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Abstract

We give an algorithm to compute asymptotic expansions

of exp-log functions. This algorithm automatically com-

putes the necessary asymptotic scale and does not su�er

from problems of inde�nite cancellation. In particular, an

asymptotic equivalent can always be computed for a given

exp-log function.

Introduction

Exp-log functions are functions obtained from a variable x

and the set of rational numbers Q by closure under �eld

operations and the application of exp and log j � j. The set

of exp-log functions was studied by G. H. Hardy [6], who

showed|using di�erent terminology|that their germs at

in�nity form a totally ordered �eld. This property makes

exp-log functions extremely useful for doing asymptotics.

The basic problem of e�ectively deciding the sign of an

exp-log function at in�nity (hence of computing limits) re-

mained open for a long time. The advent of computer alge-

bra has revived interest in this question. A �rst (theoretical)

proof that this problem could be reduced to zero-equivalence

of exp-log constants was found by B. Dahn and P. G�oring,

but their result does not lead to a practical algorithm. The

�rst concrete algorithm was given by J. Shackell in [15].

D. Gruntz made a number of improvements, and also imple-

mented the method, [5].

Since the appearance of [15], many problems of asymp-

totics have been treated (at least partially) from the e�ec-

tive point of view: functional inversion [14, 20], Liouvil-

lian functions [16], composition [17, 20], algebraic di�er-

ential equations [18]. However, implementations have not

followed these recent advances. The �rst implementation

of a non-trivial limit computation was done in [4]. A pro-

gram to perform asymptotic expansions in general scales was

given in [13]. A complete implementation by D. Gruntz of

limit computation for exp-log functions is incorporated in

MapleV.3, [5]. All these implementations rely on a heuris-

tic zero-test for constants and functions. Other methods of

zero-equivalence determination are available; see the con-

cluding section. Also a more complete expansion program

is under development [21].

We think that one of the reasons for this gap between

theory and implementation is that this area is quite techni-

cal. Our aim in this paper is to describe explicitly a rela-

tively simple algorithm for asymptotic expansions of exp-log

functions, using the theoretical work referred to above. The

essential idea is to make use of a special type of asymptotic

scale called a asymptotic basis and to use multiseries with

respect to such a basis (see Section 1). This simpli�es both

the description, proof and practical implementation of the

algorithm.

The paper is structured as follows. In Section 1, the de-

�nitions of multiseries and asymptotic basis are given. In

Section 2 we show how multiseries are handled in conjunc-

tion with an oracle for zero-equivalence, much in the same

way as usual series are. In Section 3 we show how to com-

pute an asymptotic basis suitable for expansion of a given

exp-log function, and prove that multiseries can be com-

puted for all exp-log functions. Finally, Section 4 gives a

detailed example of the working of the algorithm.

1 Asymptotic scales and multiseries

In this section, we introduce the notation and the (few) de-

�nitions we shall use in this paper.

De�nition 1 An asymptotic scale is a �nite ordered set

fg

1

; : : : ; g

n

g of positive unbounded exp-log functions such that

log g

i

= o(log g

i+1

), for i = 1; : : : ; n� 1.

This de�nition is slightly di�erent from the classical one,

where fx

n

; n 2 Ng is a standard scale. The di�erence is

motivated by our desire for generality as well as our e�ective

viewpoint.

Next, we want to consider generalized series with respect

to asymptotic scales. In order to express expansions of func-

tions like

1

1� x� x

e

= 1+x+ x

2

+ x

e

+ x

3

+2x

1+e

+ � � � ; x! 0

we need to accomodate �nitely generated sets of exponents.

By this, we mean sets S � R of the form

S = �

1

N+ �

2

N+ : : :+ �

k

N+ �;

where the �

i

's are strictly negative real numbers and � 2 R.

We can now de�ne multiseries.



De�nition 2 Let g be a positive unbounded exp-log func-

tion. A multiseries with respect to g is a formal sum of the

form

f =

X

�2S

f

�

g

�

;

with �nitely generated support S, the coe�cients f

�

being

exp-log functions.

The support being �nitely generated, it and its subsets are in

particular well-ordered whence they have a greatest element.

The element of the sum corresponding to the greatest � such

that f

�

6= 0 is called the dominant term of f . Similarly, it

makes sense to consider the k �rst terms of a multiseries

(k 2N

?

).

Our aim is to compute asymptotic expansions in the form

of multiseries with respect to an asymptotic scale fg

1

; : : : ; g

n

g.

De�nition 3 By a multiseries expansion with respect to

fg

1

; : : : ; g

n

g, we mean a multiseries with respect to g

n

, where

each coe�cient can recursively be expressed as a multiseries

with respect to fg

1

; : : : ; g

n�1

g, each multiseries with respect

to g

1

having constant coe�cients. We denote the set of exp-

log functions that admit such an expansion byR[[g

1

; : : : ;g

n

]].

The following special asymptotic scales play an impor-

tant role.

De�nition 4 An asymptotic basis is an asymptotic scale

fg

1

; : : : ; g

n

g satisfying the following conditions

1. g

1

= log

k

x (k 2N), where log

k

denotes the logarithm

iterated k times (log

0

x = x);

2. log g

i

2 R[[g

1

; : : : ;g

i�1

]], for 2 � i � n.

2 Algorithmic multiseries

Given an asymptotic basis fg

1

; : : : ; g

n

g we now describe the

principal operations on exp-log functions in R[[g

1

; : : : ;g

n

]].

In this section we assume that we are given an oracle for

testing zero-equivalence of exp-log functions. From a com-

putational point of view, we compute simultaneously with

explicit exp-log functions (for instance as expression trees)

and truncations of multiseries that converge to them in the

sense of Poincar�e expansions. When necessary, further terms

of the series can be computed from the explicit representa-

tion. Recursively, an explicit form of each coe�cient can be

computed. This idea will be made more precise in this and

the next section.

De�nition 5 A multiseries is said to be algorithmic when

it converges to an exp-log function as an asymptotic expan-

sion, and for any positive integer k its �rst k terms can be

computed and are themselves algorithmic (constants being

algorithmic).

A direct consequence of this de�nition is that the limit at

in�nity of an algorithmic multiseries can be computed. The

principal operations on algorithmic multiseries are as fol-

lows.

Sum The main problem here is avoiding inde�nite cancel-

lation of terms. This is done by testing whether the explicit

sum is zero using the oracle. If not, then the dominant

term of the sum can be obtained by computing su�ciently

many terms of both summands and comparing the expo-

nents of g

n

. Once the dominant term is computed, then the

oracle is used to decide whether this term is equal to the

sum. Otherwise, the same process yields more and more

terms. Note that if we expand without using the oracle, the

algorithm may fail to terminate, since consecutive terms of

identical series may be perpetually subtracted.

Product The usual product formula is used and the oracle

is invoked as above to prevent inde�nite cancellation.

Elementary functions Let �(z) be any of exp(z), log(1+z),

1=(1 + z). If f is an algorithmic multiseries tending to 0,

then �(f) can be expressed as an algorithmic multiseries

by employing the usual Taylor expansion of � and making

use of the oracle as above. In particular, 1=f can be com-

puted for any algorithmic multiseries f as follows. We �rst

write f = T + U where T is the dominant term in the g

n

-

expansion of f . Then we write 1=f as T

�1

� [1=(1 + U=T )]

and apply the same process recursively to the coe�cient

of g

n

in T

�1

. For the exponential and the logarithm, the

case when f does not tend to 0 may require extensions of

the asymptotic scale. This is treated in the next section.

It is worth mentioning that in practice, the exponents of

multiseries are often integers and then fast algorithms for

computing with power series can be used (e.g., Karatsuba's

algorithm for product [7], Brent & Kung's algorithms for

composition [1, 2],. . . ). Besides, when the exponents are

not integers, it is possible to reduce to this case by adding

new variables [21].

3 Expansions of exp-log functions

Expansions are built recursively for subexpressions of the

given function. The main problem is the computation of

asymptotic bases. The idea is to start with an asymptotic

basis consisting of just fxg, where x is the variable. The

asymptotic basis is gradually extended as the computation

proceeds. The only cases which may require an extension

of the basis are logarithm and exponential of an algorithmic

multiseries f 2 R[[g

1

; : : : ;g

n

]] tending to in�nity. During

the construction, we have to ensure that log g

i

is an algo-

rithmic multiseries for i > 1. An asymptotic basis satisfying

this property will be called algorithmic.

Logarithm Suppose that we wish to compute an expan-

sion for log f . By induction, we may suppose that we have

obtained f � A, where A = cg

�

1

1

� � � g

�

n

n

. Then letting F =

f � A, we use

log(f) = log(A) + log(1 + F=A):

The expansion of log(1 + F=A) may be performed as given

in the previous section. If �

1

= 0, then logA is computed

by

logA = log c+ �

2

log g

2

+ : : :+ �

n

log g

n

;

which is algorithmic since the asymptotic basis is algorith-

mic.

Otherwise, if �

1

6= 0, we insert log g

1

at the �rst place

in the asymptotic basis. It is easy to see that this insertion

yields an algorithmic asymptotic basis. Then computation

of log f is reduced to the previous case.

Exponential Here we want to compute the exponential of

a positive algorithmic multiseries f tending to in�nity. The

�rst step is to check whether f is asymptotic to the loga-

rithm of an element of the asymptotic basis. More precisely,



using recursively multiseries manipulations of the type de-

scribed in this and the previous sections, we check whether

� = lim(f= log g

i

) 2 R

?

for some i > 1. If so, then we write

exp(f) = g

�

i

� exp(f � � log g

i

); (1)

and recursively compute the exponential of f � � log g

i

.

Otherwise, we have log g

i

= o(f) and f = o(log g

i+1

)

for some i > 1 (or i = n and log g

n

= o(f)). In this case,

the function exp(f) is inserted in the asymptotic basis be-

tween g

i

and g

i+1

(or after g

n

if i = n). Once again, it is

not di�cult to verify that this yields an algorithmic asymp-

totic basis. Note however that examples such as exp(e

x

=(1�

x

�1

)) = exp(e

x

+e

x

=x+� � �) show that we cannot use exp(F )

in place of exp(f) with F a �nite partial sum of the multi-

series for f .

We still have to prove the termination of our algorithm.

The only point which might lead to in�nite loops is the re-

cursive computation of the exponential in (1). Termination

is ensured by the �niteness of the asymptotic basis and the

observation that the index i in (1) strictly decreases. We

note that it is essential here that expansion is always per-

formed �rst in g

i

, where i is the largest available index. To

summarize, we have proved the following.

Theorem 1 Assume that we are given an oracle for as-

ymptotic zero-equivalence of exp-log functions. Then for any

exp-log function f , we can compute an algorithmic asymp-

totic basis with respect to which f can be expressed as the

sum of an algorithmic multiseries.

It should be noted that there are several possible asymp-

totic bases with respect to which an exp-log function can be

expressed as an algorithmic multiseries. The output of our

algorithm thus depends slightly on the order in which the

exponentials are treated.

4 Detailed example

We now exemplify the algorithm on the function

f = log log(xe

xe

x

+ 1)� exp exp

�

log log x+

1

x

�

;

as x!1.

Initially the asymptotic basis B = fg

1

; : : : ; g

n

g is fxg.

At each step we shall denote the ith element of B by g

i

.

The basis will grow as the computation proceeds, so that

for example, g

2

may denote one function at one stage of the

computation and a di�erent one a later stage. We start with

the �rst summand of f and its innermost subexpression e

x

.

The argument x of the exponential is not asymptotic to

any log g

i

, with i > 1. Hence, e

x

is inserted as the last ele-

ment of B. The next term is exp(xe

x

). The argument xe

x

,

whose multiseries is g

1

g

2

, is compared to x = log g

2

, whose

multiseries is g

1

. We see that log g

2

= x = o(xe

x

), and

so exp(xe

x

) is then inserted at the end of B. The next ex-

pression to consider is x exp(xe

x

) + 1 which is already in

multiseries form.

We then turn to the innermost logarithm, log(x exp(xe

x

)+

1). At this stage B = fx; e

x

; exp(xe

x

)g. The argument

is rewritten as g

1

g

3

+ 1. The exponent of g

1

is not zero,

therefore log x is inserted at the beginning of B. We now

have B = flog x; x; e

x

; exp(xe

x

)g, and

log(g

2

g

4

+ 1) = g

2

g

3

+ g

1

+ log(1 + g

�1

2

g

�1

4

):

The logarithm on the right-hand side can be expanded as

an algorithmic multiseries. The next logarithm is treated

similarly. The basis need not be extended and we can write

the �rst summand of f as

log log(g

2

g

4

+ 1) = g

2

+ g

1

+log

�

1 + g

�1

2

g

�1

3

[g

1

+ log(1 + g

�1

2

g

�1

4

)]

�

:

We now consider the second summand of f . The ex-

pansion of log x is obviously g

1

. Its logarithm necessitates

inserting log log x at the beginning of B. At this stage,

B = flog log x; log x; x; e

x

; exp(xe

x

)g. The argument of the

innermost exponential is g

1

+ g

�1

3

which tends to in�nity.

This is found to be equivalent to the logarithm of g

2

, thus

we apply (1) and write

exp(g

1

+ g

�1

3

) = g

2

exp(g

�1

3

);

where the argument of the new exponential tends to 0. The

right-hand side of this equation is the argument of the next

exponential. It is asymptotic to g

2

= log g

3

. Again apply-

ing (1) yields

exp(exp(g

1

+ g

�1

3

)) = g

3

exp[g

2

exp(g

�1

3

)� g

2

]:

The argument of the outermost exponential in the right-

hand side tends to 0, thus an algorithmic multiseries is avail-

able.

At this stage, we have constructed an asymptotic basis

B = flog log x; log x; x; e

x

; exp(xe

x

)g

with respect to which we can expand

f = g

3

+ g

2

� g

3

exp[g

2

exp(g

�1

3

)� g

2

]

+ log

�

1 + g

�1

3

g

�1

4

[g

2

+ log(1 + g

�1

3

g

�1

5

)]

�

and its subexpressions as algorithmic multiseries.

We now give the computation of an asymptotic equiv-

alent of f . The �rst step consists in computing the dom-

inant term with respect to g

5

. We illustrate the opera-

tion of the algorithm on the expansion of the subexpres-

sion g

2

+ log(1 + g

�1

3

g

�1

5

).

First, the argument g

�1

3

g

�1

5

of the special function log(1+

z) is expanded as itself. The dominant term of the logarithm

is again g

�1

3

g

�1

5

. Next, g

2

is expanded as g

2

, which is then

seen to be the dominant term of the sum. The rest of the

computation is straightforward and yields an asymptotic ex-

pression for f of

g

3

+ g

2

+ log[1 + g

2

g

�1

3

g

�1

4

]� g

3

exp[g

2

exp(g

�1

3

)� g

2

]:

We then proceed with the computation of the dominant term

of this expression with respect to g

4

. Exactly the same type

of computation leads to

g

3

+ g

2

� g

3

exp[g

2

exp(g

�1

3

) � g

2

]:

Next, we compute the dominant term of this expression

with respect to g

3

. Let h = g

2

exp(g

�1

3

) � g

2

, so that h

is the argument of the outermost exponential. The com-

putation of the dominant term of h leads to the cancella-

tion g

2

� g

2

which is recognized by the oracle, whereas the

function h itself is not zero. By computing the next term

of the expansion, we obtain the dominant term g

2

=g

3

of h.

The dominant term of g

3

exp(h) is g

3

, whence a new cancel-

lation g

3

� g

3

. Computing the next term leads to another



cancellation g

2

� g

2

. One more term is necessary before ar-

riving at the conclusion that the dominant term with respect

to g

3

is

�

g

2

2

+ g

2

2g

3

:

Thus we obtain the desired equivalence

f � �

g

2

2

2g

3

= �

log

2

x

2x

:

The k �rst coe�cients with respect to any element of the

asymptotic basis can be computed in a similar way.

Conclusion

It is customary in papers about asymptotic expansions in

computer algebra to assume the existence of a zero-test for

certain classes of functions or constants; we have done so

in this work. Here, the constants we encounter are exp-log

constants, for which the zero-equivalence problem is related

to Schanuel's conjecture (see [9, 10]). If Schanuel's conjec-

ture is true, the elementary numbers are a computable alge-

braically closed �eld, and the real elementary numbers are

a computable real closed �eld; this means that zero equiva-

lence is decidable. This is implemented in a program which

decides whether or not an elementary constant is zero; and

which is guaranteed to terminate (eventually) unless it is

working on a problem which includes a counterexample to

Schanuel's conjecture.

The zero-equivalence problem for exp-log functions is

then usually reduced to the exp-log constants case via Risch's

algorithm [11] or di�erential algebra methods [15, 19, 8].

Special consideration of algebraic extensions based on error

estimation and numerical evaluation is described in [21].

Another issue we have not mentioned is that of com-

plexity. The algorithm as we have described it has terrible

worst-case complexity. This is seen with examples of the

form

1

1� 1=x

�

1

1� 1=x

+ x

�N

;

with N arbitrarily large (think of N = 10

10

���

). We refer

to [21] for approaches to this problem.

Despite these theoretical problems, the algorithm as we

have described it can very well be implemented in a reason-

ably e�cient way (see [21]).

As already mentioned in the introduction, this algorithm

is susceptible to many generalizations. Not only exp-log

functions can be handled this way, but also more general

elementary functions, or even less explicit functions. In all

cases, the concepts of asymptotic basis and multiseries gen-

eralize and provide a foundation for expressing and proving

algorithms. To a certain extent, di�erential equations can

also be treated, but this is still in development. Also, the

constant problems in these general contexts becomes much

more di�cult.

We �nally observe that many di�erent viewpoints (and

vocabularies) exist on the subject of e�ective asymptotic ex-

pansions. Hardy �elds [12] and transseries [3] provide two

theoretical contexts for dealing with asymptotic expansions

(the former is more analytic, the latter more algebraic). For

dealing explicitly with these objects, either nested expan-

sions [18] or multiseries can be used. It is not clear at the

moment which is more e�cient; this probably depends on

the type of computation or problem one has in mind. An ad-

vantage of multiseries is that they are closer to the classical

conception of asymptotic expansions.
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