Computation of the monodromy of generalized polylogarithms
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1 Introduction

For each multi-index s = (s, $2, - . -, s) of positive in-
tegers, one defines the generalized polylogarithms
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This series in z € C converges at the interior of the
open unit disk. In z = 1, these polylogarithms yield
the generalized Riemann ¢ function [10]
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which converges for s; > 1.

Let X be the alphabet on two letters zo and z;.
Any multi-index s = (s1, $2,. .., Sk) can be encoded by
a unique word w € X*z;

w = ;1:8171:1:1308271301 . -ac(s)’“_lwl (3)
Now each function Lig(z), which is also denoted by

L, (z), can be obtained by an iterated integral as fol-
lows [10]:

odt
L, = — = —log(1l —
@)= [ 15 =01 -
and
z dt
Lwow(z) = /Lw(t)T:
0 dt (4)

L) = [ Luty™,

for any w € X*x;. These integrals are functions defined
on the universal Riemann surface R above C\{0,1}.
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The real number ((s) is also denoted by ¢, = L, (1) for
all x € xo X *x1.

It is useful to extend the above definition of L,, to
the case when w € X*. For each n > 0, we take

Ly (2) = -1 10g"(2), 6

and we extend the definition to w € X* using (4). These
generalized polylogarithms are again defined on R and
we will prove the important fact that

L(z)= Y Lu(z)w (6)

weX*

is a Lie exponential for all z € R.
The monodromy [1, 9, 3] of the classical polylog-
arithms Lix(z) = L k-1, , when turning around the
0

point z = 1 has been computed in [8]

log" ! (2)

M Lig(2) = Lig(2) = 2im=5—1,

E>0. (7)
From a theoretical point the monodromy of the series
L(z) can be computed using tools developed by J. Ecalle
in [3]. Notice that the monodromy of L(z) in particular
yields the monodromy of each L, (z) for w € X*.

In this paper, we give an explicit method to compute
the monodromy. Our algorithm has been implemented
in the AXIOM system, using modules developed in [5]
and we have given the output of the algorithm for [ = 6
in appendix B. Our methods rely on the theory of non
commutative power series [2, 1] and the factorization of
Lie exponentials [7]. Our formulas for the monodromy
of L involve only convergent ((s) defined by (2). In [4]
an algorithm was given to compute algebraic relations
between the ((s).

2 Polylogarithms and Chen series

Let R(X) and R({(X)) be the algebras of non commuta-
tive polynomials resp. power series in zg and x; over a



ring R. The coefficient of w € X* in a series S € R{X))
is denoted by (S|w). We recursively define a shuffle
product m on R(X) as follows:

Vwe X*, lmw =wml=w,
Yu,v € X* zumyv= z(umyv) + y(zumo).

(8)

Here 1 denotes the empty word. In this paper, we will
always have R = C, or R = F(R), the ring of analytic
functions on R.

A series S € R((X)) is called a Lie exponential, if it
satisfies one of the following, equivalent conditions [6]:

1. There exists a Lie series L € Lieg(X)) with S =

el.

2. A(S) = S ® S, where A(S) denotes the usual
coproduct defined on letters z € X by A(z) =

r®1+1®.
3. Yu,v € X*, (Slumwv) = (S|u)(S|v).

For a differentiable path v : [0,1] — C\{0,1} be-
tween a and b, let S, be the evaluation in z = b of the
solution to the differential equation

Lo L1
56 = (242 50) )
with initial condition S(a) = 1. This series S, € C(X)
is called [2] the Chen series along vy (and associated to
the differential forms wy = dz/z et w; = dz/1 — 2).

It is classical [2] that S, is a Lie exponential, which
only depends on the homotopy class of v. Moreover, for
the concatenation 7,79, of two paths v, and 2, one has

S’Y1V2 = S’st’h: (10)

In particular, 5,1 = 57_1.
The polylogarithms L,, induce a series L € F(R)(X)

by:
= Z Ly, (z)w,

weX*

Vze FR.

Theorem 1 L(z) is a Lie exponential for all z € R.
In particular, one has the shuffle relations
Lymo(2) = Lu(2)L,(2),

PROOF — L satisfies the differential equation

Vz € R, Vu,v € X*. (11)

sz() <@+ il >L(z). (12)

z 1—2
If ¢ — 0, one has
L(e) = e®01°85 1 O(/2). (13)

Let T'(z) = AL(z) — L(2) ® L(2) and V(2) = 2 + ;2.
We observe that T'(z) satisfies the differential equation

dilZT(z) =(V(x)@1+10V(2)T(z), (14)

with initial condition T'(0) =
0,VzeR. O

0. Therefore T'(z) =

REMARK — The shuffle relation L, L,
L., ., is equivalent to Euler’s relation [8]

Liy(2) 4+ Lis(1 — 2z) = ((2) — log(z) log(1 — 2).

= LZ0Z1 +

Let zg be a point of R, which we identify with its
projection on C and let zg~z be a differentiable path
on C\{0,1}. Then L admits an analytic continuation
along this path. The series L(z) and S;,..,L(z) both
satisfy the differential equation (12) and take the same
value in z = zg. This proves that

L(z) = S,yw2L(20), (15)

for all paths zp~~z in C\{0,1}.

Let R €]0,1[ and denote by vo(R) (resp. 71(R)) the
circular paths of radius R and turning around 0 (resp.
1) in the trigonometric sense, starting in z = R (resp.
z=1— R). One easily proves the estimate

(Sotmlw) < W(%)"”'@R)‘“‘“ (16)
for the coefficients of the Chen series along vo(R) (for
R < 1/2), where |w| denotes the length of the word w
and |w|,, the number of occurrences of z; in w. For
R — 0, this estimate yields

lim Syomy = e, )
lm Sy gy = e7HT

For each t €]0, 1], let MoL(¢) (resp. MiL(t)), be the
analytic continuation of L(t) along vo(t), (resp. 71 (t)).
From (15), we get M;L(t) = S, L(t) fori = 0,1.
We will now show how to compute two Lie exponentials
My, M; € C(X), which do not depend on t, such that
vt €]0, 1]

M;L(t) = L(t)M;, pouri =0 where 1. (18)

2.1 Monodromy of L around 0

Since a Chen series only depends on the homotopy class
of its underlying path, we deduce from (15) that
MoL(t) = ScwatSyy(c)Stwe L(1),
= L(t) L7(g)S,(c) L(2).
This yields
My = lim L7'(g)S,,)L(e) = ™. (19)

e—0t

Indeed, for € — 0, the series S, () = €2™*° 4+ O(e) and

L(e) = ell°8)20 1 O(\/£) commute. In particular, (18)
implies

{ MLy, = L., + (2in),

Vw € X*, MoLue, = Luae,. (20)



2.2 Monodromy of L around 1

Similarly,
MIL(t) = Slfswtsfyl(s)StWIst(t);
= L(t) L' (1—¢)S,, o L(1—e),
whence

M; = lim L7'(1-¢e)e 2™ L(1—¢). (21)
e—0+
In order to isolate the divergent terms of L(1 —¢), we
will show how to factor L(z) as an infinite product of Lie
exponentials, by using the dual Poincaré—Birkoff-Witt
basis.

3 Computation of the monodromy around 1

3.1 Duality in the space of polynomials

We define a pairing on R(X) by (u|v) = 4%, for words
u,v € X* (0 denotes the Kronecker symbol), and ex-
tending by bilinearity. Let B C R(X) and B* C R(X)
be two bases of R{X) related by a bijection

x:B>b— b* € B*.
These bases are said to be dual if
Ya € B,b* € B*, (a|b*) = 6" (22)

For instance, the basis R(X) of all words w € X* is
self-dual.

It is well known that the algebra R(X) with the usual
concatenation product is an enveloping algebra of the
free Lie algebra Lier(X). Let By be an ordered basis
of the free Lie algebra. Let B the associated Poincaré-
Birkoff-Witt basis, that is, the set of elements of the
form blbg"'bk, with k Z 0 and bl Z bg Z Z bk,
with the b; in B;. The commutative R-algebra R(X) is
freely generated by the elements of Bf = {b*; b € By},
for the shuffle product m.

3.2 Factorization of the double series

Consider the R-algebra R(X) ® R(X), with the shuffle
product on the first factor and the concatenation prod-
uct on the second. By definition,

(zey)(@' ®y)=cmd’' ®y- Y, (23)
for z,y,a',y" € R(X). The following factorization is
classical:

Zw@w:Zb*@b: Heb*@)b. (24)
weX* beB beB;y

This yields the following factorization of L(z) as a prod-
uct of decreasing exponentials:

L(z)= Y Lu(z)w=Y Ly(2) b= [ " "

weX* beB beB;
(25)

3.3 Construction of the dual Lyndon basis

By definition, a Lyndon word is a non empty word [ €
X, which is inferior to each of its strict right factors
(for the lexicographical ordering):

Vu,v € XT, l=uwv=1<w (26)
The set of Lyndon words is denoted by Lyndon(X).

EXAMPLE — For X = {xg, 21} with o < x1, the
Lyndon words of length < 5 on X* are the following (in
increasing order):

4 3 3.2 .2 2 2,..2
{.’L'(),:ITO.’IJl,:I?O.’L'l,.’L'O.’L'l,.’L'Oivl,.’L'Oivl.’I,'o.’IJl,.’L'O:El,

2,3 2 2 3 4
TogZy,ToL1,ToL1ToL],LoT1,ToL1,ToTq, l’l}.

The bracket form P(l) € Lier(X) of a Lyndon word
I = wv with l,u,v € Lyndon(X) (v being as long as
possible) is defined recursively by

[P(u), P(v)]

x for each letter x € X, (27)

—

33

2=
[

It is classical that the set By = {P(l); | € Lyndon(X)},
ordered lexicographically, is a basis for the free Lie al-
gebra. Moreover, each word w € X* can be expressed
uniquely as an increasing product of Lyndon words:

w=I17052 0, >l > >, E>00 (28)
The Poincaré-Birkoff-Witt basis B = {P(w); w € X*}
and its dual basis B* = {P*(w); w € X*} are obtained
by setting [7]

Pw) = P()*P(l2)*...P(lg)*,

Prw) = CP*(I)S ... m P*(lj) Mo,
where C' = (ajlas!. .. ap!) 7t (29)

P*(l) = zP*(w), Ve Lyndon(X),

where | = zw, z € X, w € X*.

Lemma 1
Vi€ Lyndon(X), P*(1)=1+ > Ayw
w,w]<|l|

See table ?77.

Lemma 2 One has P*(w) € zoZ(X)x; for all w €
.’L'()X*.’L'l.

PrOOF — The Lyndon words involved in the decom-
position (28) of a word w € X*z; (resp. w € xoX*x1)
all belong to X*z; (resp. o X*z1). O



3.4 Formulas for the monodromy around 1
3.4.1 Formulas up to order 4

Let us discuss our method in detail for the computation
of the monodromy of L around 1 at order 4. We start
from the factorization (25) of L(z):

b= 11

leLyndon(X)

We will kill all Lie brackets of length superior to 4,
which is equivalent to working in the free nilpotent Lie
algebra of order 4. The factorization (30) yields

L(Z) — eLml(Z)Z16Lmom121(z)[[xo,.tﬂ,xﬂe[/moml(z){xo,xl]

x  elwowoer (2o, [o,e1]] g Lag (2)@o

Evaluated in z = 1 — ¢, this factorization becomes

Ll-¢) = ele1(1=6)x1 o Copay 2 [[wo,1],21]

x  eSmoe1[@0:@1] olagmgey [Tos[zo,@1]]

The important point is that the divergent terms only
appear in the exponential exp(Lg, (1 — €)z1). Further-
more, exp(Lg, (1 —€)xg) ~ 1, since Ly, (1 —¢) = log(1l—
€) ~ —e. This observation hold in general, by lemma 2.

Because of (21), the monodromy M L(t) = L(t) M;
is given by the series

M1 — e_Cacomoml [-307[%07%1]]6_42011 [%0,%1]6—@»02121 H.to,.t1],.t1]
X e—Lm1 (1—6).t1 6—21'77901 eLml (1—5)%1

x eSeowrer [[o,21]81] oCegay [T0,21] oCagugay [Tos[0,1]]

The exponentials in z; commute, whence the divergent
terms disappear. On the other hand, the exponentials
of brackets of length 3 also disappear, since they com-
mute with the other exponentials (the brackets of order
4 vanish). We now apply the classical formulas for the
adjoint representation of Lie groups:

eadXeY — €X€Y€7X — eexp(X)Yexp(fX) — eexp(adX) Y_

After some computations, we now obtain

M, = e—Cmoml[w0,$1]e—2iﬂ'$16§m021[9007901]
— efcwowl ad([zmzl])efZiﬂ'zl
eexp(fgmom1 ad([zo,z1]) (—2imz1)
e~ 2T +2imCagay [[To,21],21]

3.4.2 The general case

Applied in the general case, the above method yields
the following theorem:

Theorem 2 The monodromy of the series L(t) fort €
10, 1[ around z = 1 is given by M1 L(t) = L(t)M,, where

M is a Lie exponential given by the formula

M, = 11

leLyndon(X)\{zo,z1}

efﬁp*(l)ad P(l) 672i7r1:1

(31)
The constants (p-(;) are finite, since P*(I) € xoQ(X)z1,
by construction (29).

This theorem is effective, since the computation of
the monodromy of the L,, for |w| < n only necessitates
the knowledge of M; for words of length < n.

Corollary 1 The monodromy of the polylogarithms L.,
is given by

Yw e X*,  MoLyg, Luyzo + 2Ly + - -

Mlew1 = wa1 — 2Ly + - -,

where the remaining terms are linear combinations of
polylogarithms coded by words of lengths < w.

ProOF — Consequence of (18), by remarking that
(31) implies that

{ My = 1+ 2imxg + words of length > 1 (32)

M, = 1-—2imx; + words of length > 1
See also the results from appendix A. [

Corollary 2 The monodromy group of the functions
Ly, for |w| < n is nilpotent at order n + 1.

PrROOF — We have
MO — 621'77900 and ‘2\41 — e—2i7rx1+---

From
eAeBo—Ap—B — e[A,B]-t—---,

it follows that the commutator MoMlMO_le1 does
not contain any Lie brackets of length 1. Iterating this
computation, the brackets of lengths 2, next 3, etc. until
n disappear. O
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