Hoang Ngoc Minh Université Lille II, 59024 Lille, France. e-mail : hoang@lifl.fr Michel Petitot Université Lille I, 59655 Villeneuve d'Ascq, France. e-mail : petitot@lifl.fr

Joris Van Der Hoeven Université Lille I, 59655 Villeneuve d'Ascq, France. e-mail : hoeven@lifl.fr

1 Introduction

For each multi-index $s = (s_1, s_2, \ldots, s_k)$ of positive integers, one defines the generalized *polylogarithms*

$$\operatorname{Li}_{s}(z) = \sum_{n_{1} > n_{2} > \dots > n_{k} > 0} \frac{z^{n_{1}}}{n_{1}^{s_{1}} n_{2}^{s_{2}} \cdots n_{k}^{s_{k}}}.$$
 (1)

This series in $z \in \mathbb{C}$ converges at the interior of the open unit disk. In z = 1, these polylogarithms yield the generalized Riemann ζ function [10]

$$\zeta(s) = \operatorname{Li}_{s}(1) = \sum_{n_{1} > n_{2} > \dots > n_{k} > 0} \frac{1}{n_{1}^{s_{1}} n_{2}^{s_{2}} \cdots n_{k}^{s_{k}}}, \quad (2)$$

which converges for $s_1 > 1$.

Let X be the alphabet on two letters x_0 and x_1 . Any multi-index $s = (s_1, s_2, \ldots, s_k)$ can be encoded by a unique word $w \in X^* x_1$

$$w = x_0^{s_1 - 1} x_1 x_0^{s_2 - 1} x_1 \cdots x_0^{s_k - 1} x_1 \tag{3}$$

Now each function $\text{Li}_s(z)$, which is also denoted by $L_w(z)$, can be obtained by an *iterated integral* as follows [10]:

$$L_{x_1}(z) = \int_0^z \frac{dt}{1-t} = -\log(1-z)$$

 and

$$\begin{cases}
L_{x_0w}(z) = \int_0^z L_w(t) \frac{dt}{t}, \\
L_{x_1w}(z) = \int_0^z L_w(t) \frac{dt}{1-t},
\end{cases}$$
(4)

for any $w \in X^* x_1$. These integrals are functions defined on the universal Riemann surface \mathcal{R} above $\mathbb{C} \setminus \{0, 1\}$. The real number $\zeta(s)$ is also denoted by $\zeta_w = L_w(1)$ for all $x \in x_0 X^* x_1$.

It is useful to extend the above definition of L_w to the case when $w \in X^*$. For each $n \ge 0$, we take

$$L_{x_0^n}(z) = \frac{1}{n!} \log^n(z),$$
 (5)

and we extend the definition to $w \in X^*$ using (4). These generalized polylogarithms are again defined on \mathcal{R} and we will prove the important fact that

$$L(z) = \sum_{w \in X^*} L_w(z)w \tag{6}$$

is a Lie exponential for all $z \in \mathcal{R}$.

The monodromy [1, 9, 3] of the *classical* polylogarithms $\operatorname{Li}_k(z) = L_{x_0^{k-1}x_1}$, when turning around the point z = 1 has been computed in [8]

$$\mathcal{M}_1 \operatorname{Li}_k(z) = \operatorname{Li}_k(z) - 2i\pi \frac{\log^{k-1}(z)}{(k-1)!}, \quad k > 0.$$
 (7)

From a theoretical point the monodromy of the series L(z) can be computed using tools developed by J. Écalle in [3]. Notice that the monodromy of L(z) in particular yields the monodromy of each $L_w(z)$ for $w \in X^*$.

In this paper, we give an explicit method to compute the monodromy. Our algorithm has been implemented in the AXIOM system, using modules developed in [5] and we have given the output of the algorithm for l = 6in appendix B. Our methods rely on the theory of non commutative power series [2, 1] and the factorization of Lie exponentials [7]. Our formulas for the monodromy of L involve only convergent $\zeta(s)$ defined by (2). In [4] an algorithm was given to compute algebraic relations between the $\zeta(s)$.

2 Polylogarithms and Chen series

Let $R\langle X \rangle$ and $R\langle \langle X \rangle\rangle$ be the algebras of non commutative polynomials resp. power series in x_0 and x_1 over a ring R. The coefficient of $w \in X^*$ in a series $S \in R\langle\!\langle X \rangle\!\rangle$ is denoted by (S|w). We recursively define a *shuffle product* m on $R\langle X \rangle$ as follows:

$$\begin{cases} \forall w \in X^*, \quad 1 \bmod w = w \bmod 1 = w, \\ \forall u, v \in X^*, xu \bmod yv = x(u \bmod yv) + y(xu \bmod v). \end{cases}$$
(8)

Here 1 denotes the empty word. In this paper, we will always have $R = \mathbb{C}$, or $R = \mathcal{F}(\mathcal{R})$, the ring of analytic functions on \mathcal{R} .

A series $S \in R\langle\!\langle X \rangle\!\rangle$ is called a *Lie exponential*, if it satisfies one of the following, equivalent conditions [6]:

- 1. There exists a *Lie series* $L \in \mathcal{L}ie_R\langle\!\langle X \rangle\!\rangle$ with $S = e^L$.
- 2. $\Delta(S) = S \otimes S$, where $\Delta(S)$ denotes the usual coproduct defined on letters $x \in X$ by $\Delta(x) = x \otimes 1 + 1 \otimes x$.
- 3. $\forall u, v \in X^*, (S|u \equiv v) = (S|u)(S|v).$

For a differentiable path $\gamma : [0,1] \to \mathbb{C} \setminus \{0,1\}$ between a and b, let S_{γ} be the evaluation in z = b of the solution to the differential equation

$$\frac{d}{dz}S(z) = \left(\frac{x_0}{z} + \frac{x_1}{1-z}\right)S(z) \tag{9}$$

with initial condition S(a) = 1. This series $S_{\gamma} \in \mathbb{C}\langle X \rangle$ is called [2] the *Chen series* along γ (and associated to the differential forms $\omega_0 = dz/z$ et $\omega_1 = dz/1 - z$).

It is classical [2] that S_{γ} is a Lie exponential, which only depends on the homotopy class of γ . Moreover, for the concatenation $\gamma_1 \gamma_2$ of two paths γ_1 and γ_2 , one has

$$S_{\gamma_1\gamma_2} = S_{\gamma_2}S_{\gamma_1},\tag{10}$$

In particular, $S_{\gamma^{-1}} = S_{\gamma}^{-1}$.

The polylogarithms \dot{L}_w induce a series $L \in \mathcal{F}(\mathcal{R})\langle X \rangle$ by:

$$L(z) = \sum_{w \in X^*} L_w(z)w, \quad \forall z \in \mathcal{FR}.$$

Theorem 1 L(z) is a Lie exponential for all $z \in \mathcal{R}$. In particular, one has the shuffle relations

$$L_{u \amalg v}(z) = L_u(z)L_v(z), \quad \forall z \in \mathcal{R}, \, \forall u, v \in X^*.$$
(11)

PROOF - L satisfies the differential equation

$$\frac{d}{dz}L(z) = \left(\frac{x_0}{z} + \frac{x_1}{1-z}\right)L(z). \tag{12}$$

If $\varepsilon \to 0$, one has

$$L(\varepsilon) = e^{x_0 \log \varepsilon} + O(\sqrt{\varepsilon}). \tag{13}$$

Let $T(z) = \Delta L(z) - L(z) \otimes L(z)$ and $V(z) = \frac{x_0}{z} + \frac{x_1}{1-z}$. We observe that T(z) satisfies the differential equation

$$\frac{d}{dz}T(z) = (V(z) \otimes 1 + 1 \otimes V(z))T(z), \qquad (14)$$

with initial condition T(0) = 0. Therefore $T(z) = 0, \forall z \in \mathcal{R}$. \Box

REMARK – The shuffle relation $L_{x_0}L_{x_1} = L_{x_0x_1} + L_{x_1x_0}$ is equivalent to Euler's relation [8]

$$\operatorname{Li}_2(z) + \operatorname{Li}_2(1-z) = \zeta(2) - \log(z)\log(1-z).$$

Let z_0 be a point of \mathcal{R} , which we identify with its projection on \mathbb{C} and let $z_0 \rightarrow z$ be a differentiable path on $\mathbb{C} \setminus \{0, 1\}$. Then L admits an analytic continuation along this path. The series L(z) and $S_{z_0 \rightarrow z}L(z)$ both satisfy the differential equation (12) and take the same value in $z = z_0$. This proves that

$$L(z) = S_{z_0 \rightsquigarrow z} L(z_0), \tag{15}$$

for all paths $z_0 \rightsquigarrow z$ in $\mathbb{C} \setminus \{0, 1\}$.

Let $R \in]0, 1[$ and denote by $\gamma_0(R)$ (resp. $\gamma_1(R)$) the circular paths of radius R and turning around 0 (resp. 1) in the trigonometric sense, starting in z = R (resp. z = 1 - R). One easily proves the estimate

$$(S_{\gamma_0(R)}|w) < \frac{1}{|w|!} (2\pi)^{|w|} (2R)^{|w|_{x_1}}, \qquad (16)$$

for the coefficients of the Chen series along $\gamma_0(R)$ (for R < 1/2), where |w| denotes the length of the word w and $|w|_{x_1}$ the number of occurrences of x_1 in w. For $R \to 0$, this estimate yields

$$\begin{cases} \lim_{R \to 0} S_{\gamma_0(R)} = e^{2i\pi x_0}, \\ \lim_{R \to 0} S_{\gamma_1(R)} = e^{-2i\pi x_1}. \end{cases}$$
(17)

For each $t \in]0, 1[$, let $\mathcal{M}_0L(t)$ (resp. $\mathcal{M}_1L(t)$), be the analytic continuation of L(t) along $\gamma_0(t)$, (resp. $\gamma_1(t)$). From (15), we get $\mathcal{M}_iL(t) = S_{\gamma_i(t)}L(t)$ for i = 0, 1. We will now show how to compute two Lie exponentials $M_0, M_1 \in \mathbb{C}\langle X \rangle$, which do not depend on t, such that $\forall t \in]0, 1[$

$$\mathcal{M}_i L(t) = L(t) M_i$$
, pour $i = 0$ where 1. (18)

2.1 Monodromy of *L* around 0

Since a Chen series only depends on the homotopy class of its underlying path, we deduce from (15) that

$$\mathcal{M}_0 L(t) = S_{\varepsilon \rightsquigarrow t} S_{\gamma_0(\varepsilon)} S_{t \rightsquigarrow \varepsilon} L(t),$$

= $L(t) L^{-1}(\varepsilon) S_{\gamma_0(\varepsilon)} L(\varepsilon).$

This yields

$$M_0 = \lim_{\varepsilon \to 0^+} L^{-1}(\varepsilon) S_{\gamma_0(\varepsilon)} L(\varepsilon) = e^{2i\pi x_0}.$$
 (19)

Indeed, for $\varepsilon \to 0$, the series $S_{\gamma_0(\varepsilon)} = e^{2i\pi x_0} + O(\varepsilon)$ and $L(\varepsilon) = e^{(\log \varepsilon)x_0} + O(\sqrt{\varepsilon})$ commute. In particular, (18) implies

$$\begin{cases} \mathcal{M}_0 L_{x_0} = L_{x_0} + (2i\pi), \\ \forall w \in X^*, \quad \mathcal{M}_0 L_{wx_1} = L_{wx_1}. \end{cases}$$
(20)

2.2 Monodromy of *L* around 1

Similarly,

$$\begin{aligned} \mathcal{M}_1 L(t) &= S_{1-\varepsilon \leadsto t} S_{\gamma_1(\varepsilon)} S_{t \leadsto 1-\varepsilon} L(t), \\ &= L(t) \ L^{-1}(1-\varepsilon) S_{\gamma_1(\varepsilon)} L(1-\varepsilon), \end{aligned}$$

whence

$$M_{1} = \lim_{\varepsilon \to 0^{+}} L^{-1} (1 - \varepsilon) e^{-2i\pi x_{1}} L (1 - \varepsilon).$$
 (21)

In order to isolate the divergent terms of $L(1 - \varepsilon)$, we will show how to factor L(z) as an infinite product of Lie exponentials, by using the dual Poincaré–Birkoff–Witt basis.

3 Computation of the monodromy around 1

3.1 Duality in the space of polynomials

We define a pairing on $R\langle X \rangle$ by $(u|v) = \delta_u^v$, for words $u, v \in X^*$ (δ denotes the Kronecker symbol), and extending by bilinearity. Let $B \subset R\langle X \rangle$ and $B^* \subset R\langle X \rangle$ be two bases of $R\langle X \rangle$ related by a bijection

$$*: B \ni b \to b^* \in B^*.$$

These bases are said to be dual if

$$\forall a \in B, b^* \in B^*, \quad (a|b^*) = \delta_a^b \tag{22}$$

For instance, the basis $R\langle X \rangle$ of all words $w \in X^*$ is self-dual.

It is well known that the algebra $R\langle X \rangle$ with the usual concatenation product is an enveloping algebra of the free Lie algebra $\mathcal{L}ie_R\langle X \rangle$. Let B_1 be an ordered basis of the free Lie algebra. Let B the associated Poincaré– Birkoff–Witt basis, that is, the set of elements of the form $b_1b_2\cdots b_k$, with $k \geq 0$ and $b_1 \geq b_2 \geq \cdots \geq b_k$, with the b_i in B_1 . The commutative R-algebra $R\langle X \rangle$ is freely generated by the elements of $B_1^* = \{b^*; b \in B_1\}$, for the shuffle product m.

3.2 Factorization of the double series

Consider the *R*-algebra $R\langle X \rangle \otimes R\langle X \rangle$, with the shuffle product on the first factor and the concatenation product on the second. By definition,

$$(x \otimes y)(x' \otimes y') = x \operatorname{I\!I\!I} x' \otimes y \cdot y', \qquad (23)$$

for $x, y, x', y' \in R\langle X \rangle$. The following factorization is classical:

$$\sum_{w \in X^*} w \otimes w = \sum_{b \in B} b^* \otimes b = \prod_{b \in B_1} e^{b^* \otimes b}.$$
 (24)

This yields the following factorization of L(z) as a product of decreasing exponentials:

$$L(z) = \sum_{w \in X^*} L_w(z) \ w = \sum_{b \in B} L_{b^*}(z) \ b = \prod_{b \in B_1} e^{L_{b^*}(z) \ b}.$$
(25)

3.3 Construction of the dual Lyndon basis

By definition, a Lyndon word is a non empty word $l \in X^*$, which is inferior to each of its strict right factors (for the lexicographical ordering):

$$\forall u, v \in X^+, \ l = uv \Rightarrow l < v \tag{26}$$

The set of Lyndon words is denoted by $\mathcal{L}yndon(X)$.

EXAMPLE – For $X = \{x_0, x_1\}$ with $x_0 < x_1$, the Lyndon words of length ≤ 5 on X^* are the following (in increasing order):

$$\{x_0, x_0^4 x_1, x_0^3 x_1, x_0^3 x_1^2, x_0^2 x_1, x_0^2 x_1 x_0 x_1, x_0^2 x_1^2, \\ x_0^2 x_1^3, x_0 x_1, x_0 x_1 x_0 x_1^2, x_0 x_1^2, x_0 x_1^3, x_0 x_1^4, x_1\}.$$

The bracket form $P(l) \in \mathcal{L}ie_R\langle X \rangle$ of a Lyndon word l = uv with $l, u, v \in \mathcal{L}yndon(X)$ (v being as long as possible) is defined recursively by

$$\begin{cases} P(l) = [P(u), P(v)] \\ P(x) = x & \text{for each letter } x \in X, \end{cases}$$
(27)

It is classical that the set $B_1 = \{P(l); l \in \mathcal{L}yndon(X)\}$, ordered lexicographically, is a basis for the free Lie algebra. Moreover, each word $w \in X^*$ can be expressed uniquely as an increasing product of Lyndon words:

$$w = l_1^{\alpha_1} l_2^{\alpha_2} \dots l_k^{\alpha_k}, \quad l_1 > l_2 > \dots > l_k, \quad k \ge 0.$$
(28)

The Poincaré–Birkoff–Witt basis $B = \{P(w); w \in X^*\}$ and its dual basis $B^* = \{P^*(w); w \in X^*\}$ are obtained by setting [7]

$$\begin{cases}
P(w) = P(l_1)^{\alpha_1} P(l_2)^{\alpha_2} \dots P(l_k)^{\alpha_k}, \\
P^*(w) = CP^*(l_1)^{\operatorname{III}\alpha_1} \operatorname{III} \dots \operatorname{III} P^*(l_k)^{\operatorname{III}\alpha_k}, \\
& \text{where } C = (\alpha_1!\alpha_2!\dots\alpha_k!)^{-1} \\
P^*(l) = xP^*(w), \quad \forall l \in \mathcal{L}yndon(X), \\
& \text{where } l = xw, \ x \in X, \ w \in X^*.
\end{cases}$$
(29)

Lemma 1

$$\forall l \in \mathcal{L}yndon(X), \quad P^*(l) = l + \sum_{w, |w| < |l|} \lambda_w w$$

See table ??.

Lemma 2 One has $P^*(w) \in x_0 \mathbb{Z} \langle X \rangle x_1$ for all $w \in x_0 X^* x_1$.

PROOF – The Lyndon words involved in the decomposition (28) of a word $w \in X^*x_1$ (resp. $w \in x_0X^*x_1$) all belong to X^*x_1 (resp. $x_0X^*x_1$). \Box

3.4 Formulas for the monodromy around 1

3.4.1 Formulas up to order 4

Let us discuss our method in detail for the computation of the monodromy of L around 1 at order 4. We start from the factorization (25) of L(z):

$$L = \prod_{l \in \mathcal{L}yndon(X)} \exp\left(L_{P^*(l)}P(l)\right)$$
(30)

We will kill all Lie brackets of length superior to 4, which is equivalent to working in the *free nilpotent Lie algebra* of order 4. The factorization (30) yields

$$\begin{split} L(z) &= e^{L_{x_1}(z)x_1} e^{L_{x_0x_1x_1}(z)[[x_0,x_1],x_1]} e^{L_{x_0x_1}(z)[x_0,x_1]} \\ &\times e^{L_{x_0x_0x_1}(z)[x_0,[x_0,x_1]]} e^{L_{x_0}(z)x_0}. \end{split}$$

Evaluated in $z = 1 - \varepsilon$, this factorization becomes

$$L(1-\varepsilon) = e^{L_{x_1}(1-\varepsilon)x_1} e^{\zeta_{x_0x_1x_1}[[x_0,x_1],x_1]} \\ \times e^{\zeta_{x_0x_1}[x_0,x_1]} e^{\zeta_{x_0x_0x_1}[x_0,[x_0,x_1]]}$$

The important point is that the divergent terms only appear in the exponential $\exp(L_{x_1}(1-\varepsilon)x_1)$. Furthermore, $\exp(L_{x_0}(1-\varepsilon)x_0) \sim 1$, since $L_{x_0}(1-\varepsilon) = \log(1-\varepsilon) \sim -\varepsilon$. This observation hold in general, by lemma 2.

Because of (21), the monodromy $\mathcal{M}_1 L(t) = L(t) \mathcal{M}_1$ is given by the series

$$M_{1} = e^{-\zeta_{x_{0}x_{0}x_{1}}[x_{0}, [x_{0}, x_{1}]]} e^{-\zeta_{x_{0}x_{1}}[x_{0}, x_{1}]} e^{-\zeta_{x_{0}x_{1}x_{1}}[[x_{0}, x_{1}], x_{1}]} \\ \times e^{-L_{x_{1}}(1-\varepsilon)x_{1}} e^{-2i\pi x_{1}} e^{L_{x_{1}}(1-\varepsilon)x_{1}} \\ \times e^{\zeta_{x_{0}x_{1}x_{1}}[[x_{0}, x_{1}], x_{1}]} e^{\zeta_{x_{0}x_{1}}[x_{0}, x_{1}]} e^{\zeta_{x_{0}x_{0}x_{1}}[x_{0}, [x_{0}, x_{1}]]}.$$

The exponentials in x_1 commute, whence the divergent terms disappear. On the other hand, the exponentials of brackets of length 3 also disappear, since they commute with the other exponentials (the brackets of order 4 vanish). We now apply the classical formulas for the adjoint representation of Lie groups:

$$e^{\operatorname{ad} X}e^Y = e^X e^Y e^{-X} = e^{\exp(X)Y \exp(-X)} = e^{\exp(\operatorname{ad} X) Y}.$$

After some computations, we now obtain

$$M_{1} = e^{-\zeta_{x_{0}x_{1}}[x_{0},x_{1}]}e^{-2i\pi x_{1}}e^{\zeta_{x_{0}x_{1}}[x_{0},x_{1}]}$$

$$= e^{-\zeta_{x_{0}x_{1}}}\operatorname{ad}([x_{0},x_{1}])e^{-2i\pi x_{1}}$$

$$= e^{\exp(-\zeta_{x_{0}x_{1}}}\operatorname{ad}([x_{0},x_{1}])(-2i\pi x_{1})}$$

$$= e^{-2i\pi x_{1}+2i\pi\zeta_{x_{0}x_{1}}[[x_{0},x_{1}],x_{1}]}$$

3.4.2 The general case

Applied in the general case, the above method yields the following theorem:

Theorem 2 The monodromy of the series L(t) for $t \in [0, 1]$ around z = 1 is given by $\mathcal{M}_1 L(t) = L(t) \mathcal{M}_1$, where

 M_1 is a Lie exponential given by the formula

$$M_{1} = \left(\prod_{l \in \mathcal{L}yndon(X) \setminus \{x_{0}, x_{1}\}} e^{-\zeta_{P^{*}(l)} \operatorname{ad} P(l)}\right) e^{-2i\pi x_{1}}$$
(31)

The constants $\zeta_{P^*(l)}$ are finite, since $P^*(l) \in x_0 \mathbb{Q}\langle X \rangle x_1$, by construction (29).

This theorem is effective, since the computation of the monodromy of the L_w for $|w| \leq n$ only necessitates the knowledge of M_1 for words of length < n.

Corollary 1 The monodromy of the polylogarithms L_w is given by

$$\forall w \in X^*, \quad \mathcal{M}_0 L_{wx_0} = L_{wx_0} + 2i\pi L_w + \cdots$$
$$\mathcal{M}_1 L_{wx_1} = L_{wx_1} - 2i\pi L_w + \cdots ,$$

where the remaining terms are linear combinations of polylogarithms coded by words of lengths < w.

PROOF – Consequence of (18), by remarking that (31) implies that

$$\begin{cases} M_0 = 1 + 2i\pi x_0 + \text{words of length} > 1\\ M_1 = 1 - 2i\pi x_1 + \text{words of length} > 1 \end{cases}$$
(32)

See also the results from appendix A. \Box

Corollary 2 The monodromy group of the functions L_w for $|w| \leq n$ is nilpotent at order n + 1.

PROOF – We have

$$M_0 = e^{2i\pi x_0}$$
 and $M_1 = e^{-2i\pi x_1 + \cdots}$.

From

$$e^A e^B e^{-A} e^{-B} = e^{[A,B]+\cdots},$$

it follows that the commutator $M_0M_1M_0^{-1}M_1^{-1}$ does not contain any Lie brackets of length 1. Iterating this computation, the brackets of lengths 2, next 3, etc. until n disappear. \Box

Acknowledgment Thanks to R. Bkouche, M. Huttner, G. Jacob, M. Gergondey and the mathematicians from Lille for useful discussions.

References

- P. Cartier. Jacobiennes généralisées, monodromie unipotente et intégrales itérées. Séminaire Bourbaki, (687):31-52, 1987.
- [2] K.T. Chen. Algebras of iterated path integrals and fondamental groups. Trans. of the A.M.S., 156(3):359–379, may 1971.

- [3] J. Écalle. *Résurgence I et II.* Publications Univ. Orsay, Orsay, 1981.
- [4] Hoang Ngoc Minh and M. Petitot. Mots de lyndon, polylogarithmes et fonction ζ de riemann. *submited to Discret Maths.*
- [5] M. Petitot. Algèbre non commutative en Scratchpad. Application au problème de la réalisation minimale analytique. Thèse de Doctorat, Université Lille I, Janvier 1992.
- [6] R. Ree. Lie elements and an algebra associated with shuffle. Ann. of Math, 68:210-220, 1958.
- [7] C. Reutenauer. Free Lie Algebras, volume New Series-7 of London Mathematical Society Monographs. Oxford Science Publications, 1993.
- [8] G. Wechsung. Functional equations of hyperlogarithms. In L. Lewin, editor, Structural properties of polylogarithms, volume 37 of Mathematical survey and monographs, chapter 8, pages 171–184. Amer.Math.Soc., 1992.
- [9] G. Wojtkowiak. The basic structure of polylogarithmic functional equations. In L. Lewin, editor, Structural properties of polylogarithms, volume 37 of Mathematical survey and monographs, pages 205-231. Amer.Math.Soc., 1992.
- [10] D. Zagier. Values of zeta functions and their applications. In *First European Congress of Mathematics*, volume 2, pages 179–512. Birkhauser, 1994.