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ABSTRACT
Let Fq be the finite field with q elements and let ! be
a primitive n-th root of unity in an extension �eld Fqd of Fq.
Given a polynomial P 2 Fq[x] of degree less than n, we
will show that its discrete Fourier transform (P (1); P (!); :::;
P (!n¡1)) 2Fqd

n can be computed essentially d times faster
than the discrete Fourier transform of a polynomial Q 2
Fqd[x] of degree less than n, in many cases. This result
is achieved by exploiting the symmetries provided by the
Frobenius automorphism of Fqd over Fq.
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1. INTRODUCTION
Let n = 2` and let ! = e2pi/n be a primitive n-th root of

unity in C. The traditional algorithm for computing dis-
crete Fourier transforms [7] takes a polynomial P 2C[x] of
degree <n on input and returns the vector (P (1); P (!); :::;
P (!n¡1)). If P actually admits real coe�cients, then we
have P (!¡i)=P (!i) for all i, so roughly n/2 of the output
values are super�uous. Because of this symmetry, it is well
known that such �real FFTs� can be computed roughly twice
as fast as their complex counterparts [3, 25].

More generally, there exists an abundant literature on
the computation of FFTs of polynomials with various types
of symmetry. Crystallographic FFT algorithms date back
to [26], with contributions as recent as [20], but are dedi-
cated to crystallographic symmetries. So called lattice FFTs
have been studied in a series of papers initiated by [11]
and continued in [27, 4]. A more general framework due
to [1] was recently revisited from the point of view of high-
performance code generation [18]. Further symmetric FFT
algorithms and their truncated versions were developed
in [16].

In this paper, we focus on discrete Fourier transforms of
polynomials P 2 Fq[x] with coe�cients in the �nite �eld
with q elements. In general, primitive n-th roots of unity !
only exist in extension �elds of Fq, say ! 2 Fqd. This puts
us in a similar situation as in the case of real FFTs: our
primitive root of unity ! lies in an extension �eld of the
coe�cient �eld of the polynomial. This time, the degree of
the extension is d = [Fqd: Fq] instead of 2 = [C: R]. As in
the case of real FFTs, it is natural to search for algorithms
that allow us to compute the DFT of a polynomial in Fq[x]
approximately d times faster than the DFT of a polynomial
in Fqd[x].
The main purpose of this paper is to show that such

a speed-up by an approximate factor of d can indeed be
achieved. The idea is to use the Frobenius automorphism
�q: Fqd ! Fqd; x 7! xq as the analogue of complex con-
jugation. If P 2 Fq[x], then we will exploit the fact that
P (�q

k(!i)) = �q
k(P (!i)) for all 0 6 i < n and 0 6 k < d.

This means that it su�ces to evaluate P at only one element
of each orbit for the action of the Frobenius automorphism
on the cyclic group h!i generated by !. We will give an
e�cient algorithm for doing this, called the Frobenius FFT .
Our main motivation behind the Frobenius FFT is the

development of faster practical algorithms for polyno-
mial multiplication over �nite �elds of small characteristic.
In [12], we have shown how to reduce multiplication in F2[x]
to multiplication in F260[x], while exploiting the fact that
e�cient DFTs are available over F260. Unfortunately, this
reduction involves an overhead of a factor 2 for zero padding.
The Frobenius FFT can be thought of as a more direct way
to use evaluation-interpolation strategies over F260 for poly-
nomial multiplication over F2. We have not yet implemented
the algorithms in the present paper, but the ultimate hope
is to make such multiplications twice as e�cient as in [12].
Let us brie�y detail the structure of this paper. In sec-

tion 2, we �rst recall some standard complexity results for
�nite �eld arithmetic. We pursue with a quick survey of
the fast Fourier transform (FFT) in section 3. The modern
formulation of this algorithm is due to Cooley and Tukey [7],
but the algorithm was already known to Gauÿ [9].
In section 4, we introduce the discrete Frobenius Fourier

transform (DFFT) and describe several basic algorithms
to compute DFFTs of prime order. There are essentially
two efficient ways to deal with composite orders. Both
approaches are reminiscent of analogue strategies for real
FFTs [25], but the technical details are more complicated.
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The �rst strategy is to reduce the computation of d dis-
crete Fourier transforms of polynomials P0; :::; Pd¡12Fq[x]
of degree <n to a single discrete Fourier transform of a poly-
nomial P 2 Fqd[x] of degree <n. This elegant reduction is
the subject of section 5, but it is only applicable if we need
to compute many transforms. Furthermore, at best, it only
leads to the gain of a factor d / log d instead of d, due to
numerous applications of the Frobenius automorphism �q.
The second strategy, to be detailed in section 6, is to

carefully exploit the symmetries in the usual Cooley�Tukey
FFT; we call the resulting algorithm the Frobenius
FFT (FFFT). The complexity analysis is more intricate
than for the algorithm from section 5 and the complete
factor d is only regained under certain conditions. Fortu-
nately, these conditions are satis�ed for the most interesting
applications to polynomial multiplication in F2[x] or when n
becomes very large with respect to d.
In this paper, we focus on direct DFFTs and FFFTs.

Inverse FFFTs can be computed in a straightforward way
by reversing the main algorithm from section 6. Inverting
the various algorithms from section 4 for DFFTs of prime
orders requires a bit more e�ort, but should not raise any
serious di�culties. The same holds for the algorithms to
compute multiple DFFTs from section 5.
Besides inverse transforms, it is possible to consider trun-

cated Frobenius FFTs, following [14, 15, 21], but this goes
beyond the scope of this paper. It might also be worth inves-
tigating the use of Good's algorithm [10] as an alternative
to the Cooley�Tukey FFT, since the order n usually admits
many distinct prime divisors in our setting.

2. FINITE FIELD ARITHMETIC
Throughout this paper and unless stated otherwise, we

will assume the bit complexity model for Turing machines
with a �nite number of tapes [23]. Given a �eld K, we will
writeK[x]<n for the set of polynomials in K[x] of degree <n.
Let us write q = p� for some prime number p and �> 1.

Elements in the �nite �eld Fq are usually represented as
elements of Fp[x]/(�(x)), where � 2 Fp[x] is a monic irre-
ducible polynomial of degree �. We will denote by Mq(n)
the cost to multiply two polynomials in Fq[x]<n. Multi-
plications in Fq can be reduced to a constant number of
multiplications of polynomials in Fp[x]<� via the precom-
putation of a �pre-inverse� of �. The multiplication of two
polynomials in Fq[x]<n can be reduced to the multiplication
of two polynomials in Fp[x]<2�n using Kronecker substitu-
tion [8, Corollary 8.27]. In other words, we have Mq(n) =
O(Mp(� n)).
The best currently known bound for Mq(n) was estab-

lished in [13]. It was shown there that

Mq(n)=O(n log q log(n log q) 8log
�(nlog q)); (2.1)

uniformly in q, where

log� x := min fk 2N: log�kx6 1g; (2.2)
log�k := log � ���

k�
� log:

Sometimes, we rather need to perform t multiplications
P1 Q; :::; PtQ with P1; :::; Pt; Q 2Fq[x]<n. The complexity
of this operation will be denoted by Mq(n; t). Throughout
this paper, it will be convenient to assume that Mq(n; t) /
(n log q) is increasing in both n and q. In other words,
Mp�(n; t)/(n �) is increasing in both n and �.

The computation of the Frobenius automorphism �q
in Fqd requires O(log q) multiplications in Fqd when
using binary powering, so this operation has complexity
O(Mq(d) log q). This cost can be lowered by representing
elements in Fqd with respect to so-called normal bases [5].
However, multiplication in Fqd becomes more expensive for
this representation.
The discrete Frobenius Fourier transform potentially

involves computations in all intermediate �elds Fqe where
e divides d. The necessary minimal polynomials � for these
�elds and the corresponding pre-inverses can be kept in a ta-
ble. The bitsize of this table is bounded by 2 dlog2 qe

P
ejdd.

It is known [22] that �(d) :=
P

ejd d = O(d log log d). Con-
sequently, the bitsize of the table requires O(d log logd log q)
storage.
Another important operation in �nite �elds is modular

composition : given P ; Q2Fq[x]<n and a monic polynomial
R2Fq[x] of degree n, the aim is to compute the remainder
(P � Q) rem R of the euclidean division of P � Q by R.
If R is the minimal polynomial of the �nite �eld Fqn �
Fq[x] / (R(x)), then this operation also corresponds to the
evaluation of the polynomial P 2Fq[x]<n at a point in Fqn.
If R and R0 are two distinct monic irreducible polynomials
in Fq[x] of degree n, then the conversion of an element in
Fq[x] / (R(x)) to an element in Fq[x] / (R

0(x)) also boils
down to one modular composition of degree n over Fq.
We will denote by Cq(n) the cost of a modular composi-

tion as above. Theoretically speaking, Kedlaya and Umans
proved that Cq(n) = (n log q)1+o(1) [19]. From a practical
point of view, one rather has Cq(n) = O(n2 log q). If n is
smooth and one needs to compute several modular composi-
tions for the same modulus, then algorithms of quasi-linear
complexity do exist [17].
Given primitive elements � 2 Fqd and � 2 Fqe with e j d,

the paper [17] also contains efficient algorithms for con-
versions between Fq[�] and Fq[�][�]. Using modular compo-
sition, we notice that this problem reduces in time Cq(d) +
(d / e) Cq(e) + Cqe(d / e) to the case where we are free to
choose primitive elements � and � that suit us. We let
Vq(d; e) be a cost function for conversions between Fq[�]
and Fq[�][�] and denote Vq(d)=maxeje 0jd (d/e0)Vq(e0; e).

3. FAST FOURIER TRANSFORMS

3.1 The discrete Fourier transform
LetK be any �eld and let !2K be a primitive n-th root of

unity for some n>0. Now consider a polynomial P 2K[x]<n,
where

K[x]<n := fP 2K[x]: deg P <ng:

The discrete Fourier transform DFT!(P ) of P with respect
to ! is the vector

DFT!(P ) = (P (1); P (!); :::; P (!n¡1)) 2 Kn:

If n is a small number, then DFT!(P ) can be computed by
evaluating P (!i) directly for i=0; :::; n¡ 1, using Horner's
method for instance. If n is a prime number, then Rader and
Bluestein have given e�cient methods for the computation
of discrete Fourier transforms of order n; see [24, 6] and
subsection 3.2 below.



In subsection 3.4, we are interested in the case when n is
composite. In that case, one may compute DFT!(P ) using
the fast Fourier transform (or FFT). The modern formula-
tion of this algorithm is due to Cooley and Tukey [7], but
the algorithm was already known to Gauÿ [9]. The output
(P (!{�))i<n of the FFT uses a mirrored indexation {� that we
will introduce in subsection 3.3 below.
We will denote by Fqd(n) the cost of computing a FFT in

the �eld Fqd.

3.2 Rader reduction
Assume that we wish to compute a DFT of large prime

length n. The multiplicative group Fn
� is cyclic, of order

n ¡ 1. Let g 2 f1; :::; n ¡ 1g be such that g mod n is
a generator of this cyclic group. Given a polynomial P =
p0+ ���+ pn¡1 x

n¡1 and j 2 f1; :::; n¡ 1g with j= gl rem n,
we have

DFT!(P )gl rem n = p0+
X
i=1

n¡1

pi!
i(gl rem n)

= p0+
X
k=0

n¡2

pg¡k rem n!
(g¡k rem n)(gl rem n)

= p0+
X
k=0

n¡2

pg¡k rem n!
gl¡k rem n:

Setting

uk = pg¡k rem n U = u0+ ���+un¡2 yn¡2

vl = !g
l rem n V = v0+ ���+ vn¡2 yn¡2

wl = DFT!(P )gl rem n¡ p0 W = w0+ ���+wn¡2 yn¡2;

it follows that W = U V , when regarding U , V and W as
elements of

K[y]n¡1
� := K[y]/(yn¡1¡ 1):

In other words, we have essentially reduced the computation
of a discrete Fourier transform of length n to a so-called
cyclic convolution of length n¡ 1.

3.3 Generalized bitwise mirrors
Let n be a positive integer with a factorization n =

m0 ��� m`¡1 such that mj > 1 for each j. Then any index
i <n can uniquely be written in the form

i = i0 �m1 ���m`¡1+ ���+ i`¡2 �m`¡1+ i`¡1;

where ij<mj for all j < `. We call i0; :::; i`¡1 the digits of i
when written in the mixed base v=(m0; :::;m`¡1). We also
de�ne the v-mirror of i by

[i]v = i0+ i1 �m0+ i2 �m0m1+ ���+ i`¡1 �m0 ���m`¡2:

Whenever v is clear from the context, we simply write {�
instead of [i]v.
If v=(m0) has length one, then we notice that

[i](m0) = i:

Setting v̂=(m`¡1; :::;m0), we also have

[[i]v]v̂ = i:

Finally, given h 6 d, let v] = (m0; :::; mh¡1), v[ = (mh; :::;

m`¡1), n] = m0 ��� mh¡1 and n[ = mh ��� m`¡1, so that
v=(v]; v[) and n=n]n[. Then it is not hard to see that for
all i]<n] and i[<n[, we have

[i]n[+ i[]v];v[ = [i[]v[n
]+ [i]]v]:

3.4 The Cooley–Tukey FFT
We are now in a position to recall how the FFT works.

Let v]=(m0; :::;mh¡1), v[=(mh; :::; m`¡1), n]=m0 ���mh¡1

and n[=mh ���m`¡1 be as at the end of the previous subsec-
tion. We denote !]= !n

[

and notice that !] is a primitive
n]-th root of unity. Similarly, ![ :=!n

]

is a primitive n[-th
root of unity. Recall that {�� [i]v for i<n. For any i<n and
j <n, we have

!{�j = !(i
[n]+i])(j]n[+j[) = !i

]j[ (![)i
[j[ (!])i

]j];

so that

P (!{�) =
X
j[<n[

"
!j

[i]
X
j]<n]

Pj]n[+j[ (!
])j

]i]

#
(![)j

[i[: (3.1)

In this formula, one recognizes two polynomial evaluations
of orders n] and n[. More precisely, we may decompose the
polynomial P as

P = P0
](x])+P1

](x])x+ ���+Pn[¡1
] (x])xn

[¡1;

where x]= xn
[

and P0
]; :::; Pn[¡1

] 2K[x]]<n]. This allows us
to rewrite (3.1) as

P (!{�) =
X
j[<n[

(!j
[i]Pj[

] ((!])i
]

)) (![)j
[i[: (3.2)

For each i] < n], we may next introduce the polynomial
Pi]
[ 2K[x]<n[ by

Pi]
[(x) = P0

]((!])i
]

)+ ���+Pn[¡1
] ((!])i

]

)xn
[¡1

The relation (3.2) now further simpli�es into

P (!{�) = Pi]
[(!i

]

(![)i
[

): (3.3)

This leads to the following recursive algorithm for the com-
putation of discrete Fourier transforms.

Algorithm FFT!(P )
Input: P 2K[x]<n
Output: (P (!{�))i<n.

if ` = 1 then compute the answer using a direct algo-
rithm and return it
Take 0<h<`, n]=m0 ���mh¡1 and n[=mh ���m`¡1

Let !] :=!n
[

, ![ :=!n
]

, x] :=xn
[

Decompose P (x)=P0
](x])+ ���+Pn[¡1

] (x])xn
[¡1

for i[<n[ do
Compute (Pi[

]((!])i
]

))i]<n] :=FFT!](Pi[
])

for i]<n] do
Let Pi]

[(x) :=P0
]((!])i

]

)+ ���+Pn[¡1
] ((!])i

]

)xn
[¡1

Let P~i]
[(x) :=Pi]

[(!i
]

x)

Compute (Pi]
[(!i

]

(![)i
[

))i[<n[ :=FFT![
¡
P~i]
] �

return (P (!{�))i<n=(Pi]
[(!i

]

(![)i
[

))i=i]n[+i[<n



If the mi are all bounded, then this algorithm requires
O(n logn) operations in K. For practical purposes it is best
though to pick h such that n[ and n] are as close to n

p
as

possible. This approach is most �cache friendly� in the sense
that it keeps data as close as possible in memory [2].

4. FROBENIUS FOURIER TRANSFORMS
4.1 The discrete Frobenius Fourier transform
Let Fq � Fqd be an extension of �nite �elds. Let �q:

Fqd! Fqd; x 7! xq denote the Frobenius automorphism of
Fqd over Fq. We recall that the group h�qi generated by �q
has size d and that it coincides with the Galois group of Fqd

over Fq.
Let ! 2Fqd be a primitive n-th root of unity with Fqd=

Fq[!]. Recall that n j qd ¡ 1 and gcd(n; q) = 1. We will
write h!i for the cyclic group of size n generated by !.
The Frobenius automorphism �q naturally acts on h!i and
we denote by rq(!i) the order of an element !i under this
action. Notice that rq(!i) j d. A subset S � h!i is called
a cross section if for every !j 2 h!i, there exists exactly
one !i 2 S such that !i = �q

k(!j) for some k 2N. We will
denote this element !i by �S(!j). We will also denote the
corresponding set of indices by I = fi <n:!i2Sg.
Now consider a polynomial P 2 Fq[x]<n. Recall that its

discrete Fourier transform with respect to ! is de�ned to be
the vector

DFT!(P ) = (P (1); P (!); :::; P (!n¡1)):

Since P admits coe�cients in Fq, we have

P (�q
k(!j)) = �q

k(P (!j))

for all j; k 2N. For any !j 2 h!i, this means that we may
retrieve P (!j) from P (�S(!

j)). Indeed, setting !i=�S(!j)
with !i= �q

k(!j), we obtain P (!j)= �q
¡k(P (!i)). We call

DFFT!;S(P ) = (P (!i))i2I

the discrete Frobenius Fourier transform of P with respect
to ! and the section S.
Let !i 2 S and r = rq(!

i). Then �q
r leaves !i invariant,

whence �qr(P (!i)) = P (�q
r(!i)) = P (!i). Since Fqr is the

sub�eld of Fqd that is �xed under the action of �qr, this yields

P (!i) 2 F
qrq(!

i):

It follows that the number of coe�cients in Fq needed to
represent DFFT!;S(P ) is given byX

i2I

rq(!
i) = n: (4.1)

In particular, the output and input size n of the discrete
Frobenius Fourier transform coincide.

4.2 Twiddled transforms
In the Cooley�Tukey algorithm from section 3.4, the

second wave of FFTs operates on �twiddled� polynomials
P~i]
[(x) := Pi]

[(!i
]

x) instead of the polynomials Pi]
[(x). An

alternative point of view is to directly consider the eval-
uation of Pi]

[ at the points � (![)i
[

with i[ < n[ and where
�=!i

]. We will call this operation a twiddled DFT .

The twiddled DFFT is de�ned in a similar manner. More
precisely, assume that we are given an s-th root of unity
� 2 Fqd such that the set � h!i is stable under the action
of �q. Assume also that we have a cross section S of � h!i
under this action and the corresponding set of indices I =
fi < n: � !i 2 Sg� f0; :::; n¡ 1g. Then the twiddled DFFT
computes the family

DFFT�;!;S(P ) := (P (�!i))i2I:

Again, we notice thatX
i2I

rq(� !
i) = n: (4.2)

We will denote by Fq;d(n) the complexity of computing a
twiddled DFFT of this kind.

4.3 The naive strategy
If n is a small number, then we recall from section 3.1 that

it is most e�cient to compute ordinary DFTs of order n in
a naive fashion, by evaluating P (!i) for i<n using Horner's
method. From an implementation point of view, one may
do this using specialized codelets for various small n.
The same naive strategy can also be used for the compu-

tation of DFFTs and twiddled DFFTs. Given a cross section
S � � h!i and the corresponding set of indices I = fi < n:
� !i2Sg, it su�ces to evaluate P (� !i) separately for each
i2I. Let ri= rq(� !i) jd be the order of !i under the action
of �q. Then � !i actually belongs to Fqri, so the evaluation
of P (� !i) can be done in time n Mqri(1) + O(n ri log q).
With the customary assumption that Mqn(1)/n is increasing
as a function of n, it follows using (4.2) that the complete
twiddled DFFT can be computed in time

Fq;d(n) 6 n
X
i2I

Mqri(1)+O(n
2 log q)

6 n2

d
Mqd(1)+O(n2 log q):

Assuming that full DFTs of order n over Fqd are also com-
puted using the naive strategy, this yields

Fq;d(n) 6 1

d
Fqd(n) (1+ o(1)): (4.3)

In other words, for small n, we have achieved our goal to
gain a factor d.

4.4 Full Frobenius action
The next interesting case for study is when n is prime and

the action of �q on � h!i is either transitive, or has only
two orbits and one of them is trivial. If �2h!i, then !0=1
always forms an orbit of its own in � h!i, but we can have
jS j=2. If �2/ h!i, then it can happen that S is a singleton.
This happens for instance for a 9-th primitive root of unity
� 2F26, for != �32F4, and n=3.
If S is a singleton, say S = f�g, then we necessarily have

rq(�) = n= d and the DFFT reduces to a single evaluation
P (�) with P 2 Fq[x]<n and � 2 Fqn. This is precisely the
problem of modular composition that we encountered in sec-
tion 2, whence Fq;d(n)=Cq(n). The speed-up Fqn(n)/Cq(n)
with respect to a full DFT is comprised between 1 and n,
depending on the e�ciency of our algorithm for modular
composition. Theoretically speaking, we recall that Cq(n)=
(n log q)1+o(1), which allows us to gain a factor n/(n log q)�

for any � > 0.



In a similar way, if � 2 h!i and jS j = 2, then the com-
putation of one DFFT reduces to n additions (in order to
compute P (1)) and one composition modulo a polynomial
of degree n¡ 1 (instead of n).

Remark 4.1. Assume that n is prime, �2h!i and jS j=2.
If we are free to choose the representation of elements in Fqd,
then the DFFT becomes particularly efficient if we take
Fqd = Fq[!]. In other words, if � 2 Fq[x] is the monic
minimal polynomial of ! over Fq (so that deg � = d =
n ¡ 1), then we represent elements of Fqd as polynomials
in Fq[x] modulo �. Given P 2 Fq[x]<n, just writing down
P (!) = (P ¡ Pd �)(!) then yields the evaluation of P
at !, whence Fq;d(n)=Mq(1; n)+O(n log q).

4.5 Rader reduction
For large prime orders n and �2h!i, let us now show how

to adapt Rader reduction to the computation of DFFTs in
favourable cases. With the notations from section 3.2, we
have

(!g
` rem n)q = !(g

`q) rem n = !g
`+� rem n

for all `, where �<n¡1 is such that g�= q. The action of �q
therefore induces an action  q: ` 7! `+ � on Z/((n¡ 1)Z).
Let us assume for simplicity that the order � of the addi-

tive subgroup generated by � in Z/((n¡ 1)Z) is comprime
with � := (n¡ 1)/�. Then there exists an element � <n¡ 1
of order � in Z/((n¡ 1)Z) and Z/((n¡ 1)Z) =� h�i � h� i.
Consequently,

Fq�[y]n¡1
� = Fq�[y�]�

�[y�]�
�:

We may thus regard the product W = U V as a bivariate
polynomial in y� and y�. Let W~ 2Fq[y�]�

� be the constant
term in y� of this bivariate polynomial. From W~ , we can
recover P (!g` rem n) for every ` 2 h� i. By construction, the
!g

` rem n with ` 2 h� i actually form a section of h!i n f1g
under the action of �q. This reduces the computation of a
DFFT for the section S := f!g` rem n: l 2 h� ig [ f1g to the
computation of W~ .
As to the computation of W~ , assume for simplicity that

Fq contains a primitive (n¡ 1)-th root of unity. Recall that
U has coe�cients in Fq whereas V admits coe�cients in Fq�.
Notice also that V does not depend on the input P , whence
it can be precomputed. We compute W~ as follows in the
FFT-model with respect to y�. We �rst transform U and V
into two vectors Û 2 (Fq[y�]�

�)� and V̂ 2 (Fq�[y�]�
�)�. The

computation of V̂ may again be regarded as a precompu-

tation. The computation of the Fourier transform W~̂ 2Fq�
�

now comes down to � modular compositions of degree � over
Fq. We �nally transform the result back intoW~ . Altogether,
this yields

Fq;�(n) 6 2 � Fq(�)+�Cq(�)+O(n log q):

It is instructive to compare this with the cost of a full DFT
of length n over Fqn¡1 using Rader's algorithm:

Fqn¡1(n) 6 2 � Fqn¡1(�)+ 2� Fqn¡1(�)+O(n2 log q):

Depending on the e�ciency of modular composition, the
speed-up for DFFTs therefore varies between n / � and
n. Notice that the algorithm from the previous subsection
becomes a special case with parameters �=n¡1 and �=1.

5. MULTIPLE FOURIER TRANSFORMS

5.1 Parallel lifting
Let Fqd be an extension of Fq and assume that its ele-

ments are represented as polynomials in a primitive element
� 2 Fqd of degree d. Given d polynomials P0; :::; Pd¡1 2
Fq[x]<n, we may then form the polynomial

P = P0+P1�+ ���+Pd¡1�d¡1 2 Fqd[x]:

If n j q¡1 and ! is a primitive n-th root of unity in the base
�eld Fq, then we notice that

DFT!(P ) = DFT!(P0)+ ���+DFT!(Pd¡1)�d¡1: (5.1)

In other words, the discrete Fourier transform operates coef-
�cientwise with respect to the basis 1; �; :::; �d¡1 of Fqd.
Recall that Fq(n; t) stands for the cost of computing t

Fourier transforms of length n over Fq. The maps (P0; :::;
Pd¡1) 7! P0 + ��� + Pd¡1 �

d¡1 and its inverse boil down to
matrix transpositions in memory. On a Turing machine,
they can therefore be computed in time O(n d log d log q).
From (5.1), it follows that

Fq(n; d) 6 Fqd(n)+O(n d log d log q): (5.2)

This relation does not give us anything really new, since we
made the assumption in section 2 that Mq(n; t)/(n log q) is
increasing in both n and q. Nevertheless, it provides us with
an elegant and explicit algorithm in a special case.

5.2 Symmetric multiplexing
Let us next consider an s-th root of unity � and a primi-

tive n-th root of unity ! 2Fqd. Given u= � !i, we have for
all k,

�q
k(P (�q

¡k(u))) = P0(u) �q
k(1)+ ���+Pd¡1(u) �qk(�d¡1):

Abbreviating �P ;k(u) := �q
k(P (�q

¡k(u))) and setting

B=

0B@ 1 ��� �d¡1

��� ���
�q
d¡1(1) ��� �qd¡1(�d¡1)

1CA

�P(u)=

0@ �P ;0(u)
���

�P ;d¡1(u)

1A VP(u)=

0@ P0(u)
���

Pd¡1(u)

1A
it follows that

�P(u) = BVP (u):

Now given the twiddled discrete Fourier transform
DFT�;!(P ) := (P (� !i))i<n of P , we in particular know the
values P (u); :::;P (�q

d¡1(u)). Letting the Frobenius automor-
phism �q act on these values, we obtain the vector �P(u).
Using one matrix-vector product VP(u) = B¡1 �P(u), we
may then retrieve the values of the individual twiddled
transforms DFT�;!(Pi) at u. Doing this for each u 2 S
in a cross section of � h!i under the action of �q, this
yields a way to retrieve the twiddled DFFTs of P0; :::; Pd¡1
from the twiddled DFT of P .



Recall that Fq;d(n; t) denotes the complexity of com-
puting the DFFTs of t elements of Fq[x]<n over Fqd. Since
B is a Vandermonde matrix, the matrix-vector product
B¡1 �P(u) can be computed in time O(Mq(d) log d) using
polynomial interpolation [8, Chapter 10]. Given DFT�;!(P ),
we may compute each individual vector �P (u) in time
O(dMq(d) log(d q)) using the Frobenius automorphism �q.
Since there are jS j orbits in h!i under the action of �q,
we may thus retrieve the DFFT�;!(Pi) from DFT�;!(P )

in time O(jS j dMq(d) log qd). In other words,

Fq;d(n; d) 6 Fqd(n)+O(jS j dMq(d) log qd): (5.3)

5.3 Multiplexing over an intermediate field
In the extreme case when �; ! 2 Fq, every � !i 2 � h!i

has order one under the action of �q and jS j = n. In that
case, the bound (5.3) is not very sharp, but (5.2) already
provides us with a good alternative bound for this special
case. For r 2/ f1; dg with r j d, let us now consider the case
when u = � !i has order at most r under the action of �q
for all i, so that u2Fqr. Let � 2Fqr be a primitive element
in Fqr over Fq, so that Fqr=Fq[�] and Fqd=Fqr[�]. Given
our d polynomials P0; :::; Pd¡12Fq[x]<n, we may form

P[i] = Pir+ ���+Pir+r¡1 �r¡1 2 Fqr[x]<n (i <d/r)

P = P[0]+P[1]�+ ���+P[d/r¡1]�d/r¡1 2 Fqd[x]<n:

Then we have

DFT�;!(P )

= DFT�;!(P[0])+ ���+DFT�;!(P[d/r¡1])�
d/r¡1:

Moreover, we may compute (DFFT�;!(Pir+j))j<r from
DFT�;!(P[i]) for each i < d / r, using the algorithm from
the previous subsection, but with the additional property
that at least one u 2 � h!i has maximal order r = [Fqr:Fq]
under the action of �q.

If n is prime and �2h!i, then the above discussion shows
that, without loss of generality, we may assume that ! has
order d under the action of �q. This means that !i has
maximal order d for every i2 f1; :::; n¡ 1g, whereas !0=1
has order one. Hence, jS j = (n ¡ 1)/d + 1. Similarly, if n
is prime and � 2/ h!i, then we obtain a reduction to the
case when � !i has maximal order d for all i2f0; :::; n¡ 1g,
whence jS j=n/d. In both cases, we obtain the following:

Proposition 5.1. If n is prime, then

Fq;d(n; d) = Fqd(n)+O(nMq(d) log qd):

Remark 5.2. We recall that n 6 qd ¡ 1, whence log n 6
log qd. When using the best known bound (2.1) for Mq(n)
and Fqd(n)�Mqd(n), it follows for some constant C >0 that

Fq;d(n; d)

Fqd(n)
> 1+C

d log q log (d log q) 8log
� (dlog q)

log(nd log q) 8log
�(ndlog q)

> 1+8C log q log (d log q):

In other words, we cannot hope to gain more than an asymp-
totic factor of d/ log d with respect to a full DFT.

If n is not necessarily prime, then the technique from this
section can still be used for every individual u. However,
the rewritings of elements in Fqd as elements in Fqr[�] and
Fq[�][�] have to be done individually for each u using mod-
ular compositions. Denoting by ri the order of � !i under �q,
it follows that

Fq;d(n; d)

= Fqd(n)+
X
i2I

Vq(d; ri)+
X
i2I

O(riMqri(d/ri) log qd)

6 Fqd(n)+nVq(d)+O(nMq(d) log qd):

Notice that conversions of the same type correspond to mod-
ular compositions with the same modulus. If n is smooth,
then it follows that we may use the algorithms from [17] and
keep the cost of the conversions quasi-linear.

6. THE FROBENIUS FFT
Let n = m1 ��� m` and v = (m1; :::; m`) be as in sec-

tion 3.3 and let ! 2 Fqd be a primitive n-th root of unity.
In this section we present an analogue of the FFT from sec-
tion 3.4: the Frobenius FFT (or FFFT). This algorithm uses
the same mirrored indexation as the Cooley�Tukey FFT:
given P 2Fq[x]<n, it thus returns the family (P (!{�))i2I. We
start with the description of the index set I=fi<n:!{�2Sg
that corresponds to the so-called �privileged cross section� S
of h!i.

6.1 Privileged cross sections
Given i < n, consider the orbit Oq(!

{�) := h�qi(!{�) of !{�
under the action of h�qi. We de�ne

�q;v(!{�) := !|�

j := min f06 j <n:!|�2Oq(!{�)g:

Then S := im �q;v is a cross section of h!i under the action
of �q; we call it the privileged cross section for �q (and v).
Now let h 6 d, v] = (m0; :::; mh¡1), v[ = (mh; :::; m`¡1),

n] = m0 ��� mh¡1 and n[ = mh ��� m`¡1 be as above. Then
!] :=!n

[

is a primitive n]-th root of unity. Let S ] := im�q;v]
be the corresponding privileged cross section of h!]i.

Proposition 6.1. We have

S ] = Sn[ := fun[: u2Sg:

Proof. Let i= i] n[+ i[ and j= j] n[+ j[ with i]; j]<n]

and i[; j[<n[ be such that !|�= �q
k(!{�) for some k. Since

(!{�)n
[

=(!i
[n]+i])n

[

=(!i
]

)n
[

=(!])i
]

;

and similarly (!|�)n
[

= (!])j
]

, it follows that (!])j
]

=

�q
k((!])i

]

).
Inversely, given j]<n] with (!])j

]

= �q
k((!])i

]

) for some k,
we claim that there exists a j[ < n[ such that !j�= �q

k(!{�)

for j = j] n[ + j[. Indeed, (!])j
]

= �q
k((!])i

]

) implies
that (!j])n[ = (�q

k(!{�))n
[, whence !j] / �qk(!{�) is an n[-th

root of unity. This means that there exists a j[ < n[ with
!j

]

/�q
k(!{�)= (!n

]

)¡j
[

, i.e. !|�=!j
]+j[n]= �q

k(!{�).
Now assume that j is minimal with !|� = �q

k(!{�) for
some k. Given �] < n] such that (!])�

] 2 Oq((!])i
]

), the
above claim shows that there exists a �[ < n[ such that
!�
� 2 Oq(!

{�) for � = �] n[ + �[. But then j 6 �, whence
j]6 �]. This shows that !|�2S implies (!|�)n

[

=(!])j
]2S].



Inversely, assume that j] < n] is minimal such that
(!])j

]2Oq((!
])i

]

). Then the above claim implies that there
exists a j[ < n[ such that !|� 2 Oq(!

{�) for j = j]n[+ j[.
Without loss of generality we may assume that j[ was chosen
minimal while satisfying this property. Given �]<n], �[<n[

and � = �] n[ + �[ with !�
� 2 Oq(!

{�), we have (!])�
] 2

Oq((!
])i

]

). Consequently, j]6 �] and j[6 �[ whenever j]=
�]. In other words, j6 �. This shows that (!])j]2S ] implies
the existence of a j[<n[ with !|�2S and (!|�)n[=(!])j]. �

6.2 The main algorithm
We are now in a position to adapt the Cooley�Tukey FFT.

In the case when ` = 1 or n is prime, we will use one of
the algorithms from section 4 for the computation of twid-
dled DFFTs.

Algorithm FFFT!(P )
Input: P 2Fq[x]<n
Output: (P (!{�))i2I.

if `=1 then return DFFT1;!(P )
Take h= `¡ 1, n]=m0 ���mh¡1 and n[=mh ���m`¡1

Let !] :=!n
[

, ![ :=!n
]

, x] :=xn
[

Let I ] := fi]<n]: (!])i]2Sn[g
Decompose P (x)=P0

](x])+ ���+Pn[¡1
] (x])xn

[¡1

for i[<n[ do
(Pi[

]((!])i
]

))i]2I] :=FFFT!](Pi[
])

for i]2I ] do
Let Pi]

[(x) :=P0
]((!])i

]

)+ ���+Pn[¡1
] ((!])i

]

)xn
[¡1

Notice that Pi]
[ 2Fqr[x] :=Fq

�
(!])i

]�
[x],

where r is the order of (!])i
]

Let Ii]
[ := fi[<n[:!i]n[+i[2Sg

if !i]; ![2Fq[(!
])i

]

] then
Let P~i]

[(x) :=Pi]
[(!i

]

x)

Compute (Pi]
[(!i

]

(![)i
[

))i[2I
i]
[ :=FFT![

¡
P~i]
] �

else
Compute (Pi]

[(!i
]

(![)i
[

))i[2I
i]
[ <DFFT

!i];![;S
i]
[ (Pi]

])

return (P (!{�))i2I=(Pi]
[(!i

]

(![)i
[

))i]2I];i[2I
i]
[

For the usual FFT, it was possible to choose h in such
a way that n]�n[, and we recall that this improves the cache
e�ciency of practical implementations. However, this opti-
mization is more problematic in our setting since it would
require the development of an e�cient recursive algorithm
for twiddled FFFTs. This is an interesting topic, but beyond
the scope of the present paper.

6.3 Complexity analysis
Let us now perform the complexity analysis of FFFT!.

For k 2 f0; :::; ` ¡ 1g, we first focus on all FFTs and
twiddled DFFTs that are computed at �stage k� using a fall-
back algorithm. These FFTs and twiddled DFFTs are all of
length mk. Given e j e0 jd, let �k;e;e0 be the number of trans-
forms of a polynomial in Fqe[x]<mk

over Fqe
0. From (4.2),

it follows that X
eje0jd

mk �k;e;e0 e = n:

Now a naive bound for the cost of an FFT or twiddled DFFT
of a polynomial in Fqe[x]<mk

over Fqe
0 is

Fqe;e0/e(mk) 6 Fqe0(mk)+mkMqe(1): (6.1)

This means that the cost of all FFTs and twiddled DFFTs
at stage k is bounded by

Fk :=
X
eje0jd

�k;e;e0Fqe;e0/e(mk)

6
X
eje0jd

�k;e;e0Fqe0(mk)+n
Mqd(1)

d
:

Now �k;e;e 0 can only be non zero if e06mk e. Consequently,

Fk 6
X
eje0jd

�k;e;e 0 � e �
e0

e
�
Fqe 0(mk)

e0
+n

Mqd(1)

d

6
X
eje0jd

�k;e;e 0 emk
Fqd(mk)

d
+n

Mqd(1)

d

6 n

d
(Fqd(mk)+Mqd(1)):

The total cost of all FFTs and twiddled DFFTs of prime
length is therefore bounded by

F0+ ���+Fl¡1 6 n `

d
(Fqd(m� )+Mqd(1));

where m� =max (m1; :::; mk).
Strictly speaking, if e is a proper divisor of e0, then the

output of a twiddled DFFT of a polynomial in Fqe[x]<mk

over Fqe
0 does not use the �standard� representation for Fqe

0,
so the result must be converted. The cost of all such con-
versions at stage k is bounded by

Ck :=
X
e=/ e 0jd

�k;e;e0Vq(e0; e)

6
X
e=/ e 0jd

mk �k;e;e0 e
Vq(d)
d

For a number a with prime factorization a = p1
i1 ��� prir, let

�(a) := i1+ ���+ ir. We also denote Nk;e=
P

eje 0mk �k;e;e0 e

and notice that Nk+1;e0=
P

eje0mk �k;e;e0 e. Let us show by
induction over k that

C0+ ���+Ck¡1 6
X
ejd

Nk;e�(e)
Vq(d)
d

:

This is clear for k=0, since N0;1=n and N0;e=0 for e> 1.
Assuming that the relation holds for a given k, we get

C0+ ���+Ck 6
X
eje0jd

mk �k;e;e0 e �(e)
Vq(d)
d

+

X
e=/ e 0jd

mk �k;e;e0 e
Vq(d)
d

6
X
eje0jd

mk �k;e;e0 e �(e
0)
Vq(d)
d

=
X
e0jd

Nk+1;e0�(e0)
Vq(d)
d

:

This completes the induction and we conclude that the total
conversion cost is bounded by

C0+ ���+C`¡1 6 n�(d)
Vq(d)
d

:

This concludes the proof of the following result:



Theorem 6.2. If m0; :::;m`¡1 are all prime, then

Fq;d(n) 6 n
d
(`Fqd(m� )+ `Mqd(1)+�(d)Vq(d));

where m� =max (m1; :::;m`¡1).

Remark 6.3. If the mk are very small, then we have shown
in section 4.3 that (6.1) can be further sharpened into

Fqe;e 0/e(mk) �
e

e0
Fqe0(mk):

As a consequence, the bound for Fq;d(n) becomes

Fq;d(n) . n

d
(` Fqd(1)+�(d)Vq(d)):

Remark 6.4. It is also possible to treat the case when
e=e0 apart in the bound for Fk, thereby avoiding the factor
mk > e0/e whenever possible. A similar analysis as for the
cost of the conversions then yields

Fq;d(n)

6 n

d

�
`
Fqd(m� )
m�

+ `Mqd(1)+�(d) Fqd(m� )+�(d)Vq(d)

�
:

Whenever we can manage to keepm� and Vq(d)/d small with
respect to `, this means that we gain a factor d with respect
to a full DFT.

6.4 Frobenius FFTs over 𝔽260

Let us now study the special case when q=2 and d= 60.
This case is useful for the multiplication of polynomials P ;
Q 2 F2[x] with P Q 2 F2[x]<n. The idea is to compute the
Frobenius FFTs (P (!{�))i2I and (Q(!{�))i2I, to perform the
pointwise multiplications ((PQ)(!{�))i2I and to retrieve P Q
by doing one inverse Frobenius FFT.
Modulo zero padding, we have some flexibility in the

choice of n, which should divide 260 ¡ 1. In particular,
for polynomials P and Q of large degree, we may choose n
to be a multiple of 61 and take m1= 61 and h= 1 (instead
of h= `¡1) for the top call of the algorithm FFFT from sec-
tion 6.2. By selecting the representation of F260 as explained
in Remark 4.1, this means that F2[(!])i

]

] = F2 for a single
i] = 0 and F2[(!

])i
]

] =F260 for the remaining 60 indices
0< i]< 61. In other words, one Frobenius FFT of length n
reduces to one Frobenius FFT of length n/61 and one full
FFT over F260 of length n/61.
We choose the remaining m2; :::; m` to be small prime

numbers, so as to minimize the cost of the full FFT over F260

of length n/61. For the remaining FFFT of length n/61, we
may then apply Theorem 6.2 and Remark 6.3. From a prac-
tical point of view, the computation of this remaining FFFT
should take about c/60 times the time the computation of
a full FFT of length n/61 for some small constant c> 1.
We conclude that one entire FFFT of length n can be

performed approximately 61 ¡ c times faster as a full
FFT of length n. We hope that this will lead to practical
implementations for polynomial multiplication in F2[x] that
are approximately twice as e�cient as the implementation
from [12].
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