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Abstra
t

A holonomi
 fun
tion is an analyti
 fun
tion, whi
h satis�es a

linear di�erential equation with polynomial 
oeÆ
ients. In parti
ular,

the elementary fun
tions exp; log; sin, et
. and many spe
ial fun
tions

like erf;Si, Bessel fun
tions, et
. are holonomi
 fun
tions.

Given a holonomi
 fun
tion f (determined by the linear di�erential

equation it satis�es and initial 
onditions in a non singular point z),

we show how to perform arbitrary pre
ision evaluations of f at a non

singular point z

0

on the Riemann surfa
e of f , while estimating the

error.

Moreover, if the 
oeÆ
ients of the polynomials in the equation for

f are algebrai
 numbers, then our algorithm is asymptoti
ally very

fast: if M(n) is the time needed to multiply two n digit numbers,

then we need a time O(M(n log

2

n log log n)) to 
ompute n digits of

f(z

0

).

1 Introdu
tion

Let K be a sub�eld of C . A holonomi
 fun
tion (over K ) is an analyti
 fun
-

tion f , whi
h satis�es a linear di�erential equation

P

p

(z)f

(p)

(z) + � � �+ P

0

(z)f(z) = 0; (1)

where P

0

; � � � ; P

p

are polynomials in K [z℄ with P

p

6= 0. The elementary

fun
tions exp; log; sin; � � � and many spe
ial fun
tions like erf; Si; � � � , Bessel

fun
tions, hypergeometri
 fun
tions, et
. are holonomi
. The 
lass of holo-

nomi
 fun
tions also admits several interesting algebrai
 properties whi
h we

re
all in se
tion 2.1, and has re
ently been the obje
t of intensive study in


omputer algebra and mathemati
s (e.g. [12, 8, 16℄).
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The obje
tive of this paper is to study holonomi
 fun
tions from the exa
t

numeri
al point of view: we require that all 
omplex z numbers we 
ompute

with are e�e
tive, i.e. for any rational " > 0 we 
an 
ompute a \Gaussian

rational" ~z 2 Q [i℄ with j~z � zj 6 ". In this 
ontext, we are interested in

algorithms to evaluate holonomi
 fun
tions. Of 
ourse, some 
are is needed

here, sin
e f is a
tually de�ned on a Riemann surfa
e R. Given e�e
tive

initial 
onditions

F (z) =

0

B

�

f(z)

.

.

.

f

(p�1)

(z)

1

C

A

: (2)

for f in a point z, and a suitably dis
retized path z  z

0

on R, we therefore

want to 
ompute f at z

0

by following the path. In 
ases where no 
onfusion

is possible, we will nevertheless impli
itly identify points on R with their

proje
tions on C .

The following three issues we be dis
ussed in this paper:

Q1. How to guarantee the exa
tness of evaluation algorithms?

Q2. What is the asymptoti
 
omplexity of 
omputing n digits of f(z

0

)?

Q3. How does the 
hoi
e of the path z  z

0

in
uen
e the 
omplexity of

e�e
tive analyti
 
ontinuation? In parti
ular, what happens if the path

approa
hes a singularity?

The remainder of the introdu
tion is devoted to a brief dis
ussion of these

questions. We noti
e that mu
h of the material presented here also appeared

in [15℄, but we think that the presentation in the present paper is more

elegant. The se
tion 4.1 and algorithm B from se
tion 2.2 are new.

1.1 E�e
tive bounds

Sin
e all our analyti
 
ontinuation algorithms will be based on power series

evaluations, question Q1 redu
es to the problem of 
omputing bounds of the

form

8k jf

k

j 6 AB

k

(3)

for the 
oeÆ
ients f

k

of the Taylor series

f(z + u) = f

0

+ f

1

u+ f

2

u

2

+ � � � (4)
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in a non singular point z, where f; � � � ; f

(p�1)

are known. Now it is a well

known fa
t that the zeros !

1

; � � � ; !

�

of P

p

are the only possible singularities

of f . Therefore, denoting by Æ(z) the distan
e between z and the set of these

zeros, we may even require B > Æ(z)

�1

to be given and ask for an A su
h

that (3) holds.

Another, equivalent problem would be to 
ompute an upper bound C for

jf j on a suÆ
iently small 
ompa
t disk D(z; r) with 
enter z, say of radius

r < Æ(z). Indeed, this yields the estimation

jf

k

j =

�

�

�

�

1

2�i

Z

juj=r

f(z + u)

u

k+1

du

�

�

�

�

6

C

r

k

(5)

for the 
oeÆ
ients f

k

. On the other hand, given bounds (3), we have

jf j 6

A

1� rB

on any 
ompa
t disk with 
enter z and radius 0 < r <

1

B

. In se
tion 2, we

prove

Theorem 1. There exists an algorithm whi
h given z, 0 < r < Æ(z) and

F (z) 
omputes an upper bound C for jf j on D(z; r).

1.2 Fast multiple pre
ision evaluations

For 
ertain purposes it is interesting to evaluate holonomi
 fun
tions up

to many digits. First, this question is of theoreti
al interest, sin
e many

spe
ial fun
tions are holonomi
. Se
ondly, fast evaluation algorithms up

to several hundreds of digits 
an be used in 
omputer algebra systems in

reliable heuristi
 zero tests for 
onstant expressions involving spe
ial and/or

holonomi
 fun
tions. Finally, evaluations up to thousands or millions of digits


an be used in order to obtain statisti
al information about real numbers,

whi
h �nds its appli
ation in analyti
 number theory resear
h.

In what follows, M(n) denotes the time 
omplexity to multiply two n

digit numbers and we make the standard assumption that M(n)=n is mono-

toni
 for n ! 1. Asymptoti
ally, M(n) = O(n logn log logn), when us-

ing FFT-multipli
ation [1, 7℄, but for intermediate pre
isions, Karatsuba's

O(n

log 3= log 2

) algorithm [7℄ is faster. When we measure the 
omplexity of the

evaluation of a fun
tion in a point, we will only 
ount the time spent on the
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real evaluation. In our 
ase of analyti
 
ontinuation, this means that we do

not 
ount the time needed to 
ompute O(n) digits of z; z

0

; f(z); � � � ; f

(p�1)

(z),

if we need n digits of f(z

0

).

For the evaluation of elementary fun
tions, several fast algorithms are

known, su
h as binary splitting [3℄, whi
h has time 
omplexity

O(M(n log

2

n)) and the AGM method [4, 11, 2℄, of 
omplexity

O(M(n logn)). Although the AGM algorithm is asymptoti
ally faster, bi-

nary splitting is more eÆ
ient for pre
isions inferior to �1; 000; 000 digits.

Moreover, the binary splitting method has the advantage that it 
an be gen-

eralized to the evaluation of holonomi
 fun
tions, if K is an algebrai
 number

�eld (usually, K = Q or K = Q [i℄). In se
tion 3 we �rst 
onsider the 
ase

when z; z

0

are also in K , and we prove

Theorem 2. Assume that K is an algebrai
 number �eld and that z  z

0

=

z ! z

0

is the straight line path between z; z

0

2 K with jz

0

� zj < Æ(z). Then

n digits of f(z

0

) 
an be 
omputed in time O(M(n log

2

n)).

We noti
e that Haible and Papanikolaou independently proved this the-

orem in the 
ase of hypergeometri
 (and slightly more general) fun
tions [6℄.

Moreover, they implemented the method and established a new world re
ord

in the 
al
ulation of Ap�ery's 
onstant �(3) by 
omputing 1,000,000 de
imal

digits. Hen
e, binary splitting indeed be
omes eÆ
ient for large pre
isions.

Moreover, the method 
an be easily parallelized, a fa
t whi
h has also been

exploited by Haible and Papanikolaou.

1.3 About the 
hoi
e of the path z  z

0

In order to treat the 
ase when z and z

0

are arbitrary, it is important to

study the dependen
y of the 
omplexity of the algorithm from theorem 2

on z; z

0

2 K . Let us �rst introdu
e some more notations. We denote by

size(O) the size of an obje
t O. For instan
e, the size of a natural number

is its number of digits. For a �xed open domain U , we also denote by �(z)

the distan
e between a point z � U and the boundary of U . In se
tion 4.1

we prove

Theorem 3. Assume that
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(a) U is an open domain on whi
h jf j is bounded.

(b) K is an algebrai
 number �eld.

(
) z  z

0

= z ! z

0

is the straight line path between two points z; z

0

2 K .

(d) We have D(z; jz

0

� zj) � U .

Denote s = size(z) + size(z

0

) and � =

�(z)

jz

0

�zj

. Then f(z

0

) 
an be evaluated

up to pre
ision 2

�n

in time

O(M(n(s+ logn) logn log

�1

�));

uniformly in z and z

0

, provided that log log � = O(n).

In parti
ular, we observe that analyti
 
ontinuation from z to z

0

is the

faster as the sizes of z and z

0

are smaller. Some other interesting 
orollaries of

the above result 
on
ern optimal 
hoi
es of paths to approa
h or turn around

singularities; see se
tion 4.1 for a further dis
ussion. In se
tion 4.3, we return

to the 
ase when the path z  z

0

is arbitrary. Approximating z  z

0

by a

suitable broken line path (the endpoints are approa
hed by a sequen
e of

algebrai
 numbers, where we double the pre
ision at ea
h step), we prove

Theorem 4. Assume that the 
oeÆ
ients of P

0

; � � � ; P

p

are in K [z℄. Then

n digits of f(z

0

) 
an be 
omputed in time O(M(n log

2

n log logn)).

2 Bounds for holonomi
 fun
tions

In this se
tion we prove theorem 1. We �rst re
all some 
lassi
al fa
ts about

holonomi
 fun
tions. We next give an algorithm to 
ompute bounds for the


oeÆ
ient of the Taylor expansion (4) of f , whi
h yields theorem 1 by what

has been said in se
tion 1.1.

2.1 Preliminaries

In this se
tion we re
all some interesting properties of holonomi
 fun
tions

[8℄.

Proposition 1. The set of holonomi
 fun
tions over K form a K -algebra

stable under di�erentiation.
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The proof of this proposition is a
tually 
onstru
tive and uses elimination

te
hniques. We will only prove the stability of the set of holonomi
 fun
tions

over K under derivation, whi
h is the only fa
t we need in what follows. So

assume that f satis�es (1). Di�erentiating (1), we obtain

P

p

(z)f

(p+1)

(z) + (P

p�1

(z) + P

0

p

(z))f

(p)

(z) + � � � +

+ (P

0

(z) + P

0

1

(z))f

0

(z) + P

0

0

(z)f(z) = 0

If P

0

0

= 0, then this yields the required equation for f

0

. Otherwise, we

multiply the equation by P

0

(z) and subtra
t P

0

0

(z) times the equation (1) in

order to obtain the required equation for f

0

.

Proposition 2. A fun
tion f is holonomi
 over K if and only if the


oeÆ
ients of its Taylor series expansion

f(z + u) = f

0

+ f

1

u+ f

2

u

2

+ � � �

in any non singular point z 2 K satisfy a linear di�eren
e equation

Q

q

(k)f

k+q

+ � � �+Q

0

(k)f

k

= 0; (6)

with Q

0

; � � � ; Q

q�1

2 K [k℄.

For what follows we will only need to show how to obtain a linear di�er-

en
e equation (6) from (1). Denoting the k-th 
oeÆ
ient of a power series g

in u by [u

k

℄, we have the following rewriting rules

�

[u

k

℄ug(u) = [u

k�1

℄g(u) for k > 0;

[u

k

℄g

0

(u) = (k + 1)[u

k+1

℄g(u)

Clearly, substitution of z by z + u in (1) yields a linear di�erential equa-

tion for the power series f

0

+ f

1

u + f

2

u

2

+ � � � with 
oeÆ
ients in K [u℄.

Applying the above rewriting rules to this equation yields a linear di�er-

en
e relation with 
oeÆ
ients in K [k℄ between f

�

; f

�+1

; f

�+2

; � � � , where � =

max (degP

0

; � � � ; degP

p

). Repla
ing k by k + � in this relation yields the

desired re
urren
e relation (6). Noti
e that Q

q

(k) 6= 0 for all k and that

Q

i

(k)=Q

q

(k) = O(1) for all i and k !1.

2.2 Computation of bounds on 
ompa
t disks

In this se
tion, we shall use the usual Eu
lidean norm for ve
tors V with q

entries:

jjV jj =

q

V

2

1

+ � � �+ V

2

q

6



and the usual operator norm for matri
es M :

jjM jj = sup

jjV jj=1

jjMV jj:

We re
all that jjMN jj 6 jjM jj jjN jj for all matri
es M;N .

For ea
h k, let us denote

�

k

=

0

B

�

f

k

.

.

.

f

k+q�1

1

C

A

:

Then the linear di�eren
e equation (6) yields a matrix identity

�

k+1

= N

k

�

k

with

N

k

=

0

B

B

B

�

0 1 O

.

.

.

.

.

.

0 O 1

�

Q

0

(k)

Q

q

(k)

�

Q

1

(k)

Q

q

(k)

� � � �

Q

q�1

(k)

Q

q

(k)

1

C

C

C

A

: (7)

In order to estimate jf

k

j it therefore suÆ
es to estimate the entries of the

produ
t

�

k

= N

k�1

� � �N

0

�

0

:

LetN

1

be the matrix whi
h is obtained formally by repla
ing k by in�nity

in (7). Then we have

N

k

= N

1

+ o(1);

i.e. the di�eren
e N

k

�N

1

is an error matrix whose 
oeÆ
ients tend to zero

for k ! 1. Let " > 0. We 
laim that there exists a 
omputable diagonal

matrix D and an invertible matrix U , su
h that

jjD � UN

1

U

�1

jj 6

"

2

:

Indeed, we �rst triangulate N

1

and obtain an expression of the form T =

^

UN

1

^

U

�1

for some invertible matrix U . Now let � be the maximum of the

absolute values of the non diagonal 
oeÆ
ients of T and set � = min(

"

2�

p

q

; 1).
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Then we take U = Diag (1; �; � � � ; �

q�1

)

^

U , where Diag (1; �; � � � ; �

q�1

) de-

notes the diagonal matrix with entries 1; �; � � � ; �

q�1

, and we let D be the

diagonal part of UN

1

U

�1

.

Now for ea
h k, we let

�

D

k

= UN

k

U

�1

;

E

k

= D

k

�D;

Sin
e D

k

tends to D

1

= UN

1

U

�1

for k ! 1, there exists a 
onstant k

0

(whi
h is easily 
omputed, sin
e the entries of E

k

are rational fra
tions in k),

su
h that

jjE

k

jj 6 "; (8)

for all k > k

0

. Putting P = D

k

0

�1

� � �D

0

, we �nally obtain the bound

jjN

k�1

� � �N

0

�

0

jj = jjU

�1

D

k�1

� � �D

0

U�

0

jj

6 jjU

�1

jj (jjDjj+ ")

k�k

0

jjP jj jjU jj jj�

0

jj;

for all k > k

0

. In parti
ular,

jf

k

j 6

p

qjjU

�1

jj jjP jj jjU jj jj�

0

jj (jjDjj+ ")

k�k

0

for all k > k

0

.

Let P

p

(z+u) = 


0

+ 


1

u+ � � �+ 


p

u

p

as a polynomial in u. Examining the


onstru
tion of the polynomials Q

0

; � � � ; Q

q

, we observe that the 
oeÆ
ients

of the bottom row of N

1

are �


1




�1

0

; � � � ;�


p




�1

0

. In parti
ular the largest

eigenvalue of N

1

is Æ(z)

�1

and so is the largest eigenvalue of D. Hen
e the

above method yields an algorithm to 
ompute a bound of the form (3). In

view of what has been said in se
tion 1.1, this proves theorem 1. We �nally

noti
e that it a
tually suÆ
es to perform a numeri
al triangulation of N

1

instead of an exa
t one in our algorithm, that is T �

^

UN

1

^

U

�1

. Indeed, (8)

is the key bound we need. Modulo this modi�
ation, our algorithm 
an now

be resumed as follows:

Algorithm B. The algorithm takes a number B < Æ(z)

�1

on input and

produ
es a number A, su
h that jf

k

j 6 AB

k

for all k.

B1. [Triangulate℄ Let " 6 B � Æ(z) and 
ompute numeri
ally a triangular

matrix T and an invertible matrix

^

U , su
h that

jjT �

^

UN

1

^

U

�1

jj 6

"

4

:
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B2. [\Diagonalize"℄ Let � > max

i<j

jT

i;j

j and � 6 min(

"

4�

p

q

; 1).

Let U := Diag (1; �; � � � ; �

q�1

)

^

U .

Let D := Diag ((UN

1

U

�1

)

1;1

; � � � ; (UN

1

U

�1

)

q;q

).

We have

jjD � UN

1

U

�1

jj 6

"

2

:

B3. [Compute k

0

℄ Compute the symboli
 matrix U(N

1

� N

k

)U

�1

whose


oeÆ
ients are rational fra
tions in k. Let K be su
h that the norm

ea
h of these rational fra
tions is bounded by

K

k+1

for all k. Let k

0

>

4K

"

be an integer. We have for all k > k

0

jjD � UN

k

U

�1

jj 6

3"

4

:

B4. [Return bound℄ Let � > (jjUN

1

U

�1

jj+ qK)

k

0

> jjP jj.

Return A >

p

q�B

�k

0

jjU

�1

jj jjU jj jj�

0

jj.

3 Evaluation in algebrai
 points

In this se
tion we assume that K is an algebrai
 number �eld and z  z

0

is

a straight line path z ! z

0

between two points z; z

0

2 K with jz

0

� zj < Æ(z).

We will show how the binary splitting te
hnique 
an be used to 
ompute

f(z

0

) from F (z) and (1) in an asymptoti
ally eÆ
ient way. To guarantee

exa
tness of our algorithm, we assume that

sup

u2D(z;r)

jf(u)j 6 C (9)

on a disk D(z; r) with jz

0

� zj < r < Æ(z). The previous se
tion yields an

algorithm to 
ompute su
h a bound C for, say, r =

jz

0

�zj+Æ(z)

2

.

3.1 Naive evaluation of f(z

0

)

From the Cau
hy formula (5), we get the bound

jf

m

(z

0

� z)

m

+ f

m+1

(z

0

� z)

m+1

+ � � � j

6

Cjz

0

� zj

m

r

m

+

Cjz

0

� zj

m+1

r

m+1

+ � � � =

Cr

r � jz

0

� zj

�

jz

0

� zj

r

�

m

for the tail of the Taylor series of f in z, when evaluating in z

0

up to order

m. Let � =

r

jz

0

�zj

and

9



C

1

=

log 2

log �

;

C

2

=

log 2C�log(1��

�1

)

log �

:

(10)

Then it follows that for

m > C

1

n+ C

2

;

we have

jf(z

0

)� (f

0

+ � � �+ f

m�1

(z

0

� z)

m�1

)j 6

"

2

:

It suÆ
es therefore to evaluate f

0

+ � � �+ f

m�1

(z

0

� z)

m�1

with error 6

"

2

in

order to obtain an approximation for f(z

0

) with error 6 ".

A \naive" way to do this would be to 
ompute the 
oeÆ
ients f

0

; � � � ; f

m�1

one by one and to use Horner's method for the evaluation of a polynomial (for

instan
e). We �rst noti
e that f

0

= f(z); � � � ; f

p�1

= f

(p�1)

(z)=(p � 1)! are

dire
tly determined by F (z). In order to obtain f

p

; � � � ; f

��1

, we use the re-

lation (1) and its derivatives up to order q�p�1. The remaining 
oeÆ
ients

are dedu
ed from the re
urren
e relation (6). Clearly the time 
omplexity of

the evaluation of f

0

+� � �+f

m�1

(z

0

�z)

m�1

by this naive method is O(M(n)n),

but the method has the advantage that it 
an also be used when z; z

0

and

the 
oeÆ
ients of P

0

; � � � ; P

p

are not algebrai
.

3.2 The binary splitting algorithm

Let us now give a more sophisti
ated way to 
ompute f

0

+ � � � + f

m�1

(z

0

�

z)

m�1

. We �rst noti
e that the sequen
e f

0

; f

1

(z

0

�z); f

2

(z

0

�z)

2

; � � � also sat-

is�es a linear di�eren
e equation of order q with 
oeÆ
ients in K [k℄, sin
e (6)

implies

Q

q

(k)f

k+q

(z

0

� z)

k+q

+ � � �+ [(z

0

� z)

q

Q

0

(k)℄f

k

(z

0

� z)

k

= 0;

for all k. Therefore we may assume without loss of generality that z

0

�z = 1,

and we just have to show how to evaluate f

0

+ � � �+ f

m�1

.

Let �

k

be de�ned as in se
tion 2.2 and de�ne

�

k;l

=

0

B

�

f

0

+ � � �+ f

l�1

.

.

.

f

q�1

+ � � �+ f

q+l�2

1

C

A

for ea
h k. We 
laim that for all k > 0 and l > 1, there exist matri
es

M

k;l

; N

k;l

with 
oeÆ
ients in K , su
h that

10



�

k;l

= M

k;l

�

k

;

�

k+l

= N

k;l

�

k

:

(11)

Indeed, if l = 1, we take M

k;1

= N

k;1

= N

k

with the notations from se
-

tion 2.2. For l > 2, we 
ompute M

k;l

and N

k;l

using binary splitting: let

l = l

1

+ l

2

, with l

1

= b

l

2


. Then we take

M

k;l

= M

k;l

1

+M

k+l

1

;l

2

N

k;l

1

;

N

k;l

= N

k+l

1

;l

2

N

k;l

1

:

(12)

A
tually, in order to avoid 
omputations with rational numbers, it is more

eÆ
ient to write M

k;l

= q

�1

k;l

M

0

k;l

and N

k;l

= q

�1

k;l

N

0

k;l

, where the numbers q

k;l

are positive integers and the matri
es M

0

k;l

; N

0

k;l

have 
oeÆ
ients in the sub-

ring of algebrai
 integers of K . In this representation, (12) be
omes

q

k;l

= q

k+l

1

;l

2

q

k;l

1

;

M

0

k;l

= q

k+l

1

;l

2

M

0

k;l

1

+M

0

k+l

1

;l

2

N

0

k;l

1

;

N

0

k;l

= N

0

k+l

1

;l

2

N

0

k;l

1

:

(13)

These re
urren
e relations yield the following algorithm to 
ompute f(z

0

):

Algorithm E. Given " = 2

�n

, the algorithm 
omputes an approximation

~

f(z

0

) for f(z) with j

~

f(z

0

) � f(z

0

)j 6 ". We assume that K is an algebrai


number �eld and z  z

0

= z ! z

0

with z; z

0

2 K and jz

0

� zj < Æ(z), and

P

0

; � � � ; P

p

2 K [z℄.

E1. [Pre
omputation℄ Compute 
onstants C; r; C

1

; C

2

with (9) and (10),

using algorithm B. Compute the di�eren
e equation (6) from (1) and

redu
e the general 
ase to the 
ase when z

0

� z = 1.

E2. [Binary splitting℄ Let m = max (dC

1

n + C

2

e; 1).

Compute �

0;m

using binary splitting (13).

Let L denote the �rst line of the matrix �

0;m

.

E3. [Return approximation℄ Compute an approximation

~

�

0

of �

0

with en-

tries in K and jj

~

�

0

� �

0

jj 6

"

2jjLjj

from F (z). Return L

~

�

0

.

Let us now estimate the 
omplexity of the algorithm. Step E1 is a pre-


omputation of 
ost O(1). In step E2 we have m = O(n) and size(q

k;1

) +

size(M

0

k;1

) + size(N

0

k;1

) = O(log k), sin
e the Q

i

are rational fra
tions in

K (k). By indu
tion, it follows that size(q

k;l

) + size(M

0

k;l

) + size(N

0

k;l

) =

11



O(l log k), uniformly in k and l. Hen
e, the 
omputation of M

0;m

by binary

splitting takes a time

O(M(m logm) + 2M(d

m

2

e logm) + � � �+ 2

blogm= log 2


M(2 logm))

= O(M(n logn) logn) = O(M(n log

2

n)):

By 
onvention, we do not 
ount the time to 
ompute

~

�

0

in step E3. Sin
e

size(L) = O(n logn) and log

"

2jjLjj

= O(n+size(L)), the �nal multipli
ation

L

~

�

0

takes a time O(M(n logn)). Altogether, this proves theorem 2. We note

that the 
omplexity bound 
an be improved to O(M(n logn)) if Æ(z) =1.

4 Analyti
 
ontinuation

In this se
tion, we show how to perform the analyti
 
ontinuation of holo-

nomi
 along arbitrary paths. Throughout this se
tion, we assume that K is

an algebrai
 number �eld.

4.1 Analyti
 
ontinuation by algorithm E

Both the naive algorithm and algorithm E 
an a
tually be used | even in

two di�erent ways | to perform the numeri
al analyti
 
ontinuation along

z ! z

0

, i.e. to 
ompute an approximation of the ve
tor F (z

0

) instead of

f(z

0

) only. Indeed, a �rst way would be to use the fa
t that f

0

; � � � ; f

(p�1)

are holonomi
 by proposition 1. A se
ond idea is to repla
e z

0

by the formal

element z

0

+ � in the ring K [�℄=(�

p

) and to use either the naive algorithm or

algorithm E with 
oeÆ
ients in the ring K [�℄=(�

p

) instead of K . Doing so,

the result a

0

+a

1

�+ � � �+a

p�1

�

p�1

of the evaluation approximates the Taylor

series expansion f(z

0

)+ f

0

(z

0

)�+ � � �+

1

(p�1)!

f

(p�1)

�

p�1

of f in z

0

at the order

p� 1.

In order to perform analyti
 
ontinuation along an arbitrary path, the

path �rst needs to be \dis
retized" by a broken line segment. In order to do

this in an optimal way, we must study the 
omplexity of algorithm E, if z

and z

0

are allowed to vary in some open domain U on whi
h jf j is bounded

by C, while ensuring that D(z; jz

0

� zj) � U . Then we may 
hoose r = �(z)

as large as possible in (9). Hen
e, (10) implies

m = O(n log

�1

� + log

�1

� j log log � j);

12



uniformly in z and z

0

. Under the assumption that log log � = O(n), this

simpli�es to

m = O(n log

�1

�):

Let s = size(z)+size(z

0

). It is not hard to see that after the normalization

z

0

� z = 1 the total size of the re
urren
e relation (6) is bounded by O(s).

Hen
e,

size(q

k;1

) + size(M

k;1

) + size(N

0

k;1

) = O(s+ log k);

uniformly in z; z

0

; k. Consequently,

size(q

k;l

) + size(M

k;l

) + size(N

0

k;l

) = O(l(s+ log k));

uniformly in z; z

0

; k and l. We infer that the binary splitting in step E2 takes

a time

O(M(m logm(s+ logm))) = O(M(n logn(s + logn) log

�1

�)):

The �nal multipli
ation L

~

f�

0

in step E3 takes a time O(M(n(s + logn)

log

�1

�)). This establishes theorem 3.

If jf j; � � � ; jf

(p�1)

j are all bounded by C on U , then the analyti
 
ontin-

uation by algorithm E 
learly has time 
omplexity O(M(n logn(s + logn)

log

�1

�)) as well. Now re
onsider the problem of dis
retizing

z  z

0

� z = v

0

! � � � ! v

l

= z

0

:

an arbitrary path z  z

0

with z; z

0

2 K . The uniform 
omplexity bound for

algorithm E enables us to give some heuristi
s of how to 
hoose the points

v

1

; � � � ; v

l

. Clearly, it will always be bene�
ial to 
hoose them su
h that

size(v

1

) + � � � + size(v

l

) is as small as possible. Let us now 
onsider two

other spe
ial 
ases of interest.

Turning around a singularity. Assume that z  z

0

=	 z is a small


ir
le around one of the singularities !

i

. Taking v

0

; � � � ; v

l

on the 
ir
le, we

need to �nd the optimal angle by whi
h we progress. If we progress by an

angle � =

2�

a

, then we have

� =

1

2 sin

�

2

;

so the time needed to perform the analyti
 
ontinuation is proportional to

�1

� log (2 sin

�

2

)

:

Hen
e, the optimal value for a is 17.

13



Approa
hing singularities. An other situation whi
h is often en
oun-

tered is when U is a small open se
tor with a singularity !

i

at its 
or-

ner. Given points z; z

0

2 K , su
h that z

0

lies on the line segment be-

tween z and v

i

, we want to perform analyti
 
ontinuation along the straight

line segment between z and z

0

. In this 
ase, the optimal strategy is to


hoose v

0

; � � � ; v

l

on the line segment between z and z

0

in su
h a way that

Æ(v

1

) = �Æ(v

0

); � � � ; Æ(v

l

) = �Æ(v

l�1

). Then the time needed to perform the

analyti
 
ontinuation is proportional to

1

log(�) log(1� �)

and the optimal fa
tor � is seen to be 
lose to

1

2

. Of 
ourse, in order to take

� �

1

2

, the se
tor U should have an opening of at least

�

3

; otherwise � is taken

to be minimal su
h that the disks D(v

0

; jv

1

� v

0

j); � � � ; D(v

l�1

; jv

l

� v

l�1

j) �t

into U .

Remark. We note that if trun
ated power series are evaluated by the naive

algorithm, then the time 
omplexity is bounded by O(n log

�1

� M(n)) and

the optimal values for a and � are the same.

4.2 Transition matri
es

In this se
tion we introdu
e the 
on
ept of transition matri
es and prove some

bounds whi
h will be useful in the next se
tion. Let z  z

0

be an arbitrary

non singular path. Sin
e the value F (z

0

) of F in z

0

depends linearly on the

initial 
onditions F (z) of F in z, there exists a matrix �

z z

0

su
h that

F (z

0

) = �

z z

0

F (z)

for all possible initial 
onditions F (z). This matrix is 
alled the transition

matrix along z  z

0

. Obviously,

�

z z

0

 z

00

= �

z

0

 z

00

�

z z

0

;

for all 
ompositions z  z

0

 z

00

of z  z

0

with a path z

0

 z

00

.

We 
laim that the problem of 
omputing transition matri
es is equivalent

to the problem of analyti
 
ontinuation. Indeed, for 0 6 i 6 p � 1, let f [i℄

be the fun
tion f whi
h satis�es (1) with initial 
onditions F [i℄ = E

i

, where

14



E

i

denotes the 
olumn ve
tor with entries 0;

i times

� � � ; 0; 1; 0;

p�i�1 times

� � � ; 0. Then

�

z z

0

is just the matrix with 
olumns F [0℄(z

0

); � � � ; F [p� 1℄(z

0

).

Let us now study �

z!z

0

, for jz

0

� zj ! 0. Let r < Æ(z) be given and

assume that we have an upper bound C for the jf [i℄

(j)

j with 0 6 i; j 6 p� 1

on D(z; r); su
h a bound 
an be 
omputed by algorithm B. Then Cau
hy's

formula yields the bounds

jf [i℄

(j)

k

j 6

C

r

k

for the 
oeÆ
ients of the Taylor series expansions

f [i℄

(j)

(z + u) = f [i℄

(j)

0

+ f [i℄

(j)

1

u+ f [i℄

(j)

2

u

2

+ � � �

of the f [i℄

(j)

in z. Consequently, if jz

0

� zj < r, then

jf [i℄

(j)

(z

0

)� f [i℄

(j)

0

j 6

C

r � jz

0

� zj

jz

0

� zj:

Setting C

3

=

pC

2(r�jz

0

�zj)

, it follows that

jj�

z!z

0

� Idjj 6

1

2

C

3

jz

0

� zj: (14)

For jz

0

� zj <

1

C

3

we also obtain

jj�

z

0

!z

� Idjj 6 C

3

jz

0

� zj; (15)

sin
e (Id+ E)

�1

= Id� E + E

2

� E

3

+ � � � for matri
es E with jjEjj < 1.

4.3 Analyti
 
ontinuation: the general 
ase

Let us now turn to the general 
ase of performing the numeri
al analyti



ontinuation along an arbitrary non singular path z  z

0

. We split the path

into three parts

z  z

0

� z  w w

0

 z

0

;

where w and w

0

are approximations of z resp. z

0

in K . In se
tion 4.1 we

have already shown how to perform the analyti
 
ontinuation along w  w

0

.

In order to perform the analyti
 
ontinuation between z resp. z

0

and their

approximations w resp. w

0

, we approximate the paths z  w in w

0

 z

0

by

broken line paths

z  w � v = v

l

! � � � ! v

1

= w;

w

0

 z

0

� w

0

= v

0

1

! � � � ! v

0

l

0

= v

0

;
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whi
h depend on the desired pre
ision of the approximation of f(z

0

). Here

v

1

; � � � ; v

l

; v

0

1

; � � � ; v

0

l

0

are in K and for eÆ
ien
y reasons we 
hoose them

su
h that the pre
ision of the approximation is doubled at ea
h step (i.e.

size(v

i

) = O(2

i

) and log jz � v

i

j = O(2

i

) for i !1). For this purpose (see

also algorithm C below), we implement a fun
tion trun
ate , whi
h given u

and rational 2

�n�1

< " 6 2

�n

returns the element (b

<u

"


 + b

=u

"


i)" of K .

Assume now that we want to 
ompute F (z

0

) modulo an error 6 " = 2

�n

.

In the previous se
tion we have shown how to 
ompute 
onstants C

3

; r and

C

4

; r

0

, su
h that

jj�

z!t

� Idjj 6 C

3

jt� zj (for jt� zj < r);

jj�

t!z

� Idjj 6 C

3

jt� zj (for jt� zj < r);

jj�

t!z

0

� Idjj 6 C

4

jz

0

� tj (for jz

0

� tj < r

0

);

jj�

z

0

!t

� Idjj 6 C

4

jz

0

� tj (for jz

0

� tj < r

0

):

(16)

We will require jv

i

� zj < r and jz

0

� v

0

i

0

j < r

0

for all i; i

0

. Denote � = �

v v

0

and assume that v; v

0

;

~

F (z);

~

� are su
h that

jv � zj 6 


1

";

jz

0

� v

0

j 6 


2

";

jj

~

F (z)� F (z)jj 6 


3

";

jj

~

���jj 6 


4

":

Here 


1

; 


2

; 


3

and 


4

are indeterminates for the moment. We have the fol-

lowing error estimations:

jjF (v)�

~

F (z)jj 6 (


1

C

3

+ 


3

)"

jjF (v

0

)�

~

�

~

F (z)jj 6 ((1 + 


1

C

3

")


4

+ (


1

C

3

+ 


3

)(1 + 


4

")jj�jj)"

jjF (z

0

)�

~

�

~

F (z)jj 6 jjF (v

0

)�

~

�

~

F (z)jj+ (


2

C

4

(1 + 


1

C

3

")jj�jj)"

Imposing the 
onditions 


1

6

1

C

3

"

and 


4

6

1

"

, this yields

jjF (z

0

)�

~

�

~

F (z)jj 6 2(


4

+ (


1

C

3

+ 


3

+ 


2

C

4

)jj�jj)":

At this point, it suÆ
es to 
ompute an upper bound for jj�jj. This is done by


omputing an approximation

~

�

w w

0

for �

w w

0

with jj

~

�

w w

0

��

w w

0

jj 6 1

by algorithm E. Then we have

jj�jj 6 jw � zjC

3

(jj

~

�

w w

0

jj+ 1) jz

0

� w

0

jC

4

= C

5

: (17)
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Taking 


1

6

1

8C

3

C

5

; 


2

6

1

8C

4

C

5

; 


3

6

1

8C

5

; 


4

6

1

8

now suÆ
es to ensure that

jjF (z

0

)�

~

�

~

F (z)jj 6 ":

The analyti
 
ontinuation algorithm 
an be resumed as follows:

Algorithm C. The algorithm takes a non singular broken line path z  z

0

and a rational number " > 0 on input, and 
omputes an approximation

~

F (z

0

)

for F (z

0

) with jj

~

F (z

0

)�F (z

0

)jj 6 ". We assume that K is an algebrai
 number

�eld.

C1. [Pre
omputation℄ Compute 
onstants r; r

0

; C

3

; C

4

su
h that (16) holds

using algorithmB. Choose w;w

0

2 K with jw�zj < r and jw

0

�z

0

j < r

0

and repla
e the path w ! z  z

0

! w

0

with a homotopi
 broken line

path, along whi
h the transition matrix �

w w

0


an be evaluated by

algorithm E. Use algorithm E and (17) to 
ompute an upper bound C

5

for jj�

w w

0

jj.

C2. [Compute 
onstants℄ Let 


1

6

1

8C

3

C

5

; 


2

6

1

8C

4

C

5

; 


3

6

1

8C

5

and 


4

6

1

8

.

De
rease 


1

and 


4

if ne
essary, su
h that 


1

6

1

C

3

"

and 


4

6

1

"

.

C3. [Approximate endpoints℄

Let v

2

:= trun
ate (z;

jw�zj

2

); � � � ; v

l

:= trun
ate (z;

jw�zj

2

l

),

where l is minimal su
h that jz � v

l

j 6

"




1

.

Let v

0

2

:= trun
ate (z;

jz

0

�w

0

j

2

); � � � ; v

0

l

0

:= trun
ate (z;

jz

0

�w

0

j

2

l

0

),

where l

0

is minimal su
h that jz

0

� v

0

l

0

j 6

"




2

.

C4. [Return approximation℄ Compute

~

F (z), with jj

~

F (z)� F (z)jj 6

"




3

.

Compute

~

�

v

l

 v

0

l

0

with jj

~

�

v

l

 v

0

l

0

��

v

l

 v

0

l

0

jj 6

"




4

by algorithm E.

Return

~

�

v

l

 v

0

l

0

~

F (z).

Let us �nally estimate the time 
omplexity of algorithm C, whi
h is

determined by the 
omputation time of

~

�

v

l

 v

0

l

0

in step C4. By theorem 3,

this 
omputation time is bounded by

O

0

�

M(n log

2

n) +

O(log n)

X

i=0

M

�

n

2

i

(2

i

+ logn)

�

1

A

;
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sin
e l = O(logn) and l

0

= O(logn). Now

O(log n)

X

i=0

M

�

n

2

i

(2

i

+ logn)

�

=

0

�

blog log n


X

i=0

+

O(log n)

X

i=blog log n
+1

1

A

M

�

n

2

i

(2

i

+ logn)

�

= O(M(n log

2

n log logn));

whi
h 
ompletes the proof of theorem 4.

5 Con
lusion

We have des
ribed several algorithms for the multiple pre
ision evaluation

and analyti
 
ontinuation of holonomi
 fun
tions, su
h that the user has

expli
it 
ontrol over the 
omputation errors. For holonomi
 fun
tions over

the algebrai
 numbers, the asymptoti
 time 
omplexities of our algorithms

as a fun
tion of the number of required digits are the best a
tually known,

ex
ept in the 
ase of elementary fun
tions, where the AGM method applies.

In parti
ular, many mathemati
al 
onstants involving spe
ial fun
tions 
an

be approximated extremely fast both theoreti
ally and in pra
ti
e [6℄. We


on
lude this se
tion with some remarks.

The naive method versus binary splitting. Although the binary split-

ting method for summing power series has a better asymptoti
 
omplexity

than the naive method, it would be interesting to know for whi
h pre
isions

it be
omes more eÆ
ient in pra
ti
e. The answer to this question is hard to

give at the moment and depends on several issues.

First, the binary splitting method 
learly su�ers from the fa
t that it uses

q by q matrix multipli
ations, when
e it has a bad dependen
e on q. Here we

noti
e that the size of the matri
es 
an sometimes be redu
ed. For instan
e,

if we want to evaluate 
h 1 = 1 +

1

2

+

1

24

+ � � � , then we may take one by

one matri
es (

1

(2k�1)(2k)

) for the N

k

and sum only the �rst d

m

2

e terms of the

expansion 
h 1 = 1 +N

1

+N

2

N

1

+ � � � . We also noti
e that for large values

of q, FFT-multipli
ation be
omes pro�table for smaller pre
isions, sin
e we


an FFT-transform the entire matri
es.
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The binary splitting method also su�ers from a large amount of overhead

for small pre
isions. The �rst reason is that the �nal division M

0;l

=

M

0

0;l

q

0;l

is quite expensive and the se
ond reason is that binary splitting is quite

expensive when the ratio � =

Æ(z)

jz

0

�zj

is too small. For frequently used spe
ial

fun
tions, with say z = 0 and 0 < z

0

< 1, a solution might be to tabulate

the values of F (

1

2

8

); � � � ; F (

2

8

�1

2

8

).

We �nally noti
e that the binary splitting method may very well be 
om-

bined with the naive method, by 
omputing the matri
es M

k;l

; N

k;l

up to

some order m

0

< m only. Horner's method is used to 
omplete the 
ompu-

tation in order. Consequently, we avoid that the 
oeÆ
ients of the M

k;l

and

N

k;l

grow to large.

Initial 
onditions in \fake singularities". Sometimes, the zeros of P

p

are not a
tual singularities of f and for 
ertain 
lassi
al spe
ial fun
tions, the

initial 
onditions are even spe
i�ed in su
h \fake singularities". For example,

the sine-integral fun
tion

Six =

Z

x

0

t

�1

sin tdt;

satis�es the equation

z Si

000

z + 2Si

00

z + z Si

0

z = 0;

with initial 
onditions Si(0) = 0; Si

0

(0) = 1; Si

00

(0) = 0. Using the re
urren
e

relation

Si

k+2

+

2

k

Si

k+1

+

1

(k + 1)(k + 2)

Si

k

= 0;

algorithms B, E and C still apply in this 
ase. A
tually, this is a general

situation: it suÆ
es that the power series expansion be 
onvergent and that

K 
ontains z.

Multivariate holonomi
 fun
tions. Amultivariate fun
tion f(z

1

; � � �; z

k

)

is said to be holonomi
, if f is holonomi
 in ea
h of its variables. It is 
las-

si
al that the restri
tion of a multivariate holonomi
 fun
tion to a straight

line segment is a holonomi
 fun
tion in one variable only. Moreover, the dif-

ferential equation satis�ed by this restri
tion 
an be 
omputed in a generi
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way, i.e. for a generi
 straight line segment. Consequently, our algorithms

generalize in a straightforward way to the multivariate 
ase.

Small perturbations. The tri
k to 
ompute f(z

0

); � � � ; f

(p�1)

(z

0

) simulta-

neously, by introdu
ing the in�nitesimal variable � and working in the ring

K [�℄=(�

p

) instead of K 
an be generalized: if we allow the 
oeÆ
ients of

P

0

; � � � ; P

p

to depend on � (i.e. by taking P

0

; � � � ; P

p

2 K [�℄=(�

r

)[z℄), then

we may 
ompute the e�e
t of small perturbations of (1) in � up to a �nite

number of terms.

Singularities. When the point z

0

in whi
h we want to evaluate f is near

to a singularity, the bounds for the transition matri
es may be
ome very

bad. No straightforward numeri
al methods 
an be applied to solve this

problem, and numeri
al resummation te
hniques are essentially needed to

handle this situation [13, 9℄. Here we noti
e that the Borel and Lapla
e

transforms preserve holonomy, therefore our algorithm 
an theoreti
ally be

used in the resummation pro
ess. We intend to study this issue more 
losely

in a forth
oming paper.

We also noti
e that the binary splitting algorithm 
an be used to eÆ-


iently evaluate holonomi
 fun
tions in the neighbourhood of points where

the series expansion diverges, by summing \up to the smallest term". Of


ourse, we only get limited approximations of the exa
t value of the holo-

nomi
 fun
tion in this way, but it is well known that these approximations

have exponential a

ura
y when we approa
h the singularity. Furthermore,

su
h approximations may again be useful for heuristi
 zero tests in 
omputer

algebra.
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