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The best known asymptotic bit complexity bound for factoring univariate polynomials
over finite fields grows with the input degree to a power close to 1.5, and with the
square of the bitsize of the ground field. It relies on a variant of the Cantor–Zassenhaus
algorithm which exploits fast modular composition. Using techniques by Kaltofen and
Shoup, we prove a refinement of this bound when the finite field has a large extension
degree over its prime field. We also present fast practical algorithms for the case when
the extension degree is smooth.

1. INTRODUCTION

The usual primitive element representation of the finite field 𝔽q with q= p𝜅 elements is
𝔽p[z]/(𝜃(z)) with p prime and 𝜃∈𝔽p[z] irreducible and monic of degree 𝜅⩾1. For this
representation, von zur Gathen, Kaltofen, and Shoup proposed several efficient algo-
rithms for the irreducible factorization of a polynomial f of degree d in 𝔽q[x]. One of
them is a variant of the Cantor–Zassenhaus method for which large powers of polyno-
mials modulo f are computed using modular composition [24, section 2]. Now Kedlaya
and Umans designed a theoretically efficient algorithm for modular composition [25, 26].
Consequently, using a probabilistic algorithm of Las Vegas type, the polynomial f can
be factored in expected time

d1.5+o(1) log1+o(1) q+ Õ(d log2 q). (1.1)

It turns out that the second term of (1.1) is suboptimal when log q becomes large. The
purpose of the present paper is to prove the expected complexity bound

(d0.5+𝜖(d)+𝜅𝜖(𝜅)+log p) Õ(d log q),
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where 𝜖(d)=O�� log log d
log d �1/2�; see Corollary 5.1. For this, we rely on ideas by Kaltofen

and Shoup from [23]. In addition, we present improved complexity bounds for the case
when the extension degree 𝜅 is smooth. These bounds rely on practically efficient algo-
rithms for modular composition that were designed for this case in [16].

1.1. Notations
Given a commutative ring 𝔸 and d∈ℕ, let 𝔸[x]<d≔{ f ∈𝔸[x]:deg f <d}. Given x∈ℝ,
we define ⌊x⌋≔max {n∈ℤ:n⩽x} and ⌈x⌉≔min {n∈ℤ:n⩾x}. For any positive integer n,
we set

lg n≔⌊log2 n⌋,

so that n/2<2⌊log2n⌋⩽n. We will freely use the soft-Oh notation: f (n)= Õ(g(n)) means
that f (n)=g(n) (log(g(n)))O(1), as in [9].

Until section 5.2, we assume the standard complexity model of a Turing machine with
a sufficiently large number of tapes. For probabilistic algorithms, the Turing machine
is assumed to provide an instruction for writing a “random bit” to one of the tapes. This
instruction takes a constant time. All probabilistic algorithms in this paper are of Las
Vegas type; this guarantees that all computed results are correct, but the execution time
is a random variable.

Until section 5 we consider abstract finite fields 𝔽q, whose internal representations are
not necessarily prescribed, and we rely on the following assumptions and notations:
• Additions and subtractions in 𝔽q take linear time.
• M𝔽q(d) denotes an upper bound for the bit complexity of polynomial products in

degree <d over 𝔽q. It is convenient to make the regularity assumptions that M𝔽q(d)/d
is nondecreasing as a function of d and that M𝔽q(nd)=O(nM𝔽q(d)) for n=O(d).

• D𝔽q upper bounds the time needed to invert one element in 𝔽q.
• C𝔽q(d) is an upper bound for the time to compute f (x)∘g(x)mod h(x) for f ,g∈𝔽q[x]<d

and monic h∈𝔽q[x] of degree d.
• C𝔽q(d; N) is an upper bound for the time to compute f1(x) ∘ g(x), . . . , fN(x) ∘ g(x)

modulo h(x) for f1, . . . , fN,g∈𝔽q[x]<d and monic h∈𝔽q[x] of degree d.
• �𝔽q is an upper bound for the time to compute ape

, given a∈𝔽q and e∈{1,2,4,...,2lg𝜅}.

1.2. Related work
For general algorithms for finite fields, we recommend the textbooks [4, 9, 28, 35] and
more specifically [9, chapter 14], as well as [8, 21] for historical references. In this paper
we adopt the asymptotic complexity point of view, while allowing for randomized algo-
rithms of Las Vegas type.

Early theoretical and practical complexity bounds for factorizing polynomials over
finite fields go back to the sixties [2, 3]. In the eighties, Cantor and Zassenhaus [5] pop-
ularized distinct-degree and equal-degree factorizations. Improved complexity bounds
and fast implementations were explored by Shoup [34]. He and von zur Gathen intro-
duced the iterated Frobenius technique and the “baby-step giant-step” for the distinct
degree factorization [11]. They reached softly quadratic time in the degree via fast multi-
point evaluation. Together with Kaltofen, they also showed how to exploit modular
composition [22, 24] and proved sub-quadratic complexity bounds.
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In 2008, Kedlaya and Umans showed that the complexity exponent of modular com-
position over finite fields is arbitrarily close to one [25, 26]. As a corollary, the complexity
exponent of polynomial factorization in the degree is arbitrarily close to 1.5.

Von zur Gathen and Seroussi [10] showed that factoring quadratic polynomials with
arithmetic circuits or straight-line programs over 𝔽q requires Ω(log q) operations in 𝔽q.
However, this does not provide a lower bound Ω(log2 q) for boolean arithmetic circuits.
In fact, subquadratic upper bounds indeed exist for the stronger model of arithmetic
circuits over the prime subfield 𝔽p of 𝔽q: the combination of [23, Theorem 3] and fast
modular composition from [19] allows for degree d factorization in𝔽q[x] in expected time

(d+𝜅𝜖(𝜅)+log p) Õ(d𝜅 log p).

This bound is indeed subquadratic and even quasi-optimal in 𝜅. In this paper, we also
achieve a subquadratic dependence on d.

In order to save modular compositions, Rabin introduced a randomization process
that uses random shifts of the variable [32]. This turns out to be useful in practice, espe-
cially when the ground field 𝔽q is sufficiently large. We briefly revisit this strategy,
following Ben-Or [1] and [9, Exercise 14.17].

Unfortunately, Kedlaya and Umans' fast algorithm for modular composition has not
yet given rise to fast practical implementations. In [16], we have developed alternative
algorithms for modular composition which are of practical interest when the extension
degree 𝜅 of 𝔽q over 𝔽p is composite or smooth. In section 6, we study the application of
these algorithms to polynomial factorization.

The probabilistic arguments that are used to derive the above complexity bounds
become easier when ignoring all hidden constants in the “O”. Sharper bounds can be
obtained by refining the probability analyses; we refer to [6, 7] for details.

1.3. Contributions
In this paper we heavily rely on known techniques and results on polynomial factoriza-
tion (by von zur Gathen, Kaltofen, Shoup, among others) and modular composition (by
Kedlaya, Umans, among others). Through a new combination of these results, our main
aim is to sharpen the complexity bounds for polynomial factorization and irreducibility
testing over finite fields. The improved bounds are most interesting when factoring over
a field 𝔽q with a large and smooth extension degree 𝜅 over its prime field 𝔽p.

Let us briefly mention a few technical novelties. Our finite field framework is designed
to support a fine grained complexity analysis for specific modular composition algo-
rithms, for sharing such compositions, and for computing factors up to a given degree.
We explicitly show how complexities depend on the degrees of the irreducible factors
to be computed.

Compared to the algorithm of Kaltofen and Shoup [23], our Algorithm 4.2 for equal-
degree factorization successively computes pseudo-traces over 𝔽q and then over 𝔽p. The
computation of Frobenius maps is accelerated through improved caching. Our approach
also combines a bit better with Rabin's randomization; see section 4.5.

We further indicate opportunities to exploit shared arguments between several mod-
ular compositions, by expressing our complexity bounds in terms of C𝔽q(d;N) instead
ofC𝔽q(d), when possible. We clearly haveC𝔽q(d;N)⩽NC𝔽q(d), but better bounds might be
achievable through precomputations based on the shared arguments. We refer to [18, 29]
for partial evidence in this direction under suitable genericity assumptions.
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Our main complexity bounds are stated in section 4.4. The remainder of the paper
is devoted to corollaries of these bounds for special cases. In section 5, we start with
some theoretical consequences that rely on the Kedlaya–Umans algorithm for modular
composition [26] and variants from [19]. We both consider the case when 𝔽q is presented
as a primitive extension of 𝔽p and the case when 𝔽q=𝕂t, where 𝔽p=𝕂0⊂ ⋅ ⋅ ⋅⊂𝕂t=𝔽q is
a “triangular tower”.

At the time being, it seems unlikely that Kedlaya and Umans' algorithm can be imple-
mented in a way that makes it efficient for practical purposes; see [19, Conclusion]. In
our final section, we consider a more practical alternative approach to modular compo-
sition [16], which requires the extension degree 𝜅 to be composite, and which is most
efficient when 𝜅 is smooth. We present new complexity bounds for this case, which we
expect to be of practical interest when 𝜅 becomes large.

2. PSEUDO-FROBENIUS MAPS

The central ingredient to fast polynomial factorization is the efficient evaluation of Frobe-
nius maps. Besides the absolute Frobenius map𝔽q→𝔽q;a↦ap of𝔽q over its prime field𝔽p,
we will consider pseudo-Frobenius maps. Consider an extension 𝔸≔𝔽q[x]/( f (x)),
where f ∈𝔽q[x] is monic of degree d and not necessarily irreducible. The 𝔽q-linear map
a↦aq is called the pseudo-Frobenius map of 𝔸. The map a↦ap is called the absolute pseudo-
Frobenius map of 𝔸; it is only 𝔽p-linear.

2.1. Absolute Frobenius maps
Recall that q=p𝜅 and consider a primitive representation 𝔽q≡𝔽p[z]/(𝜃(z)) for 𝔽q. Let us
show how to evaluate iterated Frobenius maps a↦ape

of 𝔽q using modular composition.
We introduce the auxiliary sequence

ℰ𝔽q≔(ℰ i(z))0⩽i⩽lg𝜅

where

ℰ i(z) ≔ zp2i

mod 𝜃(z), i=0, . . . , lg 𝜅. (2.1)

The sequence ℰ𝔽q enables us to efficiently compute p2i-th powers and then general pe-th
powers, as follows:

LEMMA 2.1. Let ℰ𝔽q be given. For all a(z)∈𝔽p[z]<𝜅 and 0⩽ i⩽lg 𝜅, we have

a(z)p2i

mod 𝜃(z) = a(z)∘ℰ i(z) mod 𝜃(z).
In particular,

�𝔽q = C𝔽p(𝜅)+O(log q).

Proof. We verify that
a(z)∘ℰ i(z)mod 𝜃(z)=a(z)∘zp2i

mod 𝜃(z)
and that

a(z)∘zp2i

= a(zp2i

)=a(z)p2i

.
The cost analysis is straightforward from the definitions. □

The cost function �𝔽q corresponds to the time needed to iterate the absolute Frobe-
nius map a↦ ap a number of times that is a power of two. For an arbitrary number of
iterations we may use the following general lemma.
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LEMMA 2.2. For all a∈𝔽q and e∈{0, . . . , 𝜅− 1} with binary expansion e=2i1+ ⋅ ⋅ ⋅ +2il with
i1> ⋅ ⋅ ⋅ > il, we have

ape
= (((ap2i1

)p2i2
) ⋅ ⋅ ⋅)p2il

.

In particular, computing ape
takes O(�𝔽q log 𝜅) operations.

Proof. The proof is straightforward since l=O(log 𝜅). □

The computation of ℰ𝔽q can be done efficiently with the following algorithm.

Algorithm 2.1
Input. 𝔽q≡𝔽p[z]/(𝜃(z)).
Output. ℰ𝔽q=(ℰ i(z))0⩽i⩽lg𝜅.

1. Compute ℰ0(z)≔zp mod 𝜃(z) using binary powering.
2. For i=1, . . . , lg 𝜅, compute ℰ i(z) as ℰ i−1(z)∘ℰ i−1(z) mod 𝜃(z).
3. Return (ℰ i(z))0⩽i⩽lg𝜅.

LEMMA 2.3. Algorithm 2.1 is correct and runs in time
O(C𝔽p(𝜅) log 𝜅+M𝔽p(𝜅) log p).

Proof. We prove the correctness by induction on i. For i=0, we clearly have ℰ0(z)=
zp mod 𝜃(z). Assume therefore that i>0 and let h(z) be such that

ℰ i−1(z)= zp2i−1

+h(z)𝜃(z).
We verify that

ℰ i−1(z)∘ℰ i−1(z) = (zp2i−1

+h(z)𝜃(z))∘(zp2i−1

+h(z)𝜃(z)) mod 𝜃(z)

= (zp2i−1

+h(z)𝜃(z))∘zp2i−1

mod 𝜃(z)

= (zp2i

+(h(z)𝜃(z))p2i−1

)mod 𝜃(z)
= ℰ i(z)mod 𝜃(z).

This completes the correctness proof. The first step takes time O(M𝔽p(𝜅) log p), whereas
the loop requires lg 𝜅 modular compositions, whence the complexity bound. □

2.2. Iterated absolute pseudo-Frobenius maps
For the efficient application of the absolute pseudo-Frobenius map, we introduce the
auxiliary sequence 𝒫( f )≔(𝒫 i)0⩽i⩽lg𝜅 with

𝒫 i(x) ≔ xp2i

mod f (x), i=0, . . . , lg 𝜅. (2.2)

LEMMA 2.4. Let 𝒫( f ) be given. For all a(x)= a0+ ⋅ ⋅ ⋅ + ad−1xd−1∈𝔽q[x]<d and 0⩽ i⩽lg 𝜅,
we have

a(x)p2i

mod f (x) = (((((((((((((((((
((
(
(�

k=0

d−1

ak
p2i

xk

)))))))))))))))))
))
)
)∘𝒫 i(x)mod f (x). (2.3)

In particular, we may compute a(x)p2i

mod f (x) in time C𝔽q(d)+d�𝔽q+O(d log q).
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Proof. We verify that

a(x)p2i

mod f (x) = (((((((((((((((((
((
(
(�

k=0

d−1

ak
p2i

xk)))))))))))))))))
))
)
)∘xp2i

mod f (x)

= (((((((((((((((((
((
(
(�

k=0

d−1

ak
p2i

xk

)))))))))))))))))
))
)
)∘𝒫 i(x) mod f (x).

The cost is straightforward from the definitions. □

Once 𝒫( f ) has been computed, the pseudo-Frobenius map can be iterated an arbi-
trary number of times, using the following variant of Lemma 2.2.

LEMMA 2.5. Let 𝒫( f ) be given. For all a ∈𝔸 and e ∈ {0, . . . , 𝜅} with binary expansion
e=2i1+ ⋅ ⋅ ⋅ +2il with i1> ⋅ ⋅ ⋅ > il, we have

ape
= (((ap2i1

)p2i2
) ⋅ ⋅ ⋅)p2il

,

that can be computed in time

O((C𝔽q(d)+d�𝔽q) log e).

Proof. The proof is straightforward from Lemma 2.4. □

The auxiliary sequence 𝒫( f ) can be computed efficiently as follows.

Algorithm 2.2
Input. A monic polynomial f ∈𝔽q[x] of degree d.
Output. 𝒫( f )=(𝒫 i(x))0⩽i⩽lg𝜅.

1. Compute 𝒫0(x)≔xp mod f (x) using binary powering.
2. For i=0, . . . , lg 𝜅−1:

a. Write 𝒫 i(x)=∑k=0
d−1 ai,k xk,

b. Compute 𝒫 i+1(x) as �∑k=0
d−1 ai,k

p2i

xk�∘𝒫 i(x)mod f (x).
3. Return (𝒫 i(x))0⩽i⩽lg𝜅.

LEMMA 2.6. Algorithm 2.2 is correct and runs in time
O((C𝔽q(d)+d�𝔽q) log 𝜅+M𝔽q(d) log p).

Proof. Let us prove the correctness by induction on i. The result clearly holds for i=0.
Assume that it holds for a given i and let h(x) be such that 𝒫 i(x)=xp2i

+h(x) f (x). Then

𝒫 i+1(x) = xp2i+1

mod f (x)

= (xp2i+1

+h(x)p2i

f (x)p2i

) mod f (x)

= 𝒫 i(x)p2i

mod f (x)

= �
k=0

d−1

ai,k
p2i

(xk)p2i

mod f (x)

= (((((((((((((((((
((
(
(�

k=0

d−1

ai,k
p2i

xk)))))))))))))))))
))
)
)∘xp2i

mod f (x).
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As to the complexity bound, the binary powering in step 1 takes O(M𝔽q(d) log p) time. In

step 2, we compute d lg 𝜅 powers of the form ai,k
p2i

and we perform lg 𝜅 modular composi-
tions of degree <d over 𝔽q. □

2.3. Iterated pseudo-Frobenius
For the efficient application of the pseudo-Frobenius map, we introduce another auxil-
iary sequence 𝒬( f )≔(𝒬 i)0⩽i⩽lgd with

𝒬 i(x) ≔ xq2i

mod f (x), i=0, . . . , lg d. (2.4)

LEMMA 2.7. Let 𝒬( f ) be given. For all a(x)∈𝔽q[x]<d and 0⩽ i⩽lg d, we have

a(x)q2
i

mod f (x) = a(x)∘𝒬 i(x) mod f (x). (2.5)

In particular, we may compute a(x)q2i

mod f (x) in time C𝔽q(d)+O(d log q).

Proof. The proof is straightforward from the definitions. □

Once 𝒬( f ) has been computed, the pseudo-Frobenius map can be iterated an arbi-
trary number of times by adapting Lemma 2.2, but this will not be needed in the sequel.
The sequence 𝒬( f ) can be computed efficiently as follows.

Algorithm 2.3
Input. A monic polynomial f ∈𝔽q[x] of degree d, and 𝒫( f ).
Output. 𝒬( f )=(𝒬 i(x))0⩽i⩽lgd.

1. Compute 𝒬0(x)=xq mod f (x) using Lemma 2.5.
2. For i=1, . . . , lg d, compute 𝒬 i(x)=𝒬 i−1(x)∘𝒬 i−1(x) mod f (x).
3. Return (𝒬 i(x))0⩽i⩽lgd.

LEMMA 2.8. Algorithm 2.3 is correct and runs in time
O(C𝔽q(d) log(d𝜅)+d�𝔽q log 𝜅).

Proof. The correctness is proved in a similar way as for Algorithm 2.1. Step 1 takes
O((C𝔽q(d)+d�𝔽q) log 𝜅) operations, by Lemma 2.5, whereas step 2 takes O(C𝔽q(d) log d)
operations. □

3. PSEUDO-TRACES

Let q= p𝜅 be still as above. Recall that the trace of an element a∈𝔽q over 𝔽p, written
Tr𝔽q/𝔽p(a), is defined as

Tr𝔽q/𝔽p(a)=ap𝜅−1
+ ap𝜅−2

+ ⋅ ⋅ ⋅ +ap+ a.

For a monic, not necessarily irreducible polynomial f ∈𝔽q[x] of degree d, it is customary
to consider two similar kinds of maps over 𝔽q[x]/( f (x)), which are called pseudo-traces:
one over 𝔽p and one over 𝔽q. In this section, we reformulate fast algorithms for pseudo-
traces by Kaltofen and Shoup [23], and make them rely on the data structures from the
previous section for the computation of Frobenius maps.
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3.1. Pseudo-traces over the ground field
Let a∈𝔽q[x]<d. We define the pseudo-trace of a(x) of order e⩾1 modulo f (x) over 𝔽q by

Trqe;q(a(x))mod f (x)≔ a(x)qe−1
+ ⋅ ⋅ ⋅ +a(x)q+a(x) mod f (x).

We may compute pseudo-traces using the following algorithm:

Algorithm 3.1
Input. 𝒬( f ), a(x)∈𝔽q[x]<d, and e⩽d.
Output. Trqe;q(a(x))mod f (x).

1. Let e= el2l+ el−12l−1+ ⋅ ⋅ ⋅ + e0 be the binary expansion of e.
2. Let b0(x)≔ a(x) and

bi(x) ≔ bi−1(x)+(bi−1(x))q2i−1

mod f (x), i=1, . . . , l.

3. Let t−1(x)≔0 and

ti(x) ≔ ei bi(x)+(ti−1(x))qei2i

mod f (x), i=0, . . . , l.

4. Return tl(x).

LEMMA 3.1. Algorithm 3.1 is correct and runs in time
O(C𝔽q(d) log e).

Proof. By induction on i, we verify that

bi(x) = Trq2i;q(a(x)) mod f (x)
ti(x) = Tr

qei2i+⋅ ⋅ ⋅+e0;q
(a(x))mod f (x).

The cost follows from Lemma 2.7. □

3.2. Absolute pseudo-traces
We define the absolute pseudo-trace of a(x) modulo f (x) of order e by

Trpe;p(a(x)) mod f (x)≔ a(x)pe−1
+ ⋅ ⋅ ⋅ + a(x)p+a(x) mod f (x).

We may compute absolute pseudo-traces using the following variant of Algorithm 3.1:

Algorithm 3.2
Input. 𝒫( f ), a(x)∈𝔽q[x]<d, and e⩽𝜅.
Output. Trpe;p(a(x))mod f (x).

1. Let e= el2l+ el−12l−1+ ⋅ ⋅ ⋅ + e0 be the binary expansion of e.
2. Let b0(x)≔ a(x) and

bi(x) ≔ bi−1(x)+(bi−1(x))p2i−1

mod f (x), i=1, . . . , l.

3. Let t−1(x)≔0 and

ti(x) ≔ ei bi(x)+(ti−1(x))pei2i

mod f (x), i=0, . . . , l.

4. Return tl(x).
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LEMMA 3.2. Algorithm 3.2 is correct and runs in time
O((C𝔽q(d)+d�𝔽q) log e).

Proof. By induction on i, we have

bi(x) = Trp2i;p(a(x))mod f (x)
ti(x) = Tr

pei2
i+⋅ ⋅ ⋅+e0;p

(a(x))mod f (x).

The cost then follows from Lemma 2.4. □

4. POLYNOMIAL FACTORIZATION

We follow the Cantor–Zassenhaus strategy, which subdivides irreducible factorization
in 𝔽q[x] into three consecutive steps:
• the square-free factorization decomposes into square-free factors along with their respec-

tive multiplicities,
• the distinct-degree factorization separates irreducible factors according to their degree,
• the equal-degree factorization completely factorizes a polynomial whose irreducible fac-

tors have the same degree.
For the distinct-degree factorization, we revisit the “baby-step giant-step” algorithm due
to von zur Gathen and Shoup [11, section 6], later improved by Kaltofen and Shoup [24,
Algorithm D]. For the equal-degree factorization, we adapt another algorithm due to
von zur Gathen and Shoup [11, section 5], while taking advantage of fast modular com-
position as in [23, Theorem 1]. Throughout this section, we assume that f ∈𝔽q[x] is the
polynomial to be factored and that f is monic of degree d.

4.1. Square-free factorization
The square-free factorization combines the separable factorization and p-th root extrac-
tions.

PROPOSITION 4.1. The square-free factorization of a monic polynomial f (x)∈𝔽q[x] of degree d
takes time

O(M𝔽q(d) log d+dD𝔽q+d�𝔽q log 𝜅).

Proof. Let a∈𝔽q and let k⩽𝜅. The pk-th root of a in 𝔽q can be computed as aq/pk
=ap𝜅−k

in
time O(�𝔽q log 𝜅) by Lemma 2.2.

The separable factorization of f takes time O(M𝔽q(d) log d+ dD𝔽q); see [27]. This
yields

f (x)=�
i=1

r

fi�xpki�mi,

where the fi are monic and separable, the fi�xpki� are pairwise coprime, and p does not
divide the mi.

In order to deduce the square-free factorization of f it remains to extract the pki-th
roots of the coefficients of fi, for i=1, . . . , r. The cost of these extractions is bounded by

O(((((((((((((((((�i=1

r

deg fi�𝔽q log 𝜅)))))))))))))))))=O(d�𝔽q log 𝜅). □
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4.2. Distinct-degree factorization
In this subsection f is assumed to be monic and square-free. The distinct-degree fac-
torization is a partial factorization g1 ⋅ ⋅ ⋅ gd of f where gi is the product of the monic
irreducible factors of f of degree i. The following algorithm exploits the property that
gcd�xqi

−x, f (x)� is the product of the irreducible factors of f of a degree that divides i.
The “baby-step giant-step” paradigm is used in order to avoid the naive computation
of the xq i

mod f (x) in sequence for i=1, . . . , d. As a useful feature, our algorithm only
computes the irreducible factors up to a given degree D.

Algorithm 4.1
Input. f (x)∈𝔽q[x] monic and square-free of degree d⩾1, D⩽d, 𝒫( f ).
Output. g1, . . . ,gD such that gi is the product of the irreducible factors of f of degree i.

1. Let 𝛿≔⌊D0.5⌋.
2. Compute xq mod f (x) by using 𝒫( f ).

3. Compute xqk
mod f (x) for k=2, . . . , 𝛿, via modular compositions.

4. Compute xql𝛿
mod f (x) for l=2, . . . , ⌈D/𝛿⌉, via modular compositions.

5. Compute A(y)≔∏k=0
𝛿−1 �y−xqk

�mod f (x), where y denotes a new variable.

6. Compute al(x)≔A�xq l𝛿�mod f (x) for l=1, . . . , ⌈D/𝛿⌉.
7. Set b≔ f . For l=1, . . . , ⌈D/𝛿⌉ do:

Compute hl≔gcd(al,b), b≔b/hl.
8. For k=0, . . . , 𝛿−1, compute xqk

mod hi for i=1, . . . , ⌈D/𝛿⌉.
9. For l=1, . . . , ⌈D/𝛿⌉, compute xq l𝛿

mod hi for i=1, . . . , ⌈D/𝛿⌉.
10. For l=1, . . . , ⌈D/𝛿⌉ do:

Set b≔hl.
For k from 𝛿−1 down to 0 do:

Compute gl𝛿−k≔gcd�b,xq l𝛿
−xqk

mod hl�, b≔b/gl𝛿−k.
11. Return g1, . . . ,gD.

PROPOSITION 4.2. Algorithm 4.1 is correct and takes time

O(C𝔽q(d; ⌊D0.5⌋+1)+D0.5 (M𝔽q(d) log d+dD𝔽q)+(C𝔽q(d)+d�𝔽q) log 𝜅).

Proof. First note that any positive integer i⩽D writes uniquely as i= l𝛿−k with 0⩽k<𝛿
and 1⩽ l⩽⌈D/𝛿⌉⩽⌈D0.5⌉+1. Then note that

al = �
k=0

𝛿−1
�xql𝛿

−xqk�mod f (x)

= �
k=0

𝛿−1
�xql𝛿−k

−x�qk
mod f (x),

so hl=gl𝛿−(𝛿−1) ⋅ ⋅ ⋅ gl𝛿 for l=1, . . ., ⌈D/𝛿⌉. This shows that g1, . . . ,gl are computed correctly.
Lemma 2.5 allows us to perform step 2 in time

O((C𝔽q(d)+d�𝔽q) log 𝜅).
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Step 3 requires 𝛿 − 1 modular compositions of the form 𝛼(x) ∘𝛽(x) mod f (x) for which
𝛽(x)≔xqmod f (x) is fixed. The same holds for step 4, this time with 𝛽(x)≔xq𝛿mod f (x).
Consequently, steps 3 and 4 can be done in time

O(C𝔽q(d; ⌊D0.5⌋+1)).

For steps 5 and 6, we use the classical “divide and conquer” technique based on “sub-
product trees”, and Kronecker substitution for products in 𝔽q[x, y]; see [9, chapter 10].
These steps then require O(M𝔽q(D0.5d) logD) operations. Our assumption on M𝔽q yields
O(M𝔽q(D0.5d) log D)=O(D0.5M𝔽q(d) log d). Step 7 incurs

O(D0.5M𝔽q(d) log d+D0.5dD𝔽q)

operations by means of the half-gcd algorithm.
By construction, the hl are pairwise coprime and their product equals f . Steps 8 and 9

take O(D0.5M𝔽q(d) log d) operations, by applying the fast multi-remainder algorithm [9,
chapter 10] to the results of steps 3 and 4. Finally, the cost of step 10 is bounded by

O(((((((((((((((((
((
(
( �

l=1

⌈D/𝛿⌉

D0.5 (M𝔽q(deg hl) log(deg hl)+deg hlD𝔽q))))))))))))))))))
))
)
)=O(D0.5 (M𝔽q(d) log d+dD𝔽q)). □

4.3. Equal-degree factorization
We now turn to the factorization of a polynomial f ∈𝔽q[x] having all its factors of the
same known degree 𝛿. This stage involves randomization of Las Vegas type: the algo-
rithm always returns a correct answer, but the running time is a random variable.

Algorithm 4.2
Input. A monic, square-free polynomial f (x)∈𝔽q[x] of degree d, which is the product

of d/𝛿 irreducible factors of degree 𝛿, as well as 𝒫( f ) and 𝒬( f ).
Output. The irreducible factors of f .

1. If d=𝛿 then return f . Otherwise set ℐ≔{−1,0, 1} if p≠2, or ℐ≔{0,1} if p=2.
2. Take g at random in 𝔽q[x]<d.
3. Compute hq≔Trq𝛿;q(g)mod f by Algorithm 3.1.
4. Compute hp≔Trp𝜅;p(hq)mod f by Algorithm 3.2.

5. If p≠2, then compute h≔hp

p−1
2 mod f . Otherwise, set h≔hp.

6. Compute f0≔gcd( f ,h), f1≔gcd( f ,h−1), and f−1≔ f /( f0 f1) if p≠2.
7. Compute 𝒫( fi) as 𝒫( f ) mod fi, 𝒬( fi) as the lg(deg fi)+ 1 first entries of

𝒬( f )mod fi, for i∈ℐ .
8. For i∈ℐ call recursively the algorithm with input fi, 𝒫( fi) and 𝒬( fi).
9. Return the union of the irreducible factors of fi for i∈ℐ .

PROPOSITION 4.3. Algorithm 4.1 is correct and takes expected time

O((C𝔽q(d) log(𝛿 𝜅)+M𝔽q(d) log(d𝜅p)+dD𝔽q+d�𝔽q log 𝜅) log(d/𝛿)). (4.1)

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 11



Proof. The proof is well known. For completeness, we repeat the main arguments. Let
𝜑1, . . . , 𝜑r with r≔ d/𝛿 be the irreducible factors of f . The Chinese remainder theorem
yields an isomorphism

𝜒: 𝔽q[x]/( f )⟶𝔽q[x]/(𝜑1)× ⋅ ⋅ ⋅ ×𝔽q[x]/(𝜑r),

where each 𝔽q[x]/(𝜑i) is isomorphic to 𝔽q𝛿. For any g in 𝔽q[x], let

(g1mod𝜑1, . . . ,gr mod𝜑r)≔𝜒(gmod f ).
Now

𝜒(hq mod f )=𝜒(Trq𝛿;q(g) mod f )=�Tr𝔽q𝛿/𝔽q(g1) mod𝜑1, . . . , Tr𝔽q𝛿/𝔽q(gr)mod 𝜑r�
and

𝜒(hp mod f ) = �Tr𝔽q/𝔽p�Tr𝔽q𝛿/𝔽q(g1)mod 𝜑1�, . . . ,Tr𝔽q/𝔽p�Tr𝔽q𝛿/𝔽q(gr)mod𝜑r��
= �Tr𝔽q𝛿/𝔽p(g1mod𝜑1), . . . ,Tr𝔽q𝛿/𝔽p(gr mod 𝜑r)�,

where each Tr𝔽q𝛿/𝔽p(gimod𝜑i) belongs to𝔽p regarded as the prime subfield of𝔽q[x]/(𝜑i).
Hence 𝜒(h) is a vector (b1, . . .,br) in ℐ r, and fi is the product of the 𝜑j with bj=𝜖, for 𝜖∈ℐ .

Let i∈{1, . . . , r} be a fixed index. If p≠2, then the probability that bi=0 is 1/p, the
probability that bi=−1 is (p − 1)/(2 p), and the probability that bi=1 is (p − 1)/(2 p). If
p=2, then the probability that bi=0 is 1/2, the probability that bi=1 is 1/2.

We now apply [11, Lemma 4.1(i)] with ℓ =|ℐ| and w=1/2. This lemma concerns the
probability analysis of a game of balls and bins where the bins are fi for i∈ℐ and the balls
are the irreducible factors 𝜑1, . . . ,𝜑r of f . The lemma implies that the expected depth of
the recursive calls is O(log r)=O(log(d/𝛿)). Other proofs may be found in [9, chapter 14,
Exercise 14.16], [35, chapter 20, section 4], or [11, sections 3 and 4].

Step 3 takes O(C𝔽q(d) log 𝛿) operations, by Lemma 3.1. Step 4 takes O((C𝔽q(d)+
d�𝔽q) log 𝜅) operations, by Lemma 3.2. Step 5 requires O(M𝔽q(d) log p) further oper-
ations. The rest takes O(M𝔽q(d) log(d𝜅)+dD𝔽q) operations. □

Cantor and Zassenhaus' original algorithm [5] uses the map h↦h
q𝛿−1
2 mod f instead of

pseudo-traces whenever p≠2. For p=2 it uses a slightly different map combined with an
occasional quadratic extension of 𝔽q. The use of pseudo-traces appeared in early works
by McEliece [9, notes of chapter 14]. The modern presentation is due to [11]. Our pre-
sentation has the advantage to distinguish the pseudo-traces over 𝔽q from those over 𝔽p,
and to avoid recomputing 𝒫( f ) and 𝒬( f ) during recursive calls.

Remark 4.1. If C𝔽q(d)=Ω(d1+𝜂 log q) for some 𝜂>0, then C𝔽q(d) log(𝛿𝜅) does not need to
be multiplied by log(d/𝛿) in (4.1); see [11, Lemma 4.1(ii)].

4.4. Irreducible factorization
We are now ready to summarize the main complexity bounds for an abstract field 𝔽q, in
terms of the cost functions from section 1.1.

THEOREM 4.1. The computation of the irreducible factors of degree⩽D of a polynomial of degree d
in 𝔽q[x] can be done in expected time

O�(D0.5+log(d𝜅) log d)C𝔽q(d)+(D0.5+log (d𝜅p))M𝔽q(d) log d
+(D0.5+log d)dD𝔽q+d�𝔽q log d log 𝜅�.
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Proof. This bound follows by combining Lemmas 2.6 and 2.8, Propositions 4.1, 4.2,
and 4.3. □

Following [9, Corollary 14.35] from [33, section 6], a polynomial f ∈𝔽q[x] of degree
d⩾1 is irreducible if, and only if, f divides xqd

− x and gcd�xqd/t
− x, f�=1 for all prime

divisors t of d. This technique was previously used in [32] over prime fields.

THEOREM 4.2. A polynomial of degree d in 𝔽q[x] can be tested to be irreducible in time

O(C𝔽q(d) (log d log log d+log 𝜅)+M𝔽q(d)(log2 d+log p)+dD𝔽q log d+d�𝔽q log 𝜅).

Proof. Computing the prime factorization d=p1
m1 ⋅ ⋅ ⋅ pr

mr takes negligible time o(d). On
the other hand, we can compute 𝒫( f ) in time

O((C𝔽q(d)+d�𝔽q) log 𝜅+M𝔽q(d) log p),

by Lemma 2.6. Then xq mod f (x) can be obtained in time

O((C𝔽q(d)+d�𝔽q) log 𝜅),
by Lemma 2.5.

The “divide and conquer” strategy of [33, Lemma 6.1] allows us to compute xqd/p1,...,xqd/pr

in time O(C𝔽q(d) log d log r); see the proof of [33, Theorem 6.2]. Finally each gcd takes
O(M𝔽q(d) log d+dD𝔽q) operations. □

4.5. Rabin's strategy to save pseudo-trace computations
We finish this section with a digression on known optimizations for the equal-degree
factorization algorithm that will not be used in the rest of the paper. These optimizations
are based on a randomization strategy due to Rabin [32] that saves pseudo-norm and
pseudo-trace computations. Here we focus on the case p≠2; in the case when p=2, sim-
ilar but slightly different formulas can be used [1, 32]. A concise presentation of Rabin's
method is given in [9, Exercise 14.17], but for pseudo-norms instead of pseudo-traces.
For this reason, we briefly repeat the main arguments. We follow the notation of Algo-
rithm 4.2.

Assume that f ∈𝔽q[x] is monic and square-free of degree d and a product of r monic
irreducible factors 𝜑1, . . . , 𝜑r of degree 𝛿 = d/r. Consider a polynomial h∈𝔽q[x] such
that h mod 𝜑i ∈𝔽p for i=1, . . . , r. We say that h separates the irreducible factors of f if
hmod 𝜑i≠h mod𝜑j for all i≠ j.

Algorithm 4.3
Input. A monic, square-free polynomial f (x)∈𝔽q[x] of degree d, which is the product of r

monic irreducible factors of degree 𝛿=d/r, a polynomial hp∈𝔽q[x] with hmod𝜑i∈𝔽p
for i=1, . . . , r, and an integer t⩾0.

Output. A partial factorization of f .

1. If d=𝛿 or t=0, then return f .
2. Take 𝜏 at random in 𝔽p.

3. Compute h≔(hp+𝜏)
p−1
2 mod f .
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4. Compute f0≔gcd( f ,h), f1≔gcd( f ,h−1), and f−1≔ f /( f0 f1).
5. For i=−1, 0,1, call recursively the algorithm with input fi, hp mod fi, and t−1.
6. Return the union of the factors of f−1, f0, f1 collected during step 5.

PROPOSITION 4.4. Algorithm 4.3 is correct and takes time

O((M𝔽q(d) log(dp)+dD𝔽q) t).

In addition the following assertions hold:
i. For g taken at random in 𝔽q[x]<d, hp≔Trp𝜅;p(Trq𝛿;q(g))mod f does not separate the factors

of f with probability ⩽�r
2�

1
p .

ii. If hp separates the irreducible factors of f, then Algorithm 4.3, called with t such that 2t⩾ 1
𝜂 �r

2�,
returns all the irreducible factors of f with probability ⩾1−𝜂.

Proof. The proof of the complexity bound is straightforward. A random g yields hp
such that hp mod𝜑i=hp mod𝜑j for i≠ j with probability /1 p. Therefore a random 𝜏 yields
a polynomial hp that does not separate the irreducible factors of f with probability at
most �r

2�/p. That proves assertion (i).
Now assume that hp separates the irreducible factors of f . Given i≠ j in {1, . . . , r},

we have

(hp+𝜏)
p−1
2 mod 𝜑i=(hp+𝜏)

p−1
2 mod𝜑j (4.2)

for at most p−1
2 −1 values of 𝜏. With 𝜏 taken at random in 𝔽p, the probability that (4.2)

does not hold is therefore at least /1 2.
Let P(t) denote the probability that all the irreducible factors are not found after the

call of Algorithm 4.3 with input t. There exist i≠ j such that (4.2) holds for t random
values of 𝜏 with probability at most 2−t. Considering the �r

2� possible pairs {i, j}, we
obtain P(t)⩽�r

2�/2
t. □

We may benefit from Rabin's strategy within Algorithm 4.2 as follows, whenever p⩾
1
𝜖 �r

2�. A polynomial hp as in Proposition 4.4(i) separates the factors of f with probability
⩾1−𝜖. We call Algorithm 4.3 with the first value of t such that 2t⩾ 1

𝜂 �r
2�, so the irreducible

factors of f are found with probability ⩾1− 𝜂. When 𝜖 and 𝜂 can be taken sufficiently
small, we derive a similar complexity bound as in Proposition 4.3, but where the factor
log(d/𝛿) does not apply to the terms d�𝔽q log 𝜅 and C𝔽q(d) log(𝛿 𝜅), which correspond to
the costs of steps 3 and 4 of Algorithm 4.2.

If p is too small to find a suitable value for 𝜖, then we may appeal to Rabin's strategy
a few rounds in order to benefit from more splittings with a single pseudo-trace over 𝔽p.
If p is actually too small for this approach, then we may consider the case q⩾ 1

𝜖 �r
2� and

apply Rabin's strategy over𝔽q instead of 𝔽p. More precisely, from hq and a random 𝜏∈𝔽q
we compute

hp≔Trp𝜅;p(hq+𝜏)mod f ,

then h≔hp

p−1
2 mod f , and obtain the splitting gcd(h, f ), gcd(h, f −1), gcd(h, f +1) on which

to recurse. This approach yields a complexity bound similar to the one from Proposi-
tion 4.3, but where the factor log(d/𝛿) does not apply to the term C𝔽q(d) log(𝛿 𝜅). This
latter term corresponds to the cost of step 3 of Algorithm 4.2.
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5. THEORETICAL COMPLEXITY BOUNDS

This section first draws corollaries from section 4.4, which rely on Kedlaya and Umans'
algorithm for modular composition. Note however that it seems unlikely that this algo-
rithm can be implemented in a way that makes it efficient for practical purposes: see [19,
Conclusion]. We first consider the case when 𝔽q is a primitive extension over𝔽p and then
the more general case when 𝔽q is given via a “triangular tower”.

5.1. Factoring over primitive extensions
Assume that 𝔽q≡𝔽p[z]/(𝜃(z)) is a primitive extension of 𝔽p. Then we may take:
• M𝔽q(d) =O�d log q log(d log q) 4log

∗(dlog q)� = Õ(d log q): see [13]. Under a plausible
number theoretic conjecture, one even has M𝔽q(d)=O(d log q log(d log q)) [14].

• D𝔽q=O(M𝔽p(𝜅) log 𝜅)= Õ(log q): see [9].
• From [25, 26],

C𝔽q(d)=d1+𝜖(d) Õ(log q), (5.1)

where 𝜖= o(1); The refined bound with

𝜖(d)=O(((((((((((((((((((( log log d
log d ))))))))))

1/2

))))))))))
is proved in [19, section 6].

COROLLARY 5.1. Let 𝔽q≡𝔽p[z]/(𝜃(z)) be as above. The computation of the irreducible factors
of degree ⩽D of a polynomial of degree d in 𝔽q[x] takes an expected time

(D0.5d𝜖(d)+𝜅𝜖(𝜅)+log p) Õ(d log q).

Proof. By means of (5.1) the precomputation involved in Lemma 2.3 takes

O(C𝔽p(𝜅) log 𝜅+M𝔽p(𝜅) log p)=(𝜅𝜖(𝜅)+log p) Õ(log q).

Then�𝔽q=𝜅𝜖(𝜅)Õ(log q) holds by Lemma 2.1. So the bound follows from Theorem 4.1. □

COROLLARY 5.2. Let 𝔽q≡𝔽p[z]/(𝜃(z)) be as above. A polynomial of degree d in 𝔽q[x] can be
tested to be irreducible in time

(d𝜖(d)+𝜅𝜖(𝜅)+log p) Õ(d log q).

Proof. This follows from Theorem 4.2, in a similar way as above. □

5.2. Factoring over towers of finite fields
Now we examine the case where 𝔽q≡𝕂t, where (𝕂i)i⩽t a triangular tower of height t of
field extensions 𝕂i⊇𝔽p such that 𝕂0≔𝔽p and

𝕂i≡𝕂i−1[zi]/(𝜇i(zi)), i=1, . . . , t,

for irreducible polynomials 𝜇i ∈𝕂i−1[zi]. We write mi ≔deg 𝜇i, so 𝜅≔m1 ⋅ ⋅ ⋅ mt, and
assume that mi⩾2 for i=1, . . . , t.

Using [31, Theorem 1.2], we will describe how to compute an isomorphic primitive
representation of 𝔽q, and how to compute the corresponding conversions. This will allow
us to apply the results from section 5.1. In this subsection, we assume the boolean RAM
model instead of the Turing model, in order to use the results from [31].
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COROLLARY 5.3. Fix 𝜀>0. Let 𝔽q≡𝕂t be given as above for a triangular tower (𝕂i)i⩽t and
assume that p>𝜅. Then the computation of the irreducible factors of degree ⩽D of a polynomial f
of degree d in 𝔽q[x] takes an expected time

(D0.5d𝜀+𝜅𝜀+log p) Õ(d log q).

Proof. The number of monic irreducible polynomials of degree 𝜅 over𝔽p is ⩾p𝜅 −2p𝜅/2

𝜅 ; see
for instance [9, Lemma 14.38]. Therefore the number of elements 𝛾 in 𝔽q that generate
𝔽q is ⩾p𝜅−2p𝜅/2. The probability to pick up a generator of 𝔽q over 𝔽p is uniformly lower
bounded, since p>𝜅⩾2.

The assumption p>𝜅 allows us to apply [31, Theorem 1.2] to the following data:
• The tower (𝕂i)i⩽t extended with

𝕂t+1≡𝕂t[zt+1]/(zt+1−𝛾),

where 𝛾 is an element picked up randomly in 𝕂t;
• The “target order” z1>zt> ⋅ ⋅ ⋅ >zt+1.

When 𝛾 generates 𝔽q over 𝔽p we obtain an isomorphic primitive element presentation
of 𝕂t of the form 𝔽p[𝛾]≡𝔽p[t]/(𝜃(t)), where 𝜃 denotes the defining polynomial of 𝛾
over 𝔽p. If 𝛾 is not primitive then the algorithm underlying [31, Theorem 1.2] is able to
detect it. In all cases, the time to construct 𝔽p[𝛾] is 𝜅𝜀Õ(log q). If 𝛾 is primitive, then [31,
Theorem 1.2] also ensures conversions between 𝕂t+1 and 𝔽p[𝛾] in time 𝜅𝜀Õ(log q). Con-
sequently the result follows from Corollary 5.1. □

6. PRACTICAL COMPLEXITY BOUNDS

An alternative approach for modular composition over 𝔽q was proposed in [16]. The
approach is only efficient when the extension degree 𝜅 over𝔽p is composite. If 𝜅 is smooth
and if mild technical conditions are satisfied, then it is even quasi-optimal. It also does
not rely on the Kedlaya–Umans algorithm and we expect it to be useful in practice for
large composite 𝜅.

The main approach from [16] can be applied in several ways. As in [16], we will first
consider the most general case when 𝔽q is presented via a triangular tower. In that case,
it is now possible to benefit from accelerated tower arithmetic that was designed in [17].
We next examine several types of “primitive towers” for which additional speed-ups are
possible.

In order to apply the results from [16, 17], all complexity bounds in this section assume
the boolean RAM model instead of the Turing model.

6.1. Factoring over triangular towers
As in section 5.2, a triangular tower over 𝔽p is a tower of algebraic extensions

𝔽p≡𝕂0⊂𝕂1⊂ ⋅ ⋅ ⋅ ⊂𝕂t≡𝔽q.

such that 𝕂i+1 is presented as a primitive extension over 𝕂i. In other words, for i=1,...,t,
we have

𝕂i≅𝕂i−1[zi]/(𝜇i(zi))
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for some monic irreducible polynomial 𝜇i∈𝕂i[zi] of degree mi⩾2. Alternatively, each𝕂i
can be presented directly over 𝕂0 as a quotient 𝕂0[x1, . . . , xi]/(�̌�1, . . . , �̌�i), where �̌�i ∈
𝕂0[x1, . . . , xi] is monic of degree mi in xi and of degree <mj in xj for each j< i. Trian-
gular towers have the advantage that 𝕂i−1 is naturally embedded in 𝕂i for each i. We set

m̄≔max(m1, . . . ,mt).

6.1.1. Basic arithmetic

PROPOSITION 6.1. There exists a function

𝜖(𝜅)=O(((((((((((((((((
1
log 𝜅� ))))))))))))))))),

such that 𝜅𝜖(𝜅) is a non-decreasing function of 𝜅, and

M𝕂t(d) = 𝜅𝜖(𝜅) Õ(d log q)
D𝕂t = 𝜅𝜖(𝜅) Õ(log q).

Proof. If p>�𝜅2�, then [17, Proposition 2.7 and Corollary 4.11] imply

M𝕂t(d) = 𝜅𝜖(𝜅) Õ(d log q)
D𝕂t = 𝜅𝜖(𝜅) Õ(log q).

Now consider the case when p⩽�𝜅2�. Since p𝜅⩾�𝜅2� there exists a smallest integer l⩽t such
that pm1⋅ ⋅ ⋅ml⩾�𝜅2�, and

l=O(log log 𝜅).

For any constant C>1 we note that C l=logO(1) 𝜅, so [17, Propositions 2.4 and 2.7] yield

M𝕂l(d) = Õ(dm1 ⋅ ⋅ ⋅ml log p) logO(1) 𝜅
D𝕂l = Õ(m1 ⋅ ⋅ ⋅ml log p) logO(1) 𝜅.

On the other hand, applying [17, Proposition 2.7 and Corollary 4.11] to the sub-tower

𝕂l⊂ ⋅ ⋅ ⋅⊂𝕂t,
we obtain

M𝕂t(d) = (ml+1 ⋅ ⋅ ⋅mt)𝜖(ml+1⋅ ⋅ ⋅mt) Õ(dml+1 ⋅ ⋅ ⋅mt (M𝕂l(1)+D𝕂l))
= (ml+1 ⋅ ⋅ ⋅mt)𝜖(ml+1⋅ ⋅ ⋅mt) Õ(d𝜅 log p)
= 𝜅𝜖(𝜅) Õ(d log q)

D𝕂t = D𝕂l+(ml+1 ⋅ ⋅ ⋅mt)𝜖(ml+1 ⋅ ⋅ ⋅mt) Õ(ml+1 ⋅ ⋅ ⋅mtM𝕂l(1))
= (ml+1 ⋅ ⋅ ⋅mt)𝜖(ml+1⋅ ⋅ ⋅mt) Õ(𝜅 log p)
= 𝜅𝜖(𝜅) Õ(log q). □

6.1.2. Frobenius maps

In order to compute iterated Frobenius maps we extend the construction from section 2.1.
For this purpose we introduce the following auxiliary sequences for k=1, . . . , t:

ℰ𝕂k≔�zk
p2i

mod 𝜇k(zk)�
0⩽i⩽lg𝜅

.
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Since we wish to avoid relying on the Kedlaya–Umans algorithm, the best available algo-
rithm for modular composition is based on the “baby-step giant-step” method [30]. It
yields the following complexity bound:

C𝔽q(d) = O(d𝜛M𝔽q(1)),

where 𝜛>1.5 is a constant such that the product of a d× d� matrix by a d� × d� matrix
takes O(d𝜛) operations; the best known theoretical bound is𝜛<1.667 [20, Theorem 10.1].
In practice, one usually assumes 𝜛=2.

LEMMA 6.1. Let ℰ𝕂k be given for k=1, . . ., t. For all a∈𝕂t and 0⩽ i⩽lg 𝜅, we can compute ap2i

in time
m̄𝜛−1𝜅𝜖(𝜅) Õ(log q).

Proof. For k⩽ t, let Tk be the time needed to compute bp2i

for any b∈𝕂k and i⩽lg 𝜅. Let

�
j=0

mt−1

aj zt
j∈𝕂t−1[zt]<mt

denote the canonical representative of a∈𝕂t. We have

ap2i

=�
j=0

mt−1

aj
p2i

zt
jp2i

mod𝜇t(zt)=(((((((((((((((((
((
(
(�

j=0

mt−1

aj
p2i

zt
j

)))))))))))))))))
))
)
)∘�zt

p2i
�mod 𝜇t(zt).

Now aj
p2i

can be computed recursively in time Tt−1, so

Tt=mtTt−1+O(mt
𝜛M𝕂t−1(1)).

From Proposition 6.1 it follows that

Tt=mtTt−1+mt
𝜛−1 (m1 ⋅ ⋅ ⋅mt−1)𝜖(m1 ⋅ ⋅ ⋅mt−1) Õ(m1 ⋅ ⋅ ⋅mt log p).

We conclude by unrolling this identity. □

The auxiliary sequences ℰ𝕂k are computed by induction using the following adapta-
tion of Algorithm 2.2.

Algorithm 6.1
Input. 𝕂k, ℰ𝕂1, . . . ,ℰ𝕂k−1.
Output. ℰ𝕂k.

1. Compute ℰ0(zk)≔zk
p mod𝜇k(zk) using binary powering.

2. For i=1, . . . , lg 𝜅, write ℰ i−1(zk)=∑j=0
mk−1 aj zk

j and compute ℰ i(zk) as

(((((((((((((((((
((
(
(�

j=0

mk−1

aj
p2i−1

zk
j

)))))))))))))))))
))
)
)∘ℰ i−1(zk)mod 𝜇k(zk).

3. Return (ℰ i(zk))0⩽i⩽lg𝜅.

LEMMA 6.2. Algorithm 2.1 is correct and runs in time

(m̄𝜛−1 log 𝜅+log p)𝜅𝜖(𝜅) Õ(m1 ⋅ ⋅ ⋅mk log p).
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Proof. We prove the correctness by induction on i. The case i=0 is clear. Assume that i⩾1
and let h(zk)∈𝕂k−1[zk] be such that

ℰ i−1(zk) = �
j=0

mk−1

aj zk
j = zk

p2i−1

+h(zk)𝜇k(zk).

Then we have

(((((((((((((((((
((
(
(�

j=0

mk−1

aj
p2i−1

zk
j

)))))))))))))))))
))
)
)∘ℰ i−1(zk) mod 𝜇k(zk) = (((((((((((((((((

((
(
(�

j=0

mk−1

aj
p2i−1

zk
j

)))))))))))))))))
))
)
)∘�zk

p2i−1
�mod 𝜇k(zk)

= �
j=0

mk−1

aj
p2i−1

zk
jp2i−1

mod 𝜇k(zk)

= (((((((((((((((((
((
(
(�

j=0

mk−1

aj zk
j

)))))))))))))))))
))
)
)p2i−1

mod𝜇k(zk)

= �zk
p2i−1

�p2i−1

mod𝜇k(zk)
= ℰ i(zk) mod 𝜇k(zk).

This completes the correctness proof. Concerning the complexity, the first step takes time
O(M𝕂k−1(mk) log p), whereas the loop requires lg 𝜅 modular compositions and mk lg 𝜅
computations of p2i−1-th powers in 𝕂k−1. By Lemma 6.1, the total running time is there-
fore bounded by

O((C𝕂k−1(mk)+mk m̄𝜛−1𝜅𝜖(𝜅) Õ(m1 ⋅ ⋅ ⋅mk−1 log p)) log 𝜅+M𝕂k−1(mk) log p)
= O((C𝕂k−1(mk)+ m̄𝜛−1𝜅𝜖(𝜅) Õ(m1 ⋅ ⋅ ⋅mk log p)) log 𝜅+M𝕂k−1(mk) log p).

Using the bounds

M𝕂k−1(mk) = 𝜅𝜖(𝜅) Õ(m1 ⋅ ⋅ ⋅mk log p)
C𝕂k−1(mk) = mk

𝜛−1𝜅𝜖(𝜅) Õ(m1 ⋅ ⋅ ⋅mk log p)

from Proposition 6.1, this yields the claimed cost. □

6.1.3. Irreducible factorization

COROLLARY 6.1. Let 𝔽q≡𝕂t for a triangular tower as above. The computation of the irreducible
factors of degree ⩽D of a polynomial of degree d in 𝔽q[x] takes an expected time

(D0.5d𝜛−1+ m̄𝜛−1+log p)𝜅𝜖(𝜅) Õ(d log q).

Proof. By Lemma 6.2, the auxiliary sequences ℰ𝕂1, . . . ,ℰ𝕂t can be computed in time
(m̄𝜛−1+log p)𝜅𝜖(𝜅) Õ(log q). By Proposition 6.1 and Lemma 6.1, we may take

�𝕂t = m̄𝜛−1𝜅𝜖(𝜅) Õ(log q)
C𝕂t(d) = d𝜛−1𝜅𝜖(𝜅) Õ(d log q).

The bound now follows from Theorem 4.1. □

COROLLARY 6.2. Let 𝔽q≡𝕂t for a triangular tower as above. A polynomial of degree d in 𝔽q[x]
can be tested to be irreducible in time

(d𝜛−1+ m̄𝜛−1+log p)𝜅𝜖(𝜅) Õ(d log q).
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Proof. This follows from Theorem 4.2, in a similar way as above. □

If m̄d log p=O(𝜅o(1)), then we note that the bounds in Corollaries 6.1 and 6.2 further
simplify into (d log q)1+o(1), which has an optimal complexity exponent in terms of the
input/output size.

6.2. Factoring over special primitive towers
In the case when the extension degree 𝜅 of 𝔽q over 𝔽p is composite, we proposed var-
ious algorithms for modular composition [16] that are more efficient than the traditional
“baby-step giant-step” method [30]. As before, these methods all represent 𝔽q as the top
field of a tower of finite fields

𝔽p≡𝕂0⊂𝕂1⊂ ⋅ ⋅ ⋅ ⊂𝕂t≡𝔽q. (6.1)

Such towers can be built in several ways and each type of tower comes with its own
specific complexity bounds for basic arithmetic operations and modular composition. In
this section, we briefly recall the complexity bounds for the various types of towers and
then combine them with the results of section 4.4.

The arithmetic operations in the fields𝕂i of the tower (6.1) are most efficient if each𝕂i
is presented directly as a primitive extension 𝕂i ≡𝔽p[yi]/(𝜈i(yi)) over 𝔽p, where 𝜈i ∈
𝔽p[yi] is a monic polynomial of degree m1 ⋅ ⋅ ⋅ mi. Towers of this type are called prim-
itive towers. The primitive representations will be part of the precomputation. In [16],
we studied the following types of primitive towers:
Nested towers. For i=2, . . . , t, we have 𝜈i=𝜈i−1∘𝜏i , where 𝜏i∈𝔽p[x] is a polynomial of

degree mi (more generally, for a suitable generalization of composition, 𝜏i may even
be a rational function of degree mi); see [16, section 7.3] for details.

Composed towers. The mi are pairwise coprime and there exist monic irreducible poly-
nomials 𝜆1, . . . , 𝜆t∈𝕂[z] of degrees m1, . . . ,mt such that 𝜈1=𝜆1 and 𝜈i=𝜈i−1⊙𝜆i for
i=2,...,t. Here⊙ stands for the composed product of irreducible polynomials; see [16,
section 7.4].

Artin–Schreier towers. We have m1= ⋅ ⋅ ⋅ =mt= p and the minimal polynomials of the
successive extensions are given by

𝜇1(z1) = z1
p −z1−1

𝜇2(z2) = z2
p −z2−𝛼1 (i=2,p=2)

𝜇i(zi) = zi
p −zi −𝛼i−1

2p−1 (all other cases),

where 𝛼i is a root of 𝜇i in 𝕂i for i=1, . . . , t.
Composed towers and Artin–Schreier towers suffer from the inconvenience that they
can only be used in specific cases. Nested towers are somewhat mysterious: many finite
fields can be presented in this way, but we have no general proof of this empiric fact
and no generally efficient way to compute such representations. From an asymptotic
complexity point of view, nested towers are most efficient for the purposes of this paper,
whenever they exist.

In [16], we have shown that one composition modulo 𝜈t can be done in time

C𝔽q/𝔽p = O(M𝔽p(m̄𝜅)𝜂(m̄, 𝜅, t)),
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where the overhead 𝜂(m̄, 𝜅, t) depends as follows on the particular type of tower:

𝜂(m̄, 𝜅, t) = {{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{

t log 𝜅 nested towers
m̄ log 𝜅 composed towers
m̄ log2 𝜅 Artin–Schreier towers

In the case of Artin–Schreier towers, we actually haveC𝔽q/𝔽p=O(p2𝜅 log3𝜅), which yields
the announced value for 𝜂(m̄, 𝜅, t) under the mild assumption that

M𝔽p(n)=Ω(n log p log(n log p)).

By Lemma 2.3, the sequence ℰ𝔽q can be computed in time

O(M𝔽p(m̄𝜅)𝜂(m̄, 𝜅, t) log 𝜅+M𝔽p(𝜅) log p).

By Lemma 2.1, we may take

�𝔽q = O(M𝔽p(m̄𝜅)𝜂(m̄, 𝜅, t)).

Since we wish to avoid relying on the Kedlaya–Umans algorithm, we again use

C𝔽q(d) = O(d𝜛M𝔽q(1)).

Plugging these bounds into Theorems 4.1 and 4.2, we obtain:

COROLLARY 6.3. Let 𝔽q≡𝕂t for a primitive tower of one of the above types. Then the compu-
tation of the irreducible factors of degree ⩽D of a polynomial of degree d in 𝔽q[x] can be done in
expected time

(D0.5d𝜛−1+ m̄𝜂(m̄, 𝜅, t)+log p) Õ(d log q).

COROLLARY 6.4. Let 𝔽q≡𝕂t for a primitive tower of one of the above types. Then a polynomial
of degree d in 𝕂t[x] can be tested to be irreducible in time

(d𝜛−1+ m̄𝜂(m̄, 𝜅, t)+log p) Õ(d log q).

In the particular case when d m̄ log p=(log 𝜅)O(1), we note that both bounds further
simplify into Õ(d log q), which is quasi-optimal.

7. CONCLUSION

We have revisited probabilistic complexity bounds for factoring univariate polynomials
over finite fields and for testing their irreducibility. We mainly used existing techniques,
but we were able to sharpen the existing bounds by taking into account recent advances
on modular composition. However, the following major problems remain open:
• Do their exist practical algorithms for modular composition with a quasi-optimal

complexity exponent?
• The existing bit complexity bounds for factorization display a quadratic dependency

on the bit size log p of the prime field. Is this optimal?
• Is it possible to lower the complexity exponent 1.5 in d for irreducible factorization?

This problem is equivalent to several other ones, as explained in [12].
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The improvements from this paper are most significant for finite fields of a large smooth
extension degree over their prime field. Indeed, fast algorithms for modular composi-
tion were designed for this specific case in [16]. It would be interesting to know whether
there are other special cases for which this is possible. Applications of such special cases
would also be welcome.
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