduli over algebraically closed fields
	3.2. Pairwise coprime moduli

	4. Exploiting factorizations over algebraic extensions
	4.1. Degree reduction
	4.2. Normal factorizations
	4.3. Single extensions

	5. Composition towers
	5.1. Effective towers
	5.2. Composition towers
	5.3. Modular composition using composition towers

	6. Triangular towers
	6.1. Complexity analysis for triangular towers
	6.2. Smooth degrees over finite fields
	6.3. Cyclic modulus of prime degree over a finite field

	7. Primitive towers
	7.1. Primitive towers
	7.2. Arbitrary primitive elements
	7.3. Nested towers
	7.4. Composed towers
	7.5. Artin–Schreier towers

	8. Building composition towers
	8.1. Building primitive composition towers
	8.2. Particular cases
	Nested towers
	Composed towers
	Artin–Schreier towers

	8.3. Building composition towers from roots

	9. Applications and perspectives
	Factorization over finite fields
	Roots over large finite fields
	Conversions
	Frobenius maps

	Appendix A. Pseudo-trace over finite fields
	Acknowledgments

	Bibliography

