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Abstract

We continue the study of automatic transseries, which has been started

in the previous paper on general algorithms. We start by giving algorithms

for expanding solutions to polynomial equations and then proceed with dif-

ferentiation, integration, functional composition and inversion. Functions,

constructed by a succession of these operations can also be handled.
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1 Introduction

In [VdH 94] we have put Gonnet and Gruntz' algorithm to expand exp-log functions

in a theoretical perspective. In this paper we will show that the technique used na-

turally extends to obtain automatic expansions of more general types of functions.

Our results slightly generalize those of Shackell, which were obtained by his tech-

nique of nested expansions (see [Sh 91], [SalSh 92]). Furthermore, our approach is

expected to be a little bit more e�cient (at least, a constant factor should be gai-

ned). Before we run actual benchmarks, we think that in any case our algorithms

are a bit simpler and we think that the obtained expansions are a bit more natural

than nested expansions.

In section 2, we consider solutions to polynomial equations and we use the stan-

dard technique to expand them. In section 3, we consider derivatives and integrals.

The \upward movement" technique (see [GoGr 92]) will be used to get rid of loga-

rithms in the expansions. Then derivatives and integrals of standard expansions can

easily be computed. Results are converted back by using \downward movement".

Here we essentially use the fact that we expand w.r.t. normal and not w.r.t. weakly
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normal bases. Finally, in section 4, we show how to deal with functional composi-

tion and inversion and we will see that the methods used rely on the computation

of derivatives from section 3.

We observe that in the cases of solving polynomial equations and integration,

solutions are not unique. In the case of polynomials, there are only a �nite number

of solutions and we will show that is possible to select particular ones. Alternatively,

one perform computations on the entire solution set, and we will speak about generic

transseries. In the case of integration, these generic transseries depend on continuous

parameters and constant problems arise, if we want to select a particular solution.

We will not go into these problems here and refer to [VdH *a] and [VdH *b] for a

more detailed discussion in a more general context.

Finally, we remark that we use the same notation as in [VdH 94] and we will refer

to this paper by pre�xing the numbers of theorems and such by I. We would like to

thank J.M. Steyaert for many suggestions and the detection of a certain number of

errors in previous versions of this article.

2 Polynomial equations

We will show how to expand real algebraic exp-log functions, which are functions

build up with x, Q, �eld operations, exponentiation, logarithm and solving real alge-

braic equations. As usual, we start by examining the case of equations in K[[x

A

]],

where A is a totally ordered abelian group. Moreover, we suppose that for each

� 2 A and n 2 N

�

there exists a � in A with � = n�.

Theorem 1. If K is a (real) algebraically closed �eld, then so is K[[x

A

]].

Proof. We will have to show, that given a polynomial equation P ('), with P 2

K[[x

A

]]['], all (real) solutions of the equation lie in K[[x

A

]]. By considering the

g.c.d. of P and @P=@', we may assume without loss of generality that P has no

multiple roots. We adapt a classical argument from the theory of Puiseux series.

Let us �rst deal with the case when A is Archimedian.

We will search solutions to the equation P (') = 0 of the form ' =  + '

0

,

where �

'

0

> � � max supp . Moreover, we will make the assumption that  is

a potential start of order � of a solution to P (') = 0. That is, if we consider the

equation P (') = 0 as an equation

P

0

n

('

0

)

n

+ � � �+ P

0

0

= 0

in '

0

, there exists an i such that �

P

0

j

+ j� � �

P

0

i

+ i�, for each j, and where the
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inequality is strict when j = 0. If this is the case, we de�ne

1

�

0

= minf�

0

> �j9i>j8k �

P

0

k

+ k�

0

� �

P

0

i

+ i�

0

= �

P

0

j

+ j�

0

g

and � = �

P

0

i

+ i� = �

P

0

j

+ j�, for corresponding i and j. We also de�ne

(P

0

n

)

��n�

0

�

n

+ � � �+ (P

0

0

)

�

= 0

to be the dominant equation associated to ( ; �). The equation is of the form Q(�)

in K, where Q is the dominant polynomial , with coe�cients in K. We claim three

points:

(a) Each (real) solution � to the dominant equation induces a new potential start

 

0

=  + �x

�

0

of order �

0

of a solution to P (') = 0.

(b) The degree of the dominant equation associated to this new potential start is

equal to the multiplicity of the root �.

(c) Whenever the dominant equation is of degree 1, then the potential start gives

rise to a unique solution to P , which lies in K[[x

A

]].

We �rst prove (a). Let

P

00

n

('

00

)

n

+ � � �+ P

00

0

= 0

be the polynomial equation, rewritten in '

00

= '�  

0

. We have

P

00

j

= P

0

j

+ � � � +

 

n

j

!

P

0

n

�

n�j

x

(n�j)�

0

;

for each j and � = �

P

0

i

+ i�

0

for some i, which we may suppose maximal. Therefore,

�

P

00

j

+ j�

0

� max

j�k�n

�

P

0

k

+ k�

0

� �

P

0

i

+ i�

0

;

for each j. Moreover, for k > i, we have �

P

0

k

+k�

0

< �

P

0

i

+i�

0

, so �

P

00

i

= �

P

0

i

. Finally,

�

P

00

0

> �

P

00

i

+ i�, since � is a root of the dominant equation.

Next, we prove (b). Let Q be the dominant polynomial, which is of degree i (with

i as in the proof of (a)). Then we observe that (P

00

j

)

��j�

0

= (@

j

Q=@�

j

)(�). Let m be

the multiplicity of the root �. We deduce that �

P

00

m

= � �m�

0

and �

P

00

j

> � � j�

0

for j < m. Now let l and �

00

be such that

�

P

00

k

+ k�

00

� �

P

00

l

+ l�

00

= �

P

00

m

+m�

00

;

for 0 � k � m. It is straigtforward to verify that the equation is veri�ed for all

k, that �

00

is minimal with the property that there exist l;m such that the above

1

This de�nition can be interpreted graphically in terms of Newton polygons: suppose that we

plotted the �

P

0

i

's as a function of i and take the lower part of the convex hull of this graph. Then

��

0

is the smallest slope bigger than ��.
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inequality is veri�ed for each k, and that m is maximal satisfying this property.

Therefore m equals the degree of the dominant polynomial with respect to ( 

0

; �

0

).

Finally, let us prove (c). By dividing the P

0

i

's by x

�

P

0

0

, we may assume without loss

of generality that �

P

0

1

= 0. Let S = (suppP

0

0

� �

P

0

0

[ � � � [ suppP

0

n

+ (n� 1)�

P

0

0

)

�

.

Now if we repeat the procedure to compute new potential starts, by (b) the do-

minant equation remains linear. We claim that the dominant exponents will all

be included in the �nitely generated S, thus proving (c). Indeed, we already

have �

P

00

0

� �

P

0

0

2 S. Next, for each j � 1, we have suppP

00

j

+ (j � 1)�

P

0

0

�

S

0�i�n�j

P

00

j+i

+ i�

P

0

0

� S + (j � 1)(�

P

00

0

� �

P

0

0

) � S. Similarly suppP

00

0

� �

P

00

0

2 S.

Therefore (suppP

00

0

� �

P

00

0

[ � � � [ suppP

00

n

+ (n� 1)�

P

00

0

)

�

� S, and we apply an

easy induction argument to conclude.

Now suppose that we have a chain  ; 

0

;  

00

; � � � of potential starts of orders

�; �

0

; � � � , where each one is obtained from the previous one, in the way described

above. We start with  = 0 and � = �1. We claim that the degrees of their

associated dominant equations are ultimately equal to d = 1. Suppose that this is

not the case, and that d > 1. Then we observe that each  

(i)

is also a potential

start of some root to each of the (@

j

P=@'

i

)'s, with 1 � j � d � 1. But this root

is an element of K[[x

A

]], because the degree of the dominant equation of  

(i)

, for

some large i and with respect to @

d�1

P=@'

d�1

, is equal to 1. Therefore, P and P

0

have a common root, which contradicts our hypothesis. Finally, from our claim and

(c) we deduce that the potential starts converge term by term to a root of P .

In the case of an algebraically closed �eld, the property (b) implies that there

are exactly n distinct chains of potential starts such as above. These chains give

rise to exactly n distinct roots of P . As K[i] is algebraically closed if K is real

algebraically closed, we also deduce that P admits exactly n solutions in K[i][[x

A

]].

Moreover each root ' of P which lies in K[i][[x

A

]]nK[[x

A

]] is imaginary, because

K[[x

A

]]['] = K[i][[x

A

]]. Therefore all real roots of P are also obtained as limits of

chains of potential starts.

We �nally have to prove the theorem, when A is not Archimedian. Now the rea-

der may check that the coe�cients P

0

; � � � ; P

n

can be embedded in K[[x

1

; � � � ;x

k

]],

for suitable x

1

; � � � ; x

k

, so that we only need to verify the theorem when K[[x

A

]] =

K[[x

1

; � � � ;x

k

]] (in fact, this is the only case which interests us). Applying repeated-

ly what we have proved already, we know thatK[[x

1

]] � � � [[x

k

]] is (real) algebraically

closed. It is not hard to check that if the coe�cients of the polynomial all have �-

nitely generated support, then so have its solutions. ~

Remark. The property (c) can also be seen as the result of some kind of im-

plicit function theorem for multiseries. In later papers, where we will solve more

complicated equations, we will see that similar properties can be deduced from ge-

neralisations of the implicit function theorem.
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Let us now establish the e�ective version of the above theorem, which extends

lemma I.1. We will make the same assumptions. A �eld K is said to be an algorithmic

(real) algebraically closed �eld , if K is an algorithmic (ordered) �eld and if we can

�nd the set of (real) solutions to a polynomial equation with coe�cients in K by

algorithm. We then have the

Lemma 1. If M is an algorithmic (real) algebraically closed �eld, then so is M

a

.

Proof. The proof is similar to the proof of lemma I.1. We remark that we can

indeed compute the g.c.d. of P and @P=@' by the euclidean algorithm in the algo-

rithmic polynomial ringM

a

[']. Moreover the property (b) ensures that the number

of branches in the computation of the solution set (for di�erent choices of solutions

to the dominant equations) remains bounded by n. ~

Remark. In the algorithmic context, the absence of multiple roots ensures that

after a �nite number of computations we are able to decide which potential starts

give rise to solutions. In cases where two solutions have a lot of initial terms in

common, this �nite number might however be very big. The algorithm can then be

accelerated by computing solutions to the equation P ( + '

0

) = 0, where  is an

appropriate root of @P=@'. Alternatively, Sturm sequences can be used to isolate

roots and to count their number.

Remark. By the lemma, we know how to compute the set of solutions to an

algebraic equation in M

a

. Algorithms that give the set of multiseries which are

solution to some problem will be called automatic generic multiseries . Similarly,

we have automatic generic transseries . However, we often want to �x some parti-

cular solution. In the present case, this implies that we have to rank the solutions

using some numbering convention. There are two ways of doing this: numbering

the s � n solutions in increasing order, or numbering them loosely in increasing

order by possibly inserting \illegal" solutions, which correspond to the imaginary

solutions. For example, the equation '('

2

� 2' + 1 + x

2

)('� 2) = 0 has 0; 1 � ix

and 2 as solutions. The �rst convention would give '

1

= 0 and '

2

= 2; the second

one '

1

= 0 and '

4

= 2. From a computational point of view, the second one can be

implemented e�ciently, because we don't need to compute the entire set of solutions

�rst, in order to compute a particular solution.

Let us now generalize theorem 2 to real algebraic exp-log functions. We proceed

by representing real algebraic exp-log functions by real algebraic exp-log expressions,

which are trees, whose leafs are labeled by x or rational numbers and whose nodes

are labeled by the operators +;�; �; =; exp; ln, or (n + 1)-ary operators P

i

, with

1 � i � n. If f

0

; � � � ; f

n

are transseries, which can be represented by real algebraic

exp-log expressions, then the i-th solution (using some numbering convention) to
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the equation

f

n

'

n

+ � � �+ f

0

= 0;

will be represented by P

i

(f

0

; � � � ; f

n

). Hence, by structural induction, we can re-

present all real algebraic exp-log functions. Moreover, this representation has the

advantage that if we have expansions of the f

i

's w.r.t. some common normal base

B, then the preceding lemma implies that all solutions to the equation will also have

expansions w.r.t. B.

We �nally need to pay some attention to the constants problem. Shackell esta-

blished a zero-equivalence algorithm for solutions to algebraic di�erential equations,

modulo the algebraic exp-log constants problem (see [Sh 89b]) and modulo the pos-

sibility to �nd the corresponding initial conditions to a given problem. The algebraic

exp-log constant problem has been solved by Richardson (see [Rich 92]). Next, we

have to be able to �nd the corresponding initial conditions to a given solution to a

polynomial equation. We will show in [VdH *b] how to do this. Under the above

assumptions, we have the following extension of the expansion algorithm:

Extension to expand(f). Adds the case of an expression f whose root is labeled

by P

i

to the expansion algorithm.

case f = P

i

(f

1

; � � � ; f

n

): Compute standard expansions of f

1

; � � � ; f

n

and apply

lemma 1 to obtain a standard expansion of f .

As an application, we have

Theorem 2. Schanuel's conjecture implies that the �eld of real algebraic exp-log

functions is an automatic expansion �eld. ~

3 Di�erention and integration

The �eld of transseries can easily be given a derivation

0

and a composition operator

�, where f � g is de�ned, whenever g��1 and g > 0. We leave it as an exercise to the

reader to include these de�nitions in a natural way in the de�nition of transseries

(see section I.4). De�nitions are also given in [Ec 92]. Still alternatively, by using

abstract algorithmic arguments, the reader can verify that the algorithms given in

this and the next section can also serve as de�nitions. Finally, we will denote by

^

f

the logarithmic derivative f

0

=f of f .

Before coming to algorithms, we discuss the principle of upward and downward

movements or shiftings. If f is a transseries for which we computed a standard

expansion, then we claim that we can easily obtain standard expansions for f � ln

n

and f � exp

n

, for any n 2 N (here exp

n

= exp �

n�

� � � � exp). Indeed, it su�ces to
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show this for n = 1. Now if B is a normal base, we can shift this base upwards, by

replacing each element g 2 B by g � exp (of course, we replace ln

n+1

expx by ln

n

x).

Then we observe that this yields a normal base for f � exp (possibly we will have to

insert x in the shifted base). Similarly, we can shift B downwards, which yields a

base for f � ln. We will note f"

n

= f � exp

n

and f#

n

= f � ln

n

. Similarly, we de�ne

B"

n

and B#

n

.

Now let us show why this principle is very usefull, when doing automatic a-

symptotic di�erential calculus. Consider for example f

1

= 1=(1 � e

�x

) and f

2

=

1=(1 � ln

�1

x). The derivative of f

1

can be computed in a straightforward way,

by expanding f

1

in e

x

and then di�erenting componentwise. In the case of f

2

this

doesn't work, because the derivative should �rst be expanded in x, due to the loga-

rithm occuring in f

2

. Now the technique of shifting can be used to avoid this second

possibility. Indeed, if ln

n

x were the smallest element (w.r.t. ���) occuring in the

standard expansion of some f (that is the smallest element of a normal subbase of B

w.r.t. which f can be expanded), then shifting f and B upwards n times eliminates

all occurences of ln in the expansion of f . Furthermore, the derivatives of f; f"

n

and f#

n

are related by (f"

n

)

0

= E

n

f

0

"

n

and (f#

n

)

0

= L

n

f

0

#

n

, where

8

>

<

>

:

E

n

(x) = expx � � � exp

n

x

L

n

(x) =

1

x � � � ln

n�1

x

:

When doing more complex di�erential calculus, further shifting need sometimes

to be done. For instance, when computing integrals, the integration of 1=x intro-

duces logarithms. However, if ln

n�1

is smallest element occuring in the standard

expansion of some f , then f"

n

can be expanded w.r.t. g

1

���� � � ���g

k

, with x���g

1

,

and no logarithms will be introduced when integrating f . By convention, n may

be equal to 1. In [VdH *a] we will see that even further upward shifting may be

necessary when dealing with algebraic di�erential equations.

We now give algorithms to compute derivatives and integrals. Of course, it is

necessary to suppose that T is algorithmically stable under di�erention and integra-

tion. We refer to [Sh 89], where it is proved that the set of functions verifying an

algebraic di�erential equation over Q is an algorithmic �eld stable under di�erention

and integration, under the restriction that the initial conditions are given w.r.t. an

algorithmic sub�eld of R. In order to integrate expansions we will need to solve

Risch di�erential equations, that is equations of the type f

0

= f

1

f + f

2

. We will

note by I(f

1

; f

2

) a solution to this equation; in particular

R

f

2

= I(0; f

2

). Moreo-

ver, if f

1

and f

2

are not constants, we require that I(f

1

; f

2

) can be expanded w.r.t.

x���g

1

��� � � ����g

k

, if g

k

is the biggest element of B occuring in the expansions of

f

1

and f

2

. For instance, f = e

e

x

is an illegal solution to the equation f

0

= e

x

f .

Finally, we refer to the introduction for a discussion on the selection of particular

integration constants for I(f

1

; f

2

).
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Extension to expand(f). Adds the case of an expression f whose root is labeled

by

0

or I to the expansion algorithm.

case f = f

0

1

: If f

1

is a constant, then f = 0. Else, compute a standard expansion of

f

1

and determine the smallest iterated logarithm ln

n�1

x occuring in the expansion

of f

1

. Let g be the biggest element of B"

n

occuring in the expansion of f

1

"

n

.

Recursively expand ' = f

1

"

0

n

w.r.t. g

�1

by computing the

'

�

= ((f

1

"

n

)

�

)

0

� �(f

1

"

n

)

�

ĝ:

Finally, we translate the obtained expansion for ' back using the identity f =

L

n

'#

n

.

case f = I(f

1

; f

2

): If f

1

and f

2

are constants, then f = f

2

x, if f

1

= 0, and f =

�f

2

=f

1

, if f

1

6= 0. Else, compute standard expansions of f

1

and f

2

and determine the

smallest iterated logarithm ln

n�1

x occuring in these expansions. Put '

1

= E

n

f

1

"

n

and '

2

= E

n

f

2

"

n

. Let g be the biggest element of B"

n

occuring in the expansions

of '

1

and '

2

. Recursively expand a solution of the equation (f"

n

)

0

= '

1

f"

n

+ '

2

w.r.t. g

�1

using either

(f"

n

)

�

= I

0

@

'

1;0

+ �ĝ; '

2;�

+

X

�>0

'

1;�

(f"

n

)

�

�

1

A

;

if �

'

1

� 0, or

(f"

n

)

�

=

�1

'

1;�

'

1

0

@

'

2;�+�

'

1

+ (� + �

'

1

)ĝ(f"

n

)

�+�

'

1

� (f"

n

)

0

�+�

'

+

X

�>�

'

1

'

1;�

(f"

n

)

���

1

A

;

if �

'

1

< 0. In these two cases we take (f"

n

)

�

= 0, for � < �

'

2

, resp. � < �

'

2

��

'

1

.

Finally, f"

n

#

n

yields the expansion of f .

The algorithm is justi�ed by the fact that as B"

n

is a normal base, and if

g = e

h

2 B, then ĝ = h

0

can be expanded w.r.t. elements of B which are strictly

smaller than g. Indeed, this can be seen by using a simple induction argument over

the cardinality of B"

n

. We remark that in the case of the derivative no new elements

need to be inserted in B, (if, by coincidence, x had to be inserted in B"

n

, we may

remove it, when shifting back).

4 Functional composition and inversion

Let us now treat functional composition and inversion. As usual, we suppose that

T is algorithmically stable under composition and functional inversion. We claim

that this is the case, if T is the sub�eld of R[[[x]]] of functions verifying an algebraic
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di�erential equation over Q, with real algebraic exp-log initial conditions (modulo

Schanuel's conjecture).

Suppose �rst that f and g are in T, with g > 0 and g��1. Then the family

f �g; (f �g)

0

= g

0

(f

0

�g); � � � has �nite algebraic trancendence degree and for example

by Gr�obner basis techniques one can �nd a non trivial algebraic di�erential equation

veri�ed by f � g. Alternatively, one observes that the (f

(i)

� g)'s are given by

f

(i)

� g = P

i

((f � g)

0

; � � � ; (f � g)

(i)

; g; � � � ; g

(i)

)=(g

0

)

2i+1

, for certain polynomials P

i

.

We get an algebraic di�erential equation for f � g, by composing the equation for f

with g and then substituting the (f

(i)

� g)'s by the above formulas. The obtained

equation has coe�cients in Q[g; g

0

; � � � ], but can be transformed to yield one over Q,

by using the algebraic di�erential equation for g.

Suppose now that g � f = x, with g > 0 and g��1. Then the g

(i)

's are rational

fractions in the (f

(i)

� g)'s. We can therefore compute an algebraic relation between

the (f

(i)

�g)'s and g. Right composition by f yields an algebraic relation between the

f

(i)

's and x. From this equation it is easy to obtain a di�erential algebraic equation

for f .

As to the initial conditions, it su�ces to choose a \good" exp-log constant x

0

as

our point of analyticity. In the case of composition, g should be analytic at x

0

and

f at g(x

0

). In the case of inversion, x

0

should be the image of a regular point of

analycity of g. It therefore su�ces to take x

0

su�ciently large. In practice, random-

ly chosen small x

0

should (almost always) do as well. Finally, the initial conditions

are given by exp-log constants, whenever the initial conditions for (f and) g are.

In particular, this is the case when (f and) g are constructed by the operations

considered so far, with the exception of integration.

Extension to expand(f). Adds the case of an expression f whose root is labeled

by ^ , �, or

inv

to the expansion algorithm.

Case f = f

c

1

(where c is a constant): Put the standard expansion of f

1

in the

form f

1

= (f

1;�

+

P

�>0

f

1;�

 

���

) 

�

. Then we get an expansion of f by extracting

coe�cients from

f

c

= (f

1;�

+

X

�>0

f

1;�

 

���

)

c

 

�c

:

The f

c

1;�

are computed recursively.

Case f = f

1

�f

2

: Compute standard expansions of f

1

and f

2

. Let us show �rst that

without loss of generality, we may assume that no logarithm occurs in the expansion

of f

1

. This can be done by determining the smallest iterated logarithm ln

k

occuring

in the expansion of f

1

. Then shift f

1

, f

2

and B upwards k times. We �nally compute

f

1

� f

2

= (f

1

"

k

� ln

k

f

2

"

k

)#

k

.

Determine the elements g

1

��� � � ����g

n

of B, occuring in f

1

. Recursively com-

pute standard expansions of the (g

i

� f

2

)'s (a \remember option" is used for this

computation), by g

i

�f

2

= exp(h

i

�f

2

), where g

i

= exph

i

. We remark that although



Common operations 10

no logarithms may occur in the expansions of the g

i

's, they might occur in B itself.

Let  be the biggest element occuring in the expansions of f

2

and the (g

i

� f

2

)'s.

We distinguish two cases:

If g

n

� f

2

�� , we put the standard expansion of g

n

� f

2

in the form g

n

� f

2

=

((g

n

� f

2

)

�

+

P

�>0

(g

n

� f

2

)

���

 

���

) 

��

, with � > 0. Let f

1

=

P

�

f

1;�

g

�

n

be the

standard expansion of f

1

w.r.t. g

n

(thus, exceptionally, f

1;�

is not the coe�cient of

 

��

in f

1

). Then the standard expansion of f is obtained by extracting coe�cients

from the formula

f

1

� f

2

=

X

�

 

X

�

(f

1;�

� f

2

)

�

 

�

!

0

@

(g

n

� f

2

)

�

+

X

�>�

(g

n

� f

2

)

�

 

���

1

A

�

 

���

:

If g

n

� f

2

��� , we have necessarily �

f

2

= 0, because g

n

is bigger or equal to x for

���. Decompose f

2

= f

2;0

+ ". Next compute g

i

� f

2;0

= (g

i

� f

2

)

0

, for each i. Then

the standard expansion of f is obtained by extracting coe�cients from

f

1

� f

2

= f

1

� f

2;0

+ f

0

1

� f

2;0

"+ � � � :

Case f = '

inv

: Compute a standard expansion of f and let g 2 B be such that

'��g. If g = e

h

then compute f by f = (ln �')

inv

� ln. If g = ln

k

x, with k > 0,

then compute f by f = exp

k

�(' � exp

k

)

inv

. Finally, the case g = x is reduced to

the case, where ' = x+ ", with "��1 by using the formula '

inv

= exp �(x=c � ln�' �

exp)

inv

�x=c � ln, for suitable c. Next, determine the smallest iterated logarithm ln

k

occuring in the expansion of '. We then reduce the general case to the case when

k = 0, by writing f = exp

k

�(ln

k

�' � exp

k

)

inv

� ln

k

. Let  be the biggest element of

B occuring in the expansion of '. Put ' = '

0

+ ". Then we recursively expand f

w.r.t.  by extracting coe�cients from

x =

X

��0

(f

�

� '

0

+ f

0

�

� '

0

"+ � � � )( � '

0

+  

0

� '

0

"+ � � � )

��

:

In particular, f

0

= '

inv

0

.

Let us justify the composition algorithm. We will prove its termination by in-

duction over the pair (jBj; n), where jBj designates the cardinality of B. We claim

that after having computed the (g

i

� f

2

)'s, no new elements have to be inserted into

B, during the remaining part of the computations. This holds, under the condition

that all constant powers of functions are expanded using the special algorithm we

have given for this case. We have to consider the two cases g

n

�f

2

�� and g

n

�g

2

��� .

In the �rst case, the f

1;�

� f

2

can be computed by reccurence, because f

1;�

can

be expanded w.r.t. g

1

; � � � ; g

n�1

and our claim holds by induction, because g

1

�

f

2

; � � � ; g

n�1

� f

2

have already been computed (and remembered). But then the
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coe�cients in the expansion of f are linear combinations of products of the (f

1;�

�f

2

)

�

and the (g

n

�f

2

)

�

times constant powers of (g

n

�f

2

)

�

. These can clearly be computed

without inserting new elements into B.

In the second case, it is easy to verify the formula g

i

� f

2;0

= (g

i

� f

2

)

0

by induc-

tion. Therefore no new elements have to be inserted into B for their computation.

Moreover, f

2;0

and the (g

i

� f

2;0

)'s can all be expanded w.r.t. B � f g. By the

remark at the end of the last section, it follows also that the f

(i)

1

's can be expanded

w.r.t. g

1

; � � � ; g

n

. Therefore, the recursive application of expand is justi�ed.
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