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1 Introdu
tion

For ea
h multi{index s = (s

1

; s

2

; : : : ; s

k

) of positive in-

tegers, one de�nes the generalized polylogarithms
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: (1)

This series in z 2 C 
onverges at the interior of the

open unit disk. In z = 1, these polylogarithms yield

the generalized Riemann � fun
tion [10℄

�(s) = Li

s

(1) =

X

n

1

>n

2

>���>n

k

>0

1

n

s

1

1

n

s

2

2

� � �n

s

k

k

; (2)

whi
h 
onverges for s

1

> 1.

Let X be the alphabet on two letters x

0

and x

1

.

Any multi{index s = (s

1

; s

2

; : : : ; s

k

) 
an be en
oded by

a unique word w 2 X

�

x

1

w = x

s

1

�1

0

x

1

x

s

2

�1

0

x

1

� � �x

s

k

�1

0

x

1

(3)

Now ea
h fun
tion Li

s

(z), whi
h is also denoted by

L

w

(z), 
an be obtained by an iterated integral as fol-

lows [10℄:

L

x

1

(z) =

Z

z

0

dt

1� t

= � log(1� z)

and

8

>

<

>

:

L

x

0

w

(z) =

Z

z

0

L

w

(t)

dt

t

;

L

x

1

w

(z) =

Z

z

0

L

w

(t)

dt

1� t

;

(4)

for any w 2 X

�

x

1

. These integrals are fun
tions de�ned

on the universal Riemann surfa
e R above C nf0; 1g.

The real number �(s) is also denoted by �

w

= L

w

(1) for

all x 2 x

0

X

�

x

1

.

It is useful to extend the above de�nition of L

w

to

the 
ase when w 2 X

�

. For ea
h n � 0, we take

L

x

n

0

(z) =

1

n!

log

n

(z); (5)

and we extend the de�nition to w 2 X

�

using (4). These

generalized polylogarithms are again de�ned on R and

we will prove the important fa
t that

L(z) =

X

w2X

�

L

w

(z)w (6)

is a Lie exponential for all z 2 R.

The monodromy [1, 9, 3℄ of the 
lassi
al polylog-

arithms Li

k

(z) = L

x

k�1

0

x

1

, when turning around the

point z = 1 has been 
omputed in [8℄

M

1

Li

k

(z) = Li

k

(z)� 2i�

log

k�1

(z)

(k � 1)!

; k > 0: (7)

From a theoreti
al point the monodromy of the series

L(z) 
an be 
omputed using tools developed by J.

�

E
alle

in [3℄. Noti
e that the monodromy of L(z) in parti
ular

yields the monodromy of ea
h L

w

(z) for w 2 X

�

.

In this paper, we give an expli
it method to 
ompute

the monodromy. Our algorithm has been implemented

in the Axiom system, using modules developed in [5℄

and we have given the output of the algorithm for l = 6

in appendix B. Our methods rely on the theory of non


ommutative power series [2, 1℄ and the fa
torization of

Lie exponentials [7℄. Our formulas for the monodromy

of L involve only 
onvergent �(s) de�ned by (2). In [4℄

an algorithm was given to 
ompute algebrai
 relations

between the �(s).

2 Polylogarithms and Chen series

Let RhXi and RhhXii be the algebras of non 
ommuta-

tive polynomials resp. power series in x

0

and x

1

over a



ring R. The 
oeÆ
ient of w 2 X

�

in a series S 2 RhhXii

is denoted by (Sjw). We re
ursively de�ne a shu�e

produ
t x on RhXi as follows:

�

8w 2 X

�

; 1xw = wx 1 = w;

8u; v 2 X

�

;xux yv= x(ux yv) + y(xux v):

(8)

Here 1 denotes the empty word. In this paper, we will

always have R = C , or R = F(R), the ring of analyti


fun
tions on R.

A series S 2 RhhXii is 
alled a Lie exponential, if it

satis�es one of the following, equivalent 
onditions [6℄:

1. There exists a Lie series L 2 Lie

R

hhXii with S =

e

L

.

2. �(S) = S 
 S, where �(S) denotes the usual


oprodu
t de�ned on letters x 2 X by �(x) =

x
 1 + 1
 x.

3. 8u; v 2 X

�

; (Sjux v) = (Sju)(Sjv).

For a di�erentiable path 
 : [0; 1℄ ! C nf0; 1g be-

tween a and b, let S




be the evaluation in z = b of the

solution to the di�erential equation

d

dz

S(z) =

�

x

0

z

+

x

1

1� z

�

S(z) (9)

with initial 
ondition S(a) = 1. This series S




2 C hXi

is 
alled [2℄ the Chen series along 
 (and asso
iated to

the di�erential forms !

0

= dz=z et !

1

= dz=1� z).

It is 
lassi
al [2℄ that S




is a Lie exponential, whi
h

only depends on the homotopy 
lass of 
. Moreover, for

the 
on
atenation 


1




2

of two paths 


1

and 


2

, one has

S




1




2

= S




2

S




1

; (10)

In parti
ular, S




�1
= S

�1




.

The polylogarithms L

w

indu
e a series L 2 F(R)hXi

by:

L(z) =

X

w2X

�

L

w

(z)w; 8z 2 FR:

Theorem 1 L(z) is a Lie exponential for all z 2 R.

In parti
ular, one has the shu�e relations

L

ux v

(z) = L

u

(z)L

v

(z); 8z 2 R; 8u; v 2 X

�

: (11)

Proof { L satis�es the di�erential equation

d

dz

L(z) =

�

x

0

z

+

x

1

1� z

�

L(z): (12)

If "! 0, one has

L(") = e

x

0

log "

+O(

p

"): (13)

Let T (z) = �L(z)�L(z)
L(z) and V (z) =

x

0

z

+

x

1

1�z

.

We observe that T (z) satis�es the di�erential equation

d

dz

T (z) = (V (z)
 1 + 1
 V (z))T (z); (14)

with initial 
ondition T (0) = 0. Therefore T (z) =

0;8z 2 R. �

Remark { The shu�e relation L

x

0

L

x

1

= L

x

0

x

1

+

L

x

1

x

0

is equivalent to Euler's relation [8℄

Li

2

(z) + Li

2

(1� z) = �(2)� log(z) log(1� z):

Let z

0

be a point of R, whi
h we identify with its

proje
tion on C and let z

0

 z be a di�erentiable path

on C nf0; 1g. Then L admits an analyti
 
ontinuation

along this path. The series L(z) and S

z

0

 z

L(z) both

satisfy the di�erential equation (12) and take the same

value in z = z

0

. This proves that

L(z) = S

z

0

 z

L(z

0

); (15)

for all paths z

0

 z in C nf0; 1g.

Let R 2℄0; 1[ and denote by 


0

(R) (resp. 


1

(R)) the


ir
ular paths of radius R and turning around 0 (resp.

1) in the trigonometri
 sense, starting in z = R (resp.

z = 1�R). One easily proves the estimate

(S




0

(R)

jw) <

1

jwj!

(2�)

jwj

(2R)

jwj

x

1

; (16)

for the 
oeÆ
ients of the Chen series along 


0

(R) (for

R < 1=2), where jwj denotes the length of the word w

and jwj

x

1

the number of o

urren
es of x

1

in w. For

R! 0, this estimate yields

(

lim

R!0

S




0

(R)

= e

2i�x

0

;

lim

R!0

S




1

(R)

= e

�2i�x

1

:

(17)

For ea
h t 2℄0; 1[, letM

0

L(t) (resp. M

1

L(t)), be the

analyti
 
ontinuation of L(t) along 


0

(t), (resp. 


1

(t)).

From (15), we get M

i

L(t) = S




i

(t)

L(t) for i = 0; 1.

We will now show how to 
ompute two Lie exponentials

M

0

;M

1

2 C hXi, whi
h do not depend on t, su
h that

8t 2℄0; 1[

M

i

L(t) = L(t)M

i

; pour i = 0 where 1: (18)

2.1 Monodromy of L around 0

Sin
e a Chen series only depends on the homotopy 
lass

of its underlying path, we dedu
e from (15) that

M

0

L(t) = S

" t

S




0

(")

S

t "

L(t);

= L(t) L

�1

(")S




0

(")

L("):

This yields

M

0

= lim

"!0

+

L

�1

(")S




0

(")

L(") = e

2i�x

0

: (19)

Indeed, for "! 0, the series S




0

(")

= e

2i�x

0

+O(") and

L(") = e

(log ")x

0

+ O(

p

") 
ommute. In parti
ular, (18)

implies

�

M

0

L

x

0

= L

x

0

+ (2i�);

8w 2 X

�

; M

0

L

wx

1

= L

wx

1

:

(20)



2.2 Monodromy of L around 1

Similarly,

M

1

L(t) = S

1�" t

S




1

(")

S

t 1�"

L(t);

= L(t) L

�1

(1� ")S




1

(")

L(1� ");

when
e

M

1

= lim

"!0

+

L

�1

(1� ")e

�2i�x

1

L(1� "): (21)

In order to isolate the divergent terms of L(1 � "), we

will show how to fa
tor L(z) as an in�nite produ
t of Lie

exponentials, by using the dual Poin
ar�e{Birko�{Witt

basis.

3 Computation of the monodromy around 1

3.1 Duality in the spa
e of polynomials

We de�ne a pairing on RhXi by (ujv) = Æ

v

u

, for words

u; v 2 X

�

(Æ denotes the Krone
ker symbol), and ex-

tending by bilinearity. Let B � RhXi and B

�

� RhXi

be two bases of RhXi related by a bije
tion

� : B 3 b! b

�

2 B

�

:

These bases are said to be dual if

8a 2 B; b

�

2 B

�

; (ajb

�

) = Æ

b

a

(22)

For instan
e, the basis RhXi of all words w 2 X

�

is

self-dual.

It is well known that the algebraRhXiwith the usual


on
atenation produ
t is an enveloping algebra of the

free Lie algebra Lie

R

hXi. Let B

1

be an ordered basis

of the free Lie algebra. Let B the asso
iated Poin
ar�e{

Birko�{Witt basis, that is, the set of elements of the

form b

1

b

2

� � � b

k

, with k � 0 and b

1

� b

2

� � � � � b

k

,

with the b

i

in B

1

. The 
ommutative R-algebra RhXi is

freely generated by the elements of B

�

1

= fb

�

; b 2 B

1

g,

for the shu�e produ
t x.

3.2 Fa
torization of the double series

Consider the R{algebra RhXi 
RhXi, with the shu�e

produ
t on the �rst fa
tor and the 
on
atenation prod-

u
t on the se
ond. By de�nition,

(x
 y)(x

0


 y

0

) = xx x

0


 y � y

0

; (23)

for x; y; x

0

; y

0

2 RhXi. The following fa
torization is


lassi
al:

X

w2X

�

w 
 w =

X

b2B

b

�


 b =

Y

b2B

1

e

b

�


b

: (24)

This yields the following fa
torization of L(z) as a prod-

u
t of de
reasing exponentials:

L(z) =

X

w2X

�

L

w

(z) w =

X

b2B

L

b

�

(z) b =

Y

b2B

1

e

L

b

�(z) b

:

(25)

3.3 Constru
tion of the dual Lyndon basis

By de�nition, a Lyndon word is a non empty word l 2

X

�

, whi
h is inferior to ea
h of its stri
t right fa
tors

(for the lexi
ographi
al ordering):

8u; v 2 X

+

; l = uv ) l < v (26)

The set of Lyndon words is denoted by Lyndon(X).

Example { For X = fx

0

; x

1

g with x

0

< x

1

, the

Lyndon words of length 6 5 on X

�

are the following (in

in
reasing order):

fx

0

; x

4

0

x

1

; x

3

0

x

1

; x

3

0

x

2

1

; x

2

0

x

1

; x

2

0

x

1

x

0

x

1

; x

2

0

x

2

1

;

x

2

0

x

3

1

; x

0

x

1

; x

0

x

1

x

0

x

2

1

; x

0

x

2

1

; x

0

x

3

1

; x

0

x

4

1

; x

1

g:

The bra
ket form P (l) 2 Lie

R

hXi of a Lyndon word

l = uv with l; u; v 2 Lyndon(X) (v being as long as

possible) is de�ned re
ursively by

�

P (l) = [P (u); P (v)℄

P (x) = x for ea
h letter x 2 X;

(27)

It is 
lassi
al that the setB

1

= fP (l); l 2 Lyndon(X)g,

ordered lexi
ographi
ally, is a basis for the free Lie al-

gebra. Moreover, ea
h word w 2 X

�


an be expressed

uniquely as an in
reasing produ
t of Lyndon words:

w = l

�

1

1

l

�

2

2

: : : l

�

k

k

; l

1

> l

2

> � � � > l

k

; k � 0: (28)

The Poin
ar�e{Birko�{Witt basis B = fP (w); w 2 X

�

g

and its dual basis B

�

= fP

�

(w); w 2 X

�

g are obtained

by setting [7℄

8

>

>

>

>

>

<

>

>

>

>

>

:

P (w) = P (l

1

)

�

1

P (l

2

)

�

2

: : : P (l

k

)

�

k

;

P

�

(w) = CP

�

(l

1

)

x�

1

x : : :xP

�

(l

k

)

x�

k

;

where C = (�

1

!�

2

! : : : �

k

!)

�1

P

�

(l) = xP

�

(w); 8l 2 Lyndon(X);

where l = xw; x 2 X; w 2 X

�

:

(29)

Lemma 1

8l 2 Lyndon(X); P

�

(l) = l +

X

w;jwj<jlj

�

w

w

See table ??.

Lemma 2 One has P

�

(w) 2 x

0

ZhXix

1

for all w 2

x

0

X

�

x

1

.

Proof { The Lyndon words involved in the de
om-

position (28) of a word w 2 X

�

x

1

(resp. w 2 x

0

X

�

x

1

)

all belong to X

�

x

1

(resp. x

0

X

�

x

1

). �



3.4 Formulas for the monodromy around 1

3.4.1 Formulas up to order 4

Let us dis
uss our method in detail for the 
omputation

of the monodromy of L around 1 at order 4. We start

from the fa
torization (25) of L(z):

L =

Y

l2Lyndon(X)

exp

�

L

P

�

(l)

P (l)

�

(30)

We will kill all Lie bra
kets of length superior to 4,

whi
h is equivalent to working in the free nilpotent Lie

algebra of order 4. The fa
torization (30) yields

L(z) = e

L

x

1

(z)x

1

e

L

x

0

x

1

x

1

(z)[[x

0

;x

1

℄;x

1

℄

e

L

x

0

x

1

(z)[x

0

;x

1

℄

� e

L

x

0

x

0

x

1

(z)[x

0

;[x

0

;x

1

℄℄

e

L

x

0

(z)x

0

:

Evaluated in z = 1� ", this fa
torization be
omes

L(1� ") = e

L

x

1

(1�")x

1

e

�

x

0

x

1

x

1

[[x

0

;x

1

℄;x

1

℄

� e

�

x

0

x

1

[x

0

;x

1

℄

e

�

x

0

x

0

x

1

[x

0

;[x

0

;x

1

℄℄

:

The important point is that the divergent terms only

appear in the exponential exp(L

x

1

(1� ")x

1

). Further-

more, exp(L

x

0

(1�")x

0

) � 1, sin
e L

x

0

(1�") = log(1�

") � �". This observation hold in general, by lemma 2.

Be
ause of (21), the monodromy M

1

L(t) = L(t)M

1

is given by the series

M

1

= e

��

x

0

x

0

x

1

[x

0

;[x

0

;x

1

℄℄

e

��

x

0

x

1

[x

0

;x

1

℄

e

��

x

0

x

1

x

1

[[x

0

;x

1

℄;x

1

℄

� e

�L

x

1

(1�")x

1

e

�2i�x

1

e

L

x

1

(1�")x

1

� e

�

x

0

x

1

x

1

[[x

0

;x

1

℄;x

1

℄

e

�

x

0

x

1

[x

0

;x

1

℄

e

�

x

0

x

0

x

1

[x

0

;[x

0

;x

1

℄℄

:

The exponentials in x

1


ommute, when
e the divergent

terms disappear. On the other hand, the exponentials

of bra
kets of length 3 also disappear, sin
e they 
om-

mute with the other exponentials (the bra
kets of order

4 vanish). We now apply the 
lassi
al formulas for the

adjoint representation of Lie groups:

e

adX

e

Y

= e

X

e

Y

e

�X

= e

exp(X)Y exp(�X)

= e

exp(adX) Y

:

After some 
omputations, we now obtain

M

1

= e

��

x

0

x

1

[x

0

;x

1

℄

e

�2i�x

1

e

�

x

0

x

1

[x

0

;x

1

℄

= e

��

x

0

x

1

ad([x

0

;x

1

℄)

e

�2i�x

1

= e

exp(��

x

0

x

1

ad([x

0

;x

1

℄) (�2i�x

1

)

= e

�2i�x

1

+2i��

x

0

x

1

[[x

0

;x

1

℄;x

1

℄

:

3.4.2 The general 
ase

Applied in the general 
ase, the above method yields

the following theorem:

Theorem 2 The monodromy of the series L(t) for t 2

℄0; 1[ around z = 1 is given byM

1

L(t) = L(t)M

1

, where

M

1

is a Lie exponential given by the formula

M

1

=

0

�

Y

l2Lyndon(X)nfx

0

;x

1

g

e

��

P

�

(l)

adP (l)

1

A

e

�2i�x

1

(31)

The 
onstants �

P

�

(l)

are �nite, sin
e P

�

(l) 2 x

0

QhXix

1

,

by 
onstru
tion (29).

This theorem is e�e
tive, sin
e the 
omputation of

the monodromy of the L

w

for jwj 6 n only ne
essitates

the knowledge of M

1

for words of length < n.

Corollary 1 The monodromy of the polylogarithms L

w

is given by

8w 2 X

�

; M

0

L

wx

0

= L

wx

0

+ 2i�L

w

+ � � �

M

1

L

wx

1

= L

wx

1

� 2i�L

w

+ � � � ;

where the remaining terms are linear 
ombinations of

polylogarithms 
oded by words of lengths < w.

Proof { Consequen
e of (18), by remarking that

(31) implies that
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See also the results from appendix A. �

Corollary 2 The monodromy group of the fun
tions

L

w

for jwj 6 n is nilpotent at order n+ 1.

Proof { We have
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it follows that the 
ommutator M
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does

not 
ontain any Lie bra
kets of length 1. Iterating this


omputation, the bra
kets of lengths 2, next 3, et
. until

n disappear. �
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