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Abstract

Let T be the field of grid-based transseries or the field of transseries with finite
logarithmic depths. In our PhD. we announced that given a differential polynomial P
with coefficients in T and transseries ϕ<ψ with P (ϕ)<0 and P (ψ)> 0, there exists
an f ∈ (ϕ, ψ), such that P (f) = 0. In this note, we will prove this theorem.

1 Introduction

1.1 Statement of the results

Let C be a totally ordered exp-log field. In chapter 2 of [vdH97], we introduced the field
T=C[[[x]]] of transseries in x of finite logarithmic and exponential depths. In chapter 5,
we then gave an (at least theoretical) algorithm to solve algebraic differential equations
with coefficients in T. By that time, the following theorem was already known to us (and
stated in the conclusion), but due to lack of time, we had not been able to include the proof.

Theorem 1. Let P be a differential polynomial with coefficients in T. Given ϕ< ψ in T,

such that P (ϕ)P (ψ)< 0, there exists an f ∈ (ϕ, ψ) with P (f) = 0.

In the theorem, (ϕ, ψ) stands for the open interval between ϕ and ψ. The proof that
we will present in this note will be based on the differential Newton polygon method as
described in chapter 5 of [vdH97]. We will freely use any results from there. We recall (and
renew) some notations in section 2.

In chapter 1 of [vdH97], we also introduced the field of grid-based C[[[x]]] ⊆ C[[[x]]]
transseries in x. In chapter 12, we have shown that our algorithm for solving algebraic
differential equations preserves the grid-based property. Therefore, it is easily checked that
theorem 1 also holds for T=C[[[x]]]. Similarly, it may be checked that the theorem holds
if we take for T the field of transseries of finite logarithmic depths (and possibly countable
exponential depths).

1.2 Proof strategy

Assume that P is a differential polynomial with coefficients in T, which admits a sign
change on a non empty interval (ϕ, ψ) of transseries. The idea behind the proof of theorem
1 is very simple: using the differential Newton polygon method, we shrink the interval (ϕ,
ψ) further and further while preserving the sign change property. Ultimately, we end up
with an interval which is reduced to a point, which will then be seen to be a zero of P .
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However, in order to apply the above idea, we will need to allow non standard intervals
(ϕ, ψ) in the proof. More precisely, ϕ and ψ may generally be taken in the compactification
of T, as constructed in section 2.6 of [vdH97]. In this paper we will consider non standard
ϕ (resp. ψ) of the following forms:

• ϕ= ξ±�, with ξ ∈T;

• ϕ= ξ±℧, with ξ ∈T;

• ϕ= ξ± � m, with ξ ∈T and where m is a transmonomial.

• ϕ= ξ±�m, with ξ ∈T and where m is a transmonomial.

• ϕ= ξ± γ, with ξ ∈T and γ=(x logx log logx� )−1.

Here � and ℧ respectively designate the infinitely small and large constants ∞T

−1 and ∞T

in the compactification of T. Similarly, � and � designate the infinitely small and large
constants ∞C

−1 and ∞C in the compactification of C. We may then interpret ϕ as a cut
of the transline T into two pieces T= {f ∈T|f < ϕ}∐ {f ∈T|f > ϕ}. Notice that

{f ∈T
+|f < γ} = {f ∈T

+|∃g ∈T
+: g≺ 1∧ f = g ′};

{f ∈T
+|f > γ} = {f ∈T

+|∃g ∈T
+: g≻ 1∧ f = g ′}.

Remark 2. Actually, the notations ξ±℧, ξ± �m, and so on are redundant. Indeed, ξ±℧

does not depend on ξ, we have ξ+ � m= χ+ � m whenever ξ− χ≺m, etc.

Now consider a generalized interval I = (ϕ, ψ), where ϕ and ψ may be as above. We
have to give a precise meaning to the statement that P admits a sign change on I . This
will be the main object of sections 3 and 4. We will show there that, given a cut ϕ of the
above type, the function σP (f)= signP (f) may be prolongated by continuity into ϕ from
at least one direction:

• If ϕ= ξ+�, then σP is constant on (ϕ, χ) = (ξ, χ) for some χ> ϕ.

• If ϕ= ξ+ ℧, then σP is constant on (χ, ϕ) for some χ< ϕ.

• If ϕ= ξ+ � m, then σP is constant on (χ, ϕ) for some χ< ϕ.

• If ϕ= ξ+�m, then σP is constant on (ϕ, χ) for some χ> ϕ.

• If ϕ= ξ+ γ, then σP is constant on (ϕ, χ) for some χ> ϕ.

(In the cases ϕ= ξ−�, ϕ=−℧ and so on, one has to interchange left and right continuity
in the above list.) Now we understand that P admits a sign change on a generalized interval
(ϕ, ψ) if σP (ϕ)σP (ψ)< 0.

2 List of notations

Asymptotic relations.

f ≺ g ⇔ f = o(g);

f 4 g ⇔ f =O(g);

f � g ⇔ log |f | ≺ log |g |;

f  g ⇔ log |f |4 log |g |.
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Logarithmic derivatives.

f † = f ′/f ;

f 〈i〉 = f †� † (i times).

Natural decomposition of P .

P (f) =
∑

i

Pif
(i) (1)

Here we use vector notation for tuples i= (i0,� , ir) and j =(j0,� , jr) of integers:

|i| = r;
i6 j ⇔ i0 6 j0∧� ∧ ir 6 ir;

fi = f i0 (f ′)i1� (f (r))ir;
(

j

i

)

=
(

j1
i1

)� (jr
ir

)

.

Decomposition of P along orders.

P (f) =
∑

ω

P[ω] f
[ω] (2)

In this notation, ω runs through tuples ω = (ω1,� , ωl) of integers in {0,� , r} of length l
at most d, and P[ω] = P[ωσ(1),� ,ωσ(l)] for all permutations of integers. We again use vector
notation for such tuples

|ω | = l;
‖ω‖ = ω1 + � +ω|ω|;

ω 6 τ ⇔ |ω |= |τ | ∧ω1 6 τ1∧� ∧ω|ω|6 τ|τ |;

f [ω] = f (ω1)� f
(ω|ω |);

(

τ

ω

)

=
(

τ1
ω1

)� ( τ|τ |

ω|ω|

)

.

We call ‖ω|| the weight of ω and

‖P ‖= max
ω|P[ω ]� 0

‖ω‖

the weight of P .

Additive, multiplicative and compositional conjugations or upward shifting.

P+h(f) = P (h+ f);

P×h(f) = P (hf);

P ↑(f ↑) = P (f)↑.

Additive conjugation:

P+h,i=
∑

j>i

(

j

i

)

hj−iPj. (3)

Multiplicative conjugation:

P×h,[ω] =
∑

τ>ω

(

τ

ω

)

h[τ−ω]P[τ ]. (4)

Upward shifting (compositional conjugation):

(P ↑)[ω] =
∑

τ>ω

sτ ,ωe
−‖τ‖x (P[τ ]↑), (5)
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where the sτ ,ω are generalized Stirling numbers of the first kind:

sτ ,ω = sτ1,ω1� sτ|τ |,ω|ω|
;

(f(logx))(j) =
∑

i=0

j

sj ,ix
−j f (i)(log x).

3 Behaviour of σP near zero and infinity

3.1 Behaviour of σP near infinity

Lemma 3. Let P be a differential polynomial with coefficients in T. Then P (±f) has

constant sign for all sufficiently large f ∈T.

Proof. If P = 0, then the lemma is clear, so assume that P � 0. Using the rules

f = f ;

f ′ = f † f ;

f ′′ = (f †)2 f + f †† f † f ;

f ′′′ = (f †)3 f +3 f †† (f †)2 f +(f ††)2 f † f + f ††† f †† f † f ;

we may rewrite P (f) as an expression of the form

P (f) =
∑

i=(i0,� ,ir)

P〈i〉 f
〈i〉, (6)

where P〈i〉∈T and f 〈i〉= f i0 (f †)i1� (f 〈r〉)ir for each i. Now consider the lexicographical

ordering 6lex on N
r+1, defined by

i<lex j � (i0< j0)∨

(i0 = j0∧ i1< j0)∨

(i0 = j0∧� ∧ ir−1 = jr−1∧ ir< jr).

This ordering is total, so there exists a maximal i for 6lex , such that P〈i〉 � 0. Now let
k> 1 be sufficiently large such that P〈j〉� expkx for all j. Then

σP (±f) = (±1)i0 signP〈i〉 (7)

for all postive, infinitely large f " expk+r x, since expk x� f 〈r〉� � � f †� f for all
such f . �

3.2 Behaviour of σP near zero

Lemma 4. Let P be a differential polynomial with coefficients in T. Then P (±ε) has

constant sign for all sufficiently small ε∈T∗
+.
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Proof. If P =0, then the lemma is clear. Assume that P � 0 and rewrite P (f) as in (6).
Now consider the twisted lexicographical ordering 6tl on N

r+1, defined by

i<tl j � (i0> j0)∨

(i0 = j0∧ i1< j0)∨

(i0 = j0∧� ∧ ir−1 = jr−1∧ ir< jr).

This ordering is total, so there exists a maximal i for 6tl , such that P〈i〉 � 0. If k> 1 is
sufficiently large such that P〈j〉� expkx for all j, then

σP (±ε) = (±1)i0 signPi (8)

for all postive infinitesimal ε" expk+rx. �

3.3 Canonical form of differential Newton polynomials

Assume that P has purely exponential coefficients. In what follows, we will denote by NP ,m

the purely exponential differential Newton polynomial associated to a monomial m, i.e.

NP ,m(c) =
∑

i

P×m,i,d(P×m) c
i, (9)

where

dP =max
i,4

dPi
. (10)

The following theorem shows how NP = NP ,1 looks like after sufficiently many upward
shiftings:

Theorem 5. Let P be a differential polynomial with purely exponential coefficients. Then

there exists a polynomial Q ∈ C[c] and an integer ν, such that for all i > ‖P ‖, we have

NP ↑i
=Q (c′)ν.

Proof. Let ν be minimal, such that there exists an ω with ‖ω‖ = ν and (NP ↑)[ω] � 0.
Then we have d(NP ↑) = e−νx and

NP ↑(c) =
∑

‖ω‖=µ

(

∑

τ>ω

sτ ,ωNP ,[τ ]

)

c[ω], (11)

by formula (5). SinceNP ↑� 0, we must have ν6‖NP ‖. Consequently, ‖NP ‖>ν=‖NP ↑‖>

‖NP ↑↑‖>� . Hence, for some i6 ‖P ‖, we have ‖NP ↑i+1‖= ‖NP ↑i
‖. But then (11) applied

on P ↑i instead of P yields NP ↑i+1 =NP ↑i
. This shows that NP ↑i

is independent of i, for
i> ‖P ‖.

In order to prove the theorem, it now suffices to show that NP ↑ =NP implies NP ↑ =
Q (c′)ν for some polynomial Q ∈ C[c]. For all differential polynomials R of homogeneous
weight ν, let

R∗=
∑

j

([cj (c′)ν]R) cj (c′)ν. (12)

Since NP ↑
∗ =NP

∗ , it suffices to show that P =0 whenever NP
∗ =0. Now NP

∗ =0 implies that
NP(x)= 0. Furthermore, (5) yields

NP ↑= e−νxNP . (13)

Behaviour of σP near zero and infinity 5



Consequently, we also have NP(ex) = eνx (NP ↑)(e
x) = eνx (NP(x))↑ = 0. By induction, it

follows that NP(expix)=0 for any iterated exponential of x. We conclude that NP =P =0,
by the lemma 3. �

Remark 6. Given any differential polynomial P with coefficients in T, this polynomial
becomes purely exponential after sufficiently many upward shiftings. After at most ‖P ‖
more upward shiftings, the purely exponential Newton polynomial stabilizes. The resulting
purely exponential differential Newton polynomial, which is in C[c] (c′)N, is called the
differential Newton polynomial of P .

4 Behaviour of σP near constants

In the previous section, we have seen how to compute P (ξ±�) and P (ξ±℧) for all ξ∈T.
In this section, we show how to compute P (ξ ± � m) and P (ξ ± �m) for all ξ ∈T and all
transmonomials m. Modulo an additive and a multiplicative conjugation with ξ resp. m, we
may assume without loss of generality that ξ=0 and m=1. Hence it will suffice to study
the behaviour of σP (c± ε) for c∈C and positive infinitesimal (but sufficiently large) ε, as
well as the behaviour of σP (f) for positive infinitely large (but sufficiently small) f .

Modulo suffiently upward shiftings (we have σP (c + ε) = σP ↑ (c + ε↑) and σP (f) =
σP ↑ (f ↑)), we may assume that P has purely exponential coefficients. By theorem 5 and
modulo at most ‖P ‖ more upward shiftings, we may also assume that

NP(c) =Q(c) (c′)ν , (14)

for some polynomial Q ∈ C[c] and k ∈N. We will denote by µ the multiplicity of c as a
root of Q. Finally, modulo division of P by its dominant monomial (this does not alter
σP ), we may assume without loss of generality that dP =1.

4.1 Behaviour of σP in between constants

Lemma 7. For all 0<ε≺1 with ε� ex, the signs of P (c−ε) and P (c+ε) are independent
of ε and given by

(−1)µσP (c− �) = (−1)νσP (c+ �)= σ
Q(µ) (c). (15)

Proof. Since P is purely exponential and dP = 1, there exists an α> 0 such that

P (c+ ε)−NP(c+ ε)≺ e−αx (16)

for all ε ≺ 1. Let ε > 0 be such that e−βx ≺ ε ≺ 1, where β = α/(µ + ν). Then
Q(c± ε)∼

1

µ!
Q(µ)(c) (±ε)µ, whence

e−µβx 4Q(c+ ε) 4 1. (17)

Furthermore, − β e−βx≺ ε′≺− γ, whence

e−νβx≺ (ε′)ν ≺ γν. (18)

Put together, (17) and (18) imply that NP(c) ≻ e−αx. Hence σP (c + ε) = σNP
(c + ε),

by (16). Now

σP (c± ε) = σQ (c± ε) sign ((c± ε)′)ν =(±1)µσ
Q(µ) (c) (∓1)ν , (19)

since ε′< 0 for all positive infinitesimal ε. �
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Corollary 8. If P is homogeneous of degree i, then

σP (�) =σP (ε) =σRP ,i
(ε†)= σRp,i

(−γ), (20)

for all 0<ε≺ 1 with ε� ex.

Corollary 9. Let c1<c2 be constants such that σP (c1+�)σP (c2− �)<0. Then there exists

a constant c∈ (c1, c2) with σP (c− �)σP (c+ �)< 0.

Proof. In the case when ν is odd, then σP (c− �) σP (c+ �)< 0 holds for any c> c1 with
Q(c)� 0, by (15). Assume therefore that ν is even and let µ1, µ2 denote the multiplicities
of c1, c2 as roots of Q. From (15) we deduce that

(− 1)µ2σ
Q(µ1) (c1)σQ(µ2) (c2)< 0. (21)

In other words, the signs of Q(c) for c↓c1 and c↑c2 are different. Hence, there exists a root
c of Q between c1 and c2 which has odd multiplicity µ. For this root c, (15) again implies
that σP (c− �)σP (c+ �)< 0. �

4.2 Behaviour of σP before and after the constants

Lemma 10. For all 0< f ≻ 1 with f� ex, the signs of P (−f) and P (f) are independent

of f and given by

(−1)degQ+νσP (−�)= σP (�) = signQdegQ. (22)

Proof. Since P is purely exponential and dP = 1, there exists an α> 0 such that

P (f)−NP(f)≺ e−αx, (23)

since f , f ′, f ′′, � � ex. Furthermore Q(±f) ∼ QdegQ (±f)deg Q� ex and (±f ′)ν � ex,
whence NP(f)� ex. In particular, NP(f)≻ e−αx, so that σP (f)=σNP

(f), by (23). Now

σP (±f) =σQ (±ε) sign (±f ′)ν = signQdegQ (±1)degQ+µ, (24)

since f ′> 0 for positive infinitely large f . �

Corollary 11. If P is homogeneous of degree i, then

σP (�) =σP (f) =σRP ,i
(f †) =σRP ,i

(γ), (25)

for all 0< f ≻ 1 with f � ex.

Corollary 12. Let c1 be a constant such that σP (c1 + �) σP (�)< 0. Then there exists a

constant c> c1 with σP (c− �)σP (c+ �)< 0.

Proof. In the case when ν is odd, then σP (c− �) σP (c+ �)< 0 holds for any c> c1 with
Q(c)� 0, by (15). Assume therefore that ν is even and let µ1 be the multiplicity of c1 as
a root of Q. From (15) and (22) we deduce that

σ
Q(µ1) (c1) signQdegQ< 0. (26)

In other words, the signs of Q(c) for c↓c1 and c↑� are different. Hence, there exists
a root c > c1 of Q which has odd multiplicity µ. For this root c, (15) implies that
σP (c− �)σP (c+ �)< 0. �

Behaviour of σP near constants 7



5 Proof of the intermediate value theorem

It is convenient to prove the following generalizations of theorem 1.

Theorem 13. Let ξ and v be a transseries resp. a transmonomial in T. Assume that P

changes sign on an open interval I of one of the following forms:

a) I =(ξ, χ), for some χ> ξ with d(χ− ξ) = v.

b) I =(ξ − � v, ξ).

c) I =(ξ, ξ+ � v).

d) I =(ξ − � v, ξ+ � v).

Then P changes sign at some f ∈ I.

Theorem 14. Let ξ and v≻ γ be a transseries resp. a transmonomial in T. Assume that

P changes sign on an open interval I of one of the following forms:

a) I =(ξ+ γ, χ− γ), for some χ> ξ with d(χ− ξ) = v.

b) I =(ξ − � v, ξ − γ).

c) I =(ξ+ γ, ξ+ � v).

d) I =(ξ − � v, ξ+ � v).

Then P changes sign on (f − γ, f + γ) for some f ∈ I with (f − γ, f + γ)⊆ I.

Proof. Let us first show that cases a, b and d may all be reduced to case c. We will show
this in the case of theorem 13; the proof is similar in the case of theorem 14. Let us first
show that case a may be reduced to cases b, c and d . Indeed, if P changes sign on (ξ, χ),
then P changes sign on (ξ, ξ + � v), (ξ + � v, χ− � v) or (χ − � v, χ). In the second case,
modulo a multiplicative conjugation and upward shifting, corollary 9 implies that there
exists a 0<λ< (χ− ξ)v such that P admits a sign change on ((ξ+λv)− �v, (ξ+λv)+ �v).
Similarly, case d may be reduced to cases b and c by splitting the interval in two parts.
Finally, cases b and c are symmetric when replacing P (f) by P (−f).

Without loss of generality we may assume that ξ=0, modulo an additive conjugation
of P by ξ. We prove the theorem by a triple induction over the order r of P , the Newton
degree d of the asymptotic algebraic differential equation

P (f) = 0 (f ≺ v) (27)

and the maximal length l of a sequence of privileged refinements of Newton degree d (we
have l6 (r+1)d, by proposition 5.12 in [vdH97]).

Let us show that, modulo upward shiftings, we may assume without loss of generality
that P and v are purely exponential and that NP ∈C[c] (c′)N. In the case of theorem 13,
we indeed have σP ↑ (0) = σP (0) and σP ↑ (� v↑) = σP (� v). In the case of theorem 14, we
also have σP ↑

×e−x (γ) = σP ↑ (γ↑) = σP (γ). Furthermore, if f ∈ (γ, � v↑ ex) = I↑ ex is such

that P ↑ ex changes sign on (f − γ, f + γ)⊆ I↑ ex, then f ↓/x∈ (γ, � v) = I is such that P
changes sign on (f ↓/x− γ, f ↓/x+ γ)⊆ I .

Case 1: (27) is quasi-linear. Let m be the potential dominant monomial relative to (27).
We may assume without loss of generality that m=1, modulo a multiplicative conjugation
with m. Since By NP ∈C[c] (c′)N, we have NP =αc+ β or NP =αc′ for certain constants
α, β ∈C.

8 Section 5



In the case when NP = α c + β, there exists a solution to (27) with f ∼ − β/α � 0.
Now σP(0) = sign β and σP(�) = sign α. We claim that σP(�) = σRP ,1(γ) and σRP ,1(v

†−
γ) = σP(� v) must be equal. Otherwise RP ,1 would admit a solution between γ and
v
† − γ, by the induction hypothesis. But then the potential dominant monomial relative

to (27) should have been e
∫

χ, if χ is the largest such solution. Our claim implies that
(signα)(signβ)=σP (0)σP (�v)<0, so that f >0. Finally, lemma 4 implies that P admits a
sign-change at f . Lemma 7 also shows that σP (f − γ)σP (f+ γ)=σP (f − �)σP (f+�)<0.

In the case when NP =α c′, then any constant λ∈C is a root of NP . Hence, for each
λ > 0, there exists a solution f to (27) with f ∼ λ. Again by lemmas 4 and 7, it follows
that P admits a sign change at f and on (f − γ, f + γ).

Case 2: d>1. Let m be the largest classical potential dominant monomial relative to (27).
Since σP (0)σP (� v)< 0 (resp. σP (γ)σP (� v)< 0), one of the following always holds:

Case 2a. We have σP (0)σP (� m)< 0 (resp. σP (γ)σP (� m)< 0).

Case 2b. We have σP (� m)σP (�m)< 0.

Case 2c. We have σP (�m)σP (� v)< 0.

For the proof of theorem 14, we also assume that m ≻ γ in the above three cases and
distinguish a last case 2d in which m≺ γ.

Case 2a. We are directly done by the induction hypothesis, since the equation

P (f) = 0 (f ≺m). (28)

has a strictly smaller Newton degree than (27).

Case 2b. Modulo multiplicative conjugation with m, we may assume without loss of
generality that m=1. By corollary 12, there exists a c>0 such that σP (c− �)σP (c+ �)<0.
Actually, for any transseries ϕ∼ c we then have σP (ϕ− �)σP (ϕ+ �)<0. Take ϕ such that

P+ϕ(f̃ )= 0 (f̃ ≺ 1) (29)

is a privileged refinement of (27). Then either the Newton degree of (29) is strictly less
than d, or the longest chain of refinements of (29) of Newton degree d is strictly less than l.
We conclude by the induction hypothesis.

Case 2c. Since m is the largest classical dominant monomial relative to (27), the degree
of the Newton polynomial associated to any monomial between m and v must be d. Con-
sequently,

σP (�m)σP (� v) = σPd
(�m)σPd

(� v)= σRP ,d
(m†+ γ)σRP ,d

(v†− γ)< 0. (30)

By the induction hypothesis, there exists a monomial n with m
†+ γ < n

†< v
†− γ and

σRP ,d
(n†− γ)σRP ,d

(n†+ γ)< 0. (31)

In other words, n is a dominant monomial, such that m≺ n≺ v and

σPd
(� n)σPd

(� n)< 0. (32)

We conclude by the same argument as in case 2b, where we let n play the role of m.

Case 2d. Since m ≺ γ is the largest classical dominant monomial relative to (27), the
degree of the Newton polynomial associated to any monomial between γ and v must be d.
Consequently,

σP (γ)σP (� v) = σPd
(γ)σPd

(� v) =σRP ,d
(x†+ γ)σRP ,d

(v†− γ)< 0. (33)

Proof of the intermediate value theorem 9



By the induction hypothesis, there exists a monomial n with x†+ γ < n
†< v

†− γ and

σRP ,d
(n†− γ)σRP ,d

(n†+ γ)< 0. (34)

In other words, n is a dominant monomial, such that γ ≺x≺ n≺ v and

σPd
(� n)σPd

(� n)< 0. (35)

We again conclude by the same argument as in case 2b. �

Corollary 15. Any differential polynomial of odd degree and with coefficients in T admits

a root in T.

Proof. Let P be a polynomial of odd degree with coefficients in T. Then formula (7)
shows that for sufficiently large f ∈T∗

+ we have σP (− f)σP (f)< 0, since i0 is odd in this
formula. We now apply the intermediate value theorem between − f and f . �
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