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Foreword

Transseries find their origin in at least three different areas of mathematics:
analysis, model theory and computer algebra. They play a crucial role in
Écalle's proof of Dulac's conjecture, which is closely related to Hilbert's 16-th
problem.

I personally became interested in transseries because they provide an excel-
lent framework for automating asymptotic calculus. While developing several
algorithms for computing asymptotic expansions of solutions to non-linear
differential equations, it turned out that still a lot of theoretical work on
transseries had to be done. This led to part A of my thesis. The aim of
the present book is to make this work accessible for non-specialists. The book
is self-contained and many exercises have been included for further studies.
I hope that it will be suitable for both graduate students and professional
mathematicians. In the later chapters, a very elementary background in dif-
ferential algebra may be helpful.

The book focuses on that part of the theory which should be of common
interest for mathematicians working in analysis, model theory or computer
algebra. In comparison with my thesis, the exposition has been restricted to
the theory of grid-based transseries, which is sufficiently general for solving
differential equations, but less general than the well-based setting. On the
other hand, I included a more systematic theory of �strong linear algebra�,
which formalizes computations with infinite summations. As an illustration of
the different techniques in this book, I also added a proof of the �differential
intermediate value theorem�.

I have chosen not to include any developments of specific interest to
one of the areas mentioned above, even though the exercises occasionally
provide some hints. People interested in the accelero-summation of diver-
gent transseries are invited to read Écalle's work. Part B of my thesis contains
effective counterparts of the theoretical algorithms in this book and work
is in progress on the analytic counterparts. The model theoretical aspects
are currently under development in a joint project with Matthias Aschen-
brenner and Lou van den Dries.



The book in its present form would not have existed without the help of
several people. First of all, I would like to thank Jean Écalle, for his support
and many useful discussions. I am also indoubted to Lou van den Dries and
Matthias Aschenbrenner for their careful reading of several chapters and their
corrections. Last, but not least, I would like to thank Sylvie for her patience
and aptitude to put up with an ever working mathematician.

We finally notice that the present book has been written and typeset
using the GNU TEXMACS scientific text editor. This program can be freely
downloaded from http://www.texmacs.org.

Joris van der Hoeven
Chevreuse 1999�2006
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Introduction

The field with no escape

A transseries is a formal object, constructed from the real numbers and an
infinitely large variable x� 1, using infinite summation, exponentiation and
logarithm. Examples of transseries are:

1

1¡ x¡1 = 1+ 1

x
+ 1

x2
+ 1

x3
+ � � � (1)

1

1¡x¡1¡e¡x = 1+ 1

x
+ 1

x2
+ � � �+e¡x+2 e

¡x

x
+ � � �+e¡2x+ � � � (2)

e

x

1¡1/logx

1¡ x¡1 = e
x+

x

logx+
x

log2x
+ � � �

+ 1

x
e
x+

x

logx+
x

log2x
+ � � �

+ � � � (3)

¡ex
R e¡x

x
= 1

x
¡ 1

x2
+ 2

x3
¡ 6

x4
+ 24
x5
¡ 120

x6
+ � � � (4)

¡(x) = 2 p
p

ex(logx¡1)

x1/2
+ 2 p
p

ex(logx¡1)

12x3/2
+ 2 p
p

ex(logx¡1)

288x5/2
+ � � � (5)

�(x) = 1+2¡x+3¡x+4¡x+ � � � (6)

'(x) = 1

x
+ '(x�)= 1

x
+ 1

x�
+ 1

x�
2 +

1

x�
3 + � � � (7)

 (x) = 1

x
+  (elog

2x)= 1

x
+ 1

elog
2x
+ 1

elog
4x
+ 1

elog
8x
+ � � � (8)

As the examples suggest, transseries are naturally encountered as formal
asymptotic solutions of differential or more general functional equations. The
name �transseries� therefore has a double signification: transseries are generally
transfinite and they can model the asymptotic behaviour of transcendental
functions.

Whereas the transseries (1), (2), (3), (6) (7) and (8) are convergent, the
other examples (4) and (5) are divergent. Convergent transseries have a clear
analytic meaning and they naturally describe the asymptotic behaviour of



their sums. These properties surprisingly hold in the divergent case as well.
Roughly speaking, given a divergent series

f =
X
n=1

1
fn
xn

=
X
n=1

1
(¡1)n¡1 (n¡ 1)!

xn

like (4), one first applies the formal Borel transformation

f̂(�)= (B~ f)(�)=
X
n=1

1
fn

(n¡ 1)! �
n= 1

1+ �
:

If this Borel transform f̂ can be analytically continued on [0;+1), then the
inverse Laplace transform can be applied analytically:

f�(x)= (L f̂)(x)=
Z
0

1
f̂(�) e¡x� dx=

Z
0

1 e¡x�

1+ �
dx:

The analytic function f� obtained admits f as its asymptotic expansion. More-
over, the association f 7! f� preserves the ring operations and differentiation.
In particular, both f and f� satisfy the differential equation

f 0¡ f =¡1
x
:

Consequently, we may consider f� as an analytic realization of f . Of course,
the above example is very simple. Also, the success of the method is indirectly
ensured by the fact that the formal series f has a �natural origin� (in our case,
f satisfies a differential equation). The general theory of accelero-summation
of transseries, as developed by Écalle [Éca92, Éca93], is far more complex, and
beyond the scope of this book. Nevertheless, it is important to remember that
such a theory exists: even though the transseries studied in this this book are
purely formal, they generally correspond to genuine analytic functions.

The attentive reader may have noticed another interesting property which
is satisfied by some of the transseries (1�8) above: we say that a transseries
is grid-based , if

GB1. There exists a finite number m1; : : : ;mk of infinitesimal �transmono-
mials�, such that f is a multivariate Laurent series in m1; : : : ;mk:

f =
X

�16�12Z
� � �

X
�k6�k2Z

f�1; : : : ;�km1
�1 � � �mk

�k:

GB2. The property GB1 is recursively satisfied when replacing f by the
logarithm of one of the mi.

The examples (1�5) are grid-based. For instance, for (2), we may takem1=x¡1

andm2=e¡x. The examples (6�8) are not grid-based, but only well-based . The
last example even cannot be expanded w.r.t. a finitely generated asymptotic
scale with powers in R. As we will see in this book, transseries solutions
to algebraic differential equations with grid-based coefficients are necessarily
grid-based as well. This immediately implies that the examples (6�8) are
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differentially transcendental over R (see also [GS91]). The fact that grid-
based transseries may be considered as multivariate Laurent series also makes
them particularly useful for effective computations. For these reasons, we will
mainly study grid-based transseries in this book, although generalizations to
the well-based setting will be indicated in the exercises.

The resolution of differential and more general equations using transseries
presupposes that the set of transseries has a rich structure. Indeed, the
transseries form a totally ordered field T (chapter 4), which is real closed
(chapter 3), and closed under differentiation, integration, composition and
functional inversion (chapter 5). More remarkably, it also satisfies the dif-
ferential intermediate value property:

Given a differential polynomial P 2TfF g and transseries f <
g 2T with P (f)P (g)< 0, there exists a transseries h2T with
f <h< g and P (h)= 0.

In particular, any algebraic differential equation of odd degree over T, like

f3 (f 0)2 (f 000)4+ee
x
f7¡¡(¡(x log x)) f3 f 0= log log x

admits a solution in T. In other words, the field of transseries is the first
concrete example of what one might call a �real differentially closed field�.

The above closure properties make the field of transseries ideal as a frame-
work for many branches of mathematics. In a sense, it has a similar status
as the field of real or complex numbers. In analysis, it has served in Écalle's
proof of Dulac's conjecture � the best currently known result on Hilbert's 16-
th problem. In model theory, it can be used as a natural model for many the-
ories (reals with exponentiation, ordered differential fields, etc.). In computer
algebra, it provides a sufficiently general formal framework for doing asymp-
totic computations. Furthermore, transseries admit a rich non-archimedean
geometry and surprising connections exist with Conway's �field� of surreal
numbers.

Historical perspectives

Historically speaking, transseries have their origin in several branches of math-
ematics, like analysis, model theory, computer algebra and non-archimedean
geometry. Let us summarize some of the highlights of this interesting history.

Resolution of differential equations by means of power series

It was already recognized by Newton that formal power series are a powerful
tool for the resolution of differential equations [New71]. For the resolution
of algebraic equations, he already introduced Puiseux series and the Newton
polygon method, which will play an important role in this book. During the
18-th century, formal power series were used more and more systematically
as a tool for the resolution of differential equations, especially by Euler.
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However, the analytic meaning of a formal power series is not always clear.
On the one hand side, convergent power series give rise to germs which can
usually be continued analytically into multi-valued functions on a Riemann
surface. Secondly, formal power series can be divergent and it is not clear
a priori how to attach reasonable sums to them, even though several recipes
for doing this were already known at the time of Euler [Har63, Chapter 1].

With the rigorous formalization of analysis in the 19-th century, criteria
for convergence of power series were studied in a more systematic way. In par-
ticular, Cauchy and Kovalevskaya developed the well-known majorant method
for proving the convergence of power series solutions to certain partial differ-
ential equations [vK75]. The analytic continuation of solutions to algebraic
and differential equations were also studied in detail [Pui50, BB56] and the
Newton polygon method was generalized to differential equations [Fin89].

However, as remarked by Stieltjes [Sti86] and Poincaré [Poi93, Chapître 8],
even though divergent power series did not fit well in the spirit of �rigorous
mathematics� of that time, they remained very useful from a practical point
of view. This raised the problem of developing rigorous analytic methods to
attach plausible sums to divergent series. The modern theory of resummation
started with Stieltjes, Borel and Hardy [Sti94, Sti95, Bor28], who insisted on
the development of summation methods which are closed under the common
operations of analysis. Although the topic of divergent series was an active
subject of research in the early 20-th century [Har63], it went out of fashion
later on.

Generalized asymptotic scales

Another approach to the problem of divergence is to attach only an asymptotic
meaning to series expansions. The foundations of modern asymptotic calculus
were laid by Dubois-Raymond, Poincaré and Hardy.

More general asymptotic scales than those of the form xZ, xQ or xR were
introduced by Dubois-Raymond [dBR75, dBR77], who also used �Cantor's�
diagonal argument in order to construct functions which cannot be expanded
with respect to a given scale. Nevertheless, most asymptotic scales occur-
ring in practice consist of so called L-functions, which are constructed from
algebraic functions, using the field operations, exponentiation and logarithm.
The asymptotic properties of L-functions were investigated in detail by
Hardy [Har10, Har11] and form the start of the theory of Hardy fields [Bou61,
Ros80, Ros83a, Ros83b, Ros87, Bos81, Bos82, Bos87].

Poincaré [Poi90] also established the equivalence between computations
with formal power series and asymptotic expansions. Generalized power series
with real exponents [LC93] or monomials in an abstract monomial group
[Hah07] were introduced about the same time. However, except in the case of
linear differential equations [Fab85, Poi86, Bir09], it seems that nobody had
the idea to use such generalized power series in analysis, for instance by using
a monomial group consisting of L-functions.
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Newton, Borel and Hardy were all aware of the systematic aspects of
their theories and they consciously tried to complete their framework so as to
capture as much of analysis as possible. The great unifying theory nevertheless
had to wait until the late 20-th century and Écalle's work on transseries and
Dulac's conjecture [Éca85, Éca92, Éca93, Bra91, Bra92, CNP93].

His theory of accelero-summation filled the last remaining source of insta-
bility in Borel's theory. Similarly, the �closure� of Hardy's theory of L-functions
under infinite summation removes its instability under functional inversion
(see exercise 5.20) and the resolution of differential equations. In other words,
the field of accelero-summable transseries seems to correspond to the �frame-
work-with-no-escape� about which Borel and Hardy may have dreamed.

Model theory

Despite the importance of transseries in analysis, the first introduction of the
formal field of transseries appeared in model theory [Dah84, DG86]. Its roots
go back to another major challenge of 20-th century mathematics: proving the
completeness and decidability of various mathematical theories.

Gödel's undecidability theorem and the undecidability of arithmetic are
well-known results in this direction. More encouraging were the results on
the theory of the field of real numbers by Artin-Schreier and later Tarski-
Seidenberg [AS26, Tar31, Tar51, Sei54]. Indeed, this theory is complete, decid-
able and quantifier elimination can be carried out effectively. Tarski also
raised the question how to axiomatize the theory of the real numbers with
exponentiation and to determine its decidability. This motivated the model-
theoretical introduction of the field of transseries as a good candidate of a non-
standard model of this theory, and new remarkable properties of the real
exponential function were stated.

The model theory of the field of real numbers with the exponential function
has been developed a lot in the nineties. An important highlight is Wilkie's
theorem [Wil96], which states that the real numbers with exponentiation form
an o-minimal structure [Dri98, Dri99]. In these further developments, the field
of transseries proved to be interesting for understanding the singularities of
real functions which involve exponentiation.

After the encouraging results about the exponential function, it is tempting
to generalize the results to more general solutions of differential equations.
Several results are known for Pfaffian functions [Kho91, Spe99], but the thing
we are really after is a real and/or asymptotic analogue of Ritt-Seidenberg's
elimination theory for differential algebra [Rit50, Sei56, Kol73]. Again, it can
be expected that a better understanding of differential fields of transseries
will lead to results in that direction; see [AD02, AD01, AD04, ADH05, ADH]
for ongoing work.
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Computer algebra and automatic asymptotics

We personally became interested in transseries during our work on automatic
asymptotics. The aim of this subject is to effectively compute asymptotic
expansions for certain explicit functions (such as �exp-log� function) or solu-
tions to algebraic, differential, or more general equations.

In early work on the subject [GG88, Sha90, GG92, Sal91, Gru96, Sha04],
considerable effort was needed in order to establish an appropriate framework
and to prove the asymptotic relevance of results. Using formal transseries as
the privileged framework leads to considerable simplifications: henceforth,
with Écalle's accelero-summation theory in the background, one can con-
centrate on the computationally relevant aspects of the problem. Moreover,
the consideration of transfinite expansions allows for the development of a
formally exact calculus. This is not possible when asymptotic expansions are
restricted to have at most ! terms and difficult in the framework of nested
expansions [Sha04].

However, while developing algorithms for the computation of asymptotic
expansions, it turned out that the mathematical theory of transseries still had
to be further developed. Our results in this direction were finally regrouped in
part A of our thesis, which has served as a basis for this book. Even though
this book targets a wider public than the computer algebra community, its
effective origins remain present at several places: Cartesian representations,
the incomplete transbasis theorem, the Newton polygon method, etc.

Non-archimedean geometry

Last but not least, the theory of transseries has a strong geometric appeal.
Since the field of transseries is a model for the theory of real numbers with
exponentiation, it is natural to regard it as a non-standard version of the
real line. However, contrary to the real numbers, the transseries also come
with a non-trivial derivation and composition. Therefore, it is an interesting
challenge to study the geometric properties of differential polynomials, or
more general �functions� constructed using the derivation and composition.
The differential intermediate value theorem can be thought of as one of the
first results in this direction.

An even deeper subject for further study is the analogy with Conway's
construction of the �field� of surreal numbers [Con76]. Whereas the surreal
numbers come with the important notion of �earliness�, transseries can be dif-
ferentiated and composed. We expect that it is actually possible to construct
isomorphisms between the class of surreal numbers and the class of generalized
transseries of the reals with so called transfinite iterators of the exponential
function and nested transseries. A start of this project has been carried out
in collaboration with my former student M. Schmeling [Sch01]. If this project
could be completed, this would lead to a remarkable correspondence between
growth-rate functions and numbers.
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Outline of the contents

Orderings occur in at least two ways in the theory of transseries. On the one
hand, the terms in the expansion of a transseries are naturally ordered by
their asymptotic magnitude. On the other hand, we have a natural ordering
on the field T of transseries, which extends the ordering on R. In chapter 1,
we recall some basic facts about well-quasi-orderings and ordered fields. We
also introduce the concept of �asymptotic dominance relations� 4, which can
be considered as generalizations of valuations. In analysis, f 4 g and f � g
are alternative notations for f =O(g) and f = o(g).

In chapter 2, we introduce the �strong C-algebra of grid-based series�
C[[M]], where M is a so called monomial monoid with a partial quasi-
ordering 4. Polynomials, ordinary power series, Laurent series, Puiseux series
and multivariate power series are all special types of grid-based series. In
general, grid-based series carry a transfinite number of terms (even though
the order is always bounded by !!) and we study the asymptotic proper-
ties of C[[M]].

We also lay the foundations for linear algebra with an infinitary sum-
mation operator, called �strong linear algebra�. Grid-based algebras of the
form C[[M]], Banach algebras and completions with respect to a valuation
are all examples of strong algebras, but we notice that not all strong �serial�
algebras are of a topological nature. One important technique in the area of
strong linear algebra is to make the infinite sums as large as possible while
preserving summability. Different regroupings of terms in such �large sums�
can then be used in order to prove identities, using the axiom of �strong
associativity�. The terms in �large sums� are often indexed by partially ordered
grid-based sets. For this reason, it is convenient to develop the theory of grid-
based series in the partially ordered setting, even though the ordering 4 on
transmonomials will be total.

The Newton polygon method is a classical technique for the resolution
of algebraic equations with power series coefficients. In chapter 3, we will
give a presentation of this method in the grid-based setting. Our exposition
is based on the systematic consideration of �asymptotic equations�, which
are equations with asymptotic side-conditions. This has the advantage that
we may associate invariants to the equation like the Newton degree, which
simplifies the method from a technical point of view. We also systematically
consider derivatives of the equation, so as to quickly separate almost multiple
roots.

Chapter 3 also contains a digression on Cartesian representations, which
are both useful from a computational point of view and for the definition of
convergence. However, they will rarely be used in the sequel, so this part may
be skipped at a first reading.
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In chapter 4, we construct the field T=C[[[x]]] of grid-based transseries
in x over an �ordered exp-log field� of constants C. Axioms for such constant
fields and elementary properties are given in section 4.1. In practice, one
usually takes C =R. In computer algebra, one often takes the countable
subfield of all �real elementary constants� [Ric97]. It will be shown that T is
again an ordered exp-log field, so it is also possible to take C=T and construct
fields like R[[[x]]][[[y]]]. Notice that our formalism allows for partially defined
exponential functions. This is both useful during the construction of T and
for generalizations to the multivariate case.

The construction of T proceeds by the successive closure of C[[xR]]
under logarithm and exponentiation. Alternatively, one may first close under
exponentiation and next under logarithm, following Dahn and Göring or
Écalle [DG86, Éca92]. However, from a model-theoretical point of view, it
is more convenient to first close under logarithm, so as to facilitate general-
izations of the construction [Sch01]. A consequence of the finiteness properties
which underlie grid-based transseries is that they can always be expanded
with respect to finite �transbases�. Such representations, which will be studied
in section 4.4, are very useful from a computational point of view.

In chapter 5, we will define the operations @;
R
; � and �inv on T and prove

that they satisfy the usual rules from calculus. In addition, they satisfy sev-
eral compatibility properties with the ordering, the asymptotic relations and
infinite summation, which are interesting from a model-theoretical point of
view. In section 5.4.2, we also prove the Translagrange theorem due to Écalle,
which generalizes Lagrange's well-known inversion formula for power series.

Before going on with the study of differential equations, it is convenient
to extend the theory from chapter 2 and temporarily return to the general
setting of grid-based series. In chapter 6, we develop a �functional analysis�
for grid-based series, based on the concept of �grid-based operators�. Strongly
multilinear operators are special cases of grid-based operators. In particular,
multiplication, differentiation and integration of transseries are grid-based
operators. General grid-based operators are of the form

�(f)=�0+�1(f)+�2(f ; f)+ � � �;

where each �i is a strongly i-linear operator. The set G (C[[M]]; C[[N]]) of
grid-based operators from C[[M]] into C[[N]] forms a strong C-vector space,
which admits a natural basis of so called �atomic operators�. At the end of
chapter 6, we prove several implicit function theorems, which will be useful
for the resolution of differential equations.

In chapter 7, we study linear differential equations with transseries coef-
ficients. A well-known theorem [Fab85] states that any linear differential equa-
tion over C[[z]] admits a basis of formal solutions of the form

(f0( zpp )+ � � �+ fd( zpp ) logd z) z� eP (1/ zp
p

);
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with f0;:::; fd2C[[z]], �2C, P 2C[X] and p;d2N>. We will present a natural
generalization of this theorem to the transseries case. Our method is based
on a deformation of the algebraic Newton polygon method from chapter 3.

Since the only transseries solution to f 00+ f =0 is 0, the solution space of
an equation of order r does not necessarily have dimension r. Nevertheless, as
will be shown in section 7.7, one does obtain a solution space of dimension r
by considering an oscillatory extension of the field of transseries. A remarkable
consequence is that linear differential operators can be factored into first order
operators in this extension. It will also be shown that operators in T[@] can
be factored into first and second order operators.

It should also be noticed that the theory from chapter 7 is compatible with
the strong summation and asymptotic relations on T. First of all, the trace TL
of a linear differential operator L2T[@], which describes the dominant asymp-
totic behaviour of L, satisfies several remarkable properties (see section 7.3.3).
Secondly, any operator L2T[@] admits a so called distinguished strong right-
inverse L¡1, with the property that (L¡1 g)h= 0 when h is the dominant
monomial of a solution to Lh=0. Similarly, we will construct distinguished
bases of solutions and distinguished factorizations.

Non-linear differential equations are studied in chapter 8. For simplicity,
we restrict our attention to asymptotic algebraic differential equations like

P (f)= 0 (f � v);

with P 2TfF g=T[F ; F 0; : : : ], but similar techniques apply in more general
cases. The generalization of the Newton polygon method to the differential
setting contains two major difficulties. First, the �slopes� which lead to the
first terms of solutions cannot directly be read off from the Newton polygon.
Moreover, such slopes may be due to cancellations of terms of different degrees
(like in the usual case) or terms of the same degree. Secondly, it is much
harder to �unravel� almost multiple solutions.

In order to circumvent the first problem, we first define the differential
Newton polynomial NP 2CfF g associated to the �horizontal slope� (it actu-
ally turns out that NP is always of the form NP = Q (F 0)� with Q 2C[F ]).
Then the slope which corresponds to solutions of the form f = cm+ � � � is
�admissible� if and only if NP�m admits a non-zero root in C. Here P�m is the
unique differential polynomial with P�m(f)=P (m f) for all f . In section 8.4,
we next give a procedure for determining the admissible slopes. The second
problem is more pathological, because one has to ensure the absence of iter-
ated logarithms log l= log � : : :l� � log with arbitrarily high l in the expansions
of solutions. This problem is treated in detail in section 8.6.

The suitably adapted Newton polygon methods allows us to prove several
structure theorems about the occurrence of exponentials and logarithms into
solutions of algebraic differential equation. We also give a theoretical algo-
rithm for the determination of all solutions.
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The last chapter of this book is devoted to the proof the intermediate
value theorem for differential polynomials P 2TfF g. This theorem ensures
the existence of a solution to P (f) = 0 on an interval I = [g; h] under the
simple hypothesis that P admits a sign-change on I. The main part of the
chapter contains a detailed study of the non-archimedean geometry ofT. This
comprises a classification of its �cuts� and a description of the behaviour of
differential polynomials in cuts. In the last section, this theory is combined
with the results of chapter 8, and the interval on which a sign-change occurs
is shrunk further and further until we hit a root of P .

Notations

A few remarks about the notations used in this book will be appropriate.
Notice that a glossary can be found at the end.

1. Given a mapping f :A1� � � � �An!B and S1�A1; : : : ; Sn�An, we write

f(S1; : : : ; Sn)= ff(a1; : : : ; an): a12S1; : : : ; an2Sng:

Similarly, given a set S, we will write S > 0 or S � 1 if a > 0 resp. a� 1
for all a2S. These and other classical notations for sets are extended to
families in section 2.4.1.

2. We systematically use the double index convention (fi)j = fi;j. Given a
set S of monomials, we also denote fS=

P
m2Sfmm (this is an exception

to the above notation).
3. Given a set S, we will denote by S> its subset of strictly positive ele-

ments, S4 its subset of bounded elements, S<;� of negative infinitesimal
elements, etc. If S �C[[M]] is a set of series, then we also denote S�=
ff�: f 2 Sg, where f�= fM�, and similarly for S<, S�, etc. Notice that
this is really a special case of notations 1 and 2.

4. Intervals are denoted by (f ; g), (f ; g], [f ; g) or [f ; g] depending on whether
the left and right sides are open or closed.

5. We systematically denote monomials m;n; : : : in the fraktur font and fam-
ilies F ; G ; : : : using calligraphic characters.

Those readers who are familiar with my thesis should be aware of the following
notational changes which occurred during the past years:

Former �� �� � � ��� ��� ¡̀a f " fc f #

New 4 � � � �� �� ¡̀a ¡�� f� f� f�

There are also a few changes in terminology:

Former New
normal basis transbasis
purely exponential transseries exponential transseries
potential dominant � starting �
privileged refinement � unravelling
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1

Orderings

In this chapter, we will introduce some order-theoretical concepts, which pre-
pare the study of generalized power series in the next chapter. Orderings occur
in at least two important ways in this study.

First, the terms of a series are naturally ordered according to their asymp-
totic magnitudes. For instance, the support of 1+z+z2+ ���2R[[z]], considered
as an ordered set, is isomorphic to N. More interesting examples are

1+ z1+ z12+ � � �+ z2+ z1 z2+ z12 z2+ � � �+ z22+ z1 z22+ � � � 2R[[z1]][[z2]]

and
1 + z1 + z1

2 + � � � +
z2 + z1 z2 + z1

2 z2 + � � � +
z2
2 + z1 z2

2 + z1
2 z2

2 + � � � +
��� + ��� + ��� + � � �

2 R[[z1; z2]];

whose supports are isomorphic to N�� N and N�N respectively. Here N�� N
denotes the set N2 with the total anti-lexicographical ordering

(m;n)6 (m0; n0), ((n<n0)_ (m6m0^n=n0))

and N�N denotes the set N2 with the partial product ordering

(m;n)6 (m0; n0), (m6m0^n6n0):

In general, when the support is totally ordered, it is natural to require
the support to be well-ordered. If we want to be able to multiply series, this
condition is also necessary, as shown by the example

(1+ z+ z2+ � � �) (1+ z¡1+ z¡2+ � � �):

For convenience, we recall some classical results about well-ordered sets and
ordinal numbers in section 1.2. In what follows, our treatment will be based on
well-quasi-orderings, which are the analogue of well-orderings in the context
of partial quasi-orderings. In sections 1.3 and 1.4, we will prove some classical
results about well-quasi-orderings.



A second important occurrence of orderings is when we consider an algebra
of generalized power series as an ordered structure. For instanceR[[z]] is natu-
rally ordered by declaring a non-zero series fn zn+ fn+1zn+1+ ��� with fn=/ 0
to be positive if and only if fn> 0. This gives R[[z]] the structure of a so
called totally ordered R-algebra.

In section 1.5, we recall the definitions of several types of ordered alge-
braic structures. In section 1.6, we will then show how a certain number
of typical asymptotic relations, like �, 4, � and �, can be introduced in
a purely algebraic way. In section 1.8, we define groups and fields with gener-
alized exponentiations, and the asymptotic relations ��, �� ¡̀a and ¡��. Roughly
speaking, for infinitely large f and g, we have f �� g, if f�� g for all �. For
instance, x�� ex, but x ¡̀ax1000, for x!1.

1.1 Quasi-orderings

Let E be a set. In all what follows, a quasi-ordering on E is reflexive and
transitive relation 6 on E; in other words, for all x; y; z 2E we have
O1. x6x;
O2. x6 y ^ y6 z)x6 z.
An ordering is a quasi-ordering which is also antisymmetric:
O3. x6 y ^ y6x)x= y.
We sometimes write 6E instead of 6 in order to avoid confusion. A mapping
':E!F between two quasi-ordered sets is said to be increasing (or a mor-
phism of quasi-ordered sets), if x6 y) '(x)6 '(y), for all x; y 2E.

Given a quasi-ordering E, we say that x; y 2E are comparable if x6 y
or y6x. If every two elements in E are comparable, then the quasi-ordering
is said to be total . Two elements x; y 2 E are said to be equivalent , and
we write x� y, if x6 y and y6 x. If x6 y and y�/ x, then we write x< y
(see also exercise 1.1(a) below). The quasi-ordering on E induces a natural
ordering on the quotient set E/� by X6Y , (8x2X;8y2Y ;x6 y) and the
corresponding projection E!E/� is increasing. In other words, we do not
really gain in generality by considering quasi-orderings instead of orderings,
but it is sometimes more convenient to deal with quasi-orderings.

Some simple examples of totally ordered sets are ?; f0g; f0; 1g; : : : and N.
Any set E can be trivially quasi-ordered both by the finest ordering, for which
x6 y,x= y, and by the roughest quasi-ordering, for which all x; y2E satisfy
x6 y. In general, a quasi-ordering 6 on E is said to be finer than a second
quasi-ordering 60 on E if x6 y)x60 y for all x; y 2E. Given quasi-ordered
sets E and F , we can construct other quasi-ordered sets as follows:
1. The disjoint union E qF is naturally quasi-ordered, by taking the quasi-

orderings on E and F on each summand, and by taking E and F mutually
incomparable. In other words,

x6EqF y , (x2E ^ y 2E ^x6E y)_ (x2F ^ y 2F ^x6F y).
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2. Alternatively, we can quasi-order EqF , by postulating any element in E
to be strictly smaller than any element in F . This quasi-ordered set is
called the ordered union of E and F , and we denote it by Eq� F . In other
words,

x6Eq� F y , x6EqF y _ (x2E ^ y 2F ):

3. The Cartesian product E �F is naturally quasi-ordered by

(x; y)6E�F (x0; y 0) , x6x0^ y6 y 0:

4. Alternatively, we can quasi-order E �F anti-lexicographically by

(x; y)6E�� F (x0; y 0) , (x; y)6E�F (x0; y 0)_ y < y 0:

We write E�� F for the corresponding quasi-ordered set.

E qF

E �F

Eq� F

E�� F

E F

Fig. 1.1. Examples of some basic constructions on ordered sets.

5. Let Ew be the set of words over E. Such words are denoted by sequences
x1 ���xn (with x1;:::;xn2E) or [x1;:::;xn] if confusion may arise. The empty
word is denoted by " and we define E+= Ew n f"g. The embeddability
quasi-ordering on Ew is defined by x1 � � � xn6 y1 � � � ym, if and only if there
exists a strictly increasing mapping ': f1; : : : ; ng!f1; : : : ;mg, such that
xi6 y'(i) for all i. For instance,

[2; 31; 15; 7] 6Nw [2; 8; 35; 17; 3; 7; 1];
[2; 31; 15; 7] 
Nw [2; 8; 35; 17; 3; 2; 1]:
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6. An equivalence relation � on E is said to be compatible with the quasi-
ordering if

x6 y^x�x0^ y� y 0)x06 y 0

for all x; y; x0; y 02E. In that case, E/� is naturally quasi-ordered by

X 6E/�Y , (8x2X;8y 2Y ; x6E y);

and the canonical projection �:E!E/� is increasing.

If E and F are ordered sets, then it can be verified that the quasi-orderings
defined in 1�6 above are actually orderings.

Let ':E!F be an increasing mapping between quasi-ordered sets (E;6)
and (F ;6). Consider the quasi-ordering 4 on E defined by

x4 y, '(x)6 '(y):

Then 6 is finer than 4 and the mapping ' admits a natural factorization

(E;6) ¡!' (F ;6)

 
¡� ¡!�

(E;4)/�4 ¡!'� (Im ';6)
: (1.1)

Here � is the identity on E composed with the natural projection from (E;4)
on (E;4)/�4, � is the natural inclusion of Im ' into F and '� is an isomor-
phism.

Exercise 1.1. Let E be a set.

a) A strict ordering on E is a transitive and antireflexive relation < on E
(i.e. x<x for no elements x2E). Given a quasi-ordering 6 show that the
relation < defined by x < y, x6 y ^ y�/ x is a strict ordering. Show also
how to associate an ordering to a strict ordering.

b) Let 6 be a quasi-ordering on E. Show that the relation > defined by x> y,
y6x is also a quasi-ordering on E; we call it the opposite quasi-ordering of 6.

c) Let 6 be a quasi-ordering on E. Show that x6! y,x= y_x< y defines an
ordering on E. Show that 6! is the roughest ordering which is finer than 6.

Exercise 1.2. Two quasi-ordered sets E and F are said to be isomorphic, and
we write E=�F , if there is an increasing bijection between E and F , whose inverse
is also increasing. Prove the following:

a) q and � are commutative modulo =� (i.e. EqF =�F qE), but not q� and �� .
b) q;�;q� and �� are associative modulo =�.
c) q is distributive w.r.t. � modulo =�.
d) q� is right (but not left) distributive w.r.t. �� modulo =� (in other words
E�� (F q� G)=� (E�� F )q

�
(E�� G)).
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Exercise 1.3. Let E be a quasi-ordered set. We define an equivalence relation on
Ew, by taking two words to be equivalent if they are obtained one from another
by a permutation of letters. We call E�=Ew/� the set of commutative words
over E. Show that:

a) We define a quasi-ordering 4 on E by u4 v,9w 2E; u6w^ v�w.
b) For all x1 � � � xm; y1 � � � ym2Ew, we have x1 � � � xm4 y1 � � � yn if and only if

there exists an injection ': f1; : : : ;mg!f1; : : : ; ng with xi6 y'(i) for all i.
c) The equivalence relation � is compatible with 4, so that we may order E�

by the quotient quasi-ordering induced by 4.
d) The quasi-ordering 6 is finer than 4 and we have a natural increasing sur-

jection Ew!E�.
e) For all ordered sets E;F , prove that (EqF )�=�E��F �.
f) For all ordered sets E; F prove that there exists an increasing bijection
(Eq� F )�!E��� F �, whose inverse is not increasing, in general.

Exercise 1.4. Let E and F be ordered sets and denote by F (E;F ) the set of
mappings from E into F . For ';  2F (E;F ), we define

'6  () 8x2E; '(x)
  (x))
(9y >x; '(y)<  (y)^ (8z> y; '(z)6  (z))):

Prove that 6 defines an ordering on F (E;F ). Also prove the following proper-
ties:

a) If A= f0gq f0g, then F (A;B)=�B �B.
b) If A= f0; 1g, then F (A;B)=�B�� B.
c) F (EqF ;G)=�F (E;G)�F (F ;G).
d) F (Eq� F ;G)=�F (E;G)�� F (F ;G).

Exercise 1.5. Show that the category of quasi-ordered sets admits direct sums
and products, pull-backs, push-outs, direct and inverse limits and free objects
(i.e. the forgetful functor to the category of sets admits a right adjoint).

1.2 Ordinal numbers

Let E be a quasi-ordered set. The quasi-ordering on E is said to be well-
founded , if there is no infinite strictly decreasing sequence in E. A total well-
founded ordering is called a well-ordering . A total ordering is a well-ordering
if and only if each of its non-empty subsets has a least element. The following
classical theorems are implied by the axiom of choice [Bou70, Mal79]:

Theorem 1.1. Every set can be well-ordered. �

Theorem 1.2. (Zorn's lemma) Let E be a non-empty ordered set, such
that each non-empty totally ordered subset of E has an upper bound. Then E
admits a maximal element. �

1.2 Ordinal numbers 15



An ordinal number or ordinal is a set �, such that the relation 2 forms
a strict well-ordering on �. In particular, the natural numbers can �be defined
to be� ordinal numbers: 0 =?; 1 = f0g; 2 = 1 [ f1g; 3 = 2 [ f2g; : : : . The set
!= f0; 1; 2; : : :g of natural numbers is also an ordinal. More generally, if � is
an ordinal, then so is �[f�g. For all ordinals �, its elements are also ordinals.

5 : � � � � �
! : � � � � � �

! 2+1 : � � � � � � � � � � � � �
!2 : � � � � � � � � � � � � � � � � � � � � � � � �
Fig. 1.2. Some examples of ordinal numbers.

It is classical [Mal79] that the class of all ordinal numbers has all the
properties of an ordinal number: if �; � and 
 are ordinal numbers, then
�2/ �;�2 �) �2/ �;�2 �^ � 2 
)�2 
;�2 �_ � 2�_�= � and each non-
empty set of ordinals admits a least element for 2. The following classification
theorem is also classical [Mal79]:

Theorem 1.3. Each well-ordered set is isomorphic to a unique ordinal. �

The usual induction process for natural numbers admits an analogue for
ordinal numbers. For this purpose, we distinguish between successor ordinals
and limit ordinals: an ordinal � is called a successor ordinal if �= � [ f�g
for some ordinal � (and we write �= � + 1) and a limit ordinal if not (in
which case �=

S
�2��). For example, the inductive definitions for addition,

multiplication and exponentiation can now be extended to ordinal numbers
as follows:

0 Successor ordinals �+1 Limit ordinals �> 0
+ �+0=0 �+(�+1)= (�+ �)+ 1 �+�=

S
�2��+ �

� � � 0=0 � � (�+1)= (� � �)+� � ��=
S
�2�� � �

^ �0=1 ��+1=�� �� ��=
S
�2��

�

Table 1.1. Basic arithmetic on ordinal numbers.

Similarly, one has the transfinite induction principle: assume that a prop-
erty P for ordinals satisfies P (�))P (�+1) for all � and (8�2 �; P (�)))
P (�) for all limit ordinals �. Then P (�) holds for all ordinals �.

The following theorem classifies all countable ordinals smaller than !!,
and is due to Cantor [Can99]:

Theorem 1.4. Let �<!! be a countable ordinal. Then there exists a unique
sequence of natural numbers nd; : : : ; n0 (with nd> 0 if d> 0), such that

�=!d �nd+ � � �+! �n1+n0: �

Exercise 1.6. Prove the transfinite induction principle.
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Exercise 1.7. For any two ordinals �; �, show that

a) �+ �=��q
�
�;

b) � � �=���� �.
In particular, + and � are associative and + is right distributive w.r.t. �, by exer-
cise 1.2.

Exercise 1.8. For all ordinals �; � and 
, prove that

a) (��)
=���
;
b) ��+
=�� ��
.
Do we also have (� � �)
=�
 � �
?

1.3 Well-quasi-orderings

Let E be a quasi-ordered set. A chain in E is a subset of E which is totally
ordered for the induced quasi-ordering. An anti-chain is a subset of E of pair-
wise incomparable elements. A well-quasi-ordering is a well-founded quasi-
ordering without infinite anti-chains.

A final segment is a subset F of E, such that x 2 F ^ x6 y) y 2 F ,
for all x; y 2E. Given an arbitrary subset A of E, we denote by

fin(A)= fy 2E:9x2A; x6 yg
the final segment generated by A. Dually, an initial segment is a subset I
of E, such that y 2 I ^x6 y)x2 I, for all x; y 2E. We denote by

in(A)= fy 2E:9x2A; y6xg
the initial segment generated by A.

Proposition 1.5. Let E be a quasi-ordered set. Then the following are equiv-
alent:

a) E is well-quasi-ordered.
b) Any final segment of E is finitely generated.
c) The ascending chain condition w.r.t. inclusion holds for final segments

of E.
d) Each sequence x1; x2; : : : 2E admits an increasing subsequence.
e) Any extension of the quasi-ordering on E to a total quasi-ordering on E

yields a well-founded quasi-ordering.

Proof. Assume (a) and let F be a final segment of E. Let G = fx 2 F :
8y 2F ; y6 x) x� yg be the subset of minimal elements of F . Then G/�
is an anti-chain, whence finite. Let H �G be such that any x2G is equiva-
lent to exactly one y2H. We claim that G and thusH generates F . Indeed, in
the contrary case, let x12F nfin(G). Since x1 is not minimal in F , there exists
an x22F nfin(G) with x1>x2. Repeating this argument, we obtain an infinite
decreasing sequence x1>x2> ���. This proves (b). Conversely, if x1;x2;::: is an
infinite anti-chain or an infinite strictly decreasing sequence, then the final seg-
ment generated by fx1; x2;:::g is not finitely generated. This proves (a),(b).
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Now let F1�F2� � � � be an ascending chain of final segments. If the final
segment F =

S
nFn is finitely generated, say by G, then we must have G�Fn,

for some n. This shows that (b))(c). Conversely, let G be the set of minimal
elements of a final segment F . If x1; x2,... are pairwise distinct elements of G,
then fin(x1) fin(x1; x2) ��� forms an infinite strictly ascending chain of final
segments.

Now consider a sequence x1; x2; : : : of elements in E, and assume that 6
is a well-quasi-ordering. We extract an increasing sequence xi1; xi2; : : : from it
by the following procedure: Let Fn be the final segment generated by the xk,
with k > in and xk > xin (F0=E by convention) and assume by induction
that the sequence x1; x2; : : : contains infinitely many terms in Fn. Since Fn is
finitely generated by (b), we can select a generator xin+1, with in+1>in and
such that the sequence x1; x2;::: contains infinitely many terms in Fn+1. This
implies (d). On the other hand, it is clear that it is not possible to extract
an increasing sequence from an infinite strictly decreasing sequence or from
a sequence of pairwise incomparable elements.

Let us finally prove (a),(e). An ordering containing an infinite anti-chain
or an infinite strictly decreasing sequence can always be extended to a total
quasi-ordering which contains a copy of ¡N, by a straightforward application
of Zorn's lemma. Inversely, any extension of a well-quasi-ordering is a well-
quasi-ordering. �

The most elementary examples of well-quasi-orderings are well-orderings
and quasi-orderings on finite sets. Other well-quasi-orderings can be con-
structed as follows.

Proposition 1.6. Assume that E and F are well-quasi-ordered sets. Then

a) Any subset of E with the induced ordering is well-quasi-ordered.
b) Let ': E! F be a morphism of ordered sets. Then Im ' is well-quasi-

ordered.
c) Any quasi-ordering on E which extends 6E is a well-quasi-ordering.
d) E/� is well-quasi-ordered, for any compatible equivalence relation � on E.
e) EqF and E q� F are well-quasi-ordered.
f ) E �F and E�� F are well-quasi-ordered.

Proof. Properties (a), (b), (e) and (f ) follow from proposition 1.5(d). The
properties (c) and (d) are special cases of (b). �
Corollary 1.7. (Dickson's lemma) For each n2N, the set Nn with the
partial, componentwise ordering is a well-quasi-ordering. �
Theorem 1.8. (Higman) Let E is be a well-quasi-ordered set. Then Ew is
a well-quasi-ordered set.

Proof. Our proof is due to Nash-Williams [NW63]. If 6 denotes any quasi-
ordering, then we say that (x1; x2; : : : ) is a bad sequence, if there do not exist
i< j with xi6xj. A quasi-ordering is a well-quasi-ordering, if and only if there
are no bad sequences.
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Now assume for contradiction that s = (w1; w2; : : : ) is a bad sequence
for 6Ew. Without loss of generality, we may assume that each wi was chosen
such that the length (as a word) of wi were minimal, under the condition that

wi2Ew nfin(w1; : : : ; wi¡1):

We say that (w1; w2; : : : ) is a minimal bad sequence.
Now for all i, we must have wi=/ ", so we can factor wi= xi ui, where xi

is the first letter of wi. By proposition 1.5(d), we can extract an increasing
sequence xi1; xi2; : : : from x1; x2; : : : . Now consider the sequence

s0=(w1; : : : ; wi1¡1; ui1; ui2; : : : ):

By the minimality of s, this sequence is good. Hence, there exist j < k with
uij6Ew uik. But then,

wij=xijuij 6Ew xikuik=wik;
which contradicts the badness of s. �

Exercise 1.9. Show that E is a well-quasi-ordering if and only if the ordering
on E/� is a well-quasi-ordering.

Exercise 1.10. Prove the principle of Noetherian induction : let P be a property
for well-quasi-ordered sets, such that P (E) holds, whenever P holds for all proper
initial segments of E. Then P holds for all well-quasi-ordered sets.

Exercise 1.11. Let E and F be well-quasi-ordered sets. With F (E; F ) as in
exercise 1.4, when is F (E;F ) also well-quasi-ordered?

Exercise 1.12. Let E be a well-quasi-ordered set. The set In(E) of initial seg-
ments of E is naturally ordered by inclusion. Show that In(E) is not necessarily
well-quasi-ordered. We define E to be a strongly well-quasi-ordered set if In(E)
is also well-quasi-ordered. Which properties from proposition 1.6 generalize to
strongly well-quasi-ordered sets?

Exercise 1.13. A limit well-quasi-ordered set is a well-quasi-ordered set E, such
that there are no final segments of cardinality 1. Given two well-quasi-ordered
sets E and F , we define E and F to be equivalent if there exists an increasing
injection from E into F and vice versa. Prove that a limit well-quasi-ordered set
is equivalent to a unique limit ordinal.

1.4 Kruskal's theorem

An unoriented tree is a finite set T of nodes with a partial ordering 6T, such
that T admits a minimal element root(T ), called the root of T , and such
that each other node admits a predecessor. Given a; b2T , we recall that a is
a predecessor of b (and b a successor of a) if a<Tb and c6Ta for any c2T with
c<T b. A node without successors is called a leaf . Any node a2T naturally
induces a subtree Ta= fb 2 T : b>T ag with root a. Since T is finite, an easy
induction shows that any two nodes a;b of T admit an infimum a^b w.r.t. 6T,
for which a^ b6Ta, a^ b6T b and c6Ta^ b for all c2T with c6Ta and c6T b.
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An oriented tree (or simply tree) is an unoriented tree T , together with
a total ordering PT which extends 6T and which satisfies the condition

aPT b^ a
T b^ a6T a0^ b6T b 0 ) a0 PT b0:

It is not hard to see that such a total ordering PT is uniquely determined by
its restrictions to the sets of 6T-successors for each node a.

Two unoriented or oriented trees T and U will be understood to be equal
if there exists a bijection ': T ! U which preserves 6 resp. 6 and P. In
particular, under this identification, the sets of unoriented and oriented trees
are countable.

Given a set E, an E-labeled tree is a tree T together with a labeling
l: T!E. We denote by E> the set of such trees. An E-labeled tree T may
be represented graphically by

T = x

T1 � � � Tn

; (1.2)

where x= l(root(T )) and T1=Ta1;:::; Tn=Tan2E> are the subtrees associated
to the successors a1 CT � � � CT an of root(T ). We call T1; : : : ; Tn the children
of the root and n its arity . Notice that we may have n=0.

Example 1.9. We may see usual trees as f�g-labeled trees, where f�g is the set
with one symbolic element �. The difference between unoriented and oriented
trees is that the ordering on the branches is important. For instance, the two
trees below are different as oriented trees, but the same as unoriented trees:

�

�

� �

� �

� � �

� �

�

�

�

�

� �

� � �

� �

� �

If E is a quasi-ordered set, then the embeddability quasi-ordering on E> is
defined by T 6E>T 0, if and only if there exists a strictly increasing mapping
':T!T 0 for PT, such that '(a^ b)= '(a)^ '(b), and l(a)6E l('(a)), for all
a; b2T . An example of a tree which embeds into another tree is given by

6

4 3

1 2

6N> 7

1 2

5 1

3

3 1 1

5 8

1

:
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The following theorem is known as Kruskal's theorem:

Theorem 1.10. If E is a well-quasi-ordered set, then so is E>.

Proof. Assume that there exists a bad sequence T1; T2; : : : . We may assume
that we have chosen each

Ti= xi

Ti;1 � � � Ti;ni
of minimal cardinality (assuming that T1; : : : ; Ti¡1 have already been fixed),
i.e. T1; T2; : : : is a �minimal bad sequence�. We claim that the induced quasi-
ordering on S = fTi;j: j 6 nig is a well-quasi-ordering. Indeed, suppose the
contrary, and let

Ti1;j1; Ti2;j2; : : :

be a bad sequence. Let k be such that ik is minimal. Then the sequence

T1; : : : ; Tik¡1; Tik;jk; Tik+1;jk+1; : : :

is also bad, which contradicts the minimality of T1; T2; : : : . Hence, S is well-
quasi-ordered, and so is E�Sw, by Higman's theorem and proposition 1.6(f ).
But each tree Ti can be interpreted as an element of E�Sw. Hence, fT1;T2;:::g
is a well-quasi-ordered subset of E>, which contradicts our assumption that
T1; T2; : : : is a bad sequence. �

Remark 1.11. In the case when we restrict ourselves to trees of bounded arity,
the above theorem was already due to Higman. The general theorem was
first conjectured by Vázsonyi. The proof we have given here is due to Nash-
Williams.

Exercise 1.14. Let X be a quasi-ordered set and let 
 be an ordered set of
operations on X. That is, the elements of 
 are mappings f :Xnf!X. We say
that such an operation f is extensive , if for all x2Xnf and 16 i6nf, we have

xi6X f(x1; : : : ; xnf)

We say that the orderings of X and 
 are compatible , if for all f 6
 g, x2Xnf

and y 2Xng, we have

f(x1; : : : ; xnf)6X g(y1; : : : ; ygn);

whenever there exists an increasing mapping ': f1; : : : ; nfg!f1; : : : ; ngg with
xi6X y'(i) for all 16 i6nf.

Assume that these conditions are satisfied and let G be a subset of X. The
smallest subset of X which contains G and which is closed under 
 is said to
be the subset of X generated by G w.r.t. 
, and will be denoted by (G)
. If G
is a well-quasi-ordered subset of X and the ordering on 
 is well-quasi-ordered,
then prove that (G)
 is well-quasi-ordered.
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1.5 Ordered structures

In what follows, all monoids, groups and rings will be commutative and all
rings unitary. The following ordered structures will be encountered frequently
throughout this book. Recall that we systematically understand all orderings
to be partial (contrary to what is customary for certain structures).

� An ordered monoid is a monoid X with an ordering 6 such that

OM. y6 y 0,x y6x y 0,
for all x; y; y 02X. If X is an additive monoid, then OM becomes

OA. y6 y 0,x+ y6x+ y 0.

� An ordered ring is a ring R with an ordering 6 with the following prop-
erties:

OR1. 06 1;
OR2. x6 y^x06 y 0)x+x06 y+ y 0;
OR3. 06x^ 06 y) 06x y,
for all x; y; x0; y 02R.

� An ordered field is a field K with an ordering 6 which makesK an ordered
ring and such that 0<x) 0<x¡1 for all x 2K. Notice that this latter
condition is automatically satisfied if 6 is total.

� An ordered R-module over an ordered ring R is an R-module M with an
ordering 6 which satisfies

OM1. x6 y ^x06 y 0)x+x06 y+ y 0;
OM2. 06�^ 06x) 06�x,
for all �2R and x; y; x0; y 02M . Any abelian group is trivially an ordered
Z-module.

� An ordered R-algebra is a morphism ':R!A of ordered rings, i.e. an
increasing ring morphism of an ordered ring R into an ordered ring A.
As usual, we denote �x= '(�)x, for �2R and x2A. Notice that A is in
particular an ordered R-module. Any ordered ring R is trivially an ordered
Z-algebra.

Let S be an ordered abelian group, ring, R-module or R-algebra. We denote

S> = fx2S:x> 0g ;
S> = fx2S:x> 0g ;
S=/ = fx2S:x=/ 0g ;
S6 = fx2S:x6 0g ;
S< = fx2S:x< 0g:

We observe that the ordering 6 is characterized by S>. If S is totally ordered,
then we define the absolute value of x 2 S by jxj= x if x> 0 and jxj=¡x,
if x6 0.
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Example 1.12. Q and R are the most common examples of totally ordered
fields. N and Z are respectively a totally ordered monoid and a totally ordered
group. The complex numbers form an ordered abelian group when setting
u < v, Re u < Re v. However, this ordering is partial and not compatible
with the multiplication. Notice that u and u+ y i are incomparable for u2C
and y 2R=/ .

Example 1.13. The ring of germs at +1 of infinitely differentiable real valued
functions on intervals (a;+1) with a2R can be ordered by f 6 g, if there
exists an x02R, such that f(x)6 g(x) for all x>x0. A totally ordered subfield
of this ring is called a Hardy field .

Example 1.14. The above definitions naturally generalize to the case of quasi-
orderings instead of orderings. If A is a quasi-ordered abelian group, thenA/�
is an ordered abelian group, and similarly for quasi-ordered rings, R-mod-
ules, etc.

Example 1.15. Let A and B be two quasi-ordered abelian groups, rings,
R-modules or R-algebras. Their direct sum A�B :=A�B is naturally quasi-
ordered by the product quasi-ordering

(x; y)6 (x0; y 0),x6x0^ y6 y 0:
Similarly, the anti-lexicographical direct sum A�� B :=A�� B of A and B is
A�B with the anti-lexicographical quasi-ordering

(x; y)6 (x0; y 0), (x6x0^ y= y 0)_ y < y 0:

If A and B are ordered, then so are A�B and A�� B.

Example 1.16. Let A and B be two quasi-ordered abelian groups, rings,
R-modules or R-algebras. Their tensor product A 
 B is naturally quasi-
ordered, by declaring an element of A 
B to be positive if it is a sum of
elements of the form x 
 y with x> 0 and y > 0. Similarly, we define the
anti-lexicographical tensor product A
� B: its set of positive elements is addi-
tively generated by elements inA
B of the form x
 y+x1
 y1+ ���+xn
 yn,
with x; y> 0 and y1R+ � � �+ ynR< y.

Exercise 1.15. Let R be a totally ordered integral domain and let K be its
quotient field.

a) Show that x>R 0^ y >R 0)x y >R 0, for all x; y 2R.
b) If 6R is a total ordering, then show that there exists a unique total ordering

on K, which extends 6R, and for which K is an ordered field.

Exercise 1.16. Let R be a totally ordered ring.

a) Show that x y = 0) (x2= 0 _ y2= 0), for all x; y 2R. In particular, if R
contains no nilpotent elements, then R is an integral domain.

b) Show that R may contain nilpotent elements.
c) Show that R may contain zero divisors which are not nilpotent.
d) Show that positive non-nilpotent elements are larger than any nilpotent

element in R.
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Exercise 1.17. Let A; B and C be quasi-ordered rings. Prove the following
properties:

a) (A�B)�C =�A� (B �C) and (A�� B)�� C =�A�� (B�� C);
b) (A
B)
C =�A
 (B 
C) and (A
� B)
� C =�A
� (B
� C);
c) A
 (B �C)=� (A
B)� (A
C) and (A�B)
C =� (A
C)� (B 
C);
d) A
� (B�� C) =� (A
� B)�� (A�� C), but not always (A�� B)
� C =� (A
� C)��

(B
� C).

Exercise 1.18.
a) Show that the categories of ordered abelian groups, rings, R-modules and
R-algebras (its morphisms are increasing morphisms of abelian groups,
rings, etc.) admit direct sums and products, pull-backs, push-outs, direct
and inverse limits and free objects (i.e. the forgetful functor to the cat-
egory of sets admits a right adjoint).

b) Show that the same thing holds for the categories of ordered torsion free
groups, rings without nilpotent elements, torsion free R-modules and ordered
R-algebras A without nilpotent elements, and such that the mapping R!A;
� 7!� � 1 is injective.

c) What can be said about the operations � and 
 introduced above?

Exercise 1.19. Let S be an ordered abelian group, ring, R-module or R-algebra.
We wish to investigate under which circumstances the ordering6 can be extended
into a total ordering.

a) If S is an ordered abelian monoid, prove that 6 can be extended into a total
ordering if and only if S is torsion free (i.e. nx=0)x=0, for all n> 0 and
x2S). Hint: use Zorn's lemma.

b) If S is an ordered ring without nilpotent elements, prove that 6 can be
extended into a total ordering if and only if S is an integral domain, such that

a1
2+ � � �+ an2 +(b1

2+ � � �+ bm2 )x=0) a1=0;

for all a1; : : : ; an; b1; : : : ; bm; x 2 S, such that x> 0. Hint: first reduce the
problem to the case when all squares in S are positive. Next reduce the
problem to the case when a> 0^ b > 0^ a x= b)x> 0, for all a; b; x2S.

c) Generalize b to the case when S is an ordered ring, which may contain
nilpotent elements.

d) Give conditions in the cases when S is an ordered R-module or an ordered
R-algebra without nilpotent elements.

Exercise 1.20. Let S be an ordered group, ring, R-module or R-algebra. For
each morphism ':S!T of S into a totally ordered structure T of the same kind
as S, we define a relation 4' on S by x4' y, '(x)6 '(y). Let E be the set of
all such relations 4' on S.

a) Prove that 6̂=T
602E60 is a quasi-ordering.

b) Show that 6̂ is an ordering, if and only if 6 can be extended into a total
ordering on S.

c) Let �̂ the equivalence relation associated to 6̂ and let Ŝ=S/�̂. Show that
the ordered set Ŝ can be given the same kind of ordered algebraic structure
as S, in such a way that the natural projection �:S! Ŝ is a morphism. We
call Ŝ the closure of S.

24 1 Orderings



d) S is said to be perfect if � is a bijection. Prove that the closure of S is perfect.
e) Show that an ordered abelian group S is perfect if and only if nx>0)x>0,

for all n> 0 and x2S.
f) Show that an ordered ring without nilpotent elements is perfect, if and only

if x2> 0, for all x2S and a x= b^ a> 0^ b > 0)x> 0, for all a; b; x2S.
g) Under which conditions is an ordered R-module perfect? And an ordered R-

algebra without nilpotent elements?

1.6 Asymptotic relations

Let f and g be two germs of real valued functions at infinity. Then we have
the following classical definitions of the domination and neglection relations 4
resp. �:

f 4 g , f =O(g) , 9C 2R;9x02R;8x>x0; jf(x)j6C jg(x)j
f � g , f = o(g) , 8"> 0;9x02R;8x>x0; jf(x)j<" jg(x)j:

Considered as relations on the R-algebra of germs of real valued functions at
infinity, 4 and � satisfy a certain number of easy to prove algebraic proper-
ties. In this section, we will take these properties as the axioms of abstract
domination and neglection relations on more general modules and algebras.

Let R be a ring andM an R-module. In all what follows, we denote by R�

the set of non-zero-divisors in R. A dominance relation is a quasi-ordering 4
on M , such that for all �2R, �2R� and x; y; z 2M , we have

D1. (x4 z ^ y4 z))x¡ y4 z;
D2. �x4x and y4 � y.
Notice that D1 and D2 imply that Oy=fx2M :x4 yg is a submodule of M
for each y 2M . If x4 y, then we say that x is dominated by y, and we also
write x=O(y). If x4 y and y4x, then we say that x and y are asymptotic,
and we also write x� y. We say that 4 is total , if x4 y or y4x for all x; y2M .

A neglection relation is a strict ordering � on M (i.e. an anti-reflexive,
transitive relation), such that for all �2R and �2R� and x; y; z2M , we have

N1. (x� z ^ y� z))x¡ y� z;
N2. x� y)�x� � y and � y��x) y�x.
N3. (x� z ^ y� z))x� y+ z.

Notice that oy=fx2M :x� yg is a submodule of M if 02oy. However, this is
not always the case, since 0�0. If x� y, then we say that x can be neglected
w.r.t. y, and we also write x=o(y). If x¡ y�x, then we also say that x and y
are equivalent , and we write x� y. Indeed, � is an equivalence relation:

x� y) (x¡ y�x^ y¡x�x))x¡ y� y) y¡x� y) y�x:

Similarly,

(x� y ^ y� z)) (x¡ y� y ^ y¡ z� y)) y¡ z� (x¡ y)+ y=x;
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whence

(x� y^ y� z)) (x¡ y�x^ y¡ z�x))x¡ z�x)x� z:

We say that � is compatible with a dominance relation 4, if x� y)x4 y and
x� y) x� y, for all x; y 2M . We say that 4 and � are associated , if � is
the strict ordering associated to 4, i.e. x� y, (x4 y^ y4/ x) for all x; y2M .
We call M an asymptotic R-module, if it comes with a dominance relation
and a compatible neglection relation.

Proposition 1.17.

a) Let 4 be a dominance relation such that the strict ordering � associated
to 4 satisfies N1 and N2. Then � also satisfies N3.

b) Let 4 and � be a dominance and a neglection relation. If 4 and � are
associated, then they are compatible.

Proof. Assume that 4 satisfies the condition in (a), and let x; y; z 2M be
such that x� z and y� z. If z4/ y+ z, then y+ z4 z implies y+ z � z and
z� z: contradiction. Hence, we have z4 y+ z and x� z4 y+ z.

As to (b), assume that 4 and � are associated. Then we clearly have
x� y)x4 y. Furthermore, x� y)x¡ y�x)x¡ y4x) y4x. Similarly,
x� y) y�x)x4 y. Hence, x� y)x� y. �

Proposition 1.18. Let K be a totally ordered field and V an ordered K-vector
space. Then V is an asymptotic K-vector space for the relations 4 and �
defined by

x4 y , 8�2K;9�2K;�x6 � y;
x� y , 9�2K;8�2K;�x< �y:

Moreover, if V is totally ordered, then � is associated to 4.

Proof. Let us first show that 4 is a quasi-ordering. We clearly have x4x for
all x2V , since �x6�x for all �2K. If x4 y4 z and �2K, then there exists
a �2K with �x6 �y and a � 2K with �x6 �y6�z. Let us next prove D1.
Assume that x4 z and y4 z and let �2K. Then there exist �; � 2K with
� x6 � z and ¡� y6 � z, whence � (x¡ y)6 (�+ �) z. As to D2, let x2 V ,
�2K and �2K�. Then for all �2K, we have ��x6��x and �x6(�/�)�x.

In order to prove the remaining relations, we first notice that

x� y , (0< y _ 0> y)^ (8�2K;�x< jy j):

Indeed, if x� y, then there exists a �2K with �x<�y for all �. In particular,
0<�y, whence either 0<y (if �>0) or 0<¡y (if �<0). Furthermore, for all
�2K, we have � j�jx< �y, whence �x< jy j. Let us show that � is a strict
ordering. We cannot have x� x, since jxj� jxj. If x� y � z, then we have
�x< jy j< jz j for all �2K.
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Let us now prove N1. If x� z, y � z and � 2K, then 2 � x < jz j and
¡2�y< jz j, whence �(x¡ y)< jz j. As to N2, let �2K, � 2K� and �2K. If
x� y, then (��/j� j)x< jy j, whence ��< j� y j. If �x��y, then �=/ 0 and
(� j�j/�) �x< j�y j, whence �x< jy j. Let us finally prove N3. Assume that
x� z, y� z and �2K. Then 2 y < jz j implies 1

2
jz j< jy+ z j. From 2�x< jz j

it thus follows that �x< 1

2
jz j< jy+ z j.

Assuming that V is totally ordered, the relation � is associated to 4,
since x� y, y4/ x. In general, we clearly have x� y)x4 y. Furthermore, if
x� y, then both y¡x6 jxj and x6 jxj, whence y6 2 jxj. Similarly, x6 2 jy j,
so that x� y. �

If R is a totally ordered domain, then its ring of quotients Q(R)=(R�)¡1R
is a totally ordered field. Moreover, for any ordered, torsion-free R-moduleM
with �> 0^ � x> 0) x> 0 for all �2R and x2M , the natural map M!
Q(R)
RM is an embedding. Here an element of Q(R)
RM is positive
if it is a sum of elements of the form x 
 y with x > 0 and y > 0, as in
example 1.16. This allows us to generalize proposition 1.18 to the case of
totally ordered rings.

Corollary 1.19. Let R be a totally ordered domain and M an ordered, tor-
sion-free R-module as above. Then M is an asymptotic R-module for the
restrictions to M of the relations 4 and � on Q(R)
RM. Moreover, if M
is totally ordered, then � is associated to 4. �

Assume now that A is an R-algebra. A dominance relation on A is defined
to be a quasi-ordering 4, which satisfies D1, D2 and for all x; y; z 2A:
D3. x4 y)x z4 y z.
A neglection relation on A is a strict ordering �, which satisfies N1, N2, N3,
and for all x; y 2A and z 2A�:
N4. x� y)x z� y z.
An element x2A is said to be infinitesimal , if x�1. We say that x is bounded ,
if x41 (and unbounded if not). Elements with x�1 are called archimedean. If
all non-zero elements of A are archimedean, then A is said to be archimedean
itself. In particular, a totally ordered ring said to be archimedean, if it is
archimedean as an ordered Z-algebra. If 4 and � are compatible, then we
call A an asymptotic R-algebra.

Proposition 1.20. Let R be a totally ordered domain and A a torsion-
free, totally ordered R-algebra. Define the relations 4 and � on A as in
corollary 1.19. Then A is an asymptotic R-algebra and � is associated to 4.

Proof. Let x; y; z 2A be such that x4 y, and let �2Q(R). Then there exists
a �2Q(R) with � x< � y. If z> 0, then we infer that � x z < � y z, whence
xz4 y z. If z60, then we obtain ¡xz4¡y z, whence again xz4 y z, by D2.
This proves D3. As to N4, let x; y; z 2A be such that x� y. Then for all
�2Q(R), we have (� z/jz j)x< jy j, whence �x z=(� z/jz j)x jz j< jy z j. �
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Example 1.21. Let A be a totally ordered R-algebra. We may totally order
the polynomial extension A["] of A by an infinitesimal element " by setting
a0+a1 "+ � � �+ad "d> 0, if and only if there exists an index i with a0= � � �=
ai¡1=0<ai. This algebra is non-archimedean, since 1�"�"2����. Similarly,
one may construct an extension A[!] with an infinitely large element !, in
which 1�!�!2� � � �.

Exercise 1.21.

a) Given a totally ordered vector space V over a totally ordered field K, show
that

x4 y , 9�2K; jxj6� y;
x� y , 8�2K;�x< jy j:

b) Given a totally ordered module M over a totally ordered ring R, show that

x4 y , 9�2R;9�2R�; j�xj6� y;
x� y , 8�2R;8�2R�; � x< j�y j:

Exercise 1.22. Let A be a totally ordered ring. Is it true that the relations �
and 4 are totally determined by the sets of infinitesimal resp. bounded elements
of A?

Exercise 1.23. Prove that the sets of infinitesimal and bounded elements in
a totally ordered ring A are both convex (a subset B of A is convex if for
all x; z 2 B and y 2 A, we have x < y < z) y 2 B). Prove that the set of
archimedean elements has two �convex components�, provided that 0< 1.

Exercise 1.24. Show that the nilpotent elements of a totally ordered ring A
are infinitesimal. Does the same thing hold for zero divisors?

Exercise 1.25. Let K be a field. We recall that a valuation on K is a mapping
v:K�!¡ of K� into a totally ordered additive group, such that

V1. v(x y)= v(x)+ v(y) for all x; y 2K�.
V2. v(x+ y)>min (v(x); v(y)), for all x; y 2K� with x+ y 2K�.

Show that the valuations on K correspond to total dominance relations.

Exercise 1.26.

a) Let R be any ring and define x4 y, if and only if 8z 2R; y z=0) x z=0,
for all x; y2R. Show that 4 is a domination relation, for which R is the set
of bounded elements, and R� the set of archimedean elements.

b) Assume that R is a ring with a compatible dominance relation and neglection
relation. Show that we may generalize the theory of this section, by replacing
all quantifications over � 2 R resp. � 2 R� by quantifications over � 4 1
resp. �� 1. For instance, the condition D2 becomes x� y) � x4 � y for
all x; y 2M , �4 1 and �� 1.
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Exercise 1.27. Let R be a perfect totally ordered ring andM a perfect ordered
R-module. Given x; y 2M , we define x4 y resp. x� y, if '(x)4 '(y) resp.
'(x)4'(y) for all morphisms ':M!N of M into a totally ordered R-moduleN .
Prove that 4 and � compatible domination and neglection relations. Prove
that the same thing holds, if we take a perfect ordered R-algebra A instead of M .

Exercise 1.28. Let M be an R-module with a dominance relation 4. Let D
be the set of total dominance relations 40 on M , with 40 � 4. Prove that
4=T

402D40.

1.7 Hahn spaces

Let K be a totally ordered field and V a totally ordered K-vector space. We
say that V is a Hahn space, if for each x; y2V with x� y, there exists a �2K,
with x�� y.

Proposition 1.22. Let K be a totally ordered field and V a finite dimensional
Hahn space over K. Then V admits a basis b1; : : : ; bn with b1� � � � � bn.

Proof. We prove the proposition by induction over the dimension n of V . If
n= 0, then we have nothing to prove. So assume that n > 0, and let H be
a hyperplane in V of dimension n¡1. By the induction hypothesis, H admits
a basis a1� � � � � an¡1.

We claim that there exists an x2V nH, such that x is asymptotic to none
of the ai. Indeed, if not, let i be minimal such that there exists an x2V nH
with x�ai. Since V is a Hahn space, there exists a �2K with x��ai. Then
x ¡ � ai� ai, whence x ¡ � ai� aj with j < i, since x ¡ � ai 2 V nH. This
contradicts the minimality of i.

So let x 2 V nH be such that x is asymptotic to none of the ai. Since
x� ai _ x� ai _ x� ai for all i, the set fa1; : : : ; an¡1; xg is totally ordered
w.r.t. �. �

Exercise 1.29. Show that any totally ordered R-vector space is a Hahn space.
Do there exist other totally ordered fields with this property?

Exercise 1.30. Let K be a totally ordered field and V a finite dimensional
Hahn space over K. Assume that b1� � � � � bn and b10 � : : :� bn0 are both bases
of K and denote by B resp. B 0 the column matrices with entries b1; : : : ; bn resp.
b1
0 ; : : : ; bn

0 . Show that B 0=TB for some lower triangular matrix T .

Exercise 1.31.

a) Prove that each Hahn space of countable dimension admits a basis which is
totally ordered w.r.t. �.

b) Prove that there exist infinite dimensional Hahn spaces, which do not admit
bases of pairwise comparable elements for �.
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1.8 Groups and rings with generalized powers

Let G be a multiplicative group. For any x 2G and n 2Z, we can take the
n-th power xn of x in G. We say that G is a group with Z-powers. More
generally, given a ring R, a group with R-powers is an R-module G, such that
R acts on G through exponentiation. We also say that G is an exponential
R-module. If R and G are ordered, then we say that G is an ordered group
with R-powers if 16x^ 06�) 16x�, for all x2G and �2R.

Example 1.23. Let G be any group with R-powers and let S be an R-algebra.
Then we may form the group GS jR with S-powers, by tensoring the R-mod-
ules G and S. However, there is no canonical way to order GS jR, if G;R and S
are ordered.

A ring with R-powers is a ring A, such that a certain multiplicative sub-
group A� of A carries the structure of a group with R-powers. Any ring A
is a ring with Z-powers by taking the group of units of A for A�. If A is an
ordered ring, then we say that the ordering is compatible with the R-power
structure if

8x2A�;8�2R; x> 0)x�> 0:
An ordered field with R-powers is an ordered field K, such that the ordered
group K�=K> of strictly positive elements in K has R-powers.

Example 1.24. The field C(z) is a field with Z-powers by taking C(z)�=
C(z)=/ . The field R(x) is a totally ordered field with Z-powers for the ordering

f > 0 , 9x02R;8x>x0; f(x)> 0:
from example 1.13.

Let A be an asymptotic ring with R-powers, i.e. A is both an asymptotic
ring and a ring with R-powers, and 14x or x�1 for all x2A�. Given x2A�,
we denote kxk= x if x< 1 and kxk= x¡1 otherwise. Then, given x; y 2A�,
we define

x�� y , 9�2R;9�2R�; kx�k4 y�;
x�� y , 8�2R;8�2R�; x��ky�k;

and we say that x is flatter than y resp. flatter than or as flat as y. If
x�� y �� x, then we say that x is as flat as y and we write x ¡̀a y. Given
x2K�, the set of y 2K� with y ¡̀ax is also called the comparability class of
x. Finally, if y/x��x, then we say that x and y are similar modulo flatness,
and we write x¡�� y.

Example 1.25. Consider the totally ordered field R(x)(ex) with Z-powers and
the natural asymptotic relations 4 and � for x!1. Then we have x�� ex,
ex ¡̀ax e1000x and ex¡��/ x e1000x.

30 1 Orderings



Let A be an asymptotic ring with R-powers and consider a subring A[ with
R-powers such that A[;�=A[\A�. The subring A[ is said to be flat if

8x2A�;8y 2A[;�; x�� y) (9x02A[;�; x0�x):

In that case, we define

x4] y , 9'2A[;�; x4 'y ;
x�] y , 8'2A[;�; x� 'y;

for x; y2A. In virtue of the next proposition, we call 4] a flattened dominance
relation and �] a flattened neglection relation.

Proposition 1.26.

a) A is an asymptotic ring with R-powers for 4] and �].
b) If 4 and � are associated and for all x; y 2A and '2A[;� we have

x4 y ^ 'y4/ x)x� 'y; (1.3)

then 4] and �] are associated.

Proof. Assume that x4] z and y4] z so that x4 ' z and y4  z for certain
';  2A[;�. We also have '4  or  4 ', so, by symmetry, we may assume
that '4  . Now x4  z, whence x¡ y4  z, which proves D1. We trivially
haveD2, since x4 y)x4]y for all x; y2A. The propertiesD3,N1,N2,N3,
N4 and the quasi-ordering properties directly follow from the corresponding
properties for 4 and �.

Assume now that x �] y. Then in particular x � y, whence x 4 y and
x4] y. Furthermore, if we had y4]x, then we would both have y4 'x and
x� '¡1 y for some '2A[;�, which is impossible. This proves that x�] y)
x4] y^ y4/ ]x.

Conversely, assume that we have x4] y and y4/ ] x, together with (1.3).
Then x4 'y for some '2A[;� and y4/  x for all  2A[;�. Given  2A[;�,
we then have  y4/ x, since otherwise y4  ¡1x. Applying (1.3) to x, 'y and
 '¡1, we conclude that x�  y and x�] y. �

Example 1.27. Given an element '2A, we may take A[= hx2A�:x�� 'i to
be the ring generated by all x2A� with x�� '. Then we define

4' = 4]
�' = �]:

We may also take A[= hx2A�:x�� 'i, in which case we define

4'� = 4]
�'� = �]:

For instance, if A=R(x)(ex), then x10 ex�ex e2x, x10 ex4ex ex and f �ex� g for
all f ; g 2A=/ .
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Exercise 1.32. Let K be a totally ordered field with R-powers and let L be its
smallest subfield with R-powers.

a) Show that K has a natural asymptotic L-algebra structure with R-powers.
b) Show that �� and �� are characterized by

x�� y , 9�2R; 9�2R�; kx�k6 y�;
x�� y , 8�2R; 8�2R�; x�< ky�k:

Exercise 1.33. Consider A� as a �quasi-ordered vector space� for 4 and the R-
power operation. Show that we may quotient this vector space by � and that ��
and �� correspond to the natural dominance and neglection relations on this
quotient.
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2

Grid-based series

Let C be a commutative ring, and M a quasi-ordered monomial monoid. In
this chapter, we will introduce the ring C[[M]] of generalized power series in
M over C. For the purpose of this book, we have chosen to limit ourselves
to the study of grid-based series, whose supports satisfy a strong finiteness
property. On the other hand, we allow M to be partially ordered, so that
multivariate power series naturally fit into our context. Let us briefly discuss
these choices.

In order to define a multiplication on C[[M]], we have already noticed
in the previous chapter that the supports of generalized power series have to
satisfy an ordering condition. One of the weakest possible conditions is that
the supports be well-based and one of the strongest conditions is that the
supports be grid-based. But there is a wide range of alternative conditions,
which correspond to the natural origins of the series we want to consider (see
exercises 2.1 and 2.7). For instance, a series like

f = 1
x
+ 1
xp
+ 1
xp

2 + � � �

is the natural solution to the functional equation

f(x)=x¡1+ f(xp):

However, f is not grid-based, whence it does not satisfy any algebraic differ-
ential equation with power series coefficients (as will be seen in chapter 8).

Actually, the setting of grid-based power series suffices for the resolution
of differential equations and that is the main reason why we have restricted
ourselves to this setting. Furthermore, the loss of generality is compensated
by the additional structure of grid-based series. For example, they are very
similar to multivariate Laurent series (as we will see in the next chapter) and
therefore particularly suitable for effective purposes [Hoe97]. In chapter 4, we
will also show that grid-based �transseries� satisfy a useful structure theorem.



Although we might have proved most results in this book for series with
totally ordered supports only, we have chosen to develop theory in a partially
ordered setting, whenever this does not require much additional effort. First of
all, this lays the basis for further generalizations of our results to multivariate
and oscillating transseries [Hoe97, Hoe01a]. Secondly, we will frequently have
to �fully expand� expressions for generalized series. This naturally leads to
the concepts of grid-based families and strong linear algebra (see sections 2.4,
2.5.3 and 2.6), which have a very �partially-ordered� flavour. Actually, certain
proofs greatly simplify when we allow ourselves to use series with partially
ordered supports.

Let us illustrate the last point with a simple but characteristic example.
Given a classical power series f and an �infinitesimal� generalized power
series g, we will define their composition f � g. In particular, when taking
f(z)=

P
i=0
1 zn/n!, this yields a definition for the exponential eg= f � g of g.

Now given two infinitesimal series g1 and g2, the proof of the equality eg1+g2=
eg1 eg2 is quite long in the totally ordered context. In the partially ordered
context, on the contrary, this identity trivially follows from the fact that
ez1+z2=ez1 ez2 in the ring Q[[z1; z2]] of multivariate power series.

2.1 Grid-based sets

Let M be a commutative, multiplicative monoid of monomials, quasi-ordered
by 4. Given G�M, we define G�= fm1 � � �mk:m1; : : : ;mk2Gg. We say that
G is grid-based , if there exist m1; : : : ;mm; n1; : : : ; nn2M, with m1; : : : ;mm� 1,
and such that

G�fm1; : : : ;mmg� fn1; : : : ; nng: (2.1)

In other words, for each monomial v2G, there exist k1; : : : ; km2N and l with

v=m1
k1 � � �mmkm nl:

Notice that we can always take n=1 if M is a totally ordered group.
By Dickson's lemma, grid-based sets are well-quasi-ordered for the oppo-

site quasi-ordering of 4 (carefully notice the fact that this is true for the
opposite quasi-ordering of 4 and not for 4 itself). Actually, a grid-based set
is even well-quasi-ordered for the opposite ordering of 4! (recall that x4!y,
x= y _ x� y). More generally, a subset of M which has this latter property
is said to be well-based .

Proposition 2.1. Let G and H be grid-based subsets of M. Then

a) Each finite set is grid-based.
b) G[H is grid-based.
c) GH is grid-based.
d) If G� 1, then G� is grid-based.
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Proof. The first three assertions are trivial. As to the last one, we will prove
that G� 1 implies that there exist elements v1; : : : ; vv� 1 in M, with

G�fv1; : : : ; vvg�:

This clearly implies the last assertion. So assume that we haveG�1 and (2.1).
For each l, the set

f(k1; : : : ; km)2Nm:m1
k1 � � �mmkm nl� 1g

is a final segment of Nm. Let Fl be a finite set of generators of this final
segment and let

Vl= fm1
k1 � � �mmkm nl: (k1; : : : ; km)2Flg:

Then fv1; : : : ; vvg=V1[ � � � [Vn[fm1; : : : ;mmg fulfills our requirements. �

n

1

n

2

n

3

Fig. 2.1. Illustration of a grid-based set with three base points n1, n2, n3
and two infinitesimal generators m1 and m2. Notice that we used �logarithmic
paper� in the sense that multiplication by m1 or m2 corresponds to a trans-
lation via one of the vectors in the picture. Alternatively, one may write
M=z¡, where z is a formal variable and ¡ is a formal ordered additive �value
group� which is �anti-isomorphic� to M. Instead of representing monomials
M, one may then represent their values in ¡.

Exercise 2.1. Show that proposition 2.1 also holds for the following types of
subsets of M:

a) Well-based subsets;
b) Countable well-based subsets;
c) R-finite subsets, whenM is an ordered group with R-powers. Here an R-finite

subset of M is a well-based subset, which is contained in a finitely gen-
erated subgroup with R-powers of M;

d) Accumulation-free subsets, when M is an ordered group with R-powers. Here
an accumulation-free subset of M is a subset S, such that for all m; n2M
with n� 1, there exists an "> 0, such that

8v2S; (v n"�m) (8� > 0; v n��m)):
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Exercise 2.2. Assume that M is a group. Show that Z-finite subsets of M are
not necessarily grid-based.

Exercise 2.3. IfM=zR=fz�:�2Rg, with z�<z�,�6�, then accumulation-
free subsets of M are also called Levi-Civitian subsets. Show that infinite Levi-
Civitian subsets of M are of the form fz�1; z�2; : : : g, with limn!1�n=+1.

Exercise 2.4. Assume that M is a partially ordered monomial group with
Q-powers. A subset S of M is said to be weakly based , if for each injective mor-
phism ':M!N of M into a totally ordered monomial group N with Q-powers
we have:

1. The image '(S) is well-ordered.
2. For every n2N, the set fm2S: '(m)= ng is finite.

Show that proposition 2.1 also holds for weakly based subsets and give an
example of a weakly based subset which is not well-based.

Exercise 2.5.

a) For grid-based sets E1�1 and E2�1, show that there exists a grid-based set
D� 1 with D�=E1

�\E2�.
b) Given a grid-based set D�1, does there exist a smallest grid-based set E�1

for inclusion, such that D�E�? Hint: consider fz1 z2¡2; z2g�\ fz12 z2¡1; z23g�
for a suitable ordering on z1Z z2Z.

2.2 Grid-based series

Let C be a commutative, unitary ring of coefficients and M a commutative,
multiplicative monoid of monomials. The support of a mapping f :M!C is
defined by

supp f = fm2M: f(m)=/ 0g:

If supp f is grid-based, then we call f a grid-based series. We denote the set
of all grid-based series with coefficients in C and monomials in M by C[[M]].
We also write fm= f(m) for the coefficient of m 2M in such a series andP

m2Mfmm for f . Each fmm with m2 supp f is called a term occurring in f .
Let (fi)i2I be a family of grid-based series in C[[M]]. We say that (fi)i2I

is a grid-based family , if
S
i2I supp fi is grid-based and for each m2M there

exist only a finite number of i2 I with m2 supp fi. In that case, we define its
sum by X

i2I
fi=

X
m2M

 X
i2I

fi;m

!
m: (2.2)

This sum is again a grid-based series. In particular, given a grid-based series f ,
the family (fmm)m2M is grid-based and we have f =

P
m2M fmm.
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Let us now give C[[M]] the structure of a C-algebra; we will say that
C[[M]] is a grid-based algebra. C and M are clearly contained in C[[M]] via
c 7! c � 1 resp. m 7! 1 �m. Let f ; g 2C[[M]]. We define

f + g=
X

m2suppf[suppg
(fm+ gm)m

and

f g=
X

(m;n)2suppf�suppg

fm gnmn:

By propositions 1.6 and 2.1, f + g and f g are well-defined as sums of grid-
based families. It is not hard to show that C[[M]] is indeed a C-algebra. For
instance, let us prove the associativity of the multiplication. For each v2M,
we have

((f g)h)v=
X

m2suppfg
n2supph
mn=v

(f g)mhn=
X

m02suppf
m002suppg
n2supph
m0m00n=v

fm0 gm00hn:

The right hand side of this equation is symmetric in f , g and h and a similar
expression is obtained for (f (g h))v.

Let g2C[[z]] be a power series and f 2C[[M]] an infinitesimal grid-based
series, i.e. m� 1 for all m2 supp f . Then we define

g � f =
X

m1 � � �mn2(suppf)w
gn fm1 � � � fmnm1 � � �mn;

where the sum ranges over all words over the alphabet supp f . The right
hand side is indeed the sum of a grid-based family, by Higman's theorem and
proposition 2.1. In section 2.5.3, we will consider more general substitutions
and we will prove that (gh) � f =(g � f) (h� f) and (h� g) � f =h� (g � f) for
all g; h2C[[z]].

In particular, we have ((1 + z) � f) ((1 + z)¡1 � f) = 1 for all f with
supp f � 1. This yields an inverse for all elements g 2 C[[M]] of the form
g = 1 + f with supp f � 1. Assume now that C is a field and that M is
a totally ordered group. Then we claim that C[[M]] is a field. Indeed, let
f =/ 0 be a series in C[[M]] and let fd d be its dominant term (i.e. d is
maximal for � in supp f). Then we have

f¡1= fd
¡1 d¡1

�
f
fd d

�¡1
:

Example 2.2. Let M be any multiplicative monoid with the finest ordering for
which no two distinct elements are comparable. Then C[[M]] is the polyno-
mial ring C[M].
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Example 2.3. Let A be any ordered abelian monoid and z � 1 a formal,
infinitely small variable. We will denote by zA the formal ordered multi-
plicative monoid of powers z� with � 2 A, where z� � z�, � > � (i.e. A
and zA are anti-isomorphic). We call C[[zA]] the ring of grid-based series
in z over C and along A. If A is clear from the context, then we also write
C[[z]]=C[[zA]]. The following special cases are classical:

a) C[[zN]] is the ring C[[z]] of formal power series in z.
b) C[[zZ]] is the field C((z)) of Laurent series in z, whenever C is a field.

Elements of C[[zZ]] are of the form
P
n>v fn z

n with v 2Z.
c) C[[zQ]] is the field of Puiseux series in z, whenever C is a field. Elements

of C[[zQ]] are of the form
P
n>v fn z

n/k with v 2Z and k 2N>.
d) C[[zN

n
]] is the ring C[[z1; : : : ; zn]] of multivariate power series, when Nn

is given the product ordering.
e) C[[zZ

n
]] is the ring C((z1;:::; zn)) of multivariate Laurent series, when Zn

is given the product ordering. We recall that a multivariate Laurent series
f 2C((z1;:::; zn)) is the product of a series in C[[z1;:::; zn]] and a monomial
z1
�1 � � � zn�n2 zZ

n
. Given f 2C[[zZn]]=/ , let fz1

�1;j � � � zn
�n;j: 16 j6 pg be the

set of dominant monomials of f . Then we may take �i=min16j6p �i;j
for each i.

Often, we rather assume that z�1 is an infinitely large variable. In that case,
zA is given the opposite ordering z�� z�,�< �.

Example 2.4. There are two ways of explicitly forming rings of multivariate
grid-based series: let z1;:::; zn be formal variables and A1;:::;An ordered addi-
tive monoids. Then we define the rings of natural grid-based power series resp.
recursive grid-based power series in z1; : : : ; zn over C and along A1; : : : ;An by

C[[z1
A1; : : : ; zn

An]] = C[[z1
A1� � � � � znAn]];

C[[z1
A1; : : : ; zn

An]] = C[[z1
A1�� � � � �� znAn]]:

If A1= � � �=An=A, where A is clear from the context, then we simply write

C[[z1; : : : ; zn]] = C[[z1
A; : : : ; zn

A]];
C[[z1; : : : ; zn]] = C[[z1

A; : : : ; znA]]:

Any series f in C[[z1; : : : ; zn]] may also be considered as a series in
C[[z1]]� � �[[zn]] and we may recursively expand f as follows:

f =
X
�n2A

f�n zn
�n

���
f�n; : : : ;�2 =

X
�12A

f�n; : : : ;�1 z1
�1:

Notice that C[[z1; : : : ; zn]]$C[[z1]]� � �[[zn]], in general (see exercise 2.6).
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Exercise 2.6. Show that, in general,

C[[z1; : : : ; zn]]$C[[z1; : : : ; zn]]$C[[z1]]� � �[[zn]]
and

C[[z1; : : : ; zn]]=/ C[[z�(1); : : : ; z�(n)]];

for non-trivial permutations � of f1; : : : ; ng.

Exercise 2.7. Show that the definitions of this section generalize to the case
when, instead of considering grid-based subsets of M, we consider subsets of one
of the types from exercise 2.1 or 2.4. Accordingly, we have the notions of well-
based families, well-based series, accumulation-free series, etc. The C-algebra of
well-based series in M over C will be denoted by C[[M]].

Now consider the monomial group

M=xR�� expR x�� expR exp x�� � � �;

where x; expx; exp expx; : : : � 1. The order type of a series is the unique ordinal
number which is isomorphic to the support of the series, considered as an ordered
set. Determine the order types of the following series in C[[M]], as well as their
origins (like an equation which is satisfied by the series):

a) 1

x
+

1

exp x +
1

exp exp x + � � �;

b) 1+ 1

x
+

1

x2
+ � � �+ 1

ex
+

1

x ex
+

1

x2 ex
+ � � �+ 1

e2x
+

1

x e2x
+

1

x2 e2x
+ � � �;

c) 1+2¡x+3¡x+4¡x+ � � �;
d) 1

x
+

1

xp +
1

xp2
+

1

xp3
+ � � �;

e) 1+ 1

x
+

1

x2
+

1

xe
+

1

x3
+

1

xe+1
+

1

x4
+

1

xe+2
+

1

x5
+

1

x2e
+

1

xe+3
+

1

x6
+ � � �;

f) x+ x
p

+ x
pq

+ x
pqr

+ � � �;

g) 1+ 1

x1/2
+

1

x3/4
+ � � �+ 1

x
+

1

x3/2
+

1

x7/4
+ � � �+ 1

x2
+

1

x5/2
+

1

x11/4
+ � � �.

Also determine the order types of the squares of these series.

Exercise 2.8. Let C be a Noetherian ring and let M be a well-based monomial
monoid. Show that C[[M]] is a Noetherian ring.

Exercise 2.9. For all constant rings C and monomial groups, let C[[M]] either
denote the ring of well-based, countably well-based, R-finite or accumulation-
free series over M in C. In which cases do we have C[[M�� N]]=�C[[M]][[N]] for
all M and N?

Exercise 2.10. Let M be a monomial group and let � be the equivalence
relation associated to 4 as in exercise 1.1(c) Let U=fm2M:m�1g and let �¡1

be a right inverse for the projection �:M!M/�. Show that we have natural
embeddings

�1:C[[M/�]][U] ¡! C[[M]]X
n2U

X
m2M/�

fm;nmn 7¡!
X
n2U

X
m2M/�

fm;n �¡1(m) n

2.2 Grid-based series 39



and

�2:C[[M]] ¡! C[U][[M/�]]X
m2M/�

X
n2U

fm;n �¡1(m) n 7¡!
X

m2M/�

X
n2U

fm;nmn:

Show that the embeddings �1 and �2 are strict, in general.

Exercise 2.11. Let M be a quasi-ordered monomial group and N an �ideal� of
M in the sense that m n 2N, for all m 2M and n2N. Define a ring structure
on C[[M nN]], such that mn=0 in C[[M nN]], for all m;n2MnN with mn2N.

2.3 Asymptotic relations

2.3.1 Dominance and neglection relations

Let f 2C[[M]] be a grid-based series and assume that M is ordered by 4.
The set of maximal elements in the support of f is called its set of dominant
monomials. If this set is a singleton, then we say that f is regular , we denote
by df or d(f) its unique dominant monomial , by cf = fdf its dominant coef-
ficient , and by �f = cf df its dominant term. If �f is invertible, then we also
denote �f = f /�f ¡ 1, so that f = �f(1+ �f).

Notice that any grid-based series f can be written as a finite sum of regular
series. Indeed, let d1; : : : ; dn be the dominant monomials of f . Then we have

f =
X
i=1

n " X
m2in(d1; : : : ;di)nin(d1; : : : ;di¡1)

fmm

#
;

where we recall that in(d1; : : : ; di)= fm2M:m4 d1_ � � � _m4 dig.
Assume that C is an ordered domain. We give C[[M]] the structure of an

ordered C-algebra by setting f > 0, if and only if for each dominant mono-
mial d of f , we have fd> 0 (see exercise 2.12).

Assume now that M is totally ordered, so that each non-zero series
in C[[M]] is regular. Then we define a dominance relation 4 on C[[M]],
whose associated strict quasi-ordering � is a neglection relation, by

f 4 g, (f =0_ (f =/ 0^ g=/ 0^ df 4 dg)):

For non-zero f and g, we have

f 4 g , df 4 dg;
f � g , df � dg;
f � g , df = dg;
f � g , �f = �g:

Given f 2C[[M]], we define its canonical decomposition by

f = f�+ f�+ f�;
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where f�=
P

m�1fmm, f�= f1 and f�=
P

m�1fmm are respectively the purely
infinite, constant and infinitesimal parts of f . We also define f<= f�+ f�,
f4= f�+ f� and f�/ = f ¡ f�; we call f4 the bounded part of f . The canon-
ical decomposition of C[[M]] itself is given by:

C[[M]]=C[[M]]��C �C[[M]]�;

where
C[[M]]� = C[[M�]] = ff 2C[[M]]: f�= f g;
C[[M]]� = C[[M�]] = ff 2C[[M]]: f�= f g:

Similarly, we define C[[M]]< = C[[M<]] = ff 2 C[[M]]: f< = f g and
C[[M]]4=C[[M4]]= ff 2C[[M]]: f4= f g.

Example 2.5. Let f = x4

x¡ 1 2C[[xZ]] with x� 1. Then the canonical decom-
position of with f is given by

f = f� + f� + f�

= = =

x3+x2+x 1 x¡1

1¡x¡1

Warning 2.6. We define C[[M]]� = ff 2 C[[M]]: f � 1g and C[[M]]�,
C[[M]]4, etc. in a similar way. One should not confuse C[[M]]� with
C[[M]]�, but always do have C[[M]]�=C[[M]]� and C[[M]]4=C[[M]]4.

Proposition 2.7. Assume that C is a totally ordered integral domain and M
a totally ordered monomial group. Then

a) C[[M]] is a totally ordered C-algebra.
b) The relations 4 and � coincide with those defined in proposition 1.20.
c) If C is a field, then C[[M]] is a Hahn space over C.
d) C[[M]]4 is the set of bounded elements in C[[M]].
e) C[[M]]� is the set of infinitesimal elements in C[[M]].

Proof. Given f in C[[M]], we have either f =0, or cf > 0 (and thus f > 0),
or cf < 0 (and thus f < 0). This proves (a).

Assume that f 4 g, i.e. f =0 or f =/ 0^ g=/ 0^df4dg. If f =0, then clearly
jf j6 jg j. If f =/ 0, then either df � dg and cjg j¡jf j= jcg j> 0 implies jf j<
jg j, or df = dg and cj2cfgj¡jcgf j= jcf cg j> 0 implies jcg f j< j2 cf g j. Inversely,
assume that f 4/ g, i.e. f =/ 0 and either g = 0 or df � dg. If g = 0, then
clearly j� f j> j� g j= 0, for all � 2C� and � 2C. Otherwise, dj�f j= df and
j�g j=0 or dj�g j=dg for all �2C� and �2C, so that dj�f j¡j�g j=df and again
j� f j> j� g j. We conclude that the above definition of 4 coincides with the
definition in proposition 1.20, using exercise 1.21(b). This proves (b), since
for both definitions of � we have f � g, g4/ f .
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If C is a field, then for f ; g 2C[[M]]=/ , we have f � g, df = dg) �f =
�(cf/cg)g, f � (cf /cg) g. This shows (c). If f 2 C[[M]] is bounded, then
either f =0 and clearly f 2C[[M]]4, or f =/ 0^ df 4 1 and m4 df 4 1 for all
m2 supp f , whence again f 2C[[M]]4. If f is unbounded, then df�1, whence
f 2/ C[[M]]4. This proves (d), and (e) is proved similarly. �

In the case when M is not necessarily totally ordered, we may still define
the constant and infinitesimal parts of a series f 2C[[M]] by f�= f1 and f�=P

m�1 fm. We say that f is bounded resp. infinitesimal , if f 2C �C[[M]]�
resp. f 2C[[M]]�. In other words, f is bounded resp. infinitesimal, if for all
m2 supp f , we have m4 1, resp. m� 1.

2.3.2 Flatness relations

Assume now that C is both a totally ordered R-module and a totally ordered
field with R-powers, for some totally ordered ring R, and assume that
M is a totally ordered group with R-powers. Let f 2 C[[M]]> and write
f = cf df (1+ ") with "� 1. Given �2R, let ��(z)= (1+ z)��12C[[z]]. Then
we define

f�= cf� df� (�� � "): (2.3)

In this way, we give the field C[[M]] the structure of a C-algebra with
R-powers, by taking

C[[M]]�= ff 2C[[M]]=/ : cf 2C�g:

Indeed, ��+��"=(����)� "=(��� ") (��� ") for all �; �2R and infinitesimal
"2C[[M]].

Proposition 2.8. Let C;M and R be as above and let �� and �� be defined
as in section 1.8. For m 2M, denote kmk= m if m < 1 and kmk= m¡1

otherwise. Then, given f ; g 2C[[M]]>, we have

a) f �� g, (9�2R;9�2R�; kdf
�k4 dg

�);
b) f �� g, (8�2R;8�2R�; df��kdg

�k).

Proof. The characterizations of �� and �� immediately follow from the fact
that f�� df

� for all f 2C[[M]]>. �

2.3.3 Truncations

Let M be an arbitrary monomial monoid and f 2C[[M]]. Given a subset
S�M, we define the restriction fS2C[[S]]�C[[M]] of f to S by

fS=
X

m2S\suppf
fmm:
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For instance, f�= fM�, f�= ff1g, f�= fM� and ffmg= fmm. By our general
notations, we recall that FS= ffS: f 2F g, for sets F �C[[M]]. Notice that
M�=MM�=M�, M�=M�, etc.

Given two series f ; g 2C[[M]], we say that f is a truncation of g (and
we write f P g), if there exists a final segment F of supp g, such that f = gF.
The truncation P is a partial ordering on C[[M]].

Let (fi)i2I 2C[[M]]I be a non-empty family of series. A common trunca-
tion of the fi is a series g 2C[[M]], such that gP fi for all i2 I. A greatest
common truncation of the fi is a common truncation, which is greatest for P.
Similarly, a common extension of the fi is a series g2C[[M]], such that fiP g
for all i2 I. A least common extension of the fi is a common extension, which
is least for P. Greatest common truncations always exist:

Proposition 2.9. Any non-empty family (fi)i2I2C[[M]]I admits a greatest
common truncation.

Proof. Fix some j 2 I and consider the set F of initial segments F of supp fj,
such that fj;FP fi for all i2 I. We observe that arbitrary unions of initial seg-
ments of a given ordering are again initial segments. Hence Fmax=

S
F2F F is

an initial segment of each supp fi. Furthermore, for each m2Fmax, there exists
an F2F with fj;F;m= fj;m= fi;m for all i 2 I. Hence fj;Fmax= fi;FmaxP fi
for all i 2 I. This proves that fFmax is a common truncation of the fi. It is
also greatest for P, since any common truncation is of the form fj;F for some
initial segment F2F of Fmax with fj;FP fj;Fmax. �

Exercise 2.12. Let C be an ordered domain and M a monomial group. Given
�2C> and series f ; g2C[[M]]>, determine the sets of dominant monomials of
� f , f + g and f g. Show that C[[M]] is an ordered C-algebra.

Exercise 2.13. Assume that C is a perfect ordered ring and M a perfect ordered
monoid.

a) Show that C[[M]] is a perfect ordered C-algebra.
b) Let � and 4 be defined as in exercise 1.27. Show that z12+ z23� z1¡ z2 in
C[[z1; z2]].

c) For f ; g 2C[[M]] and g regular, show that f � g, if and only if supp f � dg.
d) For f ; g 2C[[M]] and g regular, show that f 4 g, if and only if supp f 4 dg.

In other words, there is no satisfactory way to define the relations � and 4
purely formally, except in the case when the second argument is regular.

Exercise 2.14.

a) Let C be an ordered ring and let M be a monomial set, i.e. a set which is
ordered by 4. Show that the set C[[M]] of series f :M!C with well-based
support has the natural structure of an ordered C-module. Show also that
this ordering is total if the orderings on C and M are both total.

b) Prove Hahn's embedding theorem [Hah07]: let V be a Hahn space over
a totally ordered field C. Then V /� is a totally ordered set for �/� and V
may be embedded into C[[V /�]].
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c) If V �C[[M]] in proposition 1.22, then show that V admits a unique basis
(b1; : : : ; bn), such that b1� � � � � bn and bi;d(bj)= �i;j for all i; j 2f1; : : : ; ng.

Exercise 2.15.

a) Let L�K be a field extension and M a monomial set. Given a K-subvector
space V of K[[M]], show that L
KC[[M]] is isomorphic to the L-subvector
space of L[[M]], which is generated by V .

b) Let L�K be an extension of totally ordered fields. Given a Hahn space V
over K, show that L
KV has the structure of a Hahn space over L.

Exercise 2.16. Let M be a totally ordered monomial group and let M[�M

be a flat subset (i.e. 8m2M;8n2M[:m�� n)m2M[).

a) Show that C[[M[]] is a flat subring of C [[M]].
b) Characterize the relations 4] and �].
Exercise 2.17. Generalize the notion of truncation to the well-based setting.
A directed index set is an ordered set I, such that for any i; j 2 I, there exist
a k 2 I with i 6 k and j 6 k. Let (fi)i2I be a P-increasing family of series
in C[[M]], i.e. fiP fj whenever i6 j. If M is Noetherian or totally ordered,
then show that there exists a least common extension of the fi. Show that this
property does not hold in the grid-based setting.

2.4 Strong linear algebra

Just as �absolutely summable series� provide a useful setting for doing analysis
on infinite sums (for instance, they provide a context for changing the order
of two summations), �grid-based families� provide an analogue setting for
formal asymptotics. Actually, there exists an abstract theory for capturing
the relevant properties of infinite summation symbols, which can be applied
in both cases. In this section, we briefly outline this theory, which we call
�strong linear algebra�.

2.4.1 Set-like notations for families

It will be convenient to generalize several notations for sets to families. We
will denote families by calligraphic characters F ; G ; : : : and write F (S) for
the collection of all families with values in S. Explicit families (fi)i2I will
sometimes be denoted by (fi: i 2 I). Consider two families F = (fi)i2I 2 SI
and G=(gj)2SJ, where I, J and S are arbitrary sets. Then we define

F qG = (hi)i2IqJ ; where hi=
�
fi if i2 I
gi if i2 J

F �G = (fi; gj)(i;j)2I�J

More generally, if I =
`
j2J Ij, and Gj=(fi)i2Ij for all j 2J , then we denotea

j2J
Gj=F :
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Given an operation ':S1� � � � �Sn!T and families Fk=(fk;i)i2Ik2Sk
Ik for

k=1; : : : ; n, we define

'(F1; : : : ;Fn) = ('(f1;i1; : : : ; fn;in))(i1; : : : ;in)2I1�� � ��In: (2.4)

It is also convenient to allow bounded variables to run over families. This
allows us to rewrite (2.4) as

'(F1; : : : ;Fn) = ('(f1; : : : ; fn))f12F1; : : : ;fn2Fn

Similarly, sums of grid-based families F =(fi)i2I 2C[[M]]I may be denoted
by X

F =
X
f2F

f =
X
i2I

fi

We say that F =(fi)i2I and G=(gj)j2J are equivalent , and we write F �G,
if there exists a bijection ': I! J with fi= g'(i) for all i 2 I. If ' is only
injective, then we write F ��G. If I � J and ' is the natural inclusion, then
we simply write F �G.

2.4.2 Infinitary operators

The main idea behind strong linear algebra is to consider classical algebraic
structures with additional infinitary summation operators

P
. These sum-

mation symbols are usually only partially defined and they satisfy natural
axioms, which will be specified below for a few structures. Most abstract
nonsense properties for classical algebraic structures admit natural strong
analogues (see exercise 2.20).

A partial infinitary operator on a set S is a partial map

�:P(�;S)*S;

where � is an infinite cardinal number and

P(�;S)=
[
I��

SI:

We call � the maximal arity of the operator �. For our purposes, we may
usually take �= !, although higher arities can be considered [Hoe97]. The
operator �:P(�;S)*S is said to be strongly commutative, if for all equiv-
alent families F and G in P(�; S), we have F 2 dom �, G 2 dom � and
F 2 dom�)�(F)=�(G).

It is convenient to extend commutative operators � to arbitrary families F=
(fi)i2I2SI of cardinality cardI6�. This is done by taking a bijection ':I!J
with J �� and setting �(F)=�((f'¡1(j))j2J), whenever (f'¡1(j))j2J2dom�.
When extending � in this way, we notice that the domain dom� of � really
becomes a class (instead of a set) and that � is not really a map anymore.
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2.4.3 Strong abelian groups

Let A be an abelian group with a partial infinitary operator
P
:P(�;A)*A.

We will denote by S (A) the domain of
P

. We say that A is a strong abelian
group, if

SA1.
P

is strongly commutative.
SA2. For all I �� and OI=(0)i2I, we have

P
OI=0.

SA3. For all x2A and Sx=(x), we have
P
Sx=x.

SA4. For all F ; G 2S (A), we have
P
F qG=

P
F +

P
G.

SA5. For all F 2S (A), we have
P
(¡F)=¡

P
F .

SA6. For all F 2S (A) and decompositions F =
`
j2JGj, we haveX

j2J

X
Gj=

X
F :

We understand that F 2S (A), whenever we use the notation
P
F . For

instance, SA2 should really be read: for all I � � and OI = (0)i2I, we have
OI 2S (A) and

P
OI=0.

Remark 2.10. Given a strong abelian group A, it is convenient to extend the
summation operator

P
to arbitrary families F 2F (A): we define F to be

summable in the extended sense if and only if G=(f 2F : f =/ 0) is summable
in the usual sense; if this is the case, then we set

P
F =

P
G.

Example 2.11. Any abelian groupA carries a trivial strong structure, for which
F 2S (A) if only if (f 2F : f =/ 0) is a finite family of elements in A.

We call SA6 the axiom of strong associativity . It should be noticed that
this axiom can only be applied in one direction: given a large summable
family F , we may cut it into pieces Gj, which are all summable and whose
sums are summable. On the other hand, given summable families Gj such that
(
P
Gj)j2J is again summable, the sum

P`
j2JGj is not necessarily defined:

consider (1¡ 1)+ (1¡ 1)+ � � �=0.

Remark 2.12. In SA6, we say that the family F refines the family (
P
Gj)j2J.

In order to prove identities of the form
P
F =

P
G, a common technique is

to construct a large summable family H, which refines both F and G.

2.4.4 Other strong structures

Let R be a ring with a strong summation
P

(which satisfies SA1�SA6). We
say that R is a strong ring if

SR. For all F ; G 2S (A), we haveX
FG=

¡X
F
�¡X

G
�
:
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Let M be a module over such a strong ring R and assume that we also have
a strong summation on M . Then M is said to be a strong R-module if

SM. For all F 2S (R) and G 2S (M), we haveX
FG=

¡X
F
�¡X

G
�
:

Notice that SM is trivially satisfied when R carries the trivial strong struc-
ture. We say that M is an ultra-strong R-module, if we also have

UM. For all (�i)i2I 2RI and (fi)i2I 2S (M), we have (�i fi)i2I 2S (M).

A strong R-algebra (resp. an ultra-strong R-algebra) is anR-algebraA, together
with a strong summation, for which A carries both the structures of a strong
ring and a strong R-module (resp. an ultra-strong R-module).

Let M and N be two strong R-modules. A linear mapping ':M!N is
said to be strong if it preserves the infinite summation symbols, i.e.

SL. For all F 2S (M), we have
P
'(F)= '(

P
F).

In the case of ultra-strong modules, this condition implies

'
X
i2I

�ixi=
X
i2I

'(�ixi)=
X
i2I

�i'(xi);

whenever (�i)i2I 2RI and (xi)i2I2S (M). Notice that strong abelian groups
and rings can be considered as strong Z-modules resp. Z-algebras, so the
definition of strongly linear mappings also applies in these cases.

Exercise 2.18. Let F =(fi)i2I 2AI and G=(gj)j2J 2AJ. Prove that

F �G , (8x2A; card fi2 I: fi=xg= card fj 2 J : gj=xg);
F ��G , (8x2A; card fi2 I: fi=xg6 card fj 2 J : gj=xg):

Deduce that F �G,F ��G ��F .

Exercise 2.19.

a) Let C=R, or a more general Banach algebra. Consider the infinite summa-
tion operator on C, which associates

P
i2N

xi to each absolutely summable
family (xi)i2N. Show that C is a strong ring for this operator (and the usual
finite summation operators).

b) Given a set S, show how to construct the free strong R-module in S.
c) Let B be a �-algebra on a set E. We define MB to be the free strong

R-module in B, quotiented by all relations
P
i2IUi=

`
i2IUi for at most

countable families (Ui)i2I 2BI, whose members are mutually disjoint. Show
that finite measures can then be interpreted as strongly linear mappings
from MB into R.

Exercise 2.20. Strong abelian groups, rings, modules and algebras form cate-
gories, whose morphisms are strongly linear mappings. Show that these categories
admit direct sums and products, direct and inverse limits, pull-backs, push-
outs and free objects (i.e. the forgetful functor to the category of sets admits
a left adjoint).
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2.5 Grid-based summation

Let C[[M]] be a grid-based algebra as in section 2.2. Given a countable family
F 2F (C[[M]]), we define F to be summable if and only if F is a grid-based
family, in which case its sum is given by formula (2.2). Note that grid-based
sets are always countable, so it is sufficient to restrict ourselves to countable
families in the grid-based context. After extension of the strong summation
operator to arbitrary families using remark 2.10, it can be checked that the
notions of strong summation and summation of grid-based families coincide.

2.5.1 Ultra-strong grid-based algebras

Proposition 2.13. C[[M]] is an ultra-strong C-algebra.

Proof. The proof does not present any real difficulties. In order to familiarize
the reader with strong summability, we will prove SA6 and SR in detail. The
proofs of the other properties are left as exercises.

Let F be a countable grid-based family and F =
`
j2JGj a decomposition

of F . For each m2M, let F;m= (f 2F : fm=/ 0) and Gj;m= (f 2 Gj: fm=/ 0),
so that

F;m=
a
j2J
Gj;m (2.5)

Now Gj is a grid-based family for all j 2J , since
S
f2Gj supp f �

S
f2F supp f

and Gj;m�F;m is finite for all m2M. Furthermore,[
j2J

supp
X
Gj �

[
j2J

[
f2Gj

supp f =
[
f2F

supp f ;

and the set fj 2 J : (
P
Gj)m=/ 0g � fj 2 J : Gj;m=/ ?g is finite for all m2M,

because of (2.5). Hence, the family (
P
Gj)j2J is grid-based and for all m2M,

we have �X
j2J

X
Gj
�
m

=
X
j2J

X
f2Gj;m

fm=
X
f2F;m

fm=
¡X

F
�
m
:

This proves SA6.
Now let F and G be two grid-based families. Then[

(f ;g)2F�G
supp f g �

[
(f ;g)2F�G

(supp f) (supp g)

=
[
f2F

supp f
[
g2G

supp g
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is grid-based. Given m2M, the couples

(v;w)2 (
[
f2F

supp f)� (
[
g2G

supp g)

with vw=m form a finite anti-chain for 4!; let (v1;w1); : : : ; (vn;wn) denote
those couples. Then

((f ; g)2F �G: (f g)m=/ 0)
� ((f ; g)2F �G:9k 2f1; : : : ; ng; fvk=/ 0^ gwk=/ 0)

is finite, whence (fg)(f ;g)2F�G is a grid-based family. Given m2M, and using
the above notations, we also have� X

(f ;g)2F�G
f g
�
m

=
X

(f ;g)2F�G

X
16k6n

fvk gwk

=
X

16k6n

¡X
F
�
vk

¡X
G
�
wk

=
¡¡X

F
�¡X

G
��

m
:

This proves SR. �

2.5.2 Properties of grid-based summation

Let C[[M]] be a grid-based algebra. Given F 2F (C[[M]]), let

termF = (fmm)f2F ;m2suppf
monF = (m)f2F ;m2suppf

We have

F 2S (C[[M]]) , termF 2S (C[[M]]) (2.6)
, monF 2S (C[[M]]) (2.7)

Indeed, [
f2F

supp f =
[

f2termF
supp f =

[
f2monF

supp f

and for every m2M,

card (f 2F : fm=/ 0) = card (f 2 termF : fm=/ 0)
= card (f 2monF : fm=/ 0):

Moreover, if F is a grid-based, then termF refines F .
It is convenient to generalize proposition 2.1 to grid-based families. Given

F =(fi)i2I 2C[[M]]I, we denote

F � 1 , (8i2 I ; fi� 1)
Fw = (fi1 � � � fin)i1 � � �in2Iw
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Proposition 2.14. Given grid-based families F ; G 2F (C[[M]]), we have

a) F qG is grid-based.
b) FG is grid-based.
c) If F � 1, then Fw is grid-based.

Proof. Properties (a) and (b) follow from SA4 and SR. As to (c), let S be
the well-based set of pairs (f ;m) with f 2F and m2M, for the ordering

(f ;m)� (g; n),m� n:

Now consider the family T = (�w)w2Sw with �w= f1;m1 � � � fl;mlm1 � � � ml for
each word w=(f1;m1) � � � (fl;ml)2Sw. We have[

�2T
supp � �

� [
f2F

supp f
��
:

Moreover, given n2
S
�2T supp � , the set of w2Sw with n2 supp �w forms a

finite anti-chain of the well-based set Sw. Hence T is grid-based, and so is Fw,
since T refines Fw. �

2.5.3 Extension by strong linearity

Let C[[M]] and C[[N]] be two grid-based algebras. A mapping ':M!
C[[N]] is said to be grid-based if grid-based subsets S�M are mapped to
grid-based families ('(m))m2S.

Proposition 2.15. Let ':M! C[[N]] be a grid-based mapping. Then '
extends uniquely to a strongly linear mapping '̂:C[[M]]!C[[N]].

Proof. Let f 2C[[M]]. Then ('(m))m2suppf is a grid-based family, by defi-
nition, and so is (fm '(m))m2suppf. We will prove that

'̂:C[[M]] ¡! C[[N]]

f 7¡!
X

m2suppf
fm '(m)

is the unique strongly linear mapping which coincides with ' on M.
Given �2C and f 2C[[M]] we clearly have '̂(�f)=�'̂(f), by SM. Now

let F 2S (C[[M]]) and S=
S
f2F supp f . We claim that

(fm '(m))(f ;m)2F�S
is grid-based. Indeed,[

(f ;m)2F�S
supp fm '(m)�

[
m2S

supp '(m)
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is grid-based. Secondly, given n2N, the set fm2S:'(m)n=/ 0g is finite, since
('(m))m2S is grid-based. Finally, for each m2S with '(m)n=/ 0, the family
(f 2F : fm=/ 0) is finite. Hence, the family ((f ;m)2F �S: fm '(m)n=/ 0) is
finite, which proves our claim. Now our claim, together with SA6, proves that
'̂(F)= (

P
m2S fm '(m))f2F is grid-based andX

'̂(F) =
X
f2F

X
m2S

fm '(m)

=
X

(f ;m)2F�S
fm '(m)

=
X
m2S

X
f2F

fm '(m) = '̂
¡X

F
�
:

This establishes the strong linearity of '̂.
In order to see that '̂ is unique with the desired properties, it suffices

to observe that for each f 2 C[[M]], we must have '̂(fmm) = fm '(m) by
linearity and '̂(f)=

P
m2suppf fm '(m) by strong linearity. �

Proposition 2.16. Assume, with the notations from the previous proposition
that ' preserves multiplication. Then so does '̂.

Proof. This follows directly from the fact that the mappings (f ; g) 7! '̂(f g)
and (f ; g) 7! '̂(f) '̂(g) are both strongly bilinear mappings from C[[M]]2

into C[[N]], which coincide on M2.
Strong bilinearity will be treated in more detail in section 6.2. Translated

into terms of strong linearity, the proof runs as follows. Given m2M, we first
consider the mapping �m: n 7! '(m n) = '(m) '(n). Its extension by strong
linearity maps g 2C[[M]] toX

n2suppg
gn '(mn)= '̂

 X
n2suppg

gnmn

!
= '̂(m g);

but also to X
n2suppg

gn '(m) '(n)= '̂(m) '̂(g):

We next consider the mapping �:m 7! �m(g). Its extension by strong linearity
maps f 2C[[M]] toX

m2suppf
fm '̂(m g)= '̂

 X
m2suppf

fmm g

!
= '̂(f g);

but also to X
m2suppf

fm '̂(m) '̂(g)= '̂(f) '̂(g): �
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Proposition 2.17. Let  :M!C[[N]] and ':N!C[[V]] be two grid-based
mappings. Then

'̂ �  d = '̂�  ̂:

Proof. This follows directly from the uniqueness of extension by strong lin-
earity, since '̂�  and '̂�  ̂ coincide on M. �

In section 2.2, we defined the composition ' � f for '2C[[z]] and infin-
itesimal f 2 C[[M]]. We now have a new interpretation of this definition
as follows. Consider the mapping ': zN! C[[M]], which maps zn to fn.
By proposition 2.1 and Higman's theorem, (fn)n2N is a grid-based family,
whence we may extend ' by strong linearity. Given g 2C[[z]], we have

g � f =
X

m1 � � �mn2(suppf)w
gn fm1 � � � fmnm1 � � �mn

=
X
n2N

X
(m1; : : : ;mn)2(suppf)n

gn fm1 � � � fmnm1 � � �mn

=
X
n2N

gn

" X
(m1; : : : ;mn)2(suppf)n

fm1 � � � fmnm1 � � �mn
#

=
X
n2N

gn f
n= '̂(g):

Now proposition 2.16 implies that

(g h) � f =(g � f) (h� f)

for all g; h2C[[z]]. If g� 1, then proposition 2.17 also implies

(h � g) � f =h� (g � f):
More generally, we have

Proposition 2.18. Let f1; : : : ; fk be infinitesimal grid-based series in C[[M]]
and consider the mapping

': z1N � � � zkN ! C[[M]]

z1
n1 � � � zk

nk 7! f1
n1 � � � fk

nk:

Given g 2C[[z1; : : : ; zk]], we define g � (f1; : : : ; fk)= '̂(g). Then

a) For g; h2C[[z1; : : : ; zk]], we have

(g h) � (f1; : : : ; fk)= g � (f1; : : : ; fk)h� (f1; : : : ; fk):

b) For h2C[[z1; : : : ; zl]] and infinitesimal g1; : : : ; gl2C[[z1; : : : ; zk]], we have

(h � (g1; : : : ; gl)) � (f1; : : : ; fk)=h � (g1 � (f1; : : : ; fk); : : : ; gl � (f1; : : : ; fk)):
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Exercise 2.21. Assume that C is a strong ring and M a monomial monoid.
A family F 2F (C[[M]]) is said to be grid-based , if

S
f2F supp f is grid-based

and (fm)f2F 2S (C), for each m2M. Show that this definition generalizes the
usual definition of grid-based families and generalize proposition 2.13.

Exercise 2.22. Give R the strong field structure from exercise 2.19(a) and
R[[M]] the strong ring structure from exercise 2.21. Show that the strong sum-
mation on R[[M]] does not necessarily satisfy US. Prove that it does satisfy
the following axiom:

RS. Let F 2S (R[[M]]) and Gf 2S (R>) be such that
P
Gf =1 for all f 2F .

Then (� f)f2F ;�2Gf 2S (R[[M]]).

Exercise 2.23. Generalize the results from this section to the case when we
consider well-based (or R-finite, accumulation-free series, etc.) series instead of
grid-based series.

2.6 Asymptotic scales

Let C be a field of characteristic zero. Assume that C is both an R-module
and a field with R-powers, for some ring R, and letM be an ordered monomial
group with R-powers. The the definition of f� in (2.3) generalizes to the
case when f 2C[[M]] is a regular series with cf 2C�. As before, the group
C[[M]]� of such f has R-powers.

Proposition 2.19. Let N be another ordered monomial group with R-powers
and let ':M!C[[N]] be a grid-based mapping such that

� '(m)2C[[N]]�, for all m2M.
� '(mn)= '(m) '(n) and '(m�)= '(m)�, for all m; n2M and �2R.
� The mapping d � ':M!N;m 7! d'(m) is increasing.

Then

a) '̂(f g)= '̂(f) '̂(g) and '̂(f�)= '̂(f)�, for all f ; g 2C[[M]]� and �2R.
b) If ker d � '=1, then '̂ is injective.

Proof. By proposition 2.16, '̂ preserves multiplication. Furthermore, d � '
is strictly increasing (otherwise, let m2M be such that m� 1, but d'(m)=
1. Then ('(mn))n2N is not grid-based). Let f = cf df (1 + ")2C[[M]]� be
a regular series and � 2R. Then (d � ')(m)� 1 for all m 2 supp ", whence
'̂(")� 1. Now

'̂(f�)= cf�'(df)� ((1+ z)� � '̂("))= cf�'(df)� (1+ '̂("))�;

by the propositions of the previous section. Furthemore, 1+ '̂(") is in C[[N]]�,
and so are cf and '(df). Therefore,

'̂(f�)= cf�'(df)� (1+ '̂("))�=(cf'(df) (1+ '̂(")))�= '̂(f)�;
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since C[[N]]� is a group with R-powers. This proves (a).
Assume now that kerd�'=1. Then d�' is injective and strictly increasing.

Given f 2C[[M]] with dominant monomials d1;:::;dn, the monomials d'(d1);:::;
d'(dn) are pairwise distinct. Consequently, the dominant monomials of '̂(f)
are precisely the maximal elements for 4 among the d'(di). In particular,
if f =/ 0, then there exists at least one such maximal element, so that '̂(f)=/ 0.
This proves (b). �

An asymptotic scale in C[[M]] is a subgroupS of C[[M]]� withR-powers,
such that djS:S!M is injective. Then S is naturally ordered by f < g,
df < dg, for all f ; g 2S. The previous proposition now shows that we may
identify C[[S]] with a subset of C[[M]] via the strongly linear extension �̂S of
the inclusion �S:S!C[[M]]. This identification is coherent in the sense that
�̂S � �̂T= �̂�̂S(T), for any asymptotic scale T in C[[S]], by proposition 2.17.

A basis of an asymptotic scale S is a basis of S, when considering S as
an exponential R-module. If B is such a basis, then dB is a basis of dS. In
particular, if dS=M, then dB is a basis of M. In this case, the bijection
djS:S!M is called a scale change and its restriction to B a base change.
We also say that B is an asymptotic basis for C[[M]] in this case.

When dealing with finite bases, it will often be convenient to consider them
as ordered n-tuples B=(b1; : : : ; bn) instead of sets without any ordering.

Exercise 2.24. Generalize the results from this section to the case when we
consider well-based series instead of grid-based series. In the definition of asymp-
totic scales, one should add the requirement that the natural inclusion mapping
S!C[[M]] be well-based (i.e. well-based subsets of S are mapped to well-based
families).

Exercise 2.25.

a) Assume that M is a perfect monomial group, i.e. mn4 1)m4 1, for all
m2M and n>1. Prove that a series f 2C[[M]] is invertible, if and only if f
is regular. Hint: show that for each dominant monomial m of f 2C[[M]],
there exists an extension 40 of the ordering on M, such that n40m, for all
n2 supp f .

b) Prove that the above characterization of invertible series does not hold for
general monomial groups.

Exercise 2.26. Let K be a field and M be a monomial group with K-powers.
Assume that M admits a finite basis B=(b1; : : : ; bn).

a) Let B 0= (b1
0 ; : : : ; bn0

0 ) be another asymptotic basis of C[[M]]. Show that
n0=n and that there exists a square matrix

PB 0;B=

0BB@ �1;1 � � � �1;n
��� ���

�n;1 � � � �n;n

1CCA;
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such that d(B0)=BPB0;B, that is, d(bi0)= b1
�i;1 � � � bn

�i;n for all n.
b) Show that PB;B 0PB 0;B= Idn.
c) If C[[M]]=C[[b1;:::;bn]]=C[[b1

0 ;:::;bn
0 ]], then show that the matrix PB 0;B

is diagonal, modulo a permutation of the elements of B0.
d) If C[[M]]=C[[b1;:::;bn]]=C[[b1

0 ;:::;bn
0 ]], then show that the matrix PB 0;B

is lower triangular.
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3

The Newton polygon method

Almost all techniques for solving asymptotic systems of equations are explic-
itly or implicitly based on the Newton polygon method. In this section we
explain this technique in the elementary case of algebraic equations over grid-
based algebras C[[M]], where C is a constant field of characteristic zero
and M a totally ordered monomial group with Q-powers. In later chapters of
this book, the method will be generalized to linear and non-linear differential
equations.

In section 3.1, we first illustrate the Newton polygon method by some
examples. One important feature of our exposition is that we systematically
work with �asymptotic algebraic equations�, which are polynomial equations
P (f) = 0 over C[[M]] together with asymptotic side-conditions, like f � v.
Asymptotic algebraic equations admit natural invariants, like the �Newton
degree�, which are useful in the termination proof of the method. Another
important ingredient is the consideration of equations P 0(f)=0, P 00(f)=0, etc.
in the case when P (f)= 0 admits almost multiple roots.

In section 3.2, we prove a version of the implicit function theorem for
grid-based series. Our proof uses a syntactic technique which will be further
generalized in chapter 6. The implicit function theorem corresponds to the
resolution of asymptotic algebraic equations of Newton degree one. In sec-
tion 3.3, we show how to compute the solutions to an asymptotic algebraic
equation using the Newton polygon method. We also prove that C[[M]] is
algebraically closed or real closed, if this is the case for C.

The end of this chapter contains a digression on �Cartesian representa-
tions�, which allow for a finer calculus on grid-based series. This calculus is
based on the observation that any grid-based series can be represented by
a multivariate Laurent series. By restricting these Laurent series to be of
a special form, it is possible to define special types of grid-based series, such
as convergent, algebraic or effective grid-based series. In section 3.5, we will
show that the Newton polygon method can again be applied to these more
special types of grid-based series.



Cartesian representations are essential for the development of effective
asymptotics [Hoe97], but they will only rarely occur later in this book (the
main exceptions being section 4.5 and some of the exercises). Therefore, sec-
tions 3.4 and 3.5 may be skipped in a first reading.

3.1 The method illustrated by examples

3.1.1 The Newton polygon and its slopes

Consider the equation

P (f)=
X
i>0

Pi f
i= z3 f6+ z4 f5+ f4¡ 2 f3+ f2+ z

1¡ z2 f +
z3

1¡ z =0 (3.1)

and a Puiseux series f = c z�+ � � � 2C[c][[zQ]], where c=/ 0 is a formal para-
meter. We call �= val f the dominant exponent or valuation of f . Then

�=min
i

val(Pi zi�)=min f3; �+1; 2 �; 3 �; 4 �; 5 �+4; 6 �+3g

is the dominant exponent of P (f)2C[c][[zQ]] and

NP ;z�(c) :=P (f)z�=0 (3.2)

is a non-trivial polynomial equation in c. We call NP ;z� and (3.2) the Newton
polynomial resp. Newton equation associated to z�.

Let us now replace c by a non-zero value in C, so that f = c z�+ � � � 2
C[[zQ]]. If f is a solution to (3.1), then we have in particular NP ;z�(c)= 0.
Consequently, NP ;z� must contain at least two terms, so that � occurs at least
twice among the numbers 3; �+1; 2 �; 3 �; 4 �; 5 �+4; 6 �+3. It follows that

�2f2; 1; 0;¡3

2
g:

We call 2; 1; 0 and ¡3

2
the starting exponents for (3.1). The corresponding

monomials z2, z, 1 and z¡3/2 are called starting monomials for (3.1).

The starting exponents may be determined graphically from the Newton
polygon associated to (3.1), which is defined to be the convex hull of all
points (i; �) with � > valPi. Here points (i; �)2N�Q really encode points
(f i; z�) 2 fN � zQ (recall the explanations below figure 2.1). The Newton

58 3 The Newton polygon method



polygon associated to (3.1) is drawn at the left hand side of figure 3.1. The
diagonal slopes

(1; z3) ! (f ; z) (�=2)
(f ; z) ! (f2; 1) (�=1)
(f2; 1) ! (f4; 1) (�=0)
(f4; 1) ! (f6; z3) (�=¡3

2
)

correspond to the starting exponents for (3.1).
Given a starting exponent �2Q for (3.1), a non-zero solution c of the cor-

responding Newton equation is called a starting coefficient and c z� a starting
term. Below, we listed the starting coefficients c as a function of � in the case
of equation (3.2):

� NP ;� c multiplicity
2 c+1 ¡1 1
1 c2+ c ¡1 1
0 c4¡ 2 c3+ c2 1 2
3

2
c6+ c4 ¡i; i 1

Notice that the Newton polynomials can again be read off from the Newton
polygon. Indeed, when labeling each point (f i; z�) by the coefficient of z�

in Pi, the coefficients of NP ;z� are precisely the coefficients on the edge with
slope �.

Given a starting term c z� 2C zQ, we can now consider the equation
P~(f~) = 0 which is obtained from (3.1), by substituting c z�+ f~ for f , and
where f~ satisfies the asymptotic constraint f~� z�. For instance, if c z�=1z0,
then we obtain:

P~(f~) = z3 f~6+(6 z3) f~5+(15 z3+5 z4+1) f~4+
(20 z3+ 10 z4+2) f~3+(15 z3+ 10 z4+1) f~2+�
6 z3+5 z4+ z

1¡ z2

�
f~+ z4+ z3+ z4+ z3+ z

1¡ z2 =0 (f~� 1) (3.3)

The Newton polygon associated to (3.3) is illustrated at the right hand side of
figure 3.1. It remains to be shown that we may solve (3.3) by using the same
method in a recursive way.

3.1.2 Equations with asymptotic constraints and refinements

First of all, since the new equation (3.3) comes with the asymptotic side-con-
dition f~� 1, it is convenient to study polynomial equations with asymptotic
side-conditions

P (f)= 0 (f � z�) (3.4)

3.1 The method illustrated by examples 59



�2

1

1

1

f

N

1 1

z

Q

z

Q

~

f

N

Fig. 3.1. The left-hand side shows the Newton polygon associated to the
equation (3.1). The slopes of the four edges correspond to the starting expo-
nents 2, 1, 0 and ¡3

2
(from left to right). After the substitution

f! 1+ f~ (f~� 1);

we obtain the equation (3.3), whose Newton polygon is shown at the right-
hand side. Each non-zero coefficient Pi;z� in the equation (3.1) for f induces
a �row� of (potentially) non-zero coefficients P~{~;z�~ in the equation for f~, in
the direction of the arrows. The horizontal direction of the arrows corre-
sponds to the slope of the starting exponent 0. Moreover, the fact that 1 is
a starting term corresponds to the fact that the coefficient of the lowest left-
most induced point vanishes.

in a systematic way. The case of usual polynomial equations is recovered by
allowing � =¡1. In order to solve (3.4), we now only keep those starting
monomials z� for P (f)=0 which satisfy the asymptotic side condition z��z�,
i.e. �>�.

The highest degree of NP ;z� for a monomial z�� z� is called the Newton
degree of (3.4). If d>0, then P is either divisible by f (and f =0 is a solution
to (3.4)), or (3.4) admits a starting monomial (and we can carry out one step
of the above resolution procedure). If d=0, then (3.4) admits no solutions.

Remark 3.1. Graphically speaking, the starting exponents for (3.4) correspond
to sufficiently steep slopes in the Newton polygon (see figure 3.2). Using
a substitution f = z�f~, the equation (3.4) may always be transformed into an
equation

P~(f~)= 0 (f~� 1)

with a normalized asymptotic side-condition (the case � = ¡1 has to be
handled with some additional care). Such transformations, called multiplica-
tive conjugations, will be useful in chapter 8, and their effect on the Newton
polygon is illustrated in figure 3.2.
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d = 2

z

Q

f

N

d = 2

z

Q

~

f

N

Fig. 3.2. At the left-hand side, we have illustrated the Newton polygon for
the asymptotic equation P (f)=0 (f �z1/2). The dashed line corresponds to
the slope 1/2 and the edges of the Newton polygon with slope > 1/2 have
been highlighted. Notice that the Newton degree d= 2 corresponds to the
first coordinate of the rightmost point on an edge with slope > 1/2. At the
right-hand side, we have shown the �pivoting� effect around the origin of the
substitution f = z1/2 f~ on the Newton polygon.

Given a starting term '= � = c z� or a more general series '= c z�+ � � � 2
C[[zQ]], we next consider the transformation

f = '+ f~ (f~� z�~); (3.5)

with z�~4 z�, which transforms (3.4) into a new asymptotic polynomial equa-
tion

P~(f~)=0 (f~� z�~): (3.6)

Transformations like (3.5) are called refinements. A refinement is said to be
admissible, if the Newton degree of (3.6) does not vanish.

Now the process of computing starting terms and their corresponding
refinements is generally infinite and even transfinite. A priori , the process
therefore only generates an infinite number of necessary conditions for Puiseux
series f to satisfy (3.4). In order to really solve (3.4), we have to prove that,
after a finite number of steps of the Newton polygon method, and whatever
starting terms we chose (when we have a choice), we obtain an asymptotic
polynomial equation with a unique solution. In the next section, we will prove
an implicit function theorem which guarantees the existence of such a unique
solution for equations of Newton degree one. Such equations will be said to
be quasi-linear .

Returning to our example equation (3.1), it can be checked that each of
the refinements

f = ¡z2+ f~ (f~� z2);
f = ¡z+ f~ (f~� z);
f = ¡i z¡3/2+ f~ (f~� z¡3/2);
f = i z¡3/2+ f~ (f~� z¡3/2)
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leads to a quasi-linear equation in f~. The case

f =1+ f~ (f~� 1)

leads to an equation of Newton degree 2 (it will be shown later that the
Newton degree of (3.6) coincides with the multiplicity of c as a root of NP ;z�).
Therefore, the last case necessitates one more step of the Newton polygon
method:

f~ = ¡i z
p

+ f~~ (f~~� z1/2);
f~ = i z

p
+ f~~ (f~~� z1/2):

For both refinements, it can be checked that the asymptotic equation in f~~

is quasi-linear. Hence, after a finite number of steps, we have obtained a
complete description of the set of solutions to (3.1). The first terms of these
solutions are as follows:

fI = ¡z2¡ 2 z3¡ 4 z4¡ 13 z5¡ 50 z6+O(z7);
fII = ¡z+3 z2¡ 8 z3+ 46 z4¡ 200 z5+O(z6);
fIII = 1¡ i z1/2+ 1

2
z+ 5 i

8
z3/2¡ z2+O(z5/2);

fIV = 1+ i z1/2+ 1

2
z¡ 5 i

8
z3/2¡ z2+O(z5/2);

fV = ¡i z¡3/2¡ 1¡ 1

2
z¡ i z3/2¡ i

2
z5/2+O(z3);

fVI = i z¡3/2¡ 1¡ 1

2
z+ i z3/2+ i

2
z5/2+O(z3):

3.1.3 Almost double roots

Usually the Newton degrees rapidly decreases during refinements and we are
quickly left with only quasi-linear equations. However, in the presence of
almost multiple roots, the Newton degree may remain bigger than two for
quite a while. Consider for instance the equation�

f ¡ 1
1¡ z

�
2

= "2 (3.7)

over C[[z; "]], with z� 1 and "� 1. This equation has Newton degree 2, and
after n steps of the ordinary Newton polygon method, we obtain the equation�

f~¡ zn

1¡ z

�
2

= "2 (f~� zn¡1);

which still has Newton degree 2. In order to enforce termination, an additional
trick is applied: consider the first derivative

2 f ¡ 2
1¡ z =0
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of the equation (3.7) w.r.t. f . This derived equation is quasi-linear, so it
admits a unique solution

'= 1
1¡ z:

Now, instead of performing the usual refinement f = 1 + f~ (f~� 1) in the
original equation (3.7), we perform refinement

f = '+ f~ (f~� 1):
This yields the equation

f~2= "2 (f~� 1):

Applying one more step of the Newton polygon method yields the admissible
refinements

f~ = ¡"+ f~~ (f~� ");
f~ = "+ f~~ (f~� "):

In both cases, we obtain a quasi-linear equation in f~~:

¡2 " f~~+ f~~2 = 0 (f~� ");
2 " f~~+ f~~2 = 0 (f~� "):

In section 3.3.2, we will show that this trick applies in general, and that the
resulting method always yields a complete description of the solution set after
a finite number of steps.

Remark 3.2. The idea of using repeated differentiation in order to handle
almost multiple solutions is old [Smi75] and has been used in computer algebra
before [Chi86, Gri90]. Our contribution has been to incorporate it directly into
the Newton polygon process, as will be shown in more detail in section 3.3.2.

3.2 The implicit series theorem

In the previous section, we have stressed the particular importance of quasi-
linear equations when solving asymptotic polynomial equations. In this sec-
tion, we will prove an implicit series theorem for polynomial equations. In the
next section, we will apply this theorem to show that quasi-linear equations
admit unique solutions. The implicit series theorem admits several proofs (see
the exercises). The proof we present here uses a powerful syntactic technique,
which will be generalized in chapter 6.

Theorem 3.3. Let C be a ring and M a monomial monoid. Consider the
polynomial equation

Pn f
n+ � � �+P0=0 (3.8)

with coefficients P0; : : : ; Pn 2 C[[M4]], such that P0;1 = 0 and P1;1 2 C�.
Then (3.8) admits a unique solution in C[[M�]].
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Proof. Since P1;12C�, the series P1 is invertible in C[[M4]]. Modulo division
of (3.8) by P1, we may therefore assume without loss of generality that P1=1.
Setting Qi=¡Pi for all i=/ 1, we may then rewrite (3.8) as

f =Q0+Q2 f2+ � � �+Qn fn: (3.9)

Now consider the set T of trees with nodes of arities in f0;2; : : : ; ng and such
that each node of arity i is labeled by a monomial in suppQi. To each such tree

t= v

t1 � � � ti

2T

we recursively associate a coefficient ct2C and a monomial mt2M by

ct = Qi;v ct1 � � � cti;
mt = vmt1 � � �mti:

Now we observe that each of these monomials mt is infinitesimal, with

mt2 (suppQ0) � (suppQ0[ suppQ2[ � � � [ suppQn)�: (3.10)

Hence the mapping t 7!mt is strictly increasing, when T is given the embed-
dability ordering from section 1.4. From Kruskal's theorem, it follows that
the family (ctmt)t2T is well-based and even grid-based, because of (3.10). We
claim that f =

P
t2T ctmt is the unique solution to (3.9).

First of all, f is indeed a solution to (3.9), since

f =
X

i2f0;2; : : : ;ng

X
v2suppQi

X
t1; : : : ;ti2T

c v

t1 � � � ti

m v

t1 � � � ti

=
X

i2f0;2; : : : ;ng

X
v2suppQi

X
t1; : : : ;ti2T

(Qi;v v) (ct1mt1) � � � (ctimti)

=
X

i2f0;2; : : : ;ng

 X
v2suppQi

Qi;v v

! Y
j=1

i X
tj2T

ctjmtj

!
=

X
i2f0;2; : : : ;ng

Qi f
i=Q0+Q2 f

2+ � � �+Qn f
n:

In order to see that f is the unique solution to (3.8), consider the polynomial
R(�) = P (f + �). Since f � 1, we have Ri= Pi+ o(1) for all i, whence in
particular R1=1+ o(1). Furthermore, P (f)= 0 implies R0=0. Now assume
that g� 1 were another root of P . Then �= g¡ f � 1 would be a root of R,
so that

�=(R1+R2 �+ � � �+Rn¡1 �n¡1)¡1R(�)= 0; (3.11)

since R1+R2 �+ � � �+Rn¡1 �n¡1=1+ o(1) is invertible. �
Exercise 3.1. Generalize theorem 3.3 to the case when (3.8) is replaced by

P0+P1 f +P2 f
2+ � � �=0;

where (Pi)i2N 2C[[M4]] is a grid-based family with P0;1=0 and P1;12C�.
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Exercise 3.2. Give an alternative proof of theorem 3.3, using the fact that (3.9)
admits a unique power series solution in Z[[Q2 Q0; : : : ; Qn Q0

n¡1]] Q0, when
considered as an equation with coefficients in Z[[Q0; Q2; : : : ; Qn]].

Exercise 3.3. Assuming that M is totally ordered, give yet another alternative
proof of theorem 3.3, by computing the terms of the unique solution by trans-
finite induction.

Exercise 3.4. Let C hhz1; : : : ; znii denote the ring of non-commutative power
series in z1; : : : ; zn over C. Consider the equation

f(g(z1; : : : ; zn); z1; : : : ; zn)= 0 (3.12)

with f 2C hhy; z1; : : : ; znii, f1= 0 and invertible fy. Prove that (3.12) admits
a unique infinitesimal solution g 2C hhz1; : : : ; znii.

3.3 The Newton polygon method

3.3.1 Newton polynomials and Newton degree

Let C be a constant field of characteristic zero and M a totally ordered
monomial group withQ-powers. Consider the asymptotic polynomial equation

Pn fn+ � � �+P0=0 (f � v); (3.13)

with coefficients in C[[M]] and v2M. In order to capture ordinary polyno-
mial equations, we will also allow v=>M, where >M is a formal monomial
with >M�M. A starting monomial of f relative to (3.13) is a monomial m�v

in M, such that there exist 06 i< j6n and n2M with Pimi�Pjmj�n and
Pkm

k4 n for all other k. To such a starting monomial m we associate the
equation

NP ;m(c)=Pn;n/md cn+ � � �+P0;n=0; (3.14)

and NP ;m is called the Newton polynomial associated to m. A starting term
of f relative to (3.13) is a term � = cm, where m is a starting monomial
of f relative to (3.13) and c2C=/ a non-zero root of NP ;m. In that case, the
multiplicity of � is defined to be the multiplicity of c as a root of NP ;m. Notice
that there are only a finite number of starting terms relative to (3.13).

Proposition 3.4. Let f be a non-zero solution to (3.13). Then �f is a starting
term for (3.13). �

The Newton degree d of (3.13) is defined to be the largest degree of the
Newton polynomial associated to a monomial m� v. In particular, if there
exists no starting monomial relative to (3.13), then the Newton degree equals
the valuation of P in f . If d=1, then we say that (3.13) is quasi-linear . The
previous proposition implies that (3.13) does not admit any solution, if d=0.
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Lemma 3.5. If (3.13) is quasi-linear, then it admits a unique solution
in C[[M]].

Proof. If P0=0, then our statement follows from proposition 3.4, since there
are no starting monomials. Otherwise, our statement follows from theorem 3.3,
after substitution of f n for f in (3.13), where n is chosen 4-maximal such
that dP1< dPi n

i¡1 for all i, and after division of (3.13) by dP1. �

3.3.2 Decrease of the Newton degree during refinements

A refinement is a change of variables together with the imposition of an
asymptotic constraint:

f = '+ f~ (f~� v~); (3.15)

where '�v and v~4v. Such a refinement transforms (3.13) into an asymptotic
polynomial equation in f~:

P~n f~
n+ � � �+P~0=0 (f~� v~); (3.16)

where

P~i=
1
i!
P (i)(')=

X
k=i

n �
k
i

�
Pk'k¡i; (3.17)

for each i. We say that the refinement (3.15) is admissible if the Newton degree
of (3.16) is strictly positive.

Lemma 3.6. Consider the refinement (3.15) with v~= d'. Then

a) The Newton degree of (3.16) coincides with the multiplicity of c as a root
of NP ;m. In particular, (3.15) is admissible if and only if cm is a starting
term for (3.13).

b) The Newton degree of (3.16) is bounded by the Newton degree of (3.13).

Proof. Let d be maximal such that Pdmd< Pimi for all i, and denote n=
d(Pd)md. Then d is bounded by the Newton degree of (3.13) and

P~i = 1
i!

X
k=i

n �
k
i

�
Pk'

k¡i

= 1
i!

X
k=i

n �
k
i

�
(Pk;nm¡k+ o(1)) nm¡k (c+ o(1))k¡imk¡i

= 1
i!
NP ;m
(i) (c) nmi+ o(nmi);

for all i. In particular, denoting the multiplicity of c as a root of NP ;m by d~,
we have P~d~�nm¡d

~. Moreover, for all i>d~, we have P~i4nm¡i. Hence, for any
i > d~ and m~ �m, we have P~im~ i�P~d~m~ d

~. This shows that the Newton degree
of (3.16) is at most d~.
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Let us now show that the Newton degree of (3.16) is precisely d~. Choose
m~ �m large enough, so that

m~ <
dP~i(f~)
dP~d~(f~)

d~¡ i

s
for all i < d~. Then degNP~;m~ = d~. �

If one step of the Newton polygon method does not suffice to decrease
the Newton degree, then two steps do, when applying the trick from the next
lemma:

Lemma 3.7. Let d be the Newton degree of (3.13). If f admits a unique
starting monomial m and NP ;m a unique root c of multiplicity d, then

a) The equation

P (d¡1)(')= 0 ('� v) (3.18)

is quasi-linear and its unique solution satisfies '= cm+ o(m).
b) The Newton degree of any refinement

f~= '~+ f~~ (f~~� v~~)

relative to (3.16) with v~~= d'~~ is strictly inferior to d.

Proof. Notice first that NP 0;m=NP ;m0 for all polynomials P and monomials m.
Consequently, (3.18) is quasi-linear and c is a single root of NP (d¡1);m. This
proves (a).

As to (b), we first observe that P~d¡1= P (d¡1)(') = 0. Given m~ � v~, it
follows that NP~;m;d¡1=0. In particular, there do not exist �=/ 0; �=/ 0 with
NP~;m~ (c~)=�(c~¡�)d. In other words,NP~;m~ does not admit roots of multiplicity
d. We conclude by lemma 3.6. �

3.3.3 Resolution of asymptotic polynomial equations

Theorem 3.8. Let C be an algebraically closed field of characteristic zero
and M a totally ordered monomial group with Q-powers. Then C[[M]] is
algebraically closed.

Proof. Consider the following algorithm:

Algorithm polynomial_solve
Input: An asymptotic polynomial equation (3.13).
Output: The set of solutions to (3.13).

1. Compute the starting terms c1m1; : : : ; c�m� of f relative to (3.13).
2. If �=1 and c1 is a root of multiplicity d of NP ;m1, then let ' be the unique

solution to (3.18). Refine (3.15) and apply polynomial_solve to (3.16).
Return the so obtained solutions to (3.13).
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3. For each 16 i6 �, refine
f = cimi+ f~ (f~�mi)

and apply polynomial_solve to the new equation in f~. Collect and return
the so obtained solutions to (3.13), together with 0, if P is divisible by f .

The correctness of polynomial_solve is clear; its termination follows from
lemmas 3.6(b) and 3.7(b). Since C is algebraically closed, all Newton poly-
nomials considered in the algorithm split over C. Hence, polynomial_solve
returns d solutions to (3.13) in C[[M]], when counting with multiplicities.
In particular, when taking v=>M�M, we obtain n solutions, so C[[M]] is
algebraically closed. �
Corollary 3.9. Let C be a real closed field and M a totally ordered monomial
group with Q-powers. Then C[[M]] is real closed.

Proof. By the theorem, a polynomial equation P (n) = 0 of degree n over
C[[M]] admits n solutions in C[i][[M]], when counting with multiplicities.
Moreover, each root '2C[i][[M]] nC[[M]] is imaginary, because

i = '¡Re '
Im '

2C[[M]][']

for such '. Therefore all real roots of P are in C[[M]]. �
Corollary 3.10. The field C[[zQ]] of Puiseux series over an algebraically
resp. real closed field C is algebraically resp. real closed. �

Exercise 3.5. Consider an asymptotic algebraic equation (3.13) of Newton
degree d. Let �1; : : : ; �k be the starting terms of (3.13), with multiplicities �1; : : : ;
�k. Prove that

�1+ � � �+ �k6 d:
Also show that �1+ � � �+ �k= d if C is algebraically closed.

Exercise 3.6.
a) Show that the computation of all solutions to (3.13) can be represented

by a finite tree, whose non-root nodes are labeled by refinements. Applied
to (3.1), this would yields the following tree:

f = f~

f =¡z2+f~
f~� z2

f =¡z+f~
f~� z

f =1+ f~

f~� 1

f =1¡ i z1/2+f~
f~� z1/2

f =1+ i z1/2+f~

f~� z1/2

f =¡iz¡3/2+ f~

f~� z¡3/2
f = i z¡3/2+f~

f~� z¡3/2

b) Show that the successors of each node may be ordered in a natural way, if C
is a real field, and if we restrict our attention to real algebraic solutions. Prove
that the natural ordering on the leaves, which is induced by this ordering,
corresponds to the usual ordering of the solutions.
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Exercise 3.7.

a) Generalize the results of this chapter to asymptotic equations of infinite
degree in f , but of finite Newton degree.

b) Give an example of an asymptotic equation of infinite degree in f , with
infinitely many solutions.

Exercise 3.8. Consider an asymptotic polynomial equation

P (f)= 0 (f � v)

of Newton degree d, with P 2 C[[M]][F ] and v 2M. Consider the monomial
monoid U=M�FN with

mF i� 1,mvi� 1_ (mvi=1^ i > 0):

a) Show that there exists a unique invertible series u2C[[U]] such that P~=uP
is a monoic polynomial in C[[M]][F ].

b) Show that degP~= d.

3.4 Cartesian representations

In this section, we show that grid-based series may be represented by (finite
sums of) multivariate Laurent series in which we substitute an infinitesimal
monomial for each variable. Such representations are very useful for finer
computations with grid-based series.

3.4.1 Cartesian representations

Let C[[M]] be a grid-based algebra. A Cartesian representation for a series
f 2 C[[M]] is a multivariate Laurent series f�2 C((z�1; : : : ; z�k)), such that
f = '̂(f�) for some morphism of monomial monoids ': z�1Z � � � z�kZ!M. Writing
f�= g� z�1

�1 ��� z�k
�k, with g�2C[[z�1;:::; z�k]], we may also interpret f as the product

of a �series� '̂(g�) in '(z�1); : : : ; '(z�k) and the monomial m= '(z�1
�1 � � � z�k

�k).
More generally, a semi-Cartesian representation for f 2 C[[M]] is an

expression of the form

f = '̂(g�1)m1+ � � �+ '̂(g�l)ml;

where g1; : : : ; gl 2 C[[z�1; : : : ; z�k]], m1; : : : ; ml 2M and ': z�1N � � � z�kN!M is
a morphism of monomial monoids.

Proposition 3.11.

a) Any grid-based series f 2C[[M]] admits a semi-Cartesian representation.
b) If M is a monomial group, which is generated by its infinitesimal elements,

then each grid-based series f 2C[[M]] admits a Cartesian representation.
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Proof.

a) Let m1; : : : ;mk2M� and n1; : : : ; nl2M be such that

supp f �fm1; : : : ;mkg� fn1; : : : ; nlg.

For each v2 supp f , let

nv= card f(�1; : : : ; �k; i)2Nk�f1; : : : ; lg: v=m1
�1 � � �mk�k nig:

Let

g�i=
X

�1; : : : ;�k2Nk

fm1
�1 � � �mk

�kni

nm1
�1 � � �mk

�kni

z�1
�1 � � � z�k

�k

for all 16 i6 l and let ': z�1N � � � z�kN!M; z�1
�1 � � � z�k

�k 7!m1
�1 � � �mk

�k. Then

f = '̂(g�1) n1+ � � �+ '̂(g�l) nl:

b) For certain mk+1; : : : ;mp2M� and �i;j 2Z, we may write

ni=mk+1
�i;k+1 � � �mp

�i;p;

for all 16 i6 l. Let  : z�1Z � � � z�pZ!M; z�1
�1 � � � z�p

�p 7!m1
�1 � � �mp

�p and

f�=
X
i=1

l

g�i z�k+1
�i;k+1 � � � z�p

�i;p:

Then f =  ̂(f�). �

Cartesian or semi-Cartesian representations f1= '̂1(f�1) and f2= '̂2(f�2) are
said to be compatible, if f�1 and f�2 belong to the same algebra C((z�1; : : : ; z�k))
of Laurent series, and if '1= '2.

Proposition 3.12.

a) Any f1; : : : ; fn2C[[M]] admit compatible semi-Cartesian representations.
b) If M is a monomial group, which is generated by its infinitesimal elements,

then any f1; : : : ; fn2C[[M]] admit compatible Cartesian representations.

Proof. By the previous proposition, f1; : : : ; fn admit semi-Cartesian represen-
tations fi= '̂i(f�i), where f�i2C((z�i;1; : : : ; z�i;ki)) and 'i: z�i;1N � � � z�i;ki

N !M for
each i. Now consider

 :
Y
i=1

n Y
j=1

ki

z�i;jN ¡! M

Y
i=1

n Y
j=1

ki

z�i;j
�i;j 7¡!

Y
i=1

n

'̂i

0@Y
j=1

ki

z�i;j
�i;j

1A:
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Then fi=  ̂(F�i) for each i, where F�i is the image of f�i under the natural
inclusion of C((z�i;1; : : : ; z�i;ki)) into C((z�1;1; : : : ; z�1;k1; : : : ; z�n;1; : : : ; z�n;kn)). This
proves (a); part (b) is proved in a similar way. �

3.4.2 Inserting new infinitesimal monomials

In proposition 3.12 we drastically increased the size of the Cartesian basis in
order to obtain compatible Cartesian representations. The following lemma
is often useful, if one wants to keep this size as low as possible.

Lemma 3.13. Let z1; : : : ; zk;m1; : : : ;ml be infinitesimal elements of a totally
ordered monomial group M with Q-powers, such that m1; : : : ;ml 2 z1Z � � � zkZ.
Then there exist infinitesimal z1

0 ; : : : ; zk
0 2 z1

Q � � � zk
Q with z1; : : : ; zk;m1; : : : ;

ml2 (z10 )N � � � (zk0 )N.

Proof. It suffices to prove the lemma for l= 1; the general case follows by
induction over l. The case l = 1 is proved by induction over k. For k = 0,
there is nothing to prove. So assume that k> 1 and let m1= z1

�1 � � � zk�k with
�1;:::;�k2Z. Without loss of generality, we may assume that �k>0, modulo
a permutation of variables. Putting n= z1

�1 � � � zk¡1
�k¡1, we now distinguish the

following three cases:

1. If n� 1, then there exist infinitesimal z10 � � � zk¡10 2 z1Z � � � zk¡1Z , such that
z1; : : : ; zk¡1; n 2 (z10 )N � � � (zk¡10 )N, by the induction hypothesis. Taking
zk
0 = zk, we now have zk;m1= n zk

�k2 (z10 )N � � � (zk0 )N, since �k> 0.
2. If n=1, then m1= zk

�k, and we may take z1
0 = z1; : : : ; zk

0 = zk.
3. If n� 1, then there exists infinitesimal z10 � � � zk¡10 2 z1Z � � � zk¡1Z , such that

z1
1/�k;:::; zk¡1

1/�k;n¡1/�k2 (z10 )N ��� (zk¡10 )N. Taking zk
0 = z1

�1/�k ��� zk¡1
�k¡1/�k zk,

we again have zk= zk
0 n¡1/�k;m1=(zk0 )�k2 (z10 )N � � � (zk0 )N. �

When doing computations on grid-based series in C[[M]], one often works
with respect to a Cartesian basis Z= (z1; : : : ; zk) of infinitesimal elements in
M. Each time one encounters a series f 2C[[M]] which cannot be represented
by a series in C((z�1; : : : ; z�k)), one has to replace Z by a wider Cartesian basis
Z0=(z10 ; : : : ; zk 00 ) with z1; : : : ; zk2 (z10 )N � � � (zk 00 )N. The corresponding mapping
C((z�1; : : : ; z�k))!C((z�10 ; : : : ; z�k 00 )) is called a widening . Lemma 3.13 enables us
to keep the Cartesian basis reasonably small during the computation.

3.5 Local communities

Let C be a ring and M a monomial group which is generated by its infinites-
imal elements. Given a set Ak �C[[z1; : : : ; zk]] for each k 2N, we denote by
C[[M]]A the set of all grid-based series f 2C[[M]], which admit a Cartesian
representation f�2Ak z1Z � � � zkZ for some k 2N. In this section, we will show
that if the Ak satisfy appropriate conditions, then many types of computations
which can be carried out in C[[M]] can also be carried out in C[[M]]A.
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3.5.1 Cartesian communities

Let C be a ring. A sequence (Ak)k2N with Ak �C[[z1; : : : ; zk]] is said to be
a Cartesian community over C, if the following conditions are satisfied:
CC1. z12A1.
CC2. Ak is a C-algebra for each k 2N.
CC3. The Ak are closed under strong monomial morphisms.
In CC3, a strong monomial morphism is strong C-algebra morphism which
maps monomials to monomials. In our case, a monomial preserving strong
morphism from C[[z1; : : : ; zk]] into C[[z1; : : : ; zk 0]] is always of the form

�:C[[z1; : : : ; zk]] ¡! C[[z1; : : : ; zk 0]];
f(z1; : : : ; zk) 7¡! f(z1

�1;1 � � � zk 0
�1;k0; : : : ; z1

�k;1 � � � zk 0
�k;k0);

where �i;j2N and
P
j�i;j=/ 0 for all i. In particular,CA3 implies that the Ak

are closed under widenings.

Proposition 3.14. Let (Ak)k2N be a Cartesian community over C and let M
be a monomial group. Then C[[M]]A is a C-algebra.

Proof. We clearly have C � C[[M]]A. Let f̂ ; ĝ 2 C[[M]]A. Mimicking the
proof of proposition 3.12, we observe that f and g admit compatible Cartesian
representations f ; g 2Ak z1Z � � � zkZ. Then f + g, f ¡ g and f g are Cartesian
representations of f̂ + ĝ, f̂ ¡ ĝ resp. f̂ ĝ. �

3.5.2 Local communities

A local community is a Cartesian community (Ak)k2N, which satisfies the
following additional conditions:
LC1. For each f 2Ak with [zk0] f =0, we have f /zk2Ak.
LC2. Given g 2Ak and f1; : : : ; fk2Al�, we have g � (f1; : : : ; fk)2Al.
LC3. Given f 2Ak+1 with [z10 � � � zk+10 ] f =0 and [z10 � � � zk0 zk+11 ] f 2C�, the

unique series '2C[[z1; : : : ; zk]] with f � (z1; : : : ; zk; ')= 0 belongs to Ak.

In LC1 and LC3, the notation [z1
�1 � � � zp

�p] f stands for the coefficient of
z1
�1 ��� zp

�p in f . The condition LC3 should be considered as an implicit function
theorem for the local community. Notice that Ak is closed under @ /@ zi for
all {i2 1; : : : ; k}, since

@f
@ zi

= f � (z1; : : : ; zi+ zk+1; : : : ; zk)¡ f
zk+1

� (z1; : : : ; zk; 0): (3.19)

Remark 3.15. In [Hoe97], the conditions LC2 and LC3 were replaced by
a single, equivalent condition: given f 2Ak+1 as in LC3, we required that
im '�Ak, for the unique strong C-algebra morphism ':C[[z1; : : : ; zk+1]]!
C[[z1; : : : ; zk]], such that 'jC[[z1; : : : ;zk]]= IdC[[z1; : : : ;zk]] and '(f) = 0. We also
explicitly requested the stability under differentiation, although (3.19) shows
that this is superfluous.
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Example 3.16. Let C be a subfield of C and let Ak=Cffz1;: :: ; zkgg be the set
of convergent power series in k variables over C, for each k2N. Then the Ak
form a local community. If M is a monomial group, then CffMgg=C[[M]]A
will also be called the set of convergent grid-based series in M over C.

Example 3.17. For each k2N, let Ak be the set of power series in C[[z1;:::; zk]],
which satisfy an algebraic equation over C[z1;:::; zk]. Then the Ak form a local
community.

3.5.3 Faithful Cartesian representations

In this and the next section, A=(Ak)k2N is a local community. A Cartesian
representation f 2C((z1; : : : ; zk)) is said to be faithful , if for each dominant
monomial d of f , there exists a dominant monomial d̂0 of f̂ , with d̂4 d̂0.

Proposition 3.18. Let (Ai)i2N be a local community and f 2Ak. Then

a) For each 16 i6 k and �2Z, we have [zk�] f 2Ak¡1.
b) For each initial segment I� z1

Z � � � zkZ, we have

fI=
X
m2I

fmm2Ak:

Proof. For each �, let f�= [zk�] f . We will prove (a) by a weak induction
over �. If �=0, then [zk0] f = f � (z1; : : : ; zk¡1; 0)2Ak¡1. If �> 0, then

[zk�] f =
f ¡ ([zk0] f) zk0¡ � � � ¡ ([zk�¡1] f) zk�¡1

zk
� :

By the weak induction hypothesis and LC1, we thus have [zk�] f 2Ak.
In order to prove (b), let D=fd1;:::;dlg be the finite anti-chain of maximal

elements of I, so that I= in(d1;:::;dl). Let n be the number of variables which
effectively occur in D, i.e. the number of i2f1;:::; kg, such that dj= z1

�1 ��� zk
�k

with �i=/ 0 for some j. We prove (b) by weak induction over n. If n=0, then
either l=0 and fI=0, or l=1, d1= f1g and fI= f .

Assume now that n > 0 and order the variables z1; : : : ; zk in such a way
that zk effectively occurs in one of the di. For each �2N, let

I� = fm2 z1N � � � zk¡1N :mzk
�2 Ig;

D� = fm2 z1N � � � zk¡1N :mzk
�2Dg:

We observe that

I�= in(D0q � � � qD�)\ z1N � � � zk¡1N :

In particular, if � is maximal with D�=/ ?, then I�=I� for all �> � and

I=I0 q � � � q I�¡1 zk
�¡1 q I� zk

�+N;
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so that

fI = f0;I0 zk
0+ � � �+ f�¡1;I�¡1 zk

�¡1+�
f ¡ f0 zk0¡ � � � ¡ fk¡1 zk�¡1

zk
�

�
I�zk

N

zk
�:

Moreover, for each �, at most n ¡ 1 variables effectively occur in the set
D0q �� � qD� of dominant monomials of I�. Therefore fI2Ak, by the induc-
tion hypothesis. �

Proposition 3.19. Given a Cartesian representation

f 2Ak z1Z � � � zkZ

of a series f̂ 2C[[M]], its truncation

f~= ffm2z1N � � �zkN :9n̂2supp f̂ ; m̂4n̂g2Ak z1
Z � � � zkZ

is a faithful Cartesian representation of the same series f̂. �

3.5.4 Applications of faithful Cartesian representations

Proposition 3.20. Let f̂ 2C[[M]]A be series, which is either

a) infinitesimal,
b) bounded, or
c) regular.

Then f̂ admits a Cartesian representation in Ak z1Z ��� zkZ for some k2N, which
is also infinitesimal, bounded resp. regular.

Proof. Assume that f̂ is infinitesimal and let f 2Ak z1Z � � � zkZ be a faithful
Cartesian representation of f̂ , with dominant monomials d1; : : : ; dl� 1. For
each i2f1; : : : ; lg, let

fi= fin(d1; : : : ;di)¡ fin(d1; : : : ;di¡1)2Ak z1Z � � � zkZ;

with dfi= di. Then f = f1+ � � �+ fl and

f~=
X
i=1

l

fi
d1
di

zk+i

is an infinitesimal Cartesian representation of f̂ in Ak+l, when setting ẑk+i=
d̂i/ d̂1 for each i2f1; : : : ; lg. This proves (a).

If f̂ is bounded, then let g 2Ak be an infinitesimal Cartesian representa-
tion of ĝ = f̂ ¡ f̂f1g. Now f = g+ f̂f1g z1

0 � � � zk0 2Ak is a bounded Cartesian

representation of f̂ . This proves (b).
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Assume finally that f̂=/ 0 is regular, with dominant monomial d̂. Let g2Ak
be a bounded Cartesian representation of ĝ= f̂ / d̂. Since ĝ0=/ 0, the series g
is necessarily regular. Now take a Cartesian monomial d which represents d̂
(e.g. among the dominant monomials of a faithful Cartesian representation
of d̂). Then f = g d is a regular Cartesian representation of f̂ . �

3.5.5 The Newton polygon method revisited

Theorem 3.21. Let (Ak)k2N be a local community over a ring C and let M
be a monomial monoid. Consider the polynomial equation

P̂n f̂
n+ � � �+ P̂0=0 (3.20)

with coefficients P̂0; : : : ; P̂n2C[[M4]]A, such that (P̂0)1=0 and (P̂1)12C�.
Then (3.20) admits a unique solution in C[[M�]]A.

Proof. By proposition 3.20, there exist bounded Cartesian representations
P0; : : : ; Pn2Ak for certain ẑ1; : : : ; ẑk2M. Now consider the series

P =P0+P1 zk+1+ � � �+Pn zk+1n 2Ak+1:

We have [z10 ��� zk+10 ]P =0 and [z10 ��� zk0 zk+11 ]P 2C�, so there exists a f 2Ak with

P � (z1; : : : ; zk; f)=P0+P1 f + � � �+Pn fn=0;

by LC3. We conclude that f̂ 2C[[M]]A satisfies P̂n f̂
n+ � � � + P̂0= 0. The

uniqueness of f̂ follows from theorem 3.3. �

Theorem 3.22. Let (Ak)k2N be a local community over a (real) algebraically
closed field C and M a totally ordered monomial group with Q-powers. Then
C[[M]]A is a (real) algebraically closed field.

Proof. The proof is analogous to the proof of theorem 3.8. In the present case,
theorem 3.21 ensures that '2C[[M]]A in step 2 of polynomial_solve. �

Exercise 3.9. Let C be a ring, M a monomial monoid and (Ak)k2N a local
community. We define C[[M]]A to be the set of series f in C[[M]], which admit
a semi-Cartesian representation

f = '̂(f�1)m1+ � � �+ '̂(f�p)mp

with f�1; : : : ; f�p2Ak for some k2N, ': z�1N � � � z�kN!M and m1; : : : ;mp2M. Which
results from this section generalize to this more general setting?

Exercise 3.10. Let C be a field. A series f in C[[z1; : : : ; zk]] is said to be dif-
ferentially algebraic, if the field generated by its partial derivatives @i1+� � �+ikf /
(@z1)i1 ��� (@ zk)ik has finite transcendence degree over C. Prove that the collection
of such series forms a local community over C.
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Exercise 3.11. Assume that C is an effective field, i.e. all field operations can
be performed by algorithm. In what follows, we will measure the complexity of
algorithms in terms of the number of such field operations.

a) A series f 2C[[z1;:::; zk]] is said to be effective , if there is an algorithm which
takes �1; : : : ; �k 2N on input, and which outputs f�1; : : : ;�k. Show that the
collection of effective series form a local community.

b) An effective series f 2C[[z1; : : : ; zk]] is said to be of polynomial time com-
plexity , if there is an algorithm, which takes n 2N on input and which
computes f�1; : : : ;�n for all �1;:::;�n with �1+ ���+�n6k in time

�
n+ k
n

�O(1)
.

Show that the collection of such series forms a local community. What about
even better time complexities?

Exercise 3.12. Let (Ak)k2N be a local community and let

f 2Ak z1Z � � � zkZ

be a Cartesian representation of an infinitesimal, bounded or regular grid-based
series f̂ in C[[M]]. Show that, modulo widenings, there exists an infinitesimal,
bounded resp. regular Cartesian representation of f̂ , with respect to a Cartesian
basis with at most k elements.

Exercise 3.13. Let (Ak)k2N be a local community over a field C.

a) If f 2C[[M]]A;� and g 2A1, then show that g � f 2C[[M]]A.
b) If M is totally ordered, then prove that C[[M]]A is a field.

Exercise 3.14. Let (Ak)k2N be a local community over a field C and let M

be a totally ordered monomial group. Prove that f�; f�; f�2C[[M]]A for any
f 2C[[M]]A, and

C[[M]]A=C[[M]]A;��C �C[[M]]A;�:

Exercise 3.15. Let (Ak)k2N be a Cartesian community. Given monomial groups
M and N, let A (C[[M]]; C[[N]]) be the set of strong C-algebra morphisms
from C[[M]] into C[[N]] and A (C[[M]]; C[[N]])A the set of ' 2A (C[[M]];
C[[N]]), such that '(m)2C[[N]]A for all m2M.

a) Given ' 2 A (C[[M]]; C[[N]])A and  2 A (C[[N]]; C[[V]])A, where V is
a third monomial group, prove that  � '2A (C[[M]]; C[[V]])A.

b) Given '2A (C[[M]];C[[N]])A and  2A (C[[N]];C[[M]]) such that  �'=
IdC[[M]], prove that  2A (C[[N]]; C[[M]])A.

Exercise 3.16. Let C be a subfield of C and let M and N be monomial groups
with M�N. Prove that CffMgg=C[[M]]\CffNgg. Does this property gener-
alize to other local communities?

Exercise 3.17. Let (Ak)k2N be the local community from example 3.17 and
let M be a totally ordered monomial group. Prove that C[[M]]A is isomorphic
to the algebraic closure of C[M].

Exercise 3.18. Does theorem 3.22 still hold if we remove condition LC2 in the
definition of local communities?
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Exercise 3.19. Consider the resolution of P (f)=0 (f � v), with P 2C[[M]]A
and v2M.

a) Given a starting term cm of multiplicity d, let n be minimal for 4 such that
Pimi4n for all i. Show that there exist Cartesian coordinates z1;:::; zk with m;
n2 z1Z ��� zkZ, in which Pimi/n admits a bounded Cartesian representations ui
for all 06 i6n= deg P .

b) Consider a bounded Cartesian representation ' 2 Ak with '� c and let
u~i=

P
k=i

n
�
k
i

�
uk'k¡i. Given w2 z1

Q>
� � � zk

Q>
, let

Qw=
X
i=0

n

u~i;wd¡iF i:

Show that Q=
P

w
Qww is a series in C[F ][[z1

1/d!; : : : ; zk
1/d!]]A.

c) For each � 2 f0; : : : ; dg, let I� be initial segment generated by the w such
that val Qw < �, and F� its complement. We say that 'F� is the part of
multiplicity >� of ' as a zero of u0+ � � �+unF n. Show that 'F�2Ak can
be determined effectively for all �.

d) In polynomial_solve, show that refinements of the type

f = '̂m+ f~ (f~�m);

where '2Ck is the unique solution to @d¡1(u0+ � � �+unF n)/@F d¡1, may
be replaced by refinements

f = 'Fd¡1m+ f~ (f~�m):
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4

Transseries

Let C be a totally ordered exp-log field. This means that C is a totally ordered
field with an exponential function and a partial logarithmic function which
satisfies similar properties as those defined on the real numbers. Axioms for
exp-log fields will be given in section 4.1. For the moment, the reader may
assume that C =R.

The aim of this chapter is the construction of the totally ordered exp-log
field C[[[x]]] of grid-based transseries in x over C. This means that C[[[x]]] is
a field of grid-based series with an additional exponential structure. Further-
more, C[[[x]]] contains x as an infinitely large monomial. Actually, the field
C[[[x]]] carries much more structure: in the next chapter, we will show how
to differentiate, integrate, compose and invert transseries. From corollary 3.9,
it also follows that C[[[x]]] is real closed. In chapter 9, this theorem will be
generalized to algebraic differential equations.

As to the construction of C[[[x]]], let us first consider the field C[[x]]=
C[[xC]]. Given an infinitesimal series f , we may naturally define

exp f = 1+ f + 1

2
f2+ � � �

log (1+ f) = f ¡ 1

2
f2+ � � �

Using the exp-log structure of C, these definitions may be extended to
C[[x]]4=C �C[[x]]� for exp and to C>+C[[x]]� for log. However, nor
the logarithm of x, nor the exponential of any infinitely large series f are
defined. Consequently, we have to add new monomials to xC in order to obtain
a field of grid-based series which is closed under exponentiation and logarithm.

Now it is easy to construct a field of grid-based series L which is closed
under logarithm (in the sense that log f is defined for all strictly positive f).
Indeed, taking L=C[[ : : : ; log log x; log x;x]], we set

log x�0 � � � logn�nx=�0 log x+ � � �+�n logn+1x



for monomials logx�0 � � � logn�nx (here logn= log � � � �
n�
� log stands for the n-th

iterated logarithm). For general f 2L>, we define

log f = log df + log cf + log(1+ �f);

where log(1+ �f)= �f ¡ 1

2
�f
2+ � � � as above.

In order to construct a field T = C[[M]] of grid-based series with an
exponentiation, we first have to decide what monomial group M to take. The
idea is to always take exponentials of purely infinite series for the monomials
in M. For instance, ex

2+x is a monomial. On the other hand, ex
2+x+x¡1 is

not a monomial and we may expand it in terms of ex
2+x using

ex2+x+x¡1=ex2+x+x¡1 ex2+x+ 1
2
x¡2 ex2+x+ � � �:

More generally, as soon as each purely infinite series in T admits an exponen-
tial, then T is closed under exponentiation: for all f 2T we take

exp f = exp f� exp f� exp f�;

with exp f�=1+ f�+
1

2
(f�)2+ � � � as above.

In section 4.2, we first study abstract fields of transseries. These are totally
ordered fields of grid-based series, with logarithmic functions that satisfy some
natural compatibility conditions with the serial structures. Most of these
conditions were briefly motivated above. In section 4.3 we construct the field
C[[[x]]] of transseries in x. We start with the construction of the field L
of logarithmic transseries. Next, we close this field under exponentiation by
repeatedly inserting exponentials of purely infinite series as new monomials.
In section 4.4, we prove the incomplete transbasis theorem, which provides
a convenient way to represent and compute with grid-based transseries.

4.1 Totally ordered exp-log fields

A partial exponential ring is a ring R with a partial exponential function
exp:R!R, such that
E1. exp 0=1.
E2. exp y= exp(y¡x) expx, for all x; y 2 domexp.
The second condition stipulates in particular that y¡x2domexp, whenever
x; y 2domexp. If domexp=R, then we say that R is an exponential ring . If
exp is an exponential function, then we will also write ex for expx and expn
for the n-th iterate of exp (i.e. exp0= Id and expn+1=exp�expn for all b2N).

The field R of real numbers is a classical example of an exponential field.
Moreover, the real numbers carry an ordering and it is natural to search for
axioms which model the compatibility of the exponential function with this
ordering. Unfortunately, an explicit set of axioms which imply all relations
satisfied by the exponential function on R has not been found yet. Neverthe-
less, Dahn and Wolter have proposed a good candidate set of axioms [DW84].
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We will now propose a similar system of axioms in the partial context. For
each n2N, we denote the Taylor expansion of expx at order n by

En(x)= 1+x+ � � �+ 1
(n¡ 1)! x

n¡1:

We also denote

Nn=
�
1; if n=0
(n¡ 1)!; otherwise

so that NnEn2Z[x]. An ordered partial exponential ring is a partially ordered
ring R, with a partial exponential function exp:R!R, which satisfies E1, E2
and

E3. N2n expx>N2nE2n(x), for all x2 domexp and n2N.

If dom exp=R, then we say that R is an ordered exponential ring .

Proposition 4.1. Let R be an ordered domain in which x=/ 0)x2>0. Given
a partial exponential function on R which satisfies E1, E2 and E3, we have

N2n expx=N2nE2n(x))x=0;

for all n2N and x2 dom exp.

Proof. Assume that expx=E2n(x). We cannot have x6¡2n, since otherwise

N2nE2n(x)=
X
k=0

n¡1
N2n

(2 k+1)!
(2 k+1+x)x2k< 0:

In particular, x=/ ¡(2n+1). If we also have x=/ 0, then

0 > N2n+2 (E2n+2(x)¡ expx)
= N2n+2 (E2n+2(x)¡E2n(x))=x2n (2n+1+x);

whence 0>x4n (2n+1+x)2> 0, which is impossible. �

Proposition 4.2. R is a totally ordered exponential field.

Proof. Let n2N. For x>¡2n, we have

expx¡E2n(x)=
X
k=n

1
x2k

(2 k)!

�
1+ x

2 k+1

�
> 0:

For x<¡2n, we have shown above that E2n(x)< 06 expx. �

Proposition 4.3. Let R be an ordered partial exponential ring. Then

a) exp is injective.
b) x< y, expx< exp y, for all x; y 2dom exp.
c) If R contains the ordered field Q and domexp is a Q-module, then

8n2N;8x2 dom exp; x> (2n)2) expx>xn:
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Proof. Assume that expx= exp y, for some x; y 2R. Then

exp(y¡x)= exp y exp (¡x)= expx exp(¡x)= 1

and similarly exp(x¡ y)= 1. Hence,

1 = exp(y¡x) > 1+ y¡x
1 = exp(x¡ y) > 1+x¡ y;

so that both y6x and x6 y. This proves that x= y, whence exp is injective.
Assume now that x< y for some x; y 2 dom exp. Then

exp (y¡x)> 1+ y¡x> 1:
Consequently,

exp y= exp(y¡x) expx> expx

and exp y > exp x, by the injectivity of exp. Inversely, assume that exp x<
exp y for some x; y 2 dom exp. Then

1+x¡ y6 exp(x¡ y)= expx exp(¡y)6 exp y exp(¡y)= 1;

whence x 6 y. We again conclude that x < y, since exp y =/ exp x. This
proves (b).

If n=0, then (c) follows from (b). If n>0, then exp(x/2n)> (x/2n)+1
implies

expx>
�
x
2n

+1
�
2n
>
�
x
2n

�
2n
>xn;

for all x> (2n)2. �
Instead of axiomatizing partial exponential functions on a ring, it is also

possible to axiomatize partial logarithmic functions. The natural counterparts
of E1, E2 and E3 are

L1. log 1=0.
L2. log y= log y

x
+ log x, for all x; y 2 dom log.

L3. N2nx>N2nE2n(log x), for all x2 dom log and n2N.

Notice that the second condition assumes the existence of a partial inversion
x 7! 1

x
, whose domain contains domlog. The n-th iterate of log will be denoted

by logn.
In a similar fashion, we define a partial logarithmic ring to be a ring R with

a partial logarithmic function which satisfies L1 and L2. An ordered partial
logarithmic ring is an ordered ring R with a partial logarithmic function which
satisfies L1, L2 and L3. In the case when dom log=R> for such a ring, then
we say that R is an ordered logarithmic ring.

Proposition 4.4.
a) Let R be a partial exponential ring, such that exp is injective. Then the

partial inverse log of exp satisfies L1 and L2.
b) If R is an ordered partial exponential ring, then exp is injective, and its

partial inverse log satisfies L1, L2 and L3.

82 4 Transseries



c) Let R be a partial logarithmic ring, such that log is injective. Then the
partial inverse exp of log satisfies E1 and E2.

d) If R is an ordered partial logarithmic ring, then log is injective, and its
partial inverse exp satisfies E1, E2 and E3.

Proof. Let R be a partial exponential ring, such that exp is injective. Then we
clearly have L1. Now assume that x=expx02domlog= imexp. Then (expx0) �
(exp(¡x0))=1, whence exp(¡x0)=1/x2domlog. Furthermore, if y=exp y 02
dom log= im exp, then exp y 0= exp(y 0¡x0) expx0, so that exp(y 0¡x0)= y/x.
Consequently, y/x2 im exp= dom log and log y ¡ log x= y 0¡ x0= log(y/x).
This proves L2 and (a). As to (b), if R is an ordered partial exp-log ring,
then exp is injective by proposition 4.3(a). The property L3 directly follows
from E3.

Assume now that R is a partial logarithmic ring, such that log is injective.
We clearly have E1. Given x= logx0 and y= log y 0 in domexp= imlog, we have
log y= log(y/x)+ log x and in particular log(y/x)2domexp. It follows that
exp y 0/expx0= y/x=exp(log y¡ logx)=exp(y 0¡x0). This proves E2 and (c).

Assume finally that R is an ordered partial logarithmic ring. Let x; y 2
dom log be such that log x= log y. Then

x/y> 1+ log(x/y)= 1+ log x¡ log y=1:

Hence x> y, since y2domlog) y>0. Similarly, y>x and x= y, which proves
that log is injective. The property E3 directly follows from L3. �

If (a) and (c) (resp. (b) and (d)) are satisfied in the above proposition,
then we say that R is a partial exp-log ring (resp. an ordered partial exp-log
ring). An ordered exp-log ring is an ordered partial exp-log ring R, such that
domexp=R and im exp=R>. An ordered (partial) exponential, logarithmic
resp. exp-log ring, which is also an ordered field is called an ordered (partial)
exponential, logarithmic resp. exp-log field . In a partial exp-log ring, we extend
the notations expn and logn to the case when n2Z, by setting expn= log¡n
and logn= exp¡n, if n< 0.

Assume now that R is a ring with C-powers, for some subring C �R.
An exponential resp. logarithmic function is said to be compatible with the
C-powers structure on R if

E4. exp (� f)= (exp f)�, for all f 2 dom exp and �2C; resp.
L4. log f�=� log f , for all f 2 dom exp and �2C.

Here we understand that im exp�R� in E4 and dom log�R� in L4. Notice
that E4 and L4 are equivalent, if exp and log are partial inverses. Notice
also that any totally ordered exp-log field C naturally has C-powers: set
��= exp(� log �) for all �2C> and �2C.

Exercise 4.1. Let R be an exponential ring. Show that for all x2R, we have
exp x=0) 1=0.
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Exercise 4.2. Show that the only exponential function on the totally ordered
field of real numbers R is the usual exponential function.

Exercise 4.3. Let R be a totally ordered exponential field. Show that the
exponential function on R is continuous. That is, for all x and "> 0 in R, there
exists a � >0, such that jexpx0¡ expxj<", for all x02R with jx0¡xj<�. Show
also that the exponential function is equal to its own derivative.

Exercise 4.4. Let R be an ordered partial exponential ring. Given x2domexp
and n2N, prove that

a) exp x>E2n+1(x), if x> 0.
b) exp x<E2n+1(x), if x< 0.

4.2 Fields of grid-based transseries

Let C be a totally ordered exp-log field, T a totally ordered monomial group
with C-powers. Assume that we have a partial logarithmic function on the
totally ordered field T=C[[T]] that extends the logarithm on C> and that
is compatible with the C-powers structure on T. We say that T is a field of
grid-based transseries (or a field of transseries) if

T1. dom log=T>.
T2. logm2T�, for all m2T.
T3. log (1+ ")= l � ", for all "2T�, where l=

P
k=1
1 (¡1)k+1

k
zk2C[[z]].

Intuitively speaking, the above conditions express a strong compatibility
between the logarithmic and the serial structure of T.

Example 4.5. Assume that T is a field of transseries with im log=T, so that
T= expT�. Let x 2 T�. Then x5 ex

3+xe+x2+xe¡1 is a monomial in T. The
series ex

2/(1¡x¡1) is not a monomial, since x2/(1¡x¡1)2/ T�. We have

exp
�

x2

1¡ x¡1

�
= ex

2+x exp
�

1

1¡x¡1

�
= e � ex2+x+e � ex

2+x

x
+ 3 e

2
� ex

2+x

x2
+ � � �:

On the other hand, ee
x/(1¡x¡1) is a monomial, since

ex/(1¡x¡1)= ex+ex/x+ � � � 2T�:

Proposition 4.6. Let T be a field of transseries. Then

a) Given f 2T>, the canonical decomposition of log f is given by

log f = (log f)� + (log f)� + (log f)�

= = =

log df log cf log (1+ �f)
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b) Given f ; g 2T>, we have

f 4 g , (log f)�6 (log g)�;
f � g , (log f)�=(log g)�;
f � g , (log f)�< (log g)�;
f � g , (log f)<=(log g)<:

c) For all f 2T>;�, we have log f 2T>;�.
d) Given f ; g 2T>;�, we have

f �� g , log f 4 log g;
f �� g , log f � log g;
f ¡̀a g , log f � log g;
f ¡�� g , log f � log g

e) For all f 2T>;�, we have log f � f and log f �� f.

Proof.

a) Follows from L1, L2, T2 and T3.
b) We have

f 4 g , df 4 dg

, df 6 dg

, (log f)�= log df 6 log dg=(log g)�:

The other relations are proved in a similar way.
c) Given f 2T>;�, we have log f � (log f)�> 0, by (b).
d) We have

f �� g , 9�2C; f 4 g�
, 9�2C; (log f)�6 (� log g)�= � (log g)�
, (log f)�4 (log g)�
, log f 4 log g:

The other relations are proved similarly.
e) The relation log f � f follows from proposition 4.3(c). Then log2 f � log f

and (c) imply log f �� f , by (d). �

The following lemma, which is somehow the inverse of proposition 4.6(a) and
(d), will be useful for the construction of fields of transseries.

Lemma 4.7. Let log be a partial function on T, which satisfies T1, T2 and

a) log (m� n)=� logm+ log n, for all m; n2T and �2C.
b) log f = log df + log cf + l � �f, for all f 2T>.
c) 0< logm�m, for all m2T�.
Then log is a logarithmic function, which is compatible with the ordering and
C-powers on T. Hence, T is a field of grid-based transseries.
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Proof. We clearly have L1. Given f ; g 2T>, we also have

log(f /g) = log df/g+ log cf/g+ l � �f/g
= log (df /dg)+ log (cf /cg)+ l �

�
�f ¡ �g
1+ �g

�
= log df ¡ log dg+ log cf ¡ log cg+ l � �f ¡ l � �g
= log f ¡ log g:

Here

l � (�f ¡ �g
1+ �g

)= l � �f ¡ l � �g

by proposition 2.18 and the fact that l(z1¡ z2
1+ z2

)= l(z1)¡ l(z2) in C[[z1; z2]]. This
proves L2.

Let us now show that

f >E2n(log f)= 1+ log f + � � �+ 1
(2n¡ 1)! (log f)

2n¡1;

for all f 2T>nf1g and n2N. Assume first that f �1. If f� 1, then we have

f ¡E2n(log f)=
�

z2n

(2n)!
+ z2n+1

(2n+1)!
+ � � �

�
� l � �f�

�f
2n

(2n)!
> 0:

Otherwise, cf >E2n(log cf) and

f ¡E2n(log f)� cf ¡E2n(log cf)> 0:

If f � 1, then log f =¡log(1/f)2T<;�. Consequently,

f ¡E2n(log f)�¡
1

(2n¡ 1)! (log f)
2n¡1> 0:

If f �1, let us show that (log f)k� f , for all k2N, which clearly implies that
f > E2n(log f). We first observe that log ' 2T>;� for all ' 2T>;�, since
log d'2T�>�T>;� and log '= log d'+O(1). Furthermore, log '� log d'�
d'� ', for all '2T>;�. Taking '= dlogf = dlogdf, we get log dlogf � dlogdf,
k log dlogf < log df, dlogfk � df, and finally (log f)k� f . This proves L3.

Let us finally show that log f�=� log f for any f 2T> and �2C. Denoting
��=(1+ z)�2C[[z]], we have

log f� = log(cf� df��� � �f)
= � log df +� log cf + l � (�� � �f ¡ 1)
= � log df +� log cf +� l � �f
= � log f:

Indeed, proposition 2.18 implies that l�(����f¡1)=�l��f, since l(��(z)¡1)=
� l(z) is a formal identity in C[[z]]. �

Exercise 4.5. Let T be a field of transseries.

a) Show that exp f = e � f for all f 2T�, where e=
P
k=0

1 1

k!
zk2C[[z]].
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b) For each f 2 dom exp, show that

exp f = (exp f�) � (exp f�) � (exp f�)

= = =

dexp f cexp f (1+ �exp f)

c) For each f 2 dom exp \ T>;�, show that exp f 2 T>;�, f � exp f and
f �� exp f .

Exercise 4.6. Let e(z) =
P

k=0

1 1

k!
zk, l(z) =

P
k=1

1 (¡1)k+1

k
zk and �� =P

k=0

1 � � � � (�¡ k+1)

k!
zk be as above. Prove the following formal identities:

a) e(z1+ z2)= e(z1) e(z2);
b) l(z1¡ z2

1+ z2
)= l(z1)¡ l(z2);

c) e(l(z))= 1+ z;
d) l(��(z)¡ 1)=� l(z).
Hint: prove that the left and right hands sides satisfy the same (partial) differ-
ential equations and the same initial conditions.

Exercise 4.7. Let T = C[[T]] be a field of transseries and consider a flat
subset T[ of T (i.e. 8m2T; 8n2T[:m�� n)m2T[).
a) Show that there exists an initial segment I of T� such that

T[= fef: f 2T�; df 2 Ig:

b) Show that T=C[[T[�� T]]], where

T]= fef: f 2T�; supp f \ I=?g:

We call T] the steep complement of T[.

4.3 The field of grid-based transseries in x

Let C be a fixed totally ordered exp-log field, such as R, and x a formal
infinitely large variable. In this section, we will construct the field C[[[x]]] of
grid-based transseries in x over C. We proceed as follows:

� We first construct the field

L=C[[L]]=C[[ : : : ; log log x; log x;x]]

of logarithmic transseries in x.
� Given a field of transseries T=C[[T]], we next show how to construct

its exponential extension Texp = C[[Texp]]: this is the smallest field of
transseries with Texp�T and such that exp f is defined inTexp for all f 2T.

� We finally consider the sequence

L�Lexp�Lexp;exp� � � �

of successive exponential extensions of L. Their union

C[[[x]]]=L[Lexp[ � � �=C[[L[Lexp[ � � �]]

is the desired field of grid-based transseries in x over C.
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4.3.1 Logarithmic transseries in x

Consider the field L=C[[L]], where

L= � � � �� log2Cx�� logCx�� xC:

This notation means that L is the formal monomial group of all x�0 � �� logk
�kx

with �0; : : : ; �k2C, where x�0 � � � logk
�kx� 1 whenever �0= � � �=�i¡1=0<�i

for some i. Given a monomial m=x�0 � � � logk
�kx2L, we define logm by

log (x�0 � � � logk�kx)=�0 log x+ � � �+�k logk+1x:

We extend this definition to L>, by setting

log f = log df + log cf + l � �f

for each f 2L>. Here we recall that l=
P
k=1
1 (¡1)k+1

k
zk2C[[z]].

Proposition 4.8. L is a field of transseries.

Proof. Clearly, log (m�n)=� logm+ log n, for all m;n2L and �2C. Now let
m2L�. Then m= logi

�ix ��� logk
�kx, for certain �i;:::;�k2C with �i>0. Hence,

0< logm�m, since logm��i logi+1x and 0<�i logi+1x� logi
�ix ��� logk

�kx=
m. Now the proposition follows from lemma 4.7. �

4.3.2 Exponential extensions

Let T=C[[T]] be a field of transseries and let

Texp= expT�

be the monomial group of formal exponentials exp f with f 2T�, which is
isomorphic to the totally ordered C-module T�: we define (exp f)� (exp g)=
exp(� f + g) and exp f < exp g, f > g for all f ; g 2T� and �2C.

Now the mapping �:T!Texp;m 7! exp(logm) is an injective morphism of
monomial groups, since m4 n, logm6 log n, �(m)4 �(n) for all m; n2T.
Therefore, we may identify T with its image in Texp and T with the image of
the strongly linear extension �̂ of � in Texp=C[[Texp]]. We extend the loga-
rithm on T to Texp by setting logm= f 2T� for monomials m= exp f 2Texp,
and log f = log df + log cf + l � �f for general f 2 (Texp)>.

Proposition 4.9. Rexp is a field of transseries.

Proof. By construction, log(m�n)=� logm+ logn, for allm;n2Texp and �2C.
Given m2Texp;�, we have logm2T�>�T>. Consequently, logm and log logm
are both in T, and proposition 4.6(e) implies that log logm� logm. Hence,
(log logm)�< (logm)� and logm� exp((log logm)�)� exp((logm)�)�m. We
conclude by lemma 4.7. �
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4.3.3 Increasing unions

Proposition 4.10. Let I be a totally ordered set and let (Ti)i2I be a family
of fields of transseries of the form Ti=C[[Ti]], such that Ti�Tj and Ti�Tj,
whenever i6 j. Then T=C[[

S
i2I Ti]]=

S
i2ITi is a field of transseries.

Proof. Clearly
S
i2ITi�C[[

S
i2I Ti]]. Inversely, assume that

f 2C[[
[
i2I

Ti]]:

Since f is grid-based, there exist m1; : : : ;mn; n2
S
i2I Ti, such that

supp f �fm1; : : : ;mng� n:

For sufficiently large i2 I, we have m1;:::;mn;n2Ti, since I is totally ordered.
Hence, supp f � Ti and f 2Ti. This proves that C[[

S
i2I Ti]] �

S
i2I Ti.

Similarly, one verifies that T is a field of transseries, using the fact that given
f1; : : : ; fn2T, we actually have f1; : : : ; fn2Ti for some i2 I. �

4.3.4 General transseries in x

Let (Ln)n2N be the sequence defined by L0=L and Ln+1=Ln;exp for all n.
By propositions 4.8, 4.9 and 4.10,

C[[[x]]]=L0[L1[L2[ � � �

is a field of transseries. We call it the field of grid-based transseries in x over C.
The exponential height of a transseries in C[[[x]]] is the smallest index n,
such that f 2Ln. A transseries of exponential height 0 is called a logarithmic
transseries.

Intuitively speaking, we have constructed C[[[x]]] by closing C[[x]] first
under logarithm and next under exponentiation. It is also possible to construct
C[[[x]]] the other way around: for n 2 Z, let En be the smallest subfield
of C[[[x]]], which contains C[(lognx)C] and which is closed under grid-based
summation and exponentiation (recall that logn= exp¡n if n< 0). We have
C[[[x]]]=E0[E1[E2[ ��� of C[[[x]]]. The logarithmic depth of a transseries
in C[[[x]]] is the smallest number n2N, such that f 2En.

We will write Cp
q[[[x]]] for the field of transseries of exponential height 6 p

and logarithmic depth 6 q. We will also write Cp[[[x]]]=Lp=
S
q2NCp

q[[[x]]]
and Cq[[[x]]]=Eq=

S
p2NCp

q[[[x]]].

Example 4.11. The divergent transseries

1+ log x e¡x+2! log2x e¡2x+3! log3 x e¡3x+ � � � (4.1)

is an example of a transseries of exponential height and logarithmic depth 1.
The transseries ex

2/(1¡x¡1) and ee
x/(1¡x¡1) from example 4.5 have exponential

height 1 resp. 2 and logarithmic depth 0.
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For the purpose of differential calculus, it is convenient to introduce slight
variations of the notions of exponential height and logarithmic depth. The
level of a transseries is the largest number n2Z for which f 2E¡n. The field
E=E¡1 of transseries of level >1 is called the field of exponential transseries.
The depth of a transseries is the smallest number n2N with f 2En¡1.

Example 4.12. The transseries (4.1) has level¡1 and depth 2. Both transseries
ex

2/(1¡x¡1) and ee
x/(1¡x¡1) have level 0 and depth 1. The transseries

exp exp (x+e¡ex) has level 2 and depth 0.

4.3.5 Upward and downward shifting

In this section, we define the right compositions of transseries in x with expx
and logx. Given f 2C[[[x]]], we will also denote f � expx and f � logx by f "
resp. f # and call them the upward and downward shifts of f . The mappings
";#:C[[[x]]]!C[[[x]]] are strong difference operators and will be constructed
by induction over the exponential height.

For monomials m=x�0 log�1x � � � logn�nx2L, we define

(x�0 log�1x � � � logn�nx)" = exp�0xx�1 � � � logn¡1�n x;
(x�0 log�1x � � � logn�nx)# = log�0x log2

�1x � � � logn+1�n x:

Extending these definitions by strong linearity, we obtain mappings

":C0[[[x]]] ! C1[[[x]]]

#:C0[[[x]]] ! C0[[[x]]]:

Now assume that we have further extended these mappings into mappings

":Cp[[[x]]] ! Cp+1[[[x]]]

#:Cp[[[x]]] ! Cp[[[x]]]:

Then we define

(exp f)" = exp (f ");
(exp f)# = exp (f #);

for monomialsm=exp f 2expCp[[[x]]]�. Extending these definitions by strong
linearity, we obtain mappings

":Cp+1[[[x]]] ! Cp+2[[[x]]]

#:Cp+1[[[x]]] ! Cp+1[[[x]]]:

By induction over p, we have thus defined " and # on C[[[x]]]. Notice that "
and # are mutually inverse, since f "#= f for all f 2Cp[[[x]]] and p2N, by
induction over p.

90 4 Transseries



There is another way of interpreting right compositions of transseries in x
with expx and logx as formal substitutions x 7!expx and x 7! logx, considered
as mappings from C[[[x]]] into C[[[expx]]] resp. C[[[logx]]]. Postulating that
these mappings coincide with the upward and downward shiftings amounts
to natural isomorphisms between C[[[x]]] and C[[[expx]]] resp. C[[[log x]]].

Exercise 4.8. Let T be any non-trivial field of grid-based transseries. Prove
that there exists a strongly linear ring homomorphism ':L!T.

Exercise 4.9. For all p; q 2N, prove that

a) Cp
q[[[log x]]]�Cpq+1[[[x]]];

b) Cp
q+1[[[x]]]�Cp+1

q [[[log x]]];
c) Ep=C0[[[logpx]]];
d) Cp+1

q [[[x]]]=C[[logqCx�� expCpq[[[x]]]�]].

Exercise 4.10. Given f 2C[[[x]]]>;�, we call con f= log�f �exp the contraction
and dil f = exp � f � log the dilatation of f . Determine dil (x+1); dil dil (x+1)
and dil dil dil (x+1). Prove that for any f 2C[[[x]]]>;�, we have conk f� explx
for some l2Z and all sufficiently large k2N. Here conk denotes the k-th iterate
of con.

Exercise 4.11. A field of well-based transseries is a field of well-based series of
the form T=C[[T]], which satisfies T1, T2, T3 and

T4. Let (mi)i2N be a sequence of monomials in T, such that mi+12 supp logmi,
for each i2N. Then there exists an index i0, such that for all i> i0 and all
n2 supp logmi, we have n<mi+1 and (logmi)mi+1=�1.

Show that the results from sections 4.3.1, 4.3.2 and 4.3.3 generalize to the well-
based context.

Exercise 4.12. Define a transfinite sequence (C�[[[x]]])�=(C[[[T�]]])� of fields
of well-based transseries as follows: we take T0= L, T�+1= (T�)exp for each
ordinal � and T�=

S
�<�

T�, for each limit ordinal �.

a) Prove that C�[[[x]]] C�[[[x]]] for all ordinals �< �. Hint: one may consider
the transfinite sequence of transseries (f�)�>0 defined by

f�=x2¡
X

0<�<�

ef��log:

b) If we restrict the supports of well-based transseries to be countable, then
prove that the transfinite sequence (C�[[[x]]])� stabilizes. Hint: find a suit-
able representation of transseries by labeled trees.

Exercise 4.13.

a) Prove that T1, T2 and T3 do not imply T4.
b) A transseries f 2T>;� is said to be log-confluent , if there exists an index i0,

such that for all i> i0, we have dlog i+1f = log dlog if. Prove that T4 implies
the log-confluence of all transseries in T>;�.

c) Prove that T1, T2, T3 and the log-confluence of all transseries in T>;� do
not imply T4.
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Exercise 4.14.

a) Prove that there exists a field of well-based transseries T in the sense of
exercise 4.11, which contains the transseries

f =ex
2+elog2

2x+elog4
2x+� � �

b) Prove that the functional equation

g(x)= ex
2+g(log2x)+logx

admits a solution in T.

4.4 The incomplete transbasis theorem

A transbasis is a finite basis B=(b1; : : : ;bn) of an asymptotic scale in T, such
that n> 1 and

TB1. b1; : : : ; bn2T>;� and b1�� � � � �� bn.
TB2. b1= explx, for some l2Z.
TB3. log bi2C[[b1; : : : ; bi¡1]]� for all 1<i6n.
The integer l in TB2 is called the level of the transbasisB. We say thatB is a
transbasis for f 2T (or that f can be expanded w.r.t.B), if f 2C[[b1;:::;bn]].

Remark 4.13. Although the axiom TB3 is well-suited to the purpose of this
book, there are several variants which are more efficient from a computational
point of view: see exercise 4.15.

Example 4.14. The tuple (x; e x
p
; ex x

p
) is a transbasis for e(x+1)

3/2
and so is

(x;e(x+ /3 2) x
p
). Neither (x;ex;eex+x¡1) nor (x;ex;exex;exex+ex) is a transbasis.

Theorem 4.15. Let B be a transbasis and f 2C[[[x]]] a transseries. Then
f can be expanded w.r.t. a super-transbasis B̂ of B. Moreover, B̂ may be
chosen so as to fulfill the following requirements:

a) The level of B̂ is the minimum of the levels of B and f.
b) If B and f belong to a flat subring of C[[[x]]] of the form C[[[x]]][=
C[[T[]], then so does B̂.

Proof. Let l be the level of B=(b1;:::;bn). Without loss of generality, we may
assume that f 2C0[[[explx]]]. Indeed, there exists an l0 with f 2C0[[[expl0x]]];
if l 0< l, then we insert expl0 x; : : : ; expl¡1 x into B. We will now prove the
theorem by induction over the minimal p, such that f 2Cp0[[[explx]]]. If p=0,
then we clearly have nothing to prove. So assume that p> 0.

Let us consider the case when f =eg, with g 2C[[b1; : : : ; bn]]. We distin-
guish three cases:

g is bounded. We may take B̂=B.
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g�/ log bi for each i. B̂=(b1; : : : ; bi; ejg�j;bi+1; : : : ;bn) is again a transbasis
for some i2f1; : : : ; ng and

f =eg� eg� eg�=e�jg�j eg� (1+ g¡+ 1
2
(g¡)2+ � � �)

can be expanded w.r.t. B̂. Moreover, B̂ satisfies the extra requirements (a)
and (b). Indeed, B̂ has level l and

eg 2C[[[x]]][) ejg�j2C[[[x]]][;
since ejg�j ¡̀a eg.

g� log bi for some i. We rewrite g=�i log bi+ g~, with g~� g. If g~ is again
equivalent to some log b{~, then {~<i, and we may rewrite g~=�{~ log b{~+ g~~,
with g~~� g~. Repeating this procedure, we end up with an expression of the
form

g=�i1 log bi1+ � � �+�ik log bik+h;

with i1> � � � > ik and where h is either bounded or infinitely large with
h�/ log bj, for all j. By what precedes, eh and f =eg= bi1

�i1 � � � bik
�ik eh may

be expanded w.r.t. a super-transbasis B̂ ofB which satisfies the additional
requirements (a) and (b).

This proves the theorem in the case when f =eg, with g 2C[[b1; : : : ; bn]].
Assume now that f is a general grid-based transseries in Cp

0[[[expl x]]].
Then supp f is contained in a set of the form (explx)C eg0+g1N+� � �+gkN, where
g0; : : : ; gk2Cp¡10 [[[expl x]]]� (see exercise 4.9(d)). Moreover, if f 2C[[[x]]][,
then we may choose g0; g1; : : : ; gk2C[[[x]]][. Indeed, setting

g~i=
X

m2T�;em2T[
gi;mm2C[[[x]]][

for all i, we have

eg0+g1N+ � � �+gkN\T[� eg~0+g~1N+� � �+g~kN:

Using the induction hypothesis, and modulo an extension of B, we may there-
fore assume without loss of generality that g0;:::; gk2C[[b1;:::;bn]]. By what
precedes, it follows that there exists a super-transbasis B̂ of B for eg0; : : : ; egk
which satisfies the requirements (a) and (b). By strong linearity, we conclude
that B̂ is the required transbasis for f . �

Exercise 4.15. Consider the following alternatives for TB3:

TB3-a. log bi2C[[b1; : : : ; bn]]�, for all 1<i6n;
TB3-b. logbi2C[[b1;:::;bi�]], for all 1<i6n, where i� is such that dlogbi ¡̀abi�;
TB3-c. log bi2C[[b1; : : : ; bi¡1]] for all 1< i6n;
TB3-d. log bi2C[[b1; : : : ; bn]] for all 1< i6n.
We respectively say that B is a heavy, normal, light or sloppy transbasis.

a) Show that TB3-a ) TB3-b ) TB3-c ) TB3-d.
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b) Show that theorem 4.15 holds for any of the above types of transbases.

Exercise 4.16. Find heavy, normal, light and sloppy normal transbases with
respect to which the following �exp-log transseries� can be expanded:

a) ee
ex+e

¡ex

;

b) ee
ex+e

¡ee
x

;

c) e
x1000

1¡x¡1;

d) e
x1000

1¡e¡x +e
x1000

1¡e¡e
x

;
e) log log (x exe

x

+1)¡ exp exp (log log x+ 1

x
).

More precisely, an exp-log transseries (resp. function) is a transseries (resp.
function) built up from x and constants in C, using the field operations +, ¡,
�, /, exponentiation and logarithm.

Exercise 4.17. Let B= (b1; : : : ; bn) be a transbasis. Prove that there exists
a unique transbasis B~ = (b~1; : : : ; b~n), such that

i. B~ C=BC

ii. clogb~i=1 for all 16 i6n.
iii. (log b~j)dlogb~i=0 for all 16 i < j6n.

Exercise 4.18. Let A be a local community.

a) If f and B belong to C[[[x]]]A in theorem 4.15, then show that B~ may be
chosen to belong to C[[[x]]]A as well.

b) Show that (a) remains valid if LC3 is replaced by the weaker axiom that for
all f 2Ak+1 we have f(z1; : : : ; zn; 0)2Ak.

c) Given a transbasis B�C[[[x]]]A, show that C[[b1; : : : ; bn]]A�C[[[x]]]A and
that the coefficients of recursive expansions of f 2C[[b1; : : : ; bn]]A are again
in C[[b1; : : : ; bn]]A.

d) Given f 2C[[[x]]]A, show that f�; f�2C[[[x]]]A.

4.5 Convergent transseries

Assume now that C =R and let us define the exp-log subfield Cfffxggg of
C[[[x]]] convergent transseries in x. The field Cpfffxggg of convergent transseries
of exponentiality6 p is defined by induction over p by taking C0fffxggg=CffLgg
and Cp+1fffxggg=CffexpCpfffxggg�gg. Here we notice that logL�C0fffxggg�,
so that C0fffxggg � C1fffxggg � � � � , by induction. Now we define Cfffxggg =S
l2NClfffxggg. By exercises 3.13 and 3.14, the set Cfffxggg is an exp-log sub-

field of C[[[x]]].
Let G be the ring of germs at infinity of real analytic functions at infinity.

We claim that there exists a natural embedding Cfffxggg ,!G , which preserves
the ordered exp-log field structure. Our claim relies on the following lemma:
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Lemma 4.16. Let M be a totally ordered monomial group and ':M ,!G>

an injection, which preserves multiplication and �. Then for each f 2CffMgg,

'̂(f)=
X

m2suppf
fm '(m)

is a well-defined function in G and the mapping '̂:CffMgg ,!G is an injective
morphism of totally ordered fields.

Proof. Let f =  (f�) be a regular convergent Cartesian representation for f ,
with f�2C((z1; : : : ; zk)). Let U =(0; ")k be such that f� is real analytic on U .
Consider the mapping

�:x 7! ('( (z1))(x); : : : ; '( (zk))(x)):

Since ' preserves�, we have �(x)2U , for sufficiently large x. Hence, '̂(f)(x)=
f�� �(x) is defined and real analytic for all sufficiently large x.

Assume now that f >0 and write f�= g�z1
�1 � � � zk

�k, where g� is a convergent
series in z1; : : : ; zk with g�(0; : : : ; 0)> 0. Then

g�(z1; : : : ; zk)>
1
2
g�(0; : : : ; 0)> 0

for (z1; : : : ; zk)2U , when choosing " sufficiently small. Hence,

'̂(f)(x)= g�� �(x) '( (z1�1 � � � zk
�k))(x)> 0;

for all sufficiently large x, i.e. '̂(f) > 0. Consequently, '̂ is an injective,
increasing mapping and it is clearly a ring homomorphism. �

Let us now construct embeddings '̂p:Cpfffxggg ,!G , by induction over p.
For p=0, the elements in L may naturally be interpreted as germs at infinity,
which yields a natural embedding '̂0:C0fffxggg ,!G by lemma 4.16. Assume
that we have constructed the embedding '̂p and consider the mapping

'p+1: expCpfffxggg� ,! G

exp f 7! exp '̂p(f):

Clearly, 'p+1 is an injective multiplicative mapping. Given f ; g 2Cpfffxggg�,
we also have

exp f � exp g , f < g

) g¡ f 2T>;�

) 0< '̂p(g)¡ '̂p(f)� 1
) exp '̂p(g)/exp '̂p(f)� 1
, 'p+1(exp f)� 'p+1(exp g):

Applying lemma 4.16 on 'p+1, we obtain the desired embedding '̂p+1:
Cp+1fffxggg ,! G . Using induction over p, we also observe that '̂p+1 coin-
cides with '̂p on Cpfffxggg for each p. Therefore, we have a natural embedding
of Cfffxggg into G , which coincides with '̂p on each Cpfffxggg.
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Remark 4.17. In the case of well-based transseries, the notion of convergence
is more complicated. In general, sums like e¡x+e¡expx+e¡exp2x+ � � � only
yield quasi-analytic functions and for a more detailed study we refer to [Éca92,
Éca93]. For natural definitions of convergence like in exercise 4.21, it can
be hard to show that convergence is preserved under simple operations, like
differentiation.

Exercise 4.19.

a) Given f 2C[[M]], let

f =
X
m2M

jfmjm:

We say that F 2F (CffMgg) is summable in CffMgg, if F is grid-based andP
F 2CffMgg. Show that this defines a strong ring structure on CffMgg.

b) Let F be a family of elements in G . Define f =
P
F by f(x)=

P
f2F f(x),

whenever there exists a neighbourhood U of infinity, such that f is defined on
U for each f 2F and such that

P
F is normally convergent on each compact

subset of U . Show that this defines a strong ring structure on G .
c) Reformulate lemma 4.16 as a principle of �convergent extension by strong

linearity�.

Exercise 4.20. Prove thatZ
ex

2
=

1

2x
ex

2
+

1

4x3
ex

2
+

3

8x5
ex

2
+ � � � 2/ Cfffxggg:

Exercise 4.21. Let T=C[[[x]]] be the field of well-based transseries of finite
exponential and logarithmic depths. Given � 2R, let C be the set of infinitely
differentiable real germs at infinity and C � the set of infinitely differentiable real
functions on (�;!).

a) Construct the smallest subset Tcv;� of T, together with a mapping
'�:Tcv;�!C �, such that

CT1. If �> expl 0, then log lx2Tcv;� and '(log lx)= log l.
CT2. If f 2T is such that logm2Tcv;� for all m2 supp f and

P
m
jfm '(m)j

is convergent on (�;!), then f 2Tcv;� and '�(f)=
P

m
fm '(m).

Show that Tcv;� is a ring.
b) Show that Tcv;� �Tcv;� for � > �. Denoting Tcv=

S
�2R

Tcv;�, show that
there exists a mapping ':Tcv!C , such that '(f) is the germ associated
to '�(f) for every � with f 2Tcv;�. Show also that Tcv is a field.
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5

Operations on transseries

One of the major features of the field T=C[[[x]]] of grid-based transseries
in x is its stability under the usual operations from calculus: differentiation,
integration, composition and inversion.

What is more, besides the classical properties from calculus, these opera-
tions satisfy interesting additional properties, which express their compatibility
with infinite summation, the ordering, and the asymptotic relations 4, �,
etc. Therefore, the field of transseries occurs as a natural model of �ordered
or asymptotic differential algebra�, in addition to the more classical Hardy
fields. It actually suggests the development of a whole new branch of model
theory, which integrates the infinitary summation operators. Also, not much
is known on the model theory of compositions.

In section 5.1, we start by defining the differentiation w.r.t. x as the unique
strongly linear C-differentiation with x0=1 and (ef)0= f 0 ef for all f . This
differentiation satisfies

f � g ^ g�/ 1 ) f 0� g 0

f > 0^ f � 1 ) f 0> 0

In section 5.2, we show that the differentiation has a unique right inverse
R

with the property that (
R
f)�= 0 for all f 2T; for this reason, we call

R
f

the �distinguished integral� of f . Moreover, the distinguished integration is
strongly linear and we will see in the exercises that one often has (

R
f) (
R
g)=R

f
R
g+

R
g
R
f .

In section 5.3, we proceed with the definition of a composition on T. More
precisely, given g 2T>;�, we will show that there exists a unique strongly
linear C-difference operator �g with �g(x)= g and �g(ef)=e�g(f) for all f . This
difference operator satisfies

f � 1 ) �g(f)� 1
f > 0 ) �g(f)> 0



Moreover, the composition defined by f � g=�g(f) is associative and compat-
ible with the differentiation: (f � g)0= g 0 (f 0 � g) for all f 2T and g 2T>;�.
Finally, the Taylor series expansion f � (x+ �)= f + f 0 �+ 1

2
f 00 �2+ � � � holds

under mild hypotheses on f and �.
In section 5.4, we finally show that each g 2T>;� admits a unique func-

tional inverse ginv with g � ginv= ginv � g= x. We conclude this chapter with
Écalle's �Translagrange theorem� [Éca03], which generalizes Lagrange's clas-
sical inversion formula.

5.1 Differentiation

Let R be a strong totally ordered partial exp-log C-algebra. A strong deriva-
tion on R is a mapping @:R!R; f 7! f 0= @f , which satisfies

D1. @c=0, for all c2C.
D2. @ is strongly linear.
D3. @(f g)= (@f) g+ f @g, for all f ; g 2R.

We say that @ is an exp-log derivation, if we also have

D4. @(exp f)= (@f) exp f , for all f 2 dom exp�R.

We say that @ is (strictly) asymptotic resp. positive, if

D5. f � g) @f � @g, for all f ; g 2R with g�/ 1.
D6. f � 1) (f > 0) @f > 0), for all f 2R.

In this section, we will show that there exists a unique strong exp-log deriva-
tion @ on T, such that @x= 1. This derivation turns out to be asymptotic
and positive. In what follows, given a derivation @ on a field, we will denote
by f y= f 0/f the logarithmic derivative of f =/ 0.

Lemma 5.1. Let T = C[[T]] be an arbitrary field of transseries and let
@:T!T be a mapping, which satisfies @(mn)=(@m)n+m@n for all m;n2T.
Then

a) @ is a grid-based mapping, which extends uniquely to a strong derivation
on T.

b) If @(logm)= @m/m for all m2T, then @ is an exp-log derivation on T.

Proof. Let G be a grid-based subset of T, so that

G�fm1; : : : ;mng� n

for certain monomials m1�1; : : : ;mn�1 and n in T. For any m1
�1 � ��mn�nn2T,

we have

(m1
�1 � � �mn�n n)0=(�1m1

y+ � � �+�nmn
y+ ny)m1

�1 � � �mn�n n:
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Hence supp v0� (suppm1
y[ ���[ suppmn

y[ suppny)v for all v2G, and @ a grid-
based mapping. The strongly linear extension of @ is indeed a derivation, since
(f ; g) 7!(fg)0 and (f ; g) 7! f 0 g+ fg 0 are both strongly bilinear mappings from
T2 into T, which coincide on T2 (a proof which does not use strong bilinearity
can be given in a similar way as for proposition 2.16). This proves (a).

As to (b), assume that (logm)0=my for all m2T. Obviously, in order to
prove that @ is a strong exp-log derivation, it suffices to prove that (log f)0= f y

for all f 2T>. Now each f 2T>may be decomposed as f=cm(1+"), with c2
C>, m2T and "�1. For each k2N>, we have ( (¡1)

k¡1

k
"k)0=(¡1)k¡1"k¡1"0.

Hence,
(log (1+ "))0= "0/(1+ ")= (1+ ")y;

by strong linearity. We conclude that

(log f)0 = (log c)0+(logm)0+(log (1+ "))0

= my+(1+ ")y=(cm (1+ "))y: �

Proposition 5.2. There exists a unique strong exp-log derivation @ on T
with @x=1.

Proof. We will show by induction over p2N that there exists a unique strong
exp-log derivation @ on Cp[[[x]]]=C[[Tp]] with @x=1. Since this mapping @
is required to be strongly linear, it is determined uniquely by its restriction
to Tp. Furthermore, @ will be a strong exp-log derivation, if its restriction
to Tp satisfies the requirements of lemma 5.1.

For p= 0, the derivative of a monomial m= x�0 � � � logq
�q x 2T0 must be

given by

(x�0 � � � logq
�qx)0=

�
�0
x
+ � � �+ �q

x � � � logqx

�
x�0 � � � logq

�qx

in view of axioms D3 and D4 and the requirements of lemma 5.1 are easily
checked.

If p> 0, then the induction hypothesis states that there exists a unique
strong exp-log derivation @ on Cp¡1[[[x]]] with @x= 1. In view of D4, any
strong exp-log derivation on Cp[[[x]]] should therefore satisfy

(ef)0= f 0 ef ;

for all ef 2Tp= expCp¡1[[[x]]]�. On the other hand, when defining (ef)0 in
this way, we have

(ef eg)0=(f 0+ g 0) ef+g=(f 0 ef) eg+ef(g 0 eg)= (ef)0 eg+ef (eg)0

for all ef ; eg2Tp. Hence, there exists a unique strong derivation @ with @x=1
on Cp[[[x]]], by lemma 5.1. Moreover, @ is a strong exp-log derivation, since

(log ef)0= f 0=(f 0 ef)/ef =(ef)0/ef

for all monomials ef 2Tp. �

5.1 Differentiation 99



1

x logx log

2

x���

f 2 T

f � 1

T

f 4 1

f

0

e

x

e

�x

x e

x

1

x logx log

2

x���

x

�1

e

�x

T

d

m

0

d

m

y

m 2 T

Fig. 5.1. We will often adopt a geometric point of view for which the deriv-
ative @ is a function on the �transline� T. Due to the highly non-archimedean
character of T, it is difficult to sketch the behaviour of this function. An
attempt has been made in the left figure above. The two squares corre-
spond to the regions where both coordinates are infinitesimal resp. bounded.
Notice that @ is locally decreasing everywhere (the small curves), although
its restriction to T� is increasing (the fat curve). At the right hand side,
we also sketched the behaviour of the functions m 7! dm 0 and m 7! dm y for
transmonomials (using logarithmic coordinates).

Proposition 5.3. For all f 2T, we have

f "0 = ex (f 0");
f #0 = 1

x
(f 0#):

Proof. The mappings d1: f 7! (e¡x (f "0))# and d2: f 7! (x (f #0))" are both
strong exp-log derivations with d1 x = d2 x = 1. We conclude by proposi-
tion 5.2. �

Proposition 5.4. Let B=(b1; : : : ; bn) be a transbasis.

a) If b1=x or b1= expx, then C[[b1; : : : ; bn]] is closed under @.
b) If b1= log lx and log l¡1x;:::; x2B, then C[[b1;:::;bn]] is closed under @.

Proof. Let us prove (a) by induction over n. Clearly, C[[x]] and C[[expx]] are
closed under differentiation. So assume that n> 1 and that C[[b1; : : : ; bn¡1]]
is closed under differentiation. Then bn

0 =(log bn)0 bn2C[[b1; : : : ; bn]]. Hence

(b1
�1 � � � bn�n)0=(�1 b1

y+ � � �+�n bn
y) b1

�1 � � � bn�n2C[[b1; : : : ; bn]];

for all monomials b1
�1 � � � bn�n2BC. In particular, for any grid-based subset S

of BC, the set suppS0� (supp b1
y[ � � � [ supp bn

y)S is again grid-based. Con-
sequently, C[[b1; : : : ; bn]] is closed under differentiation, by strong linearity.
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As to (b), we first observe that (b1 � expl; : : : ; bn � expl) is also a trans-
basis, so C[[b1 � expl; : : : ; bn � expl]] is closed under differentiation. Given
f 2C[[b1; : : : ; bn]], we now have

f 0 = (f � expl � log l)0

= 1
x log x � � � log l¡1 x

((f � expl)0 � log l)2C[[b1; : : : ; bn]]: �

Proposition 5.5. The derivation @ on T is asymptotic and positive.

Proof. Let B= (b1; : : : ; bn) be a transbasis with b1=ex. We will first prove
by induction over n, that @ is asymptotic and positive on C[[b1; : : : ; bn]], and
f 0� 1, for all f � 1 in C[[b1; : : : ; bn]]. This is easy in the case when n=1. So
assume that n> 1.

Given a monomial m= b1
�1 � � � bn�n, we first observe that

my = �1 b1
y+ � � �+�n bn

y

= �1+�2 (log b2)0+ � � �+�n(log bn)0

belongs to C[[b1; : : : ; bn¡1]]. Moreover,

bi
y=(log bi)0� (log bn)0= bn

y ;

for all 1<i<n, by the induction hypothesis. Actually, the induction hypoth-
esis also implies that b1

y= 1� bn
y , since log bn� 1. Consequently, my� bn

y ,
if �n=/ 0.

Secondly, let m=b1
�1 ���bn�n and n=b1

�1 ���bn
�n be monomials with m�n=/ 1.

If �n= �n=0, then m0� n0 by the induction hypothesis. If �n< �n, then

m0 2 C[[b1; : : : ; bn¡1]] bn
�n

n0 2 C[[b1; : : : ; bn¡1]] bn
�n;

whence m0� n0. If �n= �n=/ 0, then

m0� bn
y m� bn

y n� n0:

Hence m0�n0 in all cases. Given f 2C[[b1; : : : ; bn]] with f =/ 0 and f �/ 1, we
thus get m0�df

0 , for all m2 supp f nfdfg, whence f 0�cf df0 , by strong linearity.
Let us now prove that the induction hypothesis is satisfied at order n.

Given f ; g 2C[[b1; : : : ; bn]], with 1�/ f � g�/ 1, we have

f 0� cf df0 � cg dg0� g 0:

If f � 1, we still have f 0� g 0, since f 0= f�/
0 and f�/ � f � g. Now let f 2

C[[b1; : : : ; bn]]>;�. By the induction hypothesis, we have df
y> 0, since log f 2

C[[b1; : : : ; bn¡1]]>;�. We conclude that

f 0� cf df0 = cf df
y df > 0:
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At this point, we have proved that @ is asymptotic and positive on
C[[b1;:::;bn]]. By theorem 4.15(a), this also proves that @ asymptotic and pos-
itive on C0[[[expx]]]. Now let f ; g2Cl[[[expx]]] be such that f � g�/ 1. Then

f =(f � expl � log l)0 =
(f � expl)0 � log l
x � � � log l¡1x

� (g � expl)0 � log l
x � � � log l¡1x

= (g � expl � log l)0= g 0:

Similarly, if f 2Cl[[[expx]]] is such that f � 1 and f > 0, then

f 0= (f � expl)0 � log l
x � � � log l¡1 x

> 0: �

Remark 5.6. A transbasis B=(b1; : : : ;bn) of level 1 will also be called a plane
transbasis. The two facts that C[[b1;:::;bi]] is closed under differentiation for
each i and my��m for all m=b1

�1 ���bn�n=/ 1, make plane transbases particularly
useful for differential calculus.

By theorem 4.15(a), we notice that any exponential transseries can be
expanded with respect to a plane transbases. Computations which involve
more general transseries can usually be reduced to the exponential case using
the technique of upward and downward shifting.

Exercise 5.1. For all f ; g 2T, prove that

f 4 g^ f � 1^ g� 1 ) f y< g y;
f � 1^ g�/ 1 ) f 0� g y:

Exercise 5.2. For all f ; g 2T=/ with f �/ 1 and g�/ 1, show that

f �� g , f y4 g y;
f �� g , f y� g y;
f ¡̀a g , f y� g y;
f ¡�� g , f y� g y:

Exercise 5.3. Let f 2T. Prove that

a) f � 1 , f 0� 1

x log x log log x � � � .

b) f 0> 0 , ((f � 1^ f > 0)_ (f 4 1^ f�/ < 0)).
c) f 0> 0 , ((8�2C; f >�)_ (9�2C; 8�2C; �<�) �< f <�)).

In the case of (a), notice that we may for instance interpret f 0� 1

x log x log log x � � �
as a relation in a field of well-based transseries in x.

Exercise 5.4. Consider a derivation @ on a totally ordered C-algebra R, which
is also a field. We say that @ is asymptotic resp. positive, but not necessarily
strictly, if

D50. f 4 g) @f 4 @g, for all f ; g 2R with g�/ 1.
D60. f � 1) (f > 0) @f > 0), for all f 2R.
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If d is an asymptotic derivation, prove that fd is again an asymptotic derivation
for any f 2R. Given positive derivations d1; : : : ; dn, prove that f1d1+ � � �+ fndn
is again a positive derivation. Prove that neither the set of asymptotic, nor the
set of positive derivations necessarily form a module.

Exercise 5.5. Let T=C[[[x1]]]� � �[[[xn]]]. Characterize

a) The strong C-module of all strong exp-log derivations on T.
b) The set of all (not necessarily strictly) asymptotic strong exp-log derivations

on T.
c) The set of all (not necessarily strictly) positive strong exp-log derivations

on T.

Exercise 5.6. Let T[3 x be a flat subset of the set T of transmonomials and
let T] be its steep complement (see exercise 4.7).

a) Show that T[=C[[T[]] is closed under differentiation.
b) ConsideringT as a strongT[-algebra, show that there exists a unique strongly

T[-linear mapping @]:T!T with @]m]=(m])0 for all m]2T].
c) Show that � X

m]2T]
fm]m]

�0
=

X
m]2T]

fm]
0 m]+

X
m]2T]

fm] @]m]

for all f 2T.

Exercise 5.7. Let f be a convergent transseries. Prove that f 0 is convergent
and that the germ at infinity associated to f 0 coincides with the derivative of
the germ at infinity associated to f . In other words, Cfffxggg is a Hardy field.

Exercise 5.8. Construct a strong exp-log derivation on the field C[[[x]]] of well-
based transseries of finite exponential and logarithmic depths. Show that there
exists a unique such derivation @ with @x= 1, and show that @ is asymptotic
and positive. Hint: see [Hoe97].

5.2 Integration

In this section, we show that each transseries f 2T admits an integral in T.
Since the derivative of a transseries vanishes if and only if it is a constant,
we infer that f admits a unique, distinguished integral

R
f , whose constant

term (
R
f)� vanishes. The distinguished property immediately implies that

mapping
R
: f 7!

R
f is linear. We will show that

R
is actually strongly linear.

Proposition 5.7. There exists a unique right inverse
R
:T!T of @, such

that the constant term (
R
f)� of

R
f vanishes for all f 2T. This right inverse

is strongly linear.
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Proof. We will first consider the case when f 2E is exponential. Let B=
(b1; : : : ; bn) be a plane transbasis for f . Consider the double sumR

f = f�x+
X

m2suppf nf1g

X
k>0

fmFm;km; (5.1)

where

Fm;0 = 1

my
;

Fm;k = ¡ 1

my
Fm;k¡1
0 for k> 1:

We will show that the family (fmFm;km)m2suppf nf1g;k>0 is grid-based, so that
(5.1) defines an integral of f .

Let us first study the Fm;k for a monomial m= b1
�1 � � � bi�i with �i=/ 0. We

observe that m0=(�1 b1
y+ � � �+�i bi

y)m� dbi
ym. Setting

di = dbi
y ;

Di = ((supp b1
y[ � � � [ supp bi

y) di
¡1)� di;

D<i = D1[ � � � [Di¡1

we thus have suppm0�Dim and supp Fm;0�Di/di2. Moreover, for any v2
suppFm;k, we have supp v0�D<i v. Now define families Tm;k by

Tm;0 = term ( 1

my
)

Tm;k = ¡Tm;0 Tm;k¡10

where

Tm;k¡10 =((v0)vw vw)v2Tk¡1;w2D<i:

Then Fm;k=
P
Tm;k for all k 2N. Setting Tm=

S
k2N Tm;k, we have

mon Tm �� ((monD<i) (mon Tm;0))w (mon Tm;0)
mon Tm;0 �� monDi/di2;

whence Tm is grid-based by proposition 2.14(c) and (2.7). We conclude thatR
m=

P
k>0Fm;km is well-defined, andR

m =
X
k>0

(Fm;k0 +myFm;k)m

=
X
k>0

my (Fm;k¡Fm;k+1)m=myFm;0m=m:

Note that Tm only depends on the index i, not on the exponents �1; : : : ; �i.
Let us now show that the mapping

R
:BC!T is grid-based. Given a grid-

based subset G of BC, we may decompose

G n f1g=G1q � � � qGn;

where the Gi (i=1; : : : ; n) are given by

Gi= fm2G:m ¡̀a big:
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By what precedes, for fixed i, the family Tm is grid-based and the same for
any m2Gi. Hence

S
16i6n

S
m2Gi Tmm is again grid-based and

R
is a grid-

based mapping which extends uniquely toT by strong linearity. Furthermore,
given m= b1

�1 � � � bi�i with �i=/ 0, we have Di�C[[b1; : : : ; bi¡1]], so that

supp fmFm;km�C[[b1; : : : ; bi¡1]] bi�i3/ f1g:

This implies that
R
is a distinguished, strongly linear integral on C0[[[expx]]].

Assume now that we have defined a distinguished, strongly linear integral
R

on Cp[[[expx]]]. We claim that we may extend
R
to Cp+1[[[expx]]] byR

f =(
R
ex f ")#: (5.2)

Indeed, (5.2) defines a distinguished integral, since

(
R
ex f ")#0= 1

x
((ex f ")#)= f

and
(
R
ex f ")#�=(

R
ex f ")�=0;

for all f 2Cp+1[[[exp x]]]. Its distinguished property implies that it extends
the previous integral on Cp[[[expx]]]. Its strong linearity follows from the fact
that we may see

R
as the composition of four strongly linear operations. Our

proposition now follows by induction over p. �
Proposition 5.8. Let B=(b1; : : : ; bn) be a transbasis.

a) If b1=x or b1=expx, then C[[b1;:::;bi]][logb1] is closed under
R
for i>1.

b) If b1= log lx and log l¡1x; : : : ; x2B, then C[[b1; : : : ; bn]][log b1] is closed
under

R
.

Proof. We will consider the case when b1=ex and i=n. The other cases follow
by upward shifting. Now given

f = fdx
d+ � � �+ f0

with f0; : : : ; fd2C[[b1; : : : ; bn]], we claim thatR
f =F := gd+1xd+1+ � � �+ g0;

where g0; : : : ; gd+12C[[b1; : : : ; bn]] are given by

gd+1 = fd;�/(d+1);
gd = fd¡1;�/d+

R
(fd¡ (d+1) gd+1)�/ ;

gd¡1 = fd¡2;�/(d¡ 1)+
R
(fd¡1¡ d gd)�/ ;

���
g0 =

R
(f0¡ g1)�/ :

Indeed, it is easily checked that F 0= f . Furthermore,

F�= g0;�=(
R
(f0¡ g1)�/)�=0;

whence F =
R
f , by the distinguished property of integration. �
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Exercise 5.9. Let m=/ 1 be a transmonomial. Show that there exists a unique
transmonomial n ¡̀am, so that n0 is a transmonomial.

Exercise 5.10. Let f ; g 2T.

a) If
R
f � 1 and

R
g� 1, then show that

(
R
f)(

R
g)=

R
f
R
g+

R
g
R
f: (5.3)

b) Give a necessary and sufficient condition for (5.3) to hold.
c) Prove that there does not exist a strong integration on C((ex)) so that (5.3)

holds for all f ; g 2C((ex)).

Exercise 5.11. Show that
R
ex

2
is divergent. Deduce that

R
ex

2
is not an exp-

log function.

Exercise 5.12. Let ':H ,!T an embedding of a Hardy field into T=R[[[x]]].
The embedding ' is assumed to preserve the differential ring structure and
the ordering. Given f 2H, show that ' can be extended into an embedding
'̂:H(

R
f) ,!T.

5.3 Functional composition

Let R and S be strong totally ordered partial exp-log C-algebras. A strong
difference operator of R into S is an injection �:R!S, which satisfies

�1. �c= c, for all c2C.
�2. � is strongly linear.
�3. �(f g)= �(f) �(g), for all f ; g 2R.

If S =R, then we say that � is a strong difference operator on R. We say
that � is an exp-log difference operator , if we also have

�4. �(exp f)= exp �(f), for all f 2R\ dom exp.

We say that � is asymptotic resp. increasing , if

�5. f � 1) �(f)� 1, for all f 2R.
�6. f > 0) �(f)> 0, for all f 2R.
In this section, we will show that for each g 2T>;�, there exists a unique
strong exp-log difference operator �g on T, such that �g(x) = g. This allows
us to define a composition on T by

�:T�T>;� ! T

(f ; g) 7! �g(f):

We will show that this composition is associative, that it satisfies the chain
rule, and that we can perform Taylor series expansion under certain condi-
tions.
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Lemma 5.9. Let T=C[[T]]� T̂=C[[T̂]] be arbitrary fields of transseries
and let �:T! T̂ be a mapping, which satisfies �(mn)= �(m) �(n) and 1�m)
�(m)2 T̂>;� for all m; n2T. Then
a) � is a grid-based mapping, which extends uniquely to a strong, asymptotic

and increasing difference operator from T into T̂.
b) If �(logm)= log �(m) for all m2T, then the extension of � to T is an exp-

log difference operator.

Proof. Let G be a grid-based subset of T with G�fm1; : : : ;mng� n, for cer-
tain monomials m1; : : : ;mn� 1 and n in T. Then the family Fw with F =
(�(mi))16i6n is grid-based, by proposition 2.14(c). It follows that �:T! T̂
is grid-based, since (�(v))v2G��F

w �(n). By proposition 2.16, the extension
of � to T is a strong difference operator. If f 2T�, then �(m)� 1 for all
m2 supp f , whence �(f) =

P
fm �(m)� 1. This proves that � is asymptotic

and, given f 2T=/ , it also follows that �(f)� �(�f)= cf �(df). In particular, if
f > 0, then �(f)> 0. This completes the proof of (a).

Now assume that �(logm)= log �(m) for all m2T. In order to prove (b),
it obviously suffices to show that �(log f) = log �(f) for all f 2T>. Now
each f 2 T> may be decomposed as f = c m (1 + "), with c 2 C>, m 2 T

and " � 1. For each k 2N>, we have �( (¡1)
k¡1

k
"k) = (¡1)k¡1

k
�(")k. Hence,

�(log (1+ "))= log (1+ �(")), by strong linearity. We conclude that

�(log f) = �(log c)+ �(log df)+ �(log(1+ "))
= log c+ log �(df)+ log (1+ �("))
= log (c �(df) (1+ �(")))
= log �(c df (1+ "))
= log �(f): �

Proposition 5.10. Let g 2T>;�. Then there exists a unique strong exp-
log difference operator �g on T with �g(x) = g. This difference operator is
asymptotic and increasing.

Proof. We will show by induction over p2N that there exists a unique strong
exp-log difference operator �g from Cp[[[x]]]=C[[Tp]] into T with �g x= g,
and we will show that this difference operator is asymptotic and increasing.

For p=0, the axioms �3 and �4 imply that

�g(x�0 � � � logq
�qx)= g�0 � � � logq

�q g

for all monomials x�0 ��� logq
�qx2T0. If x�0 ��� logq

�qx�1, i.e. �0= ���=�i¡1=0
and �i> 0 for some i, we also get

�g(x�0 � � � logq
�qx)2T>;�;

since
logi+1

�i+1 g � � � logq
�q g�� logi

�i g 2T>;�:

This completes the proof in the case when p=0, by lemma 5.9.
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If p > 0, then the induction hypothesis states that there exists a unique
strong exp-log difference operator �g:Cp¡1[[[x]]]!T with �g(x) = g, and �g
is asymptotic and increasing. In view of �4, any extension of �g to Cp[[[x]]]
should therefore satisfy �g(ef) = e�g(f) for all ef 2Tp= expCp¡1[[[x]]]�. On
the other hand, when defining �g in this way on Tp, we have

�g(ef1 ef2)= e�g(f1+f2)=e�g(f1) e�g(f2)= �g(ef) �g(eg)

for all ef1; ef22Tp. Similarly,

(f = f�^ ef � 1) ) (f > 0^ f � 1)
) �g(f)2T>;�

) �g(ef)= e�g(e
f)2T>;�

for all ef 2Tp. This completes the proof in the general case, by lemma 5.1. �

Proposition 5.11.

a) f � (g �h)= (f � g) �h, for all f 2T and g; h2T>;�.
b) (f � g)0= g 0 (f 0 � g), for all f 2T and g 2T>;�.
c) Let f ; � 2T be such that ��x and my �� 1 for all m2 supp f. Then

f � (x+ �)= f + f 0 �+ 1

2
f 00 �2+ � � � (5.4)

Proof. Property (a) follows from proposition 5.10 and the fact that (�h)� (�g)
and �g�h are both strong exponential difference operators which map x to g �h.

Let � be the set of f 2T, for which (f � g)0= g 0 (f 0 � g). We have x2�
and � is closed under grid-based summation, since the mappings f 7! (f � g)0
and g 0 (f 0 � g) are both strongly linear. � is also closed under exponentiation
and logarithm: if f 2�, then

(ef � g)0 = (ef�g)0

= (f � g)0 ef�g

= g 0 (f 0 � g) ef�g

= g 0 ((f 0 ef) � g)
= g 0 ((ef)0 � g)

and f > 0 implies

((log f) � g)0 = (log (f � g))0

= g 0 (f 0 � g)/f � g
= g 0 ((log f)0 � g):

This proves (b), since the smallest subset � of T which satisfies the above
properties is T itself.
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As to (c), we first have to prove that the right hand side of (5.4) is
well-defined. Let � � x be a transseries in T and denote by T[ the set of
transseries f , such that my � � 1 for all m 2 supp f . Given a transmono-
mial m, we have

my �� 1, (logm)0� 1/�, logm�
R
1/�,m�� e

R
1/�;

since 1/�� 1/x. We infer that

T[= ff 2T:8m2 supp f ;m�� e
R
1/�g:

Let us show that T[ is closed under differentiation. By the strong linearity of
the differentiation, it suffices to prove that m02T[, for all transmonomials m
with m�� e

R
1/�. If m�� x, then n�� x�� e

R
1/�, for all n2 suppm0. If m�� x,

then n/m��m for all n2 suppm0, whence n ¡̀am�� e
R
1/�.

Now consider a transbasis B=(b1; : : : ;bn), such that b1= logpx; : : : ; x2B
and b1; : : : ; bn2T[. By theorem 4.15(b), any f 2T[ can be expanded with
respect to such a transbasis. Let

D= supp b1
y[ � � � [ supp bn

y� 1

�
;

so that supp f 0� (supp f)D�BC, for all f 2C[[BC]]. Now let f 2C[[BC]],
l2N, and consider the family Tl of all terms

�v;(m1;n1) � � �(ml;nl)=
1

l!
(fv v) (vm1

y m1) (�n1 n1) � � � ((vm1 � � �ml¡1)ml
y ml) (�nl nl):

Then
1

l!
f (l) �l=

X
Tl:

Moreover, setting T =
`
l2N Tl, we have

mon T ��mon(f) (mon(D)mon(�))w;

so T is grid-based, by proposition 2.14(c). Since T refines the family
( 1
l!
f (l) �l)l2N, it follows that the Taylor series in (5.4) is well-defined. For

a similar reason, the mapping BC!T; v 7!
P
l>0

1

l!
v(l) �l is grid-based, so

the mapping C[[BC]]!T; f 7!
P
l>0

1

l!
f (l) �l is actually strongly linear.

Now let � be the subset of T[ of all f , such that (5.4) holds. Clearly,
x2� and � is closed under strongly linear combinations. We claim that � is
also closed under exponentiation and logarithm. Indeed, assume that f 2�
and ef 2T[. Then 1/f 0� def/def

0 � �, f 0/f 00� �, f 00/f 000� �, : : :, since def ;

f 0; f 00; : : : 2T[. Hence f (n) �n� 1 for all n> 1, which allows us to expand

A = (ef) � (x+ �)= ef+f
0�+

1
2
f 00�2+� � �

= ef (1+ �+ 1
2
f 00 �2+ � � �+(�+ 1

2
f 00 �2+ � � �)2+ : : :):
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We have to show that A coincides with

B = ef +(ef)0 �+ 1

2
(ef)00 �2

= ef (1+ f 0 �+ 1

2
((f 0)2+ f 00) �2+ � � �):

But this follows from the fact that we may see A=B as a formal identity in the
ring C[[ef ; �; f 0; f 00;:::]]. Indeed, A and B satisfy the same differential equation

@A
@�

=
�
f 0+f 00 �+ 1

2
f 000 �2+ � � �

�
A

= f 0A+
�
@A
@f 0

f 00+ @A
@f 00

f 000+ � � �
�
�;

@B

@�
= f 0B+

�
@B

@f 0
f 00+ @B

@f 00
f 000+ � � �

�
�;

and [�0]A= [�0]B = ef. Similarly, one may show that � is closed under log-
arithm. This proves (c), since the smallest subset of T[, which contains x
and which is closed under strongly linear combinations, exponentiation and
logarithm, is T[ itself. �

Exercise 5.13. Let f 2T and g 2T>;�.

a) Prove that the exponentiality of f � g equals the sum of the exponentialities
of f and g.

b) Prove that the exponential height resp. logarithmic depth of f � g is bounded
by the sum of the exponential heights resp. logarithmic depths of f and g.

c) Improve the bound in (b) by taking into account the exponentialities of f
and g.

Exercise 5.14. Let f ; h 2T and g 2T>;� be such that h� g. Under which
condition do we have

f � (g+h)= f � g+(f 0 � g)h+ 1
2
(f 00 � g)h2+ � � � ?

Exercise 5.15. Let f 2T and let D a grid-based family of transseries, such
that my �� 1, for all m2 supp f and � 2D. prove that

f �
�
x+

X
D
�
=

X
�1 � � ��l2Dw

1

l!
f (l) �1 � � � �l:

Exercise 5.16. Let m be a transmonomial in T and g 2T>;� a transseries,
such that m � g �� x and n�� log m � g for all n 2 supp g. Prove that m � g is
a transmonomial.

Exercise 5.17. Show that Rfffxggg is closed under composition.

Exercise 5.18. Let A=(a1; : : : ; am) and B=(b1; : : : ; bn) be two transbases and
consider two series f 2 C[[a1; : : : ; am]] and g 2 C[[b1; : : : ; bn]]>;�. Construct
a transbasis for f � g of size 6m+n.
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5.4 Functional inversion

5.4.1 Existence of functional inverses

Theorem 5.12. Any g 2T>;� admits a functional inverse ginv2T>;� with

ginv � g= g � ginv=x:

Proof. Without loss of generality, one may assume that g=x+ ", where "�1
is exponential. Indeed, it suffices to replace g by log l¡p� g�expl for sufficiently
large l, where p is the exponentiality of g. Let B=(b1=ex; : : : ;bn) be a plane
transbasis for ". We will prove that g admits a functional inverse of the form
f = x+ �, where � � 1 can be expanded with respect to a plane transbasis
(a1; : : : ; an) which satisfies

an = bn � (x+ �0)
an¡1 = bn¡1 � (x+ �0;0)

���
Let us first assume that the constant coefficient "0 of " in bn vanishes.

Then proposition 5.11(c) implies that

Kf := f � (x+ ")¡ f = f 0 "+ 1
2
f 00 "2+ � � � (5.5)

for any f 2C[[x;b1; : : : ;bn]]. In particular, for every m2xC b1
C � � � bnC, we have

supp
Km

m
�K := (fx¡1; b1

y; : : : ; bn
yg supp ")�:

Now the functional inverse of g is given by

ginv = x¡Kx+K2x¡K3x+ � � �:
=

X
k1 � � �kl2Kw

(¡1)l (Kx)k1 (K k1)k2 � � � (K kl¡1)kl (x k1 � � � kl)

Since Kx= " 2 C[[b1; : : : ; bn]] and K maps C[[b1; : : : ; bn]] into itself, we
conclude that ginv=x+ �, with � 2C[[b1; : : : ; bn]]�.

The general case is proved by induction over n. If n=1, then we must have
"0=0, so we are done. So assume that n> 1. By the induction hypothesis,
there exists a functional inverse f~= x+ �~ for g~= x+ "~= x+ "0, such that
�~2C[[a1; : : : ; an¡1]]�, where

an¡1 = bn¡1 � (x+ �~0)
an¡2 = bn¡2 � (x+ �~0;0)

���
Now

g � f~=x+(g¡ g~) � f~2C[[a1; : : : ; an]];
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where an=bn � f~, and ((g¡ g~) � f~)0=0. It follows that g � f~ has a functional
inverse of the form (g � f~)inv= x+ � with � 2C[[a1; : : : ; an]] and �0=0. We
conclude that ginv= f~� (g � f~)inv is a functional inverse of g and we have

ginv= f~� (x+ �)= f~+ f~0 �+ 1
2
f~00 �2+ � � � 2C[[a1; : : : ; an]]: �

5.4.2 The Translagrange theorem

We define a scalar product on T by

hf ; gi=(f g)�:

Given transseries M;N 2T and f 2T>;�, let us denote

f[M;N ]= hM � f ;N i:

When taking transmonomials for M and N , then the coefficients f[M;N ]

describe the post-composition operator with f . More precisely, for all m;
n2T we have

(m � f)n= f[m;n¡1]:

Theorem 5.13. Let M;N ; "� 1 be exponential transseries and f = x+ ".
Then g= f inv satisfies

g[M;N 0]=¡f[N;M 0]:

Proof. Since h�=(
R
h)x for all h2T, we have

g[M;N 0]= hM � g;N 0i = [
R
(M � g)N 0]x ;

f[N;M 0]= hN � f ;M 0i = [
R
(N � f)M 0]x:

Since [
R
(N � f)M 0]¡ [

R
(N � f)M 0]xx and g¡x are exponential, we have

[
R
(N � f)M 0]x= [(

R
(N � f)M 0) � g]x:

Using the rule (
R
h) � g=

R
(h � g) g 0, it follows that

[
R
(N � f)M 0]x= [

R
N (M 0 � g) g 0]x= [

R
N (M � g)0]x:

Now integration by parts yields

g[M;N 0]+ f[N;M 0]= [
R
(M � g)N 0]x+ [

R
N (M � g)0]x= [N (M � g)]x

But [N (M � g)]x=0, since N (M � g) is exponential. �

The theorem generalizes to the case when M; N and " are no longer
exponential, by applying the following rule a finite number of times:

f[M;N ]=(log � f � exp)[M�exp;N�exp]:
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Corollary 5.14. Let M;N ; "� 1 be transseries of depths 6l and f = x+ ".
Then g= f inv satisfies

g[M;N 0/logl0]=¡f[N;M 0/logl0]:

Exercise 5.19. Let g=x+ " where " is exponential and let K be as in (5.5).

a) Show that we do not always have ginv=x¡Kx+K2x+ � � �.
b) Give a necessary and sufficient condition for which

ginv=x¡Kx+K2x+ � � �:

Exercise 5.20.

a) A classical theorem of Liouville [Lio37, Lio38] states that (x log x)inv is not
an exp-log function. Show that there exists no exp-log function f with f �
(log x log log x)inv (see [Har11] for a variant of this problem).

b) Show that there exists no exp-log function f with f�e
R
ex
2

. Hint: use exercise
5.11.

c) Assume that g 2T>;� is not an exp-log function. Show that there exists an
n2N, such that there exists no exp-log function f with f � expn g.

Exercise 5.21. Show that Rfffxggg is closed under functional inversion.

Exercise 5.22. Classify the convex subgroups of (T>;�;�). Hint: G is a convex
subgroup of T>;� if and only if its contraction conG is a convex subgroup.

Exercise 5.23. Show that Lagrange's inversion formula is a special case of
theorem 5.13.

Exercise 5.24. Show that theorem 5.13 still holds when M = x and N is
exponential.

Exercise 5.25. Let M;N be transseries and let f 2T>;� be a transseries of
level 0. Show that for all sufficiently large l, the inverse g= f inv satisfies

g[M;N ]=¡f[R (N log l0);M 0/log l0]:

If one allows l=!, then show that the formula holds for transseries of arbitrary
levels.
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6

Grid-based operators

Besides multiplication and strong summation, we have introduced other inter-
esting operations on the field of transseries in the previous chapter, like differ-
entiation, integration, composition and functional inversion. In this chapter
we will perform a theoretical study of an even larger class of operations on
transseries, which contains the above elementary operations, but also many
natural combinations of them.

This theoretical study is carried out best in the context of �grid-based
modules�. Let C be a ring. In chapter 2, we defined a grid-based algebra to
be a strong C-algebra of the form C[[M]], where M is a monomial monoid.
An arbitrary subset S of M is called a monomial set and the set C[[S]] of
strong linear combinations of elements in S a grid-based module.

In section 6.1, we start by generalizing the notion of strongly linear
mappings from chapter 2 to the multilinear case. Most natural elementary
operations like multiplication, differentiation, right composition, etc. can then
be seen as either linear or bilinear �grid-based operators�. In section 6.3,
we next introduce the general concept of a grid-based operator. Roughly
speaking, such an operator is a mapping �:C[[M]]!C[[N]] which admits
a �generalized Taylor series expansion�

�=�0+�1+�2+ � � �;

such that there exists a d-linear grid-based operator

��d:C[[M]]d!C[[N]]

with

�d(f)=��d(f ; : : : ; f)

for each d. If C �Q, then such Taylor series expansions are unique and we
will show that the ��d may be chosen to be symmetric.



Multilinear grid-based operators may both be reinterpreted as general
grid-based operators and linear grid-based operators using the �syntactic sugar
isomorphisms�

C[[M1q � � � qMm]] =� C[[M1]]� � � � �C[[Mm]]

C[[M1� � � � �Mm]] =� C[[M1]]
 � � � 
C[[Mm]]

The first isomorphism also provides a notion of grid-based operators in several
variables.

As promised, many operations can be carried with grid-based operators:
they can be composed and one may define a natural strong summation on the
space of grid-based operators �:C[[M]]!C[[N]]. An explicit strong basis of
�symmetric atomic operators� for this space will be established in section 6.4.2.
Last but not least, we will prove several implicit function theorems for grid-
based operators in section 6.5. These theorems will be a key ingredient for the
resolution of differential (and more general functional equations) in the next
chapters.

6.1 Multilinear grid-based operators

6.1.1 Multilinear grid-based operators

Let M1; : : : ;Mm and N be strong modules over a ring C. A mapping

�:M1� � � � �Mm!N

is said to be strongly multilinear , if for all F12S (M1); : : : ;Fm2S (Mm), we
have M(F1; : : : ;Fm)2S (N) and

�
¡X

F1; : : : ;
X
Fm
�
=
X

�(F1; : : : ;Fm):

If M1; : : : ; Mm and N are grid-based modules, then we also say that � is
a multilinear grid-based operator .

Example 6.1. Given monomial monoids M and N, all strongly linear map-
pings L: C[[M]]! C[[N]] are multilinear grid-based operators. Denoting
S= C[[M]], we have in particular the following important types of linear
grid-based operators:

1. Left multiplication operators �f:S!S; g 7! f g, with f 2S.
2. Strong derivations d:S!S. If S admits R-powers, then such derivations

should also satisfy df�=� (df) f�¡1, whenever f� is well-defined for f 2S
and �2R.
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3. Strong integrations; these are partial, strongly linear right inverses I:S!S
of strong derivations d:S!S, i.e. d I = Id.

4. Strong difference operators �: S! S. If S admits R-powers, then such
difference operators should also satisfy �f�= (� f)�, whenever f� is well-
defined for f 2S and �2R).

5. Strong summation operators; these are partial, strongly linear right inverses
�:S!S of finite difference operators, i.e. (�¡ Id)�= Id, for some strong
difference operator �:S!S.

Example 6.2. Given a monomial monoid M, the multiplication �:C[[M]]2!
C[[M]] and the scalar product C[[M]]2! C; (f ; g) 7! hf ; gi = (f g)� are
strongly bilinear mappings.

Example 6.3. Compositions

	 � (�1; : : : ;�n):
Y
i=1

n Y
j=1

mi

Mi;j ¡! V ;

((fi;j)16j6mn)16i6n 7¡! 	(�1(f1;1; : : : ; f1;m1);
: : : ;
�n(fn;1; : : : ; fn;mn))

of multilinear grid-based operators

	:N1� � � � �Nn ¡! V

�i:Mi;1� � � � �Mi;mi ¡! Ni (i=1; : : : ; n)

are again multilinear grid-based operators.

Example 6.4. Them-linear grid-based operators of the form �:C[[M1]]�����
C[[Mm]]!C[[N]] form a C-module. For instance, if d: S! S is a strong
derivation, where S=C[[M]], then strong differential operators of the form

L=Lr dr+ � � �+L0

are linear grid-based operators. In section 6.4.1, we will see that we may
actually define strong summations on spaces of grid-based operators.

6.1.2 Operator supports

Let �:C[[M1]]�����C[[Mm]]!C[[N]] be anm-linear grid-based operator,
such that M1; : : : ;Mm and N are all subsets of a common monomial group
G. Then the operator support of L is defined by

supp�=
[

(m1; : : : ;mm)2M1�� � ��Mm

supp
�(m1; : : : ;mm)

m1 � � �mm
:
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The operator support is the smallest subset of G, such that

supp�(f1; : : : ; fm) � (supp�) (supp f1) � � � (supp fm); (6.1)

for all (f1; : : : ; fm)2C[[M1]]� ��� �C[[Mm]]. Given S1�M1; : : : ;Sm�Mm,
we also denote

suppS1�� � ��Sm�= supp�jC[[S1]]�� � ��C[[Sm]]:

Example 6.5. We have

supp � = f1g;

supp	 �
Y
i=1

n

�i � (supp	) (supp�1) � � � (supp�n);

for multilinear operators �k:C[[M1]]�����C[[Mm]]!C[[Nk]] (k=1;:::;n)
and 	:C[[N1]]� � � � �C[[Nn]]!C[[V]].

Exercise 6.1. Let L1; : : : ; Lk: C[[M]]! C[[M]] be infinitesimal linear grid-
based operators (i.e. suppLi� 1 for i=1; : : : ; k).

a) Show that f(L1; : : : ; Lk) is well-defined for non-commutative series f 2
C hhz1; : : : ; znii.

b) Determine the largest subspace of T=C[[[x]]] on which e@
2
is a well-defined

bijection.

Exercise 6.2.

a) Is a multilinear grid-based operator necessarily a multilinear well-based oper-
ator?

b) Show that C[[M4]]�=�C[[M<]] for well-based series, if M is totally ordered.
Here C[[M4]]� denotes the strong dual of C[[M4]].

c) Show that (b) does not hold for grid-based series. How to characterize
C[[M]]�?

Exercise 6.3.

a) Let T[=C[[T[]]=T��ex be the set of transseries f 2T with m�� ex for all
m2 supp f and consider the space DT[ of operators

L=
X
n2N

Ln @
n2T[[[@]]; (6.2)

such that
S
n2N

suppLn is a grid-based. Show that DT[ operates on T[ and
that DT[ is closed under composition.
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b) Let T[=C[[T[]]=T��ex and consider the space DT[ of operators (6.2), such
that (Ln)n2N is a grid-based family. Show that DT[ operates on T[ and
that DT[ is closed under composition.

6.2 Strong tensor products

It is often useful to consider multilinear mappings

M1� � � � �Mm!N

as linear mappings

M1
 � � � 
Mm!N:

A similar thing can be done in the strongly linear setting. We will restrict
ourselves to the case when M1; : : : ;Mm are grid-based modules, in which case
the tensor product has a particularly nice form:

Proposition 6.6. Let M1; : : : ;Mm be monomial sets and denote

M=M1� � � � �Mm:

Consider the mapping

�:C[[M1]]� � � � �C[[Mm]] ¡! C[[M]]

(f1; : : : ; fm) 7¡!
X
m2M

f1;m1 � � � fm;mm (m1; : : : ;mm)

This mapping is well-defined and strongly multilinear. Moreover, for every
strongly multilinear mapping

�:C[[M1]]� � � � �C[[Mm]]!N

into an arbitrary strong C-module, there exists a unique strongly linear map-
ping

L:C[[M]]!N;

such that �=L� �.

Lemma 6.7. Let F be a grid-based family of monomials in M. Then there
exist grid-based families G12F (M1);:::;Gm2F (Mm) with F ��G1�����Gm.

Proof. Let Sk be the projection of S=
S
f2F supp f on Mk, for k=1; : : : ;m.

We have Sk� ek;1
N � � � ek;pk

N ffk;1; : : : ; fk;qkg for certain ek;l� 1 and fk;l. Given
m2Sk, we will denote

degm=min fi1+ � � �+ ipk:m= ek;1
i1 � � � ek;pk

ipk fk;jg:
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Given m2M, we define its multiplicity by

�(m)= card (f 2F : fm=/ 0):

Given mk2Sk, let

�k(mk)=max f�(m1; : : : ;mm):
8i2f1; : : : ;mg;mi2Si^ degmi6degmkg:

Then for all (m1; : : : ;mm)2S, we have

�(m1; : : : ;mm) 6 max f�1(m1); : : : ; �m(mm)g
6 �1(m1) � � � �m(mm):

Hence

F ��G1� � � � � Gm

for Gk=(mk)mk2Sk;i2f1; : : : ;�k(mk)g (k=1; : : : ;m). �

Proof of proposition 6.6. Given grid-based subsetsGk�Mk with k=1;:::;m;the
set G1 � � � � � Gm is clearly a grid-based subset of M. This implies that
� is well-defined. More generally, given grid-based families of terms Tk 2
F (CMk) (k= 1; : : : ; m), the family �(T1; : : : ; Tm)2F (CM) is again grid-
based. Now consider arbitrary grid-based families Fk 2S (C[[Mk]]) and let
Tk= termFk, for k=1; : : : ;m. Then

�
¡X

F1; : : : ;
X
Fm
�
= �

¡X
T1; : : : ;

X
Tm
�

=
X

�(T1; : : : ; Tm)

=
X

�(F1; : : : ;Fm):

This shows that � is multilinear.
Inversely, if G is a grid-based subset of M, then its projections �k(G)

on Mk for j=1; : : : ;m are again grid-based, and we have

G��1(G)� � � � ��m(G):

Consequently, given a strongly multilinear mapping

�:C[[M1]]� � � � �C[[Mm]]!N;

the mapping

L:C[[M]] ¡! NX
m2M

fmm 7¡!
X
m2M

fm�(m)

120 6 Grid-based operators



is well-defined. Moreover, if F 2S (C[[M]]), then the above lemma implies
that there exist Gk2F (Mk) (k=1;:::;m) with monF ��G1�����Gm, whence

L(monF)���(G1; : : : ; Gm):

It follows that L(monF); L(termF) and L(F) are summable families in N .
Finally, using strong associativity, we have

L
¡X

termF
�
= L

X
m2M

X
cm2termF

cm

=
X
m2M

X
cm2termF

c�(m)

=
X

L(termF):

We conclude that L(
P
F)=

P
L(F). �

We call C[[M1]]
 � � � 
C[[Mm]]=C[[M1� � � � �Mm]] (together with
the mapping �) the strong tensor product of C[[M1]]; : : : ; C[[Mm]]. An
immediate consequence of proposition 6.6 is the principle of extension by
strong multilinearity:

Corollary 6.8. Let M1; : : : ;Mm and N be monomial monoids and assume
that ' is a mapping, such that

('(m1; : : : ;mm))(m1; : : : ;mm)2G1�� � ��Gm

is a grid-based family for any grid-based subsets G1�M1;:::;Gm�Mm. Then
there exists a unique strongly multilinear mapping

�:C[[M1]]� � � � �C[[Mm]]!C[[N]]

with �jM1�� � ��Mm
= '.

Proof. Using extension by strong linearity, there exists a unique strongly linear
mapping L: C[[M1� � � � �Mm]]! C[[N]], with LjM1�� � ��Mm

= '. Then
�=L � � is the unique mapping we are looking for. �

Exercise 6.4. When do we have L (C[[M]];C[[N]])=�C[[M]]�
C[[N]], where
L (C[[M]]; C[[N]]) denotes the space of strongly linear mappings from C[[M]]

into C[[N]]?

Exercise 6.5.

a) Generalize proposition 6.6 to the case of well-based series.
b) Show that a well-based family (fi)i2I 2C[[M]]I corresponds to an element

of C[[I �M]].
c) Define a family F 2F (C[[M]]) to be super-grid-based F � (fi)i2I with

I�zNn

and f =
P

(i;m)
fi;m (i;m)2C[[I�M]]. Show that C[[M]] is a strong

C-algebra for super-grid-based summation.
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d) Give an example of a grid-based family which is not super-grid-based.

Exercise 6.6. Show that tensor products exist in the general strongly linear
setting (see also exercise 2.20). Hint:

a) Let M1; : : : ;Mm be strong modules. Consider the set F of all mappings f :
M1� � � � �Mm!C, whose support is contained in a set S1� � � � �Sm such
that each Si is a summable subset of Mi. Construct a natural embedding
�:M1� � � � �Mm!F and give F the structure of a strong C-module.

b) Let Z be the strong submodule of F , which is generated by all elements of
the form

(
X
i12I1

�i1xi1; : : : ;
X
im2Im

�imxim)¡
X
i12I1
���

im2Im

�i1 � � � �im (xi1; : : : ; xim);

where the Ik are mutually disjoint. Then the strong quotient

M1
 � � � 
Mm=F /Z

with �=�F /Z�� satisfies the universal property of the strong tensor product.

6.3 Grid-based operators

6.3.1 Definition and characterization

Let M and N be monomial sets. A mapping �:C[[M]]!C[[N]] is said to
be a grid-based operator if there exists a family (�� i)i2N of multilinear grid-
based operators �� i:C[[M]]i!C[[N]], such that for all F 2S (C[[M]]), the
family (�� i(f1; : : : ; fi))i2N;f1; : : : ;fi2F is grid-based, and

�
¡X

F
�
=

X
i2N

f1; : : : ;fi2F

�� i(f1; : : : ; fi): (6.3)

We call (�� i)i2N a multilinear family for �. Considering the family of a single
element f 2C[[M]], the formula (6.3) reduces to

�(f) =
X
i2N

�i(f); with (6.4)

�i(f) = ��̂ i(f)=�� i(f ; : : : ; f):

Assuming that C �Q, each �i is uniquely determined and we call it the
homogeneous part of degree i of �:

Proposition 6.9. Let �:C[[M]]!C[[N]] be a grid-based operator and let
�� i:C[[M]]i!C[[N]] be multilinear grid-based operators, such that (6.4) holds
for all f 2C[[M]]. If C �Q and �=0, then �i=0 for each i2N.
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Proof. We observe that it suffices to prove that �i= 0 for each i 2N, since
the �� i are symmetric and C �Q is torsion-free. Assume the contrary and let
f 2C[[M]] be such that �i(f)=/ 0 for some i. Choose

m2S=
[
i2N

supp�i(f)=/ ?:

Since (�i(f))i2N is a grid-based family, there exist only a finite number of
indices i, such that m2 supp�i(f). Let i1< � � �< in be those indices.

Let ck=�ik(f)m for all k 2 f1; : : : ; ng. For any l 2 f1; : : : ; ng, we have
�ik(l f)m= lik ck, by multilinearity. On the other hand,

�(l f)m=�i1(l f)m+ � � �+�in(l f)m=0

for each l, so that 0BB@ 1 � � � 1
��� ���
ni1 � � � nin

1CCA
0BB@ c1
���
cn

1CCA=0:

The matrix on the left hand side admits an inverse with rational coefficients
(indeed, by the sign rule of Descartes, a real polynomial �1 xi1+ � � �+�nxin
cannot have n distinct positive zeros unless �1= � � �=�n=0). Since C �Q,
it follows that c1= � � �= cn=0. This contradiction completes the proof. �

Proposition 6.10. Let �: C[[M]]! C[[N]] be a grid-based operator and
assume that C �Q. Then there exist a unique multilinear family (�� i)i2N
for �, such that each �� i is symmetric.

Proof. Let (�~ i)i2N be an arbitrary multilinear family for �. Then the �� i
defined by

�� i(f1; : : : ; fi)=
1
i!

X
�2Si

�~ i(f�(1); : : : ; f�(i)):

form a multilinear family of symmetric operators for �. Moreover, each �� i is
determined uniquely in terms of �i by

�� i(f1; : : : ; fi)=
1
i!

X
J�f1; : : : ;ig

(¡1)i¡jJ j�i
 X
j2J

fj

!
:

We conclude by proposition 6.9. �

Assume that M and N are subsets of a common monomial group G. If we
have C �Q and � and (�� i)i2N are as in proposition 6.10, then we call

supp�= supp��0[ supp��1[ supp��2[ � � �

the operator support of �. For all f 2C[[M]], we have

supp�(f)� (supp�) (supp f)�:
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Notice also that supp�i= supp�� i for all i.

6.3.2 Multivariate grid-based operators and compositions

In a similar way that we have the natural isomorphism

C[[M1� � � � �Mm]] =� C[[M1]]
 � � � 
C[[Mm]];

for tensor products, we also have a natural isomorphism

C[[M1q � � � qMm]] ¡! C[[M1]]� � � � �C[[Mm]];

f 7¡!
 X

m2M1

fmm; : : : ;
X

m2Mm

fmm

!
for Cartesian products. This allows us to reinterpret mappings �in sev-
eral series� C[[M1]] � � � � � C[[Mm]]! N as mappings �in one series�
C[[M1q � � � qMm]]!N . In particular, any multilinear grid-based operator
�: C[[M1]] � � � � � C[[Mm]]! C[[N]] can be seen as a grid-based oper-
ator in from C[[M1q � � � qMm]] into C[[N]]. More generally, the natural
isomorphism may be used in order to extend the notion of grid-based oper-
ators to mappings C[[M1]]� � � � �C[[Mm]]!C[[N]].

Let �:C[[M]]!C[[N]] and 	:C [[N]]!C[[V]] be two grid-based oper-
ators. Then 	 � � is again a grid-based operator. Indeed, let (�� i)i2N and
(	�j)j2N be multilinear families for � and 	. Then for all F 2S (C[[M]]), we
have

	 ��
¡X

F
�
= 	

0@ X
i2N

f1; : : : ;fi2K

�� i(f1; : : : ; fi)
1A

=
X
j2N

i1; : : : ;ij2N
f1;1; : : : ;f1;i12F

���
fj;1; : : : ;fj;ij2F

	�j(�� i1(f1;1; : : : ; f1;i1);
: : : ;

�� ij(fj;1; : : : ; fj;ij))

so that the (	 ��)l defined by

(	 ��)l=
X
j2N

i1+ � � �+ij=l

	�j � (�� i1; : : : ;�� ij)

form a multilinear family for 	 ��.

Exercise 6.7. Assume that C �Q and let �:C[[M]]!C[[N]] be a grid-based
operator. Is it true that for any S supp � there exists an f 2C[[M]] with
supp�(f)*S (supp f)�?

124 6 Grid-based operators



Exercise 6.8. Define the �derivative� of a grid-based operator �: C[[M]]!
C[[N]].

Exercise 6.9.

a) Characterize the intervals I of the set of infinitesimal transmonomials T�
(i.e. for all m; n2 I and v2T, we have m4 v4 n) v2 I), such that for all
g 2 x+C[[I]], the operator �g is a grid-based operator on C[[I]].

b) With I as in (a), show that the operators C[[I]]2! C[[I]]; ("; �) 7!
(x+ ") � (x¡ �)¡x and C[[I]]!C[[I]]; " 7! (x+ ")inv¡x are grid-based.

6.4 Atomic decompositions

6.4.1 The space of grid-based operators

Let L (M1; : : : ; Mm; N ) be the space of strongly multilinear operators
�:M1 � � � � �Mm!N . Then L (M1; : : : ; Mm; N) is clearly a C-module.
More generally, a family (�i)i2I of elements in L (M1; : : : ; Mm; N) is said
to be summable, if for all F12S (M1); : : : ;Fm2S (Mm), we havea

i2I
�i(F1; : : : ;Fm)2S (N):

In that case, we define the sum
P
i2I �i2L (M1; : : : ;Mm; N) byX

i2I
�i: (f1; : : : ; fm) 7¡!

X
i2I

�i(f1; : : : ; fm):

This gives L (M1; : : : ;Mm; N) the structure of a strong C-module.
Similarly, let G (C[[M]];C[[N]]) denote the space of grid-based operators

�:C[[M]]!C[[N]]. This space is clearly a C-module. A family (�j)j2J 2
G (C[[M]]; C[[N]])J is said to be summable, if for all F 2S (C[[M]]), the
family

(��j;i(f1; : : : ; fi))j2J ;i2N;(f1; : : : ;fi)2Fi

is a grid-based family. In that case, the sumX
j2J

�j: f 7!
X
j2J

�j(f)

is a grid-based operator and G (C[[M]];C[[N]]) is a strong C-module for this
summation. In particular, we have

�=�0+�1+�2+ � � � (6.5)

for all � 2 G (C[[M]]; C[[N]]). We call (6.5) the decomposition of � into
homogeneous parts.
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6.4.2 Atomic decompositions

Let M1; : : : ;Mm and N be monomials sets. Given m12M1; : : : ;mm2Mm and
n2N, the operator


m1; : : : ;mm;n:C[[M1]]� � � � �C[[Mm]]¡!C[[N]]

with


m1; : : : ;mm;n(f1; : : : ; fm)= f1;m1 � � � fm;mm n

is an m-linear grid-based operator. Operators of this form, which are said to
be atomic, form a strong basis of L (C[[M1]]; : : : ; C[[Mm]]; C[[N]]), since
any operator �2L (C[[M1]]; : : : ;C[[Mm]]; C[[N]]) may be uniquely decom-
posed as

�=
X

m12M1; : : : ;mm2Mm

n2N

�(m1; : : : ;mm)n
m1; : : : ;mm;n: (6.6)

We call (6.6) the atomic decomposition of �. More generally, an atomic family
is a summable family A=(c�
�)�2A, with c�2C and 
�=
i�;1; : : : ;i�;m;o�,
where i�;1; : : : ; i�;m2M and o�2N.

Assume now that C�Q. Given a grid-based operator �:C[[M]]!C[[N]],
let the �� i be as in proposition 6.10. Then we have

�=
X

m1 � � �mi2Mw;n2N
�� i(m1; : : : ;mi)n
m1; : : : ;mi;n (6.7)

and we call this formula the atomic decomposition of �. More generally,
a family A= (c�
�)�2A, where c� 2C and 
�=
i�;1; : : : ;i�;j�j;o�, is called
an atomic family , if the family Â= (c� 
̂�)�2A is summable in G (C[[M]];
C[[N]]).

Since the �� i in (6.7) are symmetric, the atomic decomposition is slightly
redundant. Let � be the equivalence relation on Mw, such that m1 � � � mi�
n1 � � � nj if and only if j= i and there exists a permutation of indices �, such
that ni=m�(i) for all i. Given m̂2Mw/�, m1 � � �mm2 m̂ and n2N, we define


m̂;n=
m1; : : : ;mi;n:

Clearly, 
m̂;n does not depend on the choice of m1 � � � mm2 m̂ and operators
of the form 
m̂;n will be called symmetric atomic operators. Setting

��(m̂)=
X

m1 � � �mi2m̂
�� i(m1; : : : ;mi);

for all m̂2Mw/�, the decomposition

�=
X

m̂2Mw/�;n2N
��(m̂)n
m̂;n

is unique. We call it the symmetric atomic decomposition of �.
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6.4.3 Combinatorial interpretation of atomic families

Consider an atomic family A with 
�:C[[M]]j�j!C[[N]] for each �2A. We
may interpret the 
� as combinatorial boxes with inputs i�;1; : : : ; i�;j�j2M
and output o�2N. We define a partial ordering on A by ���0, o�� o�0.
Given a subset S of M, we denote by AS the atomic family of all �2A with
fi�;1; : : : ; i�;j�jg�S. Finally, given a monomial set M, we denote by DM the
atomic family (
m;m)m2M, so that

P
DM is the identity operator on C[[M]].

Remark 6.11. A convenient way to check whether a family A=(c�
�)�2A is
atomic is to prove that for each grid-based subset S�M we have

1. The set oAS is grid-based.
2. For each n2N, there exist only a finite number of �2AS with o�= n.

Consider two atomic families A and B, where 
�: C[[N]]j�j!C[[V]] and

�:C[[M]]j� j!C[[N]] for all �2A and � 2B. We define their composition
to be the family (c& 
&)&2A�B with formal index set

A�B= f� � (�1; : : : ; �j�j):
�2A^ �1; : : : ; �j�j2B^ o�1= i�;1^ � � � ^ o�j�j= i�;j�jg

and

c��(�1; : : : ;�j�j) = c� c�1 � � � c�j�j ;

��(�1; : : : ;�j�j) = 
i�1;1; : : : ;i�1;j�1j; : : : ;i�j�j;1; : : : ;i�j�j;j�j�jj;o�

:

We may see the � � (�1; : : : ; �j�j) as combinatorial structures, such that the
outputs o�k of the �k coincide with the inputs i�;k of � (see figure 6.1).
A similar computation as at the end of section 6.3.2 yields:

Proposition 6.12. Let A and B be two atomic families as above. Then A�B
is again an atomic family andX

A�B = (
X
Â) � (

X
B̂): �

�

1

�

2

�

3

� Æ (�

1

; �

2

; �

3

)

�

Fig. 6.1. Combinatorial interpretation of the composition of atomic opera-
tors.
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Exercise 6.10. Show that the mapping

�L1; : : : ;Lk:C hhz1; : : : ; zkii ! L (C[[M]]; C[[M]])

f 7! f(L1; : : : ; Lk)

from exercise 6.1 is a strong C-algebra morphism.

Exercise 6.11. Show that L (M1; : : : ;Mm; N) and L (M1
 � � � 
Mm; N) are
naturally isomorphic as sets. Show that this natural isomorphism also preserves
the strong C-module structure.

Exercise 6.12. Show that an atomic family A is summable, if and only if AS

is grid-based for every grid-based subset S�M.

Exercise 6.13. Generalize the theory from sections 6.3 and 6.4 to the well-
based setting.

6.5 Implicit function theorems

Let M and N be monomial sets which are contained in a common monomial
monoid. Consider a grid-based operator

�:C[[M]]�C[[N]] ¡! C[[M]]

(f ; g) 7¡! �(f ; g)

together with its atomic decomposition �=
P
A. We say that

� � is strictly extensive in f if o�� i�;k whenever i�;k2M.
� � is extensive in f with multipliers in a set E, if o� 2 i�;k E whenever

i�;k2M.
� � is contracting in f if �(f2; g)¡�(f1; g)�� f2¡ f1 for all f1; f22C[[M]]

and g 2C[[N]]. Here we write f �� g if for all m2 supp f , there exists an
n2 supp g with m� n.

If � is strictly extensive in f , then we have in particular

�(f ; g)m=(
X
Afm02m:m0�mgqN)(f ; g)m

for all f 2C[[M]], g2C[[N]] and m2M. Consequently, � is also contracting
in f , since �(f2; g)m=�(f1; g)m, whenever f1; f22C[[M]], g 2C[[N]] and
m2M are such that f1;n= f2;n for all n�m.

Given a grid-based operator � as above, the aim of the implicit function
theorems is to construct a grid-based operator 	:C[[N]]!C[[M]], such that

�(	(g); g)=	(g) (6.8)

for all g 2 C[[N]]. In the well-based context, a sufficient condition for the
existence (and uniqueness) of such an operator is the strict extensiveness of
� in f . In the grid-based context we need additional conditions in order to
preserve the grid-based property. In this section, we present three possible
choices for these extra conditions, which lead each to a grid-based implicit
function theorem.
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6.5.1 The first implicit function theorem

Theorem 6.13. Consider a grid-based operator

�:C[[M]]�C[[N]] ! C[[M]]

(f ; g) 7! �(f ; g);

which is extensive in f with multipliers in a grid-based set E�1. Then for each
g 2C[[N]], there exists a unique 	(g) which satisfies (6.8) and the operator
	:C[[N]]!C[[M]] is grid-based. Furthermore, for all g 2C[[N]], we have

supp	(g)� (supp�(0; g))E�:

If C �Q, then we also have

supp	� (supp�)+:

Proof. Let �=
P
A be the atomic decomposition of �. Consider the family

B=qd2NBd, where the Bd are recursively defined by

B0 = AN

Bd+1 = (A nAN) � (BdqDN)

See figure 6.2 for the illustration of a member of B. We claim that B is an
atomic family. Indeed, letS�N be a grid-based set. Let us prove by induction
over d that

supp o& �SEd (6.9)

for all & 2 Bd;S. This is clear if d= 0. If d> 1, then we may write & = � �
(�1; : : : ; �d), where i�;k=o�k2M for at least one k. By the induction hypoth-
esis, we have supp o�k �SEd¡1, so that o& 2 o�k E�SEd. This shows thatS
&2BS o& �SE�. Moreover, given m2SE�, there are only a finite number

of d with m2SEd. It follows that B is an atomic family, by remark 6.11 and
the fact that each Bd is atomic.

Fig. 6.2. Illustration of a member of B3. The white dots correspond to
elements of M and the black dots to elements of N. The light boxes belong
to A and the dark ones to DN.
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Now consider the grid-based operator

	=
X
B:C [[M]]�C[[N]]!C[[M]]:

Identifying C [[M]]�C[[N]] and C[[MqN]] via the natural isomorphism,
we have

(	(g); g)=	(g)+ g=(
X
BqDN)(g);

for all g 2C[[N]]. Similarly, for all (f ; g)2C[[M]]�C[[N]], we have

�rest(f ; g)=�(f ; g)¡�(0; g)= (
X
A nAN)(f ; g):

Applying proposition 6.12, we conclude that

	(g) = (
X
B0)(g)+ (

X
B nB0)(g)

= (
X
AN)(g)+ (

X
(A nAN) � (BqDN))(g)

= �(0; g)+�rest(	(g); g)
= �(	(g); g);

for all g 2C[[N]]. As to the uniqueness of 	(g), assume that f1; f22C[[N]]
are such that �(f1; g)= f1 and �(f2; g)= f2. Then we have

�(f2; g)¡�(f1; g)= f2¡ f1�� f2¡ f1;

which is only possible if f2= f1.
Let us finally prove the bounds on the supports. The first one follows

directly from (6.9). The second one follows from the fact that the operator
support of an element in B is the product of the operator supports of all
combinatorial boxes on the nodes of the corresponding tree. �

6.5.2 The second implicit function theorem

Theorem 6.14. Consider a grid-based operator

�:C[[M]]�C[[N]] ! C[[M]]

(f ; g) 7! �(f ; g);

such that
Em= supp�1[ (supp�2)m[ (supp�3)m2[ � � �

is grid-based and infinitesimal for all m 2M. Then, for each g 2 C[[N]],
there exists a unique 	(g) which satisfies (6.8) and the operator 	:C[[N]]!
C[[M]] is grid-based.

Proof. Let g2C[[N]], with support S= supp g. There exist finite sets F and
D� 1, such that S�FD�. Let

E=
 [

m2F
Em

!
+

D�
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Then we have E� 1 and
E�

[
m2F(D[E)�

Em:

We now observe that �(�; g) maps C[[F (D[E)�]] into itself, so we may apply
theorem 6.13 to this mapping with the same E. This proves the existence and
uniqueness of 	(g). With similar notations as in theorem 6.13, it also follows
that B is again a grid-based atomic family, so that 	=

P
B̂ is a grid-based

operator. �

6.5.3 The third implicit function theorem

Theorem 6.15. Consider a grid-based operator

�:C[[M]]�C[[N]] ! C[[M]]

(f ; g) 7! �(f ; g);

which is strictly extensive in f. Assume that

G= supp�0[ supp�1[ � � �
is grid-based and G�1. Then for each g2C[[N]], there exists a unique 	(g)
which satisfies (6.8) and the operator 	:C[[N]]!C[[M]] is grid-based.

Proof. With the notations of the proof of theorem 6.13, let us first show that
BS is a well-based family for every grid-based set S�N. For each �2A, let
��= o�/(i�;1 � � � i�;j�j)2G. To each � 2BS, we associate a tree ��2 (GqS)>,
by setting ��= o� if � 2DNqB0, and

� � (�1; : : : ; �j�j)= ��

��1 � � � ��j�j
for �� (�1;:::; �j�j)2B nB0. Since � is strictly extensive in f , this mapping is
strictly increasing. Furthermore, the inverse image of each tree in (SqG)> is
finite and (SqG)> is well-based by Higman's theorem. This together implies
that BS is well-based.

Let us show that BS is actually a grid-based. For each tree ��2 (SqG)>,
let o��=

Q
a2�� l(a), so that o��= o� for all � 2B. Now consider

T= f(��; ��1 � � � ��l)2G� ((SqG)>)w: o�� o��1 � � � o��l� 1g:

Let F be the finite subset of 4-maximal elements of T. Notice that we may
naturally interpret elements

(��; ��1 � � � ��l)2G� ((SqG)>)w

as trees
��

��1 � � � ��l

2 (SqG)>:
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Given a grid-based set A and m2A, let us denote

resAm= f n
m
: n2A; n�mg:

Consider

E=
0@G[fo&�: &�2Fg[

[
&�2F
l2l(&�)

resGqS l

1A� n f1g:
We claim that E satisfies the hypothesis of theorem 6.13.

Indeed, consider &=�� (�1;:::; �j�j)2BS\Bd and let us show by induction
over d that o& 2 i& ;kE for every k with o�k2M. Now

&�= (��; (��1; : : : ; ��k¡1; ��k+1; : : : ; ��j�j))4 &�0

for some &�02 F. In other words, there exists an embedding ': &�0! &� which
fixes the root. Consider a factorization '=  � '0 of this embedding through
a tree !� with o!�2 i& ;kE, such that a2 im '0 for all a2!� with l( (a))=/ l(a),
and such that

� = card fb2 &�:8a2!�; b=  (a)) l(b)=/ l(a)g

is minimal. Assume for contradiction that � =/ 0. We distinguish three cases:

Case 1. l( (a))=/ l(a) for some a2!�.
Consider the tree !�0 with the same nodes as !� and l!�0(b) = l!�(b) if b=/ a
and l!�0(a) = l&�( (a)). Then we may factor  = � �  0 through !�0 with
��= � ¡ 1 and o!�02 o!�E� i& ;kE.

Case 2. arity( (a))> arity(a) for some a2!�.
Let �� be a child of  (a) whose root is not in the image of  . Then we
may factor  = � �  0 through a tree !�0 which is obtained by adding �� as
a child to a at the appropriate place, in such a way that ��= � ¡ card��.
Moreover, since �2B0[ � � � [Bd¡1, the induction hypothesis implies that
o��2E, so that o!� 0= o!� o��2 i& ;kE.

Case 3. we are not in cases 1 and 2.
Since � =/ 0, there exists a b 2 &� n im  with a successor c=  (a). Let
��1;:::;��p be the children of b, so that c is the root of ��i for some i. Consider
the tree !�0 which is obtained by substituting the subtree �� of !� with root
a by

��0= l(b)

��1 � � � ��i¡1 �� ��i+1 � � � ��p

By the induction hypothesis, we have o��02 o��E, so that o!� 02 o!�E� i& ;kE.
Furthermore, we may factor  = � �  0 through !�0 in such a way that
��= � + card��¡ card��0.
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In each of these three cases, we have thus shown how to obtain a factorization
'= � � ( 0 � '0) through a tree !�0 with ��<� and o!� 02 i& ;kE. This contra-
diction of the minimality assumption completes the proof of our claim. We
conclude the proof by applying theorem 6.13 and by noticing that B is grid-
based, so that 	=

P
B̂ is a grid-based operator. �

Exercise 6.14. Give an example of a contracting mapping which is not strictly
extensive.

Exercise 6.15. In the first implicit function theorem, show that the condition
that f has multipliers in a grid-based set E�1 cannot be omitted. Hint: consider
the equation f(x)=x+ f( x

p
).

Exercise 6.16. Give an example where the second implicit function theorem
may be applied, but not the first. Also give an example where the third theorem
may be applied, but not the second.

Exercise 6.17. Prove the following implicit function theorem for well-based
series:

Let �:C[[M]]�C[[N]]!C[[M]]; (f ; g) 7!F (f ; g) be a well-based
operator which is strictly extensive in f . Then for each g2C[[N]],
there exists a unique 	(g) which satisfies (6.8) and the operator
�:C[[N]]!C[[M]] is well-based.

6.6 Multilinear types

One obtains interesting subclasses of grid-based operators by restricting the
homogeneous parts to be of a certain type. More precisely, letM be a monomial
monoid and let T be a set of strongly multilinear mappings �:C[[M]]j�j!
C[[M]]. We say that T is a multilinear type if

MT1. The constant mapping f0g 7! f is in T , for each f 2C[[M]].
MT2. The projection mapping �i:C[[M]]k!C[[M]] is in T , for each i 2
f1; : : : ; kg.

MT3. The multiplication mapping �:C[[M]]2!C[[M]] is in T .
MT4. If 	;�1; : : : ;�j	j2T , then 	 � (�1; : : : ;�j	j)2T .

Given subsets V1;:::;Vv;W1;:::;Ww of M, we say that a strongly multilinear
mapping

�:C[[V1]]� � � � �C[[Vv]]!C[[W1]]� � � � �C[[Ww]]

is an atom of type T , if for i=1; : : : ;w, there exists a mapping �i:C[[M]]v!
C[[M]] in T , such that �i �� coincides with the restriction of the domain
and image of �i to C[[V1]]� � � � �C[[Vv]] resp. C[[Wi]]. We say that � is
of type T , if � is the sum of a grid-based family of atoms of type T . A grid-
based operator

�:C[[V1]]� � � � �C[[Vv]]!C[[W1]]� � � � �C[[Ww]]
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is said to be of type T , if �� i is of type T for all i.

Example 6.16. For any set S of grid-based operators C[[M]]! C[[M]],
there exists a smallest multilinear type T = hS i which contains S . Taking
T=C[[M]] to be the field of grid-based transseries, interesting special cases
are obtained when taking S =f@g or S =f

R
g. Grid-based operators of type

hf@gi resp. hf
R
gi are called differential resp. integral grid-based operators.

Exercise 6.18. Show that compositions of grid-based operators of type T are
again of type T .

Exercise 6.19. State and prove the implicit function theorems from the pre-
vious section for grid-based operators of a given type T .

Exercise 6.20. For which subfields of T and g 2T>;� do the grid-based oper-
ators of types hf�ggi and hf@gi coincide?
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7

Linear differential equations

Let L=Lr@r+ ���+L02T[@] be a linear differential operator with transseries
coefficients and g2T. In this chapter, we study the linear differential equation

Lf = g: (7.1)

In our grid-based context, it is convenient to study the equation (7.1) in
the particular case when L0; : : : ; Lr and g can be expanded w.r.t. a plane
transbasis B. In order to solve the equation f (r) = 1, we necessarily need
to consider solutions in C[x]. Therefore, we will regard L as an operator on
C[[xNBC]]=C[x][[BC]]. Assuming that we understand how to solve (7.1) for
L2C[[BC]][@] and f ; g2C[[xNBC]] and assuming that we understand how
this resolution depends on B and upward shiftings, the incomplete transbasis
theorem will enable us to solve (7.1) in the general case.

A first step towards the resolution of (7.1) is to find candidates for dom-
inant terms of solutions f . It turns out that the dominant monomial of Lf
only depends on the dominant term of f , except if �f 2C=/ HL, where HL is
a finite set of �irregular� monomials. The corresponding mapping TL: �f 7! �Lf
is called the trace of L, and its properties will be studied in section 7.3. In
particular, we will show that TL is invertible.

In section 7.4 we will show that the invertibility of the trace implies the
existence of a strong right inverse L¡1 of L. Moreover, the constructed right
inverse is uniquely determined by the fact that (L¡1 g)h= 0 for all h 2 HL
(for which we call it �distinguished�). Furthermore, we may associate to each
h2HL a solution hh= h¡L¡1L h� h to the homogeneous equation Lh=0
and these solutions form a �distinguished basis� of the spaceHL of all solutions.

Now finding all solutions to (7.1) it equivalent to finding one particular
solution f=L¡1 g and the spaceHL of solutions to the homogeneous equation.
Solving the homogeneous equation Lh=0 is equivalent to solving the Riccati
equation

RL(f)= 0; (7.2)



which is an algebraic differential equation in f = hy (see section 7.2). In
section 7.5, we will show that (7.2) is really a �deformation� of the algebraic
equation Lrf r+ ���+L0=0, so we apply a deformation of the Newton polygon
method from chapter 3 to solve it. In fact, we will rather solve the equation
�modulo o(1)�, which corresponds to finding the dominant monomials in HL
of solutions to the homogeneous equation (see section 7.6).

Of course, an equation like f 00 + f = 0 does not admit any non-trivial
solutions in the transseries. In order to guarantee that the solution space HL
of the homogeneous equation has dimension r, we need to consider transseries
solutions with complex coefficients and oscillating monomials. In section 7.7
we will briefly consider the resolution of (7.1) in this more general context. In
section 7.8 we will also show that, as a consequence of the fact that dimHL=r,
we may factor L as a product of linear operators.

7.1 Linear differential operators

7.1.1 Linear differential operators as series

Let T=C[[T]]=C[[[x]]] be the field of grid-based transseries in x over a real-
closed exp-log field of constants C. In what follows, it will often be conve-
nient to regard linear differential operators L= Lr @

r + � � � + L0 2T[@] as
elements of C[@][[T]]. In particular, each non-zero operator L admits a dom-
inant monomial

dL=max4 fdL0; : : : ; dLrg

and a dominant coefficient

cL=LdL=Lr;dL @r+ � � �+L0;dL2C[@];

for which we will also use the alternative notation

L�= cL:

Similarly, the asymptotic relations 4, �, 4], �], etc. extend to T[@]. In order
to avoid confusion with the support of L as an operator, the support of L as
a series will be denoted by suppserL.

Proposition 7.1. Given K;L2T[@]=/ with L� 1, we have

cKL= cK cL:

Proof. Without loss of generality, one may assume thatK�1, modulo division
of K by dK. Then

KL= cK cL+
X
06i;j

X
06k6i

X
m41;n41
m�1_n�1

�
k
i

�
Ki;mLj;nmn(i¡k) @k+j:

Now each term in the big sum at the right hand side is infinitesimal. �
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7.1.2 Multiplicative conjugation

Given a linear differential operator L2T[@] and a non-zero transseries h, there
exists a unique linear differential operator L�h, such that

L�h(f)=L(h f)

for all f . We call L�h a multiplicative conjugate of L. Its coefficients are given
by

L�h;i=
X
j>i

�
j
i

�
Ljh

(j¡i): (7.3)

Notice that L�h1h2=L�h1;�h2 for all h1; h22T=/ .

Proposition 7.2. If h��x, then
L�h �h hL:

Proof. From h �� x it follows that h(i) �h h for all i. Then (7.3) implies
L�h 4h hL. Conversely, we have

L=L�h;/h 4h h¡1L�h: �

7.1.3 Upward shifting

In order to reduce the study of a general linear differential equation Lf = g
over the transseries to the case when the coefficients are exponential, we
define the upward shifting L" and downward shifting L# of L to be the unique
operators with

(L")(f ") = (Lf)"
(L#)(f #) = (Lf)#

for all f . In other words, the resolution of Lf= g is equivalent to the resolution
of (L")(f ")= g". The coefficients of L" and L# are explicitly given by

(L")i =
X
j>i

sj;i e¡jx (Lj"); (7.4)

(L#)i =
X
j>i

Sj;ix
i (Lj#); (7.5)

where the sj;i; Sj;i2Z are Stirling numbers of the first resp. kind, which are
determined by

f(log x)(j) =
X
i=0

j

sj;ix
¡j f (i)(log x):

(f(ex))(j) =
X
i=0

j

Sj;i eix f (i)(ex):
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Upward and downward shifting are compatible with multiplicative conjuga-
tion in the sense that

L�h" = (L")�h"
L�h# = (L#)�h#

for all h2T=/ . We will denote by "l resp. #l the l-th iterates of " and #.

Exercise 7.1. Let g 2T>;� and L2T[@].
a) Show that there exists a unique L�g 2T[@] with

L�g (f � g)=L(f) � g
for all f 2T.

b) Give an explicit formula for L�g;i for each i2N.
c) Show that L 7!L�g is a ring homomorphism.

Exercise 7.2. Let '2T=/ and @~= '@. Denote by 'T the field T with differ-
entiation @~.

a) Show that each L2 ( T' )[@~] can be reinterpreted as an operator L'2T[@].
b) Given L 2T[@], let �'(L) 2 ( T' )[@~] be the result of the substitution of @~

for @ in L. If
R
'¡12T>;�, then show that �'(L)'=L�R'¡1.

Exercise 7.3. Let g2T>;� and '=1/g 0, so that (T; @)=� (T� g; '@); f 7! f � g.
a) Given L2DT��ex (see exercise 6.3), let �'(L) =

P
n2N

Ln (' @)n. Show that
�'(L) naturally operates on T��eg. Also show that the space DT��eg of all
such operators only depends on dg.

b) Same question, but for L2DT��ex.
c) Under which condition on g can the operator L~=�'(L) in either of the above

questions be rewritten as an operator of the form
P
n2N

L~n @
n?

Exercise 7.4. Let T[=C[[T[]]2/ fC;Tg be a flat subspace of T.

a) Extend the definition of DT[ in exercises 6.3 and 7.3 to the present case.
b) Let T[1�T[2 be two flat subspaces of T of the above type. Characterize

DT[1\DT[2.

Exercise 7.5. Let g 2T>;�.

a) Determine '2T so that �g=e'@.
b) Given �2C, construct the �-th iterate g�� of g.
c) Determine the maximal flat subspace T[=C[[T[]] of T such that �g2DT[.

Exercise 7.6. Let g1; : : : ; gk2x+T��ex;4. Consider an operator

L=
X
i=1

k X
j=0

ri¡1

Ai;j �gi @j;

where Ai;j 2T��ex.
a) Show that L2DT��ex and let L0; L1; : : : be such that L=

P
n2N

Ln @
n.

b) Assuming that L=/ 0, show that there exists a � < r1+ � � � + rk with dL�=
maxn2NdLn.
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Exercise 7.7. Let T[ be as in exercise 7.3(a) or (b), and �2C.

a) Given E=
P
n2N

En ('@)n2DT[ with dE=max4dEn4 1 and E0� 1. Show
that

log (1+E) =
X
n>1

(¡1)n+1
n

En2DT[

expE =
X
n>0

1

n!
En2DT[

(1+E)� =
X
n2N

�
�
n

�
En= exp(� log (1+E))2DT[

are well-defined.
b) Let '2T[;<;>, `= log ', K = '+E and L= log (1+ '¡1E). Show that

log (K ) = `+L+
1
2
[`; L] +

1
12

[`; [`; L]] +
1
12

[L; [L; `]] + � � �

K� = exp (� log (K))

are well-defined.
c) Given a transmonomial m2T with m� 1 and m��x, show that

@�(m)=m (m¡1 @m)�(1)

is well-defined. Extend the definition of @� to T�;��x and show that @¡1

corresponds to the distinguished integration.

7.2 Differential Riccati polynomials

7.2.1 The differential Riccati polynomial

Given a transseries f 2T, we may rewrite the successive derivatives of f (i) as

f (i)=Ui(f y) f ; (7.6)

where the Ui2ZfF g are universal differential polynomials given by

U0 = 1
Ui+1 = FUi+Ui0:

For instance:

U0 = 1
U1 = F

U2 = F 2+F 0

U3 = F 3+3FF 0+F 00

U4 = F 4+6F 2F 0+4FF 00+3 (F 0)2+F 000

���
In particular, for each linear differential operator L=Lr @r+ � � �+L02T[@],
there exists a unique differential polynomial RL=LrUr+ � � �+L0U02TfF g
such that

L(f)=RL(f y) f (7.7)
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for all f 2T. We call RL the differential Riccati polynomial associated to L.
Notice that RL is uniquely determined by the polynomial

RL;alg=LrF r+ � � �+L02T[F ];

which is called the algebraic part of RL.

7.2.2 Properties of differential Riccati polynomials

Let P 2TfF g be a differential polynomial with transseries coefficients. Like in
the case of differential operators, we may consider P as a series in CfF g[[T]],
where T denotes the set of transmonomials. Given '2T we also define P+'
to be the unique differential polynomial in TfF g, such that

P+'(f)=P ('+ f)

for all f 2T. We call P+' an additive conjugate of P . Additive conjugates of
the differential Riccati polynomials correspond to multiplicative conjugates of
the corresponding linear differential operators:

Proposition 7.3. For all L and '2T=/ , we have

RL;+'y=R'¡1L�': (7.8)

Proof. For all f 2T, we have

('¡1L�')(f)= '¡1L('f)= '¡1RL(f y+ 'y) 'f =RL;+'y(f);

so (7.8) follows from the uniqueness property of differential Riccati polyno-
mials. �

Given a linear differential operator L=Lr @r+ � � �+L02T[@], we call

L0= rLr @r¡1+ � � �+L12T[@]
the derivative of L.

Proposition 7.4. For all L2T[@], we have

RL0 =
@RL
@F

; (7.9)

RL0;alg = RL;alg
0 : (7.10)

Proof. We claim that @Ui
@F

= i Ui¡1 for all i> 1. Indeed, @U1
@F

= 1 and, using
induction,

@Ui+1
@F

= Ui+F
@Ui
@F

+ @2Ui
@F@F

F 0+ � � �+ @2Ui

@F (i¡1) @F
F (i)

= Ui+ i FUi¡1+ i
@Ui¡1
@F

F 0+ � � �+ i @Ui¡1

@F (i¡1)
F (i)

= Ui+ i FUi¡1+ i Ui¡10

= (i+1)Ui
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for all i> 2. Our claim immediately implies (7.9) and (7.10). �

Corollary 7.5. For all L=Lr @r+ � � �+L02T[@] and '2T, we have

RL;+' = 1

r!
RL(r)(')Ur+ � � �+RL(')U0 ; (7.11)

RL;+';alg = 1

r!
RL(r)(')F

r+ � � �+RL('): (7.12)

Exercise 7.8. Prove that

Un(F +G)=
X
i=0

n �
n
i

�
Ui(F )Un¡i(G):

Exercise 7.9. Show that

RL" = RL"�e¡x ;
RL# = RL#�x;

where RL" and RL# are defined in section 8.2.3.

7.3 The trace of a linear differential operator

Let L:C[[M]]!C[[N]] be a linear grid-based operator. A term �= cm2
C=/ M is said to be regular for L, if Lf is regular for all f 2C[[M]] with
�(f)=� and if �(Lf) does not depend on the choice of such an f . In partic-
ular, a monomial in M is said to be regular for L if it is regular as a term. We
will denote by RL�M the set of all regular monomials for L and by HL�M

the set of irregular monomials. The mapping

TL:C=/ RL ¡! C=/ N

� 7¡! �(L�)

is called the trace of L. For all �1; �22C=/ RL, we have

�14 �2 =) TL(�1)4TL(�2): (7.13)

Given a linear differential equation Lf = g over the transseries T with g=/ 0,
finding a term � with TL(�)= �g corresponds to finding a good candidate for
the first term of a solution. In the next section we will show that this first
term may indeed be completed into a full solution.

7.3.1 The trace relative to plane transbases

Let L2C[[BC]][@] be a linear differential operator, where B=(b1; : : : ; bn) is
a plane transbasis. We will consider L as a grid-based operator on C[[xNBC]],
so that its trace TL=TL;B is a mapping from xNBC nHL into xNBC.

7.3 The trace of a linear differential operator 141



Proposition 7.6. Given xim2xNBC, we have

xim2HL () L�m;�(xi)= 0:

Proof. Modulo replacing L by d(L�m)¡1L�m, we may assume without loss
of generality that m=1 and L� 1. Let j be minimal with L�;j=/ 0, so that
L�(xi)= 0 if and only if i < j.

Now i < j implies L(xi) = (L¡ L�)(xi)�ex 1. Furthermore, L�e¡�x(1)�
e¡�x for all but the finite number of � such that L�(e¡�x)=0. It follows that
L(xi)�L(e¡�x) for a sufficiently small �> 0, whence xi2HL.

If i> j, then L�(xi)�xi¡j. Given n2 xNBC with n�xi, we have either
n�ex1 or n=xk with k<i. In the first case, L(n)=L�n(1)4L�n�ex1. In the
second case, we have either k < j and L(n)�ex 1 or k> j and L(n)�xk¡j�
xi¡j. So we always have L(n)�xi¡j. Hence xi2HL, by strong linearity. �

Proposition 7.7. For every m 2BC there exists a unique n 2BC with
L�n�m.

Proof. Let m 2BC and consider v=m/dL= b1
�1 � � � bn�n. We will prove the

proposition by induction over the maximal i such that �i=/ 0. If such an i does
not exist, then we have nothing to prove. Otherwise, proposition 7.2 implies

v~ := m

d(L�bi�i)
�bi

m

bi
�i d(L)

= b1
�1 � � � bi¡1

�i¡1:

It follows that v~ = b1
�~1 � � � bi¡1

�~i¡1 for certain �~1; : : : ; �~i¡1. By the induction
hypothesis, there exists an n~ with L�bi�i;�n~�m. Hence L�n�m for n=n~ bi

�i.
Furthermore, given e2BC n f1g, we have L�ne�em e�/ em. This proves the
uniqueness of n. �

Proposition 7.8. The trace TL of L is invertible.

Proof. Let � = c xim~ 2 xN BC. By the previous proposition, there exists a
unique n~ with L�n~�m~ . Modulo the replacement of L by m~¡1L�n~ we may
assume without loss of generality that m~ = n~ = 1. Let j be minimal with
L�;j=/ 0. Then

L(xi+j)=
X
k>j

L�;k
@kxi+j

@xk
+ oex(1)=

(i+ j)!
i!

L�;jx
i+ o(xi):

Setting

�= c i!
(i+ j)!L�;j

xi+j ;

we thus have TL(�)= � . Notice that proposition 7.6 implies xi+j 2/ HL. �

Example 7.9. Let B=(ex; eex) and consider the operator

L=e¡2x @3¡ 2 e¡x @2+ @+1:
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Given m=eae
x+bx and K =m¡1L�m, we have

K = e¡2x @3+
((3 a¡ 2) e¡x+3 b e¡2x) @2+
(1¡ 4 a+3 a2+(6 a b¡ 4 b+3 a) e¡x+3 b2 e¡2x) @+
(a3¡ 2 a2+ a) ex+3 a2 b¡ 4 a b+ b+3 a2¡ 2 a+1+
(3 a b2¡ 2 b2+3 a b+ a) e¡x+ b3 e¡2x:

Now the following cases may occur:

Case dK cK xim2HL TL(xim)
�2/ f0; 1g ex a (a¡ 1)2 no a (a¡ 1)2 exxim

�=0; �=/ ¡1 1 b+1+ @ no (b+1)xim
�=0; �=¡1 1 @ iff i=0 i xi¡1m (if i=/ 0)

�=1 1 2 no 2xim

:

7.3.2 Dependence of the trace on the transbasis

Let L2C[[BC]][@], where B is a plane transbasis and let us study the depen-
dence of the trace TL;B= TL of L on B. Given a plane supertransbasis B̂

of B, proposition 7.6 implies that HL;B̂ \ xN BC = HL;B and TL;B̂ clearly
coincides with TL;B on C=/ xNBC nHL;B. Similarly, if B̂ is a second transbasis
such that C[[xN B̂C]] and C[[xNBC]] coincide as subsets of T, then HL;B̂=
(d � TI)(HL;B) and TL;B̂ � TI = TI � TL;B, where I:C[[xN B̂C]]!C[[xNBC]]

denotes the �identification mapping�.

Proposition 7.10. Let B̂ = (ex; b1"; : : : ; bn"). Then HL";B̂ = HL;B" and
TL";B̂(�")=TL;B(�)" for all � 2C=/ (xNBC nHL;B).

Proof. We clearly have

TL";B̂(�")= �(L"(�"))= �(L(�)")= �(L(�))"=TL;B(�)"

for all � 2C=/ (xNBC nHL;B). Given

n=(log x)jxim2 (log x)NxCBC ;

let us show that n2HL;B,n"2HL";B̂. Modulo replacing L by d(L�m)¡1L�m,
we may assume without loss of generality that m=1 and L� 1.

Assume that n 2 HL;B, so that j = 0, i 2N and L�(xi) = 0. Then L=
L�+ oex(1) implies L"=L�"+ oeex(1) and L"�eix=L�"�eix+ oeex(1). Hence
L"�eix;�=L�"�eix;�. Since L�(xi)=0, we also observe that L�xi;0;�=0, whence
L"�eix;0;�=0. But this means in particular that

L"�eix;�=L�"�eix;�(1)=L�"�eix;d(L�"�eix);0=0:

In other words, n"2HL";B̂.
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Assume now that n 2/ HL;B and let k be minimal with L�;k =/ 0. Then
L�(n)� n(k)�xxi¡k=/ 0 so

L�"�eix(xj)� n(k)"�ex e(i¡k)x:

On the other hand, L�"�e¡kx, whence L�"�eix4e(i¡k)x. This is only possible
if L�"�eix� e(i¡k)x and L�"�eix;�(xj)=/ 0. In other words, n"2/ HL";B̂. �

Proposition 7.11. Let B be a transbasis of level 1¡l 6 1 containing
log l¡1x; : : : ; x and denote SB=(log lx)NBC. Let L2C[[BC]] and let HL;B
be the set of singular monomials of L as an operator on C[[SB]]. Then

HL;B=HL\SB:

Proof. Clearly, HL;B�HL\SB. Assume for contradiction that there exists
an m2 (HL\SB)nHL;B. Then there exists an n2T with n�m and Lm4Ln.
Let B0 be a super-transbasis of B for n, of level 1¡ l0, and which contains
log l¡1x;:::; x. Setting B̂=flog l0¡1x;:::; log lxg, proposition 7.10 now implies

HL"l0;B0"l0\SB"l0=HL"l0;B̂"l0\SB"l0=HL"l;B"l"l0¡l=HL;B"l0:

Hence, m"l0 2/ HL"l0;B0"l0 so that (Lm)"l0= L"l0(m"l0)� L"l0(n"l0) = (Ln)"l0.
This contradiction completes the proof. �

Proposition 7.12. Let L2T[@]=/ be a linear differential operator on T. Then
the trace TL of L is invertible.

Proof. Given � 2C=/ T, the incomplete transbasis theorem implies that there
exists a transbasis B for � like in proposition 7.11. By proposition 7.8, there
exists an �"l 2 xNB"lC nHL"l;B"l with TL"l(�"l) = � "l. By proposition 7.11,
we have � 2C=/ RL and TL(�)=TL"l(�"l)#l= � . �

7.3.3 Remarkable properties of the trace

Assume again that L2C[[BC]][@], where B is a plane transbasis.

Proposition 7.13. The set

F=
[

m2BC

d(L�m)
m

is finite.

Proof. Considering �1; : : : ; �n as indeterminates, the successive derivatives of
m= b1

�1 � � � bn�n satisfy

m(i)/m=Ui(�1 b1
y+ � � �+�nbn

y)2C[�1; : : : ; �n][[BC]];

where the Ui are as in (7.6). Consequently, we may see

L~ = L�m
m

=
X
i=0

r X
j=i

r �
j
i

�
LjUj¡i(my) @i
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as an element of C[�1; : : : ; �n][[BC]][@] for each i.
Assume for contradiction that F is infinite. Since F � suppser L~, there

exists an infinite sequence v1� v2� � � � of elements in F. For each vi, let
ni = b1

�i;1 � � � bn
�n;i be such that vi = d(L�ni)/ni. Now each vi induces an

ideal Ii of C[�1; : : : ; �n], generated by all coefficients of L~w with w � vi.
We have Z1�Z2� � � � and each (�i+1;1; : : : ; �i+1;n) is a zero of Zi, but not
of Zi+1. It follows that Z1 Z2 � � �, which contradicts the Noetherianity
of C[�1; : : : ; �n]. �

Corollary 7.14. There exist unique strongly linear mappings

�:C[[xNBC nHL]] ¡! C[[xNBC]]

�¡1:C[[xNBC]] ¡! C[[xNBC nHL]]

which extend TL and TL
¡1. Furthermore,

a) supp��f1; : : : ; x¡rgF and supp�¡1�f1; : : : ; xrgF¡1.
b) T�=TL and T�¡1=TL

¡1. �

Proposition 7.15. Given K;L2C[[BC]][@]=/ , we have

HKL=HLq d(TL
¡1(HK))

and

TKL=TK �TL:

Proof. Let m2RL n d(TL¡1(HK)). Then for all n�m, we have Ln�Lm and
KLn�KLm. By strong linearity, it follows that KLf �KLm for all f 2
C[[xNBC]] with f�m. This shows thatm2RKL and HKL�HLqd(TL¡1(HK)).

Conversely, let m2HL and assume that Lm=/ 0. Then Ln� Lm for all
n�m with n� TL¡1(�(Lm)). If xi v2HL, then proposition 7.6 implies i < r
and xj v2HL for all j < i. Hence TL

¡1(�(Lm))�exm and we may choose n so
that n2/ TL¡1(HK). But then KLn�KLm and m2HKL. If m2HL satisfies
Lm=0, then we clearly have m2HKL.

Similarly, let m=xiv2HK\ imTL and denote m~ =d(TL
¡1(m)). Then Kn�

Km for all n�m with Km=/ 0)n�TK¡1(�(Km)). Moreover, we may choose
n 2RK such that n� (supp Lm~ )�v and K(xj v) =/ 0) n� TK¡1(�(K(xj v)))
for all j6 i. This ensures that Kn�KLm~ . Denoting n~= d(TL

¡1(n))�m~ , we
conclude that KL n~�Kn�KLm~ , whence m~ 2HKL.

As to second identity, let � 2 C=/ RKL. Then L� � TL(�) and TL(�) 2/
C=/ HK implies KL��K(TL(�)). Hence TKL(�) = �(KL�) = �(K(TL(�)) =
TK(TL(�)). �

Exercise 7.10. Prove the propositions of section 7.3.3 for operators L2T[@].

Exercise 7.11. Generalize the results from this section to the well-based setting.

Exercise 7.12. Let L=1+ �x+1¡ 2 �x+p2DT��ex. Determine RL.
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7.4 Distinguished solutions

Let M and N be monomial sets, such that M is totally ordered. Given
a linear grid-based operator L: C[[M]]! C[[N]] and g 2 C[[N]], we say
that f 2C[[M]] is a distinguished solution to the equation

Lf = g; (7.14)

if for any other solution f̂ 2C[[M]], we have fd(f̂¡f)=0. Clearly, if a distin-

guished solution exists, then it is unique. A mapping L¡1:C[[N]]!C[[M]]
is said to be a distinguished right inverse of L, if LL¡1= Id and L¡1 g is
a distinguished solution solution to (7.14) for each g2C[[N]]. A distinguished
solution to the homogeneous equation

Lh=0 (7.15)

is a series h2C[[M]] with ch=1 and hd(ĥ)=0 for all other solutions ĥ with
dĥ=/ dh. A distinguished basis of the solution space HL of (7.15) is a strong
basis which consists exclusively of distinguished solutions. If it exists, then
the distinguished basis is unique.

Remark 7.16. Distinguished solutions can sometimes be used for the renor-
malization of �divergent� solutions to differential equations; see [Hoe01b] for
details.

7.4.1 Existence of distinguished right inverses

Theorem 7.17. Assume that the trace TL is invertible and both TL and TL
¡1

extend to strongly linear mappings

�:C[[RL]] ! C[[N]]

�¡1:C[[N]] ! C[[RL]]:

Assume also that suppL and supp�¡1 are grid-based. Then

a) L admits a distinguished and grid-based right inverse

L¡1:C[[N]]!C[[RL]]:

b) The elements hh = h ¡ L¡1 Lh with h 2 HL form a distinguished basis
for HL.

Proof. Let R= L ¡�. Then the operator R�¡1 is strictly extensive, and
the operator (Id+R�¡1)� coincides with L on C[[RL]]. Now consider the
functional

�(f ; g)= g¡R�¡1 f:

By theorem 6.14, there exists a strongly linear operator

	=(Id+R�¡1)¡1= Id¡R�¡1+(R�¡1)2+ � � �;
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such that �(	(g); g)=	(g) for all g 2C[[N]]. Consequently,

L¡1=�¡1 (Id+R�¡1)¡1:C[[N]]!C[[RL]]

is a strongly linear right inverse for L. Given h 2HL
=/ , we also observe that

dh 2HL; otherwise, �Lh= TL(�h) =/ 0. Consequently, f = L¡1 g is the distin-
guished solution of (7.14) for all g 2C[[N]]. This proves (a).

As to (b), we first observe that

Lhh=Lh¡LL¡1Lh=0

for all h2HL. The solution hh is actually distinguished, since

supphh\HL�fhg

and dĥ2HL for all ĥ2HL. In fact, we claim that

hh� h: (7.16)

Indeed, if L¡1Lh� h, then we would have dL¡1Lh2RL, so

Lh�L(L¡1Lh)=Lh;

which is impossible. Now let h be an arbitrary solution to (7.15) and consider

h~ =
X
h2HL

hh h:

ĥ = h~¡L¡1Lh~=
X
h2HL

hhh
h:

Then we have ĥh=hh for all h2HL, by the distinguished property of the hh

and (7.16). Consequently, ĥ¡h2HL\C[[RL]]= f0g. This proves (b). �

Corollary 7.18. Let B = (b1; : : : ; bn) be a plane transbasis and let L 2
C[[BC]][@] be a linear differential operator on C[[xNBC]]. Then L admits
a distinguished right inverse L¡1 and HL admits a finite distinguished basis.

Proof. In view of proposition 7.8 and corollary 7.14, we may apply theorem
7.17. By general differential algebra, we know thatHL is finite dimensional. �

Corollary 7.19. Let L2T[@] be a linear differential operator on T. Then L
admits a distinguished right inverse and HL admits a finite distinguished basis.

Proof. Given g 2T, let us first prove that Lf = g admits a distinguished
solution. Let B be a transbasis for g as in proposition 7.11 and consider
f =L"l¡1(g"l)#l. Then

Lf =L"l(f "l)#l=L"l(L"l¡1(g"l))#l= g:

From proposition 7.11, it follows that

fh=(L"l¡1(g"l))h"l=0
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for all

h2HL\SB=(HL"l\SB"l)#l=HL"l;B"l#l:

Hence f is the distinguished solution to Lf= g. In particular, the construction
of L¡1 g := f is independent of the choice of B. The operator L¡1 is strongly
linear, since each grid-based family in F (T) is also a family in F (C[[SB]])
for some B as above, and L¡1 is strongly linear on C[[SB]]. �

Example 7.20. With L as in example 7.9, we have

L¡1 ex= 1

2
ex+1¡ 1

2
x e¡x+(x¡ 1) e¡2x+

�
¡15

4
x+ 43

8

�
e¡3x+ � � �:

7.4.2 On the supports of distinguished solutions

Let B=(b1; : : : ; bn) be a plane transbasis and let L2C[[BC]][@] be a linear
differential operator on C[[xNBC]] of order r.

Proposition 7.21. The operator support of L¡1 is bounded by

suppL¡1�VW�;

where

V = f1; : : : ; xrg
�

m

d(L�m)

��������m2BC

�
;

W = f1; : : : ; xrg
 [

m2BC

suppserL�m
d(L�m)

-
f1g
!
[fx¡1; x¡2; : : :g

are grid-based sets and W� 1.

Proof. With the notations from the proof of theorem 7.17,

supp�¡1 � V;
supp (R�¡1) � W:

It follows that

suppL¡1 = supp�¡1 (Id+R�¡1)¡1

� (supp�¡1) (supp (R�¡1))�

� VW�:

Recall that V is finite, by proposition 7.13. This also implies that W is grid-
based. �

Proposition 7.22. Given d2N, let

C[[BC]][x]d = ff 2C[[BC]][x]: degx f 6 dg
� C[[xNBC]]=C[x][[BC]]:
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Setting s= cardHL6 r, we have

a) L maps C[[BC]][x]d into C[[BC]][x]d.
b) L¡1 maps C[[BC]][x]d into C[[BC]][x]d+s.
c) HL�C[[BC]][x]s.

Proof. For all f = fdx
d+ � � �+ f02C[[BC]][x]d, we have

Lf = L�xd fd+ � � �+L�x f1+Lf0
= ((Lfd)xd+ � � �+L(d) fd)+ � � �+((Lf1)x+L0 f1)+Lf0
= (Lfd)xd+ � � �+(L(d¡1) fd+ � � �+Lf1)x+(L(d) fd+ � � �+Lf0):

This shows (a). As to (b), let g 2C[[BC]][x]d and consider

D = fxim2RL: i6 d+ card fh2HL: h<mgg ;
I = fxim2xNBC: i6 d+ card fh2HL:L�h<mgg

(d �L)(D):

Then TL is a bijection between C=/ D and C=/ I and L maps C[[D]] into
C[[I]]. By theorem 7.17, it follows that the restriction of L to C[[D]] admits
a distinguished right inverse, which necessarily coincides with the restriction
of L¡1 to C[[I]]. This proves (b), since C[[D]]�C[[BC]][x]d+s and C[[I]]�
C[[BC]][x]d. Moreover, for each element hh of the distinguished basis of HL,
we have hh= h+L¡1Lh2C[[BC]][x]s. This proves (c). �

Exercise 7.13. Show that TL¡1=TL
¡1.

Exercise 7.14. Show that we actually have HL�C[[BC]][x]s¡1 in proposition
7.22(c).

Exercise 7.15. Let B and B̂ be plane transbases in the extended sense of exer-
cise 4.15. Given L2C[[BC]][@], let L;B

¡1 denote the distinguished right inverse
of L as an operator on C[[xN BC]].

a) Show that L;B
¡1 is the restriction of L

;B̂
¡1 to C[[xNBC]], if B̂ is a supertrans-

basis of B.
b) If C[[BC]]=C[[B̂C]], then show that L;B

¡1=L
;B̂
¡1 if and only if B̂C=BC.

c) If B̂ = (ex; b1"; : : : ; bn"), then show that L"
;B̂
¡1(g") = L;B

¡1(g)" for all g 2
C[[xN BC]].

Exercise 7.16. Let T[=C[[T[]]3 x be a flat subspace of T and T] the steep
complement of T[, so that T=T[[[T]]]. Consider L2T[@] as a strong operator
on T[[[T]]] (notice that L is not T[-linear). Let RL

] be the set of monomials
m]2T] such that d](L (�]m])) does not depend on �]2T[;=/ and such that the
mapping �] 7! c](L (�]m]));T[;=/!T[;=/ is invertible.

a) Exhibit an operator in T[[@] which maps �] to c](L (�]m])) and relate RL
]

and RL.
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b) Generalize theorem 7.17 to the setting of strongly additive operators and
relate the distinguished right inverses of L as an operator on T and as an
operator on T[[[T]]].

c) Given a plane transbasis B, L2C[[BC]][@] and g 2C[[BC]][x], give a con-
crete algorithm to compute the recursive expansion of L;B

¡1 g.

Exercise 7.17. Let L2T[@]=/ and let m be a transmonomial. Prove that

(L�m)¡1 = �m
¡1L¡1

(�m L)¡1 = L¡1�m
¡1

Exercise 7.18. Let L2T[@]=/ and g 2T>;�. When do we have

(L�g)¡1=(L¡1)�g?

Here (L¡1)�g is the unique operator such that

(L¡1)�g(f � g)= (L¡1 f) � g
for all f .

Exercise 7.19.

a) Show that (KL)¡1=L¡1K¡1 for K = @2+ee
x

and L= @2+2 @+ex.
b) Show that (KL)¡1=/ L¡1K¡1 for K = @2¡ eex and L= @2+2ex @+1.
c) Do we always have (LL)¡1=L¡1L¡1?

Exercise 7.20.

a) Prove that each non-zero L 2 DT��ex admits a distinguished right-inverse
on T��ex.

b) Can HL be infinite?
c) Same questions for L2DT��ex.

Exercise 7.21. Consider an operator L as in exercise 7.6.

a) For any g 2T��ex2
=/ , show that g¡1L�g is an operator of the same kind.

b) Show that L admits a distinguished right-inverse on T��ex2.
c) Assuming that Ai;j2T��ex, show that L admits a distinguished right-inverse

on T��ex2.
d) Given g2T��exO(1), show that Lf = g admits a distinguished solution, which

is not necessarily grid-based, but whose support is always well-based and
contained in a finitely generated group.

e) Show that (d) still holds if Ai;j 2T��exO(1).
f) Given a general g 2T, show that Lf = g admits a well-based distinguished

solution.
g) Give a bound for the cardinality of HL.

Exercise 7.22. Let O be the space of partial grid-based operators L:T*T,
such that domL is a space of finite codimension over C in T. Two such operators
are understood to be equal if they coincide on a space of finite codimension in T.

a) Show that O is a T-algebra under composition.
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b) Show that each L 2T[@]=/ induces a unique operator in O with LL¡1=
L¡1L=1.

c) Show that the skew fraction field T(@) of T[@] in O consists of operators
K¡1L with K;L2T[@] and K=/ 0. Hint: show that for any K;L2T[@] with
K =/ 0, there exist K~ ; L~ 2T[@] with K~ =/ 0 and KL~ =LK~ .

Exercise 7.23. Let L2E[@]=/ , where E=C[[E]] denotes the field of exponential
transseries.

a) If L�L0, then show that there exists a decomposition

L= cm (1+K1) � � � (1+Kn);

with cm2C E, K1; : : : ;Kn2T(@)4 and suppK1�� � � � �� suppKn.
b) If c> 0 and K1 is sufficiently small, then show how to define logL.
c) Given �2C, extend the definition of @� from exercise 7.7(c) to a definition

of L� on a suitable strong subvector space of T.

7.5 The deformed Newton polygon method

Let L 2T[@]=/ be a linear differential operator and consider the problem of
finding the solutions to the homogeneous equation Lh= 0. Modulo upward
shiftings it suffices to consider the case when the coefficients of L can all be
expanded w.r.t. a plane transbasis B. Furthermore, theorem 7.17 and its
corollaries imply that it actually suffices to find the elements of HL.

Now solving the equation Lh = 0 is equivalent to solving the equation
RL(f) = 0 for f = hy. As we will see in the next section, finding the domi-
nant monomials of solutions is equivalent to solving the �Riccati equation
modulo o(1)�

RL;+f ;�(0)= 0 (7.17)

for f 2C[[BC]]<. It turns out that this equation is really a �deformation� of
the algebraic equation

RL;alg(f)= 0: (7.18)

In this section, we will therefore show how to solve (7.17) using a deformed
version of the Newton polygon method from chapter 3.

7.5.1 Asymptotic Riccati equations modulo o(1)

Let B is a plane transbasis and L 2C[[BC]][@]=/ . We regard L as a linear
differential operator on C[[xNBC]]. Given v2BC[f>g, consider the asymp-
totic versions

RL;+f ;�(0)=0 (f � v) (7.19)

and

RL;alg(f)= 0 (f � v) (7.20)
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of (7.17) resp. (7.18). We call (7.19) an asymptotic Riccati equation modulo
o(1). A solution f 2 C[[BC]]< of (7.19) is said to have multiplicity �, if
RL;+f ;alg;i�RL;+f for all i < � and RL;+f ;alg;��RL;+f.

Given f 2C[[BC]]<, we notice that for all k,

Uk(f)= fk+Of(fk¡1): (7.21)

We say that m2 (BC)< is a starting monomial of f relative to (7.19), if m
is a starting monomial of f relative to (7.20). Starting terms of solutions
and their multiplicities are defined similarly. The Newton degree of (7.19)
is defined to be the Newton degree of (7.20). The formula (7.21) yields the
following analogue of proposition 3.4:

Proposition 7.23. If f 2C[[MC]]< is a solution to (7.19), then �f is a starting
term of f relative to (7.19).

Proof. Assume the contrary, so that there exists an index i2f0; : : : ; rg with
Lj f j�Li f i for all j=/ i. But then

LjUj(f)�Lj f j�Li f i�LiUi(f)
for all j. Hence

RL;+f ;alg;0=RL(f)�Li f i

and similarly

RL;+f ;alg;j=RL(j)(f)4Li f i¡j

for all j. In other words,

RL;+f �RL;+f ;alg;0

and RL;+f ;�(0)= (Li f i)�=/ 0. �

7.5.2 Quasi-linear Riccati equations

We say that (7.19) is quasi-linear if its Newton degree is one (i.e. if (7.20) is
quasi-linear). We have the following analogue of lemma 3.5:

Proposition 7.24. If (7.19) is quasi-linear, then it admits a unique solution
f 2C[[BC]]<.

Proof. Let V= fm2BC: 14m� vg and consider the well-based operator

�:C[[V]] ¡! C[[V]]

f 7¡! ¡
�
L0+L2U2(f)+ � � �+LrUr(f)

L1

�
<
:

Since (7.19) is quasi-linear, we have

Li v
i4L1 v (7.22)
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for all i and L0�L1v. Moreover, on V�fm2BC:m��vg we have (supp@)4
vy��v. Since Ui(f)¡ f i is a differential polynomial of degree <i, we thus have

suppUi4 vi; (7.23)

when considering Ui as an operator on C[[V]]. Combining (7.22) and (7.23),
we conclude that

supp�1[ (supp�2)m[ � � � [ (supp�r)mr¡1� 1

for all m2BC with 14m� v. By theorem 6.14, it follows that the equation

�(f)= f (7.24)

admits a unique fixed point f in C[[V]]. We claim that this is also the unique
solution to (7.19).

Let us first show that f is indeed a solution. From (7.24), we get

RL;+f ;alg;0=RL(f)= o(L1): (7.25)

On the other hand, we have for i> 1:

RL;+f ;alg;1 = RL0(f)
= L1+O(L2 f)+ � � �+O(Lr f r¡1)�L1 (7.26)

RL;+f ;alg;i = RL(i)(f)
O(Li)+ � � �+O(Lr f r¡i)4L1 v1¡i: (7.27)

In other words,RL;+f�L1 and RL;+f ;�(0)=0. Assume finally that f~2C[[V]]

is such that 14 �= f~¡ f � v. Then (7.25), (7.26) and (7.27) also imply that

RL;+f~;alg;0=RL;+f(�)�L1 �<L1�RL;+f~;alg;1:

In other words, RL;+f~;�(0)=/ 0. �

7.5.3 Refinements

Given a refinement

f = '+ f~ (f~� v~); (7.28)

where 14 '� v and v~= d', the equation (7.19) becomes

RL~;+f~;�(0)=0 (f~� v~); (7.29)

where L~ = e¡
R
'L�e

R
' satisfies RL~=RL;+'. We recall that the coefficients of

the corresponding algebraic equation

RL~;alg(f~)=0 (f~� v~) (7.30)

are given by

RL~;alg;i=RL(i)('):
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Let us show that the analogues of lemmas 3.6 and 3.7 hold.

Proposition 7.25. Let '2C[[BC]]<. Then the Newton degree of

RL;+';+f~;�(0)= 0 (f~� ') (7.31)

equals the multiplicity of �' as a starting term of f relative to (7.19).

Proof. For a certain transmonomial n, the Newton polynomial relative to
m= d' is given by

NRL;m(c)=NRL;alg;m(c)=Ld;n/md cd+ � � �+L0;n:

Then, similarly as in the proof of lemma 3.6, we have

L~i = 1
i!
RL(i)(')

= 1
i!

X
k=i

n �
k
i

�
Lk ('k¡i+O'('k¡i¡1))

= 1
i!

X
k=i

n �
k
i

�
(Lk;nm¡k+ o(1)) nm¡k (c+ o(1))k¡imk¡i

= 1
i!
NP ;m
(i) (c) nmi+ o(nmi)

for all i, and we conclude in the same way. �

Proposition 7.26. Let d be the Newton degree of (7.19). If f admits a unique
starting term � of multiplicity d, then

a) The equation

RL(d¡1);+';�(0)= 0 ('� v) (7.32)

is quasi-linear and has a unique solution with '= � + o(�).
b) Any refinement

f~= '~+ f~~ (f~~� v~~) (7.33)

transforms (7.32) into an equation of Newton degree <d.

Proof. Part (a) follows immediately from lemma 3.7(a) and the fact that
RL(d¡1);alg=RL;alg

(d¡1). Now consider a refinement (7.33). As to (b), let n~ be such
that the the Newton polynomial associated to m~ = d'~ is given by

NRL~;m~ (c)=NRL~;alg;m~ (c)=L
~
d;n~/m~ d c

d+ � � �+L~0;n~:

By the choice of ', we have

L~d¡1=RL(d¡1)(')=RL(d¡1);+';alg;0�RL(d¡1);+';1=RL(d)(')=L~d:

It follows that the term of degree d¡1 in NRL~;m~ (c) vanishes, so NRL~;m~ cannot
admit a root of multiplicity d. We conclude by proposition 7.25. �
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7.5.4 An algorithm for finding all solutions

Putting together the results from the previous sections, we obtain the fol-
lowing analogue of polynomial_solve:

Algorithm riccati_solve
Input: An asymptotic Riccati equation (7.19) modulo o(1).
Output: The set of solutions to (7.19) in C[[BC]]<.

1. Compute the starting terms c1m1; : : : ; c�m� of f relative to (7.20).
2. If � = 1 and c1 is a root of multiplicity d of NP ;m1, then let ' be the

unique solution to (7.32). Refine (7.28) and apply riccati_solve to (7.29).
Return the so obtained solutions to (7.19).

3. For each 16 i6 �, refine f = cimi+ f~ (f~�mi) and apply riccati_solve

to the new equation in f~. Collect and return the so obtained solutions
to (7.19), together with 0, if L0=0.

Proposition 7.27. The algorithm riccati_solve terminates and returns
all solutions to (7.19) in C[[BC]]<. �

Since C is only real closed, the equation (7.19) does not necessarily admit d
starting terms when counting with multiplicities. Consequently, the equation
may admit less than d solutions. Nevertheless, we do have:

Proposition 7.28. If the Newton degree d of (7.19) is odd, then (7.19) admits
at least one solution in C[[BC]]<.

Proof. If d=1, then we apply the proposition 7.24. Otherwise, there always
exists a starting monomial m, such that degNRL;m¡valNRL;m is odd as well.
Since C is real closed, it follows that their exists at least one starting term
of the form � = cm of odd multiplicity d~. Modulo one application of proposi-
tion 7.26, we may assume that d~<d, and the result follows by proposition 7.25
and induction over d. �

Example 7.29. Consider the linear differential operator

L=e¡2ex @3¡ 2 e¡ex @2+ @ ¡ 2 ex;
with

RL;alg=e¡2e
x
F 3¡ 2 e¡exF 2+F ¡ 2 ex:

The starting terms for RL(f)= 0 are � =2 ex and � =eex (of multiplicity 2).
The refinement f =2 ex+ f~(f~� ex) leads to

RL;+2ex;alg=F +O(e2x¡e
x
);

so f =2 ex is a solution to (7.17). The other starting term � =eex leads to

RL;+eex;alg=e¡exF 3+F 2+3 exF ¡ eex+x+e2x+ex;
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and RL;+eex;alg(f~) = 0 (f~� eex) admits two starting terms �~ = �e(ex+x)/2.
After one further refinement, we obtain the following two additional solutions
to (7.17):

f = ee
x
+e(e

x+x)/2¡ 9

4
ex¡ 1

4
;

f = eex¡ e(ex+x)/2¡ 9

4
ex¡ 1

4
:

7.6 Solving the homogeneous equation

Let L2C[[BC]][@]=/ be a linear differential operator on C[[xNBC]], where
B is a plane transbasis. Let f1; : : : ; fs be the solutions to (7.17), as computed
by riccati_solve, and �1; : : : ; �s their multiplicities. We will denote

HL;B
� = fe

R
f1; : : : ; x�1¡1 e

R
f1; : : : ; e

R
fs; : : : ; x�s¡1 e

R
fsg:

The following proposition shows how to find the elements of HL;B when we
consider L as an operator on C[[BC]]:

Proposition 7.30. We have

HL;B=HL;B
� \xNBC:

Proof. Let xim2xNBC and consider the operator K =m¡1L�m. Then

xim2HL , c(K)(xi)= 0
, i <min fd:Kd�Kg
, i <min fd:RK;alg;d�RKg
, i <min fd:RL;+my;alg;d�RL;+myg

But min fd: RL;+my;alg;d � RL;+myg is precisely the multiplicity of my 2
C[[BC]]< as a solution of (7.17). �

In order to find the elements of HL when we consider L as an operator
on T, we have to study the dependence of HL;B� under extensions of B and
upward shifting. Now riccati_solve clearly returns the same solutions if
we enlarge B. The proposition below ensures that we do not find essentially
new solutions when shifting upwards. In the more general context of oscil-
lating transseries, which will be developed in the next section, this proposition
becomes superfluous (see remark 7.38).

Proposition 7.31. Assume that

B = (b1; : : : ; bn)
B̂ = fex; b1"; : : : ; bn"g:
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Then

HL";B̂
� =HL;B

� ":

Proof. Assume that g 2C[[B̂C]]< is a solution to

RL";+g;�(0)=0 (7.34)

of multiplicity l. Let f = g�#/x, �= g� and let k be the multiplicity of f as
a solution of (7.17). We have to prove that

l > 0,�2f0; : : : ; k¡ 1g) l=1:

Let m be 4-maximal in supp f nBC and set  =
P

n�mfnn. If such an m does
not exist, then set  = f . Then, modulo replacing L by e

R
 L�e¡

R
 , we may

assume without generality that either df 2/BC or f =0.
Let us first consider the case when m= df 2/BC. Since all starting mono-

mials for RL;alg(f) = 0 are necessarily in BC, there exists an i with Ljmj�
Lim

i for all j=/ i. It follows from (7.4) that

(L")i (m" ex)i = (Li"+O(Li+1")+ � � �+O(Lr"))m"i

� Li"m"i

(L")j (m" ex)j = (O(Lj")+ � � �+O(Lr"))m"j

� Li"m"i� (L")i (m" ex)i (j=/ i):

In other words, dg=m" ex is not a starting monomial for RL";alg(g) = 0, so
neither (7.17) nor (7.34) holds.

Let us now consider the case when f = 0 and observe that k is minimal
with L�;k=/ 0. If k=0, then RL";�=L0;�, so we neither have (7.17) nor (7.34).
If �2/ f0; : : : ; k¡ 1g, then

RL";+�(0) = e¡�x (L")(e�x)
= (x¡�L(x�))"
� Lk" e¡kx

� L";

so g does not satisfy (7.34). Similarly, if �2f0; : : : ; k¡ 1g, then RL";+�(0)�
Lk" e¡kx�L", which implies (7.34). Moreover, setting K =e¡�xL"�e�x, we
have

RK";+1(0) = RL"";+�ex+1(0)
= (x¡� log¡1xL(x� log x))""
� Lk"" e¡ke

x¡x

� K" e(l¡1)x

< K"

In other words, RK";+1;�(0)=/ 0, whence l=1. �
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Theorem 7.32. Let L2T[@] be a linear differential operator on T of order
r, whose coefficients can be expanded w.r.t. a plane transbasis B. Assume
that f1; : : : ; fs are the solutions to (7.17), with multiplicities �1; : : : ; �s. Then

HL = fe
R
f1; : : : ; x�1¡1 e

R
f1; : : : ; e

R
fs; : : : ; x�s¡1 e

R
fsg ; (7.35)

HL � C[[BC]][x]r fe
R
f1; : : : ; e

R
fsg: (7.36)

Proof. Let E denote the set of exponential transmonomials and let us first
assume that HL� xN E. Then there exists a supertransbasis B̂ of B, with
HL�xN B̂C �xNE and e

R
f1; : : : ; e

R
fs2 B̂C. Now riccati_solve returns the

same solutions with respect to B and B̂. Therefore, proposition 7.30 yields

HL=HL\xN B̂C=HL;B̂=HL;B̂
� =HL;B

� :

In general, we have HL"l=HL"l for some l>0. So applying the above argument
to L"l, combined with proposition 7.31, we again have (7.35). As to (7.36),
assume that h=xj efi2HL and let K =e¡

R
fiL�e

R
fi2C[[BC]][@]. Then

hh= h¡L¡1Lh=(xj¡K¡1Kxj) e
R
fi2C[[BC]][x]r e

R
fi:

The result now follows from the fact that the hh form a basis of HL. �

Since the equation (7.17) may admit less than r solutions (see remark
7.27), we may have dimHL<r. Nevertheless, proposition 7.28 implies:

Corollary 7.33. If L 2T[@] is a linear differential operator of odd order,
then the equation Lh=0 admits at least one non-trivial solution in T. �

7.7 Oscillating transseries

Let L2T[@]=/ be a linear differential operator of order r. Since C is only real
closed, the dimension of the solution space HL of Lh=0 can be strictly less
than r. In order to obtain a full solution space of dimension r, we have both to
consider transseries with complex coefficients and the adjunction of oscillating
transmonomials. In this section we will sketch how to do this.

7.7.1 Complex and oscillating transseries

Let T be the set of transmonomials and consider the field

T~ =T� iT=� (C + iC)[[T]]=C~[[T]]

of transseries with complex coefficients. Then most results from the previous
sections can be generalized in a straightforward way to linear differential
operators L 2T~ [@]. We leave it as an exercise for the reader to prove the
following particular statements:
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Proposition 7.34. Let L 2T~ [@]=/ be a linear differential operator on T~ .
Then L admits a distinguished right inverse L¡1 and HL admits a finite dis-
tinguished basis.

Proposition 7.35. Let L 2 C~[[BC]][@]=/ be a linear differential operator,
where B is a plane transbasis, and v 2BC [ f>g. If the Newton degree
of (7.19) is d, then (7.19) admits d solutions, when counted with multiplicities.

An oscillating transseries is an expression of the form

f = f; 1 ei 1+ � � �+ f; k ei k; (7.37)

where f; 1; : : : ; f; k2T~ and  1; : : : ;  k 2T�. Such transseries can be differ-
entiated in a natural way

f 0=(f; 1
0 + i  10) ei 1+ � � �+(f; k

0 + i  k0 ) ei k:
We denote by

O=
M
 2T�

T~ ei 

the differential ring of all oscillating transseries. Given an oscillating transseries
f 2O, we call (7.37) the spectral decomposition of f . Notice that

O=�C[[eT
~�]];

where ef 4 eg if and only if <f 6<g and =f ==g.

7.7.2 Oscillating solutions to linear differential equations

Consider a linear differential operator L2T~ [@]=/ . We have

Lf =
X
 2T�

(L; f; ) ei ;

where

L; := e¡i L�ei 2T~ [@];

since (ei )y2T~ for all  2T�. In other words, L �acts by spectral components�
and its trace TL is determined by

RL =
[

 2T�

RL; ei 

TL(cm ei ) = TL; (cm) ei :

Now let g 2O and consider the differential equation

Lf = g: (7.38)

This equation is equivalent to the system of all equations of the form

L; f; = g; : (7.39)
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By proposition 7.34, the operators L; all admit distinguished right inverses.
We call

f =L¡1 g=
X
 2T�

L; 
¡1 g; ei 

the distinguished solution of (7.38). The operator L¡1: g 7! L¡1 g, which is
strongly linear, is called the distinguished right inverse of L. The solutions to
the homogeneous equation may be found as follows:

Theorem 7.36. Let L2T~ [@] be a linear differential operator on T~ of order r,
whose coefficients can be expanded w.r.t. a plane transbasis B. Assume that
f1; : : : ; fs are the solutions to (7.17), with multiplicities �1; : : : ; �s. Then

HL = fe
R
f1; : : : ; x�1¡1 e

R
f1; : : : ; e

R
fs; : : : ; x�s¡1 e

R
fsg ; (7.40)

HL � C[[BC]][x]r fe
R
f1; : : : ; e

R
fsg: (7.41)

Proof. Let h = xj m, where m = e
R
fi, 1 6 i 6 s and 0 6 j < �i. Then K =

m¡1L�m, considered as an operator on T~ , satisfies

RK;alg;j=RL;+fi;alg;j�RL;+fi=RK:

Hence Kj�K, xj 2HK and h2HL. Furthermore,

hh= h¡L¡1Lh=(xj¡K¡1Kxj) e
R
fi2C[[BC]][x]r e

R
fi

is an element of HL with dominant monomial h. By proposition 7.35, there
are r such solutions hh and they are linearly independent, since they have
distinct dominant monomials. Consequently, they form a basis of HL, since
dimHL6 r. This proves (7.41). Since each element h2HL induces an element
hh= h¡L¡1Lh with dominant monomial h in HL, we also have (7.40). �

Corollary 7.37. Let L2T~ [@] be a linear differential operator on T~ of order
r. Then dimHL= r. �

Remark 7.38. Due to the fact that the dimension r of HL is maximal in
theorem 7.36, its proof is significantly shorter than the proof of theorem 7.32.
In particular, we do not need the equivalent of proposition 7.31, which was
essentially used to check that upward shifting does not introduce essentially
new solutions.

Exercise 7.24. Assume that C is a subfield of K and consider a strongly linear
operator L: C[[M]]! C[[N]]. Show that L extends by strong linearity into
a strongly linear operator L~:K [[M]]!K[[N]]. If L admits a strongly linear
right inverse L¡1, then show that the same holds for L~ and (L~¡1)jC[[N]]=L¡1.

Exercise 7.25. Let L2C~[[BC]][@]=/ .

a) Let � < 1 be a starting term for (7.19) and assume that ' is a solution
of (7.20) with �'= � . Consider the refinement f = '+ f~ (f~� �) and let
P~=P+'. Prove that P~04� �¡1P0.
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b) Prove that any sequence of refinements like in (a) is necessarily finite.
c) Design an alternative algorithm for solving (7.19).
d) Given a solution f 2T to (7.19), prove that there exists a f̂ in the algebraic

closure of CfL0; : : : ; Lrg, such that f̂ ¡ f � 1.

Exercise 7.26. Let M 2Mr(T~ ) be an r� r matrix with coefficients in T~ and
consider the equation

V 0=MV 0 (7.42)

for V 02Or.

a) Show that the equation Lh = 0 can be reduced to an equation of the
form (7.42) and vice versa .

b) If
R
M � 1, then show that

V = I +
R
M +

R
M

R
M + � � �

is a solution to (7.42).
c) Assume that M is a block matrix of the form

M =

�
M1 M2

M3 M4

�
;

where M2;M3;M4�M1 and M1 is invertible with d(M1
¡1)= d(M1)¡1. Con-

sider the change of variables

V =PV~ =

�
I E
0 I

�
V~ ;

which transforms M into

M~ = P¡1MP ¡P¡1P 0

=

�
M1¡M3E M2+M1E ¡EM4¡EM3E ¡E 0

M3 M3E+M4

�
:

Show that

M2+M1E ¡EM4¡EM3E ¡E 0=0

admits a unique infinitesimal solution E. Also show that the coefficient M3

can be cleared in a similar way.
d) Show that the equation (7.42) can be put in the form from (c) modulo

a constant change of variables V =PV~ with P 2Mr(C~).
e) Give an algorithm for solving (7.42) when there exist r different dominant

monomials of eigenvalues of M . What about the general case?
f) Check the analogue of exercise 7.25(d) in the present setting.

Exercise 7.27. Take C=R and let L be as in exercise 7.6, but with coefficients
in Li;j 2T~��ex.

a) Determine the maximal flat subspace of O on which L is defined.
b) Show that L admits a distinguished right-inverse on O��ex. Can HL be

infinite?
c) Same question for O��ex instead of O��ex.
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7.8 Factorization of differential operators

7.8.1 Existence of factorizations

One important consequence of corollary 7.37, i.e. the existence a full basis of
solutions of dimension r of HR, is the possibility to factor the L as a product
of linear operators:

Theorem 7.39. Any linear differential operator L2T~ [@]=/ of order r admits
a factorization

L=Lr (@ ¡ a1) � � � (@ ¡ ar)
with a1; : : : ; ar2T~ [@].

Proof. We prove the theorem by induction over the order r. For r=0 we have
nothing to prove. If r> 1, then there exists a non-trivial solution h2T~=/ to
the equation Lh= 0, by corollary 7.37. Now the division of L by @ ¡ hy in
the ring T~ [@] yields a relation

L=L~ (@ ¡hy)+ �;

for some �2T~ , and Lh= �h=0 implies �=0. The theorem therefore follows
by induction over r. �

Theorem 7.40. Any linear differential operator L2T[@]=/ admits a factor-
ization as a product of a transseries in T and operators

@ ¡ a
with a2T, or

@2¡ (2 a+ by) @+(a2+ b2¡ a0+ a by)=
(@ ¡ (a¡ b i + by)) (@ ¡ (a+ b i))

with a; b2T.

Proof. We prove the theorem by induction over the order r of L. If r=0 then
we have nothing to do. If there exists a solution h 2T to Lh= 0, then we
conclude in a similar way as in theorem 7.39. Otherwise, there exists a solution
hy2T~ to the Riccati equation RL(hy), such that hy=a+ b i with a; b2T and
b=/ 0. Now division of L by (@ ¡ (a¡ b i + by)) (@ ¡ (a+ b i)) in the ring T[@]
yields

L = L~ (@ ¡ (a¡ b i + by)) (@ ¡ (a+ b i))+R
= L~ (@ ¡ (a+ b i + by)) (@ ¡ (a¡ b i))+R

for some differential operator R of order < 2. Moreover, R is both a multiple
of @¡ (a+ b i) and @ ¡ (a¡ b i), when considered as an operator in T~ [@]. But
this is only possible if R=0. We conclude by induction. �
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7.8.2 Distinguished factorizations

We have seen in section 7.4 that the total ordering on the transmonomials
allows us to isolate a distinguished basis of solutions to the equation Lh=0.
A natural question is whether such special bases of solutions induce special
factorizations of L and vice versa.

We will call a series f monic, if f is regular and cf=1. Similarly, a differ-
ential operator L of order r is said to be monic if Lr=1. A tuple of elements
is said to be monic if each element is monic. Given a regular series f , the series
mon f := f /cf is monic. In what follows we will consider bases of HL as tuples
(h1; : : : ; hr). We will also represent factorizations L= (@ ¡ f1) � � � (@ ¡ fr) of
monic differential operators by tuples (f1; : : : ; fr).

Proposition 7.41. Let L2T~ [@]=/ be a monic linear differential operator on O
of order r. Then

a) To any monic basis (h1; : : : ; hr) of HL, we may associate a factorization

L = (@ ¡ f1) � � � (@ ¡ fr);
fi = [(@ ¡ fi+1) � � � (@ ¡ fr)hi]y (i= r; : : : ; 1);

and we write (f1; : : : ; fr)= fact (h1; : : : ; hr).
b) To any factorization

L=(@ ¡ f1) � � � (@ ¡ fr);

we may associate a monic basis (h1; : : : ; hr)= sol (f1; : : : ; fr) of H by

hi=mon [(@ ¡ fi+1) � � � (@ ¡ fr)]¡1 e
R
fi (i= r; : : : ; 1):

We have hi;d(hj)=0 for all i < j.
c) For any factorization represented by (f1; : : : ; fr) we have

fact sol (f1; : : : ; fr)= (f1; : : : ; fr):

d) If (h1;:::; hr) is a monic basis of HL such that hi;d(hj)=0 for all i< j, then

sol fact (h1; : : : ; hr)= (h1; : : : ; hr):

Proof. Assume that (h1; : : : ; hr) is a monic basis of HL and let us prove by
induction that (@ ¡ fi+1) � � � (@ ¡ fr) is a right factor of L for all i= r; : : : ; 0.
This is clear for i= r. Assume that

L=K (@ ¡ fi+1) � � � (@ ¡ fr)

for some i2f1; : : : ; rg. Then

K (@ ¡ fi+1) � � � (@ ¡ fr)hi=0

implies that @ ¡ fi is a right factor of K, in a similar way as in the proof of
theorem 7.39. Hence (a) follows by induction.
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As to (b), the hi are clearly monic solutions of Lh=0, and, more generally,

(@ ¡ fi+1) � � � (@ ¡ fr)hj=0

for j > i. The distinguished property of [(@ ¡ fi+1) � � � (@ ¡ fr)]¡1 therefore
implies that hi;d(hj)=0 for all j > i. This also guarantees the linear indepen-
dence of the hi. Indeed, assume that we have a relation

�1h1+ � � �+�ihi=0:
Then

0= (�1h1+ � � �+�ihi)d(hi)=�i;

and, repeating the argument, �i¡1= � � �=�1=0. This proves (b).
Now consider a factorization L=(@ ¡ f1) � � � (@ ¡ fr) and let

(f~1; : : : ; f~r)= fact sol (f1; : : : ; fr):

Given i2f1; : : : ; rg with f~i+1= fi+1; : : : ; f~r= fr, we get

f~i = [(@ ¡ f~i+1) � � � (@ ¡ f~r)mon [(@ ¡ fi+1) � � � (@ ¡ fr)]¡1 e
R
fi]y

= [c¡1 (@ ¡ fi+1) � � � (@ ¡ fr) [(@ ¡ fi+1) � � � (@ ¡ fr)]¡1 e
R
fi]y

= (c¡1 e
R
fi)y= fi;

where c2C=/ is the dominant coefficient of

[(@ ¡ fi+1) � � � (@ ¡ fr)]¡1 e
R
fi:

Applying the above argument for i= r; : : : ; 1, we obtain (c).
Let us finally consider a monic basis (h1;:::; hr) of HL such that hi;d(hj)=0

for all i < j. Let

(f1; : : : ; fr) = fact (h1; : : : ; hr)
(h~1; : : : ; h~r) = sol (f1; : : : ; fr)

Assume that h~i+1=hi+1; : : : ; h~r=hr for some i2f1; : : : ; rg and let

K =(@ ¡ fi) � � � (@ ¡ fr):

Then both (hi; : : : ; hr) and (h~i; hi+1; : : : ; hr) form monic bases for HK and
hi;d(hj)=h~i;d(hj)=0 for all j > i. It follows that (h~i¡ hi)h=0 for all h2HK,
whence h~i=hi. Applying the argument for i= r; : : : ; 1, we obtain (d). �

The distinguished basis of HL is the unique monic basis (h1; : : : ; hr) such
that hi;d(hj)=0 for all i< j and h1� ��� �hr. The corresponding factorization
of L is called the distinguished factorization.

Exercise 7.28. Assume that L2T[@] admits a factorization

L=(@ ¡ f1) � � � (@ ¡ fr)

with f1; : : : ; fr 2T and that the coefficients of L are exponential. Then

a) Prove that there exists a unique such factorization with f1> � � �> fr.
b) Prove that this unique factorization is the distinguished factorization.
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8

Algebraic differential equations

Let T=C[[[x]]] be the field of grid-based transseries in x over a real closed
field C and let P 2TfF g be a differential polynomial of order r. In this
chapter, we show how to determine the transseries solutions of the equation

P (f)= 0:

More generally, given an initial segment V�T of transmonomials, so that

v2V^w4 v ) w2V;

we will study the asymptotic algebraic differential equation

P (f)= 0 (f 2C[[V]]): (E)

Usually, we have V=T or V= fw2T:w� vg for some v.
In order to solve (E), we will generalize the Newton polygon method from

chapter 3 to the differential setting. This program gives rise to several diffi-
culties. First of all, the starting monomials for differential equations cannot
be read off directly from the Newton polygon. For instance, the equation
f 0=ee

x
admits a starting monomial ee

x¡x whereas the Newton polygon would
suggest ee

x
instead. Also, it is no longer true that cancellations are necessarily

due to terms of different degrees, as is seen for the equation f 0= f , which
admits ex as a starting monomial.

In order to overcome this first difficulty, the idea is to find a criterion
which tells us when a monomial m is a starting monomial for the equation
(E). The criterion we will use is the requirement that the differential Newton
polynomial associated to m admits a non-zero solution in the algebraic closure
of C. Differential Newton polynomials are defined in section 8.3.1; modulo
multiplicative conjugations, it will actually suffice to define them in the case
when m=1. In section 8.3.3, we will show how to compute starting monomials
and terms. Actually, the starting monomials which correspond to cancel-
lations between terms of different degrees can almost be read off from the
Newton polygon. The other ones are computed using Riccati equations.



A second important difficulty with the differential Newton polygon method
is that almost multiple solutions are harder to �unravel� using the differen-
tiation technique from section 3.1.3. One obvious reason is that the quasi-
linear equation obtained after differentiation is a differential equation with
potentially multiple solutions. Another more pathological reason is illustrated
by the example

f2+2 f 0+ 1
x2
+ 1
x2 log2x

+ � � �+ 1
x2 log2 x � � � log l2 x

=0: (8.1)

Although the coefficient of f in this equation vanishes, the equation admits
1

x
as a starting term of multiplicity 2. Indeed, setting f = 1

x
f~, we get

f~2+2 f~0¡ 2 f~+1+ 1
log2 x

+ � � �+ 1
log2x � � � log l2x

=0:

Differentiation yield the quasi-linear equation

2 f~¡ 2=0;

but after the refinement f~=1+ f~~ (f~~� 1) and upward shifting, we obtain an
equation

f~~2+2 f~~
0
+ 1
x2
+ 1
x2 log2x

+ � � �+ 1
x2 log2x � � � log l¡12 x

=0;

which has the same form as (8.1). This makes it hard to unravel almost
multiple solutions in a constructive way. Nevertheless, as we will see in section
8.6, the strong finiteness properties of the supports of grid-based transseries
will ensure the existence of a brute-force unravelling algorithm.

In section 8.7 we put all techniques of the chapter together in order to
state an explicit (although theoretical) algorithm for the resolution of (E). In
this algorithm, we will consider the computation of the distinguished solution
to a quasi-linear equation as a basic operation. Quasi-linear equations are
studied in detail in section 8.5.

In the last section, we prove a few structural results about the solutions
of (E). We start by generalizing the notion of distinguished solutions to equa-
tions of Newton degree d > 1. We next prove that (E) admits at least one
solution if d is odd. We will also prove a bound for the number of �new
exponentials� which may occur in solutions to (E).

8.1 Decomposing differential polynomials

8.1.1 Serial decomposition

Let P 2TfF g be a differential polynomial over T of order r. In the previous
chapter, we have already observed that we may interpret P as a series

P =
X
m2T

Pmm; (8.2)
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where the coefficients are differential polynomials in CfF g. We call (8.2) the
serial decomposition of P . As before, the embedding TfF g ,! CfF g[[T]]
induces definitions for the asymptotic relations4,�, etc. and dominant mono-
mials and coefficients of differential polynomials. We will denote by DP the
dominant coefficient of P .

8.1.2 Decomposition by degrees

The most natural decomposition of P is given by

P (f)=
X
i

Pi f
i: (8.3)

Here we use vector notation for tuples

i = (i0; : : : ; ir)
j = (j0; : : : ; jr)

of integers:

kik = i0+ � � �+ ir;
f i = f i0 (f 0)i1 � � � (f (r))ir;

i6 j , i06 j0^ � � � ^ ir6 jr;�
j
i

�
=
�
j0
i0

�
� � �
�
jr
ir

�
:

We call (8.3) the decomposition of P by degrees. The i-th homogeneous part
of P is defined by

Pi=
X
kik=i

Pi f i;

so that

P =
X
i

Pi: (8.4)

We call (8.4) the decomposition of P into homogeneous parts. If P =/ 0, then
the largest d= deg P with Pd=/ 0 is called the degree of P and the smallest
�= valP with P�=/ 0 the differential valuation of P .

8.1.3 Decomposition by orders

Another useful decomposition of P is its decomposition by orders:

P (f)=
X
!

P[!] f
[!] (8.5)
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In this notation, ! runs through tuples !=(!1;:::; !l) of integers in f0;:::; rg
of length l6degP , and P[!]=P[!�(1); : : : ;!�(l)] for all permutations of integers.
We again use vector notation for such tuples

j! j = l;
k!k = !1+ � � �+!l;
f [!] = f (!1) � � � f (!l);
!6 � , !16 �1^ � � � ^!l6 �l;�
�
!

�
=
�
�1
!1

�
� � �
�
�l
!l

�
:

For the last two definitions, we assume that j! j= j� j= l. We call k!k the
weight of !. The !-th isobaric part of P is defined by

P[!]=
X
k!k=!

P[!] f
[!];

so that

P =
X
!

P[!]: (8.6)

We call (8.6) the decomposition of P into isobaric parts. If P =/ 0, then the
largest ! = wt P with P[!] =/ 0 is called the weight of P and the smallest
!=wvP with P[!]=/ 0 the weighted differential valuation of P .

8.1.4 Logarithmic decomposition

It is convenient to denote the successive logarithmic derivatives of f by

f y = f 0/f ;
f hii = f y� � �y (i times):

Then each f (i) can be rewritten as a polynomial in f ; f y; : : : ; f hii:

f = f ;
f 0 = f y f ;
f 00 = ((f y)2+ f yy f y) f ;
f 000 = ((f y)3+3 f yy (f y)2+(f yy)2 f y+ f yyy f yy f y) f ;

���

We define the logarithmic decomposition of P by

P (f)=
X

i=(i0; : : : ;ir)

Phii f
hii; (8.7)

where

f hii= f i0 (f y)i1 � � � (f hri)ir:
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Now consider the total lexicographical ordering 6lex on Nr+1, defined by

i<lex j () (i0< j0)_
(i0= j0^ i1< j0)_

���
(i0= j0^ � � � ^ ir¡1= jr¡1^ ir< jr):

Assuming that P =/ 0, let i be maximal for 6lex with Phii=/ 0. Then

P (f)�Phii f hii (8.8)

for f!1T or f!¡1T.

8.2 Operations on differential polynomials

8.2.1 Additive conjugation

Given a differential polynomial P 2TfF g and a transseries h2T, the additive
conjugation of P with h is the unique differential polynomial P+h2TfF g,
such that

P+h(f)=P (h+ f)

for all f 2T. The coefficients of P+h are explicitly given by

P+h;i=
X
j>i

�
j
i

�
hj¡iPj: (8.9)

Notice that for all i2N, we have�
@P

@F (i)

�
+'

= @P+'

@F (i)
:

Proposition 8.1. If h= c+ " with c2C and "� 1, then

P+h � P

DP+h = DP ;+c

Proof. The relation (8.9) both yields P+h4P and

P =P+h;¡h4P+h;
so P+h�P . Furthermore,

P+h;i=Pi+
X
j>i

(cj¡i+ o(1))Pj=P+c;i+ o(P )

for all i, whence the second relation. �
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8.2.2 Multiplicative conjugation

The multiplicative conjugation of a differential polynomial P 2TfF g with
a transseries h2T is the unique differential polynomial P�h2TfF g, such that

P�h(f)=P (h f)

for all f 2T. The coefficients of P�h are given by

P�h;[!]=
X
�>!

�
�
!

�
h[�¡!]P[� ]: (8.10)

Proposition 8.2.

a) If h��x, then for all i,

Pi;�h�hhiPi:
b) If h��x, then

P�h�h� P:

c) If P and h> 0 are exponential, then

P�h �logh
� hP :

Proof. If h �� x, then the equation (8.10) implies Pi;�h 4h hi Pi and
Pi4h h¡i Pi;�h, whence (a). Part (b) follows directly from (a), and (c) is
proved in a similar way. �

8.2.3 Upward and downward shifting

The upward and downward shiftings of a differential polynomial P are the
unique differential polynomials P " resp. P # in TfF g such that

P "(f ") = P (f)"
P #(f #) = P (f)#

for all f 2T. The non-linear generalizations of the formulas (7.4) and (7.5)
for the coefficients of P " and P # are

(P ")[!] =
X
�>!

s� ;! e¡k� kx (P[� ]") (8.11)

(P #)[!] =
X
�>!

S� ;!x
k!k (P[� ]#); (8.12)

where the s� ;! are generalized Stirling numbers of the first kind

s� ;! = s�1;!1 � � � s�l;!l

(f(log x))(j) =
X
i=0

j

sj;ix
¡j f (i)(log x)
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and the S� ;! are generalized Stirling numbers of the second kind

S� ;! = S�1;!1 � � � S�l;!l

(f(ex))(j) =
X
i=0

j

Sj;i eix f (i)(ex):

Proposition 8.3. We have

P " �ex� dP ":

Proof. We get P "4ex� dP " from (8.11) and P =P "#4x� dP "# from (8.12). �

Proposition 8.4. If P 2TfF g is exponential, then

DP "=DDP":

Proof. Since P =(DP + oex(1)) dP , the equation (8.11) yields

P "=(DP "+ oeex(1)) (dP ")

and suppDP "�fe¡Nxg�eex 1. This clearly implies the relation. �

Exercise 8.1. Let g 2T>;� and P 2TfF g.
a) Show that there exists a unique P�g 2TfF g with

P�g (f � g)=P (f) � g
for all f 2T.

b) Give an explicit formula for P�g;[!] for all !.
c) Show that ��g is a differential ring homomorphism:

(TfF g; @) ¡! (TfF g; (g 0)¡1 @)
P 7¡! P�g

Exercise 8.2. Let P 2TfF1; : : : ; Fkg and Q1; : : : ; Qk2TfF1; : : : ; Flg.
a) Let P � (Q1; : : : ; Qk)2TfF1; : : : ; Flg be the result of the substitution of Qi

for each Fi in P . Show that P 7!P � (Q1;:::; Ql) is a morphism of differential
rings.

b) Reinterpret additive and multiplicative conjugation using composition like
above.

c) Show that T[@] is isomorphic to (TfF glin;+; �), where

TfF glin=TF �TF 0� � � �:

Exercise 8.3. Let P =
P

i
PiF

i2T��ex[[F ;F 0; : : : ]].
a) If (Pi) forms a grid-based family, then show that P (f) is well-defined for all
f 2T��ex4 .

b) For two operators P and Q like in (a), with Q4 1, show that P �Q is well-
defined.

c) Generalize (b) to operators in several variables and to more general subspaces
of the form C[[V]] of T��ex.
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8.3 The differential Newton polygon method

8.3.1 Differential Newton polynomials

Recall from the introduction that, in order to generalize the Newton polygon
method to the differential setting, it is convenient to first define the differential
Newton polynomial associated to a monomial m. We will start with the case
when m=1 and rely on the following key observations:

Lemma 8.5. Let P 2CfF g be isobaric, of weight � and assume that DP "=P.
Then P 2C[F ] (F 0)�.

Proof. For all isobaric H 2CfF g of weight �, let us denote

H�=
X
j

H(j;�;0; : : : ;0)F
j (F 0)�:

Then Q=P ¡P � satisfies DQ"=Q and Q�=0. Furthermore, (8.11) yields

Q"=e¡�xQ:

Consequently, if Q(f)= 0 for some f 2T, then

Q(f ")= e�x (Q")(f ")= e�x (Q(f)")= 0:

Since Q� = 0 implies Q(x) = 0, it follows by induction that Q(expi x) = 0
for any iterated exponential of x. From (8.8), we conclude that Q= 0 and
P 2C[F ] (F 0)�. �

Theorem 8.6. Let P be a differential polynomial with exponential coefficients.
Then there exists a polynomial Q2C[F ] and an integer �, such that for all
l>wtP, we have DP "l=Q (F 0)�.

Proof. By formula (8.11), we have DP "� e¡(wvDP)x and

DP "(F )=
X
!

 X
�>!

k� k=wvDP

s� ;!DP ;[� ]

!
F [!]: (8.13)

Consequently,

wtDP >wvDP =wtDP ">wvDP "=wtDP ""> � � �:

Hence, for some l6wtP , we have wtDP "l+1=wvDP "l+1=wtDP "l. Now (8.13)
applied on P "l instead of P yields DP "l+1=DP "l. Proposition 8.4 therefore
gives

DP "l=DP "l+1=DDP"l"=DDP "l+1"=DP "l+2= � � �:

We conclude by applying lemma 8.5 with DP "l for P . �
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Given an arbitrary differential polynomial P , the above theorem implies
that there exists a polynomial Q2C[F ] and an integer �, such that DP "l=
Q (F 0)� for all sufficiently large l. We call

NP =Q (F 0)�

the differential Newton polynomial for P . More generally, if m is an arbitrary
monomial, then we call NP�m the differential Newton polynomial for P associ-
ated to m. If P is exponential and NP =DP , then we say that P is transparent .
Notice that a transseries is transparent if and only if it is exponential.

8.3.2 Properties of differential Newton polynomials

Proposition 8.7.
a) NP "=NP for all P.
b) If c2C and "� 1, then NP+c+"=NP ;+c.
c) If m� n, then valNP�m6degNP�m6 valNP�n6 degNP�n.

Proof. Assertion (a) is trivial, by construction.
In (b), modulo a sufficient number of upward shiftings, we may assume

without loss of generality that P , P+c+" and " are transparent. Dividing P
by dP , we may also assume that P � 1. Then (8.9) implies

P+c+"=DP ;+c+"+ oex(1)=DP ;+c+ oex(1);

so that NP+c+"=DP+c+"=DP ;+c=NP ;+c.
As to (c), it clearly suffices to consider the case when m� 1 and n= 1.

After a finite number of upward shiftings, we may also assume that P and P�m
are transparent and m��x. Let d=valP . Then for all i> d we have Pi4Pd,
whence

P�m;d=Pd;�m�mmdPd�miPi�mPi;�m=P�m;i;

by proposition 8.2(a). This implies degD�m6 d, as desired. �

Proposition 8.8. Let P 2TfF g=/ , m�� ex and T =
P

u�mP Pu u. Then we
have NP�n=NT�n for all n��m.

Proof. Since m�� ex, we first notice that

T "=
X

u�m"P
P "u u:

Hence, modulo division by dP and a sufficient number of upward shiftings, we
may assume without loss of generality that P � 1, that P and n are exponen-
tial, that NP�n=DP�n, and NT�n=DT�n. Then

(P ¡T )�n�n (P ¡T ) n�m n

and P�n�nn, whence P�n=T�n+om(P�n). We conclude that NP�n=DP�n=
DT�n=NT�n. �
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8.3.3 Starting terms

We call m 2V a starting monomial , if NP�m admits a non-zero root c in
the algebraic closure Calg of C. This is the case if and only if NP�m2/ CFN.
We say that m is algebraic if NP�m is non-homogeneous, and differential if
NP�m2/ C[F ]. A starting monomial, which is both algebraic and differential,
is said to be mixed .

Example 8.9. Let m be a starting monomials for P (f) = 0, where P = LF
and L 2T[@]. Then NL�m"l=DL�m"l 2 C F 0 for all sufficiently large l. By
proposition 7.6, it follows that m"l 2HL"l for all sufficiently large l, whence
m2HL. Similarly, if m is not a starting monomial, then NL�m"l=DL�m"l2CF
for all sufficiently large l, and m2/ HL.

Assuming that we have determined a starting monomial m for (E), let
c2Calg be a non-zero root of NP�m. If c2C, then we call cm a starting term
for (E). If NP�m=Q (F 0)� with Q2C[F ] and Q(c)=0, then cm is said to be an
algebraic starting term. If �=/ 0, then we say that cm is a differential starting
term. The multiplicity of c (and of cm) is the differential valuation of NPm;+c.
Notice that the definition of the multiplicity extends to the case when c=0.

Proposition 8.10. Assume that f is a non-zero transseries solution to (E).
Then �f is a starting term.

Proof. Assume that �f= cm is not a starting term. Modulo normalization, we
may assume without loss of generality that P is transparent and m= dP =1.
Then

P (f)=NP(f)+ oex(1)=NP(c)+ oex(1)=/ 0;

since NP(c)=/ 0. �

The Newton degree of (E) is defined to be the maximum d= degV P of
val P and the largest possible degree of NP�m for monomials m 2V. The
above proposition shows that equations of Newton degree zero do not admit
solutions.

Proposition 8.11. If '2C[[V]], then

degVP+'= degVP:

Proof. Consider a monomial m 2V with m < '. Modulo a multiplicative
conjugation with m we may assume without loss of generality that m=1, so
that '= c+ " with c 2C and "� 1. Modulo upward shifting, we may also
assume that P , P+' and ' are transparent. Then degNP+'= degNP ;+c=
degNP , by proposition 8.7(b). �
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Geometrically speaking, we may consider the Newton degree as �the mul-
tiplicity of zero as a root of P modulo V�. More generally, given an initial
segment W�V, we say that '2C[[V]] is a solution to (E) modulo W, if the
Newton degree of

P+'(f~)=0 (f~2C[[W]]) (8.14)

is strictly positive. The multiplicity of such a solution is defined to be the
Newton degree of (8.14). If  2 '+C[[W]], then the multiplicities of ' and
 as solutions of (E) modulo W coincide, by proposition 8.11. In particular, if
' is a solution of (E) modulo W, then so is  = 'VnW=

P
m2VnW'mm. We

call  a normalized solution, because it is the unique solution in '+C[[W]]
such that  m=0 for all m2W.

8.3.4 Refinements

Given a starting term � = cm for (E), we will generalize the technique of
refinements in order to compute the remaining terms. In its most general
form, a refinement for (E) is a change of variables together with an asymptotic
constraint

f = '+ f~ (f~2C[[V~ ]]); (R)

where '2C[[V]] and V~ �V is an initial segment of transmonomials. Such
a refinement transforms (E) into

P~(f~)=P+'(f~)= 0 (f~2C[[V~ ]]): (RE)

Usually, we take V~ = fw~ 2T:w~ � 'g, in which case (RE) becomes

P~(f~)=0 (f~� '): (8.15)

In particular, we may take '= cm, but, as in section 3.3.2, it is useful to allow
for more general ' in presence of almost multiple solutions.

Consider a refinement (R) and a second refinement

f~= '~+ f~~ (f~~2C[[V~~ ]]) (RR)

with '~ 2C[[V~ ]] and V~~ �V~ . Then we may compose (R) and (RR) so as to
yield another refinement

f = '+ '~+ f~~ (f~~2C[[V~~ ]]): (8.16)

Refinements of the form (8.16) are said to be finer as (R).

Proposition 8.12. Consider a refinement (R) with ' 2C[[V]]. Then the
Newton degree of (RE) is bounded by the Newton degree of (E).

Proof. By the definition of Newton degree, the result is clear if '= 0. In
general, we may decompose the refinement in a refinement with V~ =V and
a refinement with '=0. We conclude by proposition 8.11. �
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Proposition 8.13. Let '2C[[V]] and m< '. Then the Newton degree of

P~(f~)=P+'(f~)=0 (f~�m)

is equal to the multiplicity d~ of c= 'm as a root of NP�m.

Proof. Let us first show that degNP~�n6 d~ for any monomial n�m. Modulo
multiplicative conjugation and upward shifting, we may assume without loss
of generality that m = 1 and that P , P~�n, n and ' are transparent. The
differential valuation of NP ;+c=DP~ being d~, we have in particular P~d~� P~.
Hence,

P~�n;i �n P~i ni �n P~d~n
d~ �n P~�n;d~

for all i > d~. We infer that degNP~�n6 d~.
At a second stage, we have to show that degNP~�n> d~. Without loss of

generality, we may again assume thatm=1, and that P and ' are transparent.
The differential valuation of NP ;+c=DP~ being d~, we have P~i�P~ for all i<d~.
Taking n=x¡1, we thus get

P~�n;i �ex P~i �ex P~ � P~d~ �ex P~�n;d~

for all i < d~. We conclude that degNP~�n> d~. �

Exercise 8.4. If NP =DP 2C[F ] (F 0)k, then show that

a) DP "=DP .
b) P "� dP" e¡kx.

Exercise 8.5. If P =LF + g, with L2T[@] and g2T=/ , then show that TL
¡1(�g)

is the unique algebraic starting term for P (f)= 0.

Exercise 8.6.

a) Give a definition for the composition

f = '+ f~ (f~2C[[V~ ]])

of an infinite sequence of refinements

f = f0 = '1+ f1 (f12C[[V1]])

f1 = '2+ f2 (f22C[[V2]])

���

b) What can be said about the Newton degree of (RE)?

Exercise 8.7. Let P ; Q2TfF g and let V�T be an initial segment.

a) Show that degV PQ= degV P + degV Q.
b) What can be said about degV (P +Q)?
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c) If degV P > 0 and A0; : : : ; An2T, then show that

degV (A0P + � � �+AnP (n))> 0:

Hint: first reduce to the case when V = fv 2 T: v � 1g. Next, considering
P =0; : : : ; P (n)=0 as algebraic equations in F ; : : : ; F (r+n), show that there
exists a common solution F = �0; : : : ; F

(r+n)= �r+n with �i� 1 for all i (i.e.
we do not require that �i+1= �i

0 for i < r+n¡ 1).

Exercise 8.8. Improve the bound i>wtP in theorem 8.6 for P of degree 6 3.

Exercise 8.9. Show that r upward shiftings may indeed be needed in the-
orem 8.6.

Exercise 8.10. Let P 2CfF 0g and let � be such that

�0=
1

x log x log2x � � �
:

a) Show that

dP
as= dP (�)=x¡i0 (log x)¡i1 (log2x)¡i3 � � �;

with i0> i1> � � �> 1.
b) Let CfF 0gd;w be the subset of CfF 0g of homogeneous and isobaric polyno-

mials of degree d and weight w. For P 2CfF 0gd;w, show that

dP
as=x¡w (log x)¡i1 (log2x)¡i2 � � �

and limk!1 ik= d.
c) If l is such that NP =DP "l, then show that

dP "l=(explx)¡i0 � � � (exp x)¡il¡1:

d) Show that NP =DP "l if and only if il= il+1= � � �.

8.4 Finding the starting monomials

8.4.1 Algebraic starting monomials

The algebraic starting monomials correspond to the slopes of the Newton
polygon in the non-differential setting. However, they can not be determined
directly from the dominant monomials of the Pi, because of the introductory
example f 0=eex and because there may be some cancellation of terms in the
different homogeneous parts during multiplicative conjugations. Instead, the
algebraic starting monomials are determined by successive approximation:

Proposition 8.14. Let i < j be such that Pi=/ 0 and Pj=/ 0.

a) If P is exponential, then there exists a unique exponential monomial m,
such that Pi;�m�Pj;�m.

b) Denoting by mP the monomial m in (a), there exists an integer k6wtP,
such that for all l> k we have mP "l=mP "k"l¡k.
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c) There exists a unique monomial m, such that N(Pi+Pj)�m is non-homoge-
neous.

Proof. In (a), let B= (b1; : : : ; bn) be a plane transbasis for the coefficients
of P . We prove the existence of m by induction over the least k, such that
d(Pi)/d(Pj) = b1

�1 � � � bk
�k for some �1; : : : ; �k. If k= 0, then we have m= 1.

Otherwise, let Q=P�n with n= bk
�k/(j¡i). Then

Qi�bkPi n
i�bkPj n

j�bkQj ;

so that d(Qi)/d(Qj)=b1
�1 ��� bl

�l for some l <k and �1;:::; �l. By the induction
hypothesis, there exists a exponential monomial w, such that Qi;�w�Qj;w.
Hence we may take m= n w. As to the uniqueness of m, assume that n=
mb1

�1 � � � bk
�k with �k=/ 0. Then

Pi;�n�bkPi;�m bk
i�k�/ bkPj;m bk

j�k�bkPj;�n:

This proves (a).
The above argument also shows that mP "=mP " e�x for some �2Q, since

Pi;�m" e(wvPi;�m)x�Pj;�m" e(wvPj;�m)x:

Now, with the notations from theorem 8.6, we have shown that wtDPi"6
wt DPi and that equality occurs if and only if DPi = F i¡wtDPi (F 0)wtDPi.
Because of (8.10), we also notice that wtDPi;�e�x = wtDPi for all � 2Q.
It follows that

wtDPi;�mP >wtDPi";�mP"> � � �

and similarly for Pj instead of Pi. We finally observe that wt DPi;�mP =
wtDPi";�mP" and wtDPj;�mP =wtDPj";�mP" imply that mP "=mP ", since

wtD(F�(F 0)�)�e
x
=0=/ �=wtDF�(F 0)�

whenever � =/ 0 and 
 =/ 0. Consequently, wtDPi"l;�mP "l and wtDPj"l;�mP"l
stabilize for l> k with k6wtP . For this k, we have (b).

With the notations from (b), mP "k#k is actually the unique monomial m
such that

D(Pi+Pj)�m"l=DPi;�m"k+DPj;�m"k

is non-homogeneous for all sufficiently large l. Now N(Pi+Pj)�m=D(Pi+Pj)�m"l
for sufficiently large l. This proves (c) for exponential differential polynomials
P , and also for general differential polynomials, after sufficiently many upward
shiftings. �

The unique monomial m= eP ;i;j from part (c) of the above proposition is
called the (i; j)-equalizer for P . An algebraic starting monomial is necessarily
an equalizer. Consequently, there are only a finite number of algebraic starting
monomials and they can be found as described in the proof of proposition 8.14.
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Remark 8.15. From the proof of proposition 8.14, it follows that if P can be
expanded w.r.t. a plane transbasis B=(b1; : : : ; bn), then all equalizers for P
belong to (logwtPC b1) � � � (logC b1)BC.

8.4.2 Differential starting monomials

In order to find the differential starting monomials, it suffices to consider the
homogeneous parts Pi of P , since NP�m;i=NPi;�m, if F 0jNP�m and NP�m;i=/ 0.
Now, using (7.6), we may rewrite

Pi(f)=RPi(f y) f i;

where RPi is a differential polynomial of order 6 r¡ 1 in f y. We call RPi the
differential Riccati polynomial associated to Pi.

For a linear differential operator L with exponential coefficients, we have
seen in the previous chapter that finding the starting terms for the equation
Lh= 0 is equivalent to solving RL(f y) = 0 modulo o(1). Let us now show
that finding the starting monomials for the equation Pi(f)=0 is equivalent to
solving RPi(f y) = 0 modulo o( 1

x log x log log x � � � ). In the exponential case, this

is equivalent to solving the equation RPi(f y)= 0 modulo o(1).

Proposition 8.16. The monomial m� v is a starting monomial of f w.r.t.

Pi(f)= 0 (8.17)
if and only if the equation

RPi;+my(f
y)= 0

�
f y� 1

x log x log log x � � �

�
(8.18)

has strictly positive Newton degree.

Proof. We first notice that R(P ")i=(RPi")�e¡x for all P and i. We claim that
the equivalence of the proposition holds for P and m if and only if it holds for
P " and m". Indeed, m is starting monomial w.r.t. (8.17), if and only if m is
a starting monomial w.r.t.

Pi"(f ")= 0 (8.19)

and (8.18) has strictly positive Newton degree if and only if

RPi;+my"(f
y")= 0

�
f y"� 1

exx log x � � �

�
(8.20)

has strictly positive Newton degree. Now the latter is the case if and only if

(RPi;+my")�e¡x(f "
y)= 0

�
f "y� 1

x log x log log x � � �

�
has strictly positive Newton degree. But

(RPi;+my")�e¡x=(RPi")+my";�e¡x=(RPi")�e¡x;+m"y=R(P ")i;+m"y:

This proves our claim.
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Now assume that m is a starting monomial w.r.t. (8.17). In view of our
claim, we may assume without loss of generality that Pi;�m and m are trans-
parent. Since Pi is homogeneous, we have DPi;�m = � F i¡j (F 0)j for some
�2C=/ and j > 0, and

DR
Pi;+m

y=�F j:

Since RPi;+my is exponential, it follows thatNRPi;+my;�x¡2
has degree j, so that

the Newton degree of (8.18) is at least j > 0. Similarly, if m is not a starting
monomial w.r.t. (8.17), then DPi;�m=�F i and

DR
Pi;+m

y=�

for some �2C=/ . Consequently, NR
Pi;+m

y;�n
=� for any infinitesimal mono-

mial n, and the Newton degree of (8.18) vanishes. �

8.4.3 On the shape of the differential Newton polygon

Proposition 8.17. Let d be the Newton degree of (E). Then the algebraic
starting monomials are equalizers of the form

eP ;i0;i1� eP ;i1;i2� � � � � eP ;il¡1;il;

where i0= valP < i1< � � �< il¡1<il= d.

Proof. Let us prove the proposition by induction over d¡ valP . If d= valP ,
then there is nothing to prove, so assume that d > val P . Let i < d be such
that m= eP ;i;d is maximal for 4. Modulo a multiplicative conjugation with
m and upward shifting, we may assume without loss of generality that m=1
and that P is transparent.

We claim that 1 is a starting monomial for (E). Indeed, let n2V be such
that d= degNP�n. By proposition 8.7(c), we already have 14 n 2V, since
otherwise

d= valNP�n= valN(Pi+Pd)�n6 valNPi+Pd= i:

Now assume for contradiction that 1 is not a starting monomial for (E), so
that P �Pi�Pd, and let j be such that P �Pj. We must have j < d, since
proposition 8.7(c) implies

degNP 6degNP�n= d:

Now consider the equalizer v = eP ;j;d 4 1. After sufficiently many upward
shiftings, we may assume without loss of generality that P�v and v are trans-
parent. But then

P�v;j �v vjPj �v vdPd �v P�v;d;

which contradicts the fact that P�v;j�P�v;d.
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Having proved our claim, let k = valNP and NP = Q (F 0)�. Since P is
exponential, we have P =NP + oex(1), whence

P�x¡1""=((¡1)�Qk¡�+oex(1))F k e¡(k+�)e
x

:

In other words, NP�x¡1=(¡1)�Qk¡�F k. It follows that the equation

P (f)= 0 (f � 1)

has Newton degree k. We conclude by applying the induction hypothesis to
this equation. �

Proposition 8.18. Assume that m is a non-algebraic starting monomial
for (E). Then, with the notations from proposition 8.17, there exists a unique
p2f0; : : : ; lg such that

valNP�m=degNP�m= ip:

Moreover, p> 0) eP ;ip¡1;ip�m and p< l)m� eP ;ip;ip+1.

Proof. By proposition 8.7(c),

p=min fq:m� eP ;iq;iq+1_ q= lg=max fq: eP ;iq¡1;iq�m_ q=0g

fulfills the requirements. �

Exercise 8.11. Compute the starting terms for

e¡e
x

f3+ f 00 f ¡ (f 0)2+x4 e¡3x f 000+e¡e
x

=0:

Exercise 8.12. Let P 2EfF g=/ be a differential polynomial with exponential
coefficients and assume that x�0 � � � log l�lx with �l=/ 0 is a starting monomial for
P (f)=0. Then prove that l6wtP . Hint: if P is homogeneous, then show that

wtDP >wtDP�x�0"> � � �>wtDP�x�0� � � logl�lx"l
:

Exercise 8.13. Let K be a differential field and f 2K, P 2KfF g. If P (f)=0,
then show that there exists a homogeneous H 2KfF g of degree 6wtP +degP ,
such that H(e

R
f)= 0.

Exercise 8.14. Prove that there are exactly d¡ valP algebraic starting terms
in CalgT for an equation (E) of Newton degree d.

Exercise 8.15. Let TfF gd denote the space of homogeneous P 2TfF g of
degree d. Given P 2TfF g2, let '(P )2T[F ; F y] be the result of substituting
F yy=F yyy= � � �=0 in the logarithmic decomposition of RP .

a) Show that '(P )2T[F ;F 0], when rewriting F y=F 0/F .
b) Show that ':TfF g2!T[F ; F 0] is an isomorphism.
c) What about higher degrees?
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8.5 Quasi-linear equations

8.5.1 Distinguished solutions

The equation (E) is said to be quasi-linear if its Newton degree is one.
A solution f to a quasi-linear equation is said to be distinguished if we have
fd(f~¡f)=0 for all other solutions f~ to (E). Distinguished solutions are unique:

if f and f~ are distinct distinguished solutions, then we would have fd(f~¡f)=
f~d(f¡f~)=0, whence (f ¡ f~)d(f¡f~)=0, which is absurd.

Lemma 8.19. Assume that the equation (E) is quasi-linear and that the
coefficients of P can be expanded w.r.t. a plane transbasis B= (b1; : : : ; bn).
Assume also that P � 1, P0�bn 1, and let

I= fm2 (log b1)NBC:m�bn 1g:

Then, considering L=¡P1;�bn1 and R=P ¡P0+L as operators on C[[I]],
the equation (E) admits a distinguished solution f given by

f =L¡1 (Id¡RL¡1)¡1P0: (8.21)

Proof. Since C[x][[b1; : : : ;bn¡1]]bn� is closed under L and L¡1 for each �2C,
the operator R L¡1 is strictly extensive on C[[I]] and suppRL¡1 is grid-
based. By theorem 6.15, the operator Id¡RL¡1 therefore admits an inverse

(Id¡RL¡1)¡1= Id+RL+(RL¡1)2+ � � �:

This shows that f is well-defined. In order to show that f is the distinguished
solution, assume that f~ is another solution and let d= df̂¡f. If d�bn 1, then
we clearly have fd=0, since f �bn 1. If d�bn 1, then let

�=
X

m�bnd
(f~¡ f)mm:

Since P (f~)¡P (f)=0, we have L�=0, so that d= d� is the dominant mono-
mial of a solution to the equation Lh=0. Hence fd=0, since f 2 imL¡1. �

Lemma 8.20. Consider a quasi-linear equation (E) whose coefficients can be
expanded w.r.t. a plane transbasis B=(b1; : : : ; bn). Assume that P �P0�P1
and NP =DP. Then (E) admits a distinguished solution

f 2C[[logn¡1x; : : : ;x; b1; : : : ; bn]]:

Proof. Modulo division of the equation by dP , we may assume without loss of
generality that P � 1. We prove the result by induction over n. If n=0, then

P =DP =NP =�+�F
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for some � 2C and � 2C=/ . Hence f =¡�

�
is the distinguished solution to

P (f)= 0. Assume now that n> 0. By the induction hypothesis, there exists
a distinguished solution to the quasi-linear equation

P�bn1(')= 0 ('�C[[V]]) (8.22)

with '2C[[logn¡2x; : : : ;x; b1; : : : ; bn¡1]]. By lemma 8.19, the equation

P+'"n¡1( )= 0 ( �C[[V]]"n¡1)

admits a distinguished solution

 2C[x][[expx; : : : ; expn¡2x; b1"n¡1; : : : ; bn"n¡1]]

with  �bn 1. Then the distinguished properties of ' and  imply that f =
'+  #n¡1 is the distinguished solution to (E). �

Theorem 8.21. Assume that the equation (E) is quasi-linear. Then it admits
a distinguished transseries solution f. Moreover, if the coefficients of P can
be expanded w.r.t. a plane transbasis B=(b1; : : : ; bn), then

f 2C[[lognx; : : : ;x; b1; : : : ; bn]]:

Proof. If P0= 0, then 0 is the trivial distinguished solution of (E). Assume
therefore that P0=/ 0. Modulo some upward shiftings we may assume without
loss of generality that the coefficients of P and the transbasis B are exponen-
tial. Modulo a multiplicative conjugation and using proposition 8.14(a), we
may also assume that P0�P1. Now consider the (0; 1)-equalizer e= eP ;0;1 for
P , which is also the only algebraic starting monomial. If

DP0+P1=�+ ��F
(�)+ � � �+ �lF

(l)

with ��=/ 0, then e=x� and

DP "�e"=�+ �� �
�F :

In other words, after one more upward shifting and a multiplicative conjuga-
tion with e", we may also assume thatNP=DP . We conclude by lemma 8.20. �

8.5.2 General solutions

Lemma 8.22. Consider a quasi-linear equation (E) with exponential coeffi-
cients and a solution f which is not exponential. Let l be the largest monomial
in supp f which is not exponential. Then l= xk l] for some k 2N and an
exponential monomial l]2HP+f;1.

Proof. Consider the exponential transseries '=
P

m�l fmm. Then

P+'(f~)= 0 (f~2C[[V]])
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admits f~= f ¡ ' as a solution, so it is quasi-linear and l is a starting mono-
mial. Consequently, l is also a starting monomial for the equation L f~=
¡P+';0, where L=P+';1. It follows that l=xk l] for some exponential mono-
mial l]2HL.

Let us show that l]2HL~, where L~=P+f ;1. Modulo an additive conjugation
with ', a multiplicative conjugation with l], and division of the equation
by dP , we may assume without loss of generality that '=0, l]=1 and P � 1.
Since the equation P "�ekx(f~) (f~4 1) is quasi-linear, we have

P "�ekx=P0"+Lk" @k"�ekx+ oex(1):
It follows that

P+f"�ekx=P "�ekx;+f"ekx=Lk" @k"�ekx+ oex(1);
whence

P+f"= @k"+ oex(e¡kx):

In other words, 1 is a starting monomial for the equation

(L~")(h)= 0:

We conclude that 12HL~" and 12HL~. �

Theorem 8.23. Let f be a solution to a quasi-linear equation (E). If the
depths of the coefficients of P are bounded by d, then the depth of f is bounded
by d+ r.

Proof. For each i, such that the depth of f is >d+ i, let li be the minimal
element in the support of f of depth > d+ i. By the previous lemma, we
have li"d+i2HP+f;1"d+i, whence li2HP+f;1. Therefore, li"d+i2xNE, where E

denotes the set of exponential transmonomials. The result now follows from
the fact that cardHP+f;1=dimHP+f;16 r. �

Corollary 8.24. If the coefficients of P can be expanded w.r.t. a plane
transbasis (b1; : : : ; bn), then the distinguished solution to (E) belongs to
C[[logr¡1x; : : : ;x; b1; : : : ; bn]].

Theorem 8.25. Let f be a solution to a quasi-linear equation (E). Then f
may be written in a unique way as

f = f�+h1+ � � �+hs;

where f� is the distinguished solution to (E), s6 r, and

h1� : : :�hs2T=/

are such that each hi¡ �(hi) is the distinguished solution to the equation

P+f�+h1+ � � �+hi¡1+�(hi)(')= 0 ('�C[[V]]):
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Proof. Consider the sequence h1; h2; : : : with hi= �i+ �i for all i, where

�i= �(f ¡h1¡ � � � ¡hi¡1)

and �i is the distinguished solution to

P+f�+h1+� � �+hi¡1+�i(')= 0 ('�C[[V]]):

Since the equation

P+f�+h1+ � � �+hi¡1+�i(')= 0 ('� �i)

is quasi-linear (it admits f ¡h1¡ � � � ¡hi¡1¡ �i as a solution), �i is also the
distinguished solution to this latter equation, whence �i� �i. By induction, it
follows that h1�h2� � � �.

Let us now prove that the sequence h1; h2;::: has length at most r. Assume
the contrary and consider

P~=P+f�+h1+ � � �+hr+1:

Then

P~(¡hi¡ � � � ¡hr+1)= 0

for all i2f1; : : : ; r+1g, so dh1; : : : ; dhr+1 are starting monomials for

P~(f~)=0 (f~�C[[V]]):

Since this equation is quasi-linear and P~0=0, it follows that dh1; : : : ; dhr+1 are
also starting monomials for the linear differential equation

L~ f~=P~1(f~)=0:

In other words, fdh1; : : : ; dhr+1g�HL~. But then

r+16 cardHL~= dimHL~6 r: �

Exercise 8.16. If f is the distinguished solution to a quasi-linear equation
(E) and 'P f a truncation of f , then show that f~= f ¡ ' is the distinguished
solution to

P+'(f~)=0 (f~2C[[V]]):

Exercise 8.17. Assume that (E) is quasi-linear, with distinguished solution
f . Show that the equation P�m(g) = 0 (g 2m¡1V) is also quasi-linear, with
distinguished solution g=m¡1 f . And if m is replaced by a transseries?

Exercise 8.18. Show that f 2 C[[logexpo(bn)¡1 x; : : : ; x; b1; : : : ; bn]] in the-
orem 8.21.

Exercise 8.19. Show that the dependence of f on logd+r¡1x is polynomial in
theorem 8.23.
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Exercise 8.20. Give an example of a quasi-linear equation (E) such that the set

fdg¡f:P (f)=P (g)= 0^ f ; g 2C[[V]]^ g=/ f g
is infinite.

Exercise 8.21. Can you give an example for which

f 2C[[logr¡1x; : : : ;x; b1; : : : ; bn]] nC[[logr¡2x; : : : ;x; b1; : : : ; bn]]

in corollary 8.24?

8.6 Unravelling almost multiple solutions

As pointed out in the introduction, �unravelling� almost multiple solutions is a
more difficult task than in the algebraic setting. As our ultimate goal, a total
unravelling is a refinement

f = '+ f~ (f~� v~); (8.23)

such that deg4v~P =d and deg�v~P <d. Unfortunately, total unravellings can
not be read off immediately from the equation or its derivatives. Nevertheless,
we will show how to �approximate� total unravellings by so called partial
unravellings which are constructed by repeatedly solving suitable quasi-linear
equations.

8.6.1 Partial unravellings

In order to effectively construct a total unravelling, consider a starting mono-
mial m such that NP�m admits a root of multiplicity d. Assume that l 2Z is
sufficiently large so that P�m is exponential and

NP�m"l=DP�m"l= a (F ¡ c)
d¡k (F 0)k

for some a; c2C=/ and k. Let

Q=

8>>>><>>>>:
�

@d¡1P�m"l
(@F )d¡1¡k (@F 0)k

�
�m¡1  

¡

l
if k <d�

@d¡1P�m"l
(@F 0)d¡1

�
�m¡1  

¡

l
if k= d

(8.24)

and consider a refinement (R) such that

AU1. The Newton degree of (RE) equals d.
AU2. Q(')= 0 and d'=m.
AU3. We have V~ = fv2T: v� hg for h=m or some starting monomial h for

Q~(h)=Q+'(h)= 0 (h2C[[V]]):

Then we call (R) an atomic unravelling .
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Proposition 8.26. Let S be a set of atomic unravellings for (E). Then S
admits a finest element.

Proof. Assume for contradiction that there exists an infinite sequence

f = '0+ f1 (f1� v1)
f = '0+ '1+ f2 (f2� v2)
���

of finer and finer atomic unravellings in S , so that

'i� vi4 'i¡1
for all i > 0. Setting

 = '0+ � � �+ 'r+1;

it follows for all i > 0 that

Q+ (¡'i¡ � � � ¡ 'r+1)= 0:

Consequently, d'i is a starting monomial for Q+ ;1(h) = 0 and i 2 f1; : : : ;
r+1g. But this is impossible, since cardHQ+ ;16 r. �

Given an atomic unravelling (R) followed by a second refinement (RR)
such that the Newton degree of

P~~(f~~)=P~+'~(f~
~)=0 (f~~2C[[V~~ ]])

equals d, we say that (RR) is compatible with (R) if '~ =/ 0, V~~ � '~ and d'~ is
not a starting monomial for

Q~(h)= 0 (h2C[[V~ ]]): (8.25)

If the second refinement (RR) is not compatible with (R), then we may con-
struct a finer atomic unravelling

f = '+  + f~ (f~�  )

such that �( )= �('~). Indeed, it suffices to take  = �('~)+h, where h is the
distinguished solution to the equation

Q'+�('~)(h)= 0 (h� '~):

In other words, during the construction of solutions of (E) we �follow� the solu-
tions to Q(h)=0 as long as possible whenever the Newton degree remains d.

A partial unravelling is the composition of a finite number l of compatible
atomic unravellings. We call l the length of the partial unravelling. By con-
vention, the identity refinement

f = f~ (f~2C[[V]])

is a partial unravelling of length 0. We have shown the following:
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Proposition 8.27. Assume that (E) has Newton degree d. Given a partial
unravelling (R) and a starting term �~ for (RE) of multiplicity d, there exists
a finer partial unravelling

f = '+ '~+ f~~ (f~~� �~)

with '~� �~. �

8.6.2 Logarithmic slow-down of the unravelling process

The introductory example (8.1) shows that an atomic unravelling does not
necessarily yield a total unravelling. Nevertheless, when applying a succession
of compatible atomic unravellings, the following proposition shows that the
corresponding monomials m change by factors which decrease logarithmically.

Theorem 8.28. Consider an atomic unravelling (R), followed by a compat-

ible refinement (RR). Then, denoting m~ = d'~, there exists an m~~ 2V~~ with

m~
m~~
�� log

m

m~
:

Proof. Modulo some upward or downward shiftings, we may assume without
loss of generality that l=0 in (8.24), so that P�m is exponential. Modulo a
multiplicative conjugation withm and division of P by dP , we may also assume

thatm=1 and that P �1. By proposition 8.1 it follows that P~�P~~�Q�Q~�1.
Let us first show that m~ �� ex. Assuming the contrary, we have either

'¡ c�� ex or '¡ c�� ex, where c= c'. In the first case, v= d'¡c�� ex is
a starting monomial for

Q+c(f~)=0 (f~� 1);

andDQ+c2CFN (F 0)N. Since Q+c is exponential, it follows thatNQ+c=DQ+c,
as well as NQ+c;�v=NDQ+c;�v, by proposition 8.8. So v is also a starting
monomial for the equation NQ+c(h)= 0 (h� 1). But this is impossible, since
NQ+c2CFN (F 0)N. In the second case, v=m~ �� ex is a starting monomial for

P+c(f~)= 0 (f~� 1):

Again P+c is exponential and DP+c2CFN (F 0)N, so we obtain a contradiction
in a similar way as above.

Since m~ is not a starting monomial for (8.25), we have

Q~('~)"p = Q~�m~ ('~/m~ )"p � d(Q~�m~"p)
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for a sufficiently large p2N such that m"p, Q~"p and '~"p are exponential and
DQ~�m~"p=NQ~�m~"p. Using proposition 8.3 and the fact that m~ �� ex, it follows
that

Q~('~) �logm~
� d(Q~�m~ ):

On the other hand,
d(Q~�m~ )
d(Q~)m~

�� m~ y�� logm~ ;

whence

Q~('~) <logm~
� d(Q~)m~ =m~ :

We conclude that

P~~d¡1 <logm~
� m~ ;

since Q~('~) is the coefficient of F d¡1¡k (F 0)k in P~~ for some k.
Now let n be a monomial with n �logm~

� m~ , so that n �logn
� m~ and

P~~d¡1 �logn
� n. Then, proposition 8.2 implies

P~~�n;d¡1 �logn
� P~~d¡1 nd¡1 �logn

� nd �logn
� P~~�n;d;

From propositions 8.3 and 8.8, it therefore follows that the degree of N
P~~�n

cannot exceed d¡ 1. We conclude that there exists an m~~ = n2V~~ with

m~~ <logm~
� m~ ;

since (8.26) has Newton degree d. �

8.6.3 On the stagnation of the depth

This section deals with two important consequences of proposition 8.28.
Roughly speaking, after one atomic unravelling, the terms of degree >d do
no longer play a role in the unravelling process. If P~ is exponential, and
modulo the hypothesis that P~d(h)=0 only admits exponential starting mono-
mials, it will follow that the process only involves monomials in xNE, where E
denotes the set of exponential transmonomials.

Lemma 8.29. Consider an equation (E) of Newton degree d and assume that
P0; : : : ; Pd¡12C[x][[E]] and Pd2C[[E]]. Then any non-differential starting
term of multiplicity d is in C=/ xNE.

Proof. Let cm be a non-differential starting term of multiplicity d, so that
NP�m=a (F ¡ c)d for some a2C. Then m is the (i; j)-equalizer for all 06 i<
j6d. In particular, cm is a starting term for the linear equation P0+P1(f)=0.
Hence, m2xNE, by proposition 7.8 and the incomplete transbasis theorem. �
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Theorem 8.30. Consider an atomic unravelling (R) for an equation (E) of
Newton degree d, followed by a compatible refinement (RR) such that '~

V~
~ =0.

Assume that P and ' are exponential and that P~d(h)=0 admits only exponen-
tial starting monomials. Then '~ 2C[x][[E]].

Proof. If '~=0, then we have nothing to prove, so assume that '~=/ 0. By U1
and lemma 8.29, it follows that d'~2xNE. Modulo a multiplicative conjugation
with an element in E and the division of P~ by dP~, we may therefore assume
without loss of generality that m~ 2xN and P~�Q~ � 1. Notice that m/m~ �� ex
since m�m~ and m is exponential.

By theorem 8.28, our assumption '~
V~
~ =0 implies

m~
v
�� log

m

m~

for all v2 supp '~. Since m� 1 is exponential, this relation simplifies to

v �� logm:

Now assume that '~2/ C[x][[E]], let n2 supp'~ be maximal with '~2/ xNE, and
let  =

P
u�n'~u u. Since �'�m is a starting term for (E) of multiplicity d,

we have P�m;i4P�m;d for all i>d. It follows that P~�m;i4P~�m;d, P~i4mP~d/m
and P~+ ;i4mP~+ ;d/m for all i > d. Now consider

T =
X
u��m

P~+ ;u u:

By what precedes, we have deg T = d. Furthermore, T0; : : : ; Td¡12C[x][[E]]
and Td2C[[E]]. By proposition 8.8, n is a starting monomial for

T (g)= 0 (g� supp  ):

Moreover, n is a differential starting monomial, by lemma 8.29. Since

Td=
X
u��m

P~d;u u;

proposition 8.8 also implies that n is a starting monomial for P~d(h)= 0. Our
assumptions thus result in the contradiction that m2E. �

8.6.4 Bounding the depths of solutions

If we can bound the number of upward shiftings which are necessary for satis-
fying the conditions of proposition 8.30, then the combination of propositions
8.28 and 8.30 implies that any sequence of compatible atomic unravellings
is necessarily finite. Now the problem of finding such a bound is a problem
of order r¡ 1, by proposition 8.16. Using induction, we obtain the following
theorem:
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Theorem 8.31. Consider an equation (E) of Newton degree d and weight w,
with exponential coefficients. If f 2T is a normalized solution to (E) modulo
an initial segment W V, then f has depth 6Br;d;w, where B0;d;w=0 and
Br;d;w=2 d (4w)r¡1 if r > 0.

Proof. We prove the theorem by a double recursion over r and d. If r=0, then
the theorem follows from corollary 3.9. In the case when d=0 we also have
nothing to prove, since there are no solutions. So assume that r>0, d>0 and
that we have proved the theorem for all strictly smaller r or for the same r
and all strictly smaller d. We may also assume that f =/ 0, since the theorem
is clearly satisfied when f =0.

Let m 2W nV be the dominant monomial of f . If f is algebraic, then
proposition 8.14 implies that its depth is bounded by w. If m is differential,
then r > 0 and my is a root of RPi modulo o( 1

x log x log log x) for some i. Hence,
its depth is bounded by Ar¡1;w=Br¡1;w;w¡1>w, because of the induction
hypothesis. Modulo Ar¡1;w upward shiftings and a multiplicative conjugation
with m, we may thus reduce the general case to the case when m= 1 and
NP =DP . It remains to be shown that f has depth 6Br;d;w¡Ar¡1;w.

If c= cf is a root of multiplicity <d of NP , then the Newton degree of

P+c(f~)=0 (f~�m)

is < d by proposition 8.13 and f ¡ c is a root of this equation modulo W.
The induction hypothesis now implies that f ¡ c has depth 6 Br;d¡1;w 6
Br;d;w¡Ar¡1;w.

Assume now that c is a root of multiplicity d of NP . Consider a finest
atomic unraveling (R) for which f~= f ¡ '2C[[V~ ]]. Then '"r and P~"r are
exponential, by theorem 8.23. Let '~P f~ be the longest truncation of f~, such
that the Newton degree of

P~~(f~~)=P~+'~(f~
~)=P+'+'~(f~

~)= 0 (f~~2C[[V]]^ f~~� supp '~)

is equal to d. By the induction hypothesis, P~d"r+Ar¡1;w only admits exponen-
tial solutions. Now theorem 8.30 implies that '~ has depth 6 r+Ar¡1;w+1.
If f~~= f~¡ '~=0, then we are done. Otherwise, �

f~
~ is a starting term of multi-

plicity <d for P~~, by the definition of '~. By what precedes, we conclude that

f~~ has depth 6 r+Ar¡1;w+1+Ar¡1;w+Br;d¡1;w6Br;d;w¡Ar¡1;w. �
Corollary 8.32. Consider an equation (E) of Newton degree d and a non-
empty set S of partial unravellings for (E). Then S admits a finest element.

Proof. Let us first assume for contradiction that there exists an infinite
sequence of compatible atomic unravellings

f = f0 = '0+ f1 (f1� v1)
f1 = '1+ f2 (f2� v2)
���
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Modulo a finite number of upward shiftings, it follows from theorem 8.31
that we may assume without loss of generality that the coefficients of P+'0
are exponential and that P+'0;d only admits exponential solutions. Then
theorem 8.30 implies that 'i2C[x][[E]] for all i> 1. From theorem 8.28 it
also follows that 'i+1

'i+2
�� log 'i

'i+1
for all i> 1. But this is impossible.

Now pick a partial unravelling (R) in S of maximal length. Then any finer
partial unravelling in S is obtained by replacing the last atomic unravelling
which composes (R) by a finer one. The result now follows from proposi-
tion 8.26. �

Exercise 8.22. In theorem 8.30, show that whenever m is a starting monomial
for Pd(h) = 0 of the form (logd x)�d � � � x�0 m] with m] 2 E and �d =/ 0, then
d6wtP ¡ 1.

Exercise 8.23. Improve the bound in theorem 8.31 in the case when r=1.

Exercise 8.24. Show how to obtain a total unravelling (8.23) a posteriori , by
computing Q w.r.t. the monomial v~ instead of m.

8.7 Algorithmic resolution

In this section, we will give explicit, but theoretical algorithms for solving (E).
In order to deal with integration constants, we will allow for computations
with infinite sets of transseries. In practice, one rather needs to compute with
finite sets of �parameterized transseries�. However, the development of such
a theory (see [Hoe97, Hoe01a]) falls outside the scope of the present book.

8.7.1 Computing starting terms

Theorem 8.6 implies that we may compute the Newton polynomial of a
differential polynomial P 2TfF g=/ using the algorithm below. Recall that
a monomial m is a starting monomial if and only if NP�m2/ CFN.

Algorithm NP
Input: P 2TfF g=/ .
Output: The differential Newton polynomial NP of P .

1. If P is not exponential or DP 2/ C[F ] (F 0)N, then return NP ".
2. Return DP .

The algebraic starting monomials can be found by computing all equalizers
and keeping only those which are starting monomials. The equalizers are
computed using the method from the proof of proposition 8.14.
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Algorithm eP ;i;j

Input: P 2TfF g=/ and integers i; j with Pi=/ 0 and Pj=/ 0.
Output: The (i; j)-equalizer eP ;i;j for P .

1. If P is not exponential or DPi+Pj2/ C[F ] (F 0)N, then return eP ";i;j#.
2. If d(Pi)= d(Pj) then return 1.

3. Let m := d(Pi)/d(Pj)
j ¡ ip and return meP�m;i;j.

Algorithm alg_st_mon(P ;V)
Input: P 2TfF g=/ and an initial segment V�T.
Output: The set of algebraic starting monomials for (E).

1. Compute M := feP ;i;j: i < j6 degP ^Pi=/ 0^Pj=/ 0g\V.
2. Return fm2M:NP�m2/ CFNg.

In fact, using proposition 8.17, it is possible to optimize the algorithm so that
only a linear number of equalizers needs to be computed. This proposition
also provides us with an efficient way to compute the Newton degree.

Algorithm Newton_degree(P ;V)
Input: P 2TfF g=/ and an initial segment V�T.
Output: The Newton degree of (E).

1. Compute M := alg_st_mon(P ;V).
2. Return max fdegNP�m:m2Mg[ fvalP g.

The algorithm for finding the differential starting terms is based on propo-
sition 8.16 and a recursive application of the algorithm ade_solve (which
will be specified below) in order to solve the Riccati equations modulo
o( 1

x log x log log x � � � ).

Algorithm diff_st_mon(P ;V)
Input: P 2TfF g=/ and an initial segment V�T.
Output: The set of differential starting monomials for (E).

1. If P is homogeneous, then
Let G := ade_solve(RP ;T; fm2T:

R
m� 1g)

Return fe
R
g: g 2Gg\V.

2. Let Mi := diff_st_mon(Pi;V) for each i6 degP with Pi=/ 0.
3. Return fm2Mi: i6 degP ^Pi=/ 0^NP�m2/ CFNg.

Having computed the sets of algebraic and differential starting monomials,
it suffices to compute the roots of the corresponding Newton polynomials in
order to find the starting terms.

8.7 Algorithmic resolution 193



Algorithm st_term(P ;V)
Input: P 2TfF g=/ and an initial segment V�T.
Output: The set of starting terms for (E).

1. Let D := alg_st_mon(P ;V)[ diff_st_mon(P ;V).
2. Return fcm2C=/ D:NP�m(c)= 0g.

8.7.2 Solving the differential equation

Let us now show how to find all solutions to (E) and, more generally, all
normalized solutions of (E) modulo an initial segment W�V. First of all, 0
is a solution if and only if the Newton degree of P (f)=0 (f 2C[[W]]) is >0.
In order to find the other solutions, we first compute all starting terms � in
V nW. For each such � , we next apply the subalgorithm ade_solve_sub in
order to find the set of solutions which starting term � .

Algorithm ade_solve(P ;V;W)
Input: P 2TfF g=/ and initial segments W�V�T.
Output: The set of normalized solutions to (E) modulo W.

1. Compute T := st_term(P ;V) nCW.
2. Let S :=

S
�2T ade_solve_sub(P ; � ;V;W).

3. If Newton_degree(P ;W)> 0 then S :=S [f0g.
4. Return S.

Let d be the Newton degree of (E). In order to find the normalized solutions
with starting terms � of multiplicity <d, we may simply use the refinement

f = � + f~ (f~� �)
and recursively solve

P+�(f~)=0 (f~� �):

The other starting terms require the unravelling theory from section 8.6: we
start by computing the quasi-linear differentiated equation

Q(f)= 0 (f 2C[[V]]); (8.26)

with Q as in (8.24) and we will �follow� solutions to this equation as long as
possible using the subalgorithm unravel.

Algorithm ade_solve_sub(P ; � ;V;W)
Input: P 2TfF g=/ , initial segments W�V�T and a starting term � = cm2

C=/ (V nW) for (E).
Output: The set of normalized solutions to (E) modulo W with dominant

term � .

1. Let � := valNP�m;+c and d := Newton_degree(P ;V).
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2. If �<d, then return � + ade_solve(P+� ; fn2T: n�mg;W).
3. Compute Q using (8.24), with minimal l, and let '= � +h, where h is the

distinguished solution to

Q+�(h)= 0 (h� �): (8.27)

4. Return 'VnW+ unravel(P+'; Q+'; fn2T: n�mg;W).

The algorithm unravel is analogous to ade_solve, except that we now
compute the solutions with a given starting term using the subalgorithm
unravel_sub instead of ade_solve_sub.

Algorithm unravel(P ; Q;V;W)
Input: P ; Q2TfF g=/ and initial segments W�V�T.
Output: The set of normalized solutions to (E) modulo W.

1. Compute T := st_term(P ;V) nCW.
2. Let S :=

S
�2T unravel_sub(P ; Q; � ;V;W).

3. If Newton_degree(P ;W)> 0, then S :=S [f0g.
4. Return S.

In unravel_sub, we follow the solutions to (8.26) as far as possible. More
precisely, let Q be as in (8.24). Then the successive values of Q for calls
to unravel and unravel_sub are of the form Q+h1; : : : Q+h1+ � � �+hl, where
h1� �� � �hl satisfy Q(h1+ � � �+hi)=0 for each i2f1; : : : ; lg. At the end, the
refinement

f =h1+ � � �+hl+ f~ (f~�hl) (8.28)

is an atomic unravelling for the original equation. Moreover, at the recursive
call of ade_solve_sub, the next refinement will be compatible with (8.28).

Algorithm unravel_sub(P ; Q; � ;V;W)
Input: P ; Q2TfF g=/ , initial segments W�V�T and a starting term � =

cm2C=/ (V nW) for (E).
Output: The set of normalized solutions to (E) modulo W with dominant

term � .

1. If NQ�m(c)=/ 0, then return ade_solve_sub(P ; � ;V;W).
2. Let '= � +h, where h is the distinguished solution to (8.27).
3. Return 'VnW+ unravel(P+'; Q+'; fn2T: n�mg;W).

The termination of our algorithms are verified by considering the three pos-
sible loops. In successive calls of solve and solve_sub we are clearly done,
since the Newton degree strictly decreases. As to successive calls of unravel
and unravel_sub, we have l6r in (8.28), by theorem 8.25. Finally, any global
loop via solve_sub and unravel, during which the Newton degree d remains
constant, corresponds to a sequence of compatible atomic unravellings. But
such sequences are necessarily finite, by theorems 8.25, 8.30 and 8.31.
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Exercise 8.25. Assume that P 2C[[[x]]]fF g and that we search for zeros of (E)
in the set of well-based transseries of finite exponential and logarithmic depths
C[[[x]]].

a) Given Q2C[[[x]]]fF g, show there exists an l with DQ"l2C[F ] (F 0)N. Give
a definition for the differential Newton polynomial NQ of Q. Generalize
proposition 8.10.

b) Given i< j with Pi=/ 0 and Pj=/ 0, prove that there is at most one well-based
transmonomial m such that N(Pi+Pj)�m is non-homogeneous.

c) Show that proposition 8.16 still holds for well-based transmonomials.
d) Show that the set of solutions to (E) in C[[[x]]] as computed by ade_solve

coincides with the set of solutions to (E) in C[[[x]]].
e) Show that �(x),

'(x)=
1

x
+

1

xp
+

1

xp
2 + � � �

and

 (x)=
1

x
+

1

elog
2x
+

1

elog
4x
+ � � �

do not satisfy an algebraic differential equation with coefficients in T.
f) Does '(x) satisfy an algebraic differential equation with coefficients in

Tf�(x)g? And does  (x) satisfy an algebraic differential equation with coef-
ficients in Tf�(x); '(x)g?

8.8 Structure theorems

8.8.1 Distinguished unravellers

Theorem 8.33. Let (E) be an equation of Newton degree d> 1. Then there
exists a unique '2C[[V]] which is longest for P with the properties that

a) degV~ P+'= d, for V~ = fm2V:m� supp 'g.
b) For any m2 supp ', the term 'mm is an algebraic starting term for

P+'�m(f~)=0 (f~4m): (8.29)

Proof. Consider the set S of all partial unravellings

f = �+ f~ (f~2C[[V~ ]]); (8.30)

such that '= �VnV~ satisfies (a) and (b). Since S contains the identity refine-
ment, we may choose (8.30) to be finest in S , by corollary 8.32. We claim
that ' is maximal for P, such that (a) and (b) are satisfied.

Indeed, assume for contradiction that some  B' also satisfies (a) and (b).
Then cm= �( ¡ ') is the unique algebraic starting term for (8.29) and it
has multiplicity d. By proposition 8.27, there exists a partial unravelling

f = �+ �~+ f~~ (f~~� �~);
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which is finer than (8.30), and such that �~� cm. By what precedes, '~ =
(�+ �~)<�~= '+ c � satisfies (a). Moreover, '~ satisfies (b), since  Q '~ does.
This contradicts the maximality of (8.30).

Let us now prove the uniqueness of '. Assume for contradiction that
 =/ ' with  R ' and 'R  also satisfies (a) and (b). Let � =  ¡ ' and
�=

P
m��'mm. Then

P+�(f~)= 0 (f~� supp �)

admits both �('¡ �) and �( ¡ �) as algebraic starting terms of multiplicity
d. But this is impossible. �

The transseries ' from the theorem is called the distinguished unraveller
for (E). It has the property that for any algebraic starting term �~ for

P+'(f~)=0 (f~4 supp '); (8.31)

the refinement

f = '+ �~+ f~~ (f~~� �~)
is a total unravelling.

Remark 8.34. It is easily checked that theorem 8.33 also holds for d=1, and
that ' coincides with the distinguished solution of (E) in this case.

Recall that L stands for the group of logarithmic monomials.

Proposition 8.35. Let ' be as in theorem 8.33 and assume that P 2
C[[BC]]fF g=/ for a plane transbasis B=(b1; : : : ; bn). Then '2C[[LBC]].

Proof. Assume the contrary, let m 2 supp ' be maximal, such that m 2/
C[[LBC]], and let  =

P
n�m'n n. Modulo a finite number of upward shift-

ings, we may assume without loss of generality that P and  are exponential.
But then m= d'¡ is an algebraic starting monomial for

P+ (f~) (f~� supp  ):

By remark 8.15, we conclude that m2C[[LBC]]. �

8.8.2 Distinguished solutions and their existence

A solution '2T to (E) is said to be distinguished , if for all m2 supp ', the
term 'mm is an algebraic starting term for the equation

P+'(f~)=0 (f~4m):

If d is odd, then there exists at least one distinguished solution.
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Theorem 8.36. Any equation (E) of odd Newton degree admits at least
one distinguished solution in T. Moreover, if the coefficients of P can be
expanded w.r.t. a plane transbasis B=(b1; : : : ; bn), then any such solution is
in C[[LBC]].

Proof. We prove the theorem by induction over d. For d=1, the result follows
from corollary 8.24. So let d > 1 and assume that the theorem holds for all
smaller d.

Now proposition 8.17 implies that there exists at least one starting mono-
mial and equalizer e2LBC such that degNP�e¡ valNP�e is odd. It follows
that P =A (F 0)� for some A2C[F ] of odd degree. Since C is real closed, it
follows that A admits a root c of odd multiplicity d~.

If d~<d, then proposition 8.13 and the induction hypothesis imply that

P~(f~)=P+ce(f~)=0 (f~� e) (8.32)

admits a distinguished solution f~=C[[LBC]], whence

f = c e+ f~2C[[LBC]]

is a distinguished solution to (E). Inversely, if f=/ 0 is a distinguished solution
to (E) whose dominant term c e has multiplicity d~<d, then e is necessarily an
equalizer, and

f~= f ¡ c e2C[[LBC]]

a distinguished solution to (8.32), whence f 2C[[LC]].
If d~= d, then let ' be the distinguished unraveller for (E), so that the

equation

P~(f~)=P+'(f~)= 0 (f~� supp ') (8.33)

does not admit an algebraic starting term of multiplicity d. Modulo some
upward shiftings and by what precedes, it follows that (8.33) admits a distin-
guished solution f~2C[[LBC]]. We conclude that

f = '+ f~2C[[LBC]]

is a distinguished solution to (E). Inversely, we have 'P f for any distin-
guished solution f of (E), and f~= f ¡ ' is a distinguished solution to (8.33),
whence f 2C[[LBC]]. �

8.8.3 On the intrusion of new exponentials

In this chapter, we have shown how to solve (E) directly as an equation
in F ; : : : ; F (r). A more advanced method for solving (E) is to use integral
refinements

f =e
R
'+f~ (f~2C[[V~ ]])
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in addition to usual refinements. This gives a better control over the number
of exponentials and integration constants introduced in the resolution process,

because e
R
'+f~ is often �strongly transcendental� over the field generated by

the coefficients of P , so that the equation rewritten in f~has lower order. A full
exposition of these techniques is outside the scope of this book, but the proof
of the following theorem will illustrate some of the involved ideas to the reader.

Theorem 8.37. Consider P 2 C[[BC]]fF g=/ of order r for some plane
transbasis B. Then for each exponential solution f 2T to (E), there exists
a transbasis B̂ for f with card B̂ nB6 r.

Proof. Let us construct sequences f0;:::; fl2T, '0;:::; 'l2T and x1;:::; xl2T
such that

1. Xi=B[fx1; : : : ; xig is totally ordered for ��.
2. 'i2C[[XiC]] for each i= f0; : : : ; lg (where we understand that X0=B).

We take f0= f . Given i> 0, let 'i be the longest truncation of fi, such that
'i2C[[XiC]]. If 'i= fi, then the sequence is complete. Otherwise, we let

xi+1 = d(fi¡ 'i)
fi+1 = (fi¡ 'i)y:

If B~ is an arbitrary transbasis for f , then

C[[X0
C]] � � � C[[XlC]]�C[[B~ C]];

so that the construction finishes for l6 cardB~ nB. Setting B̂=Xl, we also
observe that log xiP

R
fi2C[[B̂]] for all i 2 f1; : : : ; lg. It follows that B̂ is

a transbasis for f .
Let us now consider another sequence y1; : : : ; yl with

yi+1=
fi¡ 'i
c(fi¡ 'i)

� xi+1;

so that

fi+1= yi+1
y :

Denoting Yi=B[fy1; : : : ; yig for all i2f1; : : : ; lg, we notice that C[[Yl
C]] is

isomorphic to C[[XlC]]. Now for all i2f1; : : : ; l¡ 1g, we have

yi
0= yi yi

y= yi fi= yi ('i+ c(fi¡ 'i) yi+1)2C[[Yi+1
C ]]:

By strong linearity, it follows that for all g 2C[[Yi
C]] and i2 f0; : : : ; l¡ 1g,

we have g 02C[[Yi+1
C ]] . Moreover, if

g 2C[[Yi¡1
C ]]�C[[Yi¡1

C ]]=/ yi;

then the above formula also yields

g 02C[[Yi
C]]�C[[Yi

C]]=/ yi+1:
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In particular,

f (i)2C[[Yi
C]]�C[[Yi

C]]=/ yi+1;

for all i2f0; : : : ; l¡ 1g.
Now assume for contradiction that l > r and let f (r)= g+h yr+1 with g;

h 2C[[Yr
C]]. Then substitution of f (i)2C[[Yr

C]] for F (i) in P for all i < r
and g + h F for F (r) yields a non-zero polynomial S 2 C[[Yr

C]][F ], which
admits yr+12/ C[[Yr

C]] as a root. But this contradicts the fact that C[[Yr
C]]

is real closed. We conclude that l6 r, whence B̂ is a transbasis for f with
card B̂ nB= l6 r. �

Corollary 8.38. Consider P 2C[[BC]]fF g of order r for some transbasis B.
Then for each solution f 2T to (E), there exists a transbasis B̂ for f with
card B̂ n (B[ expZx)6 r.

Exercise 8.26. Give an alternative algorithm for the resolution of (E), where,
after the computation of a starting term � , we perform the refinement

f = � + '+ f~ (f~� �);

where ' is the distinguished unraveller for P+�(f~)=0 (f~� �).

Exercise 8.27. If, in the algorithms of section 8.7, we let st_term only return
the algebraic starting terms, then show that the algorithm ade_solve will return
the set of all distinguished solutions.

Exercise 8.28. Show that there exist at most d=degVP distinguished solutions
to (E).

Exercise 8.29. If f is a distinguished solution to (E) and 'P f , then show
that f~¡ ' is a distinguished solution to P+'(f~)= 0 (f~� supp ').

Exercise 8.30. Improve theorem 8.31 and show that we can take Br;d;w =
2 r d w. Hint: use exercise 8.22 in combination with the proof technique from
theorem 8.37.
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9

The intermediate value theorem

The main aim of this chapter is to prove the intermediate value theorem: given
a differential polynomial P 2TfF g over the transseries and f < g 2T with
P (f)P (g)<0, there exists an h2T with f <h<g and P (h)=0. In particular,
any differential polynomial P 2TfF g of odd degree admits a zero in T.

The intermediate value theorem is interesting from several points of view.
First of all, it gives a simple sufficient condition for the existence of zeros
of differential polynomials. This is complementary to the theory from the
previous section, in which we gave a theoretical algorithm to compute all
solutions, but no simple criterion for the existence of a solution (except for
theorem 8.33).

Secondly, the intermediate value theorem has a strong geometric appeal.
When considering differential polynomials as functions on T, a natural ques-
tion is to determine their geometric behaviour and in particular to localize
their zeros. Another question would be to find the extremal and inflexion
points. It is already known that extremal values are not necessarily attained.
For instance, the differential polynomial

P (f)= f2+2 f 0

admits its minimal �value�

¡ 1
x2
¡ 1
x2 log2x

¡ 1
x2 log2x log22 x � � �

¡ � � �

�in�

f = 1
x
+ 1
x log x

+ 1
x log x log2x

+ � � �:

In the future, we plan to classify all such non-standard �cuts� which occur as
local extrema of differential polynomials. In particular, we expect that a cut
occurs as a local minimum if and only of it occurs as a local maximum for
another differential polynomial.



Finally, the intermediate value theorem is a starting point for the further
development of the model theory for ordered differential algebra. Indeed,
the field of transseries is a good candidate for an existentially closed model
of this theory, i.e. a �real differentially algebraically closed field�. Such fields
are necessarily closed under the resolution of first order linear differential
equations and they satisfy the intermediate value theorem. It remains to be
investigated which additional properties should be satisfied and the geometric
aspects of real differential polynomials may serve as a source of inspiration.

In order to prove the intermediate value theorem, the bulk of this chapter
is devoted to a detailed geometric study of the �transline� T and differen-
tially polynomial functions on it. Since the field of transseries is highly non-
archimedean, it contains lots of cuts. Such cuts may have several origins:
incompleteness of the constant field (if C =/ R), the grid-based serial nature
of T, and exponentiation. In sections 9.1, 9.2, 9.3 and 9.4 we study these
different types of cuts and prove a classification theorem.

Although the classification of cuts gives us a better insight in the geom-
etry of the transline, the representation we use is not very convenient with
respect to differentiation. In section 9.5, we therefore introduce another way
to represent cuts using integral nested sequences of the form

f = '0+ �0 e
R
'1+�1e

R
� ��
'k¡1+�k¡1e

R
fk

:

This representation makes it possible to characterize the behaviour of differen-
tial polynomials in so called �integral neighbourhoods� of cuts, as we will see in
section 9.6. In the last section, we combine the local properties of differential
polynomials near cuts with the Newton polygon method from chapter 8, and
prove the intermediate value theorem. We essentially use a generalization of
the well-known dichotomic method for finding roots.

9.1 Compactification of total orderings

9.1.1 The interval topology on total orderings

Any totally ordered set E has a natural topology, called the interval topology ,
whose open sets are arbitrary unions of open intervals. We recall that an
interval is a subset I of E, such that for each x< y<z with x; z 2 I, we have
y 2 I. An interval I �E is said to be open, if for each x 2 I we have: x is
minimal resp. maximal in I, if and only if x is minimal resp. maximal in E.

A set U �E is open if every point in U is contained in an open interval
I �U . Arbitrary unions of open sets are clearly open. The intersection of two
open intervals I and J is again open: if x is minimal or maximal in I \J , then
it is in particular minimal resp. maximal in I or J , whence x is minimal resp.
maximal in E. It follows that the intersection of two open sets is also open,
so the open sets of E form a topology.
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We observe that an increasing union of open intervals is again an open
interval. Hence, given an open set U and x2U , there exists a maximal open
interval Mx�U with x2U . It follows that each open set U admits a unique
decomposition

U =
a
fMx:x2U g (9.1)

as the disjoint union of its maximal open subintervals.

Proposition 9.1. A totally ordered set E with the interval topology is Haus-
dorff if and only if for each x< y 2E there exists a z 2E, with x<z < y.

Proof. Assume that E is Hausdorff and let x< y2E. There exist open subsets
U 3x and V 3 y with U \V =?. Without loss of generality, we may assume
that we have replaced U and V by subintervals which contain x resp. y. Since x
is not maximal in E and U is open, there exists an x02U with x0>x. We must
also have x0<y: otherwise y2U whence y2U \V =?, since U is an interval.

Conversely, assume that for all x<y2E there exists a z2E, with x<z<y.
Then given x=/ y 2E, and assuming by symmetry that x < y, there exists
a z 2E, with x < z < y. Then ( ; z) = fu 2E: u< zg and (z;!) = fu 2E:
u > zg are disjoint intervals with x 2 ( ; z) and y 2 (z;!). Moreover, for
any u2 ( ; z) there exists a v2E with u<v<z, and u is minimal in ( ; z) if
and only if it is minimal in E. Hence ( ; z) is open, and similarly for (z;!). �

Example 9.2. Any totally ordered field E is Hausdorff.

9.1.2 Dedekind cuts

Given a totally ordered set E, let E denote the set of its open initial segments
without maximal elements, ordered by inclusion. We have a natural increasing
mapping

�:E ¡! E

x 7¡! interior ( ; x):

Elements in E n �(E) are called cuts. If E is Hausdorff, then we have already
seen that ( ;x) is open for all x2E, so � yields a natural inclusion of E into E.

The elements ?E =? and >E=
S
E are minimal and maximal in E. If

E admits no maximal element, then >E=E. More generally, any non-empty
subset of E admits an infimum and a supremum:

Proposition 9.3. Any non-empty subset of E admits a supremum and an
infimum in E.
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Proof. Let S =/ ? be a subset of E and consider the open initial segment
without a maximal element

u=
[

S:

We claim that u= supS. By construction, v6 u for all v 2S. Conversely, if
v 2E satisfies v <u, then we may pick x2u n v. Now let w 2S be such that
x2w. Then v�w, whence v6w2S. In a similar way, it can be shown that
the interior of

T
S equals the infimum of S. �

Proposition 9.4. Let I be an interval of a Hausdorff total ordering E. Then
there exists unique f 6 g2E such that I has one and only one of the following
forms:

a) I =(f ; g)\E.
b) I = [f ; g)\E and f 2E.
c) I =(f ; g]\E and g 2E.
d) I = [f ; g]\E and f ; g 2E.

Proof. Let f = inf I and g= sup I. Then clearly

( ; f)\E=(g;!)\E=?

and (f ; g)\E � I. Consequently,

I � [f ; g]\E � I [ff ; gg:

Depending on whether f and g are in I or not, we are therefore in one of the
four cases (a), (b), (c) or (d). �

9.1.3 The compactness theorem

Theorem 9.5. Let E be a Hausdorff totally ordered set. Then

a) E is Hausdorff.
b) E=�E.
c) E is connected.
d) E is compact.

Proof. In order to show that E is Hausdorff, let x<y be in E. Choose u2 y nx.
Since y has no maximal element, there exist v;w2 y with u<v<w. It follows
that x6u<v <w6 y, which proves (a).

From (a) it follows that the natural mapping �:E!E is injective. In order
to see that � is also surjective, consider an open initial segment I �E without
a maximal element, and consider u= sup I. We claim that �(u)= I. Indeed, if
x2 �(u), so that x<u, then there exists a y2 I with x6 y, by the definition of
u. Hence x2 I, since I is an initial segment. Conversely, if x2 I, then there
exists a y2 I with x< y, since I has no maximal element. We have x< y6u,
so x2 �(u). This proves our claim and (b).
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Let us now show that E is connected. Assume the contrary. Then E is
the disjoint union of two open sets. By (9.1), it follows that

E=
a
I2I

I ;

where I is a set of at least two open intervals. Let K 2I be non-maximal.
Then we also have a decomposition of E as the disjoint union of two non-
empty open intervals

E= I1q I2 :=
 a
J2I ;J6K

J

!
q
 a
J2I ;J>K

J

!
:

Now consider u= sup I1. We have either u 2 I1 or u 2 I2. In the first case,
u=/ >E would be a maximal element of I1. In the second case, u=/ ?E would
be a minimal element of I2. This gives us the desired contradiction which
proves (c).

Let us finally show that E is compact. In view of (9.1), it suffices to show
that from any covering (I�)�2A of E with open intervals we can extract a finite
subcovering. Consider the sequence x06 x16 � � � 2 E which is inductively
defined by x0=?� and

xk+1= sup
[

�2A;xk2I�

I�

for all k>0. If � is such that xk2 I� then we notice that either xk2 I�<xk+1
or xk+1=>E, since I� is an open interval.

We claim that xk=>E for all sufficiently large k. Assuming the contrary,
consider u= sup fx0; x1; : : :g. There exists an � with u2 I�. Since I� is open,
there exists an y<u in I�. Now take k2N with y6xk. Then xk and xk+1<>E
are both in I�, which contradicts the fact that xk+1=>E or I�<xk+1. This
proves the claim.

Denoting by l the minimal number with xl=>E, let us now show how to
choose �l; : : : ; �02A with xk2 I�k (06 k6 l), and I�k\ I�k+1=/ ? (06 k < l).
This is clear for k= l. Having constructed al; : : : ; ak+1, pick an element y 2
(xk;xk+1)\I�k+1. Then there exists an �k2A with xk2I�k and y6z for some
z2I�k. Since I�k is an interval, it follows that y2I�k, whence I�k\ I�k+1=/ ?.
This completes our construction.

We contend that E = I�0[ � � � [ I�k. Indeed, given y 2E, we either have
y 2 fx0; : : : ; xlg� I�0[ � � � [ I�k, or there exists there exists a unique k with
y 2 (xk; xk+1). In the second case, let z 2 I�k \ I�k+1. Then we have either
y6 z and y 2 I�k, or y > z and y 2 I�k+1. �

Exercise 9.1. Let E be a totally ordered set. Given x< y 2E, show that y nx
contains infinitely many elements.

Exercise 9.2.

a) Determine � for all ordinals �.
b) Determine �op for all ordinals �.
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9.2 Compactification of totally ordered fields

Let C be a totally ordered field. A natural question is to see whether the
algebraic structure on C can be extended to its compactification C and which
algebraic properties are preserved under this extension. In section 9.2.1, we
first show that increasing and decreasing mappings naturally extend when
compactifying. After that, we will show how this applies to the field operations
on C. We will denote != supC.

9.2.1 Functorial properties of compactification

Proposition 9.6. Let E and F be Hausdorff total orderings and ':E!F.

a) Any increasing mapping ': E! F extends to an increasing mapping
':E!F, given by

':E ¡! F

x 7¡! sup f'(x):x2E ^x6xg:
b) Any decreasing mapping ':E!F extends to a decreasing mapping ':E!F,

given by

':E ¡! F

x 7¡! inf f'(x): x2E ^x6xg:
Moreover, in both cases, the mapping ' is injective resp. surjective if and only
if ' is. Also, if ' is surjective, then ' is its unique extension to a monotonic
mapping from E into F.

Proof. Assume that ' is increasing (the decreasing case is proved similarly).
The mapping ' defined in (a) is clearly increasing. Assume that ' is injective
and let x< y 2E. Choosing u; v 2E with x<u<v < y, we have

'(x)6 '(u)= '(u)<'(v)= '(v)6 '(y);
so ' is injective.

Assume from now on that ' is surjective and let y 2F . Then x= fu2E:
'(u)< yg is an open initial segment without a maximal element. Indeed, if
u2 x were maximal, then we may choose v 2F with '(u)<v < y and there
would exist a u02E with '(u0)=v< y and necessarily u<u0. This shows that
x2E. By construction, we have '(x)6 y. Given v 2 y, so that v < y, there
exists an u2E with '(u)=v. Consequently, u2x and v='(u)='(u)6'(x).
This proves that y6 '(x).

Now let  :E!F be another increasing mapping which extends ' on E.
Assume for contradiction that '(x)< (x) for some x2E nE (the case '(x)>
 (x) is treated similarly) and let v2 ('(x);  (x)). Since ' is surjective, there
exists a u 2E with '(u) = v. But if u < x, then '(u)6 '(x) and if u > x,
then '(u)> '(x). This contradiction shows that ' is the unique increasing
extension of ' to a mapping from E into F . �

206 9 The intermediate value theorem



Corollary 9.7. Let E be a Hausdorff ordering and E� the set E ordered by
the opposite ordering of 6. Then there exists a natural bijection

��:E ¡! E�

x 7¡! infE�x: �

The following proposition is proved in a similar way as proposition 9.6: see
exercise 9.3.

Proposition 9.8. Let E be a Hausdorff ordering and I �E an interval. Then
there exists a natural inclusion

�: I ¡! E

x 7¡! sup fy 2E: y6xg:
This inclusion is unique with the property that �(I) is an interval. �

9.2.2 Compactification of totally ordered fields

Opposites and inverses

By proposition 9.6(b), the mapping

¡:C ! C

f 7! ¡f

extends to unique decreasing bijection C!C, which we also denote by ¡ and
the inversion

�¡1:C> ! C>

f 7! f¡1

extends to a unique decreasing bijection C>!C>. Notice that C>=f0g[C>
and 0¡1= !. For f <0, we may also set (¡f)¡1=¡f¡1, so that �¡1 is bijective
on C n f¡ !; 0; !g.

Addition

The addition on C2 may be extended to an increasing mapping +:C2!C by
applying proposition 9.6(a) twice: first to mappings of the form f + �:C!C;
g 7! f + g with f 2C and next to mappings of the form �+g:C!C; f 7! f + g
with g 2C. This is equivalent to setting

+:C �C ¡! C

(x; y) 7¡! sup fx+ y:x; y 2C ^x6x^ y6 yg:
Notice that the mapping f + �:C!C; g 7! f + g is an isomorphism for each
f 2C. Subtraction on C2 is defined as usual by x¡ y= x+ (¡y). Since the
definition of the addition is symmetric in x and y, the addition is commutative.
Clearly, we also have x+0=x for all x2C, and

x+(y+ z)= sup fx+ y+ z:x; y; z 2C ^x6x^ y6 y ^ z6 zg=(x+ y)+ z
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for all x; y; z 2C. However, C cannot be an additive group, because !¡ !=
¡ !=/ 0. Nevertheless,

¡(x+ y)= (¡x)+ (¡y)

for all x2C and y2C. Indeed, given z2C, we have z<¡(x+ y),¡z>x+ y,
¡z¡ y >x, z+ y <¡x, z < (¡x)+ (¡y).

Multiplication

The multiplication extends first to (C>)2 by

�:C>�C> ¡! C>

(x; y) 7¡! sup fx y:x; y 2C>^x6x^ y6 yg

and next to C2 by

(¡x) y = ¡(x y)
x (¡y) = ¡(x y)

(¡x) (¡y) = x y

for all x; y2C>. This definition is coherent if x=0 or y=0, since x0=0x=0
for all x. We define division on C2 as usual by x/y=xy¡1. The multiplication
is clearly commutative, associative and with neutral element 1. We also have
distributivity x (y+ z) = x y+ x z whenever x> 0. However, (¡1) ( !¡ !) =
(¡1) (¡ !)= !=/ ¡ !=(¡ !)+ !.

Exercise 9.3. Prove proposition 9.8.

Exercise 9.4. Show that ¡(¡x)=x for all x2T.

9.3 Compactification of grid-based algebras

Let C be a totally ordered field and M a totally ordered monomial group and
consider the algebra S=C[[M]] of grid-based series. In this section we study
the different types of cuts which may occur in S. We will denote �= inf C>,

!= supC, f= supS. We will also denote C#=C n (C [f¡ !; !g).

9.3.1 Monomial cuts

Let C be a totally ordered field and M a totally ordered monomial group. An
element m2SnS is said to be a monomial if m>0 and cm=m for all c2C>.
We denote by M the union of the set of such monomials and the set M of
usual monomials. The ordering 4 on M naturally extends to M, by letting it
coincide with the usual ordering 6.
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Given f 2 S, we define the dominant monomial df of f as follows. If
jf j<c jf j for no c2C, so that jf j2MnM, then we take df= jf j. If jf j<c jf j
for some c 2 C, then there exists a g 2T with jf j < g < c jf j. Moreover,
dg does not depend on the choice of g and we set df = dg. Thanks to the
notion of dominant monomials, we may extend the asymptotic relations 4,
�, � and � to S by f 4 g, df 4 dg, f � g, df � dg, f � g, df = dg and
f � g, df¡g� df = dg.

Proposition 9.9. For any f ; f1; f22S, we have

d¡f = df ; (9.2)
df1+f2 4 max fdf1; df2g: (9.3)

Proof. The first relation is clear from the definition of dominant monomials.
As to the second one, we first observe that jf1j6 c1 df1 and jf2j6 c2 df2 for
sufficiently large c1; c22C. Hence,

jf1+ f2j6 jf1j+ jf2j6 (c1+ c2)max fdf1; df2g:

Since we also have jf1+ f2j> cdf1+f2 for a sufficiently small c2C>, it follows
that df1+f24max fdf1; df2g. �

9.3.2 Width of a cut

Let f 2S. We define the width of f by

wf = inf fdf¡g: g 2Sg2M:

Notice that f 2S,wf =0.

Proposition 9.10. For any f ; f1; f22S, we have

w¡f = wf ; (9.4)
wf1+f2 = max fwf1;wf2g: (9.5)

Proof. We have

w¡f = inf fd¡f¡g: g 2Sg
= inf fd¡f+g: g 2Sg
= inf fd¡(f¡g): g 2Sg
= inf fdf¡g: g 2Sg=wf

which proves (9.4). Similarly, we have

wf1+f2 = inf fdf1+f2¡g: g 2Sg
= inf fdf1+f2¡g1¡g2: g1; g22Sg
4 inf fmax fdf1¡g1; df2¡g2g: g1; g22Sg
= max fwf1;wf2g:
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Conversely, given g 2S with g6 f1+ f2, let g1; g22S be such that g16 f1,
g26 f2 and g= g1+ g2. Then f1¡ g1<wf1 and f2¡ g2<wf2, whence

f1+ f2¡ g= f1¡ g1+ f2¡ g2<max fwf1;wf2g:

The case g> f1+ f2 is treated in a similar way. �

9.3.3 Initializers

Let f 2 S. Given m 2M with m�wf, there exists a g 2S with f ¡ g �m.
Moreover, gm does not depend on the choice of g, and we set fm= gm. We
define the initializer 'f of f by

'f = f�wf=
X
m�wf

fmm:

We claim that 'f 2C[[M]], where we recall that C[[M]] stands for the set of
well-based series in M over C. Indeed, consider m2 supp'f. Then there exists
a g 2S with f ¡ g �m and we have ('f)�m= g�m2S. In particular, there
exists no infinite sequence n1� n2� � � � in supp 'f with m= n1.

Proposition 9.11. For any f ; f1; f22S, we have

'¡f = ¡'f (9.6)
'f1+f2 = ('f1+ 'f2)�wf1+f2: (9.7)

Proof. In order to prove (9.6), let m2M be such that m�wf =¡wf, and let
g2S be such that f ¡ g�m. Then (¡f)¡(¡g)�m, fm= gm and (¡f)m=¡gm.

Similarly, given m2M with m�wf1+f2=max fwf1;wf2g, let g1; g22S be
such that f1¡ g1�m and f2¡ g2�m. Then we have

(f1+ f2)¡ (g1+ g2)= (f1¡ g1)+ (f2¡ g2)�m

and

(f1+ f2)m=(g1+ g2)m= g1;m+ g2;m= f1;m+ f2;m:

This proves (9.7). �

9.3.4 Serial cuts

Let f̂ 2S nS be a cut with 'f̂ 2/ S. Then for any  C 'f̂ and m= d('f̂ ¡  ),
there exists a g 2S with f ¡ g �m and we have ('f)�m=  = g�m 2S. In
other words, we always have 'f̂ 2 Ŝ nS, where

Ŝ= ff̂ 2C[[M]]:8g 2C[[M]]; gC f̂) g 2Sg:

A cut f̂ 2S nS is said to be serial , if there exists a  2C[[M]] with

f̂ = �( )= sup fg 2S: g <  g: (9.8)
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From the proposition below it follows that we may always replace  by
'wf 2 Ŝ n S and obtain the same serial cut. For this reason, we will iden-
tify the set of serial cuts with Ŝ nS.

Proposition 9.12. Given a serial cut f̂ = �( ), we have

a) 'f̂ =  �wf̂.
b) �('f̂)= �( ).

Proof. The equation (9.8) implies g< f̂, g < for g2S. Now, given m�wf̂,
let n �m and g 2 S be such that f̂ ¡ g � n. Then g ¡ n < f̂ < g + n and
g¡ n<  < g+ n, so that 'f̂ ;m= f̂m= gm=  m. This proves (a).

Given g2S, we have g¡ <wf̂ , since otherwise g¡n< <g+n for some
n�wf̂, whence g ¡ f̂ 4 n�wf̂ . We even have g ¡  �wf̂ , since g ¡  �wf̂
would imply  <wf̂ ¡  � wf̂ and  <wf̂ 2 g<wf̂ + C wf̂ � S. Consequently,
g <  , g <  �wf̂= 'f̂ so that �('f̂)= �( ). �

9.3.5 Decomposition of non-serial cuts

Proposition 9.13. For any f 2S n Ŝ, we have either

1. wf 2M and for some c2C# we have

f = 'f + cwf:

2. wf 2M nM and

f = 'f �wf:

Proof. Modulo substitution of f ¡ 'f for f , we may assume without loss of
generality that 'f =0, since wf¡'f=wf.

Suppose that wf =m2M and consider

c= sup fc2C: cm< f g2C:

We must have c 2C nC, since otherwise f ¡ cm�m=wf. We also cannot
have c=� !, since otherwise wf =

!m. Hence c2C#. If cm< f , then there
exists a  2S with cm< < f . If  4m, then c 0m< f for some c 02C with
c < c 0<  m. If  �m, then f�m=  �m=/ 0, which is again impossible. This
proves that cm> f . Applying the same argument for ¡f , we also obtain
cm6 f , whence f = cm.

Assume now that wf 2MnM and let us show that f =�wf. Replacing f
by ¡f in the case when f < 0, we may assume without loss of generality that
f > 0. For g 2S we now have

06 g < f , 06 g�wf6 f�wf=0 , 06 g <wf: �
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The above proposition allows us to extend the notions of dominant coefficients
and terms to S. Indeed, given f 2S=/ , we have either 'f =/ 0, in which case
we set cf = c'f and �f = cf df = �'f, or 'f =0, in which case f = cwf = c df for
some c2C#[ f¡1; 1g, and we set cf = c and �f = f . By convention, we also
set c0= �0=0.

Exercise 9.5. Show that for all m; n2M we have

m2M^ n2M ) mn2M
m2M_ n2M ) mn2M nM:

Exercise 9.6. Show that M is closed under �¡1 and show that one may extend
the flatness relation �� to M.

Exercise 9.7. Given f ; g 2S, what can be said about dfg and wfg?

Exercise 9.8. If C=R, then show that wf 2M nM.

Exercise 9.9. Given f 2S, compute (¡f)+ f .

Exercise 9.10. Given f ; g 2S, show that

f 4 g () 9c2C; jf j6 c g
f � g () 8c2C; c f < jg j:

Exercise 9.11. Generalize the theory of section 9.3.4 to other types of supports,
like those from exercise 2.1. Show that there exist no serial cuts in the well-based
setting.

Exercise 9.12. Characterize the embeddings of C[[M]] into C[[M]].

Exercise 9.13. Given f 2 S and m 2M, we may define the coefficient fm of
m in f as follows. If m � wf, then fm = 0. If m � wf, then we have already
defined fm if m2M and we set fm=0 if m2/M. If m=wf and f ='f+ cm with
c2C#[f¡1; 0; 1g, then fm= c. Show that we may see S as a subset of C[[M]].
Also give a characterization of the elements in S.

Exercise 9.14. If C =R, then define a �symmetric addition� on C[[M]] by
f+ g='f+'g;�wf�wf if wf�wg, likewise if wf�wg, f+ g='f+'g if wf=wg

but (f ¡ 'f) (g ¡ 'g)< 0, and f + g= 'f + 'g�wf for equal signs. Show that
this addition is commutative and that f +(¡f)=0 for all f 2S. Show also that
the symmetric addition is not necessarily associative.

9.4 Compactification of the transline

Let us now consider the field T= C[[T]] of grid-based transseries. Given
a transseries cut f , the aim of this section is to find an explicit expression for
f in terms of cuts in C, the field operations, seriation and exponentiation. We
will denote {k= sup ff 2T: expo(f)= kg for all k 2Z.
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9.4.1 Exponentiation in T

By proposition 9.6(a), the functions exp:T!T> and log:T>!T uniquely
extend to increasing bijections exp:T!T> and log:T>!T, which are nec-
essarily each others inverses.

Proposition 9.14.

a) For all c2C n f¡ !g, we have

expT c= expC c:
b) For all f ; g 2T, we have

exp (f + g)= exp (f) exp (g):

c) For any m2T>, we have

m2T nT , wlogm� 1:

Proof. Let c 2C n f¡ !g. If c 2C, then expT c= expC c 2C>. Assume that
c 2/ C. Then it follows from logT expT c= c that expT c 2/ C and similarly
expC c 2/ C. For any � 2C with � < c, we have e�< expT c. It follows that
expC c6expT c. Conversely, for any g2T with¡ !<g<c, there exists a c 02C
with g�<c 0<c, so that eg=eg�< ec

06 expC c. This shows that we also have
expT c6 expC c.

Now consider f ; g 2T. We have

ef+g = sup fe'+ : '2T^ '< f ^  2T^  < gg
= sup fe': '2T^ '< f g sup fe :  2T^  < gg
= ef eg:

This proves (b).
Let m2 T. If wlogm� 1, then assume for contradiction that there exists

a c 2 C> with c m =/ m, and take c > 1. Then there exists a g 2 T with
m < g < c m. But then log m < log g < log m + log c and log m ¡ log g 4 1,
which contradicts our assumption. We conclude that m 2 T n T. Similarly,
if wlogm41, then let g2T and c1; c22C be such that c1< logm¡ g<c2. Then
m< eg+c2< ec2¡c1m, so that m2/ T nT. This completes the proof of (c). �

9.4.2 Classification of transseries cuts

Let f 2T. The nested sequence for f is the possibly finite sequence f0; f1;:::2T
defined as follows. We take f0= f . Given fi, we distinguish two cases for
the construction of fi+1:

NS1. If fi2 T̂[�ffg[�{Z[C, then the construction has been completed.
NS2. Otherwise, we let 'i= 'fi, �i= sign (fi¡ 'i) and fi+1= log �i (fi¡ 'i),

so that
fi= 'i+ �i efi+1: (9.9)
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We will denote by l2N the number such that fl is the last term of the nested
sequence; if no such term exists, then we let l=+1.

For any 06 i < j6 l, repeated application of (9.9) entails

fi= 'i+ �i e'i+1+�i+1e
� ��
'j¡1+�j¡1e

fj

: (9.10)

In particular, if l <+1, then we call

f = '0+ �0 e'1+�1e
� ��
'l¡1+�l¡1e

fl

(9.11)

the nested expansion of f . If l=+1, then the nested expansion of f is defined
to be

f = '0+ �0 e'1+�1e
'2+�2e

� ��
: (9.12)

In this latter case, the nested expansion of each fi is given by

fi= 'i+ �i e'i+1+�i+1e
'i+2+�i+2e

� ��

:

The following proposition is a direct consequence of our construction:

Proposition 9.15. Each f 2T admits a unique nested expansion of one and
only one of the following forms:

f 2 T ; (9.13)
f = �f ; (9.14)

f = '0+ �0 e'1+�1e
� ��
'l¡1+�l¡1e

{k

(k 2Z) ; (9.15)

f = '0+ �0 e'1+�1e
� ��
'l¡1+�l¡1e

c

(c2C nC) ; (9.16)

f = '0+ �0 e'1+�1e
� ��
'l¡1+�l¡1e

ĝ

(ĝ 2 T̂ nT) ; (9.17)

f = '0+ �0 e'1+�1e
'2+�2e

� ��
: (9.18)

In order to completely classify the elements inT, we still need to determine
under which conditions on the 'i, �i, {k, c and ĝ, the expressions (9.15),
(9.16), (9.17) and (9.18) are the nested expansion of a cut f 2T nT. This
problem will be addressed in the next sections.

9.4.3 Finite nested expansions

Proposition 9.16. Assume that f 2T admits a finite nested expansion. Then

a) l> 2) '12T� and 1<i< l) 'i2T�
>.
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b) 1<i< l^ 'i=0) �i=1 and
l > 0^ 'l¡1=0) fl2 T̂� nT_ (l=1^ f 2¡{Z).

c) e'i+1+�i+1e
� ��
'l¡1+�l¡1e

fl

� supp 'i for all 06 i < l.
d) l> 1) fl2/ T[�ffg.
e) l> 2) fl> 0_ fl2C n f¡ !g.

Proof. Given 0< i< l, proposition 9.13 implies that either efi=wfi¡12T nT
or efi= cm for some c2C# and m2T. In the first case, proposition 9.14(c)
implies wfi� 1 whence 'i2T� and fi+1> 0. In the second case, we obtain
fi= logm+ log c with log c2C#. We cannot have m=1, since otherwise l= i.
Therefore, 'i= logm2T�

=/ , �i= sign (log c), fi= log jlog cj and l= i+1. This
proves (a). Similarly, if 1<i= l, then either fl2C# or efl2TnT. In the second
case, wfl� 1 and wfl¡1� 1 yield either fl2 (T̂� nT)>, fl2{Z or fl= !. This
proves (e).

Now let 1< i < l. By what precedes, we necessarily have efi¡1 =wfi¡2
and fi> 0. If 'i=0, then it follows that �i=1, since �i=efi+1/fi> 0. This
proves the first part of (b). Assume that l> 1. We cannot have fl2T, since
otherwise fl¡1= 'l¡1+ �l¡1 efl2T. Similarly, fl=f would imply fl¡1=f
and fl=¡f would imply fl¡1= 'l¡1 2T. If 'l¡1= 0 and fl= {k, then
fl¡1= �l¡1{k+12/ {Z, whence l=1 and �l¡1=¡1. We cannot have 'l¡1=0
and fl2C, since this would imply fl¡1= �l¡1 efl2C. Finally, if fl2 T̂, then
we have shown above that wfl� 1, so that fl 2 T̂� nT. This completes the
proof of (b) and also proves (d).

In order to prove (c), let 06 i< l and m=e'i+1+�i+1e
� ��
'l¡1+�l¡1e

fl

, so that
fi= 'i+ �im. We conclude that m=wm=wfi� supp 'i. �

Proposition 9.17. Let f 2 T be as in (9.11), where '0; : : : ; 'l¡1 2 T,
�0; : : : ; �l¡1 2 f¡1; 1g and fl 2 T̂ [ �ffg [ �{Z [ C are such that the con-
ditions (a�e) of proposition 9.16 are satisfied. Then, f admits (9.11) as its
nested expansion.

Proof. Let us prove by induction over i= l; l¡ 1; : : : ; 0 that

fi= 'i+ �i e'i+1+�i+1e
� ��
'l¡1+�l¡1e

fl

(9.19)

satisfies

A) l> 1) fi2/ T[�ffg.
B) i> 2) fi> 0_ (l= i^ fi2C n f¡ !g).
C) 16 i < l) fi� 1.
D) 06 i < l)wfi� e

fi+1.
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E) fi admits (9.19) as its nested expansion.

These properties are is trivially satisfied for i= l. So assume that they hold
for i+1 and let us show that they again hold for i.

From (A) at order i+1, we get fi+12/T[�ffg. Since fi+1= log (�i (fi¡
'i)), we have fi2T[�ffg) fi+12T[�ffg. This proves (A) at order i.
For i>2, we have either 'i=/ 0, in which case 'i2T�> implies fi>0, or 'i=0,
in which case �i=1 and fi+1> 0 imply fi=efi+1> 0. This proves (B).

As to (C), if 1 6 i < l and 'i =/ 0, then 'i 2T� implies fi � 'i � 1. If
16 i < l ¡ 1 and 'i= 0, then fi+1� 1 and fi+1> 0 imply fi= efi+1� 1. If
16 i= l¡ 1 and 'i=0, then fl2 T̂� nT and fl¡1=efl� 1.

Now let 06 i < l. In order to prove (D), it suffices to show that efi+1 2
(T n T) [C# T. Assume first that i < l ¡ 1, so that wfi+1� e

fi+2. If fi+2 2
C nf !g, then 'i+1=/ 0 and efi+12C#T. If fi+22/ C or fi+2= !, then fi+2�1
and wfi+1� e

fi+2�1. Hence efi+12TnT, by proposition 9.14(c). Assume now
that i= l¡1. Then either fl2C# and efl2C#, or fl={k for some k2Z and
efl={k+12TnT, or fl2 T̂�nT and efi+12TnT, since wfi+1�1. This proves
(D). The last property (E) follows from (D) and (E) at stage i+1. �

9.4.4 Infinite nested expansions

To any f 2T, we may associate a natural interval

Tf = fg 2T: f P gg= [f ¡ tf ; f + tf];

where f P g, f P 'g and tf = inf fm 2 T: supp f �mg. Given a sequence
('0; �0); ('1; �1); : : : with '0; '1; : : : 2T and �1; �2; : : : 2f¡1; 1g, we denote

�i;j= 'i+ �i e'i+1+�i+1e
� ��
T'j

for all i6 j and �i=�0;i for all i. We also denote

Ii=�i;i\�i;i+1\�i;i+2\ � � �

for all i> 0 and I= I0. Given f 2T, we finally define �(f)2N by

�(f)=

8>><>>:
0 if f =0
1 if f 2 expZx
maxm2suppf �(logm)+ 1 otherwise:

Proposition 9.18. Assume that f 2T admits an infinite nested expansion.
Then

a) '12T� and '2; '3; : : : 2T�
>.

b) We have 'i=/ 0 for infinitely many i, and 'i=0) �i=1 for all i > 1.
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c) For every i> 0, we have �0\ � � � \�i=/ ?.

Proof. Property (a) is proved in a similar way as in proposition 9.16, as well
as the fact that 'i= 0) �i= 1 for all i > 1. Property (c) is obvious, since
f 2�0\ � � � \�i for all i> 0.

Let us prove that 'i=/ 0 for infinitely many i. It suffices to prove that
'i=/ 0 for one i, modulo repetition of the same argument for fi+1 instead of f .
Considering f1 instead of f , we may also assume without loss of generality
that f >0 and f �1. Since f 2/�ffg[�{Z[�f !g, there exist g; h2T with
g < f <h and expo(g)= expo(h)= k. For a sufficiently large r, we now have
logr g = expk¡r x+ o(1) and logr h= expk¡r x+ o(1). But then expk¡r xP
logr f so that 'i=/ 0 for some i6 r. This completes the proof of (b). �

Proposition 9.19. Consider '0; '1; : : : 2T and �0; �1; : : : 2 f¡1; 1g, which
satisfy conditions (a�c) of proposition 9.18. Then I1\T=I1\T+T4.

Proof. Let f12 I1\T and define f2= log (�1 (f1¡ '1)), f3= log (�2 (f2¡ '2))
and so on. We claim that fi¡ 'i� 1 for all i> 1. Indeed, let k be such that
'i+1= � � � = 'i+k¡1=0 but 'i+k=/ 0. Then logk (�i (fi¡ 'i))Q 'i+k 2T�>,
whence fi¡ 'i= �i expk ('i+k+ � � �)� 1.

Given �12T4, we have to prove that f1+�12I1. Let us construct a sequence
�2; �3; : : : of elements in T4 as follows. Assuming that we have constructed
�i, we deduce from fi¡ 'i� 1 that fi+ �i¡ 'i� 1, so, taking

�i+1= log
�
1+ �i

fi¡ 'i

�
;

we indeed have �i+1� 14 1 as well as

fi+1+ �i+1= log (�i (fi+ �i¡ 'i)): (9.20)

Now fi2�i;i and �41� supp'i imply fi+ �i2�i;i. By induction over j¡ i,
the formula (9.20) therefore yields fi+�i2�i;j for all 16 i6 j. In other words,
fi+ �i2 Ii for all i> 1 and in particular for i=1. �

Proposition 9.20. Consider '0; '1; : : : 2T and �0; �1; : : : 2 f¡1; 1g, which
satisfy conditions (a�c) of proposition 9.18. Then I=ff g for some f 2TnT
with nested expansion (9.18).

Proof. Since I =�0\ (�0\�1)\ (�0\�1\�2)\ � � � is a decreasing inter-
section of compact non-empty intervals, I contains at least one element. If
I contains more than one element, then it contains in particular an element
f 2T. Assume for contradiction that I\T=/ ?. Then we may choose ('0; �0);
('1; �1); : : : and f 2 I such that �(f) is minimal.
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Let m= d(f ¡ '0) and g= logm. From '0P f , it follows that m2 supp f
and �(g)6max f1; �(f)¡ 1g. Since log (�0 (f ¡ '0))¡ logm4 1, we also have
g2 I1, by proposition 9.19. Hence �(g)> �(f) and �(f)61, by the minimality
of the counterexample f . Now f = '0 is impossible, since otherwise '0¡ f =
02 �0 exp I1. It follows that f =/ 0, since f Q '0, whence �(f)= �(g)= 1. We
cannot have f 2C, since otherwise m=1, g=0 and �(g)=0. Therefore, there
exists an l2Z with f = expl x, '0=0 and g= expl¡1 x. Repeating the same
argument, we conclude that '0= '1= � � �=0, which is impossible.

Now that we have proved that I = ff g for some f 2T nT, let us show
that f admits (9.18) as its nested expansion. Indeed, we also have I1= fgg
for g= log (�0 (f ¡'0)) and proposition 9.19 implies eg2TnT. Consequently,
wf =w�0eg=weg=eg, since eg� supp '0. This shows that g= f1. Using the
same argument, it follows by induction that Ik= ffkg for all k. �

Proposition 9.21. Assume that f 2T admits an infinite nested expansion.
Then for every i> 0 and m2 supp 'i, there exists a j > i with �i;j¡ 'i�m.

Proof. Let Sf be the set of monomials m 2 supp '0, such that for all i > 0
there exists a g2�i with g¡'0<m. Let S be the union of all Sf , for nested
expansions f of the form (9.12). If S=?, then we are clearly done, since we

would in particular have Sfi=? for each fi= 'i+ �i e'i+1+�i+1e
� �� . So let us

assume for contradiction that S is non-empty and choose f and m2Sf �S

such that �(m) is minimal. Let i > 0 be minimal such that 'i=/ 0. If �=1 or
m�1, then let �=1. Otherwise, let �=¡1. Setting  = logimi� and n=d'i¡ 
(whenever 'i=/  ), we distinguish the following four cases:

Case 'i=  . We first observe that �i+1=¡�. Now let j > i be minimal
such that 'j=/ 0. Then expj¡i h� 1 and m� expi� ('i¡ � expj¡ih) for all
hQ 'j. This contradicts the fact that m2Sf.

Case n2/ supp  . For all gQ'i, we have g¡ �'i¡ �'i;nn, so the sign
of g¡ does not depend on the choice of g. Since m2Sf, we may choose
g such that m4 expi g. But then sign (g¡  )=/ sign (fi¡  ).

Case n2 supp  nSfi. Let j > i be such that n� g ¡ 'i for all g 2�i;j.
Given g2�i;j, it follows that g¡ �'i¡ , so the sign on g¡ does not
depend on the choice of g. We obtain a contraction as in the previous case.

Case n2 supp  \Sfi. The minimality hypothesis entails �(n)> �(m). By
the construction of n, we thus must have �(m)61. Sincem=1 implies  =0
and n2/ supp , it follows that m= expkx for some k2Z and  = expk¡ix.
Since supp  is a singleton, we also must have n=  = expk¡i x. Now if
�'i> n, then we would have expi fi�m, which is impossible. If �'i< n,
then expi g�m for all gQ 'i, which contradicts the fact that m2Sf.
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In all cases, we thus obtain a contradiction, so we conclude that S=?. �

Exercise 9.15. Prove that e¡

!

= � and e !

= !. In the case when C =R, show
that (modulo suitable adjustments of the theory) the �halting condition� NS1
may be replaced by the alternative condition that

fi2 T̂[�ffg[�{Z[�f�; !gT:

Exercise 9.16. Show that the condition (d) is needed in proposition 9.20.

Exercise 9.17. Show that the conclusion of proposition 9.21 may be replaced
by the stronger statement that for all i> 0, there exists a j > i with �j ��i.
Does this still hold in the case of well-based transseries?

9.5 Integral neighbourhoods of cuts

9.5.1 Differentiation and integration of cuts

Let I be an interval of T. Any cut f = supC[[I]] I 2C[[I]] nC[[I]] (where I
is an open initial segment without maximal element) naturally induces an
element �(f) = supT I in T. Identifying f with �(f), this yields a natural
inclusion of C[[I]] into T, which extends the inclusion of C[[I]] into T. For
any g2I with g < f , there exists a h2 I with g<h< f so that f ¡ g>h¡ g2
C[[I]]>. In other words, f is a cut in T nT whose width lies in I. From
proposition 9.13 it now follows that either f = 'f 2C[[I]] or f = 'f + cwf
for some 'f 2C[[I]] and c2C�=C n f¡ !; !g. In other words,

C[[I]] = C�[[I]]\T:

In particular, each element f 2T admits a canonical decomposition

f = f�+ f�+ f�; (9.21)

with f�2T�=C[[T�]], f�2C� and f�2T�=C[[T�]].
Denote 
 = (x log x log2 x � � �)¡1 and consider the differential operator @

on T. The restrictions of @ to T� and T� respectively yield increasing and
decreasing bijections

@�:T� ¡! C[[T�
]]

@�:T� ¡! C[[T�
]]
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By proposition 9.6, we may extend @� and @� to the compactifications of T�
and T�. This allows us to extend @ to T by setting @ f = @� f�+ @� f� for
all f 2T. Notice that !0= (¡�)0= 
 and (¡ !)0= �0=¡
. The logarithmic
derivative of f 2T=/ is defined by f y=(log jf j)0.

Similarly, the inverses of @� and @�, which coincide with restrictions of
the distinguished integration, extend to the compactifications of C[[T�
]]
and C[[T�
]]. By additivity, the distinguished integration therefore extends
to T n (T�
�
). The distinguished integrals of 
 and ¡
 are undetermined,
since

R
� 
 can be chosen among � !and ��.

9.5.2 Integral nested expansions

Let f 2T nT be a cut. We say that f has integral height l, if either

� l=0 and f 2 T̂.
� l=0 and f = 'f + cm for some c2 (C [f¡�; �g) and m2T.

� f 2/ T̂ and wf 2/ f�; 1; !g T, so that f = ' + � e
R
f� for ' = 'f 2T, � =

sign (f ¡ ') and f�= (f ¡ ')y, and f� has integral height l¡ 1.

The integral height of f is defined to be l=1, if none of the above conditions
holds for a finite l2N.

We say that f is right-oriented (resp. left-oriented) if

� l=0 and f = 'f +

!m (resp. f = 'f ¡ !m) for some m2T.
� l=0 and f = 'f ¡ �m (resp. f = 'f + �m) for some m2T.

� l >0 and f ='f+e
R
f� (resp. f ='f ¡ e

R
f�), where f� is a right-oriented cut

of height l¡ 1.
� l > 0 and f = 'f ¡ e

R
f� (resp. f = 'f +e

R
f�), where f� is a left-oriented cut

of height l¡ 1.
� l=1 and f =¡f (resp. f =f).

An oriented cut is a cut which is either left- or right-oriented. A cut f is said
to be pathological if f = 'f + cm for some c2C# and m2T, or f = 'f � e

R
f�,

where f� is a pathological cut. If C =R, then there are no pathological cuts.
If f is neither an oriented nor a pathological cut, then f is said to be regular .

For each k< l, we recursively define 'k2T, �k2f¡1;1g and fk+12T nT
by taking 'k = 'fk (starting with f0 = f), �k = sign (fk ¡ 'k) and fk+1=
(fk¡ 'k)y. The sequence f0; f1; : : : is called the integral nested sequence of f
and the sequence '0; '1; : : : its integral guiding sequence. For each k2N with
k6 l, we call

f = '0+ �0 e
R
'1+�1e

R
� ��
'k¡1+�k¡1e

R
fk
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the integral nested expansion of f at height k. If f is an irregular cut of height
l <1, so that fl= 'fl+ cm for certain c2C [f¡�; �gnC and m2T, then we
also define 'l= 'fl and 'l+1= logm. In that case, we call l+2 the extended
integral height of f and '0; : : : ; 'l+1 the extended integral guiding sequence.
If f is a regular cut, then the extended integral height and guiding sequence
are defined to be same as the usual ones.

9.5.3 Integral neighbourhoods

Let f 2T nT be a cut of integral height l and with extended integral guiding
sequence '0; '1; : : : . Let g <h be transseries in T[f ;!g, where and !
are formal symbols with  <T<!. Then the set

L'0;:::;'k¡1;g;h=

�
'0+ c0e

R
'1+c1e

R
� ��
'k¡1+ck¡1e

R
fk

: c0;:::; ck¡12C=/ ; g < fk<h

�
is called a basic integral neighbourhood of extended height k, if either one of
the following conditions holds:

� k=0 and g < f <h. This must be the case if f 2 T̂.

� k=1, l=0, f is irregular and g < '1¡ 
 < '1+ 
 <h.

� k=2, l=0, f is irregular and g < 
 y<h.
� k > 0, l > 0 and L'1; : : : ;'k¡1;g;h is a basic integral neighbourhood of f1.

The height of L'0; : : : ;'k¡1;g;h is the minimum of k and l. An integral
neighbourhood of f is a superset V of a finite intersection of basic integral
neighbourhoods. The (extended) height of such a neighbourhood is the max-
imal (extended) height of the components in the intersection.

Let V be an integral neighbourhood of f of height k and consider
a transseries f 2V close to f . We define the integral coordinates of f by

f0 = f

f1 = (f0¡ '0)y

���
fk = (fk¡1¡ 'k¡1)y

If W is an integral neighbourhood of f1, then we notice that V='0+C=/ e
R
W

is an integral neighbourhood of f , and it is convenient to denote the integral
coordinates of f12W by f1; : : : ; fk.

Example 9.22. Let c2C [f¡�; �gnC and consider a basic integral neighbour-
hood V of c of height k > 0.
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If k=1, then V =L0;g;h, with g <¡
 < 
 <h. In particular, there exists
an l 2N with g <¡(log l x)0 and h> (log l x)0. For any f 2T with f �/ 1 and
f �� log l¡1x, it follows that f y=(log jf j)0� (log lx)0, whence f 2V. For any
f 2T with f�1, we also have jf yj� jf 0j<
, whence f 2V. By distinguishing
the cases c=��, c=� !and c2C#, it follows that V � (g~; h~) for certain g~;
h~2T with g~<c<h~.

If k=2, then V=L0;0;g;h, where V y=L0;g;h is an integral neighbourhood
of both 
 and ¡
. Hence,

g < (log 
)0=¡1
x
¡ 1
x log x

¡ 1
x log x log2x

¡ � � �<h;

so there exists an l2N with

g < (log lx)yy¡ (log lx)y=¡
1
x
¡ � � � ¡ 1

x � � � log l¡1 x
¡ 2
x � � � log lx

and

h> (log lx)yy=¡
1
x
¡ � � � ¡ 1

x � � � log lx
:

It follows that for any f �/ 1 with f �� log lx, we have

f y=(log f)0� (log l+1x)0=(log lx)y

and

f yy=(log f y)0< (log (log lx)y)0=(log lx)yy;

so that f 2V. Similarly, if f = c+ " with c2C=/ and (log lx)¡1� "� 1, then

f y� "0� ((log lx)¡1)0� (log lx)y/log lx;

whence

f yy=(log f y)0> (log ((log lx)y/log lx))0=(log lx)yy¡ (log lx)y

and f 2V.

9.5.4 On the orientation of integral neighbourhoods

Let f 2TnT be a cut. A one-sided neighbourhood U of f is either a superset
of an interval (f ; g) with g 2T and g > f (and we say that U is a right
neighbourhood of f) or a superset of an interval (g; f) with g 2T and g < f

(and we say that U is a left neighbourhood of f). A neighbourhood of f is
a set U which is both a left neighbourhood of f (unless f =¡f) and a right
neighbourhood of f (unless f =f).
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Proposition 9.23. Let f 2T nT be a non-pathological cut and let V be an
integral neighbourhood of f.

a) If f is regular, then there exists a neighbourhood U of f with U �V.
b) If f is right-oriented, then f admits a right neighbourhood U with U �V.
c) If f is left-oriented, then f admits a left neighbourhood U with U �V.

Proof. We prove the proposition by induction over the height k of V. If
f=�f, or k=0 and f is regular, then we may take U=V. If k=0 and f =/ �f
is oriented, then the result follows from what has been said in example 9.22.
Assume therefore that k > 0 and let f = '0+ �0 ef1 be the integral expansion
of f at height 1.

We have V �V0\ �� � \Vk, where each Vi is a basic integral neighbourhood
of f of height k. Modulo a final adjustment of U , we may assume without
loss of generality that V0=T. We have Vi= '0+C=/ e

R
Wi for all i > 0, where

each Wi is a basic integral neighbourhood of f1. Let W =W1\ � � � \Wk.

a) If f is regular, then so is f1, hence the induction hypothesis implies that
there exist g;h2T with g< f1<h and (g;h)�W . We conclude that either
�0=1 and ('+e

R
g; '+e

R
h)�V or �0=¡1 and ('¡ e

R
h; '¡ e

R
g)�V.

b) If f is right-oriented, then either �0=1 and f1 is right-oriented, or �0=¡1
and f1 is left-oriented. In the first case, the induction hypothesis implies
that there exists a g2T with f1<g and (f1; g)�W, so that (f ; '+e

R
g)�V.

In the second case, there exists a g 2T with g < f1 and (g; f1) �W,
so that ('¡ e

R
g; f)�V.

c) The case when f is left-oriented is treated in a similar way as (b). �

Proposition 9.24. Let f 2T nT be a cut and V an integral neighbour-
hood of f, of height k. Then there exists an integral neighbourhood W of f of
height k, such that W �V and f0¡ '0; : : : ; fk¡1¡ 'k¡1 have constant sign
for f 2W.

Proof. We prove the proposition by induction over k. If k=0, then we may
take W = V. So assume that k > 0 and write f = '0 + �0 e

R
f1. We have

V � V0 \ V�, where V0 is a basic integral neighbourhood of height 0 of f
and V� an intersection of basic integral neighbourhoods of heights > 0. By
the induction hypothesis, there exists an integral neighbourhood X of f1,
such that X � (V�¡ '0)y and f1¡ '1; : : : ; fk¡1¡ 'k¡1 have constant sign
for all f12X . Now take

W =

(
V0\ ('0;!)\ ('0+C=/ e

R
X) if �0=1

V0\ ( ; '0)\ ('0+C=/ e
R
X) if �0=¡1

�
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Exercise 9.18. Show that 
= inf ff 0: f 2T>;�g.

Exercise 9.19. Show that @ maps T̂ into T̂.

Exercise 9.20. If f 2T, then show that either f�2/ T and f4=0, or f�2T,
f�2/ C and f�=0, or f<2T.

Exercise 9.21. Show that the extension of @ to T is not additive.

Exercise 9.22.

a) Show that the operators �:T�T�;>!T and ��¡1:T�;>!T�;> naturally
extend to T�T�;> resp. T�;>.

b) Give an explicit formula for f � !, where f 2T.
c) Does the post-composition operator �g:T!T with g 2T preserve addition

and/or multiplication?

Exercise 9.23.

a) Compute the nested integral sequences for f, !and {0.
b) Prove analogues of the results from section 9.4 for nested integral sequences.

9.6 Differential polynomials near cuts

Let P 2TfF g=/ and f 2T nT. In this section, we study the asymptotic
behaviour of P (f) for f close to f . In particular, we study the sign of P (f)
for f close to f .

9.6.1 Differential polynomials near serial cuts

Lemma 9.25. Let f̂ 2 T̂ nT. Then there exist g; h2T with g < f̂ < h and
� 2C=/ T, such that P (f)� � for all f 2 (g; h). Moreover, if wf � 
, then g

and h may be chosen such that deg�
P+f =0 for all f 2 (g; h).

Proof. If there exists a 'C f̂ with deg�supp'P+'=0, then the lemma follows
for � =P+';0 and any g; h2T with g < f̂ <h and h¡ g� supp'. Assume for
contradiction that d=min'C f̂ deg�supp'P+'> 0.

If d=1, then each 'C f̂ with deg�supp'P+'=1 induces a solution f'=
'+h to P (f)= 0, by letting h be the distinguished solution to the equation
P+'(h)= 0 (h� supp '). Now pick '1C '2C � � �C f̂ such that

(f'j¡ f'i)jfm:9n2supp'j;m<ng=/ 0
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for all j > i. This is possible, since supp f̂ would be a subset of the grid-based
set supp f'i, if (f ¡ f'i)jfm:9n2supp ;m<ng=0 for some i and all 'iC  C f̂ .
Now d(f'r+2¡ f'1); : : : ; d(f'r+2¡ f'r+1) are pairwise distinct starting mono-
mials for the linear differential equation P+'r+2;1(h)=0, which is impossible.

Assume now that d>1 and choose �C  ̂ with d=deg�supp�P+�. Consider
the set S of all partial unravellings

f = �+ f~ (f~2C[[V~ ]]) (9.22)

relative to the equation P+�(f~)=0 (f~� supp �), such that '= �TnV~ C f̂ and
degV~ P+'=d. Since S contains the identity refinement, we may choose (9.22)
to be finest in S , by corollary 8.32. We claim that 'P f̂ is maximal for P,
such that deg�supp'P+'= d.

Indeed, assume for contradiction that some  B ' also satisfies

deg�supp P+ = d;

and let � = �( ¡ '). By proposition 8.27, there exists a partial unravelling

f = �+ �~+ f~~ (f~~� �~);

which is finer than (9.22), and such that �~� � . But then '+ � =(�+ �~)<�~C f̂
and deg��~P+'+� = d, which contradicts the maximality of (9.22).

Our claim implies that deg�supp P+ <d for any  C f̂ with 'C . This
contradicts the definition of d. �

9.6.2 Differential polynomials near constants

Lemma 9.26. Let f 2C[f¡�;�gnC and m2T�. Then there exist an integral
neighbourhood V of f and n2T, such that

P (f)�NP(f) n

and deg�mP+f =0 for all f 2V.

Proof. Let l> 0 be such that P "l is exponential, NP =DP "l and log l x��m.
Let Q2C[F ] and � 2N be such that NP =Q (F 0)�.

Take V = L0;0;(loglx)yy¡(loglx)y;(loglx)yy and let f 2 V . If f yy � 
, then

f yy < (log l x)yy, so f y 4 (log l x)y and f �� log l x. If f yy � 
, then f yy >

(log lx)yy¡ (log l x)y, whence f y< (log lx)y/log l x, log (f /f�)< 1/log l x and
f ¡ f�< 1/ log l x. This proves that either f "l� 1 and f "l�� x, or f "l4 1
and (f "l)�/ ��x.
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If f "l� 1, then NP(f "l)� c f "ld (f "l0)�, where c=/ 0 is the leading coef-
ficient of Q and d= deg Q. Since (f "l0)� �� x, it follows that NP(f "l)<ex 1,
whence P (f)�NP(f)n for n=dNP#ldP "l#l. Moreover, d(f "l) is not a starting
monomial for P "l(f~) =NP(f~) dP "l+ � � � = 0, since d(f "l) =/ 1. Consequently
deg�mP+f 6 deg�fP+f =0.

Similarly, if f "l4 1, then NP(f "l)� c f "l� (f "l0)�, where c=/ 0 and � are
such that Q(f�+ ") = c "�+ � � �. Again, we have (f "l0)� �� x, NP(f "l)<ex 1
and P (f)�NP(f)n. Furthermore, d((f "l)�/)=/ 1, so d((f "l)�/) is not a starting
monomial for P+f�"l(f~) =NP+f�(f~) dP "l+ � � � = 0. Therefore, deg�m P+f 6
deg�f�/ P+f =0. �

Corollary 9.27. Let f = '0+ c e
R
'1 be an irregular cut of height 0. Then

there exist an integral neighbourhood V of f, Q2C[F ]=/ (F 0)N, and n2T, such
that for all f 2V, we have

P (f)�Q(f0¡ '0
e
R
'1

) n:

Moreover, if e
R
'1 � 
, then we may take V such that deg�
 P+f = 0 for

all f 2V.

9.6.3 Differential polynomials near nested cuts

Lemma 9.28. Let f = '0+ �0 e
R
f1 2T nT be a cut of integral height >1.

Then there exist g; h2T[f ;!g with g < f <h and i2N, such that for all
f 2 (g;h), so that df¡'0 is not a starting monomial for P+'0(f~)=0, we have

P (f)�RP+'0;i((f ¡ '0)
y) (f ¡ '0)i:

Moreover, if wf� 
, then g and h may be chosen such that deg�
P+f=0 for
all f as above.

Proof. Let P~ = P+'0. By proposition 8.17, there exists a unique integer i
such that for each equalizer ej;k for P~(f~) = 0, we have either ej;k�wf and
k6 i or ej;k�wf and j6 i. Now let f ='0+ f~2T be such that m~ =df~ is not
a starting monomial for P~(f~) = 0, and ej;k� f~ if k6 i and f~� ej;k if i6 j

for all equalizers ej;k for P~(f~) = 0. Then NP~�m~ = c F i for some c 2C=/ and
P~�m~"l= c nF i+ oex(n) for some sufficiently large l and n2T. Consequently,

P (f)=P~(f~) = (P~�m~"l)((f~/m~ )"l)#l� (c n)#l
RP~i(f

~y) f~i=P~i(f~) = (P~�m~ ;i"l)((f~/m~ )"l)#l� (c n)#l;
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which proves the first statement of the lemma. Moreover, since m~ is not
a starting monomial for P+'0(f~) = 0, we have deg�m~ P+f = 0. If wf � 
, it
follows that deg�
P+f =0 whenever f is chosen such that f~� 
. �

9.6.4 Differential polynomials near arbitrary cuts

Theorem 9.29. Let P 2TfF g=/ and let f 2T nT be a cut of height l with
integral guiding sequence '0; '1; : : : . Then there exists an integral neighbour-
hood V of f of height k6min fl; rg, such that one of the following holds:

� There exist i0; : : : ; ik¡12N and � 2C=/ T, such that for all f 2V, we have

P (f)� (f0¡ '0)i0 � � � (fk¡1¡ 'k¡1)ik¡1 � : (9.23)

� The cut f is irregular, k = l, and there exist i0; : : : ; ik¡1 2 N, Q 2
C[F ] (F 0)N nC and n2T, such that for all f 2V, we have

P (f)� (f0¡ '0)i0 � � � (fk¡1¡ 'k¡1)ik¡1Q(fk¡ 'k
e
R
'k+1

) n: (9.24)

Moreover, if wf � 
, then V may be chosen such that deg�
 P+f = 0 for
all f 2V.

Proof. We prove the theorem by induction over r. So assume that we proved
the theorem for all smaller r (for r < 0, there is nothing to prove). If f 2 T̂,
then the result follows from lemma 9.25. If f = '+ cm with m� supp ' and
c2C [f¡�; �g nC, then we are done by corollary 9.27.

In the last case, we have f ='0+ �0 e
R
f1 for some �0=�1. By lemma 9.28,

there exists an i0 and an integral neighbourhood V0 of f of height 0, such that
for all f 2V0 so that df¡'0 is not a starting monomial for P+'0(f~)=0, we have

P (f)�RP+'0;i0(f0¡ '0) (f0¡ '0)
i0: (9.25)

By the induction hypothesis, there exists an integral neighbourhood W of f1
of height k 0, such that k := k 0+16min fl; rg and one of the following holds:

� There exist i1;:::; ik¡12N, and � 2C=/ T, such that for all f12W, we have

RP+'0;i0(f1)� (f1¡ '1)
i1 � � � (fk¡1¡ 'k¡1)ik¡1 � : (9.26)

� The cut f1 is irregular, k = l, and there exist i1; : : : ; ik¡1 2 N, Q 2
C[F ] (F 0)N nC and n2T, such that for all f12W, such that

RP+'0;i0(f1)� (f1¡ '1)
i1 � � � (fk¡1¡ 'k¡1)ik¡1Q(fk¡ 'k

e
R
'k+1

) n: (9.27)

Moreover, for f1 2W, the induction hypothesis and proposition 8.16 also
imply that e

R
f1 is not a starting monomial for P+'0(f~)=0, since wf1� 
.

9.6 Differential polynomials near cuts 227



Now take V = V0 \ ('0+C=/ e
R
W). Then the relations (9.25) and (9.26)

resp. (9.27) entail (9.23) resp. (9.24) for all f 2V. Moreover, if wf � 
, then
V0may be chosen such that deg�
P+f=0 for all f 2V �V0, by lemma 9.28. �

9.6.5 On the sign of a differential polynomial

Let P 2TfF g be a differential polynomial. We denote by �P :T!f¡1; 0; 1g
the sign function associated to P :

�P(f)= signP (f)=

8>><>>:
¡1; if P (f)< 0
0; if P (f)= 0
1; if P (f)> 0

:

We say that �P is constant at the right of f 2T, if there exist �2f¡1;0;1g and
g > f such that �P(f)= � for all f 2 (f ; g). In that case, we denote �P

+(f)= �.
We say that �P is constant at the left of f 2T, if there exist �2f¡1;0;1g and
g < f such that �P(f)= � for all f 2 (f ; g), and we denote �P

¡(f)= �. If �P is
constant at the left and at the right of f , then we say that �P is constant at
both sides of f .

Proposition 9.30. Let Q2Q=(QdF d+ ���+QvF v) (F 0)�2C[F ] (F 0)N with
Qd=/ 0 and Qv=/ 0. Then

�Q
+( !) = signQd (9.28)

�Q
¡(¡ !) = (¡1)d+� signQd (9.29)

�Q
¡(�) = (¡1)� signQv (9.30)

�Q
+(¡�) = (¡1)v signQv (9.31)

Proof. For f 2T>;�, we have

Q(f)�Qd fd (f 0)�

and f 0> 0. That proves (9.28). The other properties follow by considering
Q(¡f) and Q(�1/f) fdegQ instead of Q(f). �

Theorem 9.31. Let P 2TfF g and f 2T. Then

a) If f is regular, then �P is constant on both sides of f, and �P
+(f)=�P

¡(f).
b) If f is left-oriented, then �P is constant at the left of f.
c) If f is right-oriented, then �P is constant at the right of f.
d) If f 2T, then P is constant at both sides of f.

Proof. Propositions 9.24, 9.30 and theorem 9.29 imply (a), (b) and (c). Prop-
erty (d) follows by considering P (1/f) fdegP instead of P (f). �
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Proposition 9.32. Let P 2TfF g=/ , m 2 T and denote i= valNP�m6 j =
degNP�m. Then

�P
+( !m) = �Pj

+( !m) = �RPj
+ (my+ 
)

�P
¡(�m) = �Pi

¡(�m) = �RPi
¡ (my¡ 
)

Proof. From (9.28), it follows that �NP�m
+ ( !) = �NPj;�m

+ ( !). Consequently,

P�m(f) � Pj;�m(f) for all sufficiently small f 2T�;>, so that �P
+( !m) =

�Pj
+( !m). Similarly, we obtain �P

¡(�m)=�Pi
¡(�m). Since

�Pj;�m(f) = �RPj(m
y+ f y)

�Pi;�m(f) = �RPi(m
y+ f y)

for all f 2T>, we also have

�Pj
+( !m) = �RPj

+ (my+ 
)

�Pi
¡(�m) = �RPi

¡ (my¡ 
): �

Let W be an initial segment of T. The sign �P ;W of P modulo W at a point
f 2T is defined as follows. If degWP+f > 0, then we set �P ;W(f)=0. Recall
that degWP+f is the multiplicity of f as a zero of P modulo W in this case.
If degW P+f =0, then for all � 2C[[W]], we have �P+f(�) = signP0, and we
set �P ;W(f) = signP02 f¡1; 1g. Given f 2T and f 2T, we write f <W f if
f < f + � for all � 2C[[W]]. Given f ; g 2T, we denote

(f ; g)W= fh2T: f <Wh<W gg:

We say that �P ;W is constant at the right of f 2T, if there exist �2f¡1;0;1g
and g >Wf such that �P ;W(f)= � for all f 2 (f ; g)W. In that case, we denote
�P ;W
+ (f) = �. Constance at the left is defined similarly. If W is of the form

W= fm 2 T:m�wg, then we also write �P ;�w= �P ;W, �P ;�w
+ = �P ;W

+ and
�P ;�w
¡ =�P ;W

¡ .

Exercise 9.24. Let H�TcvfF g be a Hardy field. Consider a cut f 2T and
an element h2H, such that g < f, g <h for g 2Tcv. If �P

+(f) is defined, then
show that there exists a g 2H with g >h and �P(')=�P

+(f) for all '2 (h; g).

Exercise 9.25. Show that �(x),

'(x)=
1
x
+

1
xp
+

1

xp
2 + � � �

and

 (x)=
1

x
+

1

elog
2x
+

1

elog
4x
+ � � �

do not satisfy an algebraic differential equation with coefficients in T. Compare
with the technique from exercise 8.25.
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Exercise 9.26. Let L be a real analytic solution to L(log x) =L(x)¡ 1 (for a
construction of such a solution, see [Kne50]). Show that TcvfLg is a Hardy field.

9.7 The intermediate value theorem

In this section, we assume that C is a real closed field. Our main aim is to
prove the following intermediate value theorem:

Theorem 9.33. Let P 2TfF g and f ; g2T be such that f <g and P (f)P (g)<
0. Then there exists a h2 (f ; g) with P (h)= 0.

In fact, we will prove the following stronger version of the theorem:

Theorem 9.34. Let P 2TfF g and let W be an initial segment of T. Assume
that f ; g2T are such that f <Wg and �P ;W(f)�P ;W(g)<0. Then there exists
a h2 (f ; g)W such that degWP+h is odd.

In both theorems, the interval (f ; g) may actually be replaced by a more
general interval (f ; g) with f ; g2T. More precisely, we say that P changes sign
on (f ; g) modulo W, if �P ;W

+ (f) and �P ;W
¡ (g) exist and �P ;W

+ (f)�P ;W
¡ (g)<0.

Notice that P changes sign on (f ; g) modulo W if and only if P changes
sign on (f ; g)W. We say that P changes sign at h2T modulo W if degWP+h
is odd. Now if P changes sign on (f ; g), then it also changes sign on (f ; g)
for some f ; g 2T with f < f < g < g, �P ;W(f) = �P ;W

+ (f) and �P ;W(g) =
�P ;W
¡ (g). Consequently, if theorem 9.34 holds for all intervals (f ; g) with
f ; g 2T, then it also holds for all intervals (f ; g) with f ; g 2T.

Remark 9.35. The fact that P changes sign at h2T modulo W does not nec-
essarily imply �P ;W

+ (h)�P ;W
¡ (h)<0. Indeed, P =F 0 changes sign modulo o(1)

at h=0, but �F 0;�1
+ (0) and �F 0;�1

¡ (0) are not defined.

9.7.1 The quasi-linear case

Lemma 9.36. Let P 2CfF g be of order r and let W be an initial segment
of T. Assume that the theorem 9.34 holds for all differential polynomials of
order <r. Let v2T be such that the equation

P (f)= 0 (f � v) (9.32)

is quasi-linear and assume that P changes sign on (0; �v)W. Then there exists
a h2 (0; � v)W with degWP+h=1.
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Proof. Modulo an additive conjugation by a sufficiently small � 2 (0; � v)W,
we may assume without loss of generality that degW P = 0. Since (9.32) is
quasi-linear, it admits only a finite number of starting monomials. Let m be
the largest such monomial. Modulo a multiplicative conjugation with m, we
may assume without loss of generality that m=1. We must have W�1, since
otherwise 1=deg41P 6degWP =0. Furthermore, since NP 2C[F ] (F 0)N, we
either have NP =�F + � with �; � 2C=/ , or NP =�F 0 with �2C=/ .

If NP =�F + �, then the distinguished solution h to (9.32) satisfies h�
¡�/�=/ 0. Moreover, from proposition 9.32, it follows that

�P ;W(0) = �P(�) = �RP0
¡ (¡
) = sign � ;

�P ;W
+ ( !) = �P

+( !) = �RP1
+ (
) = sign� ;

�P ;W
¡ (� v) = �P

¡(� v) = �RP1
¡ (vy¡ 
) = ¡sign �:

We claim that �RP1(
)=�RP1(v
y¡ 
). Otherwise, theorem 9.34 applied to RP1

implies the existence of a  2 (0; vy)�
 with

deg�
RP1;+ 2 2N+1:

Taking  such that  �
=0 (whence
R
 2T�) , it follows that e

R
 �1 would

be a starting monomial for (9.32). Our claim implies that sign � =¡sign�,
so that h2 (0; � v)W. Furthermore, P+h;0=0, so

16 degWP+h6deg�vP+h=1:

If NP =�F 0, then deg�1P+�=1 for any �2C. Let h=1+", where " is the
distinguished solution to P+1(")=0 ("� 1). Then h2 (0; � v)W and P+h;0=0
again implies degWP+h=1. �

9.7.2 Preserving sign changes during refinements

Lemma 9.37. Let P 2CfF g and let I be of one of the following forms:

a) I =(c1; c2)�1=(c1+ �; c2¡ �) with c1; c22C.
b) I =(c1; !)�1=(c1+ �; !) with c12C.
c) I =(¡ !; !)�1=(¡ !; !).

If P changes sign on I, then there exists a c2 I \C with

�P
+(c¡ �)�P¡(c+ �)< 0:

Proof. In cases (b) and (c), we may replace !(and ¡ !) by a sufficiently large
c22C (resp. small c12C). Therefore, it suffices to deal with intervals I of the
form (a). From lemma 9.26, it follows that �P

+(c¡ �)=�NP
+ (c¡ �), �P¡(c+ �)=

�NP
¡ (c+ �) for all c2C. Without loss of generality, we may therefore assume

that P =NP =A (F 0)� with A2C[F ] and � 2N.
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If � is odd, then we choose c2 I \C with A(c)=/ 0, and obtain

�P
+(c¡ �)�P¡(c+ �)=�(F 0)�

+ (c¡ �)�(F 0)�
¡ (c+ �)= (¡1)�< 0:

If � is even, then A changes sign on I. Since C is real closed, it follows that
there exists a c2 I \C where A admits a root of odd multiplicity �, and

�P
+(c¡ �)�P¡(c+ �)=�A+(c¡ �)�A¡(c+ �)= (¡1)�< 0: �

Lemma 9.38. Let P 2CfF g be of order r and let W be an initial segment
of T. Assume that the theorem 9.34 holds for all differential polynomials of
order <r. Let m2T be such that �P ;W

+ (0) �P ;W
¡ (�m)< 0. Then there exists

c2C> and v2T with W� v�m and �P+cv
+ (¡� v)�P+cv

¡ (� v)< 0.

Proof. Modulo an additive conjugation with a sufficiently small �2 (0; �m)W,
we may assume without loss of generality that

�P ;W
+ (0)=�P ;W(0)= signP0=/ 0:

We prove the lemma by induction over d=deg�mP . If d=0, then the assump-
tions cannot be met, so we have nothing to prove. So assume that d > 0.
Since P0=/ 0, there exists an equalizer of the form e= ev;d for the equation
P (f)= 0 (f �m). We distinguish the following cases:

�P ;W
+ (0)�P ;W

¡ (� e)< 0. Since deg�eP =v<d, we are done by the induction
hypothesis.

e�W and �P
¡(� e)�P

+( !e)< 0. The result follows immediately when
applying lemma 9.37 to P�e and the interval (�; !).

e2W or �P
+( !e)�P

¡(�m)< 0. If e 2W, then let g >W 0 be such that
�P(f) = �P ;W

+ (0) for all f 2 (0; g)W. Then for any n2T with W� n� g,
we have �P

+( !n)�P
¡(�m)< 0. So both if e2W and if �P

+( !e)�P
¡(�m)< 0,

there exists an n2T with W� n�m, n< e and �P
+( !n)�P

¡(�m)< 0.
Since m� n< e, we must have degNP�n= d. From proposition 9.32, it

follows that

�RPd
+ (ny+ 
)�RPd

¡ (my¡ 
)=�Pd
+ ( !n)�Pd

¡(�m)=�P+( !n)�P
¡(�m)< 0:

Applying theorem 9.34 to RPd, we infer that there exists a g 2 (ny;my)

with deg�
RPd2 2N+1. Taking g such that g�
=0 (whence

R
g 2T�),

it follows that v=e
R
g is a starting monomial for P (f)=0. Moreover, N =

NP�v is of the form N =�F d¡� (F 0)� with �2C=/ , since degN =valN =d.
Furthermore, since �RPd

¡ (g¡ 
)�RPd
+ (g+ 
)< 0, we have

(¡1)�=�N¡(�)�N+( !)=�Pd
¡(� v)�Pd

+ ( !v)=�RPd
¡ (g¡ 
)�RPd

+ (g+ 
)< 0;

whence � is odd. For any c> 0, we conclude that

�P+cv
+ (¡� v)�P+cv

¡ (� v)=�N+(c¡ �)�N¡(c+ �)= (¡1)�< 0: �
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9.7.3 Proof of the intermediate value theorem

We will prove the following variant of theorem 9.34:

Theorem 9.39. Let P 2TfF g and let W be an initial segment of T. Given
v2T, consider an interval I of one of the following forms:

a) I =(�; �)W with �; �2T and �¡ ��� v with �2C>.
b) I =(�; �+ � v)W with � 2T.
c) I =(� ¡ � v; �)W with � 2T.
d) I =(� ¡ � v; �+ � v)W with � 2T.

If P changes sign on I, then there exists a point h 2 I such that degW P+h
is odd.

Proof. We prove the theorem by a double induction over the order of P and
the Newton degree d of

P (f)= 0 (f � v):

The case when d= 0 is contrary to our assumptions. So assume that d > 0
and that the hypothesis holds for all smaller orders, as well as for the same
order and smaller d. Notice that we must have W� v, since P changes sign
modulo W on I.

Let us first show that cases (a), (c) and (d) can all be reduced to case (b).
This is clear for (c) by considering P (¡f) instead of P (f). In case (d),
there exists a � 2 (� ¡ � v; � + � v)W such that �P

+(� ¡ � v) = �P(�) for all
� 2T with � 2 (� ¡ � v; �)W. For any such �, it follows that P changes sign
on (�; � + � v)W= (�; � + � v)W. As to (a), we observe that P changes sign
either on (�; � + � v)W, on (�¡ � v; �)W, or on (� + � v; �¡ � v)W= (� + � v;
�¡ �v). The first to cases have already been dealt with. The last case reduces
to (d) when applying lemma 9.37 to the polynomial P+�;�v and the interval
(�; (�¡ �)v¡ �).

Let us now show how to prove (b). Modulo an additive conjugation, we
may assume without loss of generality that �=0. If d=1, then we are done
by lemma 9.36. So assume that d > 1. Consider the set S of all partial
unravellings

f = '+ f~ (f~� v~) (9.33)

with either '=0 and v~= v, or '2 (0; � v)W and

�P+';W
+ (¡� v~)�P+';W

¡ (� v~)< 0:

By corollary 8.32, we may choose a finest partial unravelling (9.33) in S .
Take �=0 if '=0 and ��v~ such that �P+'

+ (¡�v~)=�P+';W
+ (�) otherwise.

By lemma 9.38, applied to P+'+�, there exists a term cm 2 (�; � v)W with
W�m, and such that

�P+'+cm
+ (¡�m)�P+'+cm

¡ (�m)< 0:
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We claim that we cannot have deg�mP+'+cm=d. Indeed, by proposition 8.27,
this would imply the existence of a partial unravelling

f = '+ '~+ f~~ (f~~�m)

with '~� cm, which is finer than (9.33). But then

�P+'+'~
+ (¡�m)�P+'+'~

¡ (�m)=�P+'+cm
+ (¡�m)�P+'+cm

¡ (�m)< 0

contradicts the maximality of (9.33). Consequently, we have

deg�mP+'+cm<d

and the theorem follows by applying the induction hypothesis for P+'+cm on
the interval (¡�m; �m). �

Exercise 9.27.

a) Prove that j�P ;V(f)j6 j�P ;W(f)j if V�W.
b) Prove that �P ;W

¡ (�m)=�P¡(�m) if W�m.
c) Other similar properties.
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s� ;! generalized Stirling number of the first kind . . . . . . . 170
S� ;! generalized Stirling number of the second kind . . . . . 171
NP differential Newton polynomial for P . . . . . . . . . . . 173
degV P Newton degree of P (f)= 0 (f 2C[[V]]) . . . . . . . . . 174
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RPi differential Riccati polynomial associated to Pi . . . . . 179
E set of exponential transmonomials . . . . . . . . . . . . . 184
L set of logarithmic transmonomials . . . . . . . . . . . . . 197

Chapter 9. The intermediate value theorem

Mx maximal open interval containing x . . . . . . . . . . . . 203
( ; z) the interval fu2E:u<zg . . . . . . . . . . . . . . . . . . 203
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f shorthand for supS . . . . . . . . . . . . . . . . . . . . . . . 208
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starting term, 174
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decomposition
atomic, 126
homogeneous parts, 125
symmetric atomic, 126

differential, 134
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homogeneous part, 122
integral, 134
multilinear, 116
multilinear family for �, 122
of type T , 133
strictly extensive, 128
with multipliers in E, 128

series, 36
convergent, 73

set, 34
summation, 48

group
ordered � with R-powers, 30
with R-powers, 30

Hahn space, 29
Hardy field, 23
Hausdorff interval topology, 203
height

exponential, 89
extended integral �, 221
integral cut, 220

Higman's theorem, 18
homogeneous

part, 122
decomposition into �s, 125
differential polynomial, 167
grid-based operator, 122, 125

incomplete transbasis theorem, 92
increasing

difference operator, 106
mapping, 12

induction
Noetherian, 19
transfinite, 16

infimum, 19

infinitary operator, 45
infinitesimal, 27

series, 42
infinitesimal part, 41
initial segment, 17

generated by A, 17
initializer of cut, 210
integral

coordinates, 221
distinguished, 103
grid-based operator, 134
guiding sequence, 220
height
cut, 220
extended, 221
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basic, 221

nested expansion, 221
nested sequence, 220
refinement, 198

integration
strong, 117

intermediate value theorem, 230
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open, 202
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inverse of transseries, 111
irregular monomial for L, 141
isobaric part, 168
Kruskal's theorem, 21
Laurent series, 38

multivariate, 38
leaf, 19
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left neighbourhood, 222
left-oriented cut, 220
level

transbasis, 92
transseries, 90

Levi-Civitian set, 36
local community, 72
logarithmic

depth, 89
derivative, 98
iterated, 168

function, 82
transseries, 89

log-confluent transseries, 91
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differential operator, 163
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monoid
monomial, 115

monomial, 34, 36
cut, 208
dominant, 40, 209
monoid, 115
set, 115
starting, 65, 152, 174
algebraic, 174
differential, 174
mixed, 174

strong � morphism, 72
multilinear

family for grid-based operator, 122
grid-based operator, 116
composition, 117
summable family, 125

strongly, 116
type, 133

multiplicative conjugate, 60, 137, 170
multiplicity

solution modulo W, 175
starting term, 65, 152, 174

multipliers
grid-based operator with � in E, 128

multivariate
Laurent series, 38
series, 38

neglection relation, 25
associated, 26
compatible, 26
flattened, 31

negligible, 25
neighbourhood, 222

integral, 221
basic, 221

left, 222
one-sided, 222
right, 222

nested
expansion, 214
integral, 221

sequence, 213
integral, 220

Newton
degree, 65, 152, 174
equation, 58
polygon, 58
differential, 180

polynomial, 58, 65
Newton_degree, 193
node, 19

leaf, 19
predecessor, 19
successor, 19

Noetherian induction, 19
normalized solution modulo W, 175
one-sided neighbourhood, 222
open interval, 202
operator

atomic, 126
input, 127
output, 127
symmetric, 126

differential
monic, 163

grid-based, 122
composition, 124
contracting, 128
decomposition
atomic, 126
homogeneous parts, 125
symmetric atomic, 126

differential, 134
extensive, 128
homogeneous part, 122
integral, 134
multilinear family for �, 122
of type T , 133
strictly extensive, 128
with multipliers in E, 128

infinitary, 45
strong differential, 117
support, 117, 123

ordered
R-algebra, 22
exp-log field, 83
exp-log ring, 83
exponential ring, 81
field, 22
with R-powers, 30

group with R-powers, 30
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ordered
R-module, 22
monoid, 22
partial exponential ring, 81
ring, 22
with R-powers, 30

ordering, 12
anti-lexicographic, 13
Cartesian product, 13
commutative words, 15
disjoint union, 12
embeddability, 13, 20
finest, 12
opposite, 14
ordered union, 13
strict, 14
total, 12
compactification, 204

well-founded, 15
words, 13

ordinal, 16
countable, 16
limit, 16
successor, 16

oriented cut, 220
oscillating transseries, 159

spectral decomposition, 159
part

bounded, 41
constant, 41
homogeneous, 122
decomposition into �s, 125
differential polynomial, 167

infinitesimal, 41
purely infinite, 41

partial
exponential ring, 80
ordered, 81

unravelling, 187
pathological cut, 220
perfect ordered structure, 25
plane transbasis, 102
polynomial

differential
decomposition
by degrees, 167
by orders, 167
into homogeneous parts, 167
into isobaric parts, 168

polynomial
differential
decomposition
logarithmic, 168
serial, 167

degree, 167
homogeneous part, 167
isobaric part, 168
Newton, 173
transparent, 173
valuation, 167
weight, 168
weighted valuation, 168

differential Riccati �, 179
Newton, 58, 65
differential, 173

polynomial_solve, 67
positive derivation, 98, 102
power series, 38
predecessor, 19
Puiseux series, 38
purely infinite part, 41
quasi-analytic function, 96
quasi-linear

asymptotic Riccati equation, 152
equation, 61, 65, 182

quasi-ordering, 12
anti-lexicographic, 13
Cartesian product, 13
commutative words, 15
compatible equivalence relation, 14
disjoint union, 12
embeddability, 13, 20
finer, 12
finest, 12
opposite, 14
ordered union, 13
roughest, 12
total, 12
well, 17
well-founded, 15
words, 13

recursive
expansion, 38
multivariate series, 38

refinement, 61, 66, 153, 175
admissible, 61, 66
compatible, 187
finer, 175
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refinement
integral, 198

regular
cut, 220
monomial for L, 141
series, 40
term for L, 141

relation
antisymmetric, 12
asymptotic, 25
dominance, 25
neglection, 25
reflexive, 12
transitive, 12

representation
Cartesian, 69
faithful, 73

semi-Cartesian, 69
restriction of series, 42
Riccati

differential � polynomial, 140, 179
algebraic part, 140

equation modulo o(1), 151
asymptotic, 152

riccati_solve, 155
right neighbourhood, 222
right-oriented cut, 220
ring

archimedean, 27
asymptotic � with R-powers, 30
exponential, 80
ordered, 81

ordered � with R-powers, 30
ordered exp-log �, 83
partial exp-log �, 83, 83
partial exponential �, 80
ordered, 81

with R-powers, 30
root

almost multiple, 62
scalar product of transseries, 112
scale

asymptotic, 54
change, 54

semi-Cartesian representation, 69
sequence

integral guiding �, 220
nested, 213
integral, 220

serial
cut, 210
decomposition, 167

series
bounded, 42
differentially algebraic, 75
dominant exponent, 58
effective, 76
grid-based, 36
convergent, 73

infinitesimal, 42
Laurent, 38
multivariate, 38

monic, 163
multivariate, 38
natural, 38
recursive, 38

order type, 39
power, 38
Puiseux, 38
regular, 40
restriction, 42
Taylor, 108, 122, 125
valuation, 58
well-based, 39

set
accumulation-free, 35
R-finite, 35
grid-based, 34
Levi-Civitian, 36
monomial, 115
weakly based, 36
well-based, 34
countable, 35

shifting
downward, 90, 137, 170
upward, 90, 137, 170

sign change, 230
similar modulo flatness, 30
solution

distinguished, 146, 160, 182, 197
modulo W, 175
multiplicity, 175
normalized, 175

st_term, 194
starting

coefficient, 59
exponent, 58
monomial, 58, 65, 152, 174
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starting
monomial
algebraic, 174
differential, 174
mixed, 174

term, 59, 65, 152, 174
algebraic, 174
differential, 174
multiplicity, 65, 152, 174

steep complement, 87
Stirling number, 137, 170
strong

Abelian group, 46
R-algebra, 47
associativity, 46
commutativity, 45
derivation, 98, 116
difference operator, 106, 117
differential operator, 117
integration, 117
linear mapping, 47
R-module, 47
monomial morphism, 72
multilinear mapping, 116
ring, 46
summation operator, 117
tensor product, 121
trivial � structure, 46

subtree, 19
successor, 19
support, 36

operator, 117, 123
Taylor series, 108, 122, 125
tensor product, 23

anti-lexicographical, 23
strong, 121

term, 36
dominant, 40
regular for L, 141
starting, 65, 152, 174
algebraic, 174
differential, 174
multiplicity, 65, 152, 174

theorem
Cantor, 16
compactness, 204
Higman, 18
incomplete transbasis, 92
intermediate value, 230

theorem
Kruskal, 21
Newton-Puiseux, 68
Translagrange, 112

trace of differential operator, 141
transbasis, 92

incomplete � theorem, 92
level, 92
plane, 102

transfinite induction, 16
Translagrange theorem, 112
transparent

differential polynomial, 173
transseries, 173

transseries
complex coefficients, 158
contraction, 91
convergent, 94
depth, 90
dilatation, 91
downward shift, 90
exp-log, 94
exponential, 90
exponential height, 89
field of grid-based �, 84
in x, 89
inverse, 111
level, 90
logarithmic, 89
logarithmic depth, 89
log-confluent, 91
oscillating, 159
spectral decomposition, 159

scalar product, 112
upward shift, 90
well-based, 91
convergent, 96

tree, 20, 20
arity, 20
E-labeled, 20
leaf, 19
node, 19
root, 19
unoriented, 19

truncation, 43
greatest common, 43

ultra-strong
R-algebra, 47
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R-module, 47

unbounded, 27
unravel, 195
unravel_sub, 195
unraveller

distinguished, 197
unravelling

atomic, 186
partial, 187
total, 186

upward shifting, 90, 137, 170
valuation, 28, 58

differential polynomial, 167
weighted, 168

weakly based set, 36
weight

differential polynomial, 168

weight
vector, 168

weighted valuation, 168
well-based

family, 39
series, 39
set, 34
countable, 35

transseries, 91
convergent, 96

well-ordering, 15
well-quasi-ordering, 17
widening, 71
wider Cartesian basis, 71
width of cut, 209
word, 13

commutative, 15
Zorn's lemma, 15
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