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Abstrat

A holonomi funtion is an analyti funtion, whih satis�es a

linear di�erential equation with polynomial oeÆients. In partiular,

the elementary funtions exp; log; sin, et. and many speial funtions

like erf;Si, Bessel funtions, et. are holonomi funtions.

Given a holonomi funtion f (determined by the linear di�erential

equation it satis�es and initial onditions in a non singular point z),

we show how to perform arbitrary preision evaluations of f at a non

singular point z

0

on the Riemann surfae of f , while estimating the

error.

Moreover, if the oeÆients of the polynomials in the equation for

f are algebrai numbers, then our algorithm is asymptotially very

fast: if M(n) is the time needed to multiply two n digit numbers,

then we need a time O(M(n log

2

n log log n)) to ompute n digits of

f(z

0

).

1 Introdution

Let K be a sub�eld of C . A holonomi funtion (over K ) is an analyti fun-

tion f , whih satis�es a linear di�erential equation

P

p

(z)f

(p)

(z) + � � �+ P

0

(z)f(z) = 0; (1)

where P

0

; � � � ; P

p

are polynomials in K [z℄ with P

p

6= 0. The elementary

funtions exp; log; sin; � � � and many speial funtions like erf; Si; � � � , Bessel

funtions, hypergeometri funtions, et. are holonomi. The lass of holo-

nomi funtions also admits several interesting algebrai properties whih we

reall in setion 2.1, and has reently been the objet of intensive study in

omputer algebra and mathematis (e.g. [12, 8, 16℄).
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The objetive of this paper is to study holonomi funtions from the exat

numerial point of view: we require that all omplex z numbers we ompute

with are e�etive, i.e. for any rational " > 0 we an ompute a \Gaussian

rational" ~z 2 Q [i℄ with j~z � zj 6 ". In this ontext, we are interested in

algorithms to evaluate holonomi funtions. Of ourse, some are is needed

here, sine f is atually de�ned on a Riemann surfae R. Given e�etive

initial onditions

F (z) =

0

B

�

f(z)

.

.

.

f

(p�1)

(z)

1

C

A

: (2)

for f in a point z, and a suitably disretized path z  z

0

on R, we therefore

want to ompute f at z

0

by following the path. In ases where no onfusion

is possible, we will nevertheless impliitly identify points on R with their

projetions on C .

The following three issues we be disussed in this paper:

Q1. How to guarantee the exatness of evaluation algorithms?

Q2. What is the asymptoti omplexity of omputing n digits of f(z

0

)?

Q3. How does the hoie of the path z  z

0

inuene the omplexity of

e�etive analyti ontinuation? In partiular, what happens if the path

approahes a singularity?

The remainder of the introdution is devoted to a brief disussion of these

questions. We notie that muh of the material presented here also appeared

in [15℄, but we think that the presentation in the present paper is more

elegant. The setion 4.1 and algorithm B from setion 2.2 are new.

1.1 E�etive bounds

Sine all our analyti ontinuation algorithms will be based on power series

evaluations, question Q1 redues to the problem of omputing bounds of the

form

8k jf

k

j 6 AB

k

(3)

for the oeÆients f

k

of the Taylor series

f(z + u) = f

0

+ f

1

u+ f

2

u

2

+ � � � (4)
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in a non singular point z, where f; � � � ; f

(p�1)

are known. Now it is a well

known fat that the zeros !

1

; � � � ; !

�

of P

p

are the only possible singularities

of f . Therefore, denoting by Æ(z) the distane between z and the set of these

zeros, we may even require B > Æ(z)

�1

to be given and ask for an A suh

that (3) holds.

Another, equivalent problem would be to ompute an upper bound C for

jf j on a suÆiently small ompat disk D(z; r) with enter z, say of radius

r < Æ(z). Indeed, this yields the estimation

jf

k

j =

�

�

�

�

1

2�i

Z

juj=r

f(z + u)

u

k+1

du

�

�

�

�

6

C

r

k

(5)

for the oeÆients f

k

. On the other hand, given bounds (3), we have

jf j 6

A

1� rB

on any ompat disk with enter z and radius 0 < r <

1

B

. In setion 2, we

prove

Theorem 1. There exists an algorithm whih given z, 0 < r < Æ(z) and

F (z) omputes an upper bound C for jf j on D(z; r).

1.2 Fast multiple preision evaluations

For ertain purposes it is interesting to evaluate holonomi funtions up

to many digits. First, this question is of theoretial interest, sine many

speial funtions are holonomi. Seondly, fast evaluation algorithms up

to several hundreds of digits an be used in omputer algebra systems in

reliable heuristi zero tests for onstant expressions involving speial and/or

holonomi funtions. Finally, evaluations up to thousands or millions of digits

an be used in order to obtain statistial information about real numbers,

whih �nds its appliation in analyti number theory researh.

In what follows, M(n) denotes the time omplexity to multiply two n

digit numbers and we make the standard assumption that M(n)=n is mono-

toni for n ! 1. Asymptotially, M(n) = O(n logn log logn), when us-

ing FFT-multipliation [1, 7℄, but for intermediate preisions, Karatsuba's

O(n

log 3= log 2

) algorithm [7℄ is faster. When we measure the omplexity of the

evaluation of a funtion in a point, we will only ount the time spent on the
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real evaluation. In our ase of analyti ontinuation, this means that we do

not ount the time needed to ompute O(n) digits of z; z

0

; f(z); � � � ; f

(p�1)

(z),

if we need n digits of f(z

0

).

For the evaluation of elementary funtions, several fast algorithms are

known, suh as binary splitting [3℄, whih has time omplexity

O(M(n log

2

n)) and the AGM method [4, 11, 2℄, of omplexity

O(M(n logn)). Although the AGM algorithm is asymptotially faster, bi-

nary splitting is more eÆient for preisions inferior to �1; 000; 000 digits.

Moreover, the binary splitting method has the advantage that it an be gen-

eralized to the evaluation of holonomi funtions, if K is an algebrai number

�eld (usually, K = Q or K = Q [i℄). In setion 3 we �rst onsider the ase

when z; z

0

are also in K , and we prove

Theorem 2. Assume that K is an algebrai number �eld and that z  z

0

=

z ! z

0

is the straight line path between z; z

0

2 K with jz

0

� zj < Æ(z). Then

n digits of f(z

0

) an be omputed in time O(M(n log

2

n)).

We notie that Haible and Papanikolaou independently proved this the-

orem in the ase of hypergeometri (and slightly more general) funtions [6℄.

Moreover, they implemented the method and established a new world reord

in the alulation of Ap�ery's onstant �(3) by omputing 1,000,000 deimal

digits. Hene, binary splitting indeed beomes eÆient for large preisions.

Moreover, the method an be easily parallelized, a fat whih has also been

exploited by Haible and Papanikolaou.

1.3 About the hoie of the path z  z

0

In order to treat the ase when z and z

0

are arbitrary, it is important to

study the dependeny of the omplexity of the algorithm from theorem 2

on z; z

0

2 K . Let us �rst introdue some more notations. We denote by

size(O) the size of an objet O. For instane, the size of a natural number

is its number of digits. For a �xed open domain U , we also denote by �(z)

the distane between a point z � U and the boundary of U . In setion 4.1

we prove

Theorem 3. Assume that
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(a) U is an open domain on whih jf j is bounded.

(b) K is an algebrai number �eld.

() z  z

0

= z ! z

0

is the straight line path between two points z; z

0

2 K .

(d) We have D(z; jz

0

� zj) � U .

Denote s = size(z) + size(z

0

) and � =

�(z)

jz

0

�zj

. Then f(z

0

) an be evaluated

up to preision 2

�n

in time

O(M(n(s+ logn) logn log

�1

�));

uniformly in z and z

0

, provided that log log � = O(n).

In partiular, we observe that analyti ontinuation from z to z

0

is the

faster as the sizes of z and z

0

are smaller. Some other interesting orollaries of

the above result onern optimal hoies of paths to approah or turn around

singularities; see setion 4.1 for a further disussion. In setion 4.3, we return

to the ase when the path z  z

0

is arbitrary. Approximating z  z

0

by a

suitable broken line path (the endpoints are approahed by a sequene of

algebrai numbers, where we double the preision at eah step), we prove

Theorem 4. Assume that the oeÆients of P

0

; � � � ; P

p

are in K [z℄. Then

n digits of f(z

0

) an be omputed in time O(M(n log

2

n log logn)).

2 Bounds for holonomi funtions

In this setion we prove theorem 1. We �rst reall some lassial fats about

holonomi funtions. We next give an algorithm to ompute bounds for the

oeÆient of the Taylor expansion (4) of f , whih yields theorem 1 by what

has been said in setion 1.1.

2.1 Preliminaries

In this setion we reall some interesting properties of holonomi funtions

[8℄.

Proposition 1. The set of holonomi funtions over K form a K -algebra

stable under di�erentiation.
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The proof of this proposition is atually onstrutive and uses elimination

tehniques. We will only prove the stability of the set of holonomi funtions

over K under derivation, whih is the only fat we need in what follows. So

assume that f satis�es (1). Di�erentiating (1), we obtain

P

p

(z)f

(p+1)

(z) + (P

p�1

(z) + P

0

p

(z))f

(p)

(z) + � � � +

+ (P

0

(z) + P

0

1

(z))f

0

(z) + P

0

0

(z)f(z) = 0

If P

0

0

= 0, then this yields the required equation for f

0

. Otherwise, we

multiply the equation by P

0

(z) and subtrat P

0

0

(z) times the equation (1) in

order to obtain the required equation for f

0

.

Proposition 2. A funtion f is holonomi over K if and only if the

oeÆients of its Taylor series expansion

f(z + u) = f

0

+ f

1

u+ f

2

u

2

+ � � �

in any non singular point z 2 K satisfy a linear di�erene equation

Q

q

(k)f

k+q

+ � � �+Q

0

(k)f

k

= 0; (6)

with Q

0

; � � � ; Q

q�1

2 K [k℄.

For what follows we will only need to show how to obtain a linear di�er-

ene equation (6) from (1). Denoting the k-th oeÆient of a power series g

in u by [u

k

℄, we have the following rewriting rules

�

[u

k

℄ug(u) = [u

k�1

℄g(u) for k > 0;

[u

k

℄g

0

(u) = (k + 1)[u

k+1

℄g(u)

Clearly, substitution of z by z + u in (1) yields a linear di�erential equa-

tion for the power series f

0

+ f

1

u + f

2

u

2

+ � � � with oeÆients in K [u℄.

Applying the above rewriting rules to this equation yields a linear di�er-

ene relation with oeÆients in K [k℄ between f

�

; f

�+1

; f

�+2

; � � � , where � =

max (degP

0

; � � � ; degP

p

). Replaing k by k + � in this relation yields the

desired reurrene relation (6). Notie that Q

q

(k) 6= 0 for all k and that

Q

i

(k)=Q

q

(k) = O(1) for all i and k !1.

2.2 Computation of bounds on ompat disks

In this setion, we shall use the usual Eulidean norm for vetors V with q

entries:

jjV jj =

q

V

2

1

+ � � �+ V

2

q
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and the usual operator norm for matries M :

jjM jj = sup

jjV jj=1

jjMV jj:

We reall that jjMN jj 6 jjM jj jjN jj for all matries M;N .

For eah k, let us denote

�

k

=

0

B

�

f

k

.

.

.

f

k+q�1

1

C

A

:

Then the linear di�erene equation (6) yields a matrix identity

�

k+1

= N

k

�

k

with

N

k

=

0

B

B

B

�

0 1 O

.

.

.

.

.

.

0 O 1

�

Q

0

(k)

Q

q

(k)

�

Q

1

(k)

Q

q

(k)

� � � �

Q

q�1

(k)

Q

q

(k)

1

C

C

C

A

: (7)

In order to estimate jf

k

j it therefore suÆes to estimate the entries of the

produt

�

k

= N

k�1

� � �N

0

�

0

:

LetN

1

be the matrix whih is obtained formally by replaing k by in�nity

in (7). Then we have

N

k

= N

1

+ o(1);

i.e. the di�erene N

k

�N

1

is an error matrix whose oeÆients tend to zero

for k ! 1. Let " > 0. We laim that there exists a omputable diagonal

matrix D and an invertible matrix U , suh that

jjD � UN

1

U

�1

jj 6

"

2

:

Indeed, we �rst triangulate N

1

and obtain an expression of the form T =

^

UN

1

^

U

�1

for some invertible matrix U . Now let � be the maximum of the

absolute values of the non diagonal oeÆients of T and set � = min(

"

2�

p

q

; 1).
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Then we take U = Diag (1; �; � � � ; �

q�1

)

^

U , where Diag (1; �; � � � ; �

q�1

) de-

notes the diagonal matrix with entries 1; �; � � � ; �

q�1

, and we let D be the

diagonal part of UN

1

U

�1

.

Now for eah k, we let

�

D

k

= UN

k

U

�1

;

E

k

= D

k

�D;

Sine D

k

tends to D

1

= UN

1

U

�1

for k ! 1, there exists a onstant k

0

(whih is easily omputed, sine the entries of E

k

are rational frations in k),

suh that

jjE

k

jj 6 "; (8)

for all k > k

0

. Putting P = D

k

0

�1

� � �D

0

, we �nally obtain the bound

jjN

k�1

� � �N

0

�

0

jj = jjU

�1

D

k�1

� � �D

0

U�

0

jj

6 jjU

�1

jj (jjDjj+ ")

k�k

0

jjP jj jjU jj jj�

0

jj;

for all k > k

0

. In partiular,

jf

k

j 6

p

qjjU

�1

jj jjP jj jjU jj jj�

0

jj (jjDjj+ ")

k�k

0

for all k > k

0

.

Let P

p

(z+u) = 

0

+ 

1

u+ � � �+ 

p

u

p

as a polynomial in u. Examining the

onstrution of the polynomials Q

0

; � � � ; Q

q

, we observe that the oeÆients

of the bottom row of N

1

are �

1



�1

0

; � � � ;�

p



�1

0

. In partiular the largest

eigenvalue of N

1

is Æ(z)

�1

and so is the largest eigenvalue of D. Hene the

above method yields an algorithm to ompute a bound of the form (3). In

view of what has been said in setion 1.1, this proves theorem 1. We �nally

notie that it atually suÆes to perform a numerial triangulation of N

1

instead of an exat one in our algorithm, that is T �

^

UN

1

^

U

�1

. Indeed, (8)

is the key bound we need. Modulo this modi�ation, our algorithm an now

be resumed as follows:

Algorithm B. The algorithm takes a number B < Æ(z)

�1

on input and

produes a number A, suh that jf

k

j 6 AB

k

for all k.

B1. [Triangulate℄ Let " 6 B � Æ(z) and ompute numerially a triangular

matrix T and an invertible matrix

^

U , suh that

jjT �

^

UN

1

^

U

�1

jj 6

"

4

:
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B2. [\Diagonalize"℄ Let � > max

i<j

jT

i;j

j and � 6 min(

"

4�

p

q

; 1).

Let U := Diag (1; �; � � � ; �

q�1

)

^

U .

Let D := Diag ((UN

1

U

�1

)

1;1

; � � � ; (UN

1

U

�1

)

q;q

).

We have

jjD � UN

1

U

�1

jj 6

"

2

:

B3. [Compute k

0

℄ Compute the symboli matrix U(N

1

� N

k

)U

�1

whose

oeÆients are rational frations in k. Let K be suh that the norm

eah of these rational frations is bounded by

K

k+1

for all k. Let k

0

>

4K

"

be an integer. We have for all k > k

0

jjD � UN

k

U

�1

jj 6

3"

4

:

B4. [Return bound℄ Let � > (jjUN

1

U

�1

jj+ qK)

k

0

> jjP jj.

Return A >

p

q�B

�k

0

jjU

�1

jj jjU jj jj�

0

jj.

3 Evaluation in algebrai points

In this setion we assume that K is an algebrai number �eld and z  z

0

is

a straight line path z ! z

0

between two points z; z

0

2 K with jz

0

� zj < Æ(z).

We will show how the binary splitting tehnique an be used to ompute

f(z

0

) from F (z) and (1) in an asymptotially eÆient way. To guarantee

exatness of our algorithm, we assume that

sup

u2D(z;r)

jf(u)j 6 C (9)

on a disk D(z; r) with jz

0

� zj < r < Æ(z). The previous setion yields an

algorithm to ompute suh a bound C for, say, r =

jz

0

�zj+Æ(z)

2

.

3.1 Naive evaluation of f(z

0

)

From the Cauhy formula (5), we get the bound

jf

m

(z

0

� z)

m

+ f

m+1

(z

0

� z)

m+1

+ � � � j

6

Cjz

0

� zj

m

r

m

+

Cjz

0

� zj

m+1

r

m+1

+ � � � =

Cr

r � jz

0

� zj

�

jz

0

� zj

r

�

m

for the tail of the Taylor series of f in z, when evaluating in z

0

up to order

m. Let � =

r

jz

0

�zj

and
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C

1

=

log 2

log �

;

C

2

=

log 2C�log(1��

�1

)

log �

:

(10)

Then it follows that for

m > C

1

n+ C

2

;

we have

jf(z

0

)� (f

0

+ � � �+ f

m�1

(z

0

� z)

m�1

)j 6

"

2

:

It suÆes therefore to evaluate f

0

+ � � �+ f

m�1

(z

0

� z)

m�1

with error 6

"

2

in

order to obtain an approximation for f(z

0

) with error 6 ".

A \naive" way to do this would be to ompute the oeÆients f

0

; � � � ; f

m�1

one by one and to use Horner's method for the evaluation of a polynomial (for

instane). We �rst notie that f

0

= f(z); � � � ; f

p�1

= f

(p�1)

(z)=(p � 1)! are

diretly determined by F (z). In order to obtain f

p

; � � � ; f

��1

, we use the re-

lation (1) and its derivatives up to order q�p�1. The remaining oeÆients

are dedued from the reurrene relation (6). Clearly the time omplexity of

the evaluation of f

0

+� � �+f

m�1

(z

0

�z)

m�1

by this naive method is O(M(n)n),

but the method has the advantage that it an also be used when z; z

0

and

the oeÆients of P

0

; � � � ; P

p

are not algebrai.

3.2 The binary splitting algorithm

Let us now give a more sophistiated way to ompute f

0

+ � � � + f

m�1

(z

0

�

z)

m�1

. We �rst notie that the sequene f

0

; f

1

(z

0

�z); f

2

(z

0

�z)

2

; � � � also sat-

is�es a linear di�erene equation of order q with oeÆients in K [k℄, sine (6)

implies

Q

q

(k)f

k+q

(z

0

� z)

k+q

+ � � �+ [(z

0

� z)

q

Q

0

(k)℄f

k

(z

0

� z)

k

= 0;

for all k. Therefore we may assume without loss of generality that z

0

�z = 1,

and we just have to show how to evaluate f

0

+ � � �+ f

m�1

.

Let �

k

be de�ned as in setion 2.2 and de�ne

�

k;l

=

0

B

�

f

0

+ � � �+ f

l�1

.

.

.

f

q�1

+ � � �+ f

q+l�2

1

C

A

for eah k. We laim that for all k > 0 and l > 1, there exist matries

M

k;l

; N

k;l

with oeÆients in K , suh that

10



�

k;l

= M

k;l

�

k

;

�

k+l

= N

k;l

�

k

:

(11)

Indeed, if l = 1, we take M

k;1

= N

k;1

= N

k

with the notations from se-

tion 2.2. For l > 2, we ompute M

k;l

and N

k;l

using binary splitting: let

l = l

1

+ l

2

, with l

1

= b

l

2

. Then we take

M

k;l

= M

k;l

1

+M

k+l

1

;l

2

N

k;l

1

;

N

k;l

= N

k+l

1

;l

2

N

k;l

1

:

(12)

Atually, in order to avoid omputations with rational numbers, it is more

eÆient to write M

k;l

= q

�1

k;l

M

0

k;l

and N

k;l

= q

�1

k;l

N

0

k;l

, where the numbers q

k;l

are positive integers and the matries M

0

k;l

; N

0

k;l

have oeÆients in the sub-

ring of algebrai integers of K . In this representation, (12) beomes

q

k;l

= q

k+l

1

;l

2

q

k;l

1

;

M

0

k;l

= q

k+l

1

;l

2

M

0

k;l

1

+M

0

k+l

1

;l

2

N

0

k;l

1

;

N

0

k;l

= N

0

k+l

1

;l

2

N

0

k;l

1

:

(13)

These reurrene relations yield the following algorithm to ompute f(z

0

):

Algorithm E. Given " = 2

�n

, the algorithm omputes an approximation

~

f(z

0

) for f(z) with j

~

f(z

0

) � f(z

0

)j 6 ". We assume that K is an algebrai

number �eld and z  z

0

= z ! z

0

with z; z

0

2 K and jz

0

� zj < Æ(z), and

P

0

; � � � ; P

p

2 K [z℄.

E1. [Preomputation℄ Compute onstants C; r; C

1

; C

2

with (9) and (10),

using algorithm B. Compute the di�erene equation (6) from (1) and

redue the general ase to the ase when z

0

� z = 1.

E2. [Binary splitting℄ Let m = max (dC

1

n + C

2

e; 1).

Compute �

0;m

using binary splitting (13).

Let L denote the �rst line of the matrix �

0;m

.

E3. [Return approximation℄ Compute an approximation

~

�

0

of �

0

with en-

tries in K and jj

~

�

0

� �

0

jj 6

"

2jjLjj

from F (z). Return L

~

�

0

.

Let us now estimate the omplexity of the algorithm. Step E1 is a pre-

omputation of ost O(1). In step E2 we have m = O(n) and size(q

k;1

) +

size(M

0

k;1

) + size(N

0

k;1

) = O(log k), sine the Q

i

are rational frations in

K (k). By indution, it follows that size(q

k;l

) + size(M

0

k;l

) + size(N

0

k;l

) =

11



O(l log k), uniformly in k and l. Hene, the omputation of M

0;m

by binary

splitting takes a time

O(M(m logm) + 2M(d

m

2

e logm) + � � �+ 2

blogm= log 2

M(2 logm))

= O(M(n logn) logn) = O(M(n log

2

n)):

By onvention, we do not ount the time to ompute

~

�

0

in step E3. Sine

size(L) = O(n logn) and log

"

2jjLjj

= O(n+size(L)), the �nal multipliation

L

~

�

0

takes a time O(M(n logn)). Altogether, this proves theorem 2. We note

that the omplexity bound an be improved to O(M(n logn)) if Æ(z) =1.

4 Analyti ontinuation

In this setion, we show how to perform the analyti ontinuation of holo-

nomi along arbitrary paths. Throughout this setion, we assume that K is

an algebrai number �eld.

4.1 Analyti ontinuation by algorithm E

Both the naive algorithm and algorithm E an atually be used | even in

two di�erent ways | to perform the numerial analyti ontinuation along

z ! z

0

, i.e. to ompute an approximation of the vetor F (z

0

) instead of

f(z

0

) only. Indeed, a �rst way would be to use the fat that f

0

; � � � ; f

(p�1)

are holonomi by proposition 1. A seond idea is to replae z

0

by the formal

element z

0

+ � in the ring K [�℄=(�

p

) and to use either the naive algorithm or

algorithm E with oeÆients in the ring K [�℄=(�

p

) instead of K . Doing so,

the result a

0

+a

1

�+ � � �+a

p�1

�

p�1

of the evaluation approximates the Taylor

series expansion f(z

0

)+ f

0

(z

0

)�+ � � �+

1

(p�1)!

f

(p�1)

�

p�1

of f in z

0

at the order

p� 1.

In order to perform analyti ontinuation along an arbitrary path, the

path �rst needs to be \disretized" by a broken line segment. In order to do

this in an optimal way, we must study the omplexity of algorithm E, if z

and z

0

are allowed to vary in some open domain U on whih jf j is bounded

by C, while ensuring that D(z; jz

0

� zj) � U . Then we may hoose r = �(z)

as large as possible in (9). Hene, (10) implies

m = O(n log

�1

� + log

�1

� j log log � j);

12



uniformly in z and z

0

. Under the assumption that log log � = O(n), this

simpli�es to

m = O(n log

�1

�):

Let s = size(z)+size(z

0

). It is not hard to see that after the normalization

z

0

� z = 1 the total size of the reurrene relation (6) is bounded by O(s).

Hene,

size(q

k;1

) + size(M

k;1

) + size(N

0

k;1

) = O(s+ log k);

uniformly in z; z

0

; k. Consequently,

size(q

k;l

) + size(M

k;l

) + size(N

0

k;l

) = O(l(s+ log k));

uniformly in z; z

0

; k and l. We infer that the binary splitting in step E2 takes

a time

O(M(m logm(s+ logm))) = O(M(n logn(s + logn) log

�1

�)):

The �nal multipliation L

~

f�

0

in step E3 takes a time O(M(n(s + logn)

log

�1

�)). This establishes theorem 3.

If jf j; � � � ; jf

(p�1)

j are all bounded by C on U , then the analyti ontin-

uation by algorithm E learly has time omplexity O(M(n logn(s + logn)

log

�1

�)) as well. Now reonsider the problem of disretizing

z  z

0

� z = v

0

! � � � ! v

l

= z

0

:

an arbitrary path z  z

0

with z; z

0

2 K . The uniform omplexity bound for

algorithm E enables us to give some heuristis of how to hoose the points

v

1

; � � � ; v

l

. Clearly, it will always be bene�ial to hoose them suh that

size(v

1

) + � � � + size(v

l

) is as small as possible. Let us now onsider two

other speial ases of interest.

Turning around a singularity. Assume that z  z

0

=	 z is a small

irle around one of the singularities !

i

. Taking v

0

; � � � ; v

l

on the irle, we

need to �nd the optimal angle by whih we progress. If we progress by an

angle � =

2�

a

, then we have

� =

1

2 sin

�

2

;

so the time needed to perform the analyti ontinuation is proportional to

�1

� log (2 sin

�

2

)

:

Hene, the optimal value for a is 17.
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Approahing singularities. An other situation whih is often enoun-

tered is when U is a small open setor with a singularity !

i

at its or-

ner. Given points z; z

0

2 K , suh that z

0

lies on the line segment be-

tween z and v

i

, we want to perform analyti ontinuation along the straight

line segment between z and z

0

. In this ase, the optimal strategy is to

hoose v

0

; � � � ; v

l

on the line segment between z and z

0

in suh a way that

Æ(v

1

) = �Æ(v

0

); � � � ; Æ(v

l

) = �Æ(v

l�1

). Then the time needed to perform the

analyti ontinuation is proportional to

1

log(�) log(1� �)

and the optimal fator � is seen to be lose to

1

2

. Of ourse, in order to take

� �

1

2

, the setor U should have an opening of at least

�

3

; otherwise � is taken

to be minimal suh that the disks D(v

0

; jv

1

� v

0

j); � � � ; D(v

l�1

; jv

l

� v

l�1

j) �t

into U .

Remark. We note that if trunated power series are evaluated by the naive

algorithm, then the time omplexity is bounded by O(n log

�1

� M(n)) and

the optimal values for a and � are the same.

4.2 Transition matries

In this setion we introdue the onept of transition matries and prove some

bounds whih will be useful in the next setion. Let z  z

0

be an arbitrary

non singular path. Sine the value F (z

0

) of F in z

0

depends linearly on the

initial onditions F (z) of F in z, there exists a matrix �

z z

0

suh that

F (z

0

) = �

z z

0

F (z)

for all possible initial onditions F (z). This matrix is alled the transition

matrix along z  z

0

. Obviously,

�

z z

0

 z

00

= �

z

0

 z

00

�

z z

0

;

for all ompositions z  z

0

 z

00

of z  z

0

with a path z

0

 z

00

.

We laim that the problem of omputing transition matries is equivalent

to the problem of analyti ontinuation. Indeed, for 0 6 i 6 p � 1, let f [i℄

be the funtion f whih satis�es (1) with initial onditions F [i℄ = E

i

, where

14



E

i

denotes the olumn vetor with entries 0;

i times

� � � ; 0; 1; 0;

p�i�1 times

� � � ; 0. Then

�

z z

0

is just the matrix with olumns F [0℄(z

0

); � � � ; F [p� 1℄(z

0

).

Let us now study �

z!z

0

, for jz

0

� zj ! 0. Let r < Æ(z) be given and

assume that we have an upper bound C for the jf [i℄

(j)

j with 0 6 i; j 6 p� 1

on D(z; r); suh a bound an be omputed by algorithm B. Then Cauhy's

formula yields the bounds

jf [i℄

(j)

k

j 6

C

r

k

for the oeÆients of the Taylor series expansions

f [i℄

(j)

(z + u) = f [i℄

(j)

0

+ f [i℄

(j)

1

u+ f [i℄

(j)

2

u

2

+ � � �

of the f [i℄

(j)

in z. Consequently, if jz

0

� zj < r, then

jf [i℄

(j)

(z

0

)� f [i℄

(j)

0

j 6

C

r � jz

0

� zj

jz

0

� zj:

Setting C

3

=

pC

2(r�jz

0

�zj)

, it follows that

jj�

z!z

0

� Idjj 6

1

2

C

3

jz

0

� zj: (14)

For jz

0

� zj <

1

C

3

we also obtain

jj�

z

0

!z

� Idjj 6 C

3

jz

0

� zj; (15)

sine (Id+ E)

�1

= Id� E + E

2

� E

3

+ � � � for matries E with jjEjj < 1.

4.3 Analyti ontinuation: the general ase

Let us now turn to the general ase of performing the numerial analyti

ontinuation along an arbitrary non singular path z  z

0

. We split the path

into three parts

z  z

0

� z  w w

0

 z

0

;

where w and w

0

are approximations of z resp. z

0

in K . In setion 4.1 we

have already shown how to perform the analyti ontinuation along w  w

0

.

In order to perform the analyti ontinuation between z resp. z

0

and their

approximations w resp. w

0

, we approximate the paths z  w in w

0

 z

0

by

broken line paths

z  w � v = v

l

! � � � ! v

1

= w;

w

0

 z

0

� w

0

= v

0

1

! � � � ! v

0

l

0

= v

0

;
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whih depend on the desired preision of the approximation of f(z

0

). Here

v

1

; � � � ; v

l

; v

0

1

; � � � ; v

0

l

0

are in K and for eÆieny reasons we hoose them

suh that the preision of the approximation is doubled at eah step (i.e.

size(v

i

) = O(2

i

) and log jz � v

i

j = O(2

i

) for i !1). For this purpose (see

also algorithm C below), we implement a funtion trunate , whih given u

and rational 2

�n�1

< " 6 2

�n

returns the element (b

<u

"

 + b

=u

"

i)" of K .

Assume now that we want to ompute F (z

0

) modulo an error 6 " = 2

�n

.

In the previous setion we have shown how to ompute onstants C

3

; r and

C

4

; r

0

, suh that

jj�

z!t

� Idjj 6 C

3

jt� zj (for jt� zj < r);

jj�

t!z

� Idjj 6 C

3

jt� zj (for jt� zj < r);

jj�

t!z

0

� Idjj 6 C

4

jz

0

� tj (for jz

0

� tj < r

0

);

jj�

z

0

!t

� Idjj 6 C

4

jz

0

� tj (for jz

0

� tj < r

0

):

(16)

We will require jv

i

� zj < r and jz

0

� v

0

i

0

j < r

0

for all i; i

0

. Denote � = �

v v

0

and assume that v; v

0

;

~

F (z);

~

� are suh that

jv � zj 6 

1

";

jz

0

� v

0

j 6 

2

";

jj

~

F (z)� F (z)jj 6 

3

";

jj

~

���jj 6 

4

":

Here 

1

; 

2

; 

3

and 

4

are indeterminates for the moment. We have the fol-

lowing error estimations:

jjF (v)�

~

F (z)jj 6 (

1

C

3

+ 

3

)"

jjF (v

0

)�

~

�

~

F (z)jj 6 ((1 + 

1

C

3

")

4

+ (

1

C

3

+ 

3

)(1 + 

4

")jj�jj)"

jjF (z

0

)�

~

�

~

F (z)jj 6 jjF (v

0

)�

~

�

~

F (z)jj+ (

2

C

4

(1 + 

1

C

3

")jj�jj)"

Imposing the onditions 

1

6

1

C

3

"

and 

4

6

1

"

, this yields

jjF (z

0

)�

~

�

~

F (z)jj 6 2(

4

+ (

1

C

3

+ 

3

+ 

2

C

4

)jj�jj)":

At this point, it suÆes to ompute an upper bound for jj�jj. This is done by

omputing an approximation

~

�

w w

0

for �

w w

0

with jj

~

�

w w

0

��

w w

0

jj 6 1

by algorithm E. Then we have

jj�jj 6 jw � zjC

3

(jj

~

�

w w

0

jj+ 1) jz

0

� w

0

jC

4

= C

5

: (17)
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Taking 

1

6

1

8C

3

C

5

; 

2

6

1

8C

4

C

5

; 

3

6

1

8C

5

; 

4

6

1

8

now suÆes to ensure that

jjF (z

0

)�

~

�

~

F (z)jj 6 ":

The analyti ontinuation algorithm an be resumed as follows:

Algorithm C. The algorithm takes a non singular broken line path z  z

0

and a rational number " > 0 on input, and omputes an approximation

~

F (z

0

)

for F (z

0

) with jj

~

F (z

0

)�F (z

0

)jj 6 ". We assume that K is an algebrai number

�eld.

C1. [Preomputation℄ Compute onstants r; r

0

; C

3

; C

4

suh that (16) holds

using algorithmB. Choose w;w

0

2 K with jw�zj < r and jw

0

�z

0

j < r

0

and replae the path w ! z  z

0

! w

0

with a homotopi broken line

path, along whih the transition matrix �

w w

0

an be evaluated by

algorithm E. Use algorithm E and (17) to ompute an upper bound C

5

for jj�

w w

0

jj.

C2. [Compute onstants℄ Let 

1

6

1

8C

3

C

5

; 

2

6

1

8C

4

C

5

; 

3

6

1

8C

5

and 

4

6

1

8

.

Derease 

1

and 

4

if neessary, suh that 

1

6

1

C

3

"

and 

4

6

1

"

.

C3. [Approximate endpoints℄

Let v

2

:= trunate (z;

jw�zj

2

); � � � ; v

l

:= trunate (z;

jw�zj

2

l

),

where l is minimal suh that jz � v

l

j 6

"



1

.

Let v

0

2

:= trunate (z;

jz

0

�w

0

j

2

); � � � ; v

0

l

0

:= trunate (z;

jz

0

�w

0

j

2

l

0

),

where l

0

is minimal suh that jz

0

� v

0

l

0

j 6

"



2

.

C4. [Return approximation℄ Compute

~

F (z), with jj

~

F (z)� F (z)jj 6

"



3

.

Compute

~

�

v

l

 v

0

l

0

with jj

~

�

v

l

 v

0

l

0

��

v

l

 v

0

l

0

jj 6

"



4

by algorithm E.

Return

~

�

v

l

 v

0

l

0

~

F (z).

Let us �nally estimate the time omplexity of algorithm C, whih is

determined by the omputation time of

~

�

v

l

 v

0

l

0

in step C4. By theorem 3,

this omputation time is bounded by

O

0

�

M(n log

2

n) +

O(log n)

X

i=0

M

�

n

2

i

(2

i

+ logn)

�

1

A

;
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sine l = O(logn) and l

0

= O(logn). Now

O(log n)

X

i=0

M

�

n

2

i

(2

i

+ logn)

�

=

0

�

blog log n

X

i=0

+

O(log n)

X

i=blog log n+1

1

A

M

�

n

2

i

(2

i

+ logn)

�

= O(M(n log

2

n log logn));

whih ompletes the proof of theorem 4.

5 Conlusion

We have desribed several algorithms for the multiple preision evaluation

and analyti ontinuation of holonomi funtions, suh that the user has

expliit ontrol over the omputation errors. For holonomi funtions over

the algebrai numbers, the asymptoti time omplexities of our algorithms

as a funtion of the number of required digits are the best atually known,

exept in the ase of elementary funtions, where the AGM method applies.

In partiular, many mathematial onstants involving speial funtions an

be approximated extremely fast both theoretially and in pratie [6℄. We

onlude this setion with some remarks.

The naive method versus binary splitting. Although the binary split-

ting method for summing power series has a better asymptoti omplexity

than the naive method, it would be interesting to know for whih preisions

it beomes more eÆient in pratie. The answer to this question is hard to

give at the moment and depends on several issues.

First, the binary splitting method learly su�ers from the fat that it uses

q by q matrix multipliations, whene it has a bad dependene on q. Here we

notie that the size of the matries an sometimes be redued. For instane,

if we want to evaluate h 1 = 1 +

1

2

+

1

24

+ � � � , then we may take one by

one matries (

1

(2k�1)(2k)

) for the N

k

and sum only the �rst d

m

2

e terms of the

expansion h 1 = 1 +N

1

+N

2

N

1

+ � � � . We also notie that for large values

of q, FFT-multipliation beomes pro�table for smaller preisions, sine we

an FFT-transform the entire matries.
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The binary splitting method also su�ers from a large amount of overhead

for small preisions. The �rst reason is that the �nal division M

0;l

=

M

0

0;l

q

0;l

is quite expensive and the seond reason is that binary splitting is quite

expensive when the ratio � =

Æ(z)

jz

0

�zj

is too small. For frequently used speial

funtions, with say z = 0 and 0 < z

0

< 1, a solution might be to tabulate

the values of F (

1

2

8

); � � � ; F (

2

8

�1

2

8

).

We �nally notie that the binary splitting method may very well be om-

bined with the naive method, by omputing the matries M

k;l

; N

k;l

up to

some order m

0

< m only. Horner's method is used to omplete the ompu-

tation in order. Consequently, we avoid that the oeÆients of the M

k;l

and

N

k;l

grow to large.

Initial onditions in \fake singularities". Sometimes, the zeros of P

p

are not atual singularities of f and for ertain lassial speial funtions, the

initial onditions are even spei�ed in suh \fake singularities". For example,

the sine-integral funtion

Six =

Z

x

0

t

�1

sin tdt;

satis�es the equation

z Si

000

z + 2Si

00

z + z Si

0

z = 0;

with initial onditions Si(0) = 0; Si

0

(0) = 1; Si

00

(0) = 0. Using the reurrene

relation

Si

k+2

+

2

k

Si

k+1

+

1

(k + 1)(k + 2)

Si

k

= 0;

algorithms B, E and C still apply in this ase. Atually, this is a general

situation: it suÆes that the power series expansion be onvergent and that

K ontains z.

Multivariate holonomi funtions. Amultivariate funtion f(z

1

; � � �; z

k

)

is said to be holonomi, if f is holonomi in eah of its variables. It is las-

sial that the restrition of a multivariate holonomi funtion to a straight

line segment is a holonomi funtion in one variable only. Moreover, the dif-

ferential equation satis�ed by this restrition an be omputed in a generi

19



way, i.e. for a generi straight line segment. Consequently, our algorithms

generalize in a straightforward way to the multivariate ase.

Small perturbations. The trik to ompute f(z

0

); � � � ; f

(p�1)

(z

0

) simulta-

neously, by introduing the in�nitesimal variable � and working in the ring

K [�℄=(�

p

) instead of K an be generalized: if we allow the oeÆients of

P

0

; � � � ; P

p

to depend on � (i.e. by taking P

0

; � � � ; P

p

2 K [�℄=(�

r

)[z℄), then

we may ompute the e�et of small perturbations of (1) in � up to a �nite

number of terms.

Singularities. When the point z

0

in whih we want to evaluate f is near

to a singularity, the bounds for the transition matries may beome very

bad. No straightforward numerial methods an be applied to solve this

problem, and numerial resummation tehniques are essentially needed to

handle this situation [13, 9℄. Here we notie that the Borel and Laplae

transforms preserve holonomy, therefore our algorithm an theoretially be

used in the resummation proess. We intend to study this issue more losely

in a forthoming paper.

We also notie that the binary splitting algorithm an be used to eÆ-

iently evaluate holonomi funtions in the neighbourhood of points where

the series expansion diverges, by summing \up to the smallest term". Of

ourse, we only get limited approximations of the exat value of the holo-

nomi funtion in this way, but it is well known that these approximations

have exponential auray when we approah the singularity. Furthermore,

suh approximations may again be useful for heuristi zero tests in omputer

algebra.
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