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Let K be a subfield of C. A holonomic function (over K) is an analytic func-
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Abstract

A holonomic function is an analytic function, which satisfies a
linear differential equation with polynomial coefficients. In particular,
the elementary functions exp, log, sin, etc. and many special functions
like erf, Si, Bessel functions, etc. are holonomic functions.

Given a holonomic function f (determined by the linear differential
equation it satisfies and initial conditions in a non singular point z),
we show how to perform arbitrary precision evaluations of f at a non
singular point z’ on the Riemann surface of f, while estimating the
error.

Moreover, if the coefficients of the polynomials in the equation for
f are algebraic numbers, then our algorithm is asymptotically very
fast: if M(n) is the time needed to multiply two n digit numbers,
then we need a time O(M (nlog? nloglogn)) to compute n digits of

f(Z).

Introduction

tion f, which satisfies a linear differential equation

where P, ---, P, are polynomials in K[z] with P, # 0. The elementary
and many special functions like erf, Si, - - -, Bessel
functions, hypergeometric functions, etc. are holonomic. The class of holo-
nomic functions also admits several interesting algebraic properties which we
recall in section 2.1, and has recently been the object of intensive study in

functions exp, log, sin, - - -

By(2)fP(2) + -+ + Po(2) f(2) = 0,

computer algebra and mathematics (e.g. [12, 8, 16]).



The objective of this paper is to study holonomic functions from the ezact
numerical point of view: we require that all complex z numbers we compute
with are effective, i.e. for any rational ¢ > 0 we can compute a “Gaussian
rational” z € Q[i] with |2 — z| < e. In this context, we are interested in
algorithms to evaluate holonomic functions. Of course, some care is needed
here, since f is actually defined on a Riemann surface R. Given effective
initial conditions

f(2)
F(z) = : : (2)
fo0(2)
for f in a point z, and a suitably discretized path z ~» 2z’ on R, we therefore
want to compute f at 2z’ by following the path. In cases where no confusion
is possible, we will nevertheless implicitly identify points on R with their

projections on C.
The following three issues we be discussed in this paper:

Q1. How to guarantee the exactness of evaluation algorithms?
Q2. What is the asymptotic complexity of computing n digits of f(z')?

Q3. How does the choice of the path z ~» 2’ influence the complexity of
effective analytic continuation? In particular, what happens if the path
approaches a singularity?

The remainder of the introduction is devoted to a brief discussion of these
questions. We notice that much of the material presented here also appeared
in [15], but we think that the presentation in the present paper is more
elegant. The section 4.1 and algorithm B from section 2.2 are new.

1.1 Effective bounds

Since all our analytic continuation algorithms will be based on power series
evaluations, question Q1 reduces to the problem of computing bounds of the
form

vk |fe] < AB (3)
for the coefficients fj of the Taylor series
flz+u) = fo+ fru+ fou® + - (4)



in a non singular point z, where f,---, f®=1) are known. Now it is a well
known fact that the zeros wy, - -+ ,w, of B, are the only possible singularities
of f. Therefore, denoting by §(z) the distance between z and the set of these
zeros, we may even require B > 6(z)"! to be given and ask for an A such
that (3) holds.

Another, equivalent problem would be to compute an upper bound C for
|f| on a sufficiently small compact disk D(z,r) with center z, say of radius
r < §(z). Indeed, this yields the estimation

211 uk+1 rk

|fk| =

for the coefficients fx. On the other hand, given bounds (3), we have

A
1—-rB

|f] <

on any compact disk with center z and radius 0 < r < %. In section 2, we
prove

Theorem 1. There exists an algorithm which given z, 0 < r < §(z) and
F(z) computes an upper bound C' for |f| on D(z,r).

1.2 Fast multiple precision evaluations

For certain purposes it is interesting to evaluate holonomic functions up
to many digits. First, this question is of theoretical interest, since many
special functions are holonomic. Secondly, fast evaluation algorithms up
to several hundreds of digits can be used in computer algebra systems in
reliable heuristic zero tests for constant expressions involving special and/or
holonomic functions. Finally, evaluations up to thousands or millions of digits
can be used in order to obtain statistical information about real numbers,
which finds its application in analytic number theory research.

In what follows, M(n) denotes the time complexity to multiply two n
digit numbers and we make the standard assumption that A (n)/n is mono-
tonic for n — oo. Asymptotically, M(n) = O(nlognloglogn), when us-
ing FFT-multiplication [1, 7], but for intermediate precisions, Karatsuba’s
O(n'°83/1982) algorithm [7] is faster. When we measure the complexity of the
evaluation of a function in a point, we will only count the time spent on the



real evaluation. In our case of analytic continuation, this means that we do
not count the time needed to compute O(n) digits of 2, 2/, f(2),---, f?~I(2),
if we need n digits of f(2').

For the evaluation of elementary functions, several fast algorithms are
known, such as binary splitting [3], which has time complexity
O(M(nlog’n)) and the AGM method [4, 11, 2|, of complexity
O(M(nlogn)). Although the AGM algorithm is asymptotically faster, bi-
nary splitting is more efficient for precisions inferior to 1,000,000 digits.
Moreover, the binary splitting method has the advantage that it can be gen-
eralized to the evaluation of holonomic functions, if K is an algebraic number
field (usually, K = Q or K = Q[i]). In section 3 we first consider the case
when z, 2" are also in K, and we prove

Theorem 2. Assume that K is an algebraic number field and that z ~ z' =
z — 2 is the straight line path between z, 2z € K with |2' — z| < d(2). Then
n digits of f(2') can be computed in time O(M (nlog®n)).

We notice that Haible and Papanikolaou independently proved this the-
orem in the case of hypergeometric (and slightly more general) functions [6].
Moreover, they implemented the method and established a new world record
in the calculation of Apéry’s constant ((3) by computing 1,000,000 decimal
digits. Hence, binary splitting indeed becomes efficient for large precisions.
Moreover, the method can be easily parallelized, a fact which has also been
exploited by Haible and Papanikolaou.

1.3 About the choice of the path z ~ 2/

In order to treat the case when z and 2z’ are arbitrary, it is important to
study the dependency of the complexity of the algorithm from theorem 2
on z,2 € K. Let us first introduce some more notations. We denote by
size(O) the size of an object O. For instance, the size of a natural number
is its number of digits. For a fixed open domain U, we also denote by p(z)
the distance between a point z C U and the boundary of U. In section 4.1
we prove

Theorem 3. Assume that



(a) U is an open domain on which |f| is bounded.

(b) K is an algebraic number field.

(¢c) z~ 2 =2z — 2 is the straight line path between two points z,z' € K.
(d) We have D(z,|2' —z|) CU.

Denote s = size(z) + size(?') and 7 = |Z(f)z‘. Then f(2') can be evaluated

up to precision 27" in time
O(M (n(s + logn)lognlog™" 7)),
uniformly in z and 2', provided that loglogT = O(n).

In particular, we observe that analytic continuation from z to 2z’ is the
faster as the sizes of z and 2’ are smaller. Some other interesting corollaries of
the above result concern optimal choices of paths to approach or turn around
singularities; see section 4.1 for a further discussion. In section 4.3, we return
to the case when the path z ~» 2’ is arbitrary. Approximating z ~> 2’ by a
suitable broken line path (the endpoints are approached by a sequence of
algebraic numbers, where we double the precision at each step), we prove

Theorem 4. Assume that the coefficients of Py, -+, P, are in K[z]. Then
n digits of f(2') can be computed in time O(M (nlog®nloglogn)).

2 Bounds for holonomic functions

In this section we prove theorem 1. We first recall some classical facts about
holonomic functions. We next give an algorithm to compute bounds for the
coefficient of the Taylor expansion (4) of f, which yields theorem 1 by what
has been said in section 1.1.

2.1 Preliminaries

In this section we recall some interesting properties of holonomic functions

8].

Proposition 1. The set of holonomic functions over K form a K-algebra
stable under differentiation.



The proof of this proposition is actually constructive and uses elimination
techniques. We will only prove the stability of the set of holonomic functions
over K under derivation, which is the only fact we need in what follows. So
assume that f satisfies (1). Differentiating (1), we obtain

Po(2) [P (2) + (Bpoa(2) + P(2)) [P (2) + -+ +
+ (Po(2) + Pl(2))f'(2) + By (2) f(2) = 0
If Pj = 0, then this yields the required equation for f’. Otherwise, we

multiply the equation by Py(z) and subtract P;(z) times the equation (1) in
order to obtain the required equation for f’.

Proposition 2. A function f is holonomic over K if and only if the
coefficients of its Taylor series expansion

f(z+u) = fo+ fru+ fou®+ -
i any non singular point z € K satisfy a linear difference equation
Qq(k) ferg + - -+ + QoK) fir = 0, (6)
with Qo, -+, Qq—1 € K[k].
For what follows we will only need to show how to obtain a linear differ-

ence equation (6) from (1). Denoting the k-th coefficient of a power series g
in u by [u*], we have the following rewriting rules

{ [u¥]ug(u) = [u* g (u) for k> 0;
[w¥]g'(u) = (k + D)u**g(u)

Clearly, substitution of z by z 4+ u in (1) yields a linear differential equa-
tion for the power series fy + fiu + fou® + -+ with coefficients in Klu].
Applying the above rewriting rules to this equation yields a linear differ-
ence relation with coefficients in K[k] between fi, fqi1, fotr2, -+, Where k =
max (deg Py, - -- ,deg P,). Replacing k by k +  in this relation yields the
desired recurrence relation (6). Notice that Q,(k) # 0 for all k£ and that
Qi(k)/Qqu(k) = O(1) for all i and k — oc.

2.2 Computation of bounds on compact disks

In this section, we shall use the usual Euclidean norm for vectors V' with ¢

entries:
V= VP4 + V2

6



and the usual operator norm for matrices M:

[M] = sup [MV].

IVi=1

We recall that |MN| < |M| |N| for all matrices M, N.
For each k, let us denote

T
P, = :
fk+q—1

Then the linear difference equation (6) yields a matrix identity

Dpp1 = N @y
with
0 1 O
Ne=| s . 7
k 0 o ) (7)
_Qok) k) . Qqi(k)
Qq(k) Qq(k) Qq(k)

In order to estimate |fy| it therefore suffices to estimate the entries of the
product
(bk; - Nk,1 e Ng@o.

Let N4, be the matrix which is obtained formally by replacing & by infinity
in (7). Then we have
Nk = Noo + 0(1),

i.e. the difference N, — N is an error matrix whose coefficients tend to zero
for £ — co. Let ¢ > 0. We claim that there exists a computable diagonal
matrix D and an invertible matrix U, such that

|D— UNLUY <&
Indeed, we first triangulate N, and obtain an expression of the form 7" =

UN, U for some invertible matrix U. Now let i be the maximum of the

absolute values of the non diagonal coefficients of T and set A = min(ﬁﬂ, 1).



Then we take U = Diag (1, \,---, AU, where Diag (1, \,---,A"") de-
notes the diagonal matrix with entries 1, A,--- ,A\?%"!, and we let D be the
diagonal part of UN,U L.

Now for each k, we let

Dk:UNkal;
Ek :Dk_Da

Since Dy, tends to Dy = UN U ! for k — oo, there exists a constant kg
(which is easily computed, since the entries of Ej are rational fractions in k),
such that

| Bl <&, (8)
for all k > ky. Putting P = Dy,_1 -+ - Dy, we finally obtain the bound

INk—1--- No®o| = U 'Dy_y--- DUy
< U (D] + &) o P U] |90l

for all k > ky. In particular,
[fel <Valu= T IPIIUT [0l (ID] + )" "

for all k > k.

Let P,(z4+u) = cop+cru+---+cuP as a polynomial in u. Examining the
construction of the polynomials Q, - -+ , ), we observe that the coefficients
of the bottom row of Ny, are —cic; ', - ,—cpcgl. In particular the largest
eigenvalue of N, is §(2)~! and so is the largest eigenvalue of D. Hence the
above method yields an algorithm to compute a bound of the form (3). In
view of what has been said in section 1.1, this proves theorem 1. We finally
notice that it actually suffices to perform a numerical triangulation of N,
instead of an exact one in our algorithm, that is 7'~ UN,U L. Indeed, (8)
is the key bound we need. Modulo this modification, our algorithm can now
be resumed as follows:

Algorithm B. The algorithm takes a number B < §(z)~' on input and
produces a number A, such that |f;| < AB* for all k.

B1. [Triangulate] Let ¢ < B — d(2) and compute numerically a triangular
matrix 7" and an invertible matrix U, such that

IT - UNU | < 5



B2. [“Diagonalize”| Let p > max;.;|T; ;| and A < min(+=—,1).

YN
Let U := Diag (1, \,---, A\ H)U.
Let D :=Diag (UNxU )11, 5 (UNU 1) g0)-
We have
|D -~ UNLU <&
B3. [Compute ky] Compute the symbolic matrix U(N,, — N;)U ! whose
coefficients are rational fractions in k. Let K be such that the norm
each of these rational fractions is bounded by kLH for all k. Let ky > %
be an integer. We have for all k£ > ky

|D - UNUTY| < .

B4. [Return bound] Let IT > (JUNU™| + ¢K)* > | P|.
Return A > /qIIB~*|U| |U] | o]

3 Evaluation in algebraic points

In this section we assume that K is an algebraic number field and z ~~ 2 is
a straight line path z — 2’ between two points z, 2’ € K with |2/ — z| < 4(2).
We will show how the binary splitting technique can be used to compute
f(') from F(z) and (1) in an asymptotically efficient way. To guarantee
exactness of our algorithm, we assume that

sup [f(u)] < C (9)

u€D(z,r)

on a disk D(z,r) with |2’ — z| < r < §(z). The previous section yields an

algorithm to compute such a bound C' for, say, r = M%‘S(Z).
3.1 Naive evaluation of f(z')
From the Cauchy formula (5), we get the bound
[fin( = 2)™ + frog1 (2" = 2)" T 4]
Clz' = z|™ Ol — z|™*! Cr 12— 2|\
< _'_ e —
rm rmtl r— |2 — 2| T

for the tail of the Taylor series of f in z, when evaluating in 2z’ up to order
m. Let 7= ﬁ and



_ log2,
Cl — logT?

_ log2C—log(1—7—1)
Co = log T :

Then it follows that for
m 2 C’ln + 02,

we have
1f(Z) = (fo+ -+ fmr(Z —2)" N < 5.

It suffices therefore to evaluate fo + -+ + f,_1(2' — 2)™"! with error <
order to obtain an approximation for f(z') with error < e.

A “naive” way to do this would be to compute the coefficients fo,- - -, fr_1
one by one and to use Horner’s method for the evaluation of a polynomial (for
instance). We first notice that fo = f(2), -+, f_1 = f®PI(2)/(p — 1)! are
directly determined by F'(z). In order to obtain f,,---, fx_1, we use the re-
lation (1) and its derivatives up to order ¢ —p—1. The remaining coefficients
are deduced from the recurrence relation (6). Clearly the time complexity of
the evaluation of fo+- -+ f,_1(2'—2)™"1 by this naive method is O(M (n)n),
but the method has the advantage that it can also be used when z, 2z’ and
the coefficients of Fy,---, P, are not algebraic.

€ -
2lIl

3.2 The binary splitting algorithm

Let us now give a more sophisticated way to compute fo + --- 4+ f,_1(2' —
z)™~1. We first notice that the sequence fy, f1(z' —z2), fo(2'—2)?, - - - also sat-
isfies a linear difference equation of order g with coefficients in K[k], since (6)
implies

Qq(k) fraq(2 — 2)" 4+ [(2' = 2)"Qo (k)] fi (2" — 2)F = 0,

for all k. Therefore we may assume without loss of generality that 2’ —z =1,
and we just have to show how to evaluate fo+ -+ f_1.
Let ®; be defined as in section 2.2 and define

Jot+ o+ fiia
Yy = :
fq—l +"'+fq+l—2

for each k. We claim that for all £ > 0 and [ > 1, there exist matrices
My, Niy with coefficients in K, such that

10



Ygg = My Py
) ) 11
Qpyy = NPy (11)
Indeed, if | = 1, we take M, = Ny, = N, with the notations from sec-
tion 2.2. For [ > 2, we compute M, and NN, using binary splitting: let
=1y + 1y, with [; = L%J Then we take

My = Mg, + Myyi,0, Niays
Nig = Nitirsty Nig,-

Actually, in order to avoid computations with rational numbers, it is more
efficient to write My, = q,;llM,'c;l and Ny, = q,;llN,’g;l, where the numbers g,
are positive integers and the matrices M, Ni, have coefficients in the sub-
ring of algebraic integers of K. In this representation, (12) becomes

(12)

Akt = Gkl Gkslys
! _ i i 7.

Mk'l = Ak+lg;lo Mk;ll + Mk-l—ll;lz Nk;h’ (]‘3)
i _ i !

Nk'l - Nk+l1;l2 Nk;ll'

These recurrence relations yield the following algorithm to compute f(z'):

Algorithm E. Given ¢ = 27", the algorithm computes an approximation
f(2") for f(2) with |f(z") — f(2')] < &. We assume that K is an algebraic
number field and z ~ 2’ = z — 2/ with 2,2’ € K and |2/ — 2| < §(z), and
Py,---, P, € K[z

E1l. [Precomputation] Compute constants C,r,Cy,Cy with (9) and (10),
using algorithm B. Compute the difference equation (6) from (1) and
reduce the general case to the case when 2z’ — 2z = 1.

E2. [Binary splitting] Let m = max ([Cin + Cs],1).
Compute Y., using binary splitting (13).
Let L denote the first line of the matrix ¥Xo,,.

E3. [Return approximation] Compute an approximation ®q of ®, with en-
tries in K and |®g — @] < 3777 from F(2). Return L.

Let us now estimate the complexity of the algorithm. Step E1 is a pre-
computation of cost O(1). In step E2 we have m = O(n) and size(q1) +
size(My,,) + size(Ny,,) = O(logk), since the Q; are rational fractions in
K(k). By induction, it follows that size(qk;) + size(My,) + size(NVy,) =

11



O(llogk), uniformly in £ and [. Hence, the computation of M,., by binary
splitting takes a time

O(M(mlogm) +2M ([ ]logm) +-- -+ glloem/loe2] Nr (9 10g m))
= O(M(nlogn)logn) = O(M(nlog®n)).

By convention, we do not count the time to compute @, in step E3. Since
size(L) = O(nlogn) and log 577 = O(n+size(L)), the final multiplication
L takes a time O(M (nlogn)). Altogether, this proves theorem 2. We note
that the complexity bound can be improved to O(M (nlogn)) if §(z) = oco.

4 Analytic continuation

In this section, we show how to perform the analytic continuation of holo-
nomic along arbitrary paths. Throughout this section, we assume that K is
an algebraic number field.

4.1 Analytic continuation by algorithm E

Both the naive algorithm and algorithm E can actually be used — even in
two different ways — to perform the numerical analytic continuation along
z — 2/, i.e. to compute an approximation of the vector F(z') instead of
f(2') only. Indeed, a first way would be to use the fact that f/,---, fP~1
are holonomic by proposition 1. A second idea is to replace z’ by the formal
element z' + 7 in the ring K[n]/(n?) and to use either the naive algorithm or
algorithm E with coefficients in the ring K[n]/(n?) instead of K. Doing so,
the result ag+a;n+---+a, 1m7*~" of the evaluation approximates the Taylor
series expansion f(2') + f/(2)n+---+ (pil)!f(p_l)np_l of f in 2’ at the order
p— 1.

In order to perform analytic continuation along an arbitrary path, the
path first needs to be “discretized” by a broken line segment. In order to do
this in an optimal way, we must study the complexity of algorithm E, if z
and 2’ are allowed to vary in some open domain U on which |f| is bounded
by C, while ensuring that D(z, 2" — z|) C U. Then we may choose r = p(z)
as large as possible in (9). Hence, (10) implies

m = O(nlog™" 7 +log™" 7 |loglog7|),

12



uniformly in z and z’. Under the assumption that loglogT = O(n), this
simplifies to
m = O(nlog™" 7).

Let s = size(z)+size(2'). It is not hard to see that after the normalization
2" — z = 1 the total size of the recurrence relation (6) is bounded by O(s).
Hence,

size(qk;1) + size(My;) + size(Ny,,) = O(s + logk),
uniformly in z, 2/, k. Consequently,

size(qky) + size(Myy) + size(Ny,) = O(I(s + logk)),

uniformly in z, 2, k and [. We infer that the binary splitting in step E2 takes
a time

O(M(mlogm(s +logm))) = O(M(nlogn(s + logn)log ' 7)).
The final multiplication Lf®, in step E3 takes a time O(M (n(s + logn)
log ' 7)). This establishes theorem 3.
If |[f],--,]f® Y| are all bounded by C on U, then the analytic contin-

uation by algorithm E clearly has time complexity O(M (nlogn(s + logn)
log ' 7)) as well. Now reconsider the problem of discretizing

27 X ==y =2

an arbitrary path z ~» 2’ with z, 2/ € K. The uniform complexity bound for
algorithm E enables us to give some heuristics of how to choose the points
vy, -+ ,v. Clearly, it will always be beneficial to choose them such that
size(vy) + -+ - + size(v;) is as small as possible. Let us now consider two
other special cases of interest.

Turning around a singularity. Assume that z ~» 2/ =0 z is a small
circle around one of the singularities w;. Taking vg,--- ,v; on the circle, we
need to find the optimal angle by which we progress. If we progress by an
angle a = 27”, then we have

1
~ 2sin 2’
so the time needed to perform the analytic continuation is proportional to
-1
alog (2sing)’

Hence, the optimal value for a is 17.

13



Approaching singularities. An other situation which is often encoun-
tered is when U is a small open sector with a singularity w; at its cor-
ner. Given points z,z’ € K, such that 2’ lies on the line segment be-
tween z and v;, we want to perform analytic continuation along the straight
line segment between z and z’. In this case, the optimal strategy is to
choose vy, -+ - ,v; on the line segment between z and 2’ in such a way that
d(v1) = Mo(vg), -+ ,0(v) = Ad(v;_1). Then the time needed to perform the
analytic continuation is proportional to

1
log(A) log(1 — A)

and the optimal factor A is seen to be close to % Of course, in order to take

P %, the sector U should have an opening of at least T; otherwise A is taken
to be minimal such that the disks D(vg, |v1 — vol), -+, D(vi_1, |v; — vj_1|) fit

into U.

Remark. We note that if truncated power series are evaluated by the naive
algorithm, then the time complexity is bounded by O(nlog™" 7 M(n)) and
the optimal values for ¢ and A are the same.

4.2 Transition matrices

In this section we introduce the concept of transition matrices and prove some
bounds which will be useful in the next section. Let z ~» 2’ be an arbitrary
non singular path. Since the value F'(z’) of F' in 2’ depends linearly on the
initial conditions F'(z) of F' in z, there exists a matrix A,..,,» such that

F(Z')=A,..F(2)

for all possible initial conditions F'(z). This matrix is called the transition
matriz along z ~» z'. Obviously,

Azwz’wz” - Az’wz”Azwz’a

for all compositions z ~ 2/ ~» 2" of z ~» 2’ with a path 2’ ~ 2".

We claim that the problem of computing transition matrices is equivalent
to the problem of analytic continuation. Indeed, for 0 < i < p — 1, let f[i
be the function f which satisfies (1) with initial conditions F[i| = E;, where

14



. . ¢ times p—i—1 times
E; denotes the column vector with entries 0, --- ,0,1,0, ---

A, .., is just the matrix with columns F[0](2'), -, F[p — 1](%).

Let us now study A,,,, for |2/ — 2| — 0. Let r < 6(z) be given and
assume that we have an upper bound C for the |f[i]/)| with 0 < 4,5 <p—1
on D(z,r); such a bound can be computed by algorithm B. Then Cauchy’s
formula yields the bounds

,0. Then

~( C
I <
for the coefficients of the Taylor series expansions

FI9(z 4+ u) = fEY + F0)Pu+ fl)Pu? + -

of the f[i]¥) in 2. Consequently, if |2’ — 2| < r, then

(i +(j C
IO = FUP1 < sl = 21
Setting C3 = 2(%"’34'), it follows that
A — Id] < 3C5)2" — 2| (14)

For |2 — 2| < CLS we also obtain
A — 1] < Gyl — 2], (15)
since (Id+ E)™' =Id — E+ E* — E* + - - - for matrices F with |E| < 1.

4.3 Analytic continuation: the general case

Let us now turn to the general case of performing the numerical analytic
continuation along an arbitrary non singular path z ~» 2. We split the path
into three parts

22 m zmwes w2

where w and w' are approximations of z resp. 2’ in K. In section 4.1 we

have already shown how to perform the analytic continuation along w ~~ w'.
In order to perform the analytic continuation between z resp. 2z’ and their
approximations w resp. w', we approximate the paths z ~ w in w’ ~ 2’ by
broken line paths

2 W R V=0 = U] = W,

weZ oxw=v = =0

15



which depend on the desired precision of the approximation of f(z'). Here
vy, , U, U, -, v are in K oand for efficiency reasons we choose them
such that the precision of the approximation is doubled at each step (i.e.
size(v;) = O(2') and log |z — v;| = O(2") for i — oc). For this purpose (see
also algorithm C below), we implement a function truncate, which given u
and rational 27"~! < £ < 27" returns the element (|£¢] + [3% i)z of K.

Assume now that we want to compute F'(z') modulo an error < e = 27",
In the previous section we have shown how to compute constants Cjs,r and
Cy,r’, such that

1A, — Id]| < Cslt—z] (for |t —z| < r);

1A, — Id]| < Cslt—z] (for |t —z| < r); (16)
1AL — Id| < Cyl2' =t (for |2/ —t] < r');

IA e — Id| < Cylz —t| (for |2/ —t| <1').

We will require |v; — 2| < r and |2' — vj,| <1’ for all 7,7'. Denote A = Ay
and assume that v, v’, F'(z), A are such that

lv—2z] < ag

|2/ =" < s

[F(z) = F(2)] < ese
IA-A] < ce.

Here ¢, co, c3 and ¢4 are indeterminates for the moment. We have the fol-
lowing error estimations:

IF() = FOI < (@C+ e
|F(v") — %}f(z) | < ((1+ ch;is)Nc4 + (103 + e3) (1 + c42)|A)e
|F(2") = AF(z)] < |F (V) = AF(2)] + (c2C4(1 + e1C3e) |A])e

Imposing the conditions ¢; < c%g and ¢4 < %, this yields

|F(2') — AF(2)] < 2(ca + (c1C5 + ¢3 + cCh)|A)e.

At this point, it suffices to compute an upper bound for |A|. This is done by
computing an approximation Ay ... for Ay with |Ayw — Apew | < 1
by algorithm E. Then we have

[A] < Jw = 2(Cs (|Auww | +1) & = w'|Cy = Cs. (17)
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now suffices to ensure that

Taking ¢; < <

1 1 1 1
8C3C5? C2 < 8C41C5° 3 < 8C5"’ C4 8

|F(z) = AF(z)] < e.
The analytic continuation algorithm can be resumed as follows:

Algorithm C. The algorithm takes a non singular broken line path z ~ 2/
and a rational number € > 0 on input, and computes an approximation F'(2")
for F'(2') with |F(2')— F(2')| < . We assume that K is an algebraic number
field.

C1. [Precomputation] Compute constants r,r’, C3, Cy such that (16) holds
using algorithm B. Choose w, w" € K with |w—z| < r and |w'—2'| <7’
and replace the path w — z ~ 2’ — w' with a homotopic broken line
path, along which the transition matrix A,..,s can be evaluated by
algorithm E. Use algorithm E and (17) to compute an upper bound Cj

for |Ay—uw]-
1 1 1 1

C2. [Compute constants] Let ¢1 < 557,02 < 55,6063 < 5o and ¢ < 5.

Decrease ¢; and ¢4 if necessary, such that ¢; < é and ¢; < é
C3. [Approximate endpoints|

Let vy := truncate (z, ‘w;z‘), -++, v, ;= truncate (z, |w27Z|),

where [ is minimal such that |z — v < £

Let v}, := truncate (z, l2 = ‘), .-+, v := truncate (z, |2 o |),

£

where [ is minimal such that |2" — vy [ < Z.

C4. [Return approximation] Compute F(z), with |F(z) — F(2)| < =
Compute szwvg, with ”Avlwv;, — szwvg, | < = by algorithm E.
Return Avlwu;,ﬁ(z)-

Let us finally estimate the time complexity of algorithm C, which is
determined by the computation time of szwvg, in step C4. By theorem 3,
this computation time is bounded by

O(logn)
O | M(nlog®n) + Z M(%(2i+logn)> :
i=0
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since | = O(logn) and I' = O(logn). Now

O(logn

)
Z M(%(2i+logn)> -

|loglogn| O(logn) n
Z + Z M(§(2l+logn)> = O(M(nlog®nloglogn)),
=0 i=|loglogn|+1

which completes the proof of theorem 4.

5 Conclusion

We have described several algorithms for the multiple precision evaluation
and analytic continuation of holonomic functions, such that the user has
explicit control over the computation errors. For holonomic functions over
the algebraic numbers, the asymptotic time complexities of our algorithms
as a function of the number of required digits are the best actually known,
except in the case of elementary functions, where the AGM method applies.
In particular, many mathematical constants involving special functions can
be approximated extremely fast both theoretically and in practice [6]. We
conclude this section with some remarks.

The naive method versus binary splitting. Although the binary split-
ting method for summing power series has a better asymptotic complexity
than the naive method, it would be interesting to know for which precisions
it becomes more efficient in practice. The answer to this question is hard to
give at the moment and depends on several issues.

First, the binary splitting method clearly suffers from the fact that it uses
q by ¢ matrix multiplications, whence it has a bad dependence on ¢q. Here we
notice that the size of the matrices can sometimes be reduced. For instance,

if we want to evaluate chl = 1 + % + i + ---, then we may take one by
one matrices (m) for the Nj and sum only the first [%] terms of the

expansion ch1 =14 Ny 4+ NoN; + ---. We also notice that for large values
of ¢, FFT-multiplication becomes profitable for smaller precisions, since we
can FFT-transform the entire matrices.
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The binary splitting method also suffers from a large amount of overhead

Y
m
is quite expensive and the second reason is that binary splitting is quite
expensive when the ratio 7 = ‘5,(2' is too small. For frequently used special
functions, with say z = 0 and 0 < 2’ < 1, a solution might be to tabulate
the values of F(5),- - ,F(282g1).

We finally notice that the binary splitting method may very well be com-
bined with the naive method, by computing the matrices My, Ni; up to
some order m' < m only. Horner’s method is used to complete the compu-
tation in order. Consequently, we avoid that the coefficients of the My, and

Nj; grow to large.

for small precisions. The first reason is that the final division My, =

Initial conditions in “fake singularities”. Sometimes, the zeros of P,
are not actual singularities of f and for certain classical special functions, the
initial conditions are even specified in such “fake singularities”. For example,
the sine-integral function

Six:/ tLsin tdt,
0

satisfies the equation
281" 2+ 2Si" 2+ 251" 2 =0,

with initial conditions Si(0) = 0, Si'(0) = 1,Si"(0) = 0. Using the recurrence

relation
2

1
k (k+1)(k+2)
algorithms B, E and C still apply in this case. Actually, this is a general

situation: it suffices that the power series expansion be convergent and that
K contains z.

Sik+2 + Sik+1 + Slk == 0,

Multivariate holonomic functions. A multivariate function f(zq, - - -, z)
is said to be holonomic, if f is holonomic in each of its variables. It is clas-
sical that the restriction of a multivariate holonomic function to a straight
line segment is a holonomic function in one variable only. Moreover, the dif-
ferential equation satisfied by this restriction can be computed in a generic
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way, i.e. for a generic straight line segment. Consequently, our algorithms
generalize in a straightforward way to the multivariate case.

Small perturbations. The trick to compute f(2'),---, f?~V(z') simulta-
neously, by introducing the infinitesimal variable n and working in the ring
K[n]/(n?) instead of K can be generalized: if we allow the coefficients of
Py, , P, to depend on n (i.e. by taking Fy,---, P, € Kn|/(1")[#]), then
we may compute the effect of small perturbations of (1) in 7 up to a finite
number of terms.

Singularities. When the point 2z’ in which we want to evaluate f is near
to a singularity, the bounds for the transition matrices may become very
bad. No straightforward numerical methods can be applied to solve this
problem, and numerical resummation techniques are essentially needed to
handle this situation [13, 9]. Here we notice that the Borel and Laplace
transforms preserve holonomy, therefore our algorithm can theoretically be
used in the resummation process. We intend to study this issue more closely
in a forthcoming paper.

We also notice that the binary splitting algorithm can be used to effi-
ciently evaluate holonomic functions in the neighbourhood of points where
the series expansion diverges, by summing “up to the smallest term”. Of
course, we only get limited approximations of the exact value of the holo-
nomic function in this way, but it is well known that these approximations
have exponential accuracy when we approach the singularity. Furthermore,
such approximations may again be useful for heuristic zero tests in computer
algebra.
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