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Abstract

In this survey paper, we outline the proof of a recent differential intermediate value
theorem for transseries. Transseries are a generalization of power series with real
coefficients, in which one allows the recursive appearance of exponentials and loga-
rithms. Denoting by T the field of transseries, the intermediate value theorem states
that for any differential polynomials P with coefficients in T and f < g in T with
P (f)P (g) < 0, there exists a solution h∈T to P (h) = 0 with f <h < g.

1 Introduction

In this survey paper, we will outline the proof of a recent differential intermediate value
theorem for transseries [vdH00] (with a few corrections in [vdH01]). A transseries is a
generalization of a formal power series, in which one allows the recursive intrusion of
exponentials and logarithms. In this paper we will only deal with real transseries at infinity
(x→∞). Some examples of such transseries are

f1 = 1 +x−1 + x−2 +� + e−x +x−1 e−x +� + e−2x +�
f2 = eex+x−1ex+� + x−1 ee

x+x−1ex+� +x−2 eex+x−1ex+� +�
f3 = e−x +2 log x e−2x +6 log2 x e−3x + 24 log3 x e−4x +�
f4 = 1 +2−x +3−x + 4−x +�
f5 = x−1 +x−2 +x−4 +� + e−log2 x + e−2log2 x +� + e−log4 x +�

The transseries f1, f2 and f3 are examples of grid-based transseries, the first two being
convergent and the last one divergent. In section 2 we will construct the field of grid-based
transseries T, which will be our main object of study in the sequel. More exotic, well-
ordered transseries are f4 = ζ(x) and f5. Notice that f5 satisfies the functional equation

f5(x)=
1
x

+ f5(x
2) + f5(e

log2 x).

Historically speaking, transseries appeared independently in at least three different con-
texts:

Model theory. The first construction of the field of transseries goes back to Dahn
and Göring [DG86], who were interested in non standard models for the theory of
real numbers with exponentiation. Much recent progress on this subject has been
made through works by Wilkie, van den Dries, Macintyre and others. The theory
of transseries also bears many similarities with Conway’s theory of surreal numbers.
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Analyzable functions. The main current application of transseries is in the proof
of Dulac’s conjecture by Écalle [É92]. More precisely, Écalle proved that a planar
real analytic vector field can only have a finite number of limit cycles. Essentially,
he shows that the Poincaré return map near a limit cycle can be represented by
an analyzable function ρ. Formally, such a function is a transseries, but through a
complicated process of accelero-summation, this formal transseries can be given an
analytic meaning. Since the real transseries form a totally ordered field, one must
have ρ(x) =x, ρ(x)>x or ρ(x)<x in a small neighbourhood of the limit cycle. In
other words, either all or no orbits are periodic in this neighbourhood.

Effective asymptotic analysis. Transseries also implicitly appeared during the
research of algorithms for doing asymptotic analysis [Sha90, Sal91, GG92]. In the
formal context of transseries, we were able to do such effective computations in
a more systematic way [vdH97].

There is no doubt that the combination of the techniques from these three different areas
will lead to an extremely powerful theory, whose development is far from finished. A nice
feature of such a theory will be that it will both have theoretical and practical aspects
(we expect effective numerical accelero-summation to have many applications in numerical
analysis, for instance).

Before dealing with all these aspects of the theory of transseries, it is interesting to study
which kind of asymptotic problems might a priori be adequately modelled by transseries
(at least from the formal point of view). For instance, it is well known that linear differential
equations with power series coefficients in C[[z]] always have a full basis of solutions of the
form

f = ϕ( z
p√

) zα eP (1/ z
p√

),

where P is a polynomial, α∈C and ϕ( z
p√

)∈C[logz][[ z
p√

]] a power series whose coefficients
are polynomials in log z of uniformly bounded degree. It is tempting to generalize this
result to non-linear differential equations and even to more general functional equations.

When considering non-linear equations, say algebraic ones, the first difficulty one has to
face is that the set of solutions to such equations is closed under composition. For instance,
given an infinitely large indeterminate z, we have to incorporate iterated exponentials ez,

eez
, eeez

,� of arbitrarily high orders into our theory. This is problematic if z is complex,
because ez behaves very differently in the positive and negative halfplanes.

In order to do asymptotics, a reasonable next step is therefore to reduce one’s attention
to real functions without oscillatory behavior. Of course, this is a very strong restriction,
since we will no longer be able to solve simple equations like

f2 +1 = 0. (1)

Nevertheless, this restriction does allow us to construct a clean, totally ordered field of
formal grid-based transseries T in an infinitely large real variable x (see section 2). In
this field, we will have asymptotic relations ≺ and 4 (using the notation of Hardy:
f ≺ g⇔ f = o(g) and f 4 g⇔ f =O(g)). Furthermore, T is closed under differentiation,
composition and functional inversion. So what about solving differential equations? Since
even simple equations such as (1) do not always have solutions, we have to search for
existence theorems of solutions which take into account the realness of the context. In this
paper, we outline a proof of the following such theorem:

Theorem 1. (Differential intermediate value theorem) Let P be an algebraic differ-
ential polynomial with coefficients in T. Given f < g in T, such that P (f)P (g)< 0, there
exists a solution h∈T of P (h) = 0 with f <h< g.
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In particular, the theorem implies that an algebraic differential equation of odd degree
like

P (f) = f7 + Γ(Γ(x)) (f f ′+ f ′′′)3 + ex
x+elog

2 x
f − log log x= 0

always has a solution in T. Our proof is based on a differential version of the Newton
polygon method, which will be sketched in section 3. Using a variant of Stevin’s dichotomic
method to find roots of continuous functions, we next indicate (section 4) how to find a
solution h of P (h)=0. For full proofs, we refer to [vdH97, vdH00, vdH01]. In section 5, we
will finally discuss some perspectives for the resolution of more general algebraic differential
equations using complex transseries.

2 The field of real, grid-based transseries

2.1 Generalized power series

Let C be a constant field and (M, 〈group| < 〉) a totally ordered, multiplicative, commu-
tative group of monomials . For instance, the monomial group M = xR of real powers of
an infinitely large x is a monomial group with xα < xβ ⇔ α> β. The relation 〈group| 4 〉
corresponds to Landau’s O-symbol and 〈group | ≺ 〉 to the o-symbol. We write m ≍ n if
m 4 n and n4 m.

A generalized power series is a mapping f : M → C with well-ordered support. We
usually write fm = f(m) and f =

∑

m∈M
fm m and the support supp f of f is the set of

m∈M with fm� 0. The condition on the support of f means that there does not exist an
infinite sequence m1≺m2≺� of monomials with fmi

� 0 for all i. We write C[[M]] for the
set of generalized (or well-ordered) power series.

It is known since long [Hah07] that the well-ordering condition allows us to define a
natural multiplication on C[[M]] by

f g=
∑

m∈M

(

∑

n∈M

fn gm/n

)

m.

This multiplication actually gives C[[M]] the structure of a field. Examples of well-ordered
series in R[[xR]] are

f1 = x2 + x+ 1 +x−1 +�
f2 = 1 + x−log2 +x−log3 +�
f3 = 1 + x−1/2 + x−3/4 +� +x−1 +x−3/2 +x−7/4 +� +�

Notice that the order type of supp f3 is transfinite (namely ω2) and that f3 = g/(x − 1),
where

g=x+ x
√

+ x
√√

+�
satisfies the functional equation g(x)= x+ g( x

√
).

The more exotic types of well-ordered series like f2 and f3 usually do not occur when
studying differential equations. We say that a subset G of M is grid-based if there exists
a monomial n∈M and a finite number of infinitesimal monomials e1 ≺ 1,� , ek ≺ 1 in M,
such that

G⊆ e1
N� ek

N
n.
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In other words, for each m ∈G, there exist i1,� , ik ∈N with m = e1
i1� ek

ik n. We say that
a series f is grid-based if its support is grid-based. It can be shown that the set C[[M]]

of grid-based series forms a subfield of C[[M]]. Notice that the support of a grid-based
series can still be transfinite when M is a non-archimedian monomial group. Indeed, the
order type of (1 − x−1 − e−x)−1 ∈ R[[xR eRx]] is again ω2, where xR eRx is ordered by
xα eβx < 1⇔ β > 0∨ (β=0∧α> 0).

The fields C[[M]] (resp. C[[M]]) can be given further structure. Given f ∈C[[M]]\{0},
we define its dominant monomial df to be the 4 -maximal element in supp f . The dominant
coefficient cf of f is the corresponding coefficient cf = fdf

. We extend 4 to C[[M]] by
f 4 g⇔df 4dg (here we assume f , g� 0; we take 04 g for all g and f � 0 whenever f � 0).
Each series f ∈ C[[M]] also admits a canonical decomposition into a purely infinite, a
constant , and an infinitesimal part :

f = f ↑ + f= + f ↓

‖ ‖ ‖
∑

m≻1

fmm f1

∑

m≺1

fmm

Finally, if C is a totally ordered field, like R, then we define a total ordering on C[[M]]

by f > 0⇔ (f � 0∧ cf > 0).
Another important operation on C[[M]] (resp. C[[M]]) is strong summation. A family

(fi)i∈I ∈C[[M]]I is said to be grid-based (or strongly summable), if

GBF1.
⋃

i∈I
supp fi is a grid-based subset of M.

GBF2. For each m∈M, the set {i∈ I |m∈ supp fi} is finite.

Given such a family, we may define its sum
∑

i∈I
fi by

∑

i∈I

fi =
∑

m∈M

(
∑

i∈I

fi,m) m.

Given a classical power series a0+a1z+a2z
2+� ∈C[[z]] and an infinitesimal δ∈C[[M]],

it can for instance be shown that (ai δ
i)i∈N is a grid-based family. Consequently, a ◦ δ =

a(δ) = a0 + a1 δ+ a2 δ
2 +� is well-defined.

2.2 Grid-based transseries in x

We now want to define a field of grid-based series T=R[[T]]⊇R[[xR]] with additional
functions exp and log, such that exp f is defined for all f and log f for all f > 0.
Classically [DG86, É92], one starts with the field R[[xR]] and successively closes it under
exponentiation and logarithm. We will follow the inverse strategy: we start with the field
of logarithmic transseries L and close it under exponentiation. Both constructions turn
out to be equivalent in the grid-based setting.

2.2.1 Logarithmic transseries

Consider the monomial group

L =E0 = {xα0 (log x)α1� (loglx)αl|α0,� , αl ∈R},

where logl stands for the log iterated l times. The infinitesimal monomials of L are of the
form

(logkx)αk� (loglx)αl,
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with k6 l, αk< 0 and αl� 0. Elements of L=C[[L]] are called logarithmic transseries .
We now have to define a logarithm on L>={f ∈L|f >0}. Given f ∈L>, we may write

f = c xα0� (logl x)
αl (1 + δ),

where c∈R>, α0,� , αl∈R and δ≺ 1. Then we define

log f = log c+α0 log x+� +αl logl+1x+ log (1 + δ).

Here we remind that log(1 + δ) = δ − 1

2
δ2 +

1

3
δ3 +� is well defined as the sum of a grid-

based family.

2.2.2 Exponential extensions

We next have to show how new exponentials can be added to L. The main point here is
to decide which exponentials give rise to new monomials. In L, we observe that f ∈ L>

is a monomial if and only if log f ∈L↑ (in which case we say that log f is purely infinite).
We will use this observation as a criterion for extensions by exponentials.

So assume that we have constructed the field En=R[[En]] of transseries of exponential
depth 〈group|6n〉. The case n= 0 has been dealt with above. Then we take

En+1 = expEn
↑
.

In other words, each monomial in En+1 is the formal exponential of an element in En
↑. The

asymptotic ordering on En+1 is inherited from the usual ordering on En
↑:

ef < eg⇔ f > g,

for all f , g ∈En
↑. Finally, the exponential of an arbitrary element f ∈En exists in En+1

and is given by

exp f = (exp f ↑) (exp f=) (exp f ↓).

The logarithm remains totally defined as an inverse function of exp on En+1
> , which guar-

antees that En+1⊇En at each step.

Example 2. e
ex(1+

1

x
+

1

x2
+� )∈E2, but ex+x−1 � E1.

2.2.3 The field of grid-based transseries in x

The field

T=E0∪E1∪� @ R[[E0∪E1∪� ]]=R[[T]]

is called the field of grid-based transseries in x. The exponentiation and logarithm are
totally defined on T resp. T>.

It can be shown that the usual axioms exp 0 = 1 and exp(x + y) = (exp x) (exp y)
for exponentiation are satisfied in T. The exponentiation also satisfies the following more
interesting properties

∀n∈N exp f >
∑

i=0

2n−1
f i

i!

in relation to the ordering. These properties imply in particular that exp is increasing and
that exp f ≻ f for all f ∈T>,≻=T>∩T≻= {f ∈T|f > 0∧ f ≻ 1}.
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2.3 Computations with transseries

We will now present some techniques for doing effective computations with transseries.
Although these techniques will not essentially be used in the sequel, they will allow the
reader to get a better understanding of the nested structure of transseries and the trans-
finite and non-archimedian nature of their supports.

2.3.1 Asymptotic bases

The transmonomial group T can actually be seen as an ordered R-vector space, where
addition is replaced by multiplication and scalar multiplication by raising to real powers.
As a consequence, we also have o and O-like relations on this vector space: we say that
m∈T is flatter than n∈T, and write m� n, if and only if ‖mα‖≺‖n‖ for all α∈R. Here
‖m‖= m if m < 1 and ‖m‖= m−1 otherwise. The flatness relation can be extended to T∗

itself: given f , g ∈T∗, we define

f � g ⇔ log ‖f ‖≺ log ‖g‖;
f  g ⇔ log ‖f ‖4 log ‖g‖;
f D g ⇔ log ‖f ‖≍ log ‖g‖.

Here we understand that ‖f ‖ = |f | if |f | < 1 and ‖f ‖ = |f |−1 otherwise. For instance,

x1000� ex, but xD x1000. Also, x� elog
2 x� ex� xx� ex

2
.

An asymptotic basis is a tuple B=(b1,� ,bn), with b1,� ,bn∈T>,≻ and b1� � � bn.
Such a basis generates an asymptotic scale BR = b1

R� bn
R. The field of grid-based series

R[[b1;� ;bn]]=R[[BR]] is naturally included in T and elements of R[[b1;� ;bn]] may be
expanded recursively w.r.t. bn,� , b1:

f =
∑

αn

fαn
bn

αn;

fαn
=

∑

αn−1

fαn,αn−1 bn−1
αn−1;


fαn,� ,α2 =
∑

α1

fαn,� ,α1 b1
α1.

Conversely, for any transseries f in T there exists an asymptotic basis (b1, � , bn) with
f ∈R[[b1;� ;bn]]. In fact, we may always choose b1,� ,bn to be transmonomials, although
this is not always the most convenient choice. For instance, from a computational point,
it is more efficient to see

1

1− ex
1000/(x−1)− e−x2

as an element of R[[ex
1000/(x−1); e−x2

]] rather than R[[x; ex
999+x998+�+x; e−x2

]].
In the grid-based context, the fact that R is archimedian implies that the types of the

supports of the infinite sums in recursive expansions are at most ω. Consequently, the type
of the support of a series in f ∈R[[b1;� ; bn]] is at most ωn. For instance, the type of the
support of

ex/(1− x−1−x−e − e−x) = (1 + x−1 + x−2 +x−e + x−3 + x−3−e +� ) ex +

(1 + x−1 + x−2 +x−e + x−3 + x−3−e +� )+

(1 + x−1 + x−2 +x−e + x−3 + x−3−e +� ) e−x +�
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is ω2. In fact, this transseries may also be interpreted as a multivariate Laurent series
z3
−1/(1− z1− z2− z3) in which we substituted z14 x−1, z24 x−e, z34 e−x. We call this

a Cartesian representation of the transseries. Cartesian representations exist in general
and they are best suited for doing effective computations on transseries [vdH97].

2.3.2 Transbases

For computations which involve exponentiation and differentiation, asymptotic bases do
not necessarily carry sufficient structure. A transbasis is a tuple B=(b1,� , bn) with

TB0. 1≺ b1≺� ≺ bn.

TB1. b1 = expl x, with l∈Z.

TB2. bi∈ expR[[b1;� ; bi−1]] for i > 1.

A transbasis is necessarily an asymptotic basis and any transseries may be expanded w.r.t.
a suitable transbasis. In fact, the following incomplete transbasis theorem holds.

Theorem 3. Let B0 be a transbasis and f ∈T a transseries. Then there exists a super-

transbasis B⊇B0, such that f ∈R[[BR]].

Example 4. (logx,x,ex2+x) is a transbasis and log (x+e
−x2

1−x−1)∈R[[logx;x;ex
2+x]]. The

tuple (x, ex+e−x2

, ex2
) is not a transbasis.

2.4 Differentiation and composition

2.4.1 Differentiation

Differentiation may be defined inductively on all En as follows. We start by defining the
differentiation on the monomial group En. If n= 0, then we set

m′= m

(

α0

x
+� +

αl

x� loglx

)

,

for each monomial m=xα0� (loglx)
αl∈L. If n>0, then each monomial in En has the form

m = ef for some f ∈En−1
↑ and we define

m′= f ′m,

where f ′∈En−1 has already been defined by the induction hypothesis. Having defined the
derivative of each monomial in En, we “extend the derivation to En by strong linearity”:

(

∑

m∈En

fmm

)′
=
∑

m∈En

fmm′.

In order for this to work, we have to check that for each grid-based subset S of En, the set
⋃

m∈S
suppm′ is again grid-based. Now if e1,� , ek and n are such that S⊆ e1

N� ek
N

n, then
⋃

m∈S

suppm′⊆ (supp e1
†∪� ∪ supp ek

†∪ suppn†) S.

Here f †= f ′/f denotes the logarithmic derivative of f .

The field of real, grid-based transseries 7



2.4.2 Composition

For the definition of general composition, we refer to [É92, vdH97]. In what follows we will
only use right compositions with exp and log, which are defined in a straightforward way
using the systematic substitution of exp x resp. log x for x in a transseries (in particular,
transmonomials map to transmonomials). In the sequel, we will denote f ↑ = f ◦ exp for
the upward shifting of a transseries f ∈T and f ↓= f ◦ log for its downward shifting .

3 The differential Newton polygon method

In this section, we will show how to generalize the Newton polygon method in order to
solve asymptotic algebraic differential equations like

P (f) = 0 (f ≺ v). (2)

Here P ∈T[f , f ′,� , f (r)] is a differential polynomial with transseries coefficients and v∈T

a transmonomial. We also allow v to be a formal monomial with v≻T (i.e. v≻m for all
m ∈ T) in order to cover the case of usual algebraic equations. The fact that we consider
asymptotic differential equations (i.e. with the asymptotic side condition f ≺ v), enables
us to associate invariants to the equation (2), which prove to be very useful when applying
the Newton polygon method.

3.1 Notations

3.1.1 Natural decomposition of P

The differential polynomial P is most naturally decomposed as

P (f) =
∑

i

Pif
i (3)

Here we use vector notation for tuples i = (i0, � , ir) and j = (j0, � , jr) of non-negative
integers:

|i| = r;

‖i‖ = i0 +� + ir;

i6 j ⇔ i0 6 j0∧� ∧ ir 6 jr;

f i = f i0 (f ′)i1� (f (r))ir;
(

j

i

)

=
(

j0
i0

)� (jr
ir

)

.

The i-th homogeneous part of P is defined by

Pi =
∑

‖i‖=i

Pif
i,

so that

P =
∑

i=0

degP

Pi.

3.1.2 Decomposition of P along orders

Another very useful decomposition of P is its decomposition along orders :

P (f) =
∑

ω

P[ω] f
[ω] (4)
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In this notation, ω runs through tuples ω = (ω1, � , ωl) of integers in {0, � , r} of length
l 6 deg P , and P[ω] = P[ωσ(1),� ,ωσ(l)] for all permutations of integers. We again use vector
notation for such tuples

|ω | = l;

‖ω‖ = ω1 + � +ω|ω|;

ω 6 τ ⇔ |ω |= |τ | ∧ω1 6 τ1∧� ∧ω|ω|6 τ|τ |;

f [ω] = f (ω1)� f
(ω|ω |);

(

τ

ω

)

=
(

τ1
ω1

)� ( τ|τ |
ω|ω|

)

.

We call ‖ω‖ the weight of ω and

‖P ‖= max
ω|P[ω ]� 0

‖ω‖
the weight of P .

3.1.3 Logarithmic decomposition of P

It is convenient to denote the successive logarithmic derivatives of f by

f † = f ′/f ;

f 〈i〉 = f †� † (i times).

Then each f (i) can be rewritten as a polynomial in terms of f , f †,� , f 〈i〉:

f = f ;

f ′ = f † f ;

f ′′ = ((f †)2 + f †† f †) f ;

f ′′′ = ((f †)3 +3 f †† (f †)2 + (f ††)2 f †+ f ††† f †† f †) f ;

We define the logarithmic decomposition of P by

P (f) =
∑

i=(i0,� ,ir)

P〈i〉 f
〈i〉, (5)

where

f 〈i〉= f i0 (f †)i1� (f 〈r〉)ir.

Now consider the lexicographical ordering 6lex on Nr+1, defined by

i<lex j � (i0< j0)∨
(i0 = j0∧ i1< j1)∨

(i0 = j0∧� ∧ ir−1 = jr−1∧ ir< jr).

This ordering is total, so there exists a maximal i for 6lex with P〈i〉 � 0, assuming that
P � 0. For this i, we have

P (f)∼P〈i〉 f
〈i〉 (6)

for all f , whose dominant monomial is sufficiently large.
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3.1.4 Additive and multiplicative conjugations and upward shifting.

Given a differential polynomial P and a transseries h it is useful to define the additive and
multiplicative conjugates P+h and P×h of P w.r.t. h and the upward shifting P ↑ of P as
being the unique differential polynomials, such that for all f , we have

P+h(f) = P (h+ f);

P×h(f) = P (hf);

P ↑(f ↑) = P (f)↑.

The coefficients of P+h are explicitly given by

P+h,i=
∑

j>i

(

j

i

)

hj−iPj. (7)

The coefficients of P×h are more easily expressed using decompositions along orders:

P×h,[ω] =
∑

τ>ω

(

τ

ω

)

h[τ−ω]P[τ ]. (8)

The coefficients of the upward shifting (or compositional conjugation by ez) are given by

(P ↑)[ω] =
∑

τ>ω

sτ ,ωe
−‖τ‖z (P[τ ]↑), (9)

where the sτ ,ω are generalized Stirling numbers of the first kind:

sτ ,ω = sτ1,ω1� sτ|τ |,ω|ω|
;

(f(log z))(j) =
∑

i=0

j

sj ,ix
−j f (i)(log z).

3.2 Potential dominant terms and Newton degree

3.2.1 Introduction

In order to solve (2), the first step is to find all possible dominant monomials of solutions,
together with their coefficients. In the classical setting of algebraic equations, such potential
dominant monomials can be read off graphically from the slopes of the Newton polygon
and the corresponding coefficients are roots of the Newton polynomials associated to these
slopes.

In the differential setting, several phenomena make it more difficult to find the poten-
tial dominant terms in such a direct way. First of all, in the algebraic setting, potential
dominant monomials always correspond to the cancellation of two terms in P of different
degrees. In the differential setting, cancellations may also arise in a single homogeneous
component. For instance, the differential equation

f f ′′− (f ′)2 =0

has λeµx as its general solution. Another difficulty is that differentiation does not preserve
valuation: we usually do not have f ′ ≍ f for transseries f ∈T. Consequently, even if we
know that the dominant monomial corresponds to the cancellation of two single terms in
P of different degrees, then the potential dominant monomial can not be read off directly
from the dominant monomials of these terms. For instance, in the equation

(f ′)2− eex
=0,
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the only potential dominant monomial is m= e−x ee
x/2. However m is not the square root

eex/2 of the quotient of the dominant monomials eex
and 1 of the coefficients of 1 and (f ′)2

in P .

In order to solve these problems, we use the combination of several ideas. First of all,
we will no longer seek to read off potential dominant monomials directly from the Newton
polygon. Instead, we will characterize when 1 is a potential dominant monomial, so we will
only have to consider horizontal slopes. Then m will be a potential dominant monomial
for the equation (2) if and only if 1 is a potential dominant monomial for the equation

P×m(f) = 0 (f ≺ v/m).

A second important tool is upward shifting. Although we do not always have f ′≍ f , we do
have f †� f for all purely exponential transseries f with f � 1. Here a purely exponential
transseries is a transseries which can be expanded with respect to transbases (b1, � , bn)

with b1 = ex. For instance, ee
x
+ eex−x + ee

x−2x +� is purely exponential, but x log x and
ex2

are not. Any transseries becomes purely exponential after a sufficient number of upward
shiftings.

3.2.2 Potential dominant terms and Newton degree

In order to decide whether 1 is a potential dominant monomial for (2), it is interesting to
study the nature of the dominant part of P after a sufficient number of upward shiftings.
Setting dP =max4dPi

, we define this dominant part of P to be the differential polynomial

DP(c) =
∑

i

Pi,dP
ci

with coefficients in R. Denoting by P (↑i) the i-th upward shifting of the differential poly-
nomial P , the following result can be proved [vdH00, vdH01]:

Proposition 5. Let P be a differential polynomial with purely exponential coefficients.
Then there exists a polynomial Q ∈ R[c] and an integer ν, such that for all i > ‖P ‖, we
have DP (↑i) =Q(c) (c′)ν.

Example 6. For P = f f ′′− (f ′)2, we have

P ↑ = (f f ′′− f f ′− (f ′)2) e−2x

P ↑↑ = − f f ′ e−x e−2ex
+(f f ′′− f f ′− (f ′)2) e−2x e−2ex

P ↑↑↑ = − f f ′ e−x e−ex
e−2eex

+�

and

DP = c c′′− (c′)2

DP ↑ = c c′′− c c′− (c′)2

DP ↑↑ = − c c′

DP ↑↑↑ = − c c′

In particular, we see that DP (↑i) =− c c′ for all i> 2 (whence NP =− c c′; see below).
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The polynomial Q(c) (c′)ν in proposition 5 is called the differential Newton polynomial
associated to 1, and we denote it byNP . More generally, the differential Newton polynomial
associated to a transmonomial m isNP×m

. We say that m is a potential dominant monomial
for (2), if and only if m ≺ v and NP×m

has a non trivial root c ∈ R∗. Given such a root
c, we call c m a potential dominant term for (2). It should be noticed that potential
dominant monomials are not always dominant monomials of solutions in the context of
real transseries. Indeed, an equation like

f2− 2 f +1 + e−x =0

has no transseries solution, although it does admit 1 as a potential dominant monomial.
An important invariant of (2) is its Newton degree, which is by definition the highest

possible degree of the Newton polynomial NPm
associated to a transmonomial m ≺ v. In

the algebraic setting, the Newton degree gives a bound to the number of solutions to (2),
when counting with multiplicities (if the constant field is algebraically closed, it actually
gives the exact number of solutions). In the differential setting, the Newton degree must
be non-zero if we want the equation to admit solutions.

3.2.3 Algebraic and mixed potential dominant monomials

Now that we know how to define potential dominant monomials, the next question is how
to find them. In fact, there are three types of potential dominant monomials m, depending
on the form of NP×m

. If NP×m
∈R[c], then we say that m is algebraic. If NP×m

∈ (c′)N, then

we say that m is differential . In the remaining case, when NP×m
∈ (R[c]\R) (c′)N\{0}, we say

that m ismixed . The algebraic and mixed potential dominant monomials correspond to the
slopes of “what would have been the differential Newton polygon”. Differential and mixed
potential dominant monomials correspond to the introduction of integration constants in
the general solution to (2).

The algebraic and mixed potential dominant monomials can all be found by “equalizing”
the dominant monomials dPi

and dPj
of two different homogeneous components of P via

a multiplicative conjugation. This is always possible [vdH97, vdH01]:

Proposition 7. Let i < j be such that Pi � 0 and Pj � 0. Then there exists a unique
transmonomial m = ei,j, such that N(Pi+Pj)×m

is not homogeneous.

We call ei,j an equalizer for P and there are clearly at most a finite number of them.
All algebraic and mixed potential dominant monomials for (2) are necessarily equalizers,
although not all equalizers are potential dominant monomials. Under the assumption that
we made sufficiently many upward shiftings so that all Pi can be expanded with respect
to a transbasis (b1,� , bn) with b1 = ex, the equalizers can be computed recursively, using
the fact that f †� f for all purely exponential f with f � 1.

Example 8. Let us compute e0,2 for

P = f f ′′− (f ′)2 +1.

Since Dff ′′−(f ′)2 � R[c] (c′)N, we first shift upwards:

P ↑= (f f ′′− f f ′− (f ′)2) e−2x +1.

We now have to equalize P ↑0 and P ↑2 via a multiplicative conjugation with ex:

P ↑×ex = f f ′′− f f ′− (f ′)2− f2 +1.
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We still do not have DP ↑×ex � R[c] (c′)N, so we shift upwards once more:

P ↑×ex↑=P ↑↑×eex =− f2− f f ′ e−x +(f f ′′− (f ′)2) e−2x +1.

At this point, we both have d(P ↑↑×eex
,0)=d(P ↑↑×eex

,2) and DP ↑↑
×eex∈R[c] (c′)N. In other

words, e0,2 =x= eex↓↓ is the desired equalizer.

3.2.4 Differential potential dominant monomials

The remaining type of potential dominant monomials, viz. the differential potential dom-
inant monomials, corresponds to cancellations inside homogeneous parts of P . Now in
order to solve a homogeneous equation Pi =0, one usually rewrites Pi in terms of the i-th
differential Riccati polynomial RP ,i:

Pi(f) =RP ,i(f †) f i.

For instance,

f f ′′− (f ′)2 =(f †)′ f2.

In order to find the differential potential dominant monomials that correspond to cancella-
tions inside Pi, we now need to “solve Pi(f)=0 up to o(1)”, which is equivalent to “solving
RP ,i(f

†) = 0 up to o(1/x log x log2 x � )”. The border 1/x log x log2 x � is special in the
sense that f ′≺1/x logx log2x� whenever f ≺1 and f ′≻1/x logx log2x� whenever f ≻1.
More precisely, we have [vdH97, vdH01]:

Proposition 9. The monomial m≺ v is a potential dominant monomial of f w.r.t.

Pi(f)= 0 (10)

if and only if the equation

RP ,i,+m†(f †) = 0
(

f †≺ 1

x logx log logx� ) (11)

has strictly positive Newton degree.

Remark 10. We committed a small abuse of notation by treating 1/(x log x log log x� )
as a transmonomial. In order to be painstakingly correct, we should replace 1/
(x log x log log x � ) by 1/(x log x � logl x), where l is a strict bound for the log-
arithmic depths of m and all coefficients of P .

3.3 Refinements

3.3.1 Reducing the Newton degree through refinements

Assuming that we have found a potential dominant term τ for (2), we next have to show
how to find the remaining terms of a solution (or a “solution up to o(w)”). This is done
through a finite process of refinements. A refinement is a change of variables with an
asymptotic constraint

f = ϕ+ f̃ (f̃ ≺ ṽ), (12)

where ϕ≺v is an arbitrary transseries (and not necessarily a term in RT; we will soon see
the importance of this) and ṽ≺v a transmonomial. Such a refinement transforms (2) into

P+ϕ(f̃ )= 0 (f̃ ≺ ṽ) (13)

and we call it admissible, if (13) has strictly positive Newton degree. The important
property of refinements is that they bring us closer to solutions [vdH97, vdH01]:
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Proposition 11. Let c m be the dominant term of ϕ and assume that ṽ = m. Then the

Newton degree of (13) is equal to the multiplicity d̃ of c as a root of NP×m
. In particular,

d̃ is bounded by the Newton degree of (2).

In the proposition, the multiplicity of c as a root of NP×m
is understood to be the least

i, such that there exists an i with ‖i‖= i and P (i)(c)� 0. Here P (i) =∂iP/(∂f)i0� (∂f)ir.
In favorable cases, the Newton degree strictly decreases until it becomes equal to 1. At
this point, we call the new equation quasi-linear , and it has at least one solution [vdH97,
vdH01]:

Proposition 12. Assume that the equation (2) is quasi-linear. Then it admits at least
one transseries solution.

In fact, we proved that there exists a very special, “distinguished” solution, which has
some nice additional properties. Given such a distinguished transseries solution ϕ to a
quasi-linear equation, all other solutions can be seen found by solving the homogeneous
quasi-linear equation P+ϕ(f̃ ) = 0 (f̃ ≺ v). A homogeneous quasi-linear equation should
really be seen as a twisted homogeneous linear differential equation. For instance, we have
[vdH97]:

Proposition 13. Let f1 ≺ � ≺ fs be solutions to a quasi-linear differential equation (2)
with P0 = 0. Then s6 r.

3.3.2 Unravelling almost multiple solutions

A more complicated situation is when the Newton degree does not descend to one after a
finite number of termwise refinements (12) with ϕ∈RT. This typically occurs in presence
of almost double solutions, like in the example

P (f) =

(

f − 1

1−x−1

)2

− e−x =0. (14)

When applying the naive, termwise refinement procedure, we would obtain an infinite chain
of refinements:

f = 1 + f̃ (f̃ ≺ 1);

f̃ = x−1 + f̃
˜

(f̃
˜≺x−1);

f̃
˜

= x−2 + f̃
˜̃

(f̃
˜̃ ≺x−2);


Now a classical way to find multiple solutions is to differentiate the equation, which yields

2 f − 2

1−x−1
=0 (15)

in our example (14). In order to find the almost double solutions, we now replace the above
infinite chain of refinements by a single one

f = ϕ+ f̃ (f̃ ≺ 1),

where ϕ is a solution to the quasi-linear equation (15).
More generally, the objective is to force a strict decrease in the Newton degree after a

finite number of refinements, while solving partial derivatives of the equation w.r.t. f , f ′,� ,
f (r). More precisely, denoting by d the Newton degree of (2), an unravelling is a refinement

f = ϕ+ f̃ (f̃ ≺ ṽ),
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such that

U1. The Newton degree of P+ϕ(f̃ ) = 0 (f̃ ≺ ṽ) equals d.

U2. For any ϕ̃≺ ṽ, the Newton degree of Pϕ+ϕ̃(f̃
˜
) =0 (f̃

˜≺ d(ϕ̃)) is <d.

In [vdH01], we proved that we may achieve an unravelling through a finite number of well-
understood refinements:

Proposition 14. Let cm be a potential dominant term for (2) of multiplicity d ( i.e. (13)
has Newton degree d). Then there exists a finite sequence of refinements

f = f0 = ϕ1 + f1 (f1≺ v1);

f1 = ϕ2 + f2 (f2≺ v2);

fl−1 = ϕl + fl (fl≺ vl),

such that each ϕk is either a term in RT or a solution to an equation of the form

∂d−1P+ϕ1+�+ϕk−1,×m

(∂f ǫ)d−1

(

fk−1

m

)

=0 (fk−1≺ vk−1),

where ǫ∈{0, 1} and m is a transmonomial, and such that

f = ϕ1 +� + ϕl + f̃ (f̃ ≺ vl)

is an unravelling, and ϕ1 has cm as its dominant term.

3.3.3 The structure of solutions to algebraic differential equations

Putting together all techniques described so far, we obtain a theoretic way to compute all
solutions to asymptotic algebraic differential equations. In fact, we have shown [vdH97,
vdH01] how to compute the generic solution of such an equation (which involves a finite
number of integration constants) in a fully effective way. As a side effect, we also obtained
bounds for the logarithmic depths of solutions to (2) and the fact that such solutions are
necessarily grid-based if the coefficients of (2) are.

Theorem 15. Consider an asymptotic algebraic differential equation (2) with transseries
coefficients in T of logarithmic depths 6 l, and let d, r and w denote its Newton degree,
order resp. weight. Then any transseries (whether grid-based or not) solution to (2) lies
in T and its logarithmic depth is bounded by r+ d (4w)r.

This theorem has a certain number of remarkable consequences. It proves for instance
that the Riemann ζ-function does not satisfy any algebraic differential equation over R

(nor over C or T). Similarly, solutions like

f1 =
1
x

+
1
xπ

+
1

xπ2 +�
f2 = e−x + e−log2 x + e−log4 x +�

to functional equations

f1(x) =
1
x

+ f(xπ)

f2(x) = e−x + f(elog
2 x)

do not satisfy any algebraic differential equations over T.
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4 The intermediate value theorem

4.1 Introduction

Using the methods from the previous section to find all transseries solutions to asymptotic
algebraic differential equations, the intermediate value theorem should now be a mere
application. Indeed, we will mimic the classical dichotomic method for finding roots of
continuous functions on an interval where a sign change occurs. In our case, the “transline”
T is very non archimedian, so we will have to consider non-standard intervals. The Newton
polygon method will be used to restrict the interval where we search more and more by
maintaining the sign change property.

In section 2.6 of [vdH97], we have shown that (non-standard) transseries intervals are
always of the form (ϕ, ψ), (ϕ, ψ], [ϕ, ψ) or [ϕ, ψ], where ϕ and ψ are in the “compactifica-
tion” of T. In the sequel, we will only need to consider intervals (ϕ, ψ), with non-standard
ϕ (and ψ) of the following forms:

• ϕ= ξ±�, with ξ ∈T;

• ϕ= ξ±℧, with ξ ∈T;

• ϕ= ξ± � m, with ξ ∈T and where m is a transmonomial.

• ϕ= ξ±�m, with ξ ∈T and where m is a transmonomial.

• ϕ= ξ± γ, with ξ ∈T and γ=(x logx log logx� )−1.

Here � and ℧ respectively designate formal infinitely small and large constants 0<∞T

−1<

T> and ∞T>T. Similarly, � and � designate the infinitely small and large constants ∞R

−1

and ∞R. We may interpret ϕ as a cut of the transline T into two pieces T= {f ∈T|f <
ϕ}∐ {f ∈T|f > ϕ}. Notice that

{f ∈T+|f < γ} = {f ∈T+|∃g ∈T+: g≺ 1∧ f = g ′};
{f ∈T+|f > γ} = {f ∈T+|∃g ∈T+: g≻ 1∧ f = g ′}.

For instance, (1 + γ,℧) contains all transseries which are larger than 1 + γ, like 1 + x−1

and 1 + (x logx)−1, but not 1 +x−1 (log x)−2.
Now instead of directly proving the intermediate value theorem, it is more convenient

to prove a generalization of it for non-standard intervals. Before doing this, we first have
to extend the notion of the sign of P (f) to the end-points of non-standard intervals. After
that, we will be able to state the more general intermediate value theorem and prove it
using the Newton polygon method.

4.2 Extending the sign function at non-standard points

We will show that, given a cut ϕ of one of the above types, the function σP(f)= signP (f)
may be extended by continuity into ϕ from at least one direction:

• If ϕ= ξ+�, then σP is constant on (ϕ, χ)= (ξ, χ) for some χ> ϕ.

• If ϕ= ξ+ ℧, then σP is constant on (χ, ϕ) for some χ< ϕ.

• If ϕ= ξ+ � m, then σP is constant on (χ, ϕ) for some χ< ϕ.

• If ϕ= ξ+�m, then σP is constant on (ϕ, χ) for some χ> ϕ.

• If ϕ= ξ+ γ, then σP is constant on (ϕ, χ) for some χ> ϕ.
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(In the cases ϕ= ξ−�, ϕ=−℧ and so on, one has to interchange left and right continuity
in the above list.) Modulo additive and multiplicative conjugations, it suffices to deal
with the cases when ξ=0 and m=1. We may also assume without loss of generality that
we have made sufficiently many upward shiftings, so that the coefficients of P are purely
exponential. The next two lemmas deal with the first two cases.

Lemma 16. Let P be a differential polynomial with coefficients in T. Then P (±f) has
constant sign σP(±℧) for all sufficiently large f ∈T.

Proof. This follows from (6). �

Lemma 17. Let P be a differential polynomial with coefficients in T. Then P (±ε) has

constant sign σP(±�) for all sufficiently small ε∈T∗
+.

Proof. This is proved in a similar way as lemma 16. �

In order to deal with the remaining three cases, we may assume without loss of gener-
ality that

NP(c) =Q(c) (c′)ν , (16)

with Q ∈R[c] and ν ∈N (by theorem 5 and modulo at most ‖P ‖ upward shiftings). We
will denote the multiplicity of c as a root of Q by µ.

Lemma 18. For all 0 < ε ≺ 1 with ε � ex, the signs of P (c − ε) and P (c + ε) are
independent of ε and given by

(−1)µσP(c− �) = (−1)νσP(c+ �)= σ
Q(µ)(c). (17)

Proof. This follows from (16), (17) and the fact that

P =(DP +O(e−κx)) dP

for some κ> 0, because the coefficients of P are pure exponential [vdH01]. �

Corollary 19. If P is homogeneous of degree i, then

σP(�) = σP(ε) =σRP ,i
(ε†) = σRp,i

(−γ), (18)

for all 0<ε≺ 1 with ε� ex.

Corollary 20. Let c1 < c2 be constants such that σP(c1 + �) σP(c2 − �) < 0. Then there
exists a constant c∈ (c1, c2) with σP(c− �)σP(c+ �)< 0.

Lemma 21. For all 0< f ≻ 1 with f� ex, the signs of P (−f) and P (f) are independent
of f and given by

(−1)degQ+νσP(−�)= σP(�)= signQdeg Q. (19)

Proof. This is proved in a similar way as lemma 18. �

Corollary 22. If P is homogeneous of degree i, then

σP(�) =σP(f) =σRP ,i
(f †) =σRP ,i

(γ), (20)

for all 0< f ≻ 1 with f � ex.

Corollary 23. Let c1 be a constant such that σP(c1 + �) σP(�) < 0. Then there exists a
constant c> c1 with σP(c− �)σP(c+ �)< 0.
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4.3 Proof of the intermediate value theorem on generalized inter-
vals

We can now state and sketch the proofs of the differential intermediate value theorem
for generalized intervals. In fact, we simultaneously proved two theorems [vdH01]: the
intermediate value theorem itself and a variant “modulo o(1/(x log x log2 x� ))”.

Theorem 24. Let ξ and v be a transseries resp. a transmonomial in T. Assume that P
changes sign on an open interval I of one of the following forms:

a) I =(ξ, χ), for some χ> ξ with d(χ− ξ) = v.

b) I =(ξ − � v, ξ).

c) I =(ξ, ξ+ � v).

d) I =(ξ − � v, ξ+ � v).

Then P changes sign at some f ∈ I.

Theorem 25. Let ξ and v≻ γ be a transseries resp. a transmonomial in T. Assume that
P changes sign on an open interval I of one of the following forms:

a) I =(ξ+ γ, χ− γ), for some χ> ξ with d(χ− ξ) = v.

b) I =(ξ − � v, ξ − γ).

c) I =(ξ+ γ, ξ+ � v).

d) I =(ξ − � v, ξ+ � v).

Then P changes sign on (f − γ, f + γ) for some f ∈ I with (f − γ, f + γ)⊆ I.

Proof. Using symmetry considerations and splitting up the interval in smaller parts,
it is first shown that it suffices to consider case (b). Then we may assume without loss
of generality that ξ = 0 (modulo an additive conjugation of P by ξ) and the theorem is
proved by a triple induction over the order r of P , the Newton degree d of the asymptotic
algebraic differential equation

P (f) = 0 (f ≺ v) (21)

and the maximal length l of a shortest sequence of refinements like in proposition 14. If
d = 1, it is not hard to improve proposition 12 so that it yields a solution where a sign
change occurs. If d> 1, the lemmas and their corollaries from the previous section may be
used in order to reduce the interval I together with l, d or r, so that we may conclude by
induction. �

5 Perspectives

In the introduction, we mentioned the question of finding out which solutions of differen-
tial (or more general) equations may be modelled adequately using transseries. We know
for instance (although we still have to write this down in detail) that the intermediate
value theorem also holds for algebraic differential-difference equations, where the difference
operators are post-compositions with transseries g of exponentiality 0 (this means that
logk ◦ g ◦ expk ∼ x for all sufficiently large k; for instance, x + 1, q x, x2 and elog

2 x have
exponentiality 0, but not xx). Of course, one has to allow well-ordered transseries in this
case, but the exponential and logarithmic depths remain bounded.
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It would be interesting to know whether more general intermediate value theorems
would follow from similar theorems for surreal numbers. Indeed, such theorems might be
easier to prove for surreal numbers, because of the concept of the simplest surreal number
which satisfies a certain property. In order to make this work, one would have to define
a canonical derivation and composition for the surreal numbers, where ω plays the role of
x. From an effective point of view, proofs using surreal numbers would be less satisfying
though. Also such proofs would not provide us with a method for finding generic solutions
to differential equations in terms of integration constants.

Yet another interesting setting for proving intermediate value theorems is model theory.
The field of transseries satisfies some interesting axioms involving the ordered field opera-
tions, differentiation and the asymptotic relation 4. For instance,

f 4 g ∧ g≺ 1⇒ f ′4 g ′.

What differential Henselian property would be needed in order to prove intermediate value
theorems in more general models of theories that contain axioms like the above one? Is it
always possible to embed models of such theories into suitable generalizations of fields of
transseries? We recently made some progress on this topic with Aschenbrenner and van
den Dries.

Another interesting problem is to prove the analytic counterparts of the intermediate
value theorem and its generalizations in Écalle’s setting of analyzable functions. We are
confident that there should not be any major problems here, although the details still need
to be worked out.

So far, we have been working in the real setting, in absence of any oscillation. Another
major problem is to generalize the theory to the complex setting. Some progress has been
made in [vdH01] on this question: we showed how to construct fields of complex transseries
on “non degenerate regions” and proved that any algebraic differential equation over such a
field admits a solution. We also proved that linear differential equations admit a full system
of solutions. In other words, the Picard-Vessiot extension of a field of complex transseries
is isomorphic to the field itself. Unfortunately, the current fields of complex transseries are
not differentially algebraically closed, since the only solutions to the elliptic equation

f +(f ′)2 + f3 = 0

are the solutions to

f + f3 =0.

The question of constructing a differentially algebraically closed field, which reflects the
asymptotic behavior of solutions to algebraic differential equations, still remains open...
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