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Foreword

Transseries find their origin in at least three different areas of mathematics:
analysis, model theory and computer algebra. They play a crucial role in
Ecalle’s proof of Dulac’s conjecture, which is closely related to Hilbert’s 16-th
problem.

I personally became interested in transseries because they provide an excel-
lent framework for automating asymptotic calculus. While developing several
algorithms for computing asymptotic expansions of solutions to non-linear
differential equations, it turned out that still a lot of theoretical work on
transseries had to be done. This led to part A of my thesis. The aim of
the present book is to make this work accessible for non-specialists. The book
is self-contained and many exercises have been included for further studies.
I hope that it will be suitable for both graduate students and professional
mathematicians. In the later chapters, a very elementary background in dif-
ferential algebra may be helpful.

The book focuses on that part of the theory which should be of common
interest for mathematicians working in analysis, model theory or computer
algebra. In comparison with my thesis, the exposition has been restricted to
the theory of grid-based transseries, which is sufficiently general for solving
differential equations, but less general than the well-based setting. On the
other hand, I included a more systematic theory of “strong linear algebra”,
which formalizes computations with infinite summations. As an illustration of
the different techniques in this book, I also added a proof of the “differential
intermediate value theorem”.

I have chosen not to include any developments of specific interest to
one of the areas mentioned above, even though the exercises occasionally
provide some hints. People interested in the accelero-summation of diver-
gent transseries are invited to read Ecalle’s work. Part B of my thesis contains
effective counterparts of the theoretical algorithms in this book and work
is in progress on the analytic counterparts. The model theoretical aspects
are currently under development in a joint project with Matthias Aschen-
brenner and Lou van den Dries.
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Introduction

The field with no escape

A transseries is a formal object, constructed from the real numbers and an
infinitely large variable x > 1, using infinite summation, exponentiation and
logarithm. Examples of transseries are:
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As the examples suggest, transseries are naturally encountered as formal
asymptotic solutions of differential or more general functional equations. The
name “transseries” therefore has a double signification: transseries are generally
transfinite and they can model the asymptotic behaviour of transcendental

functions.

Whereas the transseries (1), (2), (3), (6) (7) and (8) are convergent, the
other examples (4) and (5) are divergent. Convergent transseries have a clear
analytic meaning and they naturally describe the asymptotic behaviour of
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their sums. These properties surprisingly hold in the divergent case as well.
Roughly speaking, given a divergent series

= e o= (=D)L (n—1)!
f:z;%:z:l( )m"(n )

like (4), one first applies the formal Borel transformation

FO=BNO=3 lme=-0
n=1

e

If this Borel transform f can be analytically continued on [0, +00), then the
inverse Laplace transform can be applied analytically:

f(a;):(.cf)(a:):/ooof(g)e—w<dx=/o Sda,

The analytic function f obtained admits f as its asymptotic expansion. More-
over, the association fr f preserves the ring operations and differentiation.
In particular, both f and f satisfy the differential equation

, 1
flof=—

Consequently, we may consider f as an analytic realization of f. Of course,
the above example is very simple. Also, the success of the method is indirectly
ensured by the fact that the formal series f has a “natural origin” (in our case,
f satisfies a differential equation). The general theory of accelero-summation
of transseries, as developed by Ecalle [Eca92, Eca93], is far more complex, and
beyond the scope of this book. Nevertheless, it is important to remember that
such a theory exists: even though the transseries studied in this this book are
purely formal, they generally correspond to genuine analytic functions.

The attentive reader may have noticed another interesting property which
is satisfied by some of the transseries (1-8) above: we say that a transseries
is grid-based, if
GB1. There exists a finite number my,..., my of infinitesimal “transmono-

mials”, such that f is a multivariate Laurent series in myq, ..., mg:

f: Z Z fal,...,akm?l"'mgk,

<o €EZ v<ar€EZ

GB2. The property GB1 is recursively satisfied when replacing f by the
logarithm of one of the m;.

The examples (1-5) are grid-based. For instance, for (2), we may take m; =21

and mg=e~". The examples (6-8) are not grid-based, but only well-based. The
last example even cannot be expanded w.r.t. a finitely generated asymptotic
scale with powers in R. As we will see in this book, transseries solutions
to algebraic differential equations with grid-based coefficients are necessarily
grid-based as well. This immediately implies that the examples (6-8) are



Historical perspectives 3

differentially transcendental over R (see also [GS91]). The fact that grid-
based transseries may be considered as multivariate Laurent series also makes
them particularly useful for effective computations. For these reasons, we will
mainly study grid-based transseries in this book, although generalizations to
the well-based setting will be indicated in the exercises.

The resolution of differential and more general equations using transseries
presupposes that the set of transseries has a rich structure. Indeed, the
transseries form a totally ordered field T (chapter 4), which is real closed
(chapter 3), and closed under differentiation, integration, composition and
functional inversion (chapter 5). More remarkably, it also satisfies the dif-
ferential intermediate value property:

Given a differential polynomial P € T{F} and transseries f <
g € T with P(f) P(g) <0, there exists a transseries h € T with
f<h<gand P(h)=0.

In particular, any algebraic differential equation of odd degree over T, like

P2 e fT-T(I(zlogw)) f* f'=loglogx

admits a solution in T. In other words, the field of transseries is the first
concrete example of what one might call a “real differentially closed field”.

The above closure properties make the field of transseries ideal as a frame-
work for many branches of mathematics. In a sense, it has a similar status
as the field of real or complex numbers. In analysis, it has served in Ecalle’s
proof of Dulac’s conjecture — the best currently known result on Hilbert’s 16-
th problem. In model theory, it can be used as a natural model for many the-
ories (reals with exponentiation, ordered differential fields, etc.). In computer
algebra, it provides a sufficiently general formal framework for doing asymp-
totic computations. Furthermore, transseries admit a rich non-archimedean
geometry and surprising connections exist with Conway’s “field” of surreal
numbers.

Historical perspectives

Historically speaking, transseries have their origin in several branches of math-
ematics, like analysis, model theory, computer algebra and non-archimedean
geometry. Let us summarize some of the highlights of this interesting history.

Resolution of differential equations by means of power series

It was already recognized by Newton that formal power series are a powerful
tool for the resolution of differential equations [New71]. For the resolution
of algebraic equations, he already introduced Puiseux series and the Newton
polygon method, which will play an important role in this book. During the
18-th century, formal power series were used more and more systematically
as a tool for the resolution of differential equations, especially by Euler.
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However, the analytic meaning of a formal power series is not always clear.
On the one hand side, convergent power series give rise to germs which can
usually be continued analytically into multi-valued functions on a Riemann
surface. Secondly, formal power series can be divergent and it is not clear
a priori how to attach reasonable sums to them, even though several recipes
for doing this were already known at the time of Euler [Har63, Chapter 1].

With the rigorous formalization of analysis in the 19-th century, criteria
for convergence of power series were studied in a more systematic way. In par-
ticular, Cauchy and Kovalevskaya developed the well-known majorant method
for proving the convergence of power series solutions to certain partial differ-
ential equations [vK75]. The analytic continuation of solutions to algebraic
and differential equations were also studied in detail [Pui50, BB56] and the
Newton polygon method was generalized to differential equations [Fin89].

However, as remarked by Stieltjes [Sti86] and Poincaré [Poi93, Chapitre §],
even though divergent power series did not fit well in the spirit of “rigorous
mathematics” of that time, they remained very useful from a practical point
of view. This raised the problem of developing rigorous analytic methods to
attach plausible sums to divergent series. The modern theory of resummation
started with Stieltjes, Borel and Hardy [Sti94, Sti95, Bor28], who insisted on
the development of summation methods which are closed under the common
operations of analysis. Although the topic of divergent series was an active
subject of research in the early 20-th century [Har63], it went out of fashion
later on.

Generalized asymptotic scales

Another approach to the problem of divergence is to attach only an asymptotic
meaning to series expansions. The foundations of modern asymptotic calculus
were laid by Dubois-Raymond, Poincaré and Hardy.

More general asymptotic scales than those of the form 2%, z® or z® were
introduced by Dubois-Raymond [dBR75, dBR77|, who also used “Cantor’s”
diagonal argument in order to construct functions which cannot be expanded
with respect to a given scale. Nevertheless, most asymptotic scales occur-
ring in practice consist of so called L-functions, which are constructed from
algebraic functions, using the field operations, exponentiation and logarithm.
The asymptotic properties of L-functions were investigated in detail by
Hardy [Har10, Har11] and form the start of the theory of Hardy fields [Bou61,
Ros80, Ros83a, Ros83b, Ros87, Bos81, Bos82, Bos87].

Poincaré [Poi90] also established the equivalence between computations
with formal power series and asymptotic expansions. Generalized power series
with real exponents [LC93| or monomials in an abstract monomial group
[Hah07] were introduced about the same time. However, except in the case of
linear differential equations [Fab85, Poi86, Bir09], it seems that nobody had
the idea to use such generalized power series in analysis, for instance by using
a monomial group consisting of L-functions.

Z
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Newton, Borel and Hardy were all aware of the systematic aspects of
their theories and they consciously tried to complete their framework so as to
capture as much of analysis as possible. The great unifying theory nevertheless
had to wait until the late 20-th century and Ecalle’s work on transseries and
Dulac’s conjecture [Eca85, Eca92, Eca93, Bradl, Bra92, CNP93].

His theory of accelero-summation filled the last remaining source of insta-
bility in Borel’s theory. Similarly, the “closure” of Hardy’s theory of L-functions
under infinite summation removes its instability under functional inversion
(see exercise 5.20) and the resolution of differential equations. In other words,
the field of accelero-summable transseries seems to correspond to the “frame-
work-with-no-escape” about which Borel and Hardy may have dreamed.

Model theory

Despite the importance of transseries in analysis, the first introduction of the
formal field of transseries appeared in model theory [Dah84, DG86]. Its roots
go back to another major challenge of 20-th century mathematics: proving the
completeness and decidability of various mathematical theories.

Godel’s undecidability theorem and the undecidability of arithmetic are
well-known results in this direction. More encouraging were the results on
the theory of the field of real numbers by Artin-Schreier and later Tarski-
Seidenberg [AS26, Tar31, Tar51, Sei54]. Indeed, this theory is complete, decid-
able and quantifier elimination can be carried out effectively. Tarski also
raised the question how to axiomatize the theory of the real numbers with
exponentiation and to determine its decidability. This motivated the model-
theoretical introduction of the field of transseries as a good candidate of a non-
standard model of this theory, and new remarkable properties of the real
exponential function were stated.

The model theory of the field of real numbers with the exponential function
has been developed a lot in the nineties. An important highlight is Wilkie’s
theorem [Wil96], which states that the real numbers with exponentiation form
an o-minimal structure [Dri98, Dri99]. In these further developments, the field
of transseries proved to be interesting for understanding the singularities of
real functions which involve exponentiation.

After the encouraging results about the exponential function, it is tempting
to generalize the results to more general solutions of differential equations.
Several results are known for Pfaffian functions [Kho91, Spe99], but the thing
we are really after is a real and/or asymptotic analogue of Ritt-Seidenberg’s
elimination theory for differential algebra [Rit50, Sei56, Kol73]. Again, it can
be expected that a better understanding of differential fields of transseries
will lead to results in that direction; see [AD02, ADO1, AD04, ADHO05, ADH]
for ongoing work.
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Computer algebra and automatic asymptotics

We personally became interested in transseries during our work on automatic
asymptotics. The aim of this subject is to effectively compute asymptotic
expansions for certain explicit functions (such as “exp-log” function) or solu-
tions to algebraic, differential, or more general equations.

In early work on the subject [GG88, Sha90, GG92, Sal91l, Gru96, Sha04],
considerable effort was needed in order to establish an appropriate framework
and to prove the asymptotic relevance of results. Using formal transseries as
the privileged framework leads to considerable simplifications: henceforth,
with Ecalle’s accelero-summation theory in the background, one can con-
centrate on the computationally relevant aspects of the problem. Moreover,
the consideration of transfinite expansions allows for the development of a
formally exact calculus. This is not possible when asymptotic expansions are
restricted to have at most w terms and difficult in the framework of nested
expansions [Sha04].

However, while developing algorithms for the computation of asymptotic
expansions, it turned out that the mathematical theory of transseries still had
to be further developed. Our results in this direction were finally regrouped in
part A of our thesis, which has served as a basis for this book. Even though
this book targets a wider public than the computer algebra community, its
effective origins remain present at several places: Cartesian representations,
the incomplete transbasis theorem, the Newton polygon method, etc.

Non-archimedean geometry

Last but not least, the theory of transseries has a strong geometric appeal.
Since the field of transseries is a model for the theory of real numbers with
exponentiation, it is natural to regard it as a non-standard version of the
real line. However, contrary to the real numbers, the transseries also come
with a non-trivial derivation and composition. Therefore, it is an interesting
challenge to study the geometric properties of differential polynomials, or
more general “functions” constructed using the derivation and composition.
The differential intermediate value theorem can be thought of as one of the
first results in this direction.

An even deeper subject for further study is the analogy with Conway’s
construction of the “field” of surreal numbers [Con76|. Whereas the surreal
numbers come with the important notion of “earliness”, transseries can be dif-
ferentiated and composed. We expect that it is actually possible to construct
isomorphisms between the class of surreal numbers and the class of generalized
transseries of the reals with so called transfinite iterators of the exponential
function and nested transseries. A start of this project has been carried out
in collaboration with my former student M. Schmeling [Sch01]. If this project
could be completed, this would lead to a remarkable correspondence between
growth-rate functions and numbers.
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Outline of the contents

Orderings occur in at least two ways in the theory of transseries. On the one
hand, the terms in the expansion of a transseries are naturally ordered by
their asymptotic magnitude. On the other hand, we have a natural ordering
on the field T of transseries, which extends the ordering on R. In chapter 1,
we recall some basic facts about well-quasi-orderings and ordered fields. We
also introduce the concept of “asymptotic dominance relations” <, which can
be considered as generalizations of valuations. In analysis, f< g and f<g
are alternative notations for f =0(g) and f=o0(g).

In chapter 2, we introduce the “strong C-algebra of grid-based series”
C[OMI, where M is a so called monomial monoid with a partial quasi-
ordering <. Polynomials, ordinary power series, Laurent series, Puiseux series
and multivariate power series are all special types of grid-based series. In
general, grid-based series carry a transfinite number of terms (even though
the order is always bounded by w®) and we study the asymptotic proper-
ties of C[9NT.

We also lay the foundations for linear algebra with an infinitary sum-
mation operator, called “strong linear algebra”. Grid-based algebras of the
form C'[9M1, Banach algebras and completions with respect to a valuation
are all examples of strong algebras, but we notice that not all strong “serial”
algebras are of a topological nature. One important technique in the area of
strong linear algebra is to make the infinite sums as large as possible while
preserving summability. Different regroupings of terms in such “large sums”
can then be used in order to prove identities, using the axiom of “strong
associativity”. The terms in “large sums” are often indexed by partially ordered
grid-based sets. For this reason, it is convenient to develop the theory of grid-
based series in the partially ordered setting, even though the ordering < on
transmonomials will be total.

The Newton polygon method is a classical technique for the resolution
of algebraic equations with power series coefficients. In chapter 3, we will
give a presentation of this method in the grid-based setting. Our exposition
is based on the systematic consideration of “asymptotic equations”, which
are equations with asymptotic side-conditions. This has the advantage that
we may associate invariants to the equation like the Newton degree, which
simplifies the method from a technical point of view. We also systematically
consider derivatives of the equation, so as to quickly separate almost multiple
roots.

Chapter 3 also contains a digression on Cartesian representations, which
are both useful from a computational point of view and for the definition of
convergence. However, they will rarely be used in the sequel, so this part may
be skipped at a first reading.
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In chapter 4, we construct the field T =C Izl of grid-based transseries
in x over an “ordered exp-log field” of constants C. Axioms for such constant
fields and elementary properties are given in section 4.1. In practice, one
usually takes C' =RR. In computer algebra, one often takes the countable
subfield of all “real elementary constants” [Ric97]. It will be shown that T is
again an ordered exp-log field, so it is also possible to take C' =T and construct
fields like R [Tzl TyIl. Notice that our formalism allows for partially defined
exponential functions. This is both useful during the construction of T and
for generalizations to the multivariate case.

The construction of T proceeds by the successive closure of C[IzR]
under logarithm and exponentiation. Alternatively, one may first close under
exponentiation and next under logarithm, following Dahn and Goring or
Ecalle [DG86, Eca92]. However, from a model-theoretical point of view, it
is more convenient to first close under logarithm, so as to facilitate general-
izations of the construction [Sch01]. A consequence of the finiteness properties
which underlie grid-based transseries is that they can always be expanded
with respect to finite “transbases”. Such representations, which will be studied
in section 4.4, are very useful from a computational point of view.

In chapter 5, we will define the operations 0, f o and ™ on T and prove
that they satisfy the usual rules from calculus. In addition, they satisfy sev-
eral compatibility properties with the ordering, the asymptotic relations and
infinite summation, which are interesting from a model-theoretical point of
view. In section 5.4.2, we also prove the Translagrange theorem due to Ecalle,
which generalizes Lagrange’s well-known inversion formula for power series.

Before going on with the study of differential equations, it is convenient
to extend the theory from chapter 2 and temporarily return to the general
setting of grid-based series. In chapter 6, we develop a “functional analysis”
for grid-based series, based on the concept of “grid-based operators”. Strongly
multilinear operators are special cases of grid-based operators. In particular,
multiplication, differentiation and integration of transseries are grid-based
operators. General grid-based operators are of the form

O(f)=Po+P1(f) + L2 f, f)+-- -,

where each ®; is a strongly i-linear operator. The set ¢(C' [, CINT) of
grid-based operators from C [9N] into C' [N forms a strong C-vector space,
which admits a natural basis of so called “atomic operators”. At the end of
chapter 6, we prove several implicit function theorems, which will be useful
for the resolution of differential equations.

In chapter 7, we study linear differential equations with transseries coef-
ficients. A well-known theorem [Fab85] states that any linear differential equa-
tion over C[[z]] admits a basis of formal solutions of the form

(foR/z) + -+~ + fa(R/z) log? z) 2 "M/ V2,
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with fo,..., fa€ C[[z]], « € C, P C[X] and p,d € N~. We will present a natural
generalization of this theorem to the transseries case. Our method is based
on a deformation of the algebraic Newton polygon method from chapter 3.

Since the only transseries solution to f”+ f =0 is 0, the solution space of
an equation of order r does not necessarily have dimension r. Nevertheless, as
will be shown in section 7.7, one does obtain a solution space of dimension r
by considering an oscillatory extension of the field of transseries. A remarkable
consequence is that linear differential operators can be factored into first order
operators in this extension. It will also be shown that operators in T[0] can
be factored into first and second order operators.

It should also be noticed that the theory from chapter 7 is compatible with
the strong summation and asymptotic relations on T. First of all, the trace T},
of a linear differential operator L € T[J], which describes the dominant asymp-
totic behaviour of L, satisfies several remarkable properties (see section 7.3.3).
Secondly, any operator L € T[J] admits a so called distinguished strong right-
inverse L', with the property that (L~' g), =0 when b is the dominant
monomial of a solution to Lh=0. Similarly, we will construct distinguished
bases of solutions and distinguished factorizations.

Non-linear differential equations are studied in chapter 8. For simplicity,
we restrict our attention to asymptotic algebraic differential equations like

P(f)=0  (f=v),

with Pe T{F}="T[F,F’,...], but similar techniques apply in more general
cases. The generalization of the Newton polygon method to the differential
setting contains two major difficulties. First, the “slopes” which lead to the
first terms of solutions cannot directly be read off from the Newton polygon.
Moreover, such slopes may be due to cancellations of terms of different degrees
(like in the usual case) or terms of the same degree. Secondly, it is much
harder to “unravel” almost multiple solutions.

In order to circumvent the first problem, we first define the differential
Newton polynomial Np € C'{F'} associated to the “horizontal slope” (it actu-
ally turns out that Np is always of the form Np= Q (F')” with Q € C[F)).
Then the slope which corresponds to solutions of the form f=cm+ --- is
“admissible” if and only if Np, . admits a non-zero root in C. Here Py, is the
unique differential polynomial with Py (f)=P(m f) for all f. In section 8.4,
we next give a procedure for determining the admissible slopes. The second
problem is more pathological, because one has to ensure the absence of iter-
ated logarithms log; =logo !X olog with arbitrarily high [ in the expansions
of solutions. This problem is treated in detail in section 8.6.

The suitably adapted Newton polygon methods allows us to prove several
structure theorems about the occurrence of exponentials and logarithms into
solutions of algebraic differential equation. We also give a theoretical algo-
rithm for the determination of all solutions.
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The last chapter of this book is devoted to the proof the intermediate
value theorem for differential polynomials P € T{F}. This theorem ensures
the existence of a solution to P(f)=0 on an interval I =[g, h] under the
simple hypothesis that P admits a sign-change on I. The main part of the
chapter contains a detailed study of the non-archimedean geometry of T'. This
comprises a classification of its “cuts” and a description of the behaviour of
differential polynomials in cuts. In the last section, this theory is combined
with the results of chapter 8, and the interval on which a sign-change occurs
is shrunk further and further until we hit a root of P.

Notations

A few remarks about the notations used in this book will be appropriate.
Notice that a glossary can be found at the end.

1. Given a mapping f: A1 X --- X A, — B and S1 C Ay,...,5, C A,, we write
f(S1,...,Sn)={f(a1,...,an):a1 €S1,...,an € Sp}.

Similarly, given a set S, we will write S >0 or S<1if a>0 resp. a <1
for all a € S. These and other classical notations for sets are extended to
families in section 2.4.1.

2. We systematically use the double index convention (f;); = fi ;. Given a
set & of monomials, we also denote fe=)_ . fum (this is an exception
to the above notation).

3. Given a set S, we will denote by S~ its subset of strictly positive ele-
ments, S its subset of bounded elements, S<'= of negative infinitesimal
elements, etc. If S CC I is a set of series, then we also denote Sy =
{f-: f €S}, where f. = fop~, and similarly for Sy, S, etc. Notice that
this is really a special case of notations 1 and 2.

4. Intervals are denoted by (f, g), (f,9], [f,g) or [f, g] depending on whether
the left and right sides are open or closed.

5. We systematically denote monomials m,n,... in the fraktur font and fam-
ilies F, G, ... using calligraphic characters.

Those readers who are familiar with my thesis should be aware of the following
notational changes which occurred during the past years:

Former | X | | X |~ | X | | = SULrelft
New <=~ X[ =XI=Z|=Z =] f<
There are also a few changes in terminology:
Former New
normal basis transbasis

purely exponential transseries | exponential transseries
potential dominant — starting —
privileged refinement ~ unravelling
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Orderings

In this chapter, we will introduce some order-theoretical concepts, which pre-
pare the study of generalized power series in the next chapter. Orderings occur
in at least two important ways in this study.

First, the terms of a series are naturally ordered according to their asymp-
totic magnitudes. For instance, the support of 1+ z + 22+ - € R[[2]], considered
as an ordered set, is isomorphic to IN. More interesting examples are

ltaitzi+ - +tmtaztdat - +B+za+ - €Rlz]z]

and
L+ 2z + 2 + - +
2+ sz + Az o+
25 + 2125 + z2i28 + o+
+ o+ o+

€ R[[zlv ZQ]]?

whose supports are isomorphic to N x N and IN x N respectively. Here N x N
denotes the set N? with the total anti-lexicographical ordering

(m,n)<(m/,n') = ((n<n)V(m<m' An=n'))
and N x N denotes the set N? with the partial product ordering
(m,n)<(m/,n') = (m<m' An<n).

In general, when the support is totally ordered, it is natural to require
the support to be well-ordered. If we want to be able to multiply series, this
condition is also necessary, as shown by the example

(I4+z+22+-)Q+z" 427240,

For convenience, we recall some classical results about well-ordered sets and
ordinal numbers in section 1.2. In what follows, our treatment will be based on
well-quasi-orderings, which are the analogue of well-orderings in the context
of partial quasi-orderings. In sections 1.3 and 1.4, we will prove some classical
results about well-quasi-orderings.
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A second important occurrence of orderings is when we consider an algebra
of generalized power series as an ordered structure. For instance R[[z]] is natu-
rally ordered by declaring a non-zero series f, 2"+ fnr12" 14+ with f,#0
to be positive if and only if f, > 0. This gives R][z]] the structure of a so
called totally ordered R-algebra.

In section 1.5, we recall the definitions of several types of ordered alge-
braic structures. In section 1.6, we will then show how a certain number
of typical asymptotic relations, like <, <, < and ~, can be introduced in
a purely algebraic way. In section 1.8, we define groups and fields with gener-
alized exponentiations, and the asymptotic relations <, < < and &. Roughly
speaking, for infinitely large f and g, we have f < g, if f* < g for all A\. For
instance, £ < €%, but 2 < 299, for x — oo.

1.1 Quasi-orderings

Let E be a set. In all what follows, a quasi-ordering on F is reflexive and
transitive relation < on E; in other words, for all x, y, z € E we have

O1. z<x;

02. z<yANy<z=x< 2.

An ordering is a quasi-ordering which is also antisymmetric:

03. z<yAy<z=z=y.

We sometimes write <g instead of < in order to avoid confusion. A mapping
¢: E— F between two quasi-ordered sets is said to be increasing (or a mor-
phism of quasi-ordered sets), if x <y= p(z) < (y), for all xz, y € E.

Given a quasi-ordering F, we say that x,y € E are comparable if x <y
or y<z. If every two elements in F are comparable, then the quasi-ordering
is said to be total. Two elements z,y € E' are said to be equivalent, and
we write 2=y, if <y and y<z. If <y and y £z, then we write z <y
(see also exercise 1.1(a) below). The quasi-ordering on F induces a natural
ordering on the quotient set E/=by X <Y < (Vze X,VyeY ,x<y) and the
corresponding projection E— E /= is increasing. In other words, we do not
really gain in generality by considering quasi-orderings instead of orderings,
but it is sometimes more convenient to deal with quasi-orderings.

Some simple examples of totally ordered sets are &,{0},{0,1},... and N.
Any set E can be trivially quasi-ordered both by the finest ordering, for which
< y< x=y, and by the roughest quasi-ordering, for which all z, y € F satisfy
x < y. In general, a quasi-ordering < on E is said to be finer than a second
quasi-ordering <’ on F if x <y= 2 <’y for all z,y € E. Given quasi-ordered
sets E and F, we can construct other quasi-ordered sets as follows:

1. The disjoint union E'IT F' is naturally quasi-ordered, by taking the quasi-
orderings on E and F' on each summand, and by taking £ and F' mutually
incomparable. In other words,

r<pnry < (@€ENyEENz<py)V(xe FAyEF ANz <py).
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. Alternatively, we can quasi-order F'II F', by postulating any element in
to be strictly smaller than any element in F. This quasi-ordered set is
called the ordered union of E and F', and we denote it by FII F. In other

words,

r<pnry & r<pnryV(r€EANYEF).

. The Cartesian product F x F' is naturally quasi-ordered by
(z,y) <pxr (¢ y) & z<a’ Ay <y

. Alternatively, we can quasi-order E X F anti-lexicographically by
(z,y) <pxr (2, y) & (2,9) <exr (@, y)Vy<y"

We write E x F for the corresponding quasi-ordered set.

S <

E ja
< EIF ETF
ExF ExF

Fig. 1.1. Examples of some basic constructions on ordered sets.

. Let EV be the set of words over E. Such words are denoted by sequences
x1 - Ty (With 21,...,2, € E) or [271,..., 2] if confusion may arise. The empty
word is denoted by ¢ and we define E* = EY\ {¢}. The embeddability
quasi-ordering on EY is defined by x1 -+ T, <Y1 -+ Ym, if and only if there
exists a strictly increasing mapping ¢: {1,...,n} —{1,...,m}, such that

2; < Yp(i) for all i. For instance,

2,31,15,7] <nw [2,8,35,17,3,7,1];
2,31,15,7] xw [2,8,35,17,3,2,1].
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6. An equivalence relation ~ on F is said to be compatible with the quasi-
ordering if

r<yhe~z' ANy~y' =z'<y’
for all z,y,2’,y’ € E. In that case, £/~ is naturally quasi-ordered by
XY (VreX VyeY, z<py),
and the canonical projection m: E— E /~ is increasing.

If ¥ and F are ordered sets, then it can be verified that the quasi-orderings
defined in 1-6 above are actually orderings.

Let ¢: E— F be an increasing mapping between quasi-ordered sets (F, <)
and (F', <). Consider the quasi-ordering < on F defined by

Ty (@) <p(y).

Then < is finer than < and the mapping ¢ admits a natural factorization

(E,<) = (F.9)
l‘rr L . (1.1)

(E’<)/E< ? (Im(p,g)

Here 7 is the identity on F composed with the natural projection from (F, <)
on (F,=)/=x, ¢ is the natural inclusion of Im ¢ into F' and @ is an isomor-
phism.

Exercise 1.1. Let E be a set.

a) A strict ordering on E is a transitive and antireflexive relation < on E
(i.e. z <z for no elements x € E). Given a quasi-ordering < show that the
relation < defined by z < y<x < yAyFz is a strict ordering. Show also
how to associate an ordering to a strict ordering.

b) Let < be a quasi-ordering on E. Show that the relation > defined by = > y<
y <z is also a quasi-ordering on E; we call it the opposite quasi-ordering of <.

c) Let < be a quasi-ordering on E. Show that x <'y <z =y Vz <y defines an
ordering on E. Show that <'is the roughest ordering which is finer than <.

Exercise 1.2. Two quasi-ordered sets F and F' are said to be isomorphic, and
we write F = F'| if there is an increasing bijection between E and F', whose inverse
is also increasing. Prove the following;:

IT and x are commutative modulo 2 (i.e. EII F = FIIE), but not IT and x.

a)

b) II, %, IT and X are associative modulo 2.

¢) IT is distributive w.r.t. X modulo 2.

d) II is right (but not left) distributive w.r.t. X modulo = (in other words

Ex (FIIG)~(Ex F)IT1(E xG)).
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Exercise 1.3. Let E be a quasi-ordered set. We define an equivalence relation on
EY . by taking two words to be equivalent if they are obtained one from another
by a permutation of letters. We call E°= E"Y/~ the set of commutative words
over E/. Show that:

a) We define a quasi-ordering < on E by uveIwe E,u<wAv~w.

b) For all 1 -+ Zpm, Y1+ -+ Yym € E¥, we have 1 - &, S Y1 - - yn if and only if
there exists an injection ¢: {1,...,m} —{1,...,n} with @; <y, for all 7.

¢) The equivalence relation ~ is compatible with <, so that we may order E°
by the quotient quasi-ordering induced by <.

d) The quasi-ordering < is finer than < and we have a natural increasing sur-
jection EY — E°.

e) For all ordered sets E, F', prove that (F Il F)°X E°® x F°.

f) For all ordered sets E, F prove that there exists an increasing bijection
(EIL F)° — E° x F°, whose inverse is not increasing, in general.

Exercise 1.4. Let E and F be ordered sets and denote by .#(E, F) the set of
mappings from E into F. For ¢, € #(E, F), we define

p<Y <= VzeE,p(x)L(r)=>
Py >z, p(y) <v(y) A(Vz 2y, p(2) < P(2))).

Prove that < defines an ordering on .#(E, F). Also prove the following proper-
ties:

a) If A={0}11{0}, then #(A,B)~B x B.
b) If A={0,1}, then #(A, B)~ B X B.

¢) F(EFUF,G)>Z%(E,G)x Z(F,G).
d) Z(ENIF,G)~ % (E,G)x Z(F,G).

Exercise 1.5. Show that the category of quasi-ordered sets admits direct sums
and products, pull-backs, push-outs, direct and inverse limits and free objects
(i.e. the forgetful functor to the category of sets admits a right adjoint).

1.2 Ordinal numbers

Let E be a quasi-ordered set. The quasi-ordering on FE is said to be well-
founded, if there is no infinite strictly decreasing sequence in E. A total well-
founded ordering is called a well-ordering. A total ordering is a well-ordering
if and only if each of its non-empty subsets has a least element. The following
classical theorems are implied by the axiom of choice [Bou70, Mal79]:

Theorem 1.1. Every set can be well-ordered. ([l
Theorem 1.2. (Zorn’s lemma) Let E be a non-empty ordered set, such

that each non-empty totally ordered subset of E has an upper bound. Then E
admits a mazximal element. O
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An ordinal number or ordinal is a set «, such that the relation € forms
a strict well-ordering on «. In particular, the natural numbers can “be defined
to be” ordinal numbers: 0=@,1={0},2=1U{1},3=2U{2},.... The set
w={0,1,2,...} of natural numbers is also an ordinal. More generally, if « is
an ordinal, then so is a«U{a }. For all ordinals «;, its elements are also ordinals.

5 : eeo 0 0 @
W ee e
w2+1 : ee e o0 °
w2;... ® 0 0 - O O @ - e

Fig. 1.2. Some examples of ordinal numbers.

It is classical [Mal79] that the class of all ordinal numbers has all the
properties of an ordinal number: if «, § and 7 are ordinal numbers, then
a¢a,a€f=pFi¢a,aeBAEY=aEy,a€ BV FEaVa= [ and each non-
empty set of ordinals admits a least element for €. The following classification
theorem is also classical [Mal79]:

Theorem 1.3. Each well-ordered set is isomorphic to a unique ordinal. [

The usual induction process for natural numbers admits an analogue for
ordinal numbers. For this purpose, we distinguish between successor ordinals
and limit ordinals: an ordinal « is called a successor ordinal if a=FU{3}
for some ordinal # (and we write « =+ 1) and a limit ordinal if not (in
which case o= sea (). For example, the inductive definitions for addition,
multiplication and exponentiation can now be extended to ordinal numbers
as follows:

0 Successor ordinals §+ 1 | Limit ordinals A >0
+lat+0=0|a+(B+1)=(a+pf)+1|at+tA=Uz, o+l
X|a0=0| a(B+1)=(a-B)+ta | a- A=z a-pB

- 0_ +1_ A
a’=1 aPtl=ab. q a —Uﬁ@\aﬁ

Table 1.1. Basic arithmetic on ordinal numbers.

Similarly, one has the transfinite induction principle: assume that a prop-
erty P for ordinals satisfies P(a) = P(a+1) for all @ and (Va €\, P(a)) =
P(\) for all limit ordinals A. Then P(«) holds for all ordinals .

The following theorem classifies all countable ordinals smaller than w®,
and is due to Cantor [Can99]:

Theorem 1.4. Let a <w* be a countable ordinal. Then there exists a unique
sequence of natural numbers ng,...,ng (with ng>0 if d>0), such that
a=wt ng+ - +w-ny+ng. O

Exercise 1.6. Prove the transfinite induction principle.
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Exercise 1.7. For any two ordinals «, 3, show that

a) a+ B=allB;

b) - f=Zax (.

In particular, + and - are associative and + is right distributive w.r.t. -, by exer-
cise 1.2.

Exercise 1.8. For all ordinals «, 3 and -y, prove that
a) (aﬂ)vzaﬁ-v;
b) aPtr=abB.a".

Do we also have (a-3)Y=a?- 37?7

1.3 Well-quasi-orderings

Let E be a quasi-ordered set. A chain in E is a subset of E which is totally
ordered for the induced quasi-ordering. An anti-chain is a subset of F of pair-
wise incomparable elements. A well-quasi-ordering is a well-founded quasi-
ordering without infinite anti-chains.

A final segment is a subset F' of FE, such that r€e FAx<y=yeF,
for all x,y € F. Given an arbitrary subset A of F, we denote by

fin(A)={yeE:Jxc A,z <y}

the final segment generated by A. Dually, an initial segment is a subset [
of E, such that ye INz<y=x€l, for all z,y € E. We denote by

in(A)={yeE:Txe A, y<z}
the initial segment generated by A.

Proposition 1.5. Let E be a quasi-ordered set. Then the following are equiv-
alent:

a) E is well-quasi-ordered.

b) Any final segment of E is finitely generated.

¢) The ascending chain condition w.r.t. inclusion holds for final segments
of E.

d) FEach sequence x1,x2,... € E admils an increasing subsequence.

e) Any extension of the quasi-ordering on E to a total quasi-ordering on E
yields a well-founded quasi-ordering.

Proof. Assume (a) and let F' be a final segment of E. Let G={z € F:
Vye F,y<x=x =y} be the subset of minimal elements of F. Then G/=
is an anti-chain, whence finite. Let H C G be such that any = € G is equiva-
lent to exactly one y € H. We claim that G and thus H generates F'. Indeed, in
the contrary case, let 1 € F'\ fin(G). Since 21 is not minimal in F', there exists
an 2 € F\fin(G) with 21 > z5. Repeating this argument, we obtain an infinite
decreasing sequence x1 > 2> ---. This proves (b). Conversely, if 1, x9,... is an
infinite anti-chain or an infinite strictly decreasing sequence, then the final seg-
ment generated by {z1,x2,...} is not finitely generated. This proves (a)<(b).
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Now let F} C F5C --- be an ascending chain of final segments. If the final
segment F'=|J, F, is finitely generated, say by G, then we must have G' C F),,
for some n. This shows that (b)=-(c¢). Conversely, let G be the set of minimal
elements of a final segment F. If x1,xo,... are pairwise distinct elements of G,
then fin(z1) & fin(z1,22) & -+ forms an infinite strictly ascending chain of final
segments.

Now consider a sequence x1, xs,... of elements in F, and assume that <
is a well-quasi-ordering. We extract an increasing sequence x;,, ;,,... from it
by the following procedure: Let F;, be the final segment generated by the x,
with k >4, and x> x;, (Fo=FE by convention) and assume by induction
that the sequence x1,xo,... contains infinitely many terms in F,. Since Fj, is
finitely generated by (b), we can select a generator x;, , ,, with i, 11>, and
such that the sequence x1,xs,... contains infinitely many terms in F;, 1. This
implies (d). On the other hand, it is clear that it is not possible to extract
an increasing sequence from an infinite strictly decreasing sequence or from
a sequence of pairwise incomparable elements.

Let us finally prove (a)<(e). An ordering containing an infinite anti-chain
or an infinite strictly decreasing sequence can always be extended to a total
quasi-ordering which contains a copy of —IN, by a straightforward application
of Zorn’s lemma. Inversely, any extension of a well-quasi-ordering is a well-
quasi-ordering. |

The most elementary examples of well-quasi-orderings are well-orderings
and quasi-orderings on finite sets. Other well-quasi-orderings can be con-
structed as follows.

Proposition 1.6. Assume that E and F are well-quasi-ordered sets. Then

a) Any subset of E with the induced ordering is well-quasi-ordered.

b) Let p: E— F be a morphism of ordered sets. Then Im ¢ is well-quasi-
ordered.

¢) Any quasi-ordering on E which extends <g is a well-quasi-ordering.

d) E/~ is well-quasi-ordered, for any compatible equivalence relation ~ on E.

e) EIIF and ETLF are well-quasi-ordered.

f) Ex F and E X F are well-quasi-ordered.

Proof. Properties (a), (b), (e) and (f) follow from proposition 1.5(d). The

properties (c) and (d) are special cases of (b). O
Corollary 1.7. (Dickson’s lemma) For each n € N, the set N™ with the
partial, componentwise ordering is a well-quasi-ordering. ([l

Theorem 1.8. (Higman) Let E is be a well-quasi-ordered set. Then EV is
a well-quasi-ordered set.

Proof. Our proof is due to Nash-Williams [NW63]. If < denotes any quasi-
ordering, then we say that (x1,z9,...) is a bad sequence, if there do not exist
i < j with z; <x;. A quasi-ordering is a well-quasi-ordering, if and only if there
are no bad sequences.
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Now assume for contradiction that s = (wq, ws,...) is a bad sequence
for <gw. Without loss of generality, we may assume that each w; was chosen
such that the length (as a word) of w; were minimal, under the condition that

U)l'EEW\ﬁIl(’wl,. .. 7’wi_1).

We say that (w1, ws,...) is a minimal bad sequence.

Now for all ¢, we must have w; # ¢, so we can factor w; = x; u;, where z;
is the first letter of w;. By proposition 1.5(d), we can extract an increasing
sequence Zj,, T, ... from x1,x2,.... Now consider the sequence

/
S = (UJl, ey Wiy —1 Ugqyy Ugy, - - )

By the minimality of s, this sequence is good. Hence, there exist j < k with
u;; <pw Ui, But then,

Wi, = Ti; Ui, SEY Tiy, Uiy, = Wiy,

which contradicts the badness of s. O

Exercise 1.9. Show that E is a well-quasi-ordering if and only if the ordering
on E/= is a well-quasi-ordering.
Exercise 1.10. Prove the principle of Noetherian induction: let P be a property

for well-quasi-ordered sets, such that P(FE) holds, whenever P holds for all proper
initial segments of E. Then P holds for all well-quasi-ordered sets.

Exercise 1.11. Let E and F be well-quasi-ordered sets. With .#(E, F) as in
exercise 1.4, when is #(E, F) also well-quasi-ordered?

Exercise 1.12. Let E be a well-quasi-ordered set. The set In(E) of initial seg-
ments of FE is naturally ordered by inclusion. Show that In(E) is not necessarily
well-quasi-ordered. We define E to be a strongly well-quasi-ordered set if In(F)
is also well-quasi-ordered. Which properties from proposition 1.6 generalize to
strongly well-quasi-ordered sets?

Exercise 1.13. A limit well-quasi-ordered set is a well-quasi-ordered set F/, such
that there are no final segments of cardinality 1. Given two well-quasi-ordered
sets E and F', we define F and F to be equivalent if there exists an increasing
injection from F into F' and vice versa. Prove that a limit well-quasi-ordered set
is equivalent to a unique limit ordinal.

1.4 Kruskal’s theorem

An unoriented tree is a finite set T of nodes with a partial ordering <7, such
that T admits a minimal element root(T"), called the root of T, and such
that each other node admits a predecessor. Given a,b €T, we recall that a is
a predecessor of b (and b a successor of a) if a <pb and ¢ <ra for any c€ T with
c<7b. A node without successors is called a leaf. Any node a € T naturally
induces a subtree T, ={b€T:b>ra} with root a. Since T is finite, an easy
induction shows that any two nodes a,b of T' admit an infimum a Ab w.r.t. <7,
for which a Ab<7a, aANb<7band c<raAb for all ceT with ¢ <7ra and ¢ <rb.
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An oriented tree (or simply tree) is an unoriented tree T', together with
a total ordering <7 which extends <7 and which satisfies the condition

adrbhadrbha<ra’ ANb<rb' = a’ <r b

It is not hard to see that such a total ordering <7 is uniquely determined by
its restrictions to the sets of <r-successors for each node a.

Two unoriented or oriented trees T' and U will be understood to be equal
if there exists a bijection ¢:T — U which preserves < resp. < and <. In
particular, under this identification, the sets of unoriented and oriented trees
are countable.

Given a set F, an FE-labeled tree is a tree T together with a labeling
I:T— E. We denote by ET the set of such trees. An E-labeled tree T" may
be represented graphically by

T= (1.2)

N
T o T,

where x=1[(root(T)) and Ty =T,,,,...,T;,=T,, € ET are the subtrees associated
to the successors a; <7 -+ <1 a, of root(T). We call Ty,...,T, the children
of the root and n its arity. Notice that we may have n=0.

Ezample 1.9. We may see usual trees as {e}-labeled trees, where {e} is the set
with one symbolic element e. The difference between unoriented and oriented
trees is that the ordering on the branches is important. For instance, the two
trees below are different as oriented trees, but the same as unoriented trees:

N N
NN AANTA

ATA

If E is a quasi-ordered set, then the embeddability quasi-ordering on ET is
defined by T'<gvT’, if and only if there exists a strictly increasing mapping
@: T— T for <, such that p(a Ab)=p(a) A p(b), and l(a) <gl(p(a)), for all
a,beT. An example of a tree which embeds into another tree is given by

6 <nT 7
NN
N
1 2 5131/1\1

58
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The following theorem is known as Kruskal’s theorem:
Theorem 1.10. If E is a well-quasi-ordered set, then so is E .

Proof. Assume that there exists a bad sequence T1,T5,.... We may assume
that we have chosen each

of minimal cardinality (assuming that 73,...,7;_1 have already been fixed),
ie. 11,T5,... is a “minimal bad sequence”. We claim that the induced quasi-
ordering on S ={T; ;: j < n;} is a well-quasi-ordering. Indeed, suppose the
contrary, and let

T T

1,510 Lig, gos e -+

be a bad sequence. Let k be such that i; is minimal. Then the sequence

T17 .. ~7Ek—17ﬂk,jkaﬂk+lvjk+l7 e

is also bad, which contradicts the minimality of T3,75,.... Hence, S is well-
quasi-ordered, and so is E x S¥, by Higman’s theorem and proposition 1.6(f).
But each tree T; can be interpreted as an element of E x S™. Hence, {T},75,...}
is a well-quasi-ordered subset of E T, which contradicts our assumption that
11,75, ... is a bad sequence. O

Remark 1.11. In the case when we restrict ourselves to trees of bounded arity,
the above theorem was already due to Higman. The general theorem was
first conjectured by Vazsonyi. The proof we have given here is due to Nash-
Williams.

Exercise 1.14. Let X be a quasi-ordered set and let 2 be an ordered set of
operations on X. That is, the elements of 2 are mappings f: X™ — X. We say
that such an operation f is extensive, if for all z € X™ and 1 <7< ny, we have

xX; <Xf(x1,.. .,Jinf)

We say that the orderings of X and 2 are compatible, if for all f <qg, x€ X™
and y € X™, we have

f(xlv . '71:nf) ng(ylv R ygn)7

whenever there exists an increasing mapping ¢: {1,...,ns} — {1,...,n,} with
i <x Yo(i) for all 1< <y

Assume that these conditions are satisfied and let G be a subset of X. The
smallest subset of X which contains G and which is closed under €2 is said to
be the subset of X generated by G w.r.t. Q, and will be denoted by (G)q. If G
is a well-quasi-ordered subset of X and the ordering on €2 is well-quasi-ordered,
then prove that (G)gq is well-quasi-ordered.
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1.5 Ordered structures

In what follows, all monoids, groups and rings will be commutative and all
rings unitary. The following ordered structures will be encountered frequently
throughout this book. Recall that we systematically understand all orderings
to be partial (contrary to what is customary for certain structures).

e An ordered monoid is a monoid X with an ordering < such that
OM. y<y'&ry<zy
for all z,y,y’ € X. If X is an additive monoid, then OM becomes
OA. y<y'ezt+y<z+y

e An ordered ring is a ring R with an ordering < with the following prop-
erties:

OR1. 0<1;
OR2. z<yAr' <y =a+2'<y+9y;
OR3. 0<zN0<L<y=0<zy,

for all z,y,z',y’ € R.

e An ordered field is a field K with an ordering < which makes K an ordered
ring and such that 0 <z =0<x~?! for all z € K. Notice that this latter
condition is automatically satisfied if < is total.

e An ordered R-module over an ordered ring R is an R-module M with an
ordering < which satisfies
OM1. z<yAz'<y'=z+2'<y+y';

OM2. 0K ANO<2=0< Az,
forall A€ R and x,y,xz’,y’ € M. Any abelian group is trivially an ordered
Z-module.

e An ordered R-algebra is a morphism ¢: R — A of ordered rings, i.e. an
increasing ring morphism of an ordered ring R into an ordered ring A.
As usual, we denote Ax = (M) x, for A€ R and = € A. Notice that A is in
particular an ordered R-module. Any ordered ring R is trivially an ordered
Z-algebra.

Let S be an ordered abelian group, ring, R-module or R-algebra. We denote

5S> = {zeS:x>0};
Sz = {zeS:z>0};
S7 = {x€S:240};
SS = {xeS:2<0};
S< = {zeS:x<0}.
We observe that the ordering < is characterized by SZ. If S is totally ordered,

then we define the absolute value of x €S by |z|=x if x>0 and |z|=—x,
if £<0.
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Example 1.12. Q and R are the most common examples of totally ordered
fields. N and 7Z are respectively a totally ordered monoid and a totally ordered
group. The complex numbers form an ordered abelian group when setting
u < v< Reu <Rewv. However, this ordering is partial and not compatible
with the multiplication. Notice that » and u+ yi are incomparable for u € C
and y € R7.

Example 1.13. The ring of germs at 400 of infinitely differentiable real valued
functions on intervals (a, +00) with a € R can be ordered by f < g, if there
exists an zo € R, such that f(z) < g(x) for all z >z. A totally ordered subfield
of this ring is called a Hardy field.

Example 1.14. The above definitions naturally generalize to the case of quasi-
orderings instead of orderings. If A is a quasi-ordered abelian group, then A/=
is an ordered abelian group, and similarly for quasi-ordered rings, R-mod-
ules, etc.

Example 1.15. Let A and B be two quasi-ordered abelian groups, rings,
R-modules or R-algebras. Their direct sum A& B:= A x B is naturally quasi-
ordered by the product quasi-ordering

(r,y) < (2, y) er<a’ Ay <y

Similarly, the anti-lexicographical direct sum A® B:= A x B of A and B is
A x B with the anti-lexicographical quasi-ordering

(z,y)< (@ y) e (@<’ ANy=y)Vy<y’
If A and B are ordered, then so are A® B and A& B.

Example 1.16. Let A and B be two quasi-ordered abelian groups, rings,
R-modules or R-algebras. Their tensor product A ® B is naturally quasi-
ordered, by declaring an element of A ® B to be positive if it is a sum of
elements of the form z ® y with x >0 and y > 0. Similarly, we define the
anti-lezicographical tensor product A® B: its set of positive elements is addi-
tively generated by elements in A ® B of the form x @ y+x1 Q y1+ - + T @ Yn,
with z,y>0and yan R+ - +yn R< y.

Exercise 1.15. Let R be a totally ordered integral domain and let K be its

quotient field.

a) Show that  >r0Ay >r 0=z y >g0, for all z,y € R.

b) If <g is a total ordering, then show that there exists a unique total ordering
on K, which extends <g, and for which K is an ordered field.

Exercise 1.16. Let R be a totally ordered ring.

a) Show that ry=0= (22=0V y2=0), for all z,y € R. In particular, if R
contains no nilpotent elements, then R is an integral domain.

b) Show that R may contain nilpotent elements.

¢) Show that R may contain zero divisors which are not nilpotent.

d) Show that positive non-nilpotent elements are larger than any nilpotent
element in R.
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Exercise 1.17. Let A, B and C be quasi-ordered rings. Prove the following

properties:

a) (ADB)®CZAP(BOC)and (AODB)DC=2AD (B O);

b) (A®RB)RC~2A®(B®C)and (ARB)RC=2AR(BRC(C);

) AR (BOC)Z(A®B)®(A®C) and (AdB)CZ(ARC)®(BRC);

d) AR (BOC)Z(A®B)$ (ADC), but not always (AGB)@C=2(ARC)d
(BeC).

Exercise 1.18.

a) Show that the categories of ordered abelian groups, rings, R-modules and
R-algebras (its morphisms are increasing morphisms of abelian groups,
rings, etc.) admit direct sums and products, pull-backs, push-outs, direct
and inverse limits and free objects (i.e. the forgetful functor to the cat-
egory of sets admits a right adjoint).

b) Show that the same thing holds for the categories of ordered torsion free
groups, rings without nilpotent elements, torsion free R-modules and ordered
R-algebras A without nilpotent elements, and such that the mapping R— A,
A— A-1 is injective.

¢) What can be said about the operations @ and ® introduced above?

Exercise 1.19. Let S be an ordered abelian group, ring, R-module or R-algebra.
‘We wish to investigate under which circumstances the ordering < can be extended
into a total ordering.

a) If S is an ordered abelian monoid, prove that < can be extended into a total
ordering if and only if S is torsion free (i.e. nx=0=2x =0, for all n >0 and
z € S). Hint: use Zorn’s lemma.

b) If S is an ordered ring without nilpotent elements, prove that < can be
extended into a total ordering if and only if S is an integral domain, such that

ai+ - +aZ+ B3+ -+ b)) r=0=0a,=0,

for all ay,...,an,b1,...,bm, x €5, such that £ > 0. Hint: first reduce the
problem to the case when all squares in S are positive. Next reduce the
problem to the case when a >0Ab>0Aax=b=z>0, for all a,b,z € S.
¢) Generalize b to the case when S is an ordered ring, which may contain
nilpotent elements.
d) Give conditions in the cases when S is an ordered R-module or an ordered
R-algebra without nilpotent elements.

Exercise 1.20. Let S be an ordered group, ring, R-module or R-algebra. For
each morphism ¢:S— T of S into a totally ordered structure 7" of the same kind
as S, we define a relation <, on S by z<,y< ¢(z) < ¢(y). Let E be the set of
all such relations <, on §.
a) Prove that %: ﬂg,eE <’ is a quasi-ordering.
b) Show that < is an ordering, if and only if < can be extended into a total
ordering on S.
¢) Let = the equivalence relation associated to < and let $=5/Z. Show that
the ordered set S can be given the same kind of ordered algebraic structure
as S, in such a way that the natural projection 7: S — Sis a morphism. We
call S the closure of S.
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d) S issaid to be perfect if 7 is a bijection. Prove that the closure of S is perfect.

e) Show that an ordered abelian group S is perfect if and only if nz>0=2>0,
foralln>0and x € S.

f) Show that an ordered ring without nilpotent elements is perfect, if and only
if 2220, forallz€S and az=bAa>0Ab>0=2>0, for all a,b,z € S.

g) Under which conditions is an ordered R-module perfect? And an ordered R-
algebra without nilpotent elements?

1.6 Asymptotic relations

Let f and g be two germs of real valued functions at infinity. Then we have
the following classical definitions of the domination and neglection relations <
resp. <:

fgg & f=0(9) & FCeR,JxgeR,Va 20, |f(2)| <C |g(x)]
f=<g & f=o0(g) & Ve>0,3zgeR,Vz=x(|f(2)]<elg(z)|

Considered as relations on the R-algebra of germs of real valued functions at
infinity, < and < satisfy a certain number of easy to prove algebraic proper-
ties. In this section, we will take these properties as the axioms of abstract
domination and neglection relations on more general modules and algebras.

Let R be aring and M an R-module. In all what follows, we denote by R*
the set of non-zero-divisors in R. A dominance relation is a quasi-ordering <
on M, such that for all A€ R, y € R* and x, y,z € M, we have

D1. (zxzAy=xz2)=>r—y=<xz;
D2. ez and yx py.

Notice that D1 and D2 imply that Oy ={z € M:x <y} is a submodule of M
for each y € M. If = <y, then we say that x is dominated by y, and we also
write £ =0O(y). If x <Xy and y <z, then we say that = and y are asymptotic,
and we also write z < y. We say that < is total, if txyory<zforallx,ye M.

A neglection relation is a strict ordering < on M (i.e. an anti-reflexive,
transitive relation), such that for all A€ R and p € R* and =, y,z € M, we have

N1. (z<zAy<z)=zx—y=<z;
N2. z<y=Ar<pyand py<irz=y<z.
N3. (z<zAy<z)=zx<y+=z.

Notice that oy={z € M:x <y} is a submodule of M if 0 € 0,. However, this is
not always the case, since 0 £0. If x <y, then we say that x can be neglected
w.r.t. y, and we also write z =o0(y). If z — y <, then we also say that x and y
are equivalent, and we write = ~y. Indeed, ~ is an equivalence relation:

r~vy=> (2 —y<zANYy—<2)=>r—yY<y=>y—c<y=y~.
Similarly,

(z~yNy~z)=>(—y<yhy—z<y)=>y—z=<(x—y)+y=z,
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whence
(x~yANy~z)=(r—y<TANYy—2=<2)=>r—2<T=>T~2.

We say that < is compatible with a dominance relation %, if z <y=x <y and
r~y=x =y, for all x,y € M. We say that < and < are associated, if < is
the strict ordering associated to <, i.e. <y< (zxyAy#z) forall z,y € M.
We call M an asymptotic R-module, if it comes with a dominance relation
and a compatible neglection relation.

Proposition 1.17.

a) Let X be a dominance relation such that the strict ordering < associated
to < satisfies N1 and N2. Then < also satisfies N3.

b) Let < and < be a dominance and a neglection relation. If < and < are
associated, then they are compatible.

Proof. Assume that < satisfies the condition in (a), and let x,y,z € M be
such that z <z and y < z. If 24 y+ 2, then y+ z < z implies y + z < z and
z < z: contradiction. Hence, we have 2 y+z and x <2<y + 2.

As to (b), assume that < and < are associated. Then we clearly have
r<y=z=<y. Furthermore, r~y=2 —y<r=1r—y<xr=y<z. Similarly,
r~y=>y~zr=x=<y. Hence,z~y=zxy. O

Proposition 1.18. Let K be a totally ordered field and V an ordered K-vector
space. Then V is an asymptotic K-vector space for the relations < and <
defined by

r=xy & VieK,Jue K, Ax< uy;
<y & Jue K, VIeK,  x<puy.

Moreover, if V is totally ordered, then < is associated to <.

Proof. Let us first show that < is a quasi-ordering. We clearly have z < x for

allz eV since Az < Az forall \e K. If x5 y<2zand A\ € K, then there exists

ape K with Az <<pyand ave K with Ax < py<vz. Let us next prove D1.

Assume that £ <z and y <z and let A € K. Then there exist u,rv € K with

Arx<pzand —Ay<vz, whence A(z —y) < (u+v)z As to D2, let €V,

a€ K and g€ K*. Then for all \€ K, we have A\az < Aax and Az < (\/ ) fz.
In order to prove the remaining relations, we first notice that

<y < (0<yVvVOo>y)AVAeK, Az <]yl|).

Indeed, if x <y, then there exists a € K with Az < py for all A. In particular,
0 < py, whence either 0 <y (if 4 >0) or 0< —y (if p<0). Furthermore, for all
A€ K, we have A |u|x < py, whence Az < |y|. Let us show that < is a strict
ordering. We cannot have x <z, since |z| £ |z|. If 2 <y < 2, then we have
Az <|y|<|z]| for all A€ K.
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Let us now prove N1. If x <z, y <z and A € K, then 2 Az <|z| and
—2 Ay <|z|, whence AM(z —y) <|z|]. Asto N2,let a € K, € K*and A€ K. If
x <y, then (Aa/|B])x <|y|, whence Aa < |By|. If Sz <ay, then a#0 and
(A ||/ B) Bx <|ayl, whence Az < |y|. Let us finally prove N3. Assume that

x<z,y<zand A€ K. Then 2y < |z| implies %\z| <|y+z|. From 2z <|z|
it thus follows that )\x<é|z\ <ly+z|.

Assuming that V is totally ordered, the relation < is associated to <,
since z < y< y # x. In general, we clearly have x < y =z < y. Furthermore, if
x~y, then both y —z <|z| and z <|z|, whence y < 2|z|. Similarly, x <2]y]|,
so that x < y. O

If R is a totally ordered domain, then its ring of quotients 2(R)=(R*)"' R
is a totally ordered field. Moreover, for any ordered, torsion-free R-module M
with A>0AAx>0=2>0 for all A€ R and z € M, the natural map M —
2(R) @z M is an embedding. Here an element of 2(R)®r M is positive
if it is a sum of elements of the form z ® y with £ >0 and y >0, as in
example 1.16. This allows us to generalize proposition 1.18 to the case of
totally ordered rings.

Corollary 1.19. Let R be a totally ordered domain and M an ordered, tor-
sion-free R-module as above. Then M is an asymptotic R-module for the
restrictions to M of the relations < and < on 2(R) ®r M. Moreover, if M
is totally ordered, then < is associated to <. [l

Assume now that A is an R-algebra. A dominance relation on A is defined
to be a quasi-ordering <, which satisfies D1, D2 and for all z,y,z € A:

D3. zxy=>z2<xky=z.

A neglection relation on A is a strict ordering <, which satisfies N1, N2, N3,
and for all z,y € A and z € A*:

N4. z<y=z2<y=z.

An element x € A is said to be infinitesimal, if  <1. We say that x is bounded,
if <1 (and unbounded if not). Elements with 2 <1 are called archimedean. If
all non-zero elements of A are archimedean, then A is said to be archimedean
itself. In particular, a totally ordered ring said to be archimedean, if it is
archimedean as an ordered Z-algebra. If < and < are compatible, then we
call A an asymptotic R-algebra.

Proposition 1.20. Let R be a totally ordered domain and A a torsion-
free, totally ordered R-algebra. Define the relations < and < on A as in
corollary 1.19. Then A is an asymptotic R-algebra and < is associated to <.

Proof. Let x,y,z € A be such that x < y, and let A € 2(R). Then there exists
a p€2(R) with Az < py. If 2>0, then we infer that Az z < pyz, whence
rz=<yz. If 2<0, then we obtain —x z < —y z, whence again x z < y 2z, by D2.
This proves D3. As to N4, let x,y,z € A be such that = < y. Then for all
A€ 2(R), we have (Az/|z]|)x <|y|, whence Az z=(Az/|z|)z |z| <|yz|. O
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Example 1.21. Let A be a totally ordered R-algebra. We may totally order
the polynomial extension Ale] of A by an infinitesimal element & by setting
ag+ay e+ - +aqe?>0, if and only if there exists an index i with ag=---=
a;—1=0<a;. This algebra is non-archimedean, since 1 > ¢ > €2 ... Similarly,
one may construct an extension A[w] with an infinitely large element w, in
which 1 <w<w? <.

Exercise 1.21.

a) Given a totally ordered vector space V over a totally ordered field K, show
that

r<sy & INEK,|z|<Ay;
<y & VAEK, Az <|y|.

b) Given a totally ordered module M over a totally ordered ring R, show that

rxy & INER,Jpe R |uz|<Ay;
r<y & VAER,VueR" Az <|pyl|

Exercise 1.22. Let A be a totally ordered ring. Is it true that the relations <
and < are totally determined by the sets of infinitesimal resp. bounded elements
of A?

Exercise 1.23. Prove that the sets of infinitesimal and bounded elements in
a totally ordered ring A are both convex (a subset B of A is convez if for
all z,z€ B and y € A, we have © < y < z=y € B). Prove that the set of
archimedean elements has two “convex components”, provided that 0 < 1.

Exercise 1.24. Show that the nilpotent elements of a totally ordered ring A
are infinitesimal. Does the same thing hold for zero divisors?

Exercise 1.25. Let K be a field. We recall that a valuation on K is a mapping
v: K*—T of K* into a totally ordered additive group, such that

V1. v(zy)=v(z)+v(y) for all z,y € K*.
V2. v(z+y) > min (v(z),v(y)), for all z,y € K* with x +y € K*.

Show that the valuations on K correspond to total dominance relations.

Exercise 1.26.

a) Let R be any ring and define z 5 y, if and only if Vz€ R, yz2=0=22=0,
for all ,y € R. Show that < is a domination relation, for which R is the set
of bounded elements, and R* the set of archimedean elements.

b) Assume that R is a ring with a compatible dominance relation and neglection
relation. Show that we may generalize the theory of this section, by replacing
all quantifications over A € R resp. u € R* by quantifications over A <1
resp. u < 1. For instance, the condition D2 becomes z < y= Az < puy for
all z,ye M, A1 and px1.
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Exercise 1.27. Let R be a perfect totally ordered ring and M a perfect ordered
R-module. Given z,y € M, we define x <y resp. = <y, if ¢o(x) < p(y) resp.
»(z) < p(y) for all morphisms ¢: M — N of M into a totally ordered R-module N.
Prove that < and < compatible domination and neglection relations. Prove
that the same thing holds, if we take a perfect ordered R-algebra A instead of M.

Exercise 1.28. Let M be an R-module with a dominance relation <. Let D
be the set of total dominance relations <’ on M, with <’ D <. Prove that

<=Nzep="

1.7 Hahn spaces

Let K be a totally ordered field and V' a totally ordered K-vector space. We
say that V' is a Hahn space, if for each x,y € V with x <y, there exists a A € K,
with z~ \y.

Proposition 1.22. Let K be a totally ordered field and V a finite dimensional
Hahn space over K. Then V admits a basis by, ..., b, with by <--- <b,.

Proof. We prove the proposition by induction over the dimension n of V. If
n =0, then we have nothing to prove. So assume that n >0, and let H be
a hyperplane in V' of dimension n — 1. By the induction hypothesis, H admits
abasisar < <an_1.

We claim that there exists an x € V' \ H, such that z is asymptotic to none
of the a;. Indeed, if not, let ¢ be minimal such that there exists an x € V' \ H
with x =< a;. Since V is a Hahn space, there exists a A € K with z~ Aa;. Then
x — Aa; < a;, whence ¢ — A a; < a; with j <4, since x —Aa; € V \ H. This
contradicts the minimality of 7.

So let x € V' \ H be such that z is asymptotic to none of the a;. Since
x<a;Vr=xa;Vae-a;for all i, the set {ay,...,a,_1,2} is totally ordered
w.r.t. <. ([l

Exercise 1.29. Show that any totally ordered R-vector space is a Hahn space.
Do there exist other totally ordered fields with this property?

Exercise 1.30. Let K be a totally ordered field and V a finite dimensional
Hahn space over K. Assume that b; <--- <b, and bj < ... <b}, are both bases
of K and denote by B resp. B’ the column matrices with entries b1,...,b, resp.
bi,...,bs,. Show that B’=T B for some lower triangular matrix T

Exercise 1.31.

a) Prove that each Hahn space of countable dimension admits a basis which is
totally ordered w.r.t. <.

b) Prove that there exist infinite dimensional Hahn spaces, which do not admit
bases of pairwise comparable elements for <.
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1.8 Groups and rings with generalized powers

Let G be a multiplicative group. For any x € G and n € Z, we can take the
n-th power z™ of z in G. We say that GG is a group with Z-powers. More
generally, given a ring R, a group with R-powers is an R-module G, such that
R acts on G through exponentiation. We also say that G is an exponential
R-module. If R and G are ordered, then we say that G is an ordered group
with R-powers if 1 <z AN0<a=1<z% for all z € G and o € R.

Ezxample 1.23. Let G be any group with R-powers and let S be an R-algebra.
Then we may form the group G°® with S-powers, by tensoring the R-mod-

ules G and S. However, there is no canonical way to order G°% if G, R and S
are ordered.

A ring with R-powers is a ring A, such that a certain multiplicative sub-
group A* of A carries the structure of a group with R-powers. Any ring A
is a ring with Z-powers by taking the group of units of A for A*. If A is an
ordered ring, then we say that the ordering is compatible with the R-power
structure if

Ve e AX VAER, 2>0=2">0.

An ordered field with R-powers is an ordered field K, such that the ordered
group K* = K~ of strictly positive elements in K has R-powers.

Ezample 1.24. The field C(z) is a field with Z-powers by taking C(z)* =
C(z)7. The field R(x) is a totally ordered field with Z-powers for the ordering

f>0 < Jxge R, Vo > xg, f(x) > 0.

from example 1.13.

Let A be an asymptotic ring with R-powers, i.e. A is both an asymptotic
ring and a ring with R-powers, and 1 5z or z <1 for all z € A*. Given z € A,
we denote ||z|| =z if x3=1 and ||z|| =2~! otherwise. Then, given z,y € A%,
we define

r=<Xy & INeR,IpeR" 2" gy
Ty < VYAER,Vue R 2 <|y",

and we say that x is flatter than y resp. flatter than or as flat as y. If
x Xy <Xz, then we say that = is as flat as y and we write = = y. Given
x € K*, the set of y € K* with y =X« is also called the comparability class of
x. Finally, if y/x < 2, then we say that « and y are similar modulo flatness,
and we write z = y.

Example 1.25. Consider the totally ordered field R(x)(e®) with Z-powers and
the natural asymptotic relations < and < for £ — co. Then we have r < e*,
o7 X 1010002 and o7 g 1 10007,
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Let A be an asymptotic ring with R-powers and consider a subring A” with
R-powers such that A”* = A" N AX. The subring A° is said to be flat if

Vo e AX Vyc AX o Ky= (Fo' € AX 2’ <x).
In that case, we define

rxty & Joe X r<xoy;
r=<ty & YoeA»* <oy,

for 2,3 € A. In virtue of the next proposition, we call <% a flattened dominance
relation and <% a flattened neglection relation.

Proposition 1.26.

a) A is an asymptotic ring with R-powers for <* and <.
b) If < and < are associated and for all x,y € A and p € A>* we have

TSXYNpyRr=2<9Y, (1.3)

then <! and <! are associated.

Proof. Assume that x <"z and y <z so that < ¢ z and y < v z for certain
@, € A%, We also have ¢ <1 or 1) < ¢, so, by symmetry, we may assume
that ¢ < ¢. Now x < ¢ 2z, whence x — y < ¢ z, which proves D1. We trivially
have D2, since z < y=x <y for all z,y € A. The properties D3, N1, N2, N3,
N4 and the quasi-ordering properties directly follow from the corresponding
properties for < and <.

Assume now that x <*y. Then in particular = <y, whence z < y and
x <%y. Furthermore, if we had y <*z, then we would both have y < ¢« and
x < o1y for some ¢ € A”* which is impossible. This proves that = <fy=
r<fyny£ia.

Conversely, assume that we have z <%y and y %%z, together with (1.3).
Then z < ¢y for some p € A>* and y % 1z for all 1) € A>*. Given ¢ € A»*,
we then have 1y £ z, since otherwise y < ¢ ~'z. Applying (1.3) to x, ¢y and
1o~ 1, we conclude that z <1y and x <. O

Ezample 1.27. Given an element ¢ € A, we may take A° = (x € AX:x < ¢) to
be the ring generated by all x € A* with £ =< ¢. Then we define

e = <
<, = <4

We may also take A°= (z € AX: 2 = ¢), in which case we define

42‘; = <ﬁ
<5 = <

For instance, if A=R(z)(e?), then x1%e® <. e?®, 210e® we® and f <% g for
all f,ge A7,
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Exercise 1.32. Let K be a totally ordered field with R-powers and let L be its
smallest subfield with R-powers.

a) Show that K has a natural asymptotic L-algebra structure with R-powers.
b) Show that < and < are characterized by

z<y © INER,3Ipe R |lz"]| < v
Ty < VAER,Vue Rz <|y"|.

Exercise 1.33. Consider A* as a “quasi-ordered vector space” for < and the R-
power operation. Show that we may quotient this vector space by < and that <
and < correspond to the natural dominance and neglection relations on this
quotient.
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Grid-based series

Let C be a commutative ring, and 9t a quasi-ordered monomial monoid. In
this chapter, we will introduce the ring C'[9] of generalized power series in
M over C. For the purpose of this book, we have chosen to limit ourselves
to the study of grid-based series, whose supports satisfy a strong finiteness
property. On the other hand, we allow 9t to be partially ordered, so that
multivariate power series naturally fit into our context. Let us briefly discuss
these choices.

In order to define a multiplication on C'[9], we have already noticed
in the previous chapter that the supports of generalized power series have to
satisfy an ordering condition. One of the weakest possible conditions is that
the supports be well-based and one of the strongest conditions is that the
supports be grid-based. But there is a wide range of alternative conditions,
which correspond to the natural origins of the series we want to consider (see
exercises 2.1 and 2.7). For instance, a series like

1.1 1
f=ct—+

xn2+...

is the natural solution to the functional equation

fl@)=a=1+ f(am).

However, f is not grid-based, whence it does not satisfy any algebraic differ-
ential equation with power series coefficients (as will be seen in chapter 8).

Actually, the setting of grid-based power series suffices for the resolution
of differential equations and that is the main reason why we have restricted
ourselves to this setting. Furthermore, the loss of generality is compensated
by the additional structure of grid-based series. For example, they are very
similar to multivariate Laurent series (as we will see in the next chapter) and
therefore particularly suitable for effective purposes [Hoe97]. In chapter 4, we
will also show that grid-based “transseries” satisfy a useful structure theorem.
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Although we might have proved most results in this book for series with
totally ordered supports only, we have chosen to develop theory in a partially
ordered setting, whenever this does not require much additional effort. First of
all, this lays the basis for further generalizations of our results to multivariate
and oscillating transseries [Hoe97, HoeOla|. Secondly, we will frequently have
to “fully expand” expressions for generalized series. This naturally leads to
the concepts of grid-based families and strong linear algebra (see sections 2.4,
2.5.3 and 2.6), which have a very “partially-ordered” flavour. Actually, certain
proofs greatly simplify when we allow ourselves to use series with partially
ordered supports.

Let us illustrate the last point with a simple but characteristic example.
Given a classical power series f and an “infinitesimal” generalized power
series g, we will define their composition fo g. In particular, when taking
f(z)=3"72,2"/n!, this yields a definition for the exponential e/ = fo g of g.
Now given two infinitesimal series g; and go, the proof of the equality e9:+92 =
e91 e9? is quite long in the totally ordered context. In the partially ordered
context, on the contrary, this identity trivially follows from the fact that
e*1T?2=¢e?1 ¢*2 in the ring Q[[z1, 22]] of multivariate power series.

2.1 Grid-based sets

Let 2 be a commutative, multiplicative monoid of monomials, quasi-ordered
by <. Given & CIN, we define &* ={my --- my:my,..., my € B}. We say that
& is grid-based, if there exist my, ..., my,,ny,..., 0, €M, with my,...,m,, <1,
and such that

S C{my,...,mpy}* {ng,...,n,}. (2.1)
In other words, for each monomial v € &, there exist kq,..., &k, € N and [ with
v zm’fl ‘.- m,’?n n;.

Notice that we can always take n=1 if 91 is a totally ordered group.

By Dickson’s lemma, grid-based sets are well-quasi-ordered for the oppo-
site quasi-ordering of < (carefully notice the fact that this is true for the
opposite quasi-ordering of < and not for < itself). Actually, a grid-based set
is even well-quasi-ordered for the opposite ordering of <' (recall that =<'y <
xr=yVz=<y). More generally, a subset of 9t which has this latter property
is said to be well-based.

Proposition 2.1. Let & and $) be grid-based subsets of 9. Then

a) Each finite set is grid-based.

b) BUS is grid-based.

c) B9 is grid-based.

d) If <1, then &* is grid-based.
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Proof. The first three assertions are trivial. As to the last one, we will prove
that & <1 implies that there exist elements v,...,0, <1 in M, with

6@{01,...,01,}*.

This clearly implies the last assertion. So assume that we have & <1 and (2.1).
For each [, the set
{(F1,. .. k) € Nmbt o ombmny <1}

is a final segment of N™. Let F; be a finite set of generators of this final
segment and let

0, = {m’lCl cemProy (k1,... km) € F1}.

Then {vy,...,0,} =T U--- UL, U{my,...,my,} fulfills our requirements. O

Fig. 2.1. Illustration of a grid-based set with three base points nj, no, ng
and two infinitesimal generators m; and msy. Notice that we used “logarithmic
paper” in the sense that multiplication by m; or ms corresponds to a trans-
lation via one of the vectors in the picture. Alternatively, one may write
M =2", where z is a formal variable and T is a formal ordered additive “value
group” which is “anti-isomorphic” to 9. Instead of representing monomials
9N, one may then represent their values in I'.

Exercise 2.1. Show that proposition 2.1 also holds for the following types of
subsets of M:

a) Well-based subsets;

b) Countable well-based subsets;

¢) R-finite subsets, when 9 is an ordered group with R-powers. Here an R-finite
subset of M is a well-based subset, which is contained in a finitely gen-
erated subgroup with R-powers of 91;

d) Accumulation-free subsets, when 91 is an ordered group with R-powers. Here
an accumulation-free subset of M is a subset &, such that for all m,n € M
with n <1, there exists an € > 0, such that

Yo €GB, (bn®<m=(¥§>0,0n’ <m)).
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Exercise 2.2. Assume that 91 is a group. Show that Z-finite subsets of 9 are
not necessarily grid-based.

Exercise 2.3. If M =28 ={2*a€R}, with 2% = 2% < a < 3, then accumulation-
free subsets of 901 are also called Levi-Civitian subsets. Show that infinite Levi-
Civitian subsets of 9 are of the form {z®', 2% ...}, with lim,_, o a, = 400.

Exercise 2.4. Assume that 9 is a partially ordered monomial group with
Q-powers. A subset & of 9 is said to be weakly based, if for each injective mor-
phism ¢: 9T — 9 of M into a totally ordered monomial group M with Q-powers
we have:

1. The image (&) is well-ordered.
2. For every n €N, the set {m € &: p(m)=n} is finite.

Show that proposition 2.1 also holds for weakly based subsets and give an
example of a weakly based subset which is not well-based.

Exercise 2.5.

a) For grid-based sets €; <1 and €5 <1, show that there exists a grid-based set
D <1 with ©*=¢j N ES.

b) Given a grid-based set © <1, does there exist a smallest grid-based set € <1
for inclusion, such that ® C ¢*? Hint: consider {z; 23 2, 22}* N {z? 257}, 25}*

for a suitable ordering on 2% 2Z.

2.2 Grid-based series

Let C be a commutative, unitary ring of coefficients and 99t a commutative,
multiplicative monoid of monomials. The support of a mapping f: 9 — C is
defined by

supp f={m€M: f(m)+#0}.

If supp f is grid-based, then we call f a grid-based series. We denote the set
of all grid-based series with coefficients in C' and monomials in 9t by C [9]].
We also write fi = f(m) for the coefficient of m € 91 in such a series and
Y meon fmm for f. Each finm with m €supp f is called a term occurring in f.

Let (f;)icr be a family of grid-based series in C [9]. We say that (f;)ier
is a grid-based family, if |, supp f; is grid-based and for each m € M there
exist only a finite number of ¢ € I with m € supp f;. In that case, we define its

sum by
EDY (Z fi,m>m~ (2.2)

i€l meM \ iel

This sum is again a grid-based series. In particular, given a grid-based series f,
the family (fmm)meon is grid-based and we have f=3%" o fum.
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Let us now give C'[OMT the structure of a C-algebra; we will say that
C' [T is a grid-based algebra. C and 90 are clearly contained in C' [9M] via
c—c-1lresp. m—1-m. Let f,ge CIMI. We define

f+g= Z (fm =+ gm)m

meEsupp fUsupp g
and

fg= Z fm gnmn.

(m,n)Esupp f Xsupp g

By propositions 1.6 and 2.1, f+ g and fg are well-defined as sums of grid-
based families. It is not hard to show that C' 9] is indeed a C-algebra. For
instance, let us prove the associativity of the multiplication. For each v € 90,
we have

((fg) h)t): Z (fg)mhn: Z fm’gm”hn~

mesupp fg m’/Esupp f
nesupph m’’Esupp g
mn=v nesupph

m/m’’n=v

The right hand side of this equation is symmetric in f, g and h and a similar
expression is obtained for (f (gh))y.

Let g € C[[z]] be a power series and f € C'[IM] an infinitesimal grid-based
series, i.e. m < 1 for all m € supp f. Then we define

gof: Z gnfml"'fmnml"'mm

my---my € (supp f)V

where the sum ranges over all words over the alphabet supp f. The right
hand side is indeed the sum of a grid-based family, by Higman’s theorem and
proposition 2.1. In section 2.5.3, we will consider more general substitutions
and we will prove that (gh)o f=(go f)(ho f) and (hog)o f=ho(go f) for
all g,heC[[7]].

In particular, we have ((1+z)o f) ((1+2z)"to f)=1 for all f with
supp f < 1. This yields an inverse for all elements g € C[9M1 of the form
g=1+4 f with supp f < 1. Assume now that C is a field and that 9 is
a totally ordered group. Then we claim that C[9] is a field. Indeed, let
f#0 be a series in CI9MMI and let f, 0 be its dominant term (i.e. D is
maximal for < in supp f). Then we have

—1
A (J%—Jca) .

Ezample 2.2. Let 9 be any multiplicative monoid with the finest ordering for
which no two distinct elements are comparable. Then C' [9] is the polyno-
mial ring C[90].
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Example 2.3. Let A be any ordered abelian monoid and z <1 a formal,
infinitely small variable. We will denote by z4 the formal ordered multi-
plicative monoid of powers z* with a € A, where 2* <z < a > 3 (ie. A
and z4 are anti-isomorphic). We call C'[[z41 the ring of grid-based series
in z over C and along A. If A is clear from the context, then we also write
C[[z1 =C[2z41. The following special cases are classical:

a) C [N is the ring C[[2]] of formal power series in z.

b) C[2Z] is the field C((2)) of Laurent series in z, whenever C' is a field.
Elements of C'[2%] are of the form Zn}vfn 2" with v € Z.

¢) C 2R is the field of Puiseur series in z, whenever C is a field. Elements
of C[z®T are of the form Y _ f,2"/* with v€Z and k € N>.

d) CL2N"T is the ring C[[z1,. . ., 2n)] of multivariate power series, when N™
is given the product ordering.

e) C[z%"] is the ring C((21,..., 2,)) of multivariate Laurent series, when Z"
is given the product ordering. We recall that a multivariate Laurent series
f€C((21,-..,2n)) is the product of a series in C[[z1,..., 2,]] and a monomial
2. 20m e 22" Given feCIZZ"T7, let {zlﬁ” --~z£””j: 1< j<p} be the
set of dominant monomials of f. Then we may take o; =mini¢;<p B,
for each .

n>v

Often, we rather assume that z -1 is an infinitely large variable. In that case,
2 is given the opposite ordering 2* < 2% < a < 3.

Ezample 2.4. There are two ways of explicitly forming rings of multivariate
grid-based series: let 21, ..., z, be formal variables and Ay, ..., A,, ordered addi-
tive monoids. Then we define the rings of natural grid-based power series resp.

recursive grid-based power series in zi,...,z, over C' and along A;,..., A, by
CLzM,...,z00 = Clz x -+ x 22T,
CLzM;.. 2200 = Ol x -+ x 227,

If Ayj=---=A,,=A, where A is clear from the context, then we simply write

Clzt,...,z,] = COzt, ..., 247,
Clz;...;2,] = CL2{Y.. 240,

Any series f in C'[zy;...; 2,1 may also be considered as a series in
Clz1---0z,0 and we may recursively expand f as follows:

[ = Z fon 20"

an€A

fozn ..... ay — Z fan,...,alzix1~

Notice that C'[[z1;...; 2,1 ; CLz1 - [z,0, in general (see exercise 2.6).
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Exercise 2.6. Show that, in general,

Clzi,. 5221 G COMz1;. 52,0 GCLaT - L2,
and

Clzi;.. 52,0 #CM2o(1);- -5 Zo(m)] s

for non-trivial permutations o of {1,...,n}.

Exercise 2.7. Show that the definitions of this section generalize to the case
when, instead of considering grid-based subsets of 91, we consider subsets of one
of the types from exercise 2.1 or 2.4. Accordingly, we have the notions of well-
based families, well-based series, accumulation-free series, etc. The C-algebra of
well-based series in 9 over C' will be denoted by C[[90]].

Now consider the monomial group

_ Ry R, R .
M=x" Xexp T Xexp expx X ---,

where x,expz,expexpz,... = 1. The order type of a series is the unique ordinal
number which is isomorphic to the support of the series, considered as an ordered
set. Determine the order types of the following series in C[[9]], as well as their
origins (like an equation which is satisfied by the series):

1 1

1 .
a);+exp:c expexp:):+”"
1 1 1 1 1 1
) Itg+mt +g +zex*ﬁ*"'*ez:*zen*m*‘“?
c) 1+2—I+3—$+4 w+
d) $+ =+ + o
e) l+=+—+— + +ze+l L #-‘r ottt

f)z+vr+,/vVT+,4/ f+
8 I+ttt rtmmt 3/4+ ot ot

Also determine the order types of the squares of these series.

Exercise 2.8. Let C be a Noetherian ring and let 9t be a well-based monomial
monoid. Show that C'[9] is a Noetherian ring.

Exercise 2.9. For all constant rings C' and monomial groups, let C[[9N]] either
denote the ring of well-based, countably well-based, R-finite or accumulation-
free series over M in C. In which cases do we have C[[9 x N]| = C[[TM]][[91]] for
all M and 9?7

Exercise 2.10. Let 91 be a monomial group and let =< be the equivalence
relation associated to < as in exercise 1.1(c) Let f={me€M:m =<1} and let 7!
be a right inverse for the projection 7: 9t — M /<. Show that we have natural
embeddings

v CIM/=<T 8] — CIMI

Z Z faamn — Z Z fonm Hm)n

neyd meMm/x neyd meMm/x
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and
v: CIMI — CYUIMm/=<T
DN faam i mn — > > faamn
meM/=< neid meM/=< ney

Show that the embeddings v, and v, are strict, in general.

Exercise 2.11. Let 9 be a quasi-ordered monomial group and O an “ideal” of
O in the sense that mn €N, for all m € M and n € M. Define a ring structure
on C'[M\MNI, such that mn=0in C' [P\ N, for all m,n € M\ N with mn e N.

2.3 Asymptotic relations

2.3.1 Dominance and neglection relations

Let fe CIOMI be a grid-based series and assume that 9 is ordered by <.
The set of maximal elements in the support of f is called its set of dominant
monomials. If this set is a singleton, then we say that f is regular, we denote
by 0y or 0(f) its unique dominant monomial, by cy = fo, its dominant coef-
ficient, and by 7r=cs 0f its dominant term. If 7¢ is invertible, then we also
denote 0y = f /7y — 1, so that f=71¢(1+ ).

Notice that any grid-based series f can be written as a finite sum of regular
series. Indeed, let 01,...,0, be the dominant monomials of f. Then we have

n
f= Z Z fmm |,
i=1 [ m€in(d1,...,0;)\in(?1,...,9;-1)
where we recall that in(91,...,0;)={meMm=<0V---Vm=<0,}.

Assume that C' is an ordered domain. We give C'[9t]] the structure of an
ordered C-algebra by setting f >0, if and only if for each dominant mono-
mial 9 of f, we have f,>0 (see exercise 2.12).

Assume now that 9 is totally ordered, so that each non-zero series
in CI9T is regular. Then we define a dominance relation < on C [T,
whose associated strict quasi-ordering < is a neglection relation, by

<9 (f=0V(f#0ANg#F0A0=<0y)).
For non-zero f and g, we have
<9 & <04
f=g & =<0
f=g9 & =0
frg & =1,
Given fe C[INT, we define its canonical decomposition by

f=f+f=+f<
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where fo=3"  fam, fx=frand fx=} _, fmm arerespectively the purely
infinite, constant and infinitesimal parts of f. We also define f. = f. + fx,
fx=f=+f<and fy=f— fx; we call fg the bounded part of f. The canon-
ical decomposition of C'[[9M] itself is given by:

Cmll =Ccml,eCaeClMI,

where

CInly = CIM" 1 = {feCIMI: fo=f};
CIMI. = COM-T = {feCIMI: fx=f}.

Similarly, we define CIMI . = CIM7D = {f e CIMI: f. = f} and
CIMIx=CIMS] ={feCIMI: fx=f}.

4

Example 2.5. Let f=-—"—¢c C[Lz%] with 2~ 1. Then the canonical decom-

x—1
position of with f is given by
[ = s + fx + I<
I I |
3,2 x!
A Sl S 1 =T

Warning 2.6. We define CIOMMI~ ={f € CIMI: f > 1} and CIMI ~,
CIMI =, etc. in a similar way. One should not confuse C [T, with
CI[9MI ~, but always do have C [T *=CI[MI 5 and CIMI~=C I[N <.

Proposition 2.7. Assume that C is a totally ordered integral domain and M
a totally ordered monomial group. Then

a) CIONT is a totally ordered C-algebra.

b) The relations < and < coincide with those defined in proposition 1.20.
¢) If C is a field, then C 9] is a Hahn space over C.

d) CIM 4 is the set of bounded elements in C [IN].

e) CIOM & is the set of infinitesimal elements in C [IN].

Proof. Given f in C [, we have either f =0, or ¢ >0 (and thus f > 0),
or ¢f <0 (and thus f <0). This proves (a).

Assume that f<g,ie f=0o0r f£0Ag#0AVr <0, If f=0, then clearly
[fI<|gl. If f#0, then either 0y <0, and ¢4/ || = |cg| >0 implies |f| <
lgl, or 0f =04 and ¢jac;q|—|c,f| = |crcgl >0 implies |cg f| <|2crg|. Inversely,
assume that f £ g, i.e. f#0 and either g=0 or 9y >0, If g=0, then
clearly [A f|>|png| =0, for all A€ C* and p€ C. Otherwise, 057 =0y and
l1g|=0or v,y =0, for all \€ C* and p € C, so that 9|y ¢|_|.g =0r and again
A f]>|ug|- We conclude that the above definition of < coincides with the
definition in proposition 1.20, using exercise 1.21(b). This proves (b), since
for both definitions of < we have f<g< g4 f.
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If C is a field, then for f, ge CIMI#, we have fxgedy=0y=>17=
T(es/eg)g & f~ (cf/cy) g This shows (c). If f € CIMI is bounded, then
either f=0 and clearly fe CIMI g, or f#0A0 <1 and m=<x0; =<1 for all
meéesupp f, whence again f € C[9 <. If f is unbounded, then 04> 1, whence
f ¢ CIOMI 5. This proves (d), and (e) is proved similarly. O

In the case when 901 is not necessarily totally ordered, we may still define
the constant and infinitesimal parts of a series f € C [N by fo= frand fi=
> m<1Jm. We say that f is bounded resp. infinitesimal, if f€C o CIMI <
resp. f € C[IMI <. In other words, f is bounded resp. infinitesimal, if for all
mesupp f, we have m<1, resp. m<1.

2.3.2 Flatness relations

Assume now that C' is both a totally ordered R-module and a totally ordered
field with R-powers, for some totally ordered ring R, and assume that
M is a totally ordered group with R-powers. Let f € CIIMI~ and write
f=cpop(1+¢) with e <1. Given A€ R, let m\(2) = (14 2)*1 € C[[z]]. Then
we define

f)‘:c}\D}‘ (mro€). (2.3)
In this way, we give the field C[9] the structure of a C-algebra with
R-powers, by taking
CIMI*={fecCIMI7:c;€C*}.
Indeed, mx4 06 =(mam,) oe=(myoe) (m,0€) for all A\, p € R and infinitesimal

eeCIMI.

Proposition 2.8. Let C,9 and R be as above and let < and <X be defined
as in section 1.8. For m € M, denote |m||=m if m=1 and |[m|=m~!
otherwise. Then, given f,ge€ CIIMI~, we have

a) fXge (ANER,Ipe R[] <0));
b) f < ge (VA€ R, Ve R*, 07 <|[o).

Proof. The characterizations of =< and <« immediately follow from the fact
that =0} for all f€CIMI>. O

2.3.3 Truncations

Let 9 be an arbitrary monomial monoid and f € CI9MI. Given a subset
S CIM, we define the restriction fo € CLET CCIIMT of f to & by

fGZ Z fmm~

meSNsupp f
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For instance, f. = fan-, f=x= f{1}, f<= fom< and f{m)= fmm. By our general
notations, we recall that Fe ={fg: f € F'}, for sets F C C[MI. Notice that
M, = Moy =M™, M~ =M™, etc.

Given two series f, g€ C[I[IMI, we say that f is a truncation of g (and
we write f < g), if there exists a final segment § of supp g, such that f = gs.
The truncation < is a partial ordering on C [91].

Let (f;)ic1 € CIMI! be a non-empty family of series. A common trunca-
tion of the f; is a series g € C[9M1, such that g f; for all i€ I. A greatest
common truncation of the f; is a common truncation, which is greatest for <.
Similarly, a common extension of the f; is a series g € C'[9]], such that f;<lg
foralliel. A least common extension of the f;is a common extension, which
is least for <. Greatest common truncations always exist:

Proposition 2.9. Any non-empty family (f;)icr € C [T admits a greatest
common truncation.

Proof. Fix some j € I and consider the set .% of initial segments § of supp f;,
such that f; < f; for all i € I. We observe that arbitrary unions of initial seg-
ments of a given ordering are again initial segments. Hence Fmax=J seF Fis
an initial segment of each supp f;. Furthermore, for each m € §p,ax, there exists
an § € % with fj gm=fjm= fim for all i€ I. Hence fj g...= fi 5w < fi
for all ¢ € I. This proves that fz _ is a common truncation of the f;. It is
also greatest for <, since any common truncation is of the form f; z for some
initial segment § € .F of Fmax With fj 5 < fj 5man: O

Exercise 2.12. Let C be an ordered domain and 9t a monomial group. Given
A€ C? and series f, g€ CIMI >, determine the sets of dominant monomials of
ANf, f+gand fg. Show that C[9] is an ordered C-algebra.

Exercise 2.13. Assume that C is a perfect ordered ring and 9 a perfect ordered
monoid.

a) Show that C'[9MT is a perfect ordered C-algebra.

b) Let < and < be defined as in exercise 1.27. Show that 224 23 £z — 25 in
Cllz1, 2]

c) For f,ge C'IMI and g regular, show that f < g, if and only if supp f <0,.

d) For f,ge CIOMI and g regular, show that f < g, if and only if supp f <0,.

In other words, there is no satisfactory way to define the relations < and <
purely formally, except in the case when the second argument is regular.

Exercise 2.14.

a) Let C be an ordered ring and let 9 be a monomial set, i.e. a set which is
ordered by <. Show that the set C[[9]] of series f: 9 — C with well-based
support has the natural structure of an ordered C-module. Show also that
this ordering is total if the orderings on C' and 91 are both total.

b) Prove Hahn’s embedding theorem [Hah07]: let V be a Hahn space over
a totally ordered field C. Then V /< is a totally ordered set for > /< and V'
may be embedded into C[[V /x]].
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c) If V CC[9n]] in proposition 1.22, then show that V' admits a unique basis
(b1,...,bn), such that by < --- < b, and b; o5,y =0;,; for all i, j€{1,...,n}.

Exercise 2.15.

a) Let L D K be a field extension and 9t a monomial set. Given a K-subvector
space V of K[[9]], show that L ®x C[[9M]] is isomorphic to the L-subvector
space of L[[9]], which is generated by V.

b) Let L D K be an extension of totally ordered fields. Given a Hahn space V'
over K, show that L ®x V has the structure of a Hahn space over L.

Exercise 2.16. Let 9 be a totally ordered monomial group and let 9t C M
be a flat subset (i.e. Vm € M, Vne M :m KL n=m e MN’).

a) Show that C'[O°] is a flat subring of C' [9MT.
b) Characterize the relations <* and <*.

Exercise 2.17. Generalize the notion of truncation to the well-based setting.
A directed index set is an ordered set I, such that for any ¢, j € I, there exist
a k€l with i <k and j<k. Let (fi)icr be a <-increasing family of series
in C[[M]], i.e. f; < f; whenever i< j. If 9 is Noetherian or totally ordered,
then show that there exists a least common extension of the f;. Show that this
property does not hold in the grid-based setting.

2.4 Strong linear algebra

Just as “absolutely summable series” provide a useful setting for doing analysis
on infinite sums (for instance, they provide a context for changing the order
of two summations), “grid-based families” provide an analogue setting for
formal asymptotics. Actually, there exists an abstract theory for capturing
the relevant properties of infinite summation symbols, which can be applied
in both cases. In this section, we briefly outline this theory, which we call
“strong linear algebra”.

2.4.1 Set-like notations for families

It will be convenient to generalize several notations for sets to families. We
will denote families by calligraphic characters F, G, ... and write % (.S) for
the collection of all families with values in S. Explicit families (f;);er will
sometimes be denoted by (fi:i € I). Consider two families F = (fi);c; € ST
and G =(g;) € S’, where I, J and S are arbitrary sets. Then we define
fﬂg = (hi)ie]]_[J, where hzz{ 5: g zég

FxG = (fi9i)6,j)erxs
More generally, if = HjeJIj7 and G; = (fi)ici, for all j €.J, then we denote

H gi=F.

jed
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Given an operation ¢: 51 x -++ x S, =T and families Fr, = (fx.i)icr1, € Sé’“ for
k=1,...,n, we define

O(F1,. s Fn) = (@(fryir s friin)) (s yin) €T X+ X In- (2.4)

It is also convenient to allow bounded variables to run over families. This
allows us to rewrite (2.4) as

@(fla .o 7fn) = ((p(flv ceey fn))f1€.7-'17 s fn€Fn
Similarly, sums of grid-based families F = (f;)ic7 € C 91! may be denoted

by
YNF=Y f=> 1

fer i€l

We say that F=(f;)ier and G = (g;)jes are equivalent, and we write F =G,
if there exists a bijection ¢: I — J with f;= g,(;) for all i € I. If ¢ is only
injective, then we write F CG. If I CJ and ¢ is the natural inclusion, then
we simply write F C G.

2.4.2 Infinitary operators

The main idea behind strong linear algebra is to consider classical algebraic
structures with additional infinitary summation operators » . These sum-
mation symbols are usually only partially defined and they satisfy natural
axioms, which will be specified below for a few structures. Most abstract
nonsense properties for classical algebraic structures admit natural strong
analogues (see exercise 2.20).

A partial infinitary operator on a set S is a partial map

O: P(k;S)— S,
where k is an infinite cardinal number and

2(r;8) =) 9"

I1Ck

We call k the maxzimal arity of the operator ®. For our purposes, we may
usually take x = w, although higher arities can be considered [Hoe97]. The
operator ®: Z(k;S) — S is said to be strongly commutative, if for all equiv-
alent families 7 and G in & (k; S), we have F € dom & < G € dom & and
Fedom® = P(F)=(G).

It is convenient to extend commutative operators ® to arbitrary families F =
(fi)ier € ST of cardinality card I < . This is done by taking a bijection ¢: I — J
with J C k and setting ®(F) =®((f,-1(j))jes), whenever (f,-1(;))jecs€dom .
When extending ® in this way, we notice that the domain dom ® of ® really
becomes a class (instead of a set) and that ® is not really a map anymore.
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2.4.3 Strong abelian groups

Let A be an abelian group with a partial infinitary operator > : 2 (k; A) — A.
We will denote by .#(A) the domain of Y. We say that A is a strong abelian
group, if

SA1l. > is strongly commutative.

SA2. For all I Ck and Or=(0);cr, we have > Or=0.

SA3. For all z € A and S, = (z), we have > S, ==z.

SA4. For all F,Ge S (A), we have Y FIIG=Y F+> G.

SA5. For all F € (A), we have > (=F)=->_F.

SA6. For all  €.7(A) and decompositions F =[], ;G;, we have

2.2 =27

JjeJ

We understand that F € .#(A), whenever we use the notation Y F. For
instance, SA2 should really be read: for all I C x and O; = (0);¢;, we have
O]Gy(A) and ZO[ZO.

Remark 2.10. Given a strong abelian group A, it is convenient to extend the
summation operator Y to arbitrary families F € .#(A): we define F to be
summable in the extended sense if and only if G=(f € F: f #0) is summable
in the usual sense; if this is the case, then we set Y F=>"G.

Ezxample 2.11. Any abelian group A carries a trivial strong structure, for which
FeS(A)if only if (f € F: f#0) is a finite family of elements in A.

We call SA6 the axiom of strong associativity. It should be noticed that
this axiom can only be applied in one direction: given a large summable
family F, we may cut it into pieces G;, which are all summable and whose
sums are summable. On the other hand, given summable families G; such that
(3= Gj)je is again summable, the sum Hjngj is not necessarily defined:
consider (1-1)+(1—-1)+---=0.

Remark 2.12. In SAG6, we say that the family F refines the family (3 G;);e.
In order to prove identities of the form >  F=>"G, a common technique is
to construct a large summable family H, which refines both F and G.

2.4.4 Other strong structures

Let R be a ring with a strong summation }_ (which satisfies SA1-SA6). We
say that R is a strong ring if

SR. For all F,G € .#(A), we have

> FG=02_F) (2 9).
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Let M be a module over such a strong ring R and assume that we also have
a strong summation on M. Then M is said to be a strong R-module if

SM. For all F € (R) and G €. (M), we have

S FG=0D_F)D_9)

Notice that SM is trivially satisfied when R carries the trivial strong struc-
ture. We say that M is an wultra-strong R-module, if we also have

UM. For all (\;)ier € R and (f;)ic; €.7 (M), we have (\; fi)ic1 €7 (M).

A strong R-algebra (resp. an ultra-strong R-algebra) is an R-algebra A, together
with a strong summation, for which A carries both the structures of a strong
ring and a strong R-module (resp. an ultra-strong R-module).

Let M and N be two strong R-modules. A linear mapping ¢: M — N is
said to be strong if it preserves the infinite summation symbols, i.e.

SL. For all F € .7(M), we have >~ p(F) = (> F).

In the case of ultra-strong modules, this condition implies

Py Nizi=Yy i) =) Aip(w),

icl icl icl

whenever (\;);er € R! and (z;);e1 €.%(M). Notice that strong abelian groups
and rings can be considered as strong Z-modules resp. Z-algebras, so the
definition of strongly linear mappings also applies in these cases.

Exercise 2.18. Let F=(f;)ic; € AT and G=(g;);c; € A’. Prove that

FrG & (VeeA card{iel: fi=a}=card{jeJ: g;=1});
FCG & (VeeA,card{iel: fi=a}<card{jeJ:g;=z}).

Deduce that F~ G FCGC F.

Exercise 2.19.

a) Let C' =R, or a more general Banach algebra. Consider the infinite summa-
tion operator on C, which associates ), ; to each absolutely summable
family (z;);en. Show that C is a strong ring for this operator (and the usual
finite summation operators).

b) Given a set S, show how to construct the free strong R-module in S.

c) Let # be a o-algebra on a set E. We define Mg to be the free strong
R-module in %, quotiented by all relations » ., U; =[], U; for at most
countable families (U;);c € BT, whose members are mutually disjoint. Show
that finite measures can then be interpreted as strongly linear mappings
from M4 into RR.

Exercise 2.20. Strong abelian groups, rings, modules and algebras form cate-
gories, whose morphisms are strongly linear mappings. Show that these categories
admit direct sums and products, direct and inverse limits, pull-backs, push-
outs and free objects (i.e. the forgetful functor to the category of sets admits
a left adjoint).
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2.5 Grid-based summation

Let C'[ONT be a grid-based algebra as in section 2.2. Given a countable family
FeZ(CIMID), we define F to be summable if and only if F is a grid-based
family, in which case its sum is given by formula (2.2). Note that grid-based
sets are always countable, so it is sufficient to restrict ourselves to countable
families in the grid-based context. After extension of the strong summation
operator to arbitrary families using remark 2.10, it can be checked that the
notions of strong summation and summation of grid-based families coincide.

2.5.1 Ultra-strong grid-based algebras
Proposition 2.13. CIIMNT is an ultra-strong C-algebra.

Proof. The proof does not present any real difficulties. In order to familiarize
the reader with strong summability, we will prove SA6 and SR in detail. The
proofs of the other properties are left as exercises.

Let F be a countable grid-based family and F = ]_[j ¢ ;Yj a decomposition
of F. For each me M, let Fn=(f €F: fu#0) and Gj;m = (f € Gj: fm#0),
so that

Fm=]] Gjim (2.5)
jeJ
Now G; is a grid-based family for all j € J, since Ufegj supp f C Ufefsupp f
and Gj;m C Fim is finite for all m € 9. Furthermore,

U swpd GicJ | swpf= ] swpf,
i JET EG; jeF

and the set {j € J: (3" Gj)m#0} C{j € J:Gjm # @} is finite for all m e M,
because of (2.5). Hence, the family (3 G,);e . is grid-based and for all m e 9,

we have
(EX6) - 5 #= 3 m=(C 5

Jjed Jj€J f€Gjim fEFim

This proves SA6.
Now let F and G be two grid-based families. Then

U swpfg o |J (suppf) (suppy)

(f,9)€EF %G (f,9)EFXG

= |J swpf swpg

fer geg
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is grid-based. Given m € 9, the couples
(0,0) € (| supp f) x (| suppg)
fer geg

with v o =m form a finite anti-chain for <'; let (vy,10;),..., (0, 10,,) denote
those couples. Then

((f,9)€FxG:(fg)m#0)
C ((frg)eFxG:Tkel{l,....,n}, fo, #0A gro, #0)

is finite, whence (fg) (¢, g)e 7 x ¢ is a grid-based family. Given m € 9, and using
the above notations, we also have

( ¥ fg>m: S0 fogm

(f,9)€EF %G (f,9)€EFxG 1<k<n
1<k<n
= (A9
This proves SR. O

2.5.2 Properties of grid-based summation
Let CIMT be a grid-based algebra. Given F € % (C[IMN1), let

termF = (fmm)fer, mesupp f

monF = (m)rex mesupp f
We have
FeZCMml) < termF e . (CIMI) (2.6)
< monF €. (CIMD) (2.7)
Indeed,

U supf= |J swpf= [J suppf

fer fEtermF fEmonF
and for every m € 901,

card (f €F: fu#0) = card(f €term F: f, #£0)
= card (f €monF: fn #0).

Moreover, if F is a grid-based, then term F refines F.
It is convenient to generalize proposition 2.1 to grid-based families. Given
F=(f)icr€CIMI!, we denote
F<1 & (Viel, fi<1)
FYo= (fa fidieiner
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Proposition 2.14. Given grid-based families F,G € F(C M1 ), we have

a) FI1G is grid-based.
b) FG is grid-based.
¢) If F <1, then F¥ is grid-based.

Proof. Properties (a) and (b) follow from SA4 and SR. As to (c¢), let & be
the well-based set of pairs (f, m) with f € F and m € M, for the ordering

(fym)<(g,n)em=<n.

Now consider the family 7 = (Tw)wesw With 7w = fim, -+ fim, M1 - - 1y for
each word to=(fi,my) --- (fi, ;) € &¥. We have

*
U suppTQ( U suppf) :
T€ET feF

Moreover, given n e UTeTsupp T, the set of v € &V with n € supp 1, forms a
finite anti-chain of the well-based set &%. Hence 7 is grid-based, and so is F¥,
since 7 refines Fv. |

2.5.3 Extension by strong linearity

Let CIMT and C'INT be two grid-based algebras. A mapping ¢: 9 —
C'I[NT is said to be grid-based if grid-based subsets & C 91 are mapped to
grid-based families (p(m))mees.

Proposition 2.15. Let ¢: 91— CINT be a grid-based mapping. Then ¢
extends uniquely to a strongly linear mapping ¢: C 9T — C INT.

Proof. Let fe CIMI. Then (¢(m))mesupp f is a grid-based family, by defi-
nition, and so is (fm ¢©(M))mesupp f- We will prove that

G:CIMI — CINT
f— Z fm@(m)
meEsupp f

is the unique strongly linear mapping which coincides with ¢ on 9.
Given A€ C and f € CI[INT we clearly have ¢(X\ f)=A@(f), by SM. Now
let Fe L(CIMI) and &= Ujersupp f. We claim that

(fm ‘P(m))(f,m)efx S
is grid-based. Indeed,

U supp fm @(m) C U supp ¢ (m)

(fmeFx6 mes
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is grid-based. Secondly, given n € 9, the set {m € &: p(m), #0} is finite, since
(¢(m))mee is grid-based. Finally, for each m € & with ¢(m), #£0, the family
(f € F: fm#0) is finite. Hence, the family ((f,m) € F X &: f, o(m),#£0) is
finite, which proves our claim. Now our claim, together with SA6, proves that
O(F) = (P mes fm p(m))ser is grid-based and

YOF) = DD fmpm)

fEF mes

Z fm p(m)

(fym)eF XS

Yo fmem) = o> F).

mes feF

This establishes the strong linearity of ¢.

In order to see that ¢ is unique with the desired properties, it suffices
to observe that for each f e C'[9MI, we must have @(fmm)= fm ¢(m) by
linearity and ¢(f)=>"_ csupp fm @(m) by strong linearity. |

Proposition 2.16. Assume, with the notations from the previous proposition
that ¢ preserves multiplication. Then so does ¢.

Proof. This follows directly from the fact that the mappings (f, g)— &(fg)
and (f, g) — @(f) ¢(g) are both strongly bilinear mappings from C [9t]2
into C [N, which coincide on M2

Strong bilinearity will be treated in more detail in section 6.2. Translated
into terms of strong linearity, the proof runs as follows. Given m € 901, we first
consider the mapping &m:n— p(mn) = p(m) ¢(n). Its extension by strong
linearity maps g € C' [9] to

> gnw(mn)=¢< > gnmn>=¢(mg),

nesuppg
but also to

nesuppg

We next consider the mapping x: m— &n(g). Its extension by strong linearity
maps f€CIMI to

S fuplma)= @( > fmmg> —4(f9),
mesupp f mesupp f
but also to

> fad(m) @)= ¢(f) é9). D

mesupp f
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Proposition 2.17. Let ¢: 9 — C I[N and ¢: N — C [V be two grid-based
mappings. Then

povp=po.
Proof. This follows directly from the uniqueness of extension by strong lin-
earity, since ¢ o and ¢ o coincide on 9. O

In section 2.2, we defined the composition o f for ¢ € C[[z]] and infin-
itesimal f € C[9]. We now have a new interpretation of this definition
as follows. Consider the mapping ¢: 2N — C[9MT, which maps 2" to f™.
By proposition 2.1 and Higman’s theorem, (f™),cn is a grid-based family,
whence we may extend ¢ by strong linearity. Given g € C[[z]], we have

gOf: Z gnfml...fmnml...mn

my---my€(supp f)V

— Z Z gnfml"'fmnml"'mn

ne€N (my,...,my,)€E(supp f)"

= Zgn Z fm1"'fmnm1"’mn

n€eN (my,...,m,)€E(supp f)"
= Z gnfnng(g)'
nelN

Now proposition 2.16 implies that
(gh)o f=(go [f)(hof)
for all g, h e C[[z]]. If g <1, then proposition 2.17 also implies

(hog)o f=ho(gof).

More generally, we have

Proposition 2.18. Let fi,..., fi be infinitesimal grid-based series in C [9N]
and consider the mapping

I AR Aol
P L U
Given g € C[[z1,. .., zi]], we define go (f1,..., fx) = @(g). Then
a) For g,h € C[[z1,...,zx]], we have
(gh)o (fi,--s fr)=go (fi,-- s fu) ho (f1,-, fa)-

b) For he Cl[z1,...,z)]] and infinitesimal q1,..., g1 € C[[z1,. .., 2x]], we have

(ho(gy,-- g1)) o (fi,-- s fi) =ho(gro(fu,- s fa) s gio (frs- oo fi))-
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Exercise 2.21. Assume that C is a strong ring and 9! a monomial monoid.
A family F e .Z(CIIMD) is said to be grid-based, if Ufefsupp f is grid-based
and (fm)fer € S (C), for each m € M. Show that this definition generalizes the
usual definition of grid-based families and generalize proposition 2.13.

Exercise 2.22. Give R the strong field structure from exercise 2.19(a) and

RIMT the strong ring structure from exercise 2.21. Show that the strong sum-

mation on RIIMI does not necessarily satisfy US. Prove that it does satisfy

the following axiom:

RS. Let F€.(RIMI) and Gy €.(R?>) be such that 3" G;=1 for all feF.
Then ()\ f)fe]—")\eg/ S y(R IRAd]] )

Exercise 2.23. Generalize the results from this section to the case when we
consider well-based (or R-finite, accumulation-free series, etc.) series instead of
grid-based series.

2.6 Asymptotic scales

Let C be a field of characteristic zero. Assume that C' is both an R-module
and a field with R-powers, for some ring R, and let 901 be an ordered monomial
group with R-powers. The the definition of f* in (2.3) generalizes to the
case when f € C[III is a regular series with ¢; € C*. As before, the group
C'I[MI * of such f has R-powers.

Proposition 2.19. Let 9 be another ordered monomial group with R-powers
and let p: 9 — CINT be a grid-based mapping such that

o p(m)eCINT*, for all me M.
e o(mn)=p(m)pn) and p(m*) = p(m)*, for all m,n€M and X\ € R.
e The mapping 00 @: M — N, m— 0, (m) 5 Increasing.

Then

a) ¢(fg)=¢(f) ¢(g) and p(f*)=@(f)*, for all f,ge CIMI* and A€ R.
b) If kerdop=1, then ¢ is injective.

Proof. By proposition 2.16, ¢ preserves multiplication. Furthermore, 0o ¢
is strictly increasing (otherwise, let m € 90t be such that m <1, but d,(m) =
1. Then (¢(m™)),en is not grid-based). Let f=c;0p(1+¢)e CIMI™ be
a regular series and A € R. Then (20 ¢)(m) <1 for all m € supp ¢, whence
¢(e) < 1. Now

P(f) =cf () (1 +2)* 0 Gle)) = p(0)* (1 + $(e)),

by the propositions of the previous section. Furthemore, 14 ¢(¢) is in C' [[9] *,
and so are ¢ and ¢(9¢). Therefore,

PN = o(@)* (1+@(e)) = (cro(dr) (1+ @(e))* = &),
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since C' [P * is a group with R-powers. This proves (a).

Assume now that kerdo ¢ =1. Then Do ¢ is injective and strictly increasing.
Given f € C 9T with dominant monomials ?1,...,0,, the monomials 0,4,
0,(a,,) are pairwise distinct. Consequently, the dominant monomials of ¢( f)
are precisely the maximal elements for < among the 0,(,). In particular,
if f0, then there exists at least one such maximal element, so that @( f)#0.
This proves (b). O

An asymptotic scale in C'[[9] is a subgroup & of C' [9NT * with R-powers,
such that 0|g: & — 9N is injective. Then & is naturally ordered by f = g«
07 =04, for all f, g€ &. The previous proposition now shows that we may
identify C [&1 with a subset of C'[9M]] via the strongly linear extension Jg of
the inclusion vg: & — C' [ . This identification is coherent in the sense that
Vg o Vs = Upg(x), for any asymptotic scale T in C'[[&1, by proposition 2.17.

A basis of an asymptotic scale & is a basis of &, when considering & as
an exponential R-module. If 9B is such a basis, then 0g is a basis of 0g. In
particular, if 0g =91, then 0y is a basis of 1. In this case, the bijection
0|s: 6 — M is called a scale change and its restriction to B a base change.
We also say that B is an asymptotic basis for C'[9] in this case.

When dealing with finite bases, it will often be convenient to consider them
as ordered n-tuples B =(by,...,b,) instead of sets without any ordering.

Exercise 2.24. Generalize the results from this section to the case when we
consider well-based series instead of grid-based series. In the definition of asymp-
totic scales, one should add the requirement that the natural inclusion mapping
G — C M be well-based (i.e. well-based subsets of G are mapped to well-based
families).

Exercise 2.25.

a) Assume that 9 is a perfect monomial group, i.e. m" < 1=m< 1, for all
meM and n>1. Prove that a series f € C [T is invertible, if and only if f
is regular. Hint: show that for each dominant monomial m of f & CIIMI,
there exists an extension <’ of the ordering on 9, such that n <’m, for all
nesupp f.

b) Prove that the above characterization of invertible series does not hold for
general monomial groups.

Exercise 2.26. Let K be a field and 9t be a monomial group with K-powers.
Assume that 9t admits a finite basis B = (by,...,by).

a) Let B'=(b1,...,b},,) be another asymptotic basis of C'[9I. Show that
n’ =n and that there exists a square matrix
A1 o Ain
Py g = : : ;
)\n,l ot >\n,n
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such that (B’) =B"*"=, that is, 0(b}) =b""--- b)"" for all n.

b) Show that P%’%/P%/’% :Idn

c) If CIMIN =Cby,...,b,1 =CIbi,...,b,,T, then show that the matrix Py’ »
is diagonal, modulo a permutation of the elements of B’.

d) If M =C0by;...;6,1 =CIby;...; 6,1, then show that the matrix Py’
is lower triangular.
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The Newton polygon method

Almost all techniques for solving asymptotic systems of equations are explic-
itly or implicitly based on the Newton polygon method. In this section we
explain this technique in the elementary case of algebraic equations over grid-
based algebras C'[9], where C is a constant field of characteristic zero
and 9 a totally ordered monomial group with Q-powers. In later chapters of
this book, the method will be generalized to linear and non-linear differential
equations.

In section 3.1, we first illustrate the Newton polygon method by some
examples. One important feature of our exposition is that we systematically
work with “asymptotic algebraic equations”, which are polynomial equations
P(f)=0 over CIIMI together with asymptotic side-conditions, like f < v.
Asymptotic algebraic equations admit natural invariants, like the “Newton
degree”, which are useful in the termination proof of the method. Another
important ingredient is the consideration of equations P’( f) =0, P”( f)=0, etc.
in the case when P(f)=0 admits almost multiple roots.

In section 3.2, we prove a version of the implicit function theorem for
grid-based series. Our proof uses a syntactic technique which will be further
generalized in chapter 6. The implicit function theorem corresponds to the
resolution of asymptotic algebraic equations of Newton degree one. In sec-
tion 3.3, we show how to compute the solutions to an asymptotic algebraic
equation using the Newton polygon method. We also prove that C'[[9N] is
algebraically closed or real closed, if this is the case for C.

The end of this chapter contains a digression on “Cartesian representa-
tions”, which allow for a finer calculus on grid-based series. This calculus is
based on the observation that any grid-based series can be represented by
a multivariate Laurent series. By restricting these Laurent series to be of
a special form, it is possible to define special types of grid-based series, such
as convergent, algebraic or effective grid-based series. In section 3.5, we will
show that the Newton polygon method can again be applied to these more
special types of grid-based series.
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Cartesian representations are essential for the development of effective
asymptotics [Hoe97], but they will only rarely occur later in this book (the
main exceptions being section 4.5 and some of the exercises). Therefore, sec-
tions 3.4 and 3.5 may be skipped in a first reading.

3.1 The method illustrated by examples

3.1.1 The Newton polygon and its slopes

Consider the equation

23

P(f)=i§>% Pifi=z 04z ot fro2 Pt e =0 (31)

and a Puiseux series f=cz#+ --- € C[c|[2R, where c#0 is a formal para-
meter. We call p=val f the dominant exponent or valuation of f. Then

a=minval(P; z**)=min {3, p+ 1,2 p,3 pu, 4 p,5 p+4,6 u+ 3}

7

is the dominant exponent of P(f) € C[c][2®1 and
NP,ZM(C) = P(f)za:O (32)

is a non-trivial polynomial equation in ¢. We call Np .« and (3.2) the Newton
polynomial resp. Newton equation associated to z*.

Let us now replace ¢ by a non-zero value in C, so that f=czt+--- €
CI2RT. If f is a solution to (3.1), then we have in particular Np_,u(c)=0.
Consequently, Np .« must contain at least two terms, so that o occurs at least
twice among the numbers 3, u+1,2 p,3 1,4 1,5 p+4,6 u+ 3. It follows that

3
ne{2,1,0,—5}.

We call 2,1,0 and —% the starting exponents for (3.1). The corresponding

2

monomials 22, z, 1 and z73/2 are called starting monomials for (3.1).

The starting exponents may be determined graphically from the Newton
polygon associated to (3.1), which is defined to be the convex hull of all
points (¢, ) with v > val P;. Here points (i,v) € N x @ really encode points
(f%, 27) € fN x 2R (recall the explanations below figure 2.1). The Newton
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polygon associated to (3.1) is drawn at the left hand side of figure 3.1. The
diagonal slopes

(1,2%) = (f,2) (n=2)
(f.z) — (f%1) (p=1)
(%1 — (f41) (1n=0)
(fL1 — (f%27) (n=—3)

correspond to the starting exponents for (3.1).

Given a starting exponent € Q for (3.1), a non-zero solution c of the cor-
responding Newton equation is called a starting coefficient and ¢ z* a starting
term. Below, we listed the starting coefficients ¢ as a function of y in the case
of equation (3.2):

7 Np,, ¢ | multiplicity
2 c+1 -1 1
1 2+c -1 1
0f(c*—2c3+c?| 1 2
% cS+ct —i,i 1

Notice that the Newton polynomials can again be read off from the Newton
polygon. Indeed, when labeling each point (f% z#) by the coefficient of z#
in P;, the coeflicients of Np .« are precisely the coefficients on the edge with
slope p.

Given a starting term c z# € C 2z®, we can now consider the equation
JS(f) =0 which is obtained from (3.1), by substituting ¢ z* + f for f, and
where f satisfies the asymptotic constraint f < z". For instance, if cz#=12Y,
then we obtain:

P(f) = 23f54+(62°%) f +(15z +52441) fA 4
(202341024 +2) 3+ (1523 +1024+1) f2+
(62345204 2 ) ot 2+ 220 (F<1) (33)

22

The Newton polygon associated to (3.3) is illustrated at the right hand side of
figure 3.1. It remains to be shown that we may solve (3.3) by using the same
method in a recursive way.

3.1.2 Equations with asymptotic constraints and refinements

First of all, since the new equation (3.3) comes with the asymptotic side-con-
dition f <1, it is convenient to study polynomial equations with asymptotic
side-conditions

P(f)=0 (f=z") (3-4)
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ZQ ZQ
1 1 )
1 ¢
O ~
1 32 11 [N N

Fig. 3.1. The left-hand side shows the Newton polygon associated to the
equation (3.1). The slopes of the four edges correspond to the starting expo-
nents 2, 1, 0 and —% (from left to right). After the substitution

f=1+F (f=1),

we obtain the equation (3.3), whose Newton polygon is shown at the right-
hand side. Each non-zero coefficient P; .. in the equation (3.1) for f induces
a “row” of (potentially) non-zero coefficients 15{72& in the equation for f, in
the direction of the arrows. The horizontal direction of the arrows corre-
sponds to the slope of the starting exponent 0. Moreover, the fact that 1 is
a starting term corresponds to the fact that the coefficient of the lowest left-
most induced point vanishes.

in a systematic way. The case of usual polynomial equations is recovered by
allowing v = —oo. In order to solve (3.4), we now only keep those starting
monomials z* for P( f)=0 which satisfy the asymptotic side condition z* < 2",
ie. u>v.

The highest degree of Np .« for a monomial z# < 2" is called the Newton
degree of (3.4). If d >0, then P is either divisible by f (and f=0 is a solution
to (3.4)), or (3.4) admits a starting monomial (and we can carry out one step
of the above resolution procedure). If d =0, then (3.4) admits no solutions.

Remark 3.1. Graphically speaking, the starting exponents for (3.4) correspond
to sufficiently steep slopes in the Newton polygon (see figure 3.2). Using
a substitution f=z"f, the equation (3.4) may always be transformed into an
equation

P(f)=0 (f=1)

with a normalized asymptotic side-condition (the case v = —co has to be
handled with some additional care). Such transformations, called multiplica-
tive conjugations, will be useful in chapter 8, and their effect on the Newton
polygon is illustrated in figure 3.2.
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2Q -Q

~

d+2T, I d+2 N

Fig. 3.2. At the left-hand side, we have illustrated the Newton polygon for
the asymptotic equation P(f)=0 (f <2/2). The dashed line corresponds to
the slope 1/2 and the edges of the Newton polygon with slope >1/2 have
been highlighted. Notice that the Newton degree d =2 corresponds to the
first coordinate of the rightmost point on an edge with slope >1/2. At the
right-hand side, we have shown the “pivoting” effect around the origin of the
substitution f= 21/2f on the Newton polygon.

Given a starting term =7 =cz" or a more general series p=cz#+--- €
CIzR1, we next consider the transformation

f=eo+f (f=2Y), (3.5)

with z” < z#, which transforms (3.4) into a new asymptotic polynomial equa-
tion

P(f)=0 (f=<2"). (3.6)

Transformations like (3.5) are called refinements. A refinement is said to be
admissible, if the Newton degree of (3.6) does not vanish.

Now the process of computing starting terms and their corresponding
refinements is generally infinite and even transfinite. A priori, the process
therefore only generates an infinite number of necessary conditions for Puiseux
series f to satisfy (3.4). In order to really solve (3.4), we have to prove that,
after a finite number of steps of the Newton polygon method, and whatever
starting terms we chose (when we have a choice), we obtain an asymptotic
polynomial equation with a unique solution. In the next section, we will prove
an implicit function theorem which guarantees the existence of such a unique
solution for equations of Newton degree one. Such equations will be said to
be quasi-linear.

Returning to our example equation (3.1), it can be checked that each of
the refinements

= 722+.f~

f . (f=2%);
f=—z+f (f=<2);
f= iz (F=,
f=i2lrf (F=27
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leads to a quasi-linear equation in f. The case

f=1+7 (f=1)

leads to an equation of Newton degree 2 (it will be shown later that the
Newton degree of (3.6) coincides with the multiplicity of ¢ as a root of Np ).
Therefore, the last case necessitates one more step of the Newton polygon
method:

F=-ivEef (F=23

F=iva+f (F=2'1?).

For both refinements, it can be checked that the asymptotic equation in f
is quasi-linear. Hence, after a finite number of steps, we have obtained a
complete description of the set of solutions to (3.1). The first terms of these
solutions are as follows:

fr = =22=228 42"~ 132° - 50254+ O(2");
frr = —2+32%2-8234462*—2002° +O(2%);
frr = 1=i2"2 422431232221 0(:5/2),
frv = 14iz24 L= 2232224 0(25/?);
o = iYL O

fvr = 12’3/2—1—%z+iz3/2+%,25/2+0(23).

3.1.3 Almost double roots

Usually the Newton degrees rapidly decreases during refinements and we are
quickly left with only quasi-linear equations. However, in the presence of
almost multiple roots, the Newton degree may remain bigger than two for
quite a while. Consider for instance the equation

<f112>252 (3.7)

over C[[z;ell, with 2 <1 and € < 1. This equation has Newton degree 2, and
after n steps of the ordinary Newton polygon method, we obtain the equation

<J? 1Z_nz>252 (.]?<Zn_l)a

which still has Newton degree 2. In order to enforce termination, an additional
trick is applied: consider the first derivative

2

1—220

2f—
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of the equation (3.7) w.r.t. f. This derived equation is quasi-linear, so it

admits a unique solution )

1z

Now, instead of performing the usual refinement f =1+ f (f < 1) in the
original equation (3.7), we perform refinement

f=e+f (f=1).

¥

This yields the equation

f2=e? (f=<1).
Applying one more step of the Newton polygon method yields the admissible
refinements

f= —€+~J% (f=e);

f=e+tf  (f=o)
In both cases, we obtain a quasi-linear equation in f:

—2:f+f =0 (F=e)
26f+f2 =0 (f<s).

In section 3.3.2, we will show that this trick applies in general, and that the
resulting method always yields a complete description of the solution set after
a finite number of steps.

Remark 3.2. The idea of using repeated differentiation in order to handle
almost multiple solutions is old [Smi75] and has been used in computer algebra
before [Chi86, Gri90]. Our contribution has been to incorporate it directly into
the Newton polygon process, as will be shown in more detail in section 3.3.2.

3.2 The implicit series theorem

In the previous section, we have stressed the particular importance of quasi-
linear equations when solving asymptotic polynomial equations. In this sec-
tion, we will prove an implicit series theorem for polynomial equations. In the
next section, we will apply this theorem to show that quasi-linear equations
admit unique solutions. The implicit series theorem admits several proofs (see
the exercises). The proof we present here uses a powerful syntactic technique,
which will be generalized in chapter 6.

Theorem 3.3. Let C be a ring and M a monomial monoid. Consider the
polynomial equation

Pofi+-+Py=0 (3.8)

with coefficients Py, ..., P, € CIMI, such that Py1 =0 and P ;€ C*.
Then (3.8) admits a unique solution in C'[IM<T.
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Proof. Since P; 1 € C*, the series P is invertible in C'[M4]. Modulo division
of (3.8) by P1, we may therefore assume without loss of generality that P =1.
Setting Q; = —P; for all i # 1, we may then rewrite (3.8) as

f=Qo+Qa f>+ - +Qunf (3.9)
Now consider the set .7 of trees with nodes of arities in {0,2,...,n} and such
that each node of arity i is labeled by a monomial in supp @Q;. To each such tree
t= 0 S
ty oot
we recursively associate a coeflicient ¢; € C' and a monomial m; € 9t by
¢t = QipcCtyCtj
m; = 0My, - My,.

Now we observe that each of these monomials m; is infinitesimal, with
m; € (supp Qo) - (supp Qo Usupp Q2U -+ Usupp Qn)*. (3.10)

Hence the mapping t+— m; is strictly increasing, when .7 is given the embed-
dability ordering from section 1.4. From Kruskal’s theorem, it follows that
the family (c;my)e & is well-based and even grid-based, because of (3.10). We
claim that f=3, _, c:m; is the unique solution to (3.9).

First of all, f is indeed a solution to (3.9), since

[ = m
RPN

= Z Z Z (Qi,b U) (Ctl mtl) T (Cti mti)

1€{0,2,...,n} vEsuppQ; t1,...,t;,€T

. ( 5 Qi,un)@zctjmtj)
i€{0,2,...,n} \(vEsuppQ; j=1t€7

= Z Qif'=Qo+Q2f*+ - +Qnf™

i€{0,2,...,n}

c v
i€{0,2,...,n} v€suppQ; t1,...,t,€T /‘\
ty ot

In order to see that f is the unique solution to (3.8), consider the polynomial
R(5)=P(f +6). Since f <1, we have R; = P, + o(1) for all ¢, whence in
particular Ry =1+ o(1). Furthermore, P(f)=0 implies Ry=0. Now assume
that g <1 were another root of P. Then § =g — f <1 would be a root of R,
so that

§=(Ri+Ra6+ -+ R, 16" H)"TR() =0, (3.11)
since Ry + Rod+ -+ R, 10" 1=1+0(1) is invertible. O
Exercise 3.1. Generalize theorem 3.3 to the case when (3.8) is replaced by
Po+ P f+ Py f24---=0,
where (P;);en € CIMT is a grid-based family with Py ;=0 and Py ; € C*.
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Exercise 3.2. Give an alternative proof of theorem 3.3, using the fact that (3.9)
admits a unique power series solution in Z[[Q2 Qo,- -, Qn ngl]] Qo, when
considered as an equation with coefficients in Z[[Qo, Qa, - . ., Qx]].

Exercise 3.3. Assuming that 901 is totally ordered, give yet another alternative
proof of theorem 3.3, by computing the terms of the unique solution by trans-
finite induction.

Exercise 3.4. Let C'((z1,..., 2z,)) denote the ring of non-commutative power
series in z1, ..., 2, over C. Consider the equation

f(g(zla"'azn)vzh"'7Zn):0 (312)
with f € C{(y,21,...,2n)), f1=0 and invertible f,. Prove that (3.12) admits
a unique infinitesimal solution g € C({z1,..., zn)).

3.3 The Newton polygon method

3.3.1 Newton polynomials and Newton degree

Let C be a constant field of characteristic zero and 9t a totally ordered
monomial group with Q-powers. Consider the asymptotic polynomial equation

P,f"+---+FP=0 (f=<nv), (3.13)

with coefficients in C'[9M] and v € 9. In order to capture ordinary polyno-
mial equations, we will also allow v = Ty, where Tgy is a formal monomial
with Teon > 9. A starting monomial of f relative to (3.13) is a monomial m <o
in 9, such that there exist 0 <4 < j <n and n €M with P;m’ = P; mJ =n and
P, m* <n for all other k. To such a starting monomial m we associate the
equation

NP,m(C):Pn,n/den+"'+P0,n:07 (314)

and Np n, is called the Newton polynomial associated to m. A starting term
of f relative to (3.13) is a term 7 =cm, where m is a starting monomial
of f relative to (3.13) and ¢ € C7 a non-zero root of Np . In that case, the
multiplicity of 7 is defined to be the multiplicity of ¢ as a root of Np . Notice
that there are only a finite number of starting terms relative to (3.13).

Proposition 3.4. Let f be a non-zero solution to (3.13). Then 7y is a starting
term for (3.13). 0

The Newton degree d of (3.13) is defined to be the largest degree of the
Newton polynomial associated to a monomial m < v. In particular, if there
exists no starting monomial relative to (3.13), then the Newton degree equals
the valuation of P in f. If d=1, then we say that (3.13) is quasi-linear. The
previous proposition implies that (3.13) does not admit any solution, if d=0.
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Lemma 3.5. If (3.13) is quasi-linear, then it admits a unique solution

in C'[9NT.

Proof. If Py=0, then our statement follows from proposition 3.4, since there
are no starting monomials. Otherwise, our statement follows from theorem 3.3,
after substitution of fn for f in (3.13), where n is chosen <-maximal such
that 0p, = 0p, n'~! for all 4, and after division of (3.13) by ?p,. O

3.3.2 Decrease of the Newton degree during refinements

A refinement is a change of variables together with the imposition of an
asymptotic constraint:

f=e+f (f=0), (3.15)

where ¢ < and b <. Such a refinement transforms (3.13) into an asymptotic
polynomial equation in f:

Pof"+--+Py=0 (f=<b), (3.16)
where

1 "k .

o (2) _ k—1

Pi= P (p) kgi(i)Pkw : (3.17)

for each i. We say that the refinement (3.15) is admissible if the Newton degree
of (3.16) is strictly positive.

Lemma 3.6. Consider the refinement (3.15) with =0,. Then

a) The Newton degree of (3.16) coincides with the multiplicity of ¢ as a root
of Np.wm. In particular, (3.15) is admissible if and only if cm is a starting
term for (3.13).

b) The Newton degree of (3.16) is bounded by the Newton degree of (3.13).

Proof. Let d be maximal such that P;m? = P;m’ for all 4, and denote n=
9(P;) m?. Then d is bounded by the Newton degree of (3.13) and

P= 33 ()R

= < NP ()nmi 4 o(nm?),

for all 4. In particular, denoting the multiplicity of c as a root of Np by d~,
we have ng nm—<. Moreover, for all i > d, we have P;<nm~". Hence, for any

i>d and 1< m, we have Pt < Pgﬁid. This shows that the Newton degree
of (3.16) is at most d.
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Let us now show that the Newton degree of (3.16) is precisely d. Choose
m<m large enough, so that

for all i <d. Then deg Np & =d. O

If one step of the Newton polygon method does not suffice to decrease
the Newton degree, then two steps do, when applying the trick from the next
lemma:

Lemma 3.7. Let d be the Newton degree of (3.13). If f admits a unique
starting monomial m and Np n a unique root ¢ of multiplicity d, then

a) The equation
PUD(0)=0 (p=v) (3.18)

is quasi-linear and its unique solution satisfies ¢ =cm+ o(m).
b) The Newton degree of any refinement

F=¢+T (f=v)
relative to (3.16) with 5:05 is strictly inferior to d.
Proof. Notice first that Np: = Np , for all polynomials P and monomials m.
Consequently, (3.18) is quasi-linear and c is a single root of Np(a-1) . This
proves (a). R
As to (b), we first observe that P;_; =P~ Y(p)=0. Given m <, it
follows that Np . ;,;=0. In particular, there do not exist a#0, 30 with

Np w(€)=a(c— 3)<. In other words, Np  does not admit roots of multiplicity
d. We conclude by lemma 3.6. O

3.3.3 Resolution of asymptotic polynomial equations

Theorem 3.8. Let C be an algebraically closed field of characteristic zero
and M a totally ordered monomial group with Q-powers. Then C IO is
algebraically closed.

Proof. Consider the following algorithm:

Algorithm polynomial_solve
Input: An asymptotic polynomial equation (3.13).
Output: The set of solutions to (3.13).

1. Compute the starting terms ¢; mq,...,c, m, of f relative to (3.13).

2. If v=1 and ¢; is a root of multiplicity d of Np w,, then let ¢ be the unique
solution to (3.18). Refine (3.15) and apply polynomial_solve to (3.16).
Return the so obtained solutions to (3.13).
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3. For each 1 <7< v, refine
f:Cimi+,f~ (f<mz)

and apply polynomial_solve to the new equation in f. Collect and return
the so obtained solutions to (3.13), together with 0, if P is divisible by f.

The correctness of polynomial_solve is clear; its termination follows from
lemmas 3.6(b) and 3.7(b). Since C' is algebraically closed, all Newton poly-
nomials considered in the algorithm split over C. Hence, polynomial_solve
returns d solutions to (3.13) in C'[9T, when counting with multiplicities.
In particular, when taking v = Tgy = 91, we obtain n solutions, so C'[9M1 is
algebraically closed. ([l

Corollary 3.9. Let C be a real closed field and 9 a totally ordered monomial
group with Q-powers. Then C I[N is real closed.

Proof. By the theorem, a polynomial equation P(n) =0 of degree n over
CI9MI admits n solutions in C[i] [9T, when counting with multiplicities.
Moreover, each root ¢ € C[i| [T \ C IO is imaginary, because

. _p—Reop
1_—Imcp e CIMI [¢]

for such . Therefore all real roots of P are in C'[[9]. O

Corollary 3.10. The field C[2R1 of Puiseuz series over an algebraically
resp. real closed field C is algebraically resp. real closed. O

Exercise 3.5. Consider an asymptotic algebraic equation (3.13) of Newton
degree d. Let 71,...,7; be the starting terms of (3.13), with multiplicities uq,...,
ur. Prove that

py+ - <d.
Also show that pui+ -+ + puxr=d if C' is algebraically closed.
Exercise 3.6.

a) Show that the computation of all solutions to (3.13) can be represented
by a finite tree, whose non-root nodes are labeled by refinements. Applied
to (3.1), this would yields the following tree:

f=1
f==+f f=—zt] f=1+7 f=—izTP0 f o f=ia? P
f<z2 f<z =1 F=<z73? F=<z73/?

F=1—izY24F f=1+izY/24F
f<z1/2 f<z1/2

b) Show that the successors of each node may be ordered in a natural way, if C
is areal field, and if we restrict our attention to real algebraic solutions. Prove
that the natural ordering on the leaves, which is induced by this ordering,
corresponds to the usual ordering of the solutions.
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Exercise 3.7.

a) Generalize the results of this chapter to asymptotic equations of infinite
degree in f, but of finite Newton degree.

b) Give an example of an asymptotic equation of infinite degree in f, with
infinitely many solutions.

Exercise 3.8. Consider an asymptotic polynomial equation
P(f)=0 (f=<v)

of Newton degree d, with P € CI9MI[F] and v € M. Consider the monomial
monoid Y =9 x FN with

mFi<lemo' <1V (moi=1A4>0).

a) Show that there exists a unique invertible series u € C [[UT such that P=u P
is a monoic polynomial in C'[9] [F].
b) Show that deg P =d.

3.4 Cartesian representations

In this section, we show that grid-based series may be represented by (finite
sums of) multivariate Laurent series in which we substitute an infinitesimal
monomial for each variable. Such representations are very useful for finer
computations with grid-based series.

3.4.1 Cartesian representations

Let CIIMI be a grid-based algebra. A Cartesian representation for a series
feCIMI is a multivariate Laurent series f € C((31,..., jx)), such that
f=¢(f) for some morphism of monomial monoids ¢: 3% --- 3% — 9. Writing
f=g39 3%, with g€ C[[31,-.., 3], we may also interpret f as the product
of a “series” $(g) in ©(31),---,¢(3x) and the monomial m= (37" --- 37%).

More generally, a semi-Cartesian representation for fe C[IOMI is an
expression of the form

f=@(g)mi+ -+ @(g) my,
where g1,..., g €C[[31,..-, 3], m1,...,my €M and @: 3 - 35 — M is
a morphism of monomial monoids.
Proposition 3.11.

a) Any grid-based series f € C [N admits a semi-Cartesian representation.
b) If M is a monomial group, which is generated by its infinitesimal elements,
then each grid-based series f € C[IMI admits a Cartesian representation.
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Proof.

a) Let my,...,mg €M< and ny,...,n; €M be such that
supp f C{my,...,mg}* {ny,...,n;}.
For each v €supp f, let
ny=card {(aq,...,ap, i) ENF x {1,... [}ro=m{* - mp*n;}.
Let
= Y Teieitge e

[ B
ay,...,ap€NE T My "M

for all 1 <i<landlet @: 3N - 3N =9, 350 - 30— m$* - .- mP*. Then

f=¢(g)n+ -+ o(g) n

b) For certain my41,...,m, €M and B; ; € Z, we may write
g m
for all 1<i<l. Let op: 37 50—, 38+ 5,7 —>mf' - my” and
l
F=3 Giaiit
=1
Then f=1v(f). O

Cartesian or semi-Cartesian representations fi= gbl(fl) and fo= ¢g(f2) are
said to be compatible, if fi and fo belong to the same algebra C((31,---,3%)
of Laurent series, and if ;= ps.

Proposition 3.12.

a) Any f1,..., fn € CIIMI admit compatible semi-Cartesian representations.
b) If M is a monomial group, which is generated by its infinitesimal elements,
then any f1,..., fn € CIINT admit compatible Cartesian representations.

Proof. By the previous proposition, fi,..., f, admit semi-Cartesian represen-
tations f; = @;(f;), where fi€ C((3i,1.---,3i,k,)) and @i 351 -+ 51, — M for
each ¢. Now consider
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Then f;= 1/;(151) for each 4, where Fj is the image of f; under the natural
inclusion of C'((34,1,---53i.k;)) 060 C((31,1,-++»31,k1s--+s3n,1s--+s3n,ky,))- This
proves (a); part (b) is proved in a similar way. |

3.4.2 Inserting new infinitesimal monomials

In proposition 3.12 we drastically increased the size of the Cartesian basis in
order to obtain compatible Cartesian representations. The following lemma
is often useful, if one wants to keep this size as low as possible.

Lemma 3.13. Let 31,...,3k, M1,..., My be infinitesimal elements of a totally
ordered monomial group M with Q-powers, such that my,...,mye3Z ... 32
Then there exist infinitesimal 31,...,35 € 5? e 3}? with 31, ..., 3k, M1, ...,
mi € (31N - (61)™

Proof. It suffices to prove the lemma for [ =1; the general case follows by
induction over [. The case [ =1 is proved by induction over k. For k=0,
there is nothing to prove. So assume that k> 1 and let m; =37 --- 35* with
aq,...,ar € Z. Without loss of generality, we may assume that a >0, modulo
a permutation of variables. Putting n=3%"--- 377", we now distinguish the
following three cases:
1. If n <1, then there exist infinitesimal 31 --- 3_1 €3% --- 3Z_,, such that
31,5 36-1,0 € GDN - (31,-1)Y, by the induction hypothesis. Taking
3% = 3k, We now have 3z, m;=n30* € 3N - (1), since ay > 0.
2. If n=1, then m; =3¢*, and we may take 31 =31,.-.,3k = 3k-
3. If n= 1, then there exists infinitesimal 3| --- 34_1 €3% --- 32_1, such that
51k s Y @ (31N (35 _1)N. Taking 3p=37""% 5057 o,

we again have gp =30~/ my = (31)* € DN - (1), D

When doing computations on grid-based series in C' [9t]], one often works
with respect to a Cartesian basis 3= (31,...,3,) of infinitesimal elements in
M. Each time one encounters a series f € C'[9] which cannot be represented
by a series in C((31,...,3%)), one has to replace 3 by a wider Cartesian basis
3'=(01,.. 3% with 31,...,3..€ 31N --- (34)Y. The corresponding mapping
C((31,--53k) = C((31,---,3%)) is called a widening. Lemma 3.13 enables us
to keep the Cartesian basis reasonably small during the computation.

3.5 Local communities

Let C be a ring and 9 a monomial group which is generated by its infinites-
imal elements. Given a set Ay C C|[31,--.,3k)| for each k € N, we denote by
C'[[9t]1 4 the set of all grid-based series f € C'[9], which admit a Cartesian
representation f € Ay 3% --- 3% for some k€ N. In this section, we will show
that if the Ay, satisfy appropriate conditions, then many types of computations
which can be carried out in C'[911 can also be carried out in C' I[N 4.
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3.5.1 Cartesian communities

Let C be a ring. A sequence (Ag)ren with Ay CC[[31,---,3k]] is said to be
a Cartesian community over C, if the following conditions are satisfied:
CC1. 31 € Aj.

CC2. Aj is a C-algebra for each k € N.

CC3. The Aj are closed under strong monomial morphisms.

In CC3, a strong monomial morphism is strong C-algebra morphism which
maps monomials to monomials. In our case, a monomial preserving strong

morphism from C{[31,...,3%]] into C[[31,...,3x/]] is always of the form
o: Ol 58]l — Cllsr - a0ll;
[e] Qq gt « [e) ’
FGu-eae) — S ),

where o; ;€N and 3 o #0 for all 7. In particular, CA3 implies that the Ay,
are closed under widenings.

Proposition 3.14. Let (Ax)ren be a Cartesian community over C and let M
be a monomial group. Then C[IMI 4 is a C-algedbra.

Proof. We clearly have C' C C[9MT 4. Let f, g € CIOMT 4. Mimicking the
proof of proposition 3.12, we observe that f and g admit compatible Cartesian
representations f, g€ Ap3% --- 3% Then f+g, f — ¢ and fg are Cartesian
representations of f—|— g, f— g resp. fg O

3.5.2 Local communities

A local community is a Cartesian community (Ag)ren, which satisfies the

following additional conditions:

LC1. For each f € Ay, with [32] f=0, we have f /31, € Ag.

LC2. Given g€ Ay and f1,..., fr € A, we have go (f1,..., fx) € A

LC3. Given f € Apyy with [+ 3041) f =0 and [ --- 32 3441] f € C*, the
unique series ¢ € C[[31,...,3%]] with fo (31,...,3k, ¢) =0 belongs to Ay.

In LC1 and LC3, the notation [37* --- 3,7 f stands for the coefficient of

370 ~--3§‘p in f. The condition LC3 should be considered as an implicit function

theorem for the local community. Notice that Ay is closed under 9/93; for

all {iel,...,k}, since

Of _ folat, - s3itak+1,--s38)—f
=L = o (31,135, 0). 3.19
03i dk+1 (31 3%:0) ( )

Remark 8.15. In [Hoe97], the conditions LC2 and LC3 were replaced by
a single, equivalent condition: given f € A1 as in LC3, we required that
im ¢ C Ay, for the unique strong C-algebra morphism ¢: C[[31,- .., 3x+1]] —
Cll31,- -+, 3x]], such that @cr;,,... 501 = Ideqg,, ... 50 and ©(f) =0. We also
explicitly requested the stability under differentiation, although (3.19) shows
that this is superfluous.
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Ezample 3.16. Let C be a subfield of C and let Ay =C{{31,...,3r}} be the set
of convergent power series in k variables over C, for each k € N. Then the Ay,
form a local community. If 9 is a monomial group, then C{9M}} = CIMI 4
will also be called the set of convergent grid-based series in 9 over C.

Ezample 3.17. For each k € N, let Ay, be the set of power series in C|[31,...,3k]],
which satisfy an algebraic equation over C[31,...,3k|. Then the Ay form a local
community.

3.5.3 Faithful Cartesian representations

In this and the next section, A= (Ag)ren is a local community. A Cartesian
representation f € C((31,---,3k)) is said to be faithful, if for each dominant
monomial d of f, there exists a dominant monomial 3’ of f, with 9 <0’

Proposition 3.18. Let (4;)ien be a local community and f € Ax. Then

a) For each 1<i<k and a € Z, we have [3%] f € Ar—_1.
b) For each initial segment JC 3% --- 3%, we have

szz fmm€ Ag.

meJ

Proof. For each «, let f,=[3%] f. We will prove (a) by a weak induction
over a. If =0, then [32] f=fo(G1,---,3%-1,0) € Ap_1. If @ >0, then

ao o — BN~ BT s

3

By the weak induction hypothesis and LC1, we thus have [3%] f € Ax.

In order to prove (b), let © ={04,...,0;} be the finite anti-chain of maximal
elements of J, so that J=1in(01,...,0;). Let n be the number of variables which
effectively occur in @, i.e. the number of i € {1,...,k}, such that 9;=37"---32*
with «; #0 for some j. We prove (b) by weak induction over n. If n=0, then
either /=0 and f3=0,o0rl=1,0;={1} and f3=f.

Assume now that n >0 and order the variables j31,..., 3 in such a way
that 3 effectively occurs in one of the 0;. For each a € N, let

Jo = {mesl - siiumsped);
Do = {mejl - sppmareD).

We observe that
Jo=1in(DoIl---1ID,) N3 - 301

In particular, if v is maximal with ®, # &, then J,=7, for all « > v and

J=To I - M J,_13¢ ' 13,5,
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so that

f5 = fosesnt ot fumig, 3n T

(f—fo?)%—"'—fk—laz_l> v
dk-
TN

v

3k

Moreover, for each «, at most n — 1 variables effectively occur in the set
Doll--- 11D, of dominant monomials of J,. Therefore f5€ Ag, by the induc-
tion hypothesis. O

Proposition 3.19. Given a Cartesian representation

feAt- 57

of a series f'e C IO, its truncation
F_ z VA
F=Fimesy - syziesupp £, mxa) € AR 3k

is a faithful Cartesian representation of the same series f O

3.5.4 Applications of faithful Cartesian representations

Proposition 3.20. Let fe C IO 4 be series, which is either

a) infinitesimal,
b) bounded, or
¢) regular.

Then f admits a Cartesian representation in Ay3% ---3% for some k € N, which
18 also infinitestimal, bounded resp. regular.

Proof. Assume that f is infinitesimal and let f € Ay 3% .- 3Z be a faithful
Cartesian representation of f, with dominant monomials 9¢,...,0; < 1. For
eachie{l,...,1}, let

i:fin(bl ...,Di)*fin(bl,...,ai_l)EAkﬁlz"'5%7
with 0, =9;. Then f= fi+---+ f; and

is an infinitesimal Cartesian representation of f in A1, when setting 3x4;=
0;/0; for each i € {1,...,1}. This proves (a).

If f is bounded, then let g € Ay be an infinitesimal Cartesian representa-
tion of g = f - f{l}. Now f=g+ f{1}3? --- 3% € Ay is a bounded Cartesian

representation of f. This proves (b).
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Assume finally that f #+0 is regular, with dominant monomial 9. Let g € Ay,
be a bounded Cartesian representation of §= f/ﬁ Since §o # 0, the series g
is necessarily regular. Now take a Cartesian monomial d which represents 0
(e.g. among the dominant monomials of a faithful Cartesian representation

of 9). Then f= g0 is a regular Cartesian representation of f . O

3.5.5 The Newton polygon method revisited

Theorem 3.21. Let (Ax)ren be a local community over a ring C and let 9
be a monomial monoid. Consider the polynomial equation

Pof 44+ Py=0 (3.20)
with coefficients Py, ..., P,€C [M<T 4, such that (}50)1 =0 and (]51)1 eC*.
Then (3.20) admits a unique solution in C[IM- T 4.

Proof. By proposition 3.20, there exist bounded Cartesian representations
Py,..., P, € A for certain 31,..., 51 € 9. Now consider the series
P=Py+Pijit1+ -+ Pojsii1 € Apy1.
We have [3¢-3041] P=0and [3%-- 3034 ,1] P € C*, so there exists a f € Ay, with
Po(31,....36 f)=Po+ P f+-+ P, fr=0,

by LC3. We conclude that feCIMI4 satisfies P, f" + --- + Py=0. The
uniqueness of f follows from theorem 3.3. O

Theorem 3.22. Let (Ag)ken be a local community over a (real) algebraically
closed field C' and M a totally ordered monomial group with Q-powers. Then
CIMI 4 is a (real) algebraically closed field.

Proof. The proof is analogous to the proof of theorem 3.8. In the present case,
theorem 3.21 ensures that ¢ € C'[9t]] 4 in step 2 of polynomial_solve. [

Exercise 3.9. Let C be a ring, 9 a monomial monoid and (Ag)ren a local
community. We define C'[[9911 4 to be the set of series f in C [91, which admit
a semi-Cartesian representation

F=a(f)ymit -+ ¢(fo)my
with fl,...,fpeAk for some k€N, :3Y - ¥ — M and my,..., m, €M. Which

results from this section generalize to this more general setting?

Exercise 3.10. Let C be a field. A series f in C[[31,...,3x]] is said to be dif-
ferentially algebraic, if the field generated by its partial derivatives 9+ -+ f/
(931)" -+ (O31) " has finite transcendence degree over C. Prove that the collection
of such series forms a local community over C.
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Exercise 3.11. Assume that C is an effective field, i.e. all field operations can
be performed by algorithm. In what follows, we will measure the complexity of
algorithms in terms of the number of such field operations.

a) A series f € C[[31,..-,3x)] is said to be effective, if there is an algorithm which
takes aq,...,a, € N on input, and which outputs fa,, ... o, Show that the
collection of effective series form a local community.

b) An effective series f € C[[31,...,3k]] is said to be of polynomial time com-
plexity, if there is an algorithm, which takes n € N on input and which

. i mom

computes fo,, ..., forall ai,...,a, with a1 +--- + a, <k in time ( N ) .

Show that the collection of such series forms a local community. What about
even better time complexities?

Exercise 3.12. Let (Ag)ren be a local community and let
feApst- 3k

be a Cartesian representation of an infinitesimal, bounded or regular grid-based
series f in C[9NT. Show that, modulo widenings, there exists an infinitesimal,
bounded resp. regular Cartesian representation of f, with respect to a Cartesian
basis with at most k elements.

Exercise 3.13. Let (Ax)ren be a local community over a field C.

a) If feCOMI 4, < and g € Ay, then show that go f e CIMI 4.
b) If 9 is totally ordered, then prove that C' [ 4 is a field.

Exercise 3.14. Let (Ag)ren be a local community over a field C' and let 9
be a totally ordered monomial group. Prove that f., fo, fo € CI[9MT 4 for any
fE€CIMI 4, and

CIMNa=ClIMI4,-COCIMI 4, <.

Exercise 3.15. Let (Ag)ren be a Cartesian community. Given monomial groups
MM and N, let & (CIMI, CINT) be the set of strong C-algebra morphisms
from CIOMI into CINT and &/ (CIMI, CLNT )4 the set of ¢ € & (CIIMI,
C NI ), such that p(m) e CIMNT 4 for all m e M.

a) Given ¢ € Z(CIMI, CIND)a and ¢ € & (CINT, CLVI )4, where U is
a third monomial group, prove that ¢ o p € & (CIIMT,C IV )a.

b) Given p € & (CI[IMMT,C I[N )4 and ¢ € &/ (C INT,C [T ) such that o=
Idcgong, prove that ¢ € o (CINT, C I )a.

Exercise 3.16. Let C be a subfield of C and let 9t and 9t be monomial groups
with 9 CN. Prove that C{M} =CIMI NC{N}. Does this property gener-
alize to other local communities?

Exercise 3.17. Let (Ag)ren be the local community from example 3.17 and
let 9 be a totally ordered monomial group. Prove that C' [t 4 is isomorphic
to the algebraic closure of C[9].

Exercise 3.18. Does theorem 3.22 still hold if we remove condition LC2 in the
definition of local communities?
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Exercise 3.19. Consider the resolution of P(f)=0 (f <v), with Pe CIMI 4
and v € M.

a) Given a starting term cm of multiplicity d, let n be minimal for < such that
P;mi=<nfor all i. Show that there exist Cartesian coordinates 31,...,3x with m,
ne3Z.--3%, in which P,m’/n admits a bounded Cartesian representations u;
for all 0 <i<n=degP.

b) Consider a bounded Cartesian representation ¢ € Ay with ¢ ~ ¢ and let
U= p_, (f) w " Given o €327+ 327 et

n
Qo= i e F.
=0

Show that Q=3 Q0 is a series in CIFNEYY, .. 3 ™a.

c) For each p€{0,...,d}, let J, be initial segment generated by the w such
that val Qn < i, and §, its complement. We say that ¢z, is the part of
multiplicity >u of ¢ as a zero of ug+ -+ +u, F". Show that ¢z, € Ay can
be determined effectively for all p.

d) In polynomial_solve, show that refinements of the type

f=¢m+f (f<m),

where ¢ € C}, is the unique solution to 8¢~ Y(ug+ - - - +u, F™) /OF¢~1, may
be replaced by refinements

f=@z, o m+f (f<m).
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Transseries

Let C be a totally ordered exp-log field. This means that C'is a totally ordered
field with an exponential function and a partial logarithmic function which
satisfies similar properties as those defined on the real numbers. Axioms for
exp-log fields will be given in section 4.1. For the moment, the reader may
assume that C' =R.

The aim of this chapter is the construction of the totally ordered exp-log
field C'[[«10 of grid-based transseries in z over C. This means that C'[[z1 is
a field of grid-based series with an additional exponential structure. Further-
more, C [Tzl contains x as an infinitely large monomial. Actually, the field
C [zl carries much more structure: in the next chapter, we will show how
to differentiate, integrate, compose and invert transseries. From corollary 3.9,
it also follows that C'[[z1l is real closed. In chapter 9, this theorem will be
generalized to algebraic differential equations.

As to the construction of C'[[z1l, let us first consider the field C' [zl =
C[[x°T. Given an infinitesimal series f, we may naturally define

expf = 14 f+5 2+
log(1+f) = f—5f+

Using the exp-log structure of C, these definitions may be extended to
Clazllx=C & Clzl < for exp and to C~ + C[[zI < for log. However, nor
the logarithm of x, nor the exponential of any infinitely large series f are
defined. Consequently, we have to add new monomials to ¢ in order to obtain
a field of grid-based series which is closed under exponentiation and logarithm.

Now it is easy to construct a field of grid-based series IL which is closed
under logarithm (in the sense that log f is defined for all strictly positive f).
Indeed, taking L=CT...;loglogx;logx; 21, we set

logz® - logh"x=aplogx + - +a,log,i1x
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for monomials log z® - - - logh" x (here log,, =logo "o log stands for the n-th
iterated logarithm). For general f €L~ we define

log f =1logds +log cf +log(1 + dy),

where log(1+6¢) =d — %5% + --- as above.

In order to construct a field T = C[IMMI of grid-based series with an
exponentiation, we first have to decide what monomial group 9t to take. The
idea is to always take exponentials of purely infinite series for the monomials
in M. For instance, e*°2 is a monomial. On the other hand, e®’ o+ " is
not a monomial and we may expand it in terms of evtw using

2 —1 22 1 22 1 5 .2
et tetr Tl _oritr 4 p—lox +x_|_5m 2er7tT 4L

More generally, as soon as each purely infinite series in T admits an exponen-
tial, then T is closed under exponentiation: for all f €T we take

exp f =exp f- exp f=exp fx,

with exp fx=1+ f< —&-%(]!)2 + .- as above.

In section 4.2, we first study abstract fields of transseries. These are totally
ordered fields of grid-based series, with logarithmic functions that satisfy some
natural compatibility conditions with the serial structures. Most of these
conditions were briefly motivated above. In section 4.3 we construct the field
C[MzIN of transseries in . We start with the construction of the field L
of logarithmic transseries. Next, we close this field under exponentiation by
repeatedly inserting exponentials of purely infinite series as new monomials.
In section 4.4, we prove the incomplete transbasis theorem, which provides
a convenient way to represent and compute with grid-based transseries.

4.1 Totally ordered exp-log fields

A partial exponential ring is a ring R with a partial exponential function
exp: R— R, such that

El. exp0=1.
E2. expy=exp(y —z)expuz, for all z,y € dom exp.

The second condition stipulates in particular that y — z € dom exp, whenever
x,y € domexp. If domexp= R, then we say that R is an exponential ring. If
exp is an exponential function, then we will also write e” for exp x and exp,,
for the n-th iterate of exp (i.e. expp=1Id and exp,,+1 =expoexp, for all be N).

The field R of real numbers is a classical example of an exponential field.
Moreover, the real numbers carry an ordering and it is natural to search for
axioms which model the compatibility of the exponential function with this
ordering. Unfortunately, an explicit set of axioms which imply all relations
satisfied by the exponential function on IR has not been found yet. Neverthe-
less, Dahn and Wolter have proposed a good candidate set of axioms [DW84].



4.1 Totally ordered exp-log fields 81

We will now propose a similar system of axioms in the partial context. For
each n € N, we denote the Taylor expansion of exp x at order n by

1 n—1
We also denote
1, if n=0
Nn_{ (n—1)!, otherwise

so that N,, E,, € Z[z]. An ordered partial exponential ring is a partially ordered
ring R, with a partial exponential function exp: R— R, which satisfies E1, E2
and

E3. Ny, expx > Najp Fap(x), for all 2 € domexp and n € N.

If dom exp = R, then we say that R is an ordered exponential ring.

Proposition 4.1. Let R be an ordered domain in which x#+0=z>>0. Given
a partial exponential function on R which satisfies E1, E2 and E3, we have

Noyexp x = No,, Fop(z) = 2 =0,
for alln e N and x € domexp.

Proof. Assume that expx= Egn(m) We cannot have z < —2n, since otherwise

2k
k=0

In particular, x # —(2n +1). If we also have z #0, then

0 > Nopi2(Eanyo(r) —expx)
= Nopio(Bongo(x) — Eop(z))=2?" (2n+1+41x),

whence 0> 2%" (2n + 1+ 2)2 >0, which is impossible. O
Proposition 4.2. R is a totally ordered exponential field.

Proof. Let ne N. For x > —2n, we have

O g2k
expr — Bon(z) = ) (2k)! (1+ 2k+1)>0'
k=n ’
For x < —2n, we have shown above that Fs,(z) <0<expz. O

Proposition 4.3. Let R be an ordered partial exponential ring. Then

a) exp 1is injective.
b) r<y<expx<expy, for all z,y € domexp.
¢) If R contains the ordered field @ and domexp is a Q-module, then

Vn€N,Vx €domexp, z>(2n)?=expx>a™
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Proof. Assume that exp x =exp y, for some z,y € R. Then
exp(y —x)=expyexp(—z)=expxexp(—z)=1
and similarly exp(z — y) =1. Hence,

I = exp(y—2) > l+y—a
1 = explz—y) > L+z—y,

so that both y <z and x <y. This proves that x =y, whence exp is injective.
Assume now that x <y for some z, y € domexp. Then

exp(y—xz)21l+y—zxz>1.
Consequently,
expy=exp(y —z)expr >expw

and exp y > exp z, by the injectivity of exp. Inversely, assume that exp x <
exp y for some z, y € domexp. Then

14z —y<exp(r —y) =exprexp(—y) <expyexp(—y)=1,

whence z < y. We again conclude that = < y, since exp y # exp . This
proves (b).
If n=0, then (c) follows from (b). If n >0, then exp(z/2n)>(x/2n)+1

implies
2n 2n
expa:}(i—l—l) >(i> >x",
2n 2n
for all z > (2n)2. O

Instead of axiomatizing partial exponential functions on a ring, it is also
possible to axiomatize partial logarithmic functions. The natural counterparts
of E1, E2 and E3 are

L1. log1=0.
L2. logy :log%Jr log x, for all =,y € domlog.
L3. Nop x> Ny, Eon(logx), for all x € domlog and n € N.

Notice that the second condition assumes the existence of a partial inversion
x »—»%, whose domain contains domlog. The n-th iterate of log will be denoted
by log.

In a similar fashion, we define a partial logarithmic ring to be a ring R with
a partial logarithmic function which satisfies L1 and L2. An ordered partial
logarithmic ring is an ordered ring R with a partial logarithmic function which
satisfies L1, L2 and L3. In the case when domlog= R~ for such a ring, then
we say that R is an ordered logarithmic ring.

Proposition 4.4.

a) Let R be a partial exponential ring, such that exp is injective. Then the
partial inverse log of exp satisfies L1 and L2.

b) If R is an ordered partial exponential ring, then exp is injective, and its
partial inverse log satisfies L1, L2 and L3.
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¢) Let R be a partial logarithmic ring, such that log is injective. Then the
partial inverse exp of log satisfies E1 and E2.

d) If R is an ordered partial logarithmic ring, then log is injective, and its
partial inverse exp satisfies E1, E2 and E3.

Proof. Let R be a partial exponential ring, such that exp is injective. Then we
clearly have L1. Now assume that x =expa’ € domlog=imexp. Then (expz’)-
(exp(—z')) =1, whence exp(—z') =1/x € domlog. Furthermore, if y=expy’€
domlog =1imexp, then exp y’' =exp(y’ —z') expa’, so that exp(y’' —z') =y /x.
Consequently, y/x € imexp =domlog and logy —logx =y’ — 2’ =log(y/x).
This proves L2 and (a). As to (b), if R is an ordered partial exp-log ring,
then exp is injective by proposition 4.3(a). The property L3 directly follows
from E3.

Assume now that R is a partial logarithmic ring, such that log is injective.
We clearly have E1. Given z=logz’ and y=1logy’ in dom exp =imlog, we have
log y=log(y/x)+logz and in particular log(y/z) € domexp. It follows that
expy’/expz’=y/x=exp(logy —logz)=exp(y’—z’). This proves E2 and (c).

Assume finally that R is an ordered partial logarithmic ring. Let x,y €
dom log be such that log x =log y. Then

x/y=1+log(x/y)=1+logx —logy=1.

Hence z > y, since y € domlog =y > 0. Similarly, y > x and x =y, which proves
that log is injective. The property E3 directly follows from L3. O

If (a) and (c) (resp. (b) and (d)) are satisfied in the above proposition,
then we say that R is a partial exp-log ring (resp. an ordered partial exp-log
ring). An ordered exp-log ring is an ordered partial exp-log ring R, such that
dom exp =R and imexp= R~. An ordered (partial) exponential, logarithmic
resp. exp-log ring, which is also an ordered field is called an ordered (partial)
exponential, logarithmic resp. exp-log field. In a partial exp-log ring, we extend
the notations exp,, and log,, to the case when n € Z, by setting exp,, =log_,,
and log,, =exp_,, if n <0.

Assume now that R is a ring with C-powers, for some subring C C R.
An exponential resp. logarithmic function is said to be compatible with the
C-powers structure on R if

E4. exp () f) = (exp f)*, for all f € domexp and ) € C; resp.
L4. log f*= \log f, for all f€domexp and A€ C.

Here we understand that imexp C R* in E4 and domlog C R* in L4. Notice
that E4 and L4 are equivalent, if exp and log are partial inverses. Notice

also that any totally ordered exp-log field C' naturally has C-powers: set
M =exp(ulogA) for all A\e C~ and peC.

Exercise 4.1. Let R be an exponential ring. Show that for all x € R, we have
expr=0=1=0.
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Exercise 4.2. Show that the only exponential function on the totally ordered
field of real numbers R is the usual exponential function.

Exercise 4.3. Let R be a totally ordered exponential field. Show that the
exponential function on R is continuous. That is, for all z and € >0 in R, there
exists a 6 >0, such that |expz’ —expx|<e, for all ' € R with |z’ — x| <J. Show
also that the exponential function is equal to its own derivative.

Exercise 4.4. Let R be an ordered partial exponential ring. Given x € dom exp
and n € N, prove that

a) expx > Fap41(x), if £>0.
b) expx < Eapy1(x), if z<0.

4.2 Fields of grid-based transseries

Let C be a totally ordered exp-log field, ¥ a totally ordered monomial group
with C-powers. Assume that we have a partial logarithmic function on the
totally ordered field T =C %1 that extends the logarithm on C'> and that
is compatible with the C-powers structure on T. We say that T is a field of
grid-based transseries (or a field of transseries) if

T1. domlog=T".
T2. logme Ty, forall me¥.

T3. log(1+¢)=loe, for all e € T, where [=%"7 | (D

- 2k e C[[2]).
Intuitively speaking, the above conditions express a strong compatibility

between the logarithmic and the serial structure of T.

Ezxample 4.5. Assume that T is a field of transseries with imlog=T, so that

T=expT,. Let 2 € T~. Then 2°e™ o +2°+2°"" ig 4 monomial in T. The

#*/(1=27") s not a monomial, since 22/ (1 —2~1) ¢ T,.. We have

x2 _ 24z 1
exp(il_xfl) = € exp [

2 z2 4w 3 =24
= e- eCC +x e- e oe e
+ z + 2 2

series e

On the other hand, /(=27 g 5 monomial, since

e?/(1—a H)=e*+e*/ax+ - - €T..

Proposition 4.6. Let T be a field of transseries. Then
a) Given f €T, the canonical decomposition of log f is given by
log f = (log )~ + (log f)= + (log f)«

Il I I
logdf log ¢y log (1 + dy)
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b) Given f,g€T”, we have

& (log f)- < (log g);
f g < (log f)-=(log g)s;
f=g & (log f)- < (log g)-;
f~g & (log f)-=(logg)»

c) For all f € T>°~, we have log f € T>".

d) Given f,geT>", we have
f=xg < log f<logy;
f=<<g < log f<logg;
fXyg & log fxlogy;
&g & log f~logyg

e) For all f € T>", we have log f < f and log f < f.

Proof.
a) Follows from L1, L2, T2 and T3.
b) We have
f Sg9 = Df '\<ag
< 05 <0y
& (log f). =logds <logd, = (log g).-.
The other relations are proved in a similar way.
¢) Given f €T, we have log f ~ (log f)» >0, by (b).
d) We have
f=Xg & 3pel, fxg”
& 3pel,(log f)- < (plogg)-=p(log g)-
& (log f)- =< (log g)
< log fxlogg.

The other relations are proved similarly.
e) The relation log f < f follows from proposition 4.3(¢). Then logs f <log f
and (¢) imply log f < f, by (d). O

The following lemma, which is somehow the inverse of proposition 4.6(a) and
(d), will be useful for the construction of fields of transseries.
Lemma 4.7. Let log be a partial function on T, which satisfies T1, T2 and

a) log (m*n)=Xlogm +logn, for all m,n€T and A\ C.

b) log f =logds+logcs+1ody, for all f€T>.

c) 0<logm~=<m, for all me¥,.

Then log is a logarithmic function, which is compatible with the ordering and
C-powers on T. Hence, T is a field of grid-based transseries.
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Proof. We clearly have L1. Given f, g€ T~, we also have
log(f/g) = logds/g+logcs g+10ds/4
— log (27 /2) +log (e /) 1o (Y52
= logos —logd,+logecs —logeg+1o0dr—1lod,
= log f —logg.

Here
5f —dg

lo(1+5g

)=lods—1lod,

by proposition 2.18 and the fact that l(%zzj) =1(z1) —l(22) in C[[21, 22]]. This
proves L2.
Let us now show that

£ Ean(log f) = 1-+10g f + -+ + 7oy log )2,

for all f € T>\{1} and n € N. Assume first that f=<1. If f~1, then we have

22 22+l 57"
ngn(logf)<(2n)! + Znil) +--->oloc5f~m>0.
Otherwise, ¢f > Eap(log ¢f) and
f—Ean(log f) ~cy — Eap(log cf) > 0.
If f<1, then log f =—log(1/ f) € T<"~. Consequently,

f = Banllog f)~ _ﬁ (log f)*»~1>0.

If f>1,let us show that (log f)* < f, for all k€ N, which clearly implies that
f > Es,(log f). We first observe that log p € T>>~ for all ¢ € T>*, since
logd, € T C T~ and log ¢ =logd,+ O(1). Furthermore, log ¢ ~logd, <
0, < ¢, for all p € T>>~. Taking ¢ = Olog f = Dlogo,, We get log D1og 5 < Ologoys
klog 010 f < log 0y, Dﬁ,gf <0y, and finally (log f)¥ < f. This proves L3.

Let us finally show that log f* = \log f for any f €T> and A€ C. Denoting
= (1+2)* € C[[z]], we have

log f» = log(c; o} myody)
= Alogds+ Aloges+1lo(myody—1)

= Alogos+ Alogcy+ Alody

= MAlog f.
Indeed, proposition 2.18 implies that lo (my0df —1)=Alody, since [(m\(2) —1)=
Al(z) is a formal identity in C[[z]]. O

Exercise 4.5. Let T be a field of transseries.
a) Show that exp f=-eo f for all f€ Ty, where e= Z;C:O%Zk e C[z])-



4.3 The field of grid-based transseries in x 87

b) For each f € domexp, show that

expf = (exp f.) - (exp fx) - (exp f<)
I I I
Vexp £ Cexp f (14 dexp )

c) For each f € domexpNT>'~, show that exp f € T>™, f <exp f and
f<<exp f.
Exercise 4.6. Let e(z) =3 .7 L2k l(z) = Sy CDME ok and =

o A--(A—k+1) p ! - ko o
Zkzoﬁz be as above. Prove the following formal identities:

a) e(z1+ 2z2) = e(21) e(22);

)
b) U(F2) =1(z1) — U(z2);
)

c 6(;(;)2)2: 142
d) l(ma(z) —1)=Al(z).

Hint: prove that the left and right hands sides satisfy the same (partial) differ-
ential equations and the same initial conditions.

Exercise 4.7. Let T =C[I%1 be a field of transseries and consider a flat
subset T of T (i.e. YmeT,Mne TP mKLn=mec 7).

a) Show that there exists an initial segment J of T, such that
T ={ef: feT,,0,€7}.
b) Show that T =C [%" x T%T, where
Ti={ef: f €T ,supp fNI=0}.

We call T the steep complement of T°.

4.3 The field of grid-based transseries in x

Let C be a fixed totally ordered exp-log field, such as R, and x a formal
infinitely large variable. In this section, we will construct the field C [Tzl of
grid-based transseries in x over C'. We proceed as follows:

We first construct the field
L=CILLI =CLI...;loglogz;logx;x]

of logarithmic transseries in x.

Given a field of transseries T = C[%], we next show how to construct
its exponential extension Texp, = C'[Texpll: this is the smallest field of
transseries with Ty, © T and such that exp f is defined in Ty, for all f€T.
We finally consider the sequence

L g H'—4exp g I]'-Jexp.,exp g e
of successive exponential extensions of IL. Their union
Cllzll =LULepU - =CHLLU LepU---1

is the desired field of grid-based transseries in x over C.
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4.3.1 Logarithmic transseries in x

Consider the field L =C [£1, where
£=---xlog§ x xlog®x x zC.

This notation means that £ is the formal monomial group of all z%°---logi*x
with ao,...,ar € C, where %0 ---logi* x =1 whenever ap=---=,;_1=0<;
for some i. Given a monomial m =2z ---logi* x € £, we define logm by

log (2 ---logh*x) =aglogz + - - + axlogr i1 .
We extend this definition to IL”, by setting

log f =logdy+logcy+1ody

for each feIL”. Here we recall that =3, | (_ll)ckﬂ 2k e C[[2]).

Proposition 4.8. IL is a field of transseries.

Proof. Clearly, log (m*n)= Xlogm +logn, for all m,n€ £ and X\ € C. Now let
me L. Then m=log§ix---logh* x, for certain a;, ..., ax € C with a; > 0. Hence,
0<logm<m, since logm~ a;log; 112 and 0 < o;1log; 112 <logiix ---loght x =
m. Now the proposition follows from lemma 4.7. O

4.3.2 Exponential extensions

Let T=C[I%]I be a field of transseries and let
Fexp =exp T

be the monomial group of formal exponentials exp f with f & T., which is
isomorphic to the totally ordered C-module T..: we define (exp f)* (exp g) =
exp(Af+g¢g)and exp fir=expgs f=g forall f,geT, and AeC.

Now the mapping v: T — Teyp, m— exp(logm) is an injective morphism of
monomial groups, since mgn<logm<logns v(m)xv(n) for all mnes.
Therefore, we may identify T with its image in Texp and T with the image of
the strongly linear extension © of v in Texp = C [ZTexpll. We extend the loga-
rithm on T to Texp by setting logm= f € Ty for monomials m=exp f € Texp,
and log f =logds +log ¢+ 1oy for general f € (Texp)”.

Proposition 4.9. Rexp @5 a field of transseries.

Proof. By construction, log (m*n)=Alogm+logn, for all m,n € Ty, and A€ C.
Given m € Teyp 1, we have logm € TS CT>. Consequently, logm and loglogm
are both in T, and proposition 4.6(e) implies that loglogm < logm. Hence,
(loglogm), < (logm), and logm =< exp((loglogm). ) <exp((logm),. ) <xm. We
conclude by lemma 4.7. O
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4.3.3 Increasing unions

Proposition 4.10. Let I be a totally ordered set and let (T;);cr be a family
of fields of transseries of the form T;=C [T, such that T; CT; and T; C T,
whenever i < j. Then T=CLU,.,; %1 =U,;c;Ti is a field of transseries.

Proof. Clearly UieITi C C[[Uiel‘zi]]. Inversely, assume that
fecrl 1.

iel
Since f is grid-based, there exist my,...,my,,ne Uielfi, such that

supp f C{my,...,m,}*n.

For sufficiently large i € I, we have my,...,m,,n € ¥;, since [ is totally ordered.
Hence, supp f C%; and f € T;. This proves that C[[Uiel <1 C UieITi'
Similarly, one verifies that T is a field of transseries, using the fact that given
fi,-- -, fn € T, we actually have fi,..., f, €T; for some i € 1. O

4.3.4 General transseries in x

Let (ILp)nen be the sequence defined by Lo=1IL and L, 41 =1L, exp for all n.
By propositions 4.8, 4.9 and 4.10,

Cllzll =LoULiULLoU---

is a field of transseries. We call it the field of grid-based transseries in x over C.
The exponential height of a transseries in C [zl is the smallest index n,
such that f €lL,. A transseries of exponential height 0 is called a logarithmic
transseries.

Intuitively speaking, we have constructed C'[[«Il by closing C' [« first
under logarithm and next under exponentiation. It is also possible to construct
C[MzIl the other way around: for n € Z, let IE,, be the smallest subfield
of C' 210, which contains C[(log,, 2)¢] and which is closed under grid-based
summation and exponentiation (recall that log, =exp_,, if n <0). We have
Cllzll =EqgUE{UEsU--- of CMxIl. The logarithmic depth of a transseries
in C'[M«10 is the smallest number n € N, such that fe€IE,.

We will write C’g [Mz10 for the field of transseries of exponential height < p
and logarithmic depth < ¢. We will also write Cy, [lz1l =1L, = J, o Cy [Tl
and Ci[[zIl =E,= UpeN C,I=10.

Ezxample 4.11. The divergent transseries
1+logze ®+42!log?re 2%+ 3llog3re 37 + ... (4.1)

is an example of a transseries of exponential height and logarithmic depth 1.
The transseries e/ (1=~ and /(=% from example 4.5 have exponential

height 1 resp. 2 and logarithmic depth 0.
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For the purpose of differential calculus, it is convenient to introduce slight
variations of the notions of exponential height and logarithmic depth. The
level of a transseries is the largest number n € Z for which f € E_,,. The field
E=1IE_; of transseries of level > 1 is called the field of exponential transseries.
The depth of a transseries is the smallest number n € N with f€E, 1.

Example 4.12. The transseries (4.1) has level —1 and depth 2. Both transseries

e®/(=2"1 and /(=27 have level 0 and depth 1. The transseries
expexp (z+e~¢") has level 2 and depth 0.

4.3.5 Upward and downward shifting

In this section, we define the right compositions of transseries in x with expx
and logz. Given f € C[Iz1l, we will also denote foexpx and fologx by f1
resp. f| and call them the upward and downward shifts of f. The mappings
1,1: CllzIl — C 10 are strong difference operators and will be constructed
by induction over the exponential height.

For monomials m=z*log* x ---logh" z € £, we define

(z*log* z---loghmxz)] = exp®zx® ---logh™ | x;
(x*log™ x---logy"x)| = log*xlogy'x ---loghm .

Extending these definitions by strong linearity, we obtain mappings

1:Collzll — CyIxIN
1:Colzll — CollxID.

Now assume that we have further extended these mappings into mappings

1:Cplzll — Cpyq 21D
1:Cpllzll — C), M.

Then we define

(exp f)T = exp(f1);
(exp f)l = exp(fl),

for monomials m=exp f €exp C, [[x1l .. Extending these definitions by strong
linearity, we obtain mappings

T:Cpr1lell — CpioMdl
1:Cp1 [zl — Cppq [MxIN.
By induction over p, we have thus defined T and | on C'[[z1]. Notice that T

and | are mutually inverse, since fT] = f for all f € CP[[zIl] and p € N, by
induction over p.
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There is another way of interpreting right compositions of transseries in z
with expx and log z as formal substitutions x+— expx and z+ logx, considered
as mappings from C' [« into C [Texp 21 resp. C [Mlogx 1. Postulating that
these mappings coincide with the upward and downward shiftings amounts
to natural isomorphisms between C [[zIll and C [Texp 1 resp. C [Mlog z0.

Exercise 4.8. Let T be any non-trivial field of grid-based transseries. Prove
that there exists a strongly linear ring homomorphism ¢: L — T.

Exercise 4.9. For all p, g€ N, prove that

a) ClMogzT C CIH MaM;

b) CAH' 2T € CY,, Mlog 210;

¢) E,=C Mog, «1;

d) ¢ Mz =C [logS x X exp Cil-IM. 1.

Exercise 4.10. Given f € C[[zIl >, we call con f =logo f oexp the contraction
and dil f =expo folog the dilatation of f. Determine dil (z + 1),dildil (z+ 1)
and dildildil (x 4+ 1). Prove that for any f € C[IzI1~"", we have cong f ~exp;x
for some ! € Z and all sufficiently large k € N. Here conj, denotes the k-th iterate
of con.

Exercise 4.11. A field of well-based transseries is a field of well-based series of
the form T = C[[Z]], which satisfies T1, T2, T3 and

T4. Let (m;);en be a sequence of monomials in ¥, such that m;; € supp logm,,
for each ¢ € N. Then there exists an index ig, such that for all i > iy and all
n € supp logm;, we have n=m;; and (logm;)m,,, =£1.

Show that the results from sections 4.3.1, 4.3.2 and 4.3.3 generalize to the well-
based context.

Exercise 4.12. Define a transfinite sequence (C*[[[z]]])a = (C[[[Ta]]])a of fields
of well-based transseries as follows: we take o= £, To11 = (Fa)exp for each

ordinal a and T = Ua</\ T o, for each limit ordinal .

a) Prove that C®[[[x]]] € C”[[[z]]] for all ordinals « < 3. Hint: one may consider
the transfinite sequence of transseries (fo)a>o0 defined by

— 2 solo
fa=a"— E efoolog,

0< <

b) If we restrict the supports of well-based transseries to be countable, then
prove that the transfinite sequence (C*[[[z]]])o stabilizes. Hint: find a suit-
able representation of transseries by labeled trees.

Exercise 4.13.

a) Prove that T1, T2 and T3 do not imply T4.

b) A transseries f €T>:"~ is said to be log-confluent, if there exists an index i,
such that for all i > 4o, we have 0j4g,,, f =10g 010g, . Prove that T4 implies
the log-confluence of all transseries in T~ ™.

¢) Prove that T1, T2, T3 and the log-confluence of all transseries in T>"> do
not imply T4.
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Exercise 4.14.
a) Prove that there exists a field of well-based transseries T in the sense of
exercise 4.11, which contains the transseries

24
log3atelosiet

f — ex2+e
b) Prove that the functional equation
g(:r) :e$2+g(logaz)+logz

admits a solution in T.

4.4 The incomplete transbasis theorem

A transbasis is a finite basis B = (by,..., b,) of an asymptotic scale in T, such
that n>1 and

TB1. by,...,b,€T>" and by < --- < b,,.
TB2. b; =exp;x, for some [ € Z.
TB3. logb; € C[by;...;0;,_10« for all 1 <i<n.

The integer [ in TB2 is called the level of the transbasis B. We say that B is a
transbasis for f €T (or that f can be expanded w.r.t. B), if f € C[by;...;b,1.

Remark 4.13. Although the axiom TB3 is well-suited to the purpose of this
book, there are several variants which are more efficient from a computational
point of view: see exercise 4.15.

Ezxample 4.14. The tuple (x, eV?, ewﬁ) is a transbasis for e@*+D*? and so is
(z,e@H72VT) Neither (z,e%,e"+7 ") nor (z, %, e, 07" +°%) is a transbasis.

Theorem 4.15. Let B be a transbasis and f € C[[Lz1l a transseries. Then
f can be expanded w.r.t. a super-transbasis B of B. Moreover, B may be
chosen so as to fulfill the following requirements:

a) The level of B is the minimum of the levels of B and f.
b) If B and f belong to a flat subring of C Mzl of the form CMaIl’=
CIZ°1, then so does ‘B.

Proof. Let [ be the level of B =(by,...,b,). Without loss of generality, we may
assume that f € CY[[exp;z10. Indeed, there exists an I’ with f € C° [lexpy z10;
if I’< 1, then we insert exp; x,...,exp;_1 2 into B. We will now prove the
theorem by induction over the minimal p, such that f € C’g [Mexp; 1. If p=0,
then we clearly have nothing to prove. So assume that p > 0.

Let us consider the case when f=e9, with g€ C[by;...;b,1. We distin-
guish three cases:

g is bounded. We may take B =9B.
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g * logb; for each i. B = (bl,...,bi,e|g>|, bit1,...,b,) is again a transbasis
for some i€ {1,...,n} and

f:eg> 9= 9= :ei\fb—\ ed= (1 +g*+%(g*)2+ .. )

can be expanded w.r.t. B. Moreover, B satisfies the extra requirements (a)
and (b). Indeed, B has level [ and

e € Cllall’ = el9-l € CM2T’,
since el9-1=e9.

g <logb; for some . We rewrite g=\;logb;+ g, with g < g. If g is again
equivalent to some log b;, then 7 <4, and we may rewrite g = A;logb; + g,
with § < . Repeating this procedure, we end up with an expression of the
form

g:>\“10g6“++)\zk10gb’bk+h7

with i; > --- >4 and where h is either bounded or infinitely large with
h#logb;, for all j. By what precedes, e” and f=e9= hf‘fl e bjk" e may
be expanded w.r.t. a super-transbasis B of B which satisfies the additional
requirements (a) and (b).
This proves the theorem in the case when f=e9 with g€ C[by;...;b,1.
Assume now that f is a general grid-based transseries in Cg [Mexp; 10 .
Then supp f is contained in a set of the form (exp;2)¢ et 91N+ - +9N where
9os -+ gu € C5_ 1 Mexpr 21l » (see exercise 4.9(d)). Moreover, if f € C MzI0°,

then we may choose go, g1, ..., gr € C Mlz1”. Indeed, setting
gi= >, gimmeCLeD’

. meT-,emeTb
for all i, we have

90+ g1N+---+9sN b  gJo+g1N+-- -+ g N

Using the induction hypothesis, and modulo an extension of 8, we may there-
fore assume without loss of generality that go,..., gx € C [b1;...;b,1. By what

precedes, it follows that there exists a super-transbasis B of B for edo . .. ek
which satisfies the requirements (a) and (b). By strong linearity, we conclude
that 9 is the required transbasis for f. O

Exercise 4.15. Consider the following alternatives for TB3:

TB3-a. logb; € C[by;...;b,., for all 1 <i<m;

TB3-b. logb; € C[by;...;b;.1, for all 1 <i< n, where i* is such that Djogp, X bi-;
TB3-c. logb; € CIby;...;6;,_11 for all 1 <i<n;

TB3-d. logb; € C'[by;...;b,0 for all 1 <i<n.

We respectively say that 9B is a heavy, normal, light or sloppy transbasis.

a) Show that TB3-a = TB3-b = TB3-c = TB3-d.
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b) Show that theorem 4.15 holds for any of the above types of transbases.

Exercise 4.16. Find heavy, normal, light and sloppy normal transbases with
respect to which the following “exp-log transseries” can be expanded:

More precisely, an exp-log transseries (resp. function) is a transseries (resp.
function) built up from z and constants in C, using the field operations +, —,
X, /, exponentiation and logarithm.

Exercise 4.17. Let B = (by,..
a unique transbasis B = (51, ..., by), such that

i. BC =3¢
il ¢q5,=1 for all 1<i<n.

,b,) be a transbasis. Prove that there exists

iii. (logb;)o,,, =0 for all 1<i<j<n.

Exercise 4.18. Let A be a local community.

a) If f and B belong to C M1l 4 in theorem 4.15, then show that B may be
chosen to belong to C'[TzIl 4 as well.

b) Show that (a) remains valid if LC3 is replaced by the weaker axiom that for
all f € Agq1 we have f(zy,...,2,,0) € Ag.

c¢) Given a transbasis B C C'[[z1l 4, show that C'[by;...;6,14C CMMzIl4 and
that the coefficients of recursive expansions of f € C[[by;...;b,]4 are again
in C[Iby;...;6,04.

d) Given f € C x4, show that f., fx€ CMxIla.

4.5 Convergent transseries

Assume now that C' =R and let us define the exp-log subfield C{{z ]} of
C'[IzI0 convergent transseries in . The field C, f{z J} of convergent transseries
of exponentiality < p is defined by induction over p by taking Cof{z } =C {L}
and Cp1{{z = C{exp Cof{=J}-}. Here we notice that log £ C Cof{z -,
so that Coffa P C C1f{=} C - - -, by induction. Now we define Cf{z P} =
Uien Ciffz }f- By exercises 3.13 and 3.14, the set C{{z J} is an exp-log sub-
field of C'Tx10.

Let ¢ be the ring of germs at infinity of real analytic functions at infinity.
We claim that there exists a natural embedding C f{z [} — ¢, which preserves
the ordered exp-log field structure. Our claim relies on the following lemma:
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Lemma 4.16. Let 9 be a totally ordered monomial group and @: M — 4G~
an injection, which preserves multiplication and <. Then for each f € C{M},

(= > fup(m)
meEsupp f
is a well-defined function in ¢ and the mapping @: C{IM} — ¥ is an injective
morphism of totally ordered fields.

Proof. Let f=1(f) be a regular convergent Cartesian representation for f,
with f € C((z1,...,21)). Let U=(0,¢)* be such that f is real analytic on U.
Consider the mapping

§ x> (0(P(21))(2), -5 (Y (2)) (2))-

Since @ preserves <, we have &(x) €U, for sufficiently large x. Hence, @(f)(z) =
fo&(z) is defined and real analytic for all sufficiently large z.
Assume now that f >0 and write f = G2 --- z0**, where § is a convergent
series in z1,..., 2z with ¢(0,...,0) >0. Then
1

g(zl,...,zk)>§g(0,...,0)>0

for (z1,...,2x) €U, when choosing ¢ sufficiently small. Hence,

G(f)(x)=go&(x) p(v(z1" - 2"))(x) >0,

for all sufficiently large x, i.e. @(f) > 0. Consequently, ¢ is an injective,
increasing mapping and it is clearly a ring homomorphism. O

Let us now construct embeddings ¢,: Cp,f{z} — ¢, by induction over p.
For p=0, the elements in £ may naturally be interpreted as germs at infinity,
which yields a natural embedding ¢o: Cof{z J} — ¢ by lemma 4.16. Assume
that we have constructed the embedding ¢, and consider the mapping

optr1:expCpf{z P — ¢
exp f — exp @p(f).

Clearly, ¢p+1 is an injective multiplicative mapping. Given f, g€ Cp{z -,
we also have

expf<expg & f<g
= g—feT>"
= 0<@p(g9) — Pp(f) =1
= exp ¢p(g) /exp pp(f) =1
< gpr1(exp f) < ppti(exp g).
Applying lemma 4.16 on ¢,41, we obtain the desired embedding ¢, 1:
Cot1f{{z}} — ¢. Using induction over p, we also observe that ¢,+1 coin-

cides with ¢, on Cp{{z J} for each p. Therefore, we have a natural embedding
of C{{z ]} into ¢, which coincides with ¢, on each C,{z}}.
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Remark 4.17. In the case of well-based transseries, the notion of convergence
is more complicated. In general, sums like e ™% + e ~*PT 4 e~P27 ... only
yield quasi-analytic functions and for a more detailed study we refer to [Eca92,
Eca93]. For natural definitions of convergence like in exercise 4.21, it can
be hard to show that convergence is preserved under simple operations, like
differentiation.

Exercise 4.19.
a) Given fe CIMI, let

f= Z | fm| m.
meM
We say that F € .Z(C{9M}) is summable in C{IM}, if F is grid-based and
ST F e C{Mm}. Show that this defines a strong ring structure on C {9 }.
b) Let F be a family of elements in . Define f=3 F by f(z)=3,  f(2),
whenever there exists a neighbourhood U of infinity, such that f is defined on
U for each f € F and such that Y F is normally convergent on each compact
subset of U. Show that this defines a strong ring structure on ¢.
¢) Reformulate lemma 4.16 as a principle of “convergent extension by strong
linearity”.

Exercise 4.20. Prove that

/e =5,¢" t1 3¢ +8x5e +- ¢ C{=}P.

Exercise 4.21. Let T = C[[[z]]] be the field of well-based transseries of finite
exponential and logarithmic depths. Given o € R, let € be the set of infinitely
differentiable real germs at infinity and %7 the set of infinitely differentiable real
functions on (o, —).
a) Construct the smallest subset T of T, together with a mapping
p?: T9 — %7, such that
CT1. If 0 >exp;0, then log;x € T°? and ¢(log; z) =log;.
CT2. If feT issuch that logm € TV for all m €supp f and Y | fm ©(m)]
is convergent on (0, —), then f€T7 and ¢7(f) =3 fu @(m).
Show that T<V:? is a ring.
b) Show that TV CT:7 for 7 > 0. Denoting T = UUE]R’]TC""’, show that

there exists a mapping ¢: T — €, such that ¢(f) is the germ associated
to @?(f) for every o with f €T, Show also that T is a field.
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Operations on transseries

One of the major features of the field T =C [[z1l of grid-based transseries
in x is its stability under the usual operations from calculus: differentiation,
integration, composition and inversion.

What is more, besides the classical properties from calculus, these opera-
tions satisfy interesting additional properties, which express their compatibility
with infinite summation, the ordering, and the asymptotic relations =, <,
etc. Therefore, the field of transseries occurs as a natural model of “ordered
or asymptotic differential algebra”, in addition to the more classical Hardy
fields. It actually suggests the development of a whole new branch of model
theory, which integrates the infinitary summation operators. Also, not much
is known on the model theory of compositions.

In section 5.1, we start by defining the differentiation w.r.t. x as the unique
strongly linear C-differentiation with 2’ =1 and (ef)’= f’ef for all f. This
differentiation satisfies

f=gng*l = f'<g
f>0Nf=1 = f'>0

In section 5.2, we show that the differentiation has a unique right inverse [
with the property that ([ f)= =0 for all f & T; for this reason, we call [ f
the “distinguished integral” of f. Moreover, the distinguished integration is
strongly linear and we will see in the exercises that one often has ([ f) ([g)=
Jfla+falf

In section 5.3, we proceed with the definition of a composition on T. More
precisely, given g € T~~, we will show that there exists a unique strongly
linear C-difference operator o, with og(z) = g and og(ef) =e°(f) for all f. This
difference operator satisfies

=1 = o4(f)>-1
20 = o4(f)=0
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Moreover, the composition defined by fo g=o4(f) is associative and compat-
ible with the differentiation: (fo g)'=g’(f'og) for all f€T and g€ T>".
Finally, the Taylor series expansion fo(x+0d0)=f+ f'd+ % f"6%+ --- holds
under mild hypotheses on f and 0.

In section 5.4, we finally show that each g € T~>~ admits a unique func-

tional inverse g™V v = gnv

with go ¢V = ¢"™ o g=x. We conclude this chapter with
Ecalle’s “Translagrange theorem” [Eca03|, which generalizes Lagrange’s clas-
sical inversion formula.

5.1 Differentiation

Let R be a strong totally ordered partial exp-log C-algebra. A strong deriva-
tion on R is a mapping 9: R— R; f+— f'=0f, which satisfies

D1. 0c=0, for all ceC.

D2. 0 is strongly linear.

D3. 9(f9)=(df) g+ fOg, for all f, g€ R.

We say that 0 is an exp-log derivation, if we also have
D4. Jd(exp f)=(0f)exp f, for all f€domexpCR.
We say that 0 is (strictly) asymptotic resp. positive, if

D5. f<g=0f <0y, for all f,ge R with g*1.
D6. f=1=(f>0=0f>0), for all f€R.

In this section, we will show that there exists a unique strong exp-log deriva-
tion @ on T, such that dx =1. This derivation turns out to be asymptotic
and positive. In what follows, given a derivation 0 on a field, we will denote
by fT=f'/ f the logarithmic derivative of f 0.

Lemma 5.1. Let T =C[IZ] be an arbitrary field of transseries and let
0:T— T be a mapping, which satisfies d(mn)=(dm)n+mon for all m,ne¥.
Then

a) 0 is a grid-based mapping, which extends uniquely to a strong derivation
on T.

b) If O(logm)=0m/m for all m X, then O is an exp-log derivation on T.

Proof. Let & be a grid-based subset of T, so that
S C{my,...,m,}*n

for certain monomials my <1,...,m, <1 and nin ¥. For any m{*---m_"ne %,
we have

an I

(mg* - mS ) = (ym{ + - +a,mf +nh)m ... m&rn.
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Hence supp v’/ C (suppmlT U--- UsuppmlUsuppnT) v for all v € &, and 9 a grid-
based mapping. The strongly linear extension of 9 is indeed a derivation, since
(f,9)—(fg) and (f,g)— f' g+ fg’ are both strongly bilinear mappings from
T? into T, which coincide on T2 (a proof which does not use strong bilinearity
can be given in a similar way as for proposition 2.16). This proves (a).

As to (b), assume that (logm)’=mT for all m € T. Obviously, in order to
prove that d is a strong exp-log derivation, it suffices to prove that (log f)'= f
for all f€T~. Now each f €T~ may be decomposed as f =cm(1+¢), with ce
C>, me% and ¢ < 1. For each k € N~, we have (ka_lak)’: (—1)k—tgh=1gr,
Hence,

(log(1+¢))'=¢'/(1+e)=(1+¢)T,
by strong linearity. We conclude that

(log f)" = (logc)'+ (logm)’+ (log (1 +¢))’
= mi+(14+¢e)f=(ecm(1+e)t O

Proposition 5.2. There exists a unique strong exp-log derivation 0 on T
with dx =1.

Proof. We will show by induction over p € N that there exists a unique strong
exp-log derivation 0 on C,[lzIl = C[%,1 with dx =1. Since this mapping 0
is required to be strongly linear, it is determined uniquely by its restriction
to ¥p. Furthermore, 0 will be a strong exp-log derivation, if its restriction
to €, satisfies the requirements of lemma 5.1.

For p=0, the derivative of a monomial m=zx®° ... logg“ x € %y must be
given by

ey _ [ @0 Qg o
(xao"'l()gqqx)/_<7+.“+W> o0 logg '

in view of axioms D3 and D4 and the requirements of lemma 5.1 are easily
checked.

If p> 0, then the induction hypothesis states that there exists a unique
strong exp-log derivation 0 on C,_; 2]l with 0z =1. In view of D4, any
strong exp-log derivation on C, [zl should therefore satisfy

(ef)'=f"el,
for all e/ € T, =exp Cp_1M2T+. On the other hand, when defining (ef)’ in
this way, we have
(efe9)'=(f"+g")e!TI=(f"el) eI +el(g'e) = (ef) eI +ef ()’

for all e/, e9 € T,,. Hence, there exists a unique strong derivation d with 9z =1
on C, Mz, by lemma 5.1. Moreover, 0 is a strong exp-log derivation, since

(loge)' = f'=(f'el) /el =(eT) /e’

for all monomials ef € T,,. O
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Fig. 5.1. We will often adopt a geometric point of view for which the deriv-
ative 0 is a function on the “transline” T'. Due to the highly non-archimedean
character of T, it is difficult to sketch the behaviour of this function. An
attempt has been made in the left figure above. The two squares corre-
spond to the regions where both coordinates are infinitesimal resp. bounded.
Notice that 9 is locally decreasing everywhere (the small curves), although
its restriction to Ty is increasing (the fat curve). At the right hand side,
we also sketched the behaviour of the functions m+— 9,/ and m+— 0+ for
transmonomials (using logarithmic coordinates).

Proposition 5.3. For all f €T, we have

Proof. The mappings di: f+— (e7® (f1'))] and da: f — (x (f|’))] are both
strong exp-log derivations with d; x =dyx =1. We conclude by proposi-
tion 5.2. 0

Proposition 5.4. Let B=(by,...,b,) be a transbasis.
a) If by=x or by=expz, then C[[by;...; 0,1 is closed under 0.
b) If by=log;x and log;_1x,...,x €B, then C'[[by;...; 6,1 is closed under 0.

Proof. Let us prove (a) by induction over n. Clearly, C'[z] and C [expx]l are
closed under differentiation. So assume that n >1 and that C' [by;...;b,_11
is closed under differentiation. Then b}, = (logb,,)’b,, € C [by;...;b,0. Hence

(697 %) = (a1 b + -+, b)) BSY --- b2 € CLby;...; 6,0,

for all monomials b$* --- b2 € BC. In particular, for any grid-based subset &
of B¢, the set supp &’ C (supp bif U---Usupp b;rL) G is again grid-based. Con-
sequently, C'[[by;...;b,] is closed under differentiation, by strong linearity.
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As to (b), we first observe that (bjoexpy,..., b, oexp;) is also a trans-
basis, so C'[[by oexpy;...;b,0exp;l is closed under differentiation. Given
feCTby;...;b,1, we now have

" = (foexpiology)

1
= Zlogz - -logi_17 ((foexp) olog;) € C'Lby;...; by, O

Proposition 5.5. The derivation d on T is asymptotic and positive.

Proof. Let B = (by,...,b,) be a transbasis with b; =e®. We will first prove
by induction over n, that 0 is asymptotic and positive on C'[[by;...;b,1, and
f'=1 forall f>1in C[Iby;...;b,]. This is easy in the case when n=1. So
assume that n > 1.

Given a monomial m=b{"--- b, we first observe that

ml = albi—l—---%—anbjl
= a1+ as(loghs) + -+ + a,(logh,)’

belongs to C'[[by;...;b,_11. Moreover,

b} = (log b;)’ < (logb,,) =b]

nl

for all 1 <i <n, by the induction hypothesis. Actually, the induction hypoth-
esis also implies that b =1< b/,
if o, #0.

Secondly, let m=b51--- b2 and n=b"" . b" be monomials with m <n#1.
If ap,=(,=0, then m’<n’ by the induction hypothesis. If a,, < 8,, then

since log b,, = 1. Consequently, mf =< bl,

m’ € Clby;...;6,_1T b
n e Clby;...;6,_10 67,

whence m’ <n’. If o, = ﬂn#(), then
m’VbTm<anvn’
=b), aaxn

Hence m’ <n’ in all cases. Given f € C[by;...;b,1 with f#0 and f*1, we
thus get m’ <0}, for all mesupp f \ {97}, whence f’~¢;0}, by strong linearity.

Let us now prove that the induction hypothesis is satisfied at order n.
Given f,ge Cllby;...;b,0, with 1% f < g% 1, we have

J/~epdp<egdg~ g

If f=1, we still have f'<g¢’, since f'= fy and fz < f<g. Now let f¢€
C'[by;...;6,0~~. By the induction hypothesis, we have D;{ >0, since log f €
C[by;...;b,_11>". We conclude that

f’NCfDJ/c:CfD}LUf>O.
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At this point, we have proved that 0 is asymptotic and positive on
C'[[by;...;6, 1. By theorem 4.15(a), this also proves that 9 asymptotic and pos-
itive on CoMexpxIl. Now let f, g€ C;Mexp Il be such that f < g% 1. Then

f=(foexpiolog;))’ =
(foexpr) olog y (goexp;) olog
z---logi_1x z---logi_1x

= (goexpolog;)'=g"
Similarly, if f € C;[lexp 1l is such that f>1 and f >0, then

pro foexp)iolog ) 0
x---logi_1x

Remark 5.6. A transbasis B = (by,...,b,,) of level 1 will also be called a plane
transbasis. The two facts that C'[[by;...;b;] is closed under differentiation for
each i and m' < m for all m=b$"--- b3 = 1, make plane transbases particularly
useful for differential calculus.

By theorem 4.15(a), we notice that any exponential transseries can be
expanded with respect to a plane transbases. Computations which involve
more general transseries can usually be reduced to the exponential case using
the technique of upward and downward shifting.

Exercise 5.1. For all f, g€ T, prove that

FSgNF<1Ag=1 = fi=gT;
f=1Ag¥*1l = f'<gt

Exercise 5.2. For all f, g€ T7 with f31 and g1, show that

f=xg & fixgh;
f<g e fi<gh
g & ff=gh
fRg & [fT~gh

Exercise 5.3. Let f € T. Prove that

, 1
a) frlef >1:10gxloglog:n~~-'
b) f'>0 & ((f=1AFf>0)V(f<IA f£<0)).
c) f'>0&< (VAeC, f>N)V@EANeC, Vel u< A= pu< f<N)).

1

In the case of (a), notice that we may for instance interpret f’> P TPy rr r—

as a relation in a field of well-based transseries in x.

Exercise 5.4. Consider a derivation 0 on a totally ordered C-algebra R, which
is also a field. We say that O is asymptotic resp. positive, but not necessarily
strictly, if

D5’. f<g=0f=<0g, for all f,g€ R with g#1.
D6’. f>1=(f>0=0f>0), for all f€R.
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If d is an asymptotic derivation, prove that fd is again an asymptotic derivation
for any f € R. Given positive derivations dy,...,d,, prove that fidi+ -+ fnd,
is again a positive derivation. Prove that neither the set of asymptotic, nor the
set of positive derivations necessarily form a module.

Exercise 5.5. Let T=C[Iz1l---[Ix,II. Characterize

a) The strong C-module of all strong exp-log derivations on T.

b) The set of all (not necessarily strictly) asymptotic strong exp-log derivations
on T.

¢) The set of all (not necessarily strictly) positive strong exp-log derivations
on T.

Exercise 5.6. Let 5z be a flat subset of the set ¥ of transmonomials and
let T¥ be its steep complement (see exercise 4.7).

a) Show that T°=C[%*] is closed under differentiation.

b) Considering T as a strong T®-algebra, show that there exists a unique strongly
T*-linear mapping 8%: T — T with 8 mf = (m!)’ for all m# € T*

¢) Show that

(Z fmum”)é S femit 3 fue0tim

mfex! mfex! miecTt

for all feT.

Exercise 5.7. Let f be a convergent transseries. Prove that f’ is convergent
and that the germ at infinity associated to f’ coincides with the derivative of
the germ at infinity associated to f. In other words, C{{z }} is a Hardy field.

Exercise 5.8. Construct a strong exp-log derivation on the field C[[[z]]] of well-
based transseries of finite exponential and logarithmic depths. Show that there
exists a unique such derivation 9 with dx =1, and show that 0 is asymptotic
and positive. Hint: see [Hoe97].

5.2 Integration

In this section, we show that each transseries f € T admits an integral in T.
Since the derivative of a transseries vanishes if and only if it is a constant,
we infer that f admits a unique, distinguished integral [ f, whose constant
term ([ f)= vanishes. The distinguished property immediately implies that
mapping [: f+ [ fis linear. We will show that [ is actually strongly linear.

Proposition 5.7. There exists a unique right inverse [: T — T of 9, such
that the constant term ([ f)= of [f vanishes for all f € T. This right inverse
is strongly linear.
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Proof. We will first consider the case when f € [E is exponential. Let 96 =
(b1,...,b,) be a plane transbasis for f. Consider the double sum

[f=f<z+ ) > fwFarm, (5.1)

méesupp f\{1} k>0
where

1
Fuo = 575

1
Far = _FFﬂ/Lk—l for k> 1.

We will show that the family ( fm Fin k™) mesupp £\{1},k>0 is grid-based, so that
(5.1) defines an integral of f.
Let us first study the Fi, j for a monomial m=b7"--- by with a; #0. We

observe that m’= (o b] 4 - 4+ a; b)) m <D, rm. Setting
0, = Ob;;
D; = ((suppb{U---Usuppb)0; )",
Doy = D1U---UD;

we thus have suppm’ C ®D; m and supp Fn,0 C D;/07. Moreover, for any v €
supp Fu i, we have suppv’ C D, v. Now define families 7y, 1 by

1
Tmo = term (W)

Tk = —TmoTh k-1
where
T k—1=((0)or 0W)oeT, | weD_,
Then Fy p=>_ Tm i for all k € N. Setting Tp, = UkeNTm,k, we have

mon7y, € ((mon®;) (mon 7y o))" (mon 7y o)
C mon®; /0,

~

mon Ty o

whence 7, is grid-based by proposition 2.14(¢) and (2.7). We conclude that
Jm= Zk>0 Fa pm is well-defined, and

Jm = Z (Fpp+mi Fyp)m

k>0
= Z mt (Fo g — Fu k1) m=ml Fy om=m.
k>0
Note that 7, only depends on the index ¢, not on the exponents ag, ..., ;.

Let us now show that the mapping | B¢ - T is grid-based. Given a grid-
based subset & of BC, we may decompose

G\ {1} =6,1I---11&,,
where the &; (i=1,...,n) are given by
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By what precedes, for fixed i, the family 7y, is grid-based and the same for
any m € &;. Hence |, ;,, Uce, Tmm is again grid-based and [ is a grid-
based mapping which extends uniquely to T by strong linearity. Furthermore,
given m=b" - b with a; # 0, we have ©; C C'[[by;...;b;,-11, so that

Supp fum Fn g m CCLby;...; 0,11 b5 % {1}.

This implies that [is a distinguished, strongly linear integral on COMexpzI0.
Assume now that we have defined a distinguished, strongly linear integral [
on C?[expzIl. We claim that we may extend [ to CP*![expzIl by

Jr=e" Dl (5.2)

Indeed, (5.2) defines a distinguished integral, since

(fer FOL =2 (e 1)) = f

and
(fe“‘fT)lx:(fel‘fT)xzo,

for all f € CPT![exp 2. Its distinguished property implies that it extends
the previous integral on CP [Texp 21l . Its strong linearity follows from the fact
that we may see f as the composition of four strongly linear operations. Our
proposition now follows by induction over p. O
Proposition 5.8. Let B=(by,...,b,) be a transbasis.

a) If by=x or by=expx, then C'[[by;...;b,1 [logb1] is closed under ffom' >1.
b) If by=log;x and log;_1z,...,x €B, then C[by;...;b,1[logby] is closed

under |.

Proof. We will consider the case when by =e® and i =n. The other cases follow
by upward shifting. Now given

f=tazlt -+ fo
with fo,..., fa€ C0by;...; 0,1, we claim that
[f=F:=gq12% 4+ -+ go,
where go, ..., gi+1 € CLby;...;b,] are given by

gar1 = fa=/(d+1);
ga = fa—1,=/d~+ [(fa—(d+1) gay1)%
Ggi—1 = fa—2=/(d—=1)+ [(fa—1—dga)s;

g0 = [(fo—g1)%
Indeed, it is easily checked that F’= f. Furthermore,

Fo=go== (f(fo— gl)i)xzoa
whence F'= [ f, by the distinguished property of integration. O
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Exercise 5.9. Let m# 1 be a transmonomial. Show that there exists a unique
transmonomial n X m, so that n’ is a transmonomial.

Exercise 5.10. Let f,geT.

a) If [f<1and [g<1, then show that

UNUa=[ffa+[a ][] (5.3)

b) Give a necessary and sufficient condition for (5.3) to hold.
¢) Prove that there does not exist a strong integration on C((e®)) so that (5.3)
holds for all f,ge C((e¥)).

Exercise 5.11. Show that feg”2 is divergent. Deduce that fe“”2 is not an exp-
log function.

Exercise 5.12. Let ¢: H— T an embedding of a Hardy field into T =R [[z1].
The embedding ¢ is assumed to preserve the differential ring structure and
the ordering. Given f € H, show that ¢ can be extended into an embedding

@:H(ff)C—VI[‘.

5.3 Functional composition

Let R and S be strong totally ordered partial exp-log C-algebras. A strong
difference operator of R into S is an injection §: R— S, which satisfies

Al. dc=c, forall ceC.
A2. § is strongly linear.
A3. 6(fg)=46(f)d(g), for all f, g€ R.

If S= R, then we say that § is a strong difference operator on R. We say
that 0 is an exp-log difference operator, if we also have

A4. §(exp f)=expd(f), for all f € RNdom exp.
We say that 0 is asymptotic resp. increasing, if

A5. f<1=04(f)<1,forall feR.
A6. f>0=06(f)=0, forall fER.

In this section, we will show that for each g € T> =, there exists a unique
strong exp-log difference operator o, on T, such that o4(z) = g. This allows
us to define a composition on T by

ooTxT>" — T
(f.g9) — og(f )-
We will show that this composition is associative, that it satisfies the chain

rule, and that we can perform Taylor series expansion under certain condi-
tions.
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Lemma 5.9. Let T=CIZI CT=CIZT be arbitrary fields of transseries

and let 0: T — T be a mapping, which satisfies §(mn) =8(m)d(n) and 1 <m=

§(m)eT>" for all m,neX. Then

a) 0 is a grid-based mapping, which extends uniquely to a strong, asymptotic
and increasing difference operator from T into T.

b) If 5(logm) =logd(m) for all me X, then the extension of § to T is an exp-
log difference operator.

Proof. Let & be a grid-based subset of T with & C {my,..., m,}*n, for cer-
tain monomials my,...,m, <1 and n in €. Then the family FV with F =
(6(m;))1<i<n is grid-based, by proposition 2.14(c). It follows that §: T — T
is grid-based, since (6(v))pves S F¥ d(n). By proposition 2.16, the extension
of 0 to T is a strong difference operator. If f €T, then 6(m) <1 for all
m € supp f, whence §(f)=>" fm d(m) < 1. This proves that ¢ is asymptotic
and, given f € T7, it also follows that §( f) ~d(rf) = ¢;0(0y). In particular, if
f>0, then §(f) > 0. This completes the proof of (a).

Now assume that d(logm)=1log d(m) for all me€ T. In order to prove (b),
it obviously suffices to show that §(log f) =log d(f) for all f € T>. Now
each f € T~ may be decomposed as f=cm(l+¢), with ce C”, me¥

and € < 1. For each k € N, we have 5((_11);71 ek = (_11);71 §(¢)*. Hence,
0(log (1+¢))=log(1+d(g)), by strong linearity. We conclude that

d(log f) = d(logc)+d(logdy) + d(log(1l+¢))
= logc+logd(ds)+log (1+6(¢))
= log(cd(dy) (1+6(¢)))
= logd(cor(1+4¢))
log d(f). O

Proposition 5.10. Let g € T>'~. Then there exists a unique strong exp-
log difference operator og on T with og(x)=g. This difference operator is
asymptotic and increasing.

Proof. We will show by induction over p € N that there exists a unique strong

exp-log difference operator o, from Cp[lxIl = C'[%,1 into T with oy =g,

and we will show that this difference operator is asymptotic and increasing.
For p=0, the axioms A3 and A4 imply that

0g(x° -+ - logy " x) = g™ -+ -logy" g
for all monomials 2°---logg?x € To. If 2%0--log "z~ 1,1e ap=-=0a;_1=0
and «; > 0 for some i, we also get

og(x® - - logg®x) € T~
since

Q41

logiiytg---logy"g < logfige T,

This completes the proof in the case when p=0, by lemma 5.9.
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If p> 0, then the induction hypothesis states that there exists a unique
strong exp-log difference operator oy Cp, 1 21l — T with oy4(z) = g, and oy
is asymptotic and increasing. In view of A4, any extension of o4 to C), L2l
should therefore satisfy o,(ef) =e®(f) for all ef €T, =exp C,_ 1Mz .. On
the other hand, when defining o4 in this way on ¥, we have

oo/t of2) — 2ol F 12) o2l 20l _ o (o) o,(e9)
for all ef1, ef2 € %p. Similarly,

(f=fonel=1) = (f>0Af=1)
= o(f)eT>>
= oy(ef)=e%() e T> -

for all ef € . This completes the proof in the general case, by lemma 5.1. [J

Proposition 5.11.

a) fo(goh)=(fog)oh, forall feT and g,he T>".
b) (fog)=9g'(f'og), forall f€T and g€ T>".
¢) Let f,6 €T be such that § <x and mT 6 <1 for all m €supp f. Then

Fola+0)=f+f'8+5f 8%+ (5.4)

Proof. Property (a) follows from proposition 5.10 and the fact that (op) o (o4)
and oyop, are both strong exponential difference operators which map x to g o h.

Let ® be the set of f €T, for which (fog) =g’ (f'og). We have z € ®
and @ is closed under grid-based summation, since the mappings f+— (fog)’
and ¢’ (f'o g) are both strongly linear. ® is also closed under exponentiation
and logarithm: if f € ®, then

(efog) = (e/°9)
(fog)elos
= g'(f'og)el?
9" ((f'ef)oyg)
= g'((e))'09)

and f >0 implies

((log f)og)" = (log(fog))’

9'(f'eg)/feyg

9'((log f)"e g).

This proves (b), since the smallest subset ® of T which satisfies the above
properties is T itself.
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As to (c), we first have to prove that the right hand side of (5.4) is
well-defined. Let § <z be a transseries in T and denote by T? the set of
transseries f, such that m™d <1 for all m € supp f. Given a transmono-
mial m, we have

mf§ <14 (logm)' <1/6elogm< [1/5em<el'/?,
since 1/6 > 1/x. We infer that
Tb:{feT:Vmeppf,m«efl/é}.

Let us show that T” is closed under differentiation. By the strong linearity of
the differentiation, it suffices to prove that m’ € T?, for all transmonomials m
with m < e/1/%. If m=<z, then n <Xz «efl/‘s, for all nesuppm’. If m » =z,
then n/m << m for all n € suppm’, whence nzm=<ell/

Now consider a transbasis B = (by,..., by), such that by =log,z,...,2€B
and by,...,b, € T°. By theorem 4.15(b), any f € T can be expanded with
respect to such a transbasis. Let

@zsuppbe~~-Usuppbl<%,

so that supp f/C (supp f) D CBC, for all f € CI[BD. Now let f € C[B T,
[ €N, and consider the family 7; of all terms

To,(m1,n1) - - (my,n) :l—l! (fov) (U‘lel) (Ony 1) -+ ((omy -+ ml—l)iu my) (6n, M)

Then
1

Moreover, setting 7 = [[,. 7, we have
mon 7 C mon( f) (mon(®) mon(d))",

so 7 is grid-based, by proposition 2.14(c). Since 7 refines the family

(i fO6Yen, it follows that the Taylor series in (5.4) is well-defined. For

Il

a similar reason, the mapping B¢ — T; v — ZDOl—l‘U(Z) ol is grid-based, so

the mapping C[B°T — T; f— Zl>0l—1, fW 6t is actually strongly linear.
Now let ® be the subset of T” of all f, such that (5.4) holds. Clearly,

x € ® and ® is closed under strongly linear combinations. We claim that ® is

also closed under exponentiation and logarithm. Indeed, assume that f & ®

and ef € T°. Then 1/ f'<0.5 /0L =6, f'/ f" =08, f"/f" =6, ..., since d.s,

f/.f",... €T’ Hence f(™§" <1 for all n>1, which allows us to expand

A = (ef)o(a+d) =/t THal" T

= o (145 [0+ (545 024,
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We have to show that A coincides with
B = ef—i—(ef)’&—i—%(ef)”&2
= S U+ 1o+ 5 (FP+ )0+ ).

But this follows from the fact that we may see A= B as a formal identity in the
ring C|[ef,d, f/, f”,...]]. Indeed, A and B satisfy the same differential equation

0A / " l///2
% <f+f5+2f5+ A

9A
af’

2= (e

and [§°)A = [6°)B =e/. Similarly, one may show that ® is closed under log-
arithm. This proves (c), since the smallest subset of T?, which contains
and which is closed under strongly linear combinations, exponentiation and
logarithm, is T? itself. O

/ 1 8A n .
= fA_|_< f +Wf _|_...>57

Exercise 5.13. Let f€T and g€ T>".

a) Prove that the exponentiality of fo g equals the sum of the exponentialities
of f and g.

b) Prove that the exponential height resp. logarithmic depth of fo g is bounded
by the sum of the exponential heights resp. logarithmic depths of f and g.

¢) Improve the bound in (b) by taking into account the exponentialities of f
and g.

Exercise 5.14. Let f,h€T and g € T~ be such that h < g. Under which
condition do we have

f°(9+h):f°9+(f/°9)h+%(f”09)h2+--~?

Exercise 5.15. Let f €T and let D a grid-based family of transseries, such
that mTd <1, for all m €supp f and § € D. prove that

fo(e+3 D)= %f@&l...él.

§1---8,EDY

Exercise 5.16. Let m be a transmonomial in T and g € T>'~ a transseries,
such that mo g» z and n < logmo g for all n € supp g. Prove that mo g is
a transmonomial.

Exercise 5.17. Show that R{f{z J} is closed under composition.

Exercise 5.18. Let 2= (ay,...,a,,) and B =(by,...,b,) be two transbases and
consider two series f € Clas;...,a,0 and g € CLby;...;b,01>~. Construct
a transbasis for fo g of size <m+n.
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5.4 Functional inversion

5.4.1 Existence of functional inverses

Theorem 5.12. Any g€ T> admits a functional inverse g™ € T>~ with

ginvog:goginv:x.

Proof. Without loss of generality, one may assume that g=x +¢, where e <1
is exponential. Indeed, it suffices to replace g by log;_ 0 goexp; for sufficiently
large I, where p is the exponentiality of g. Let B = (b; =¢",...,b,) be a plane
transbasis for e. We will prove that g admits a functional inverse of the form
f=x 49, where § <1 can be expanded with respect to a plane transbasis
(a1,...,a,) which satisfies

a, = byo(xz+dp)
ap—1 = bn,10(1'+5070)

Let us first assume that the constant coefficient €9 of € in b,, vanishes.
Then proposition 5.11(c¢) implies that

Kf=folete)—f=fetgfle?t (5.5)

for any feC[x;by;...;6,0. In particular, for every me z€ 6§ --- b, we have

supp_lfnm CRi=({ae=L,bl,.... 60} suppe)*.
Now the functional inverse of g is given by
g™ = 2 - Ko+ K*z— K3z +---.
Z (_1)l(K‘r)31 (KEl)Ez"' (Kkl—l)él (IIJE1"'91)

g ERY

Since Kx =€ C[by;...; b, and K maps C[by;...;b,] into itself, we
conclude that ¢™ =z 4+, with § € C[by;...;b,T .

The general case is proved by induction over n. If n=1, then we must have
g0 =0, so we are done. So assume that n >1. By the induction hypothesis,
there exists a functional inverse f=x+¢ for § =z + &= + €0, such that
0 €Clay;...;a,_11 <, where

Ap—1 = bn_10($+50)
ap—2 = bn,20($+5070)

Now

gof=x+(9—§)ofeClay...;a,T,
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where a, =b, 0 f, and ((g— §) o f)o=0. It follows that go f has a functional

inverse of the form (go f)"™ =z +n with n€ C[Lay;...;a,] and no=0. We
conclude that g™V = f o(go f ) is a functional inverse of g and we have

. ~ ~ 1 =~
g =fol@tn) =+ n+5 "+ €Clag;...;a,]. O

5.4.2 The Translagrange theorem

We define a scalar product on T by
(f,9)=(f9)=
Given transseries M, N € T and f € T~>>~, let us denote
f[M,N]:<MOfaN>~

When taking transmonomials for M and N, then the coefficients fias n
describe the post-composition operator with f. More precisely, for all m,
ne ¥ we have

(mo f)n: f[m,n—l]-

Theorem 5.13. Let M, N,e <1 be exponential transseries and f=x +¢.
Then g= ™V satisfies

gim N == fiN, M-
Proof. Since h— = ([h), for all h €T, we have

g Ny=(Mog,N') = [[(Mog)N';
f[N,M’]:<NOf7MI> = [f(NOf)M’]:v

Since [[(No f)yM'| —[[(No f) M'],x and g —z are exponential, we have
[J(N o f)Me=[(f(Nof)M')o gl
Using the rule ([h)og= [(hog)g’, it follows that
[J(No fyMNe=[[N(M"0g)gle=[/N(Mog)T.
Now integration by parts yields
ga N+ Siv o =[[ (Mo g) N+ [[N (Mo g)la=[N (Mo g)l.
But [N (M o g)],=0, since N (M o g) is exponential. O

The theorem generalizes to the case when M, N and € are no longer
exponential, by applying the following rule a finite number of times:

f[MyN] = (log ofo exp) [Moexp, Noexp]-
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Corollary 5.14. Let M, N, e <1 be transseries of depths <l and f=xz+¢.
Then g= ™V satisfies

9IM,N"/log]] = —f[N,M'/log{]~

Exercise 5.19. Let g =x + ¢ where ¢ is exponential and let K be as in (5.5).

a) Show that we do not always have ¢"V =2 — Kz + K2z +---.
b) Give a necessary and sufficient condition for which

gV=x—-Kz+K*z+---.

Exercise 5.20.

a) A classical theorem of Liouville [Lio37, Lio38]| states that (zlogx)™" is not
an exp-log function. Show that there exists no exp-log function f with fx
(log zloglog z)'"V (see [Harll] for a variant of this problem).

b) Show that there exists no exp-log function f with fxefemz. Hint: use exercise
5.11.

¢) Assume that g € T~ is not an exp-log function. Show that there exists an
n € N, such that there exists no exp-log function f with f=<exp,g.

Exercise 5.21. Show that R{{zJ}} is closed under functional inversion.

Exercise 5.22. Classify the convex subgroups of (T>>",0). Hint: G is a convex
subgroup of T~ if and only if its contraction con G is a convex subgroup.

Exercise 5.23. Show that Lagrange’s inversion formula is a special case of
theorem 5.13.

Exercise 5.24. Show that theorem 5.13 still holds when M =x and N is
exponential.

Exercise 5.25. Let M, N be transseries and let f € T> '~ be a transseries of
level 0. Show that for all sufficiently large [, the inverse g = ™" satisfies

9, N1 =~ f[J(N1og)), M /10g]]-

If one allows | =w, then show that the formula holds for transseries of arbitrary
levels.
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Grid-based operators

Besides multiplication and strong summation, we have introduced other inter-
esting operations on the field of transseries in the previous chapter, like differ-
entiation, integration, composition and functional inversion. In this chapter
we will perform a theoretical study of an even larger class of operations on
transseries, which contains the above elementary operations, but also many
natural combinations of them.

This theoretical study is carried out best in the context of “grid-based
modules”. Let C be a ring. In chapter 2, we defined a grid-based algebra to
be a strong C-algebra of the form C'[I[9]], where 9 is a monomial monoid.
An arbitrary subset & of 9 is called a monomial set and the set C [&]1 of
strong linear combinations of elements in & a grid-based module.

In section 6.1, we start by generalizing the notion of strongly linear
mappings from chapter 2 to the multilinear case. Most natural elementary
operations like multiplication, differentiation, right composition, etc. can then
be seen as either linear or bilinear “grid-based operators”. In section 6.3,
we next introduce the general concept of a grid-based operator. Roughly
speaking, such an operator is a mapping ®: C 9] — C [91] which admits
a “generalized Taylor series expansion”

=P+, + P2+ -,
such that there exists a d-linear grid-based operator

Py CIMI4— CINT

with

for each d. If C' 2 @Q, then such Taylor series expansions are unique and we
will show that the ®; may be chosen to be symmetric.
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Multilinear grid-based operators may both be reinterpreted as general
grid-based operators and linear grid-based operators using the “syntactic sugar
isomorphisms”

coom - oo, 1 crmomyd x --- x CIM,, I
CMyx - xMp = COMI ®-- @ CLIM,T

1

The first isomorphism also provides a notion of grid-based operators in several
variables.

As promised, many operations can be carried with grid-based operators:
they can be composed and one may define a natural strong summation on the
space of grid-based operators ®: C' 9N — C' [T . An explicit strong basis of
“symmetric atomic operators” for this space will be established in section 6.4.2.
Last but not least, we will prove several implicit function theorems for grid-
based operators in section 6.5. These theorems will be a key ingredient for the
resolution of differential (and more general functional equations) in the next
chapters.

6.1 Multilinear grid-based operators

6.1.1 Multilinear grid-based operators

Let My,..., M,, and N be strong modules over a ring C. A mapping
P: My x -+ xM,,— N

is said to be strongly multilinear, if for all 1 € S (My),...,Fm €S (Mp,), we
have M (Fy, ..., Fm) €S (N) and

O Fi Y Fu) = (Fus o, F).

If My,...,M,, and N are grid-based modules, then we also say that ® is
a multilinear grid-based operator.

Ezample 6.1. Given monomial monoids 9t and I, all strongly linear map-
pings L: CI[OT — CINM] are multilinear grid-based operators. Denoting
$=CIMI, we have in particular the following important types of linear
grid-based operators:

1. Left multiplication operators x5:$ — 3, g— fg, with f€S$.

2. Strong derivations d: $ — 3. If $ admits R-powers, then such derivations
should also satisfy d f* =\ (df) f*~!, whenever f* is well-defined for f €$
and A€ R.
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3. Strong integrations; these are partial, strongly linear right inverses I: $ — 3
of strong derivations d: $ — %, i.e. dI =1d.

4. Strong difference operators §: % — %. If $ admits R-powers, then such
difference operators should also satisfy § f* = (6 f)*, whenever f* is well-
defined for f €% and A € R).

5. Strong summation operators; these are partial, strongly linear right inverses
3: 8 — % of finite difference operators, i.e. (§ —Id) ¥ =1d, for some strong
difference operator §: 35 — 5.

Ezample 6.2. Given a monomial monoid 9, the multiplication -: CIIMNI 2—
CIMI and the scalar product CIMI2 — C; (f, 9) — (f, g) = (fg)= are
strongly bilinear mappings.

Ezample 6.3. Compositions

of multilinear grid-based operators

U:Nyx---xN,, — V
(bi:Mi,lx"’XMi,mi — N1 (’L:L,Tl)

are again multilinear grid-based operators.

Ezxample 6./4. The m-linear grid-based operators of the form ®: C' 9,1 x --- X
cmm,ll — CIND form a C-module. For instance, if d:$ — % is a strong
derivation, where $ = C' [[9011], then strong differential operators of the form

L=L,d"+ -+ Lo

are linear grid-based operators. In section 6.4.1, we will see that we may
actually define strong summations on spaces of grid-based operators.

6.1.2 Operator supports

Let &:C 94T x --- x CIM,,, T — C I[N be an m-linear grid-based operator,
such that My, ..., M, and N are all subsets of a common monomial group
®. Then the operator support of L is defined by

P(my,...,m
supp ¢ = U suppM,
mp---my,
(m,..., M) EDMy X - - XMy,
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The operator support is the smallest subset of &, such that

supp ®( f1,..., fm) € (supp ®) (supp f1) - - - (supp fin),

(6.1)

for all (f1,..., fr) ECIMT x -+ x CIM,, T . Given &1 CMy, ..., Sy C My,

we also denote

SUPPG; x - xS, P =supPP Pcr&, 0% - - xCIS,nT-

Ezxzample 6.5. We have

supp- = {1}

supp ¥ o H @, C (supp V) (supp @1) - - - (supp @),
i=1

for multilinear operators ®: C [T x --- x C[M,,, T — COINT (k=1,...

and U:CIOHD x --- xCIN, I — CIVI.

)n)

Exercise 6.1. Let Lq,..., Li: CIMT — CIIMIT be infinitesimal linear grid-

based operators (i.e. supp L; <1 for i=1,... k).

a) Show that f(L4,..., L) is well-defined for non-commutative series f €

C{{z1y. ey 2n)).

b) Determine the largest subspace of T =C [zl on which € is a well-defined

bijection.

Exercise 6.2.

a) Is a multilinear grid-based operator necessarily a multilinear well-based oper-

ator?

b) Show that C[[IN=]]* = C[[97]] for well-based series, if 9 is totally ordered.

Here C[[PM=]]* denotes the strong dual of C[[PN<]].

¢) Show that (b) does not hold for grid-based series. How to characterize

cromn*?

Exercise 6.3.

a) Let T® = C'[3"] = T«.- be the set of transseries f € T with m < e® for all

m € supp f and consider the space P+ of operators

L=>" L,o"eT[[]],

neN

(6.2)

such that UneN supp L., is a grid-based. Show that P+ operates on T” and

that Py is closed under composition.
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b) Let T°=C [%"] =T<.- and consider the space P of operators (6.2), such
that (Ln)nen is a grid-based family. Show that Zr operates on T° and
that Y1 is closed under composition.

6.2 Strong tensor products

It is often useful to consider multilinear mappings
Myx - X Mpy—N
as linear mappings

Mi®- - ®@M,— N.

A similar thing can be done in the strongly linear setting. We will restrict
ourselves to the case when My, ..., M, are grid-based modules, in which case
the tensor product has a particularly nice form:

Proposition 6.6. Let My, ..., 9M,, be monomial sets and denote
M= X -+ x M,,.
Consider the mapping

w:CIMGLI x --- x CIM,, 1 — CIMI
(fla"-afm) — Z fl,ml"'fm,mm(mla-uamm)

memMm

This mapping is well-defined and strongly multilinear. Moreover, for every
strongly multilinear mapping

o:CMOMI x--- x MM, — N

into an arbitrary strong C-module, there exists a unique strongly linear map-
ping

L:CIOMI — N,
such that ® = Lo pu.

Lemma 6.7. Let F be a grid-based family of monomials in 9. Then there
exist grid-based families G1 € F (My),...,Gm € F (M) with F S Gy X -+ X Gy,

Proof. Let Gy be the projection of G = Ufe}.supp fon My, for k=1,...,m.

We have G, C e;LNJ e el}c\{pk {fr.1,- -+ Tk g} for certain ey ;<1 and fi ;. Given
me &g, we will denote

. . i i
degm=min {7y + - +ip m=c¢}, ~~e,f)’;kfk_,j}.
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Given m € 9, we define its multiplicity by

p(m)=card (f € F: fm #£0).

Given my € &, let

pr(mg) =max {p(my, ..., my,):

Vie{l,...,m},m; € S; Adegm,; < degmy}.

Then for all (my,...,m,,) €S, we have
p(my, .. my,) < max {pi(my), ..., (M)}
< pa(my) - pm(my,).
Hence
FCG X xGn
for gk: (mk)mkEGk,iE{l,...,p,k(mk)} (k: ]-v .. '7m)’

O

Proof of proposition 6.6. Given grid-based subsets & C My, with k=1,...,m,the
set B X -+ X &, is clearly a grid-based subset of 9. This implies that
1 is well-defined. More generally, given grid-based families of terms 7} €
F(CMy) (k=1,...,m), the family u(73,...,Tn) € F(C M) is again grid-
based. Now consider arbitrary grid-based families Fj, € .7 (C [9,1) and let

T =term Fy, for k=1,...,m. Then

M(Zflw-wzfm) = M(Z 7—17”-72 ,[m)
ZN(Tb“me)

= Z M(]:h...,}—m).

This shows that p is multilinear.

Inversely, if & is a grid-based subset of 91, then its projections (&)

on My, for j=1,...,m are again grid-based, and we have
BCm(B) X - X T (B).
Consequently, given a strongly multilinear mapping
O:CMMy I x --- xCIM,,, 1 — N,
the mapping

L.cooml — N

Z Jom — Z fm ®(m)

meM meM
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is well-defined. Moreover, if F € . (C 91 ), then the above lemma implies
that there exist G, € F (My) (k=1,...,m) with mon F C Gy X -+ X G, whence

L(monF) C®(Gy,...,Gm).

It follows that L(mon F), L(term F) and L(F) are summable families in N.
Finally, using strong associativity, we have

L(Z term}') L Z Z cm

meM cmEtermF

Z Z c®d(m)

meM cmEterm F

= Z L(term F).
We conclude that L(> > F)=>" L(F). O

We call CIOMMT @ - @ CIM,,, T =C Iy X -+ x M1 (together with
the mapping p) the strong tensor product of C'I[941,...,CIM,, 0. An
immediate consequence of proposition 6.6 is the principle of extension by
strong multilinearity:

Corollary 6.8. Let 94,...,9M,, and I be monomial monoids and assume
that ¢ is a mapping, such that

(@(mlv"'amm))(nu »»»»» Mp)EGIX - X G,y

s a grid-based family for any grid-based subsets &1 CMy,..., 6, CIN,,. Then
there exists a unique strongly multilinear mapping

o:CIOI x---xCIM, I —CINI

with @pop, x ... xom,,, = ¢-

Proof. Using extension by strong linearity, there exists a unique strongly linear
mapping L: CI9My x - - x M, T — COINT, with Ligy, ... xom,, = ¢- Then
® = Loy is the unique mapping we are looking for. O

Exercise 6.4. When do we have Z(C[91,CINT) = C IMI*Q C TN, where
Z(CIMI,CINT) denotes the space of strongly linear mappings from C [9NM]
into CINT?

Exercise 6.5.

a) Generalize proposition 6.6 to the case of well-based series.

b) Show that a well-based family (f;);cr € C[[9])? corresponds to an element
of C[[I x 9m]].

¢) Define a family F € #Z(CIIMIT) to be super-grid-based F = (fi)icy with
JCZN" and f=2"G ) fim (i, m) € CLT x MT. Show that C' [T is a strong

C-algebra for super-grid-based summation.
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d) Give an example of a grid-based family which is not super-grid-based.
Exercise 6.6. Show that tensor products exist in the general strongly linear

setting (see also exercise 2.20). Hint:

a) Let My, ..., M,, be strong modules. Consider the set F' of all mappings f:
M; X -+ X M,,— C, whose support is contained in a set S; X --- x S, such
that each S; is a summable subset of M;. Construct a natural embedding
v: My X -+ X M,, — F and give F' the structure of a strong C-module.

b) Let Z be the strong submodule of F', which is generated by all elements of
the form

(Z Aiy Tigy e ey Z Ai, Xi,) — Z Aiy o A, (@i ooy 24,),

el i€l i€l
inel
where the I are mutually disjoint. Then the strong quotient
Mi® - @M,=F/Z

with pp=m7r,zov satisfies the universal property of the strong tensor product.

6.3 Grid-based operators

6.3.1 Definition and characterization

Let 9 and 91 be monomial sets. A mapping ®: C' 9] — C 9] is said to
be a grid-based operator if there exists a family (fi)i)l-eN of multilinear grid-
based operators ;: C [9]*— C [N, such that for all F € .7(CIMI), the
family (fi%-(fl, ooy fi))ieN, f1,... fieF is grid-based, and

o> F)= > blfi,- fi) (6.3)

i€N
Jio fi€F

We call (;);en a multilinear family for ®. Considering the family of a single
element f € CIMI, the formula (6.3) reduces to

o(f) = Y ®(f).  with (6.4)
i€N
f) = B f)=@ilf, o ).

Assuming that C' O Q, each ®; is uniquely determined and we call it the
homogeneous part of degree i of ®:

Proposition 6.9. Let ®: CI[IMT — CINT be a grid-based operator and let
®;: C M — CINT be multilinear grid-based operators, such that (6.4) holds
forall feCIMD. If COQ and =0, then &;=0 for each i € N.
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Proof. We observe that it suffices to prove that ®; =0 for each ¢ € N, since

the &, are symmetric and C' O @ is torsion-free. Assume the contrary and let
feC M be such that ®;(f)+£0 for some i. Choose

meS= U supp ®,(f) + 2.
ieEN
Since (®;(f))ien is a grid-based family, there exist only a finite number of
indices 4, such that m € supp ®;(f). Let i1 < --- <i, be those indices.
Let ¢ =@, (f)m for all ke {1,...,n}. For any [ € {1,...,n}, we have
®;, (I f)m=1"ci, by multilinearity. On the other hand,
P flm=2H( flm+ -+ P, (1 flm=0

for each [, so that

=0.

nil nin Cn
The matrix on the left hand side admits an inverse with rational coefficients
(indeed, by the sign rule of Descartes, a real polynomial a; 2% + - - -+, 2"

cannot have n distinct positive zeros unless a3 =+ =, =0). Since C D Q,
it follows that ¢; =--- =¢, =0. This contradiction completes the proof. [

Proposition 6.10. Let &: CIIMMT — CINT be a grid-based operator and
assume that C' O Q. Then there exist a unique multilinear family (®;)ien
for @, such that each ®; is symmetric.

Proof. Let (®;);en be an arbitrary multilinear family for ®. Then the &;
defined by

i(f1,..., fi) Z% Z Di(fo(1ys- s foli))-

ocES;

form a multilinear family of symmetric operators for ®. Moreover, each ®; is
determined uniquely in terms of ®; by

) 1 .
(I)i(flw--afi):EJC{;' .y (—1) lJl‘I’i(; fj)-

We conclude by proposition 6.9. O

Assume that 9T and 91 are subsets of a common monomial group &. If we

have C' D @ and ® and (9;);eN are as in proposition 6.10, then we call
supp ® = supp <i>0 Usupp (i>1 Usupp (i>2 U---
the operator support of ®. For all f € C [T, we have

supp @( f) C (supp ®) (supp f)*.
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Notice also that supp ®; = supp ®; for all 4.

6.3.2 Multivariate grid-based operators and compositions

In a similar way that we have the natural isomorphism
C[[mtl XKoo ><9ﬁm]] = C[[gnl]] & - ®O[[9:nm,]]7
for tensor products, we also have a natural isomorphism

coomy.--om,, 1 — Cl x--- x CIMm,, I,

- (z famy 3 fmm>

me N, meMM,,

for Cartesian products. This allows us to reinterpret mappings “in sev-
eral series” C[9 1 x --- x CIIM,,]1 — N as mappings “in one series”
cromII--- 1M, 1 — N. In particular, any multilinear grid-based operator
O: MM x --- x CIM,, 1 — C O] can be seen as a grid-based oper-
ator in from CIM I --- 1T, T into CIHT. More generally, the natural
isomorphism may be used in order to extend the notion of grid-based oper-
ators to mappings C' [941 x --- x CIIM,,, 1 — CINT.

Let @:C' MM — CINT and ¥:C NI — C' VI be two grid-based oper-

ators. Then ¥ o ® is again a grid-based operator. Indeed, let (®;);en and

(¥5);en be multilinear families for ® and ¥. Then for all 7 € 7(CIIM), we
have

- Z Ui(Di,(f1,1,- 5 fr,i0)s

JEN .
i1, €N <

S )

fj,lv---;fj,ijEf

so that the (\ITO/@)Z defined by

Fody= Y Gyo(d,... )
JjEN
i1+ ii=1

form a multilinear family for ¥ o ®.

Exercise 6.7. Assume that C D Q and let ®: CIMT — C INT be a grid-based
operator. Is it true that for any & & supp @ there exists an f € CI9] with

supp ®(f) € & (supp f)*?
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Exercise 6.8. Define the “derivative” of a grid-based operator &: C'[IMNI —
cmond.

Exercise 6.9.

a) Characterize the intervals J of the set of infinitesimal transmonomials ¥
(i.e. for all m;n€J and v €T, we have m v xn=-v €7J), such that for all
g €x+ CIJ1, the operator o4 is a grid-based operator on C'[J1.

b) With J as in (a), show that the operators C[JI2 — C[IJ1; (¢, d) —
(z+€)o(x—38)—z and CIIT — CIID;e+ (z+¢)™ —x are grid-based.

6.4 Atomic decompositions

6.4.1 The space of grid-based operators

Let Z(My,..., M,,, N) be the space of strongly multilinear operators
O: My x -+ X My, = N. Then Z(M, ..., My, N) is clearly a C-module.
More generally, a family (®;);c; of elements in £ (M, ..., M, N) is said
to be summable, if for all Fy € #(My),...,Fm € L (M,,), we have

H q)l(f1,7.7:m)€y(N)
i€l
In that case, we define the sum ), ®; € Z(My,...,Mp,N) by
S 0 (i fd— 3 @i frs s fon)-
iel iel

This gives £ (M, ..., My, N) the structure of a strong C-module.

Similarly, let ¢(C M, C [NT) denote the space of grid-based operators
®: CIOMN — C'IMNT. This space is clearly a C-module. A family (®;);cs€
G(CIMDT, CIND )’ is said to be summable, if for all F €. (CIIMT), the
family

((ijﬂl(fla ey f’i))jEJ,ielN,(fh o fi)EFE
is a grid-based family. In that case, the sum
> ifed ] 25(f)
jeJ j€J
is a grid-based operator and ¢ (C [9t1,C I[NT) is a strong C-module for this
summation. In particular, we have

for all ® e Z(CIMI, CINT). We call (6.5) the decomposition of ® into

homogeneous parts.
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6.4.2 Atomic decompositions

Let 914,...,9M,,, and 9 be monomials sets. Given m; € My,..., m,, €M, and
neMN, the operator

o CIGT x - x CIM,,, T — CINT

,,,,,

with
Qg men(f1oeos fm) = fiomy o frm 1

is an m-linear grid-based operator. Operators of this form, which are said to
be atomic, form a strong basis of Z(C [ 1,...,CIM,,T,CINT), since
any operator ® € Z(CIOM41,...,CIM,,T,C I[MNT) may be uniquely decom-
posed as

d= > d(my, .., W) Qs (6.6)
mieEMy,..., My, €My,

We call (6.6) the atomic decomposition of ®. More generally, an atomic family
is a summable family A = (¢ Qa)ac.a, with ¢, € C and Q,=
where iy 1,...,1a,m €M and o0, €N.

Assume now that C' O Q. Given a grid-based operator ®: C'[91 — C [N,
let the ®; be as in proposition 6.10. Then we have

~ —_—
= > (M, M) 0 Qo man (6.7)
my- oM EMY neN

fa, 15+ sta,m,0ar

and we call this formula the atomic decomposition of ®. More generally,
a family A= (cq Qa)aca, where ¢, € C and Q, = is called

an atomic family, if the family A= (co Qa)ac.a is summable in 4(C [T,
comi).

Since the ®; in (6.7) are symmetric, the atomic decomposition is slightly
redundant. Let ~ be the equivalence relation on 2%, such that m; --- m; ~
ny ---n; if and only if j =7 and there exists a permutation of indices o, such
that n; =mg ;) for all i. Given me 9™ /~, m;---m,, €m and n€N, we define

to, 1y sta,|a)s0ad

—_—
Qﬁun = le, co.,mg,ne

Clearly, Q4 n does not depend on the choice of m; --- m,, € m and operators
of the form Qg ,, will be called symmetric atomic operators. Setting

(i)(ﬁl): Z i)i(ml,...,mi),
mp---m;EM
for all m e MY /~, the decomposition
o= > P()y sy n
MmeEMY/~ neN

is unique. We call it the symmetric atomic decomposition of ®.
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6.4.3 Combinatorial interpretation of atomic families

Consider an atomic family A with Q4: C [T ¥l — C INT for each a € A. We
may interpret the (2, as combinatorial boxes with inputs ia 1,...,1la,ja| €M
and output 0, € M. We define a partial ordering on A by a <a’< 04 <04
Given a subset & of 9, we denote by Ag the atomic family of all a € A with
{ia,15---»1a,)a} € 6. Finally, given a monomial set 9, we denote by Doy the
atomic family (Qm m)mem, so that > Doy is the identity operator on C' [9T.
Remark 6.11. A convenient way to check whether a family A= (¢, Qu)aca is
atomic is to prove that for each grid-based subset & C 91 we have

1. The set 04 is grid-based.

2. For each n €M, there exist only a finite number of a € Ag with o, =n.

Consider two atomic families A and B, where Qu: CINT* — CIVI and
Qp: CIMD P — CINT for all € A and 3 € B. We define their composition
to be the family (cc Qc)ce 4op With formal index set

AOB:{QO(Bl)"'?ﬂ\aO:
aEA/\ﬁl,...75|a|68/\051=ia’1/\‘--/\Uﬁ‘a‘:ia,|a|}

and
Cao(B1,..,Bla) — Calpi " CBa s
an(ﬁhm,ﬁ\aﬂ = Qiﬂl,lyw'viﬁl,\ﬁﬂwu715“1',17'~~ai,8‘a‘,\5|a‘\70a'
We may see the ao(f1,..., f|q|) as combinatorial structures, such that the

outputs og, of the (i coincide with the inputs in x of a (see figure 6.1).
A similar computation as at the end of section 6.3.2 yields:

Proposition 6.12. Let A and B be two atomic families as above. Then Ao B
is again an atomic family and

Y AoB = (X Ao (Y B). O

T

/6 o (ala Qg, a?))

teees

Fig. 6.1. Combinatorial interpretation of the composition of atomic opera-
tors.
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Exercise 6.10. Show that the mapping
oL, ...,y C{(z1,...,2k)) — Z(CIMI,CIMD)
f = f(Ly,...,Ly)
from exercise 6.1 is a strong C-algebra morphism.
Exercise 6.11. Show that £ (My,..., M, N) and (M1 ® --- ® M,,, N) are

naturally isomorphic as sets. Show that this natural isomorphism also preserves
the strong C-module structure.

Exercise 6.12. Show that an atomic family A is summable, if and only if Ag
is grid-based for every grid-based subset & C 9.

Exercise 6.13. Generalize the theory from sections 6.3 and 6.4 to the well-
based setting.

6.5 Implicit function theorems

Let 99t and 91 be monomial sets which are contained in a common monomial
monoid. Consider a grid-based operator

o:CMI xCIMll — CIml

(fr9) — @(f,9)
together with its atomic decomposition ® =3".4. We say that

o s strictly extensive in f if 0, <io,r Whenever i, ;€ 9.

o & is extensive in f with multipliers in a set €&, if o0, € iy, € whenever
o,k €.

o & is contracting in f if ®(fa, 9) — D(f1,9) < fa— f1 for all f1, foe CIMI
and g € C'[M]. Here we write f < g if for all m € supp f, there exists an
nEsupp g with m<n.

If ® is strictly extensive in f, then we have in particular

3(f. 9)n= (3 Amremmrmun)(f+9)m

forall feCIIMT, g CINT and me M. Consequently, ® is also contracting
in f, since (f2, ¢)m = P(f1, §)m, whenever f1, fo€ CIMI, g€ CINT and
m € M are such that fi = fo, for all n>m.

Given a grid-based operator ¢ as above, the aim of the implicit function
theorems is to construct a grid-based operator ¥: C'[NT — C [T, such that

(¥(g),9)=¥(g) (6.8)

for all g € CINI. In the well-based context, a sufficient condition for the
existence (and uniqueness) of such an operator is the strict extensiveness of
® in f. In the grid-based context we need additional conditions in order to
preserve the grid-based property. In this section, we present three possible
choices for these extra conditions, which lead each to a grid-based implicit
function theorem.
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6.5.1 The first implicit function theorem

Theorem 6.13. Consider a grid-based operator
O:CIMI xCMNT — Comd
(f.9) — @(f.9),

which is extensive in f with multipliers in a grid-based set €<1. Then for each
g € CINT, there exists a unique V(g) which satisfies (6.8) and the operator
U: CINT — C UMD is grid-based. Furthermore, for all g€ CINT, we have

supp ¥(g) C (supp (0, g)) €*.
If C 2 Q, then we also have
supp ¥ C (supp @) *.

Proof. Let ®=73" A be the atomic decomposition of ®. Consider the family
B =1l enB4, where the By are recursively defined by

By = An
Bav1 = (A\An)o (Ball D)

See figure 6.2 for the illustration of a member of B. We claim that B is an
atomic family. Indeed, let & CD be a grid-based set. Let us prove by induction
over d that

suppo. C & ¢4 (6.9)

for all ¢ € By . This is clear if d=0. If d > 1, then we may write ¢ =ao
(B1y---, Ba), where i =0g, € M for at least one k. By the induction hypoth-
esis, we have supp og, C & €471 so that o; € 0g, € C &S ¢ This shows that
UgeBG 0. € & &*. Moreover, given m € & €*, there are only a finite number
of d with m € & &%, It follows that B is an atomic family, by remark 6.11 and
the fact that each By is atomic.

Fig. 6.2. Illustration of a member of Bs. The white dots correspond to
elements of M and the black dots to elements of 91. The light boxes belong
to A and the dark ones to Dy.
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Now consider the grid-based operator
U=3"B:CIMI xCINT —CIMI.
Identifying C' [N x CINT and C IO IINT via the natural isomorphism,

we have

(¥(g),9)="(9)+g=>_ BIIDx)(g),
for all g€ CINT. Similarly, for all (f,g) € CIMI x CINT, we have
Srest(f,9) = (f,9) = ®(0,9) =D A\ An)(f, 9).
Applying proposition 6.12, we conclude that

U(g) = O Bo)g)+(>_ B\Bo)(g)
= () An)(9)+ (O (A\Ax) o (BIIDy))(g)
= 0(0, 9) + Prest(¥(9), 9)
= ®(¥(9),9),
for all g€ C'[9T. As to the uniqueness of ¥U(g), assume that f1, fo€ CINT
are such that ®(f1,g) = f1 and ®(f2, g) = fo. Then we have
(f2,9) —@(f1.9)=fo— i< f2— fu,

which is only possible if fo= fi.

Let us finally prove the bounds on the supports. The first one follows
directly from (6.9). The second one follows from the fact that the operator
support of an element in B is the product of the operator supports of all
combinatorial boxes on the nodes of the corresponding tree. ]

6.5.2 The second implicit function theorem

Theorem 6.14. Consider a grid-based operator

O:CIMI xCIMNI — Comd
(f,9) — @(f,9),
such that
€ = supp @1 U (supp ®2) mU (supp P3) m?U - - -
is grid-based and infinitesimal for all m € M. Then, for each g € CIN]T,

there exists a unique W(g) which satisfies (6.8) and the operator U:C'[NT —
CIMT is grid-based.

Proof. Let g€ C I[N, with support & =supp g. There exist finite sets § and
® <1, such that © CFD*. Let

ez:( U ezm>+©*

meg



6.5 Implicit function theorems 131

Then we have € <1 and

meF(DUE)*

¢D U Com.

We now observe that (-, g) maps C [F (D UE)*T into itself, so we may apply
theorem 6.13 to this mapping with the same &. This proves the existence and
uniqueness of ¥(g). With similar notations as in theorem 6.13, it also follows

that B is again a grid-based atomic family, so that U= Bis a grid-based
operator. O

6.5.3 The third implicit function theorem

Theorem 6.15. Consider a grid-based operator
O:CIMI xCINT — CIMmd
(f,9) — @(f,9),

which is strictly extensive in f. Assume that
& =supp PoUsupp P U ---

is grid-based and & < 1. Then for each g€ CIN, there exists a unique V(g)
which satisfies (6.8) and the operator ¥: C'INT — CIMT is grid-based.

Proof. With the notations of the proof of theorem 6.13, let us first show that
Bg is a well-based family for every grid-based set & C9. For each a € A, let
a=04/(ia,1 " ia,ja) €B. To each 3 € Bg, we associate a tree f€ (G11S)T,
by setting 3= o0g if € Dy 1l By, and

ao(ﬁla"'vﬁkﬂ): a

AN
Bi -+ Blal

for ao(B1,..., Bja)) € B\ Bo. Since @ is strictly extensive in f, this mapping is
strictly increasing. Furthermore, the inverse image of each tree in (ST &) T is
finite and (S11®) T is well-based by Higman’s theorem. This together implies
that Bg is well-based.

Let us show that Bg is actually a grid-based. For each tree € (GII&)T,
let 05= Haeﬁl(a), so that 05=o0g for all € B. Now consider

T={(a, B B)eBx ((G1S) ) 0505 - 05 <1}.

Let § be the finite subset of <-maximal elements of €. Notice that we may
naturally interpret elements

(@pi---Bedx(6Us)")”
as trees

a c(Gl®)".
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Given a grid-based set A and m € 2, let us denote

resmm:{%:neﬂ,n<m}.

Consider

¢=[6U{o:ceF}U U resesue (| \{1}.
SEF
[€l(3)
We claim that € satisfies the hypothesis of theorem 6.13.
Indeed, consider ¢ =0 (f31,..., Bj|) € Bs N Bq and let us show by induction
over d that o; €i. 1 € for every k with og, € M. Now

s =(a, (61, cey Bk*lu Bk+1v ey B\a|)) <<

for some ¢’ €§. In other words, there exists an embedding ¢: ¢’ — ¢ which
fixes the root. Consider a factorization ¢ =)o ¢’ of this embedding through
a tree @ with og €. 1 €, such that a €im ¢’ for all a € @ with I(¢(a)) #(a),
and such that

dy=card{bed:Vaew,b=1vy(a)=1(b) #(a)}
is minimal. Assume for contradiction that d,,# 0. We distinguish three cases:

Case 1. [(¢(a)) #1(a) for some a € @.
Consider the tree @’ with the same nodes as @ and l;/(b) =15(b) if b#+a
and lz/(a) =lz(7p(a)). Then we may factor ¢ = £ o9’ through &’ with
5515@[}71 and UQ/GOQGQiQk@.

Case 2. arity(y(a)) > arity(a) for some a € @.
Let & be a child of #(a) whose root is not in the image of . Then we
may factor 1) = £ o ¢’ through a tree w’ which is obtained by adding & as
a child to a at the appropriate place, in such a way that §¢ =d, — card &.
Moreover, since k € ByU --- U B;_1, the induction hypothesis implies that
0z € &, so that o5/ =050z €ic 1 €.

Case 3. we are not in cases 1 and 2.
Since 6y # 0, there exists a b€ ¢ \ im ¢ with a successor ¢ = ¢(a). Let
R1,...,Kp be the children of b, so that c is the root of &; for some 7. Consider
the tree @’ which is obtained by substituting the subtree A of & with root
a by

N = 1(b)
_/_//l\\_\_
Ri oo i1l N Rie1 e Ry

By the induction hypothesis, we have oy, € 05 €, so that 05/ € 05 € Ci¢ 1, €.
Furthermore, we may factor 1 = £ o )’ through &’ in such a way that
0¢ =0y +card A —card X
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In each of these three cases, we have thus shown how to obtain a factorization
p=_Eo (¢ oy’) through a tree &’ with §¢ <y and oz €ic , € This contra-
diction of the minimality assumption completes the proof of our claim. We
conclude the proof by applying theorem 6.13 and by noticing that B is grid-

based, so that =" B is a grid-based operator. O

Exercise 6.14. Give an example of a contracting mapping which is not strictly
extensive.

Exercise 6.15. In the first implicit function theorem, show that the condition
that f has multipliers in a grid-based set € <1 cannot be omitted. Hint: consider

the equation f(z)=x+ f(/x).

Exercise 6.16. Give an example where the second implicit function theorem
may be applied, but not the first. Also give an example where the third theorem
may be applied, but not the second.

Exercise 6.17. Prove the following implicit function theorem for well-based
series:

Let ®: C[[M]] x C[[N]] — C[[M]]; (f, 9)— F(f, g) be a well-based
operator which is strictly extensive in f. Then for each g € C[[M]],
there exists a unique ¥(g) which satisfies (6.8) and the operator
D: O[N] — C[[9N]] is well-based.

6.6 Multilinear types

One obtains interesting subclasses of grid-based operators by restricting the
homogeneous parts to be of a certain type. More precisely, let 9t be a monomial
monoid and let 7 be a set of strongly multilinear mappings ®: C [911 e _,
CIMI. We say that 7 is a multilinear type if

MT1. The constant mapping {0} — f is in 7, for each fe C[IIMNT.
MT?2. The projection mapping m;: C[OMI* — CI[MT is in .7, for each i €
{1,...,k}.

MT3. The multiplication mapping -: C [T 2 — CIM] is in 7.
MT4. If ¥, ®y,..., Qg €T, then Vo (Py,...,Py)) € 7.
Given subsets Uy,..., 0, W,..., W, of M, we say that a strongly multilinear
mapping

O:CITUI x - x OOV, —CIWT x --- x CI2W,I
is an atom of type 7, if for i=1,...,w, there exists a mapping ®;: C [T —
CIMI in 7, such that m; 0 ® coincides with the restriction of the domain
and image of ®; to CTWV11 x --- x C[Y, 1 resp. C'[20;11. We say that P is
of type 7, if ® is the sum of a grid-based family of atoms of type 7. A grid-
based operator

O:CIYN x--- xCICY, I —-CIW;T x --- x CIW, 1
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is said to be of type .7, if ®; is of type .7 for all i.

Ezample 6.16. For any set . of grid-based operators C' 9] — C [I[9],
there exists a smallest multilinear type .7 = (.¥’) which contains .. Taking
T=C[IIMI to be the field of grid-based transseries, interesting special cases
are obtained when taking . ={0} or . ={ [}. Grid-based operators of type
({0}) resp. ({[}) are called differential resp. integral grid-based operators.

Exercise 6.18. Show that compositions of grid-based operators of type .7 are
again of type 7.

Exercise 6.19. State and prove the implicit function theorems from the pre-
vious section for grid-based operators of a given type 7.

Exercise 6.20. For which subfields of T and g € T>>> do the grid-based oper-
ators of types ({o4}) and ({0}) coincide?
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Linear differential equations

Let L=L,0,+ -+ Lo€ T[J] be a linear differential operator with transseries
coefficients and g € T. In this chapter, we study the linear differential equation

Lf=g. (7.1)

In our grid-based context, it is convenient to study the equation (7.1) in
the particular case when Ly, ..., L, and g can be expanded w.r.t. a plane
transbasis B. In order to solve the equation f(") =1, we necessarily need
to consider solutions in C[z]. Therefore, we will regard L as an operator on
C[zNBCD =Cx] [BCT. Assuming that we understand how to solve (7.1) for
LeCIBCD[9] and f,ge CLxNBC] and assuming that we understand how
this resolution depends on 8 and upward shiftings, the incomplete transbasis
theorem will enable us to solve (7.1) in the general case.

A first step towards the resolution of (7.1) is to find candidates for dom-
inant terms of solutions f. It turns out that the dominant monomial of L f
only depends on the dominant term of f, except if 7 € c* 91, where §y, is
a finite set of “irregular” monomials. The corresponding mapping Tr: 7+ 77 ¢
is called the trace of L, and its properties will be studied in section 7.3. In
particular, we will show that T}, is invertible.

In section 7.4 we will show that the invertibility of the trace implies the
existence of a strong right inverse L~! of L. Moreover, the constructed right
inverse is uniquely determined by the fact that (L~! g), =0 for all h € 9y,
(for which we call it “distinguished”). Furthermore, we may associate to each
he Hy a solution h =h — L~ L h ~ b to the homogeneous equation Lh =0
and these solutions form a “distinguished basis” of the space H, of all solutions.

Now finding all solutions to (7.1) it equivalent to finding one particular
solution f=L~!g and the space Hy, of solutions to the homogeneous equation.
Solving the homogeneous equation Lh =0 is equivalent to solving the Riccati
equation

RL(f)=0, (7.2)
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which is an algebraic differential equation in f = h' (see section 7.2). In
section 7.5, we will show that (7.2) is really a “deformation” of the algebraic
equation L, f"+4--- 4+ Ly=0, so we apply a deformation of the Newton polygon
method from chapter 3 to solve it. In fact, we will rather solve the equation
“modulo o(1)”, which corresponds to finding the dominant monomials in 9y,
of solutions to the homogeneous equation (see section 7.6).

Of course, an equation like f” + f =0 does not admit any non-trivial
solutions in the transseries. In order to guarantee that the solution space Hr,
of the homogeneous equation has dimension 7, we need to consider transseries
solutions with complex coefficients and oscillating monomials. In section 7.7
we will briefly consider the resolution of (7.1) in this more general context. In
section 7.8 we will also show that, as a consequence of the fact that dim Hy, =r,
we may factor L as a product of linear operators.

7.1 Linear differential operators

7.1.1 Linear differential operators as series

Let T=C[I%T =C I« be the field of grid-based transseries in x over a real-
closed exp-log field of constants C. In what follows, it will often be conve-
nient to regard linear differential operators L =L, 0" + --- 4+ Lo € T[0] as
elements of C[0][[Z]. In particular, each non-zero operator L admits a dom-
inant monomial

o =maxg {91,,--.,0L,.}
and a dominant coefficient
cL=Lo, =Ly 5,0"+ -+ Lo, € C[I],
for which we will also use the alternative notation
L.=cr.

Similarly, the asymptotic relations <, <, <¥, <%, etc. extend to T[]. In order
to avoid confusion with the support of L as an operator, the support of L as
a series will be denoted by suppser L.

Proposition 7.1. Given K, L € T[d)* with L <1, we have
CKI, —CKC]L,.

Proof. Without loss of generality, one may assume that K =<1, modulo division
of K by 0. Then

KL:CKCL—I— Z Z Z (f) Ki7ij7nmn(i”“)8k+j.

0<i,j 0<k<i mx1,n<1
m<1lvn<1

Now each term in the big sum at the right hand side is infinitesimal. O
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7.1.2 Multiplicative conjugation

Given a linear differential operator L € T'[0] and a non-zero transseries h, there
exists a unique linear differential operator Ly, such that

Lun(f)=L(h f)

for all f. We call L}, a multiplicative conjugate of L. Its coefficients are given

by ‘
Lini=Y (Z) L=, (7.3)

izi
Notice that Ly ny = Lxhy,xh, for all hi, ho € T7.

Proposition 7.2. If h» x, then
L><h =hn hL.

Proof. From h s z it follows that h() =, h for all i. Then (7.3) implies
Ly«pn <pn h L. Conversely, we have

L=Lyp, /i <h bt Lyp. O

7.1.3 Upward shifting

In order to reduce the study of a general linear differential equation L f =g
over the transseries to the case when the coefficients are exponential, we
define the upward shifting LT and downward shifting L | of L to be the unique
operators with

LN = @
(LHfL) = (L]

for all f. In other words, the resolution of L f = g is equivalent to the resolution
of (LT)(f1)=g7. The coefficients of LT and L| are explicitly given by

(LD = Y sjae (L), (7.4)

jzi
(Ll)z = Z Sjﬂ‘.’Ei (LJl)7 (75)
Jjzi
where the s; ;, S ; € Z are Stirling numbers of the first resp. kind, which are
determined by

J
f(logz)) = Z sjix~9 fO(logx).

=0

J
(feND = " 8jie fO(e").
1=0
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Upward and downward shifting are compatible with multiplicative conjuga-
tion in the sense that

Lth = (LT)XhT
Lxhl = (Ll)xhi

for all h € T#. We will denote by T1; resp. |; the [-th iterates of T and |.

Exercise 7.1. Let g€ T> " and L € T[J)].
a) Show that there exists a unique Log € T[0] with

Log(fog)=L(f)oyg
for all feT.
b) Give an explicit formula for L, ; for each ¢ € N.
c¢) Show that L+ Lo, is a ring homomorphism.

Exercise 7.2. Let p € T# and 9= ¢ d. Denote by #T the field T with differ-

entiation 0.

a) Show that each L € (?T)[d] can be reinterpreted as an operator L¥ € T[8)].

b) Given L € T[d), let o,(L) € (*T)[d] be the result of the substitution of d
for @ in L. If [~ €T>", then show that o,(L)? = Loy,

Exercise 7.3. Let g€ T>" and ¢=1/g’, so that (T,0)=(Tog,pd); f— fog.

a) Given L € . (see exercise 6.3), let 0,(L) =3, .y Ln (¢ 0)" Show that
0,(L) naturally operates on T es. Also show that the space Zr_ , of all
such operators only depends on 0.

b) Same question, but for L € I _..

¢) Under which condition on g can the operator L=0,(L) in either of the above
questions be rewritten as an operator of the form ZnelN L,om?

Exercise 7.4. Let T°=C[%"] ¢ {C, T} be a flat subspace of T.

a) Extend the definition of 1+ in exercises 6.3 and 7.3 to the present case.
b) Let T" C T": be two flat subspaces of T of the above type. Characterize
@’]I"l n @sz.

Exercise 7.5. Let ge T~

a) Determine ¢ € T so that o,=e??.
b) Given A € C, construct the A-th iterate g°* of g.
¢) Determine the maximal flat subspace T®=C [%*1 of T such that 0g € Do

Exercise 7.6. Let g1,..., gx €t + T<e-,<. Consider an operator

k
L=>_
i=1
where Ai’j € Txeo.

a) Show that L € Zr__, and let Lo, Ly,... be such that L:EneN L, o™
b) Assuming that L # 0, show that there exists a v <ry+ -+ +r with 0y, =
maxne]NDLn.

|
-

Ti

Aj,j0g,07,
0

J
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Exercise 7.7. Let T be as in exercise 7.3(a) or (b), and A € C.
a) Given F = ZRE]N E, (0 0)" € D» with 0g =max0p, <1 and Ey<1. Show

that
_ n+1
log(1+E) = ZLE"E.@T»
n=1 n
1
expE = ZWE”GQT»;

n=0

(1+E) = Z (2) E"=exp(Alog (1+ E)) € Dr»
neN
are well-defined.
b) Let o € T*%> L=logp, K=+ E and L=1log (14 ¢~ ' E). Show that

log () = €+ Lot 5 [6,1) 45 (6,6, L) + 75 (L, (1,6 + -+
K* = exp(Alog (K))

are well-defined.
¢) Given a transmonomial m € ¥ with m > 1 and m » x, show that

APm)=m (m~tom)MN1)

is well-defined. Extend the definition of 8* to Ty s, and show that 97!
corresponds to the distinguished integration.

7.2 Differential Riccati polynomials

7.2.1 The differential Riccati polynomial
Given a transseries f € T, we may rewrite the successive derivatives of f() as
fO=U(f1) f, (7.6)
where the U; € Z{F'} are universal differential polynomials given by
Uy = 1
Uy1 = FU+ Ui/.

For instance:

Uy =1
U, = F
Uy, = F2+F'

U3 = F34+3FF' +F"
Uy = F*4+6F*F' +4FF"+3(F')2+F"

In particular, for each linear differential operator L =L, 9"+ --- + Lo € T[d)],
there exists a unique differential polynomial Ry, =L, U, + --- + LoUy € T{F'}
such that

L(f)=Re(f") f (7.7)
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for all f€T. We call Ry the differential Riccati polynomial associated to L.
Notice that Ry, is uniquely determined by the polynomial
RL,a1g=L,-FT+ o +L06T[F],
which is called the algebraic part of Ry.

7.2.2 Properties of differential Riccati polynomials

Let PeT{F'} be a differential polynomial with transseries coefficients. Like in
the case of differential operators, we may consider P as a series in C{F } [Z1,
where T denotes the set of transmonomials. Given ¢ € T we also define Py,
to be the unique differential polynomial in T{F'}, such that

Pio(f)=P(e+f)

for all f€T. We call P, an additive conjugate of P. Additive conjugates of
the differential Riccati polynomials correspond to multiplicative conjugates of
the corresponding linear differential operators:

Proposition 7.3. For all L and p € T#, we have
Ry yot=R,-1p, (7.8)

Proof. For all feT, we have
(¢ Lxp)(f) =9 Ll )= ' Be(fT+¢N) o f =Ry, 4 ,1(f),

so (7.8) follows from the uniqueness property of differential Riccati polyno-
mials. O

Given a linear differential operator L=L, 0"+ --- + Lo € T[9)], we call
L'=rL,0" '+ + L €T[9
the derivative of L.

Proposition 7.4. For all L € T[0], we have
ORy,

RL/ - W, (79)
Rialg = RL,alg. (7.10)
Proof. We claim that % =14 U;_q for all i > 1. Indeed, % =1 and, using
induction,
OU;+1 oU;  0%U; 0% U; ;
= U+ FZ2 Flgooip—— =2 (@)
or = VTt artarart T TR gr
- : . : OU; 1 ’ . 0U;—1 ()
= U@+ZFU171+'L oF F++ZW

= Ui+ iFU_1+iU/_;
= (@i+1H)U;
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for all i >2. Our claim immediately implies (7.9) and (7.10). O

Corollary 7.5. For all L=L,.0"+---+ Lo € T[0] and p € T, we have

Rite = 5 Ryo(9) Upt oo + Ri(e) U (7.11)

LR, (@) F™+ -+ + Ri(¢p). (7.12)

!

RL7+<p-,alg -

Exercise 7.8. Prove that

Un(F+G)= Y (") Ui(F) Up_i(G).

i=0
Exercise 7.9. Show that
Rry = Rplxe=;
RL,L - RLle

where R;T and Ry | are defined in section 8.2.3.

7.3 The trace of a linear differential operator

Let L: CIMT — CINT be a linear grid-based operator. A term v=cmé¢€
C# M is said to be reqular for L, if Lf is regular for all fe CIMI with
7(f)=v and if 7(L f) does not depend on the choice of such an f. In partic-
ular, a monomial in 9 is said to be regular for L if it is regular as a term. We
will denote by Ry, C 91 the set of all regular monomials for L and by $;, C 91
the set of irregular monomials. The mapping

T;:C* Ry — CTN
v — 7(Lv)
is called the trace of L. For all vy, v, € C* Ry, we have
V1 IV = TL(’U1) < TL(UQ). (7.13)

Given a linear differential equation L f = g over the transseries T with g0,
finding a term v with 77,(v) =7, corresponds to finding a good candidate for
the first term of a solution. In the next section we will show that this first
term may indeed be completed into a full solution.

7.3.1 The trace relative to plane transbases

Let L€ C[BYT 0] be a linear differential operator, where B = (by,...,b,) is
a plane transbasis. We will consider L as a grid-based operator on C' [zNBT,
so that its trace 1;, =T, is a mapping from N BC \ $1, into N BC,
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Proposition 7.6. Given z'm e 2NBC, we have

2'MmE N <= Lym «(2")=0.

Proof. Modulo replacing L by 0(Lxm) ! Lxm, we may assume without loss
of generality that m=1 and L=< 1. Let j be minimal with L, ; # 0, so that
L.(z%) =0 if and only if i < j.

Now i < j implies L(z%) = (L — L.)(2%) <e= 1. Furthermore, L —as(1) =<
e~ % for all but the finite number of « such that L.(e~**)=0. It follows that
L(z%) < L(e=®) for a sufficiently small a >0, whence 2% € §r..

If i >4, then L.(z%)=<2*~7. Given n€ 2N9B® with n < z?, we have either
n<ee 1 or n=2a" with k <i. In the first case, L(n) = Ly (1) < Lxn <e= 1. In the
second case, we have either k < j and L(n) <e«1 or k> j and L(n) < 2*~J <
2'=7. So we always have L(n) <z°~J. Hence 2’ € §r, by strong linearity. [J

Proposition 7.7. For every m € BC there exists a unique n € BC with
Lyn=<m.

Proof. Let m € B¢ and consider v =m /0, = b7 --- bS". We will prove the
proposition by induction over the maximal 7 such that «; #0. If such an i does
not exist, then we have nothing to prove. Otherwise, proposition 7.2 implies

~ m m o
0= =p, —— =byt- byt
0(Lyper) HgR(L) !
It follows that v = bf‘l bf‘j‘ll for certain @1, ...,&;_1. By the induction

hypothesis, there exists an n with L, yei 5 <m. Hence Lyxy<m for n=nbs".
Furthermore, given ¢ € B¢ \ {1}, we have Ly, <, me %, m. This proves the

uniqueness of n. O
Proposition 7.8. The trace 11, of L is invertible.

Proof. Let 7 =cz*m € 2N BC. By the previous proposition, there exists a
unique n with Ly;=<m. Modulo the replacement of L by m~! Ly we may
assume without loss of generality that m=n=1. Let j be minimal with
L. ;j#0. Then

i+ OF it (i + 7)! , ,
+7) — _ . [
L(l‘ J)_;, L Ok +0ew(1)—TL*7]sz+0((L‘).
Setting -
ci! i
=V a'"

we thus have T}, (v) = 7. Notice that proposition 7.6 implies 't/ ¢ . O

Example 7.9. Let B = (e”,e°") and consider the operator
L=e"20>-2e 0% +0+1.
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Given m=¢e?" 1% and K =m~! Ly, we have
K = e 2293+
(Ba—2)e ™ "+3be 27) 02+
(1—4a+3a®+ (6ab—4b+3a)e *+3b%2e 22) 0+
(a®—2a’+a)e*+3a’b—4ab+b+3a®>—2a+1+
(Bab?—2b2+3ab+a)e ®+be 2

Now the following cases may occur:

Case % CK r'me Ny T, (z'm)
ag{0,1} |e®|a(a—1)? 1no ala—1)?e"zim
a=0,0#-1|1|b+1+0 1no (b+1)zim
a=0,6=—1] 1 B) i i=0 |iz 'm (if i £0)
a=1 1 2 no 2z'm

7.3.2 Dependence of the trace on the transbasis

Let L € C[BC1[0)], where B is a plane transbasis and let us study the depen-
dence of the trace Ty, =7T;, of L on 8. Given a plane supertransbasis B
of 9B, proposition 7.6 implies that .3 N 2N BC = ;s and TL;% clearly
coincides with 7. on C7* 2NBC \ 9. Similarly, if B is a second transbasis
such that C [zNBCT and C [zNBCT coincide as subsets of T, then f)L;% =
(00T7)($Hr:») and T4 0T =Tro i, where I: C [N BT — C [N B
denotes the “identification mapping”.

Proposition 7.10. Let B = (e, 617,...,b6,7). Then 1.8 =981 and
Tp1.(v1) =Tr;s(v)1 for allve C7 (xNBC\ H1.).

Proof. We clearly have
Tppa () =7(L1(v1)) = 7(L(v)T) = 7(L(v))T = Ti;8(v)1

for all v € C7 (2N B\ H7.). Given

n=(logz)’z'me (logz)N 2B,

let us show that n€ 9,3 < nl €9, 5. Modulo replacing L by (Lxm) * Lxm,
we may assume without loss of generality that m=1 and Lx<1.

Assume that n € 9.9, so that j=0, i € N and L.(2°) =0. Then L=
L.+ 0e=(1) implies LT = L.T + 0ge=(1) and LT xeic = LsT xeie + 0ge=(1). Hence
L7 weiz «= Ly xeiz . Since L,(x") =0, we also observe that Ly i ¢ .=0, whence
LT yeix,0,+=0. But this means in particular that

LTXe“—',* = L*Txe”’,*(l) = L*Txe“ﬂ,a(L*TXem),O =0.

In other words, n{ Eﬁm:%.
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Assume now that n ¢ 9. and let k& be minimal with L. ; # 0. Then
L.(n)=n) =, 27+ =40 so

L1 xeie(z7) =0 =0 =R,
On the other hand, L,]=<e % whence L, yoi= <" ~% This is only possible
if L] yeie<e=%)% and L] iz «(x7) #0. In other words, n] ¢ N |

Proposition 7.11. Let B be a transbasis of level 1—1 <1 containing
log;_12,...,2 and denote Gy = (log; x)NBC. Let L€ CITBC] and let LB
be the set of singular monomials of L as an operator on C[&xl. Then

N3 =9 N Gxm.

Proof. Clearly, 9.5 C 1, N Gp. Assume for contradiction that there exists
anme (H,NSx) \ Hr». Then there exists an ne€ T with n<m and Lm < Ln.
Let B’ be a super-transbasis of 98 for n, of level 1 —1’, and which contains
log;_1,...,x. Setting B = {log;:_, ,...,log;z}, proposition 7.10 now implies

L1801, NS21, =911 .91,V Sn1,=Dr1ssnTr—1= 98T

Hence, mTl/ ¢ ijTz’%%’Tl/ so that (Lm)Tl/ = LT[/(mTl/) - LTl/(nTl/) = (Ln)Tl/.
This contradiction completes the proof. O

Proposition 7.12. Let L e ’I[‘[a]7é be a linear differential operator on T. Then
the trace Ty, of L is invertible.

Proof. Given 7 € C* %, the incomplete transbasis theorem implies that there
exists a transbasis B for 7 like in proposition 7.11. By proposition 7.8, there
exists an v, € NV \ Hr1,.m1, with Tp1,(v1;) =71, By proposition 7.11,
we have v € C7 Ry, and Tp,(v) =Tp1,(v1) =7 O

7.3.3 Remarkable properties of the trace
Assume again that L € C [8°T[9], where B is a plane transbasis.
Proposition 7.13. The set
(L
5= U (Lxm)
. . €BC m
18 finite. m

Proof. Considering Aj,..., A, as indeterminates, the successive derivatives of
m= bi‘l bi‘b” satisfy

m® /m=U;(\ bl + -+ 2,00 € C[AL, ..., A\ [BCT,

where the U; are as in (7.6). Consequently, we may see

p=bum S () e

=0 j=1
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as an element of C[\1,...,\,] [BCT[9] for each i. 3
Assume for contradiction that § is infinite. Since § C suppser L, there

exists an infinite sequence vy > vs > --- of elements in §. For each v;, let
n; =b7"" .- b.™" be such that v; =0(Lxy,)/n. Now each v; induces an
ideal I; of C[Ay,..., Ay), generated by all coefficients of Ly with o > ;.
We have Z; C Z5C --- and each (qi41,1,---,®it1,n) IS a zero of Z;, but not
of Z;+1. It follows that Z; & Zs & - -+, which contradicts the Noetherianity
of O, ..., Al O

Corollary 7.14. There exist unique strongly linear mappings

A:CLNBY\ 91 — CLaNBOT
AL CLNBCD] — CLNBC\ 9.0

which extend Ty, and Ty *. Furthermore,

a) suppAC{l,..., 27"} T and supp A~ C{1,..., 2"} F L.
b) Ta=Ty, and Ty =T; " O

Proposition 7.15. Given K,Le C B 1[0])7, we have

Hxr=9.10(T; ' (HK))
and
Tir, =Tk o1T],.

Proof. Let m e R\ (T '($x)). Then for all n <m, we have Ln < Lm and
KILn<KLwm. By strong linearity, it follows that KL f < KLm for all f e
C [2NBCT with f <m. This shows that m € R, and Hx 1, gﬁLHD(T[l(ﬁK)).

Conversely, let m € $;, and assume that Lm #0. Then Ln > Lm for all
n<m with n> 7' (r(Lm)). If 27 v € H;, then proposition 7.6 implies i < r
and x7 v e §y, for all j <i. Hence T} *(7(Lm)) <= m and we may choose n so
that n¢ TL_l(Y)K). But then KLn> KLm and m € 9. If m € §;, satisfies
Lm =0, then we clearly have m € Hx.

Similarly, let m=xz’v € 5% Nim T, and denote m=0(7; *(m)). Then Kn>
Km for all n <m with Km+#0=n> T "(7(Km)). Moreover, we may choose
n € Ry such that n > (supp L)<, and K(z70) # 0= n > Tic (1(K (27 v)))
for all j <4. This ensures that Kn > K L. Denoting it = (7}, *(n)) < @, we
conclude that KLn=< Kn> KLm, whence m € Hkr,.

As to second identity, let v € C* Ry . Then Lu~Ty(v) and Tp(v) ¢
C# §g implies K Lv ~ K(Ty(v)). Hence Txr(v) =7(KLv)=7(K(Tp(v)) =
TK(TL(’U)). O

Exercise 7.10. Prove the propositions of section 7.3.3 for operators L € T[d)].
Exercise 7.11. Generalize the results from this section to the well-based setting.

Exercise 7.12. Let L=1+4+0,41—20,,:€ Zr_,.. Determine ..
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7.4 Distinguished solutions

Let 9 and 91 be monomial sets, such that 91 is totally ordered. Given
a linear grid-based operator L: C[9M] — CINT and g € CINT, we say
that fe CIIMI is a distinguished solution to the equation

Li=g, (7.14)

if for any other solution fe C 9T, we have fa(f—f) =0. Clearly, if a distin-

guished solution exists, then it is unique. A mapping L~': C'INMI — C [T
is said to be a distinguished right inverse of L, if LL™'=1d and L~ ' ¢ is
a distinguished solution solution to (7.14) for each g € C[NM1. A distinguished
solution to the homogeneous equation

Lh=0 (7.15)
is a series h € C[9] with ¢, =1 and ha(ﬁ) =0 for all other solutions h with
0; # 0. A distinguished basis of the solution space Hy of (7.15) is a strong

basis which consists exclusively of distinguished solutions. If it exists, then
the distinguished basis is unique.

Remark 7.16. Distinguished solutions can sometimes be used for the renor-
malization of “divergent” solutions to differential equations; see [Hoe0O1b] for
details.

7.4.1 Existence of distinguished right inverses

Theorem 7.17. Assume that the trace 11, is invertible and both 11, and TL_1
extend to strongly linear mappings

A:CIRID — CINnd
A~LCINT — COR.
Assume also that supp L and supp A™! are grid-based. Then
a) L admits a distinguished and grid-based right inverse
L= CIMNT — CINR.T.
b) The elements hY =b — LY Lh with b € H form a distinguished basis
for Hy,.

Proof. Let R=L — A. Then the operator R A™! is strictly extensive, and
the operator (Id + R A~!) A coincides with L on C[9R.]. Now consider the
functional

o(f,9)=g—RA'f.
By theorem 6.14, there exists a strongly linear operator

U=(Id+RA ) '=1d-=RA '+ (RA )+ -,
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such that ®(¥(g), g) =¥(g) for all g€ CINT. Consequently,
L'=A"'(Id+ RA YL CIND — CIRLT

is a strongly linear right inverse for L. Given h € H, Zé , we also observe that
05, € 91,; otherwise, 77, = T1.(7) # 0. Consequently, f= L~!g is the distin-
guished solution of (7.14) for all g€ CINT. This proves (a).

As to (b), we first observe that

LhWW=Lbh—-LL 'Lh=0
for all h € Hr. The solution A is actually distinguished, since
supp K N H, C {h}
and 9; € Hr, for all he Hj,. In fact, we claim that
R ~ . (7.16)

Indeed, if L= Lh > b, then we would have 017, € Ry, so

Lhy<L(L~*Lh)=Lh,
which is impossible. Now let A be an arbitrary solution to (7.15) and consider

ho= Y hyh.

heHL
h = h—L7'Lh=">" hyh".
henL
Then we have th = hy, for all h € H, by the distinguished property of the hY
and (7.16). Consequently, h —h e H,NC 9.1 ={0}. This proves (b). [

Corollary 7.18. Let B = (by,...,b,) be a plane transbasis and let L €
CIBC1[0] be a linear differential operator on C L[z BCD. Then L admits
a distinguished right inverse L= and Hy, admits a finite distinguished basis.

Proof. In view of proposition 7.8 and corollary 7.14, we may apply theorem
7.17. By general differential algebra, we know that Hy, is finite dimensional. [

Corollary 7.19. Let L € T[0] be a linear differential operator on T. Then L
admits a distinguished right inverse and Hy, admits a finite distinguished basis.

Proof. Given g € T, let us first prove that L f = g admits a distinguished
solution. Let B be a transbasis for g as in proposition 7.11 and consider
f=L17*(g1)l;. Then

Lf=LT(fT)lLi=LT(L1  (gT))li=g.
From proposition 7.11, it follows that

fo=(L17 " (gT)p1, =0
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for all
heHrNGy=(Hr1,NGxs1,)li=9r1,31.11

Hence f is the distinguished solution to L f = g. In particular, the construction
of L= g:= f is independent of the choice of 8. The operator L~! is strongly
linear, since each grid-based family in .% (T) is also a family in #(C[&x1)
for some B as above, and L~ is strongly linear on C [Sx]l. O
Ezxample 7.20. With L as in example 7.9, we have

L’lez:%e$+l—%xeﬂj-l-(x—l)e*%—i-(—%x-l-%)e*gw—f—"-

7.4.2 On the supports of distinguished solutions

Let % = (by,...,b,) be a plane transbasis and let L € C [B°T[9] be a linear
differential operator on C [zN BT of order 7.

Proposition 7.21. The operator support of L™1 is bounded by
supp L~ C U 0%,

where
¥ = {1,...,xr}{ﬁm€%c};
W = {1,...,93*}( U %\{1})%:5—1@—2,..}

meBC

are grid-based sets and 20 < 1.

Proof. With the notations from the proof of theorem 7.17,

suppA~!L C U;
supp (RA™Y) C 2.
It follows that
suppL~! = suppA~!(Id+RAH)!
C (suppA~Y) (supp (RA™H))*
C U™

Recall that U is finite, by proposition 7.13. This also implies that 20 is grid-
based. O

Proposition 7.22. Given d€ N, let

CIB 1D x)lq = {f€CIBD[z]:deg, f <d}
C CO2NBD =C[z][BT.
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Setting s =card H, <, we have

a) L maps C B [z]q into C B [x]4.

b) L= maps CIB 1 [x]q into C BT [x]ays.
¢) H, COIBT [z]s.

Proof. For all f= fyxd+-- -+ fo€ CIBT [z]4, we have

Lf = Lygafa+--+Lxzsfi+Lfo
= (Lf)at+ -+ LD f)+ -+ (L) z+ L' f1)+ L fo
= (Lfpat+ -+ LD fat -+ L)z + (LD f4 -+ Lfo).

This shows (a). As to (b), let g € C BT[], and consider

= {a'meRpi<d+card{heHL:h=m}};
= {o'meaNBCi<d+card{h€H: Lay=m}}
(00 L)(D).

Then T}, is a bijection between C7® and C#J and L maps C[D] into
C'[[31. By theorem 7.17, it follows that the restriction of L to C' [®1 admits
a distinguished right inverse, which necessarily coincides with the restriction
of L™ to C[JT. This proves (b), since C [DT C C[BT [x]44s and CLIT D
C [BC1 [x]4. Moreover, for each element k" of the distinguished basis of Hy,
we have h9 =h+ L~ Lhe C[B 1 [z)s. This proves (c). O

a B

Exercise 7.13. Show that T, =T; *.

Exercise 7.14. Show that we actually have Hy, C C[B°1[z],_; in proposition
7.22(c).

Exercise 7.15. Let B and B be plane transbases in the extended sense of exer-
cise 4.15. Given L € CIBCN[I], let L denote the distinguished right inverse
of L as an operator on C [zN BCT.

a) Show that Lf%l is the restriction of L%l to C[zNBCT, if B is a supertrans-
basis of 8.

b) If CIBCT =C BT, then show that L;_%l = L:Bl if and only if B¢ =BC.

c) If B =(e? b11,...,b,1), then show that L1 3 (g7) = Lix(g)] for all g€
CLzN3BT.

Exercise 7.16. Let T°=C[[%"] >z be a flat subspace of T and %! the steep
complement of 3°, so that T="T"[Z*]. Consider L € T[J] as a strong operator
on T’[Z*T (notice that L is not T*-linear). Let ER% be the set of monomials
m! € ¥ such that 04(L (\fm!)) does not depend on A* € T*# and such that the
mapping A — ct(L (M mt)); T># — T>7 is invertible.

a) Exhibit an operator in T°[d] which maps A to ¢(L (A m¥)) and relate R}
and Rr.
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b) Generalize theorem 7.17 to the setting of strongly additive operators and
relate the distinguished right inverses of L as an operator on T and as an
operator on T°[T].

c) Given a plane transbasis 8, L € C[B°1[0] and g € C[B°1[z], give a con-

crete algorithm to compute the recursive expansion of Lf%l g.

Exercise 7.17. Let L € T[0]” and let m be a transmonomial. Prove that

(Lxp)™t = x 'Lt
(X L)™' = L71x;?!

m

Exercise 7.18. Let L € T[0]7 and g € T> . When do we have
(Log) ™' =(L™Nog?

Here (L~1)o, is the unique operator such that

(L™ Yog(fog)=(L"" f)og
for all f.

Exercise 7.19.

a) Show that (KL)"'=L"'K~! for K=0?+¢* and L=08%+20 +e".
b) Show that (KL)"'# L 'K~! for K=98%>—¢* and L=90%>+2e0+ 1.
c) Do we always have (LL)"!=L-"1L~1?

Exercise 7.20.

a) Prove that each non-zero L € Zt__, admits a distinguished right-inverse
on T e

b) Can $;, be infinite?

c) Same questions for L € .

Exercise 7.21. Consider an operator L as in exercise 7.6.

a) For any g € Tierz, show that g=! Ly is an operator of the same kind.

b) Show that L admits a distinguished right-inverse on T'_,.2.

c) Assuming that A; ; € T<c-, show that L admits a distinguished right-inverse
on T .2

d) Given_g €T .om, show that L f =g admits a distinguished solution, which
is not neces;arily grid-based, but whose support is always well-based and
contained in a finitely generated group.

e) Show that (d) still holds if A; ;€T _,_,o0.

f) Given a general g € T, show that Lf: g admits a well-based distinguished
solution.

g) Give a bound for the cardinality of 9.

Exercise 7.22. Let & be the space of partial grid-based operators L: T — T,
such that dom L is a space of finite codimension over C in T. Two such operators
are understood to be equal if they coincide on a space of finite codimension in T'.

a) Show that & is a T-algebra under composition.
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b) Show that each L € T[9]7 induces a unique operator in & with LL™'=
L'L=1.

¢) Show that the skew fraction field T(9) of T[] in & counsists of operators
K~'L with K,L€T[d] and K #0. Hint: show that for any K, L € T[9] with
K #0, there exist K, L € T[] with K#0and KL=LK.

Exercise 7.23. Let L € E[9]7, where E=C [[¢] denotes the field of exponential
transseries.

a) If L=< L, then show that there exists a decomposition
L=cm(1+Ky) - (1+K,),

with emeC €, Kyq,..., K, €T(9)5 and supp K1 < - - - <L supp K.

b) If ¢>0 and K} is sufficiently small, then show how to define log L.

c) Given A € C, extend the definition of O* from exercise 7.7(c) to a definition
of L* on a suitable strong subvector space of T.

7.5 The deformed Newton polygon method

Let L € T[0]7 be a linear differential operator and consider the problem of
finding the solutions to the homogeneous equation Lh=0. Modulo upward
shiftings it suffices to consider the case when the coefficients of L can all be
expanded w.r.t. a plane transbasis 8. Furthermore, theorem 7.17 and its
corollaries imply that it actually suffices to find the elements of .

Now solving the equation Lh =0 is equivalent to solving the equation
Rr(f)=0 for f=h' As we will see in the next section, finding the domi-
nant monomials of solutions is equivalent to solving the “Riccati equation
modulo o(1)”

Ry 4 7..(0)=0 (7.17)

for f€ CIB D .. It turns out that this equation is really a “deformation” of
the algebraic equation
RL,Mg(f) =0. (7.18)

In this section, we will therefore show how to solve (7.17) using a deformed
version of the Newton polygon method from chapter 3.

7.5.1 Asymptotic Riccati equations modulo o(1)

Let B is a plane transbasis and L € C[B°1[0]7. We regard L as a linear
differential operator on C' [aNBT. Given v € B U{T}, consider the asymp-
totic versions

Riirn(0)=0  (f=v) (7.19)
and

Rpaig(f)=0  (f=v) (7.20)
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of (7.17) resp. (7.18). We call (7.19) an asymptotic Riccati equation modulo
o(1). A solution f € CIBDy of (7.19) is said to have multiplicity u, if
R 1 f,a1g,i < Rp 4 for all ¢ < g and Rp 17 g, =<Br 175
Given f€ CI[B1, we notice that for all k,
Ue(f) = f*+0s(f*71). (7.21)

We say that m € (B), is a starting monomial of f relative to (7.19), if m
is a starting monomial of f relative to (7.20). Starting terms of solutions
and their multiplicities are defined similarly. The Newton degree of (7.19)
is defined to be the Newton degree of (7.20). The formula (7.21) yields the
following analogue of proposition 3.4:

Proposition 7.23. If f € C[MC1 . is a solution to (7.19), then Ty is a starting
term of f relative to (7.19).

Proof. Assume the contrary, so that there exists an index i € {0,...,r} with
L;f7<L; ftfor all j+#i. But then

LiUj(f) ~ L f? < Li f*~ Ly Ui(f)
for all j. Hence

Ry 1 f.a15.0=Ri(f)~ Li f*
and similarly

Rp 4 f 01,5 =Ry (f) S Li f177
for all j. In other words,
Rr + = RL 1 alg,0

and Ry 4 .,(0) = (L; f1), 0. O

7.5.2 Quasi-linear Riccati equations

We say that (7.19) is quasi-linear if its Newton degree is one (i.e. if (7.20) is
quasi-linear). We have the following analogue of lemma 3.5:

Proposition 7.24. If (7.19) is quasi-linear, then it admits a unique solution

feCIBT,.
Proof. Let ={meB“:1gxm=<v} and consider the well-based operator

¢:CIYl — CIYl

F _<L0+L2U2(f)+"'+LTUr(f))
L .

Since (7.19) is quasi-linear, we have

L; Ui< Liv (722)
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for all i and Lo < L1b. Moreover, on U C {me B m <o} we have (supp9) <
v <. Since U;(f) — f*is a differential polynomial of degree < i, we thus have

supp U; < v°, (7.23)

when considering U; as an operator on C'[2UT. Combining (7.22) and (7.23),
we conclude that

supp @1 U (supp @) mU - - U (supp @,) m" "1 <1
for all m € B¢ with 1 <xm <v. By theorem 6.14, it follows that the equation

o(f)=1r (7.24)

admits a unique fixed point f in C' [*UT. We claim that this is also the unique
solution to (7.19).
Let us first show that f is indeed a solution. From (7.24), we get

RL,—i-f,alg,O:RL(f):O(Ll). (725)
On the other hand, we have for ¢ > 1:

Rr 4fag1 = Ro(f)

= L+ OLaf) 4+ +OLy fr Y~ Ly (7.26)
Rr 4t agi = Roo(f)
O(Li)+ -+ +O(Ly fr=) < Ly 01—, (7.27)

In other words, Ry, 4 < Ly and Ry, 4 ¢..(0)=0. Assume finally that f € C' [T
is such that 1< 6= f — f <v. Then (7.25), (7.26) and (7.27) also imply that

RL,+f,alg,O = RL»"!‘f((S) ~ Ly 0 s Ly~ RL,Jrf,alg,l'
In other words, R; , 7 .(0)#0. O
7.5.3 Refinements
Given a refinement
f=e+f (f=0), (7.28)
where 1< ¢ <v and v =0, the equation (7.19) becomes
Ry 17.0)=0  (f=¥), (7.29)

where L ze_f“’LXeN satisfies Ry = Rr, +,. We recall that the coefficients of
the corresponding algebraic equation

Ri (=0 (f=9) (7.30)
are given by

Rl:,alg,i = RL(i)(w)'
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Let us show that the analogues of lemmas 3.6 and 3.7 hold.
Proposition 7.25. Let p € CIB 1. Then the Newton degree of
Ry g i7.00=0  (f=¢) (7.31)
equals the multiplicity of 7, as a starting term of f relative to (7.19).

Proof. For a certain transmonomial n, the Newton polynomial relative to
m=10, is given by
NRL,m(C) = NRL,alg;m(C) = Ld,n/md c? + ot LO,n~

Then, similarly as in the proof of lemma 3.6, we have

1
L = ERLW(@)
1<~ (k » L
= (i)Lk(‘Pk + Oy (p* =17 1)
k

= 2 () Wm0 mm (et of1))

7

Sl

B
Il
=

L\ i i
= ENI(;)m(c) nm’+o(nm?)
for all 7, and we conclude in the same way. O
Proposition 7.26. Let d be the Newton degree of (7.19). If f admits a unique
starting term T of multiplicity d, then
a) The equation

RL(d—l)’+<p7*(0):0 (p=<0) (7.32)

is quasi-linear and has a unique solution with ¢ =7+ o(T).
b) Any refinement

f=¢+7 (f=v) (7.33)
transforms (7.32) into an equation of Newton degree <d.

Proof. Part (a) follows immediately from lemma 3.7(a) and the fact that

alg= ga_lé). Now consider a refinement (7.33). As to (), let it be such

that the the Newton polynomial associated to m =03 is given by

RL(d—l)

Ngy w(c) = Nr; . w(c) = Laajmac?+ - + Loz

By the choice of ¢, we have

Lg_1= RL(d—1)((p) = RL(d—n,_,'_%algﬁ < RL(d—1)7+SD,1 = RL(d)((p) =Lg.

It follows that the term of degree d — 1 in Ng; @(c) vanishes, so Ng. & cannot
admit a root of multiplicity d. We conclude by proposition 7.25. O
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7.5.4 An algorithm for finding all solutions

Putting together the results from the previous sections, we obtain the fol-
lowing analogue of polynomial_solve:

Algorithm riccati_solve
Input: An asymptotic Riccati equation (7.19) modulo o(1).
Output: The set of solutions to (7.19) in C BT ..
1. Compute the starting terms ¢y my, ..., ¢, m, of f relative to (7.20).
2. If v=1 and ¢; is a root of multiplicity d of Np n,, then let ¢ be the

unique solution to (7.32). Refine (7.28) and apply riccati_solve to (7.29).
Return the so obtained solutions to (7.19).
3. For each 1 <i<v, refine f=c¢;m;+ f (f <m;) and apply riccati_solve

to the new equation in f . Collect and return the so obtained solutions
to (7.19), together with 0, if Lo=0.

Proposition 7.27. The algorithm riccati_solve terminates and returns
all solutions to (7.19) in C BT ... O

Since C is only real closed, the equation (7.19) does not necessarily admit d
starting terms when counting with multiplicities. Consequently, the equation
may admit less than d solutions. Nevertheless, we do have:

Proposition 7.28. If the Newton degree d of (7.19) is odd, then (7.19) admits
at least one solution in C [BCT ..

Proof. If d=1, then we apply the proposition 7.24. Otherwise, there always
exists a starting monomial m, such that deg Nr, m — val Ng, w is odd as well.
Since C' is real closed, it follows that their exists at least one starting term
of the form 7=cm of odd multiplicity d. Modulo one application of proposi-

tion 7.26, we may assume that d< d, and the result follows by proposition 7.25
and induction over d. O

Example 7.29. Consider the linear differential operator
L=e72"93-2e7°" 0%+ 0 —2¢",
with
Rpag=e 2" F3—2e " F24+ F —2e¢"

The starting terms for R.(f)=0 are 7=2e* and 7=¢°" (of multiplicity 2).
The refinement f=2e*+ f (f < e%) leads to

Ry, t2er a1g=F + O(eu—ew),
so f=2e" is a solution to (7.17). The other starting term 7 =e®" leads to

Ry yeor aig=€ ¢ F34+ F243e"F —e®" t7 4 &2 f e,
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and RL,+ee’”,a1g(f) =0 (f <e®") admits two starting terms 7 = +e(®"+#)/2,
After one further refinement, we obtain the following two additional solutions
to (7.17):

— o plettr)/2_ 9w L.
f = e +e Te =1
— e _plettz)/2 9@ L
f=ce e Te =7

7.6 Solving the homogeneous equation

Let L € CIBCT[0]” be a linear differential operator on C [zN BT, where
B is a plane transbasis. Let fi,..., fs be the solutions to (7.17), as computed
by riccati_solve, and pq, ..., us their multiplicities. We will denote

52;%:{effl,...,x/‘l_leffl,...,effs,...,x“s_leffs}.

The following proposition shows how to find the elements of $r.os when we
consider L as an operator on C' [B°1:

Proposition 7.30. We have

O3 = Hi.s NN BC.

Proof. Let z'm € 2N B¢ and consider the operator K =m™! Ly . Then

g'meH, & o(K)(z')=0
& i<min{d: ;=< K}
< i <min{d: Ri alg,d= Rk}
& i<min{d: R, it agd= B mt}

But min {d: R, 41 a1g,q < B ymt} is precisely the multiplicity of mf e
C BT as a solution of (7.17). O

In order to find the elements of §); when we consider L as an operator
on T, we have to study the dependence of 7.9 under extensions of B and
upward shifting. Now riccati_solve clearly returns the same solutions if
we enlarge 8. The proposition below ensures that we do not find essentially
new solutions when shifting upwards. In the more general context of oscil-
lating transseries, which will be developed in the next section, this proposition
becomes superfluous (see remark 7.38).

Proposition 7.31. Assume that
B = (by,...,b,)

B = {ez’ blTa ce bnT}
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Then
T

Proof. Assume that g€ C BT » is a solution to
Rt 44.+(0)=0 (7.34)

of multiplicity I. Let f=g.|/z, =g~ and let k be the multiplicity of f as
a solution of (7.17). We have to prove that

[>0a€e{0,...,k—1}=1=1.

Let m be <-maximal in supp f \ B¢ and set 1) = > nsm fon. If such an m does
not exist, then set v = f. Then, modulo replacing L by ewaXe_fw, we may
assume without generality that either ;¢ B or f=0.

Let us first consider the case when m =0y ¢ BC. Since all starting mono-

mials for Ry, aio(f) =0 are necessarily in B¢, there exists an i with L;m/ <
L;m® for all j#4. It follows from (7.4) that

(LD)i(mle®)" = (Lil + O(Liy11) + -+ + O(L, 1)) mT*
LT m7
(O(L; 1) + -+ O(L, 1)) m1?
< Limli=<(L7); (m]e®)! (j#1).

In other words, 9, =mT7e? is not a starting monomial for Ryq as(g) =0, so
neither (7.17) nor (7.34) holds.

Let us now consider the case when f =0 and observe that k is minimal
with L, #0. If k=0, then Rp; .= Lo, so we neither have (7.17) nor (7.34).
If a¢{0,...,k—1}, then

Rr1,14(0)

X

(L1); (m]e™)?

e~ (L1) (")
(@ L(z)1
LkT e k=

= LT,

X

so g does not satisfy (7.34). Similarly, if & €{0,...,k—1}, then Rp1 +4(0) <
LiTe %< L1, which implies (7.34). Moreover, setting K =e ™% L1 ycaz, we
have

Ri1,41(0) = Rr11,+aes+1(0)
(x=*log ' L(z“logx))T1

= Liffete—s
= KTe(“l)w
= K1

In other words, Ri1,+1,+(0) #0, whence [ =1. 0
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Theorem 7.32. Let L € T[0] be a linear differential operator on T of order
r, whose coefficients can be expanded w.r.t. a plane transbasis B. Assume
that f1,..., fs are the solutions to (7.17), with multiplicities p1,. .., ps. Then

9L = {effl,...,xmfleffl,...,effs,...,x“fleffs}; (7.35)
Hy, C COBCD[a], {e/ ... el . (7.36)

Proof. Let & denote the set of exponential transmonomials and let us first
assume that $5;, C N &. Then there exists a supertransbasis B of B, with
9, CaN BC CaN¢ and effl, ey ol fe € BC. Now riccati_solve returns the
same solutions with respect to 8 and B. Therefore, proposition 7.30 yields

Hr=9HrNaN %CZS")L;% =975 =9L;»-

In general, we have $1.1;=$9r1, for some [ > 0. So applying the above argument
to L1;, combined with proposition 7.31, we again have (7.35). As to (7.36),
assume that h=z7efi € 9 and let K = e /i L€ CIBC1[0]. Then

W=h— L Lh=(zi — K- Kai)elfic CTBCN 2], e T,
The result now follows from the fact that the hY form a basis of Hj. O

Since the equation (7.17) may admit less than r solutions (see remark
7.27), we may have dim )7, < r. Nevertheless, proposition 7.28 implies:

Corollary 7.33. If L € T[0] is a linear differential operator of odd order,
then the equation Lh =0 admits at least one non-trivial solution in T. ([l

7.7 Oscillating transseries

Let L € T[0]7 be a linear differential operator of order r. Since C is only real
closed, the dimension of the solution space Hy, of Lh =0 can be strictly less
than r. In order to obtain a full solution space of dimension r, we have both to
consider transseries with complex coefficients and the adjunction of oscillating
transmonomials. In this section we will sketch how to do this.

7.7.1 Complex and oscillating transseries

Let ¥ be the set of transmonomials and consider the field
T=TaiTx(C+iC)I[%] =CI%]

of transseries with complex coefficients. Then most results from the previous
sections can be generalized in a straightforward way to linear differential
operators L € T[0]. We leave it as an exercise for the reader to prove the
following particular statements:
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Proposition 7.34. Let L € T[0]7 be a linear differential operator on T.
Then L admits a distinguished right inverse L~ and Hy, admits a finite dis-
tinguished basis.

Proposition 7.35. Let L € CIBC1[0]7 be a linear differential operator,
where B is a plane transbasis, and v € BC U {T}. If the Newton degree
of (7.19) isd, then (7.19) admits d solutions, when counted with multiplicities.

An oscillating transseries is an expression of the form
[=Ffop eiw1+...+f;wkeiwk7 (7.37)

where fop, ..., fiy, € T and 91, ..., ¢, € T.. Such transseries can be differ-
entiated in a natural way

F'= (Flyy + 10D @V oo (fly, i 005) €0,

O= @ Tel¥

PeT-

We denote by

the differential ring of all oscillating transseries. Given an oscillating transseries
f €0, we call (7.37) the spectral decomposition of f. Notice that

O~C ™1,
where ef <9 if and only if Rf <Rg and S f = Jg.

7.7.2 Oscillating solutions to linear differential equations

Consider a linear differential operator L € T[d]*. We have
Lf= Z (Liy fiw) €?,
P

€T
where g
L;w = e_iw LXeid: c Tl‘[&],
since (%) T e T for all 1) € T.. In other words, L “acts by spectral components”
and its trace T, is determined by

%= |J R,
PpeT
Ti(cmeV) = Tp ,(cm)el?.
Now let g € O and consider the differential equation
Lf=g. (7.38)

This equation is equivalent to the system of all equations of the form

Ly fip= gp- (7.39)
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By proposition 7.34, the operators L., all admit distinguished right inverses.
We call
fm1e= Y L e
PpeT
the distinguished solution of (7.38). The operator L=1: g+~ L1 g, which is

strongly linear, is called the distinguished right inverse of L. The solutions to
the homogeneous equation may be found as follows:

Theorem 7.36. Let L € T[] be a linear differential operator on T of order,
whose coefficients can be erpanded w.r.t. a plane transbasis B. Assume that
f1,.--, [s are the solutions to (7.17), with multiplicities 1, ..., us. Then

9, = {eff17...,x“l_leff17...,effs7...,x“-"‘_leffs}; (7.40)
H, C CIBD[a), {/ ... &l F}. (7.41)

Proof. Let h =z m, where m:effi, 1<i<s and 0<j < py. Then K =
m ! Ly, considered as an operator on T, satisfies

Ry alg,j= Rt f,a1g,j < B+ 5, = BKk.
Hence K; < K, 7 € Hx and h € 9. Furthermore,
hb = h— L1 Lh= (xj _ K1 Kl‘j) ol fi c CIBCT [l‘]reffi

is an element of Hj with dominant monomial §. By proposition 7.35, there
are 7 such solutions A" and they are linearly independent, since they have
distinct dominant monomials. Consequently, they form a basis of Hp, since
dim H, <r. This proves (7.41). Since each element h € §;, induces an element
hY =h — L' Lh with dominant monomial b in Hy, we also have (7.40). [

Corollary 7.37. Let L€ ’ﬂ’[@] be a linear differential operator on T of order
r. Then dim Hy, =r. O

Remark 7.38. Due to the fact that the dimension r of Hj is maximal in
theorem 7.36, its proof is significantly shorter than the proof of theorem 7.32.
In particular, we do not need the equivalent of proposition 7.31, which was
essentially used to check that upward shifting does not introduce essentially
new solutions.

Exercise 7.24. Assume that C is a subfield of K and consider a strongly linear
operator L: C[OMT — CINT. Show that L extends by strong linearity into
a strongly linear operator L: K [T — KIND. If L admits a strongly linear
right inverse L~!, then show that the same holds for L and (L~")|cqmy =L~

Exercise 7.25. Let L€ C[B°1[0])*.

a) Let 7= 1 be a starting term for (7.19) and assume that ¢ is a solution
of (7.20) with 7, =7. Consider the refinement f= ¢+ f (f <7) and let
ﬁ:P+¢. Prove that Py <, 77! P,
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b) Prove that any sequence of refinements like in (a) is necessarily finite.

¢) Design an alternative algorithm for solving (7.19).

d) Given a solution f €T to (7.19), prove that there exists a f in the algebraic
closure of C{Ly,...,L,}, such that f, f=1

Exercise 7.26. Let M € .#,(T) be an r X r matrix with coefficients in T and
consider the equation

V=MV’ (7.42)
for V'eOr.
a) Show that the equation Lh =0 can be reduced to an equation of the

form (7.42) and vice versa.
b) If [M <1, then show that

V=I+[M+[M[M+--

is a solution to (7.42).
¢) Assume that M is a block matrix of the form

My M
M:
(3 30)
where Moy, Ms, My~ M, and M, is invertible with d(M; ') =0(M;)~'. Con-
sider the change of variables

~ ]E ~
V_PV_(O ; )V,

which transforms M into

M= PlMP-pP-lp
M, —MsE My+M,E—EM,— EM;FE — E'
M M3 E+ M, :

Show that
My+ME—-—EM,—EMsE—FE'=0

admits a unique infinitesimal solution E. Also show that the coefficient M3
can be cleared in a similar way.

d) Show that the equation (7.42) can be put in the form from (¢) modulo
a constant change of variables V = PV with P € .#,(C).

e) Give an algorithm for solving (7.42) when there exist r different dominant
monomials of eigenvalues of M. What about the general case?

f) Check the analogue of exercise 7.25(d) in the present setting.

Exercise 7.27. Take C =1 and let L be as in exercise 7.6, but with coeflicients
in L@j € T.«em.

a) Determine the maximal flat subspace of © on which L is defined.

b) Show that L admits a distinguished right-inverse on O .. Can £ be
infinite?

¢) Same question for O <.~ instead of O «e=.
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7.8 Factorization of differential operators

7.8.1 Existence of factorizations

One important consequence of corollary 7.37, i.e. the existence a full basis of
solutions of dimension r of Hpg, is the possibility to factor the L as a product
of linear operators:

Theorem 7.39. Any linear differential operator L € T[@Pé of order r admits
a factorization

L=L.(0—a1) - (0—a)
with al,...,are’ﬁ‘[a].

Proof. We prove the theorem by induction over the order r. For r=0 we have
nothing to prove. If 7> 1, then there exists a non-trivial solution h € T# to
the equation Lh =0, by corollary 7.37. Now the division of L by 0 —h' in

the ring T|[9] yields a relation
L=L(O—-h")+p,

for some pe T, and Lh= ph=0 implies p=0. The theorem therefore follows
by induction over 7. O

Theorem 7.40. Any linear differential operator L € T[0]7 admits a factor-
ization as a product of a transseries in T and operators

Jd—a
with a € T, or
0?—2a+b") o+ (a®2+b*—a'+abl)=

(0—(a—bi+b")) (90— (a+bi))
with a,beT.

Proof. We prove the theorem by induction over the order r of L. If » =0 then
we have nothing to do. If there exists a solution h € T to Lh =0, then we
conclude in a similar way as in theorem 7.39. Otherwise, there exists a solution
hteT to the Riccati equation R (h1), such that hf=a+bi with a,b€ T and
b+ 0. Now division of L by (0 — (a —bi+b")) (0 — (a+bi)) in the ring T[J)
yields

L = L(0—(a—bi+b")(0—(a+bi)+R

(@ —(a+bi+b1)(@—(a—bi))+R

L
=L
for some differential operator R of order < 2. Moreover, R is both a multiple
of 9 —(a+bi) and J — (a —bi), when considered as an operator in T[0]. But
this is only possible if R =0. We conclude by induction. O
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7.8.2 Distinguished factorizations

We have seen in section 7.4 that the total ordering on the transmonomials
allows us to isolate a distinguished basis of solutions to the equation L h=0.
A natural question is whether such special bases of solutions induce special
factorizations of L and vice versa.

We will call a series f monic, if f is regular and c¢f=1. Similarly, a differ-
ential operator L of order 7 is said to be monic if L,.=1. A tuple of elements
is said to be monic if each element is monic. Given a regular series f, the series
mon f:= f /¢y is monic. In what follows we will consider bases of Hy, as tuples
(hi,...,h.). We will also represent factorizations L= (9 — f1) --- (0 — f,) of
monic differential operators by tuples (f1,..., fr).

Proposition 7.41. Let Le T[d])7 be a monic linear differential operator on O
of order r. Then
a) To any monic basis (hy,..., h,) of Hy, we may associate a factorization
L = (0-f)0-f),
fi = 0= fix1) - (@—f)h]T (i=r.....1),

and we write (f1,..., fr)="fact (hy,..., h;).
b) To any factorization

L=(0—f1)--(0— fr),
we may associate a monic basis (hy,...,h,)=sol(f1,..., fr) of H by
hi=mon[(d— fit1) - (0~ f)] el f (i=r,... 1)

We have h; y(n,) =0 for all i <j.
¢) For any factorization represented by (fi,..., fr) we have

factsol (f1,..., fr)=(f1,---, fr)-
d) If (hy,...,hy) is a monic basis of Hy, such that h; 3(n;y=0 for all i < j, then

solfact (h,...,hy)=(h1,..., hy).

Proof. Assume that (hg,...,h,) is a monic basis of Hy, and let us prove by
induction that (0 — fiy1) --- (@ — f;) is a right factor of L for all i=r,... 0.
This is clear for i =r. Assume that

L=K (0~ fiy1)---(0— fr)
for some i€ {1,...,7}. Then
K (0= fisr) -+ (0= fr)hi=0

implies that 9 — f; is a right factor of K, in a similar way as in the proof of
theorem 7.39. Hence (a) follows by induction.
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As to (b), the h; are clearly monic solutions of Lh=0, and, more generally,
(0= fix1) - (0= fr) hj=0

for j >1i. The distinguished property of [(0 — fix1) --- (0 — f.)] ! therefore
implies that h; 5(,) =0 for all j >1i. This also guarantees the linear indepen-
dence of the h;. Indeed, assume that we have a relation

Ahi+ -+ X h;=0.
Then
0=(Athi+ -+ Xihi)ahy) = N,

and, repeating the argument, A\;_1=---=\; =0. This proves (b).
Now consider a factorization L= (0 — f1) --- (0 — f,) and let

(f1,..., fr)=factsol (fi,..., fr).
Given i € {1,...,r} with fic1=fittseoos fr=fr, we get
fi = (0= fixr) -+ (0= f)ymon[(@ = fis1)--- (D~ fr)] " Lel 7T
= [0~ fir) (0= SO~ fisr) - (0= f)) el
= (etel M=,
where ¢ € C7 is the dominant coefficient of
(0= fiza) - (0= f)HeI T

Applying the above argument for i =r,...,1, we obtain (c).
Let us finally consider a monic basis (hy,..., h,) of Hy, such that h; y(n,)=0
for all : < j. Let

(fi,.-, fr) = fact(hy,..., hy)
(hy,..., hy) sol (fi,..., fr)
Assume that ﬁi+1 =Nit1,---, h, = h,. for some i € {1,...,r} and let
K=(0-fi)- (90— f)
Then both (h;,...,h,) and (fLZ, hit1,..., hy) form monic bases for Hx and
i o(h;) = hio(n;) =0 for all j>i. It follows that (h; — hi)p =0 for all h € H,
whence h; = h;. Applying the argument for i=r,..., 1, we obtain (d). |

The distinguished basis of Hj, is the unique monic basis (hy,..., h,) such
that h; o(n;)=0for all t < j and hq > --- = h,. The corresponding factorization
of L is called the distinguished factorization.

Exercise 7.28. Assume that L € T[J] admits a factorization
L=0—fi)- (0= [r)
with f1,..., f € T and that the coefficients of L are exponential. Then

a) Prove that there exists a unique such factorization with f1>--- > f,.
b) Prove that this unique factorization is the distinguished factorization.
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Algebraic differential equations

Let T=C[IzIl be the field of grid-based transseries in x over a real closed
field C and let P € T{F} be a differential polynomial of order r. In this
chapter, we show how to determine the transseries solutions of the equation

P(f)=0.
More generally, given an initial segment U C ¥ of transmonomials, so that
veEYAw=<0 = weyY,

we will study the asymptotic algebraic differential equation
P(f)=0 (feClyl). (E)

Usually, we have =T or U= {w e T:twv < v} for some v.

In order to solve (E), we will generalize the Newton polygon method from
chapter 3 to the differential setting. This program gives rise to several diffi-
culties. First of all, the starting monomials for differential equations cannot
be read off directly from the Newton polygon. For instance, the equation
f'=e°" admits a starting monomial e®“~* whereas the Newton polygon would
suggest e¢” instead. Also, it is no longer true that cancellations are necessarily
due to terms of different degrees, as is seen for the equation f’= f, which
admits e® as a starting monomial.

In order to overcome this first difficulty, the idea is to find a criterion
which tells us when a monomial m is a starting monomial for the equation
(E). The criterion we will use is the requirement that the differential Newton
polynomial associated to m admits a non-zero solution in the algebraic closure
of C. Differential Newton polynomials are defined in section 8.3.1; modulo
multiplicative conjugations, it will actually suffice to define them in the case
when m=1. In section 8.3.3, we will show how to compute starting monomials
and terms. Actually, the starting monomials which correspond to cancel-
lations between terms of different degrees can almost be read off from the
Newton polygon. The other ones are computed using Riccati equations.
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A second important difficulty with the differential Newton polygon method
is that almost multiple solutions are harder to “unravel” using the differen-
tiation technique from section 3.1.3. One obvious reason is that the quasi-
linear equation obtained after differentiation is a differential equation with
potentially multiple solutions. Another more pathological reason is illustrated
by the example
1 1

z2log?x e 22log?x - --log?x

1
Pr2fl+—+ =0. (8.1)

Although the coefficient of f in this equation vanishes, the equation admits
% as a starting term of multiplicity 2. Indeed, setting f :% f, we get

1

+...+ =
log2x ---log?x

f242f —2f+1
fP+2f f+ A%IOng

Differentiation yield the quasi-linear equation
2f—-2=0,

but after the refinement f=1+ f (f <1) and upward shifting, we obtain an
equation

2 w1 1 1
Prefv—+

x210g2x+ +x210g2m---10g%_1x_0’

which has the same form as (8.1). This makes it hard to unravel almost
multiple solutions in a constructive way. Nevertheless, as we will see in section
8.6, the strong finiteness properties of the supports of grid-based transseries
will ensure the existence of a brute-force unravelling algorithm.

In section 8.7 we put all techniques of the chapter together in order to
state an explicit (although theoretical) algorithm for the resolution of (E). In
this algorithm, we will consider the computation of the distinguished solution
to a quasi-linear equation as a basic operation. Quasi-linear equations are
studied in detail in section 8.5.

In the last section, we prove a few structural results about the solutions
of (E). We start by generalizing the notion of distinguished solutions to equa-
tions of Newton degree d > 1. We next prove that (E) admits at least one
solution if d is odd. We will also prove a bound for the number of “new
exponentials” which may occur in solutions to (E).

8.1 Decomposing differential polynomials

8.1.1 Serial decomposition

Let P € T{F'} be a differential polynomial over T of order r. In the previous
chapter, we have already observed that we may interpret P as a series

P=>" Pum, (8.2)

meg
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where the coefficients are differential polynomials in C{F'}. We call (8.2) the
serial decomposition of P. As before, the embedding T{F'} — C{F}[%]
induces definitions for the asymptotic relations <, <, etc. and dominant mono-
mials and coefficients of differential polynomials. We will denote by Dp the
dominant coeflicient of P.

8.1.2 Decomposition by degrees

The most natural decomposition of P is given by
P(f)=)_ Pift. (8.3)
B

Here we use vector notation for tuples
i = (o)
j = (joa"'vjr)
of integers:
il = do+ -+
fi _ fio (f/)h . (f(r))ir;
1<J & o< Jo A Abr < s
(D) =)
1 10 i)
We call (8.3) the decomposition of P by degrees. The i-th homogeneous part
of P is defined by

lléll=4

so that

P=>"P. (8.4)

We call (8.4) the decomposition of P into homogeneous parts. If P =0, then
the largest d =deg P with P;+#0 is called the degree of P and the smallest
v=val P with P, #0 the differential valuation of P.

8.1.3 Decomposition by orders

Another useful decomposition of P is its decomposition by orders:

P(f)=>_ Puy (8.5)
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In this notation, w runs through tuples w = (ws,...,w;) of integers in {0,...,7}

of length | <deg P, and P, = Plosay, - wo
We again use vector notation for such tuples

w| =

ol = wn b

f[w] — f(wl)...f(wz);

Ww<T & wi<TIA - Aw < T

(&) = ()~ (G)

 for all permutations of integers.

For the last two definitions, we assume that |w|=|7|=1. We call |w] the

weight of w. The w-th isobaric part of P is defined by

Py= Y P,

llwll=w

P=>" Py

so that

(8.6)

We call (8.6) the decomposition of P into isobaric parts. If P #0, then the
largest w = wt P with Py # 0 is called the weight of P and the smallest

w=wv P with P # 0 the weighted differential valuation of P.

8.1.4 Logarithmic decomposition

It is convenient to denote the successive logarithmic derivatives of f by

=t/
flr = ftot (i times).
Then each f®) can be rewritten as a polynomial in f, f1 ..., f{:
=1
;= A

o= (D2 T F

7= (PR3 (P24 (FI2 fT4 111 f11 1) £

We define the logarithmic decomposition of P by

P(f)= > Puft,
1=(%0,...,ir)
where

FO = fro (i) (F).
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Now consider the total lexicographical ordering <!** on N”*!  defined by
2 <lexj <~ (io < jo) V
(i0=jo A1 < jo) V
(io=Jo A Nip—1= Jr—1 Nir < jr).
Assuming that P #0, let ¢ be maximal for <!** with P;y #0. Then

P(f)~ Py f¥ (8.8)

for f— oot or f— —oor.

8.2 Operations on differential polynomials

8.2.1 Additive conjugation

Given a differential polynomial P € T{F'} and a transseries h € T, the additive
conjugation of P with h is the unique differential polynomial P,; € T{F'},
such that

Pip(f)=P(h+ f)
for all f €T. The coefficients of Py are explicitly given by
Pini=)_ (g) hi~* Pj. (8.9)
j=zi

Notice that for all i € N, we have
( opP > 0Py
OF® )., oF®’

Proposition 8.1. If h=c+¢ withceC and e <1, then

P+h = P
DP+h == DP,JrC
Proof. The relation (8.9) both yields Py, < P and
P= P+iz,—}L < P+ha

so Pyp < P. Furthermore,

Pipni=Pi+y (77" +0(1) Pj=Pici+o(P)

i>i

for all 4, whence the second relation. [l
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8.2.2 Multiplicative conjugation

The multiplicative conjugation of a differential polynomial P € T{F'} with
a transseries h € T is the unique differential polynomial Py € T{F'}, such that

Pun(f)=P(hf)
for all f€T. The coefficients of Pyj, are given by

Pyp jw)= Z (;) plT—«] P (8.10)

T>Ww
Proposition 8.2.
a) If h»x, then for all i,
P, xn=ph'P;.
b) If h»x, then
th X}t P.
¢) If P and h>0 are exponential, then
Pyn <iogn hP.

Proof. If h » x, then the equation (8.10) implies P; x5 <n h' P; and
P; <n h™" P; «p, whence (a). Part (b) follows directly from (a), and (c) is
proved in a similar way. ([l

8.2.3 Upward and downward shifting

The upward and downward shiftings of a differential polynomial P are the
unique differential polynomials P71 resp. P| in T{F'} such that

PI(f1T) = PN
PLU(fY) = P!

for all f € T. The non-linear generalizations of the formulas (7.4) and (7.5)
for the coefficients of PT and P| are

(PT)[“;] = Z ST,wei‘l‘r”I(P[-r]T) (8.11)
T>w

Py = > Srwal“l(Py)), (8.12)
T>w

where the s, ., are generalized Stirling numbers of the first kind

St.w = Stwt STw

(Flogz) = 3 sy.0 [V(loga)

=0
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and the S; , are generalized Stirling numbers of the second kind

ST,W = STl»UJI'”SThUJl
J
(FleNW) = 3 8, e fO(e).
1=0

Proposition 8.3. We have
P71 =% opT.

Proof. We get PT <¢=0p7 from (8.11) and P=PT| x;0p1] from (8.12). O

Proposition 8.4. If P T{F} is exponential, then

Dpt=Dpp.

Proof. Since P = (Dp + 0e=(1)) 0p, the equation (8.11) yields

P1=(DpT+0c=(1)) (0p1)
and supp DpT C {e"N%} < .= 1. This clearly implies the relation. O

Exercise 8.1. Let g€ T>>" and P € T{F'}.
a) Show that there exists a unique P,, € T{F'} with

Pog(fog)=P(f)og
for all feT.
b) Give an explicit formula for Pog [, for all w.
c) Show that -, is a differential ring homomorphism:

(T{F},0) — (T{F},(¢")""0)
P — P

°g

Exercise 8.2. Let P T{Fy,...,Fi} and Qq,...,Qr € T{Fy,..., F}.

a) Let Po(Q1,...,Qk) € T{Fy,..., Fi} be the result of the substitution of Q;
for each F; in P. Show that P— Po(Q1,...,Q;) is a morphism of differential
rings.

b) Reinterpret additive and multiplicative conjugation using composition like
above.

¢) Show that T[] is isomorphic to (T{F }in, +,0), where

T{F}iw=TFOTF'&---.

Exercise 8.3. Let P=Y", P Fte Ty.[[F,F’,...]].

a) If (P;) forms a grid-based family, then show that P(f) is well-defined for all
feTs...

b) For two operators P and @ like in (a), with @ <1, show that Po Q is well-
defined.

¢) Generalize (b) to operators in several variables and to more general subspaces
of the form C'[WT of T ye.
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8.3 The differential Newton polygon method

8.3.1 Differential Newton polynomials

Recall from the introduction that, in order to generalize the Newton polygon
method to the differential setting, it is convenient to first define the differential
Newton polynomial associated to a monomial m. We will start with the case
when m =1 and rely on the following key observations:

Lemma 8.5. Let P e C{F} be isobaric, of weight v and assume that Dpy = P.
Then P € C[F] (F')".

Proof. For all isobaric H € C{F'} of weight v, let us denote

H*=Y" Huo....0F (F)".
J

Then Q=P — P* satisfies Dg1 = @ and Q*=0. Furthermore, (8.11) yields

Q1= Q.
Consequently, if Q(f)=0 for some f €T, then

QU =e"(@QN(f1)=e"(Q(f)T)=0.

Since Q* =0 implies Q(z) =0, it follows by induction that Q(exp;z) =0
for any iterated exponential of x. From (8.8), we conclude that @ =0 and
PeC[F](F"). O

Theorem 8.6. Let P be a differential polynomial with exponential coefficients.
Then there exists a polynomial Q € C[F] and an integer v, such that for all
I >wt P, we have Dpy,=Q (F")".

Proof. By formula (8.11), we have Dp]<e~("WPP)T and

DPT(F):Z< Z SWDR[T]>F[“1. (8.13)

w T>Ww
I~ | =wvDp
Consequently,
WtDp}WVDp:WtDpT >WVDPT :WtDPTT 2 te

Hence, for some [ <wt P, we have wt Dpy,, , =wv Dpy,,, =wt Dpy,. Now (8.13)
applied on P71, instead of P yields Dpy,,, = Dpq,. Proposition 8.4 therefore
gives

Dp1,=Dptyy = Dppi 1 =Dppy,, ;1= Dprij, =+

We conclude by applying lemma 8.5 with Dpy, for P. ([l



8.3 The differential Newton polygon method 173

Given an arbitrary differential polynomial P, the above theorem implies
that there exists a polynomial ) € C[F] and an integer v, such that Dpy, =
Q (F")" for all sufficiently large [. We call

Np=Q (F')”
the differential Newton polynomial for P. More generally, if m is an arbitrary
monomial, then we call Np, the differential Newton polynomial for P associ-

ated to m. If P is exponential and Np= Dp, then we say that P is transparent.
Notice that a transseries is transparent if and only if it is exponential.

8.3.2 Properties of differential Newton polynomials

Proposition 8.7.

a) NPT =Np fOT all P.

b) If ceC and € <1, then Np,_, .= Np ..

¢) If m=<n, then val Np < degNp, <valNp  <degNp,,.

Proof. Assertion (a) is trivial, by construction.

In (b), modulo a sufficient number of upward shiftings, we may assume
without loss of generality that P, P,y and € are transparent. Dividing P
by 0p, we may also assume that P<1. Then (8.9) implies

Picte=Dp tetet Oel'(l) =Dp e+ Oel(l)a

so that ]\[PJrC+E = _DPJrc+5 = DP,+c = NP’+C.

As to (c¢), it clearly suffices to consider the case when m <1 and n=1.
After a finite number of upward shiftings, we may also assume that P and Py,
are transparent and m » z. Let d=val P. Then for all : > d we have P;< Py,
whence

me,d:Pd,xmXmmde>‘miHXmPi,><m:P><m,iy
by proposition 8.2(a). This implies deg Dy < d, as desired. O

Proposition 8.8. Let Pc T{F}", m>*>e” and T=Y
have Np, = N, for all n <m.

P,u. Then we

uxng,P

Proof. Since m »= e®, we first notice that
T1= Z PTl.u.
umeP

Hence, modulo division by 0p and a sufficient number of upward shiftings, we
may assume without loss of generality that P <1, that P and n are exponen-
tial, that Np, = Dp, ., and Ny, =D, . Then

(P—T)xn=n(P—T)n<pun

and Py <un, whence Pyn=Txn+ 0m(Pxn). We conclude that Np,, =Dp,_ =
DTX 0 NT>< n° D
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8.3.3 Starting terms

We call m €U a starting monomial, if Np,  admits a non-zero root c in
the algebraic closure C& of C. This is the case if and only if Np,, ¢ C FN,
We say that m is algebraic if Np,  is non-homogeneous, and differential if
Np, .. ¢ C[F]. A starting monomial, which is both algebraic and differential,
is said to be mized.

Ezample 8.9. Let m be a starting monomials for P(f)=0, where P=LF
and L € T[0]. Then Ny, .1,=Dr, .1, € CF’ for all sufficiently large I. By
proposition 7.6, it follows that mT; € $1, for all sufficiently large I, whence
meE Hr. Similarly, if m is not a starting monomial, then N, .1,=Dr .1, €CF
for all sufficiently large [, and m ¢ ;..

Assuming that we have determined a starting monomial m for (E), let
c € C?8 be a non-zero root of Np_. If c€ C, then we call cm a starting term
for (E). If Np, ,=Q (F")” with Q € C[F] and Q(c) =0, then cm is said to be an
algebraic starting term. If v =0, then we say that cm is a differential starting
term. The multiplicity of ¢ (and of c¢m) is the differential valuation of Np_ 4.
Notice that the definition of the multiplicity extends to the case when ¢=0.

Proposition 8.10. Assume that f is a non-zero transseries solution to (E).
Then 7y is a starting term.

Proof. Assume that 7y =cm is not a starting term. Modulo normalization, we
may assume without loss of generality that P is transparent and m=0p=1.
Then

P(f)= NP(f) + 0e=(1) = NP(C) + Oem(l) 7£ 0,
since Np(c) #0. O

The Newton degree of (E) is defined to be the maximum d =degg P of
val P and the largest possible degree of Np,  for monomials m € %J. The
above proposition shows that equations of Newton degree zero do not admit
solutions.

Proposition 8.11. If p € C YT, then

degay Py, =degy P.

Proof. Consider a monomial m € ¥ with m = ¢. Modulo a multiplicative
conjugation with m we may assume without loss of generality that m=1, so
that ¢y =c+ ¢ with ¢ € C and € < 1. Modulo upward shifting, we may also
assume that P, P, and ¢ are transparent. Then deg Np, ,=deg Np 1.=
deg Np, by proposition 8.7(b). O
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Geometrically speaking, we may consider the Newton degree as “the mul-
tiplicity of zero as a root of P modulo U”. More generally, given an initial
segment 20 C Y, we say that ¢ € CIY] is a solution to (E) modulo 20, if the
Newton degree of

Pio(f)=0 (feCm) (8.14)
is strictly positive. The multiplicity of such a solution is defined to be the
Newton degree of (8.14). If ¢ € ¢+ C'[20]1, then the multiplicities of ¢ and
1 as solutions of (E) modulo 2 coincide, by proposition 8.11. In particular, if
¢ is a solution of (E) modulo 2, then so is ¢ = pg\ = Zmem\‘mg&mm. We
call ¥ a normalized solution, because it is the unique solution in ¢ + C [20]]
such that ¥, =0 for all m € 207.

8.3.4 Refinements

Given a starting term 7 =cm for (E), we will generalize the technique of
refinements in order to compute the remaining terms. In its most general
form, a refinement for (E) is a change of variables together with an asymptotic
constraint

f=e+f (feClvD), R)

where p € CTU] and U C Y is an initial segment of transmonomials. Such
a refinement transforms (E) into

P(f)=Piy(f)=0 (f€CITD). (RE)
Usually, we take U= {0 € T:1 < ¢}, in which case (RE) becomes
P(f)=0 (f=y). (8.15)

In particular, we may take ¢ =cm, but, as in section 3.3.2, it is useful to allow
for more general ¢ in presence of almost multiple solutions.
Consider a refinement (R) and a second refinement

F=¢+F (feCcrom) (RR)
C

with ¢ € C'[YT and 0 CG. Then we may compose (R) and (RR) so as to
yield another refinement

f=p+¢+f (feCmD). (8.16)
Refinements of the form (8.16) are said to be finer as (R).

Proposition 8.12. Consider a refinement (R) with o € CIUVL. Then the
Newton degree of (RE) is bounded by the Newton degree of (E).

Proof. By the definition of Newton degree, the result is clear if ¢ =0. In
general, we may decompose the refinement in a refinement with U =20 and
a refinement with ¢ =0. We conclude by proposition 8.11. O
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Proposition 8.13. Let p € CTUT and m:= . Then the Newton degree of

P(f)=Pip(H)=0  (f=<m)
is equal to the multiplicity d of c= pm as a root of Np, ..

Proof. Let us first show that deg Np < d for any monomial n<m. Modulo
multiplicative conjugation and upward shifting, we may assume without loss
of generality that m =1 and that P, Pyy, n and @ are transparent. The
differential valuation of Np .= Dp being d, we have in particular pgx P.
Hence,

5 - Pt p_nd — .
Pxn,i =, Pin®* <, Pdﬂ =n P><n,d

for all i >d. We infer that deg N};Xn < d.

At a second stage, we have to show that deg Np > d. Without loss of
generality, we may again assume that m=1, and that P and ¢ are transparent.
The differential valuation of Np ;.= Dp being J, we have 151 < P for all i < d.
Taking n=2z""!, we thus get

-ISXn,i ez }SZ e P = d ez Pxn_d
for all i <d. We conclude that deg NIsX" > d. O

Exercise 8.4. If Np=Dp € C[F] (F’)¥, then show that
a) DPT = Dp.
b) PT=0p]e ke,

Exercise 8.5. If P=LF + g, with L € T[9] and g € T7, then show that 7}, '(7,)
is the unique algebraic starting term for P(f)=0.

Exercise 8.6.
a) Give a definition for the composition
f=e+f (feCroD)
of an infinite sequence of refinements

f=f = g+ fi (fieClVL)
fi = oo+ fo (f2€CIVD)

b) What can be said about the Newton degree of (RE)?

Exercise 8.7. Let P,Q € T{F} and let U C T be an initial segment.

a) Show that degy PQ =degy P +degy Q.
b) What can be said about degy (P + Q)7
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c) If degyy P >0 and Ay,..., A, €T, then show that
degy (Ag P+ -+ + A, P™)>0.

Hint: first reduce to the case when U= {v € T:v <1}. Next, considering
P=0,...,P™ =0 as algebraic equations in F,..., F"t™ show that there
exists a common solution F = ¢y,..., F"™ =¢, ., with ¢; <1 for all i (i.e.
we do not require that ¢;,1=¢; for i <r+mn—1).

Exercise 8.8. Improve the bound ¢ > wt P in theorem 8.6 for P of degree < 3.

Exercise 8.9. Show that r upward shiftings may indeed be needed in the-
orem 8.6.

Exercise 8.10. Let P € C{F’} and let A be such that
, 1

- rlogzrlogox -+
a) Show that

0w =0pu)y=z""(logz) " (logaz) ™",
with ig>4, 2 --- > 1.
b) Let C{F"}4,. be the subset of C{F’} of homogeneous and isobaric polyno-
mials of degree d and weight w. For P € C{F’'}4, ., show that
W =x""(logz) " (logaxz) .-
and limy_, oo 7 =d.
c¢) If 1 is such that Np = Dpy,, then show that
op1, = (expyz) - (expz) -t

d) Show that NP:DPT, if and only if il:il+1 =

8.4 Finding the starting monomials

8.4.1 Algebraic starting monomials

The algebraic starting monomials correspond to the slopes of the Newton
polygon in the non-differential setting. However, they can not be determined
directly from the dominant monomials of the P;, because of the introductory
example f’=e°" and because there may be some cancellation of terms in the
different homogeneous parts during multiplicative conjugations. Instead, the
algebraic starting monomials are determined by successive approximation:

Proposition 8.14. Let i < j be such that P;#0 and P;#0.

a) If P is exponential, then there exists a unique exponential monomial m,
such that P; xm =< Pj xm-

b) Denoting by mp the monomial m in (a), there exists an integer k < wt P,
such that for all 1 >k we have mpy,=mpy, 11—k
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¢) There exists a unique monomial m, such that NP, +P)ym 18 non-homoge-
neous.

Proof. In (a), let B = (by,...,b,) be a plane transbasis for the coefficients
of P. We prove the existence of m by induction over the least k, such that
(P;) /o(P;) =b7"--- byp* for some ay, ..., a4 If k=0, then we have m=1.
Otherwise, let Q = Py, with n= b?"/(jfi). Then

Qi =p, Pin' =y, Pjn? <4, Q;,

so that 9(Q;) /0(Q;) = bfl bf’ for some [ <k and f4,..., ;. By the induction
hypothesis, there exists a exponential monomial tv, such that Q; xw =< Qj w-
Hence we may take m =nw. As to the uniqueness of m, assume that n=
mb§{* .- by* with a; 0. Then

- [Xe% Jak _
Pi,anbk-Pi,xm by k*bkpjym bk Abkpjvxn'

This proves (a).
The above argument also shows that mp; =mpTe*” for some a € Q, since

Pz' XmT e(WVPi*X"‘)‘”XPj XmT e(WVPJVX"‘)w.

Now, with the notations from theorem 8.6, we have shown that wt Dp,t <
wt Dp, and that equality occurs if and only if Dp, = F'~VPr (F/)vtPr:
Because of (8.10), we also notice that wt Dp, xeas = wt Dp, for all a € Q.
It follows that

wt DPi,me >Wt DPiT,XmPT 2 e

and similarly for P; instead of P;. We finally observe that wt Dp, xm, =
wt Dpq xmp; and Wt Dp, xmp =Wt Dp;1 xmp, imply that mpy =mpT, since

wt D(Fa(F/)ﬁ)Xe,Yl, :O# ﬁ:Wt DFQ(F/)L?

whenever 3+£0 and v # 0. Consequently, wt Dp,1,,xmp;, and Wt Dp, 1, xmpr,
stabilize for | > k with k < wt P. For this k, we have (b).

With the notations from (b), mpy, |, is actually the unique monomial m
such that

D(PH-Pj)xrnTz =Dp, o1, t DPj, xm Tk

is non-homogeneous for all sufficiently large I. Now Np, 1 p)), . = D(p,4 Pt
for sufficiently large I. This proves (c¢) for exponential differential polynomials
P, and also for general differential polynomials, after sufficiently many upward
shiftings. O

The unique monomial m=ep ; ; from part (c) of the above proposition is
called the (i, j)-equalizer for P. An algebraic starting monomial is necessarily
an equalizer. Consequently, there are only a finite number of algebraic starting
monomials and they can be found as described in the proof of proposition 8.14.
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Remark 8.15. From the proof of proposition 8.14, it follows that if P can be
expanded w.r.t. a plane transbasis 8 = (by,...,b,), then all equalizers for P
belong to (log& pb1) - -+ (log® by) BE.

8.4.2 Differential starting monomials

In order to find the differential starting monomials, it suffices to consider the
homogeneous parts P; of P, since Np, ;= Np, if F'|Np, . and Np,__ ;#0.
Now, using (7.6), we may rewrite

Pi(f)=Re(f1) f*,
where Rp, is a differential polynomial of order <7 —1 in ff. We call Rp, the
differential Riccati polynomial associated to P;.

For a linear differential operator L with exponential coefficients, we have
seen in the previous chapter that finding the starting terms for the equation
Lh=0 is equivalent to solving Rz(f") =0 modulo o(1). Let us now show
that finding the starting monomials for the equation P;( f) =0 is equivalent to
solving Rp,(fT) =0 modulo of !

zlogxzloglogx - - )
is equivalent to solving the equation Rp,(f 1) =0 modulo o(1).

,Xm?

. In the exponential case, this

Proposition 8.16. The monomial m < v is a starting monomial of f w.r.t.
Pi(f)=0 (8.17)
if and only if the equation
1
Rp, tmit(f1)=0 (fT<W) (8.18)
has strictly positive Newton degree.

Proof. We first notice that R(py), = (Rp,T) e« for all P and i. We claim that
the equivalence of the proposition holds for P and m if and only if it holds for
P71 and m{. Indeed, m is starting monomial w.r.t. (8.17), if and only if m is
a starting monomial w.r.t.

P1(f1)=0 (8.19)
and (8.18) has strictly positive Newton degree if and only if
RPi7+mTT(fTT):O (fTT‘<m) (8.20)

has strictly positive Newton degree. Now the latter is the case if and only if
1
(RP,;,+mTT)Xe—m(fTT):O (fTT<W)
has strictly positive Newton degree. But

(RP¢,+me) Xe~® = (RPiT)—&-m*T, Xe~T = (RPiT)xe*””&mTJr = R(PT)wf‘mTT'

This proves our claim.
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Now assume that m is a starting monomial w.r.t. (8.17). In view of our
claim, we may assume without loss of generality that P; xm and m are trans-
parent. Since P; is homogeneous, we have Dp, = a Fi=J (F")J for some
aeC# and j >0, and

DR :aFj.

‘P +m T

Since Rp, 1 is exponential, it follows that N, 3 has degree j, so that

+mf,><
the Newton degree of (8.18) is at least j > 0. Similarly, if m is not a starting
monomial w.r.t. (8.17), then Dp, ., =a F* and
DRPi,+mT =

for some a € C#. Consequently, N = « for any infinitesimal mono-

P,-,,+mT,><n

mial n, and the Newton degree of (8.18) vanishes. O

8.4.3 On the shape of the differential Newton polygon

Proposition 8.17. Let d be the Newton degree of (E). Then the algebraic
starting monomials are equalizers of the form

CP igi1 = CPi1,in = " R CP iy _qip

where igp=val P <i1 < --- <ij_1<i;=d.

Proof. Let us prove the proposition by induction over d — val P. If d=val P,
then there is nothing to prove, so assume that d > val P. Let ¢ <d be such
that m =ep ; ¢ is maximal for <. Modulo a multiplicative conjugation with
m and upward shifting, we may assume without loss of generality that m=1
and that P is transparent.

We claim that 1 is a starting monomial for (E). Indeed, let n €2 be such
that d =deg Np,,. By proposition 8.7(c), we already have 1< n €, since
otherwise

d = Va’l NP><n = Val N(Pi+Pd)><n < Val NPi"FPd =1.
Now assume for contradiction that 1 is not a starting monomial for (E), so

that P> P; < Fy, and let j be such that P =< P;. We must have j <d, since
proposition 8.7(¢) implies

deg Np < deg Np,, =d.
Now consider the equalizer v =¢p j 4 < 1. After sufficiently many upward

shiftings, we may assume without loss of generality that Py, and v are trans-
parent. But then

Py, j <o Uij o 09 Py =y Pyy,4,

which contradicts the fact that Pyy, ;< Pxp,q.
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Having proved our claim, let kK =val Np and Np = Q (F’)”. Since P is
exponential, we have P = Np + 0.=(1), whence

Pyp 1 11=((=1)" Qp_p +0e:(1)) FF e~ (Btr)e?,
In other words, Np__, = (—=1)*Qp_, F*. Tt follows that the equation

P(f)=0  (f=1)

has Newton degree k. We conclude by applying the induction hypothesis to
this equation. O

Proposition 8.18. Assume that m is a non-algebraic starting monomial
for (E). Then, with the notations from proposition 8.17, there exists a unique
p€{0,...,1} such that

val Np, . =deg Np, . =ip.

Moreover, p>0=ep i, ; i, <m and p<l=m=<ep;

ipt1
Proof. By proposition 8.7(c¢),
p=min{¢gm=<ep;, i, Vq=1l}=max{qep, ,i<mVqg=0}

fulfills the requirements. O

Exercise 8.11. Compute the starting terms for

e—e-"’ f3+ f//f _ (f/)2+l,4e—3:c f”/—i—e_em:O.

Exercise 8.12. Let P € E{F'}” be a differential polynomial with exponential
coefficients and assume that z%°---log? x with a; #0 is a starting monomial for
P(f)=0. Then prove that { <wt P. Hint: if P is homogeneous, then show that

wt Dp > wt DPX;Eﬁ‘UT > >wt DPX;EQU.

1()gfl;nTl'

Exercise 8.13. Let K be a differential field and f e K, Pe K{F}. If P(f)=0,
then show that there exists a homogeneous H € K {F} of degree < wt P +deg P,
such that H(e/f)=0.

Exercise 8.14. Prove that there are exactly d — val P algebraic starting terms
in C*# % for an equation (E) of Newton degree d.

Exercise 8.15. Let T{F}; denote the space of homogeneous P € T{F} of
degree d. Given P € T{F},, let ¢(P) € T[F, F1] be the result of substituting
Fit=Fit=... =0 in the logarithmic decomposition of Rp.

a) Show that ¢(P) € T[F, F'], when rewriting Ft=F'/F.
b) Show that ¢: T{F }s — T[F, F'] is an isomorphism.
¢) What about higher degrees?
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8.5 Quasi-linear equations

8.5.1 Distinguished solutions

The equation (E) is said to be quasi-linear if its Newton degree is one.
A solution f to a quasi-linear equation is said to be distinguished if we have

fa( j-pn=0 for all other solutions f to (E). Distinguished solutions are unique:

if fand f are distinct distinguished solutions, then we would have fs F-nH=
fD(f—f) =0, whence (f — f)a(f—f) =0, which is absurd.

Lemma 8.19. Assume that the equation (E) is quasi-linear and that the
coefficients of P can be expanded w.r.t. a plane transbasis B = (by,...,b,).
Assume also that P =<1, Py<p, 1, and let

J={me (logb))NBm~<, 1}.

Then, considering L=—P; =, 1 and R=P — Fy+ L as operators on C'[J1,
the equation (E) admits a distinguished solution f given by

f=L'(Id—RLYH)"' P, (8.21)

Proof. Since C[z] [by;...;b, 11 b% is closed under L and L~ for each a € C,
the operator R L~! is strictly extensive on C'[JT] and supp RL™! is grid-
based. By theorem 6.15, the operator Id — R L™! therefore admits an inverse

Id—RL Y '=Id+RL+(RL Y2+

This shows that f is well-defined. In order to show that f is the distinguished
solution, assume that f is another solution and let =04 If <, 1, then

we clearly have f, =0, since f <, 1. If 0 <j, 1, then let

d= Z (f*f)mm

m=yp, 0

Since P(f)— P(f)=0, we have L§ =0, so that 9 =0, is the dominant mono-
mial of a solution to the equation Lh=0. Hence f, =0, since f€im L™, O

Lemma 8.20. Consider a quasi-linear equation (E) whose coefficients can be
expanded w.r.t. a plane transbasis B = (by,...,b,). Assume that P < Py=< P,
and Np= Dp. Then (E) admits a distinguished solution

feCllog,_1x;...;2;b1;...50,1.
Proof. Modulo division of the equation by dp, we may assume without loss of
generality that P <1. We prove the result by induction over n. If n =0, then
P:Dp:Np:Oé+ﬂF
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for some o€ C and e C#. Hence f= fé is the distinguished solution to
P(f)=0. Assume now that n > 0. By the induction hypothesis, there exists
a distinguished solution to the quasi-linear equation

Poy 1(9)=0 (p<CIVID) (8.22)

with p € Cllog,,—2x;...;2;b1;...;b,-1]. By lemma 8.19, the equation
Proln-1(¥)=0 (4 <CIVDTn-1)
admits a distinguished solution
YeC[x]lexpx,...,expn—22;61Tn_1;...;0,Tn-11
with ¢ <, 1. Then the distinguished properties of ¢ and % imply that f=
@+ 1Y ]n—_1 is the distinguished solution to (E). O

Theorem 8.21. Assume that the equation (E) is quasi-linear. Then it admits
a distinguished transseries solution f. Moreover, if the coefficients of P can
be expanded w.r.t. a plane transbasis B = (by,...,b,), then

feClllog,x;...;x;by;...:0,0.

Proof. If Py=0, then 0 is the trivial distinguished solution of (E). Assume
therefore that Py# 0. Modulo some upward shiftings we may assume without
loss of generality that the coefficients of P and the transbasis 8 are exponen-
tial. Modulo a multiplicative conjugation and using proposition 8.14(a), we
may also assume that Py< P;. Now consider the (0, 1)-equalizer e =ep o1 for
P, which is also the only algebraic starting monomial. If

DP0+P1=a+ﬁVF(”)+---+51F(l)
with £, #0, then e=2z" and
DPTXQTZOé—FﬁVVVF.

In other words, after one more upward shifting and a multiplicative conjuga-
tion with e, we may also assume that Np= Dp. We conclude by lemma 8.20. O

8.5.2 General solutions

Lemma 8.22. Consider a quasi-linear equation (E) with exponential coeffi-
cients and a solution f which is not exponential. Let | be the largest monomial
in supp f which is not exponential. Then [=x** for some k€ N and an
exponential monomial & ENP ;1

Proof. Consider the exponential transseries ¢ =73 .  fmm. Then

Pyy(f)=0 (feCryl)
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admits f = f — ¢ as a solution, so it is quasi-linear and [ is a starting mono-
mial. Consequently, [ is also a starting monomial for the equation L f =
—P, 0, where L= Py, ;. It follows that [=2z"*[* for some exponential mono-
mial (¥ € 6.

Let us show that [ € §7, where L=P, #,1. Modulo an additive conjugation
with ¢, a multiplicative conjugation with [f, and division of the equation
by dp, we may assume without loss of generality that ¢ =0, [f=1 and P=<1.
Since the equation PTXekz(f) (f < 1) is quasi-linear, we have

P7yere=PFol + LT akTXem + Oez(l).
It follows that
P+fT><e’” = PTXe’”,+fTe’” = LkT akae’” + Oe"”(l)v

whence
Py 11 =0k 4 0ea(e™F®).
In other words, 1 is a starting monomial for the equation
(L1)(h) =0.
We conclude that 1 GY)ET and 1€ 9j. O
Theorem 8.23. Let f be a solution to a quasi-linear equation (E). If the

depths of the coefficients of P are bounded by d, then the depth of f is bounded
by d+r.

Proof. For each i, such that the depth of f is > d+14, let [; be the minimal
element in the support of f of depth > d +i. By the previous lemma, we
have [;Ta+: € 9P, ; 1144 Whence ;€ Hp, ;. Therefore, [;Tq44 € 2N ¢, where ¢
denotes the set of exponential transmonomials. The result now follows from
the fact that cardﬁpﬂﬁlzdimeHJgr. O

Corollary 8.24. If the coefficients of P can be expanded w.r.t. a plane
transbasis (b1, ..., by,), then the distinguished solution to (E) belongs to
Cllog,—1x;...;x;b1;...50,1.

Theorem 8.25. Let f be a solution to a quasi-linear equation (E). Then f
may be written in a unique way as

f:f*+h1+...+hs’
where f* is the distinguished solution to (E), s<r, and
hi>...=hseT?
are such that each h; —7(h;) is the distinguished solution to the equation

Pilpoihit o thiat+rh(0) =0 (¢ <CIYD).
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Proof. Consider the sequence hy, ho, ... with h; =7;+ d; for all 7, where
Ti=7(f—h1—- - —hi_1)
and §; is the distinguished solution to
Prgeshitethii+r(0) =0 (¢ <CIYD).

Since the equation
P+f*+h1+' : '+hi—1+7—i(¢) =0 (90 = Ti)

is quasi-linear (it admits f —hy — -+ —h;—1 — 7; as a solution), J; is also the
distinguished solution to this latter equation, whence §; < 7;. By induction, it
follows that hi = ho>=---.

Let us now prove that the sequence h1, ho,... has length at most r. Assume
the contrary and consider

P=Pypinit - thos
Then
P(=hi— -+ —hp11)=0

forall ie{1,...,r+1}, so dp,,...,0p, ., are starting monomials for

r+1

P(f)=0 (f=<CrvD).

Since this equation is quasi-linear and Py=0, it follows that Onyy---y O, aTE
also starting monomials for the linear differential equation

Lf=P(f)=o0.
In other words, {0n,,...,0x,,,} € $H;. But then

r+ 1< card H; =dim Hy <. O

Exercise 8.16. If f is the distinguished solution to a quasi-linear equation
(E) and ¢ < f a truncation of f, then show that f= f — ¢ is the distinguished
solution to

Py (f)=0 (feCTuD).

Exercise 8.17. Assume that (E) is quasi-linear, with distinguished solution
f. Show that the equation Pyn(g) =0 (g € m~19) is also quasi-linear, with
distinguished solution g=m~! f. And if m is replaced by a transseries?

Exercise 8.18. Show that f € C'logexpo(b,)—1%;-.-;2;by;...;b,] in the-
orem 8.21.

Exercise 8.19. Show that the dependence of f on logi4,—1 is polynomial in
theorem 8.23.
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Exercise 8.20. Give an example of a quasi-linear equation (E) such that the set

{0-5: P(f)=P(g9)=0Af,gecCLUT Ag+# [}

is infinite.
Exercise 8.21. Can you give an example for which
feCllog,_1x;...;2;01;...;0,1 \ClLlog,_2x;...;2;b1;...; 6,1

in corollary 8.247

8.6 Unravelling almost multiple solutions

As pointed out in the introduction, “unravelling” almost multiple solutions is a
more difficult task than in the algebraic setting. As our ultimate goal, a total
unravelling is a refinement

f=e+f (f=0), (8.23)

such that degs P =d and deg_; P <d. Unfortunately, total unravellings can
not be read off immediately from the equation or its derivatives. Nevertheless,
we will show how to “approximate” total unravellings by so called partial
unravellings which are constructed by repeatedly solving suitable quasi-linear
equations.

8.6.1 Partial unravellings

In order to effectively construct a total unravelling, consider a starting mono-
mial m such that Np,_  admits a root of multiplicity d. Assume that [ € Z is
sufficiently large so that Py, is exponential and

Np, w11 =Dp, =0 (F =)~ F (F')k

for some a,ce C* and k. Let

adilpmel 3
((aFV*l*k(aF’)k )Xm—llz if k<d

Q= - (8.24)
(“Grest) ol k=

and consider a refinement (R) such that

AU1L. The Newton degree of (RE) equals d.
AU2. Q(p)=0and 0,=m.
AU3. We have U={v€T:0<h} for h=m or some starting monomial h for

Q) =Qyp(h)=0  (heCTVI).

Then we call (R) an atomic unravelling.
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Proposition 8.26. Let . be a set of atomic unravellings for (E). Then ¥
admits a finest element.

Proof. Assume for contradiction that there exists an infinite sequence

[ = oo+ f1 (fi<v1)
[ = voteit+f2 (fa=102)

of finer and finer atomic unravellings in ., so that
Pi =0 X Pi—1
for all i > 0. Setting
V=00t -+ ri1s

it follows for all > 0 that

Qiy(=pi— - —¢r41)=0.
Consequently, d,, is a starting monomial for Q4 1(h) =0 and i€ {1,...,
r+1}. But this is impossible, since card NQ Ly ST O

Given an atomic unravelling (R) followed by a second refinement (RR)
such that the Newton degree of

P(f)=Pis(f)=0 (feCIVI)

equals d, we say that (RR) is compatible with (R) if @ #0, P < ¢ and dg is
not a starting monomial for

Q(h)=0  (heCLTI). (8.25)

If the second refinement (RR) is not compatible with (R), then we may con-
struct a finer atomic unravelling

f=e+v+ [ (F=9)
such that 7(v) =7(@). Indeed, it suffices to take ¥ =7(p) + h, where h is the
distinguished solution to the equation

Qetr(p)(h)=0  (h=<9).

In other words, during the construction of solutions of (E) we “follow” the solu-
tions to Q(h) =0 as long as possible whenever the Newton degree remains d.

A partial unravelling is the composition of a finite number [ of compatible
atomic unravellings. We call [ the length of the partial unravelling. By con-
vention, the identity refinement

f=F (feCcrv)

is a partial unravelling of length 0. We have shown the following:
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Proposition 8.27. Assume that (E) has Newton degree d. Given a partial
unravelling (R) and a starting term 7 for (RE) of multiplicity d, there exists
a finer partial unravelling

S
S

f=p+o+ (f=<7)

with @~ 7. 0

8.6.2 Logarithmic slow-down of the unravelling process

The introductory example (8.1) shows that an atomic unravelling does not
necessarily yield a total unravelling. Nevertheless, when applying a succession
of compatible atomic unravellings, the following proposition shows that the
corresponding monomials m change by factors which decrease logarithmically.

Theorem 8.28. Consider an atomic unravelling (R), followed by a compat-

ible refinement (RR). Then, denoting m =10, there exists an me Y with

| 3

=X log

gzz| =3
3

Proof. Modulo some upward or downward shiftings, we may assume without
loss of generality that [ =0 in (8.24), so that Pxn is exponential. Modulo a
multiplicative conjugation with m and division of P by 0p, we may also assume
that m=1 and that P 1. By proposition 8.1 it follows that P< P= Q= Q=1.

Let us first show that m » e®. Assuming the contrary, we have either
¢ —c=<e” or p—c»e” where c=c,. In the first case, b =0,_. < e” is
a starting monomial for

Q+o(f)=0  (f=1),

and Do, € CFN(F")N. Since Q. is exponential, it follows that N, .= Dq, .,
as well as Ng.,. ., = Npg, xv, by proposition 8.8. So v is also a starting
monomial for the equation Ng, (h) =0 (h<1). But this is impossible, since
Ng,.€ CFN(F")N. In the second case, b =t < e” is a starting monomial for

Pio(f)=0  (f=1).

Again P, is exponential and Dp, ,€ CFN (F')N, so we obtain a contradiction
in a similar way as above.

Since m is not a starting monomial for (8.25), we have

Q(@)Tp = Qxﬁl(@/ﬁ‘)% = D(Qxﬁn%)
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for a sufficiently large p € N such that m7,, QTP and @7, are exponential and
DQM“ = NmeTp' Using proposition 8.3 and the fact that m > e®, it follows
that

Q(QB) Xrogrﬁ O(Qxﬁi)'
On the other hand,
AQxw) o it % 1og s,

m
whence
Q(@) %Togﬁi O(Q) m=m.
We conclude that

]Sd—l %ikogﬁ‘t Iﬁa

since Q() is the coefficient of F 41k (F")k in P for some k.

_ Now let n be a monomial with n <j,,s m, so that n <j,,, m and
Py_1 >{ogn n. Then, proposition 8.2 implies

5 K 5 d—1 * d 5
P><n,d—1 ~logn Pd—ln >'logn n" Xlogn Pxn,dv

From propositions 8.3 and 8.8, it therefore follows that the degree of ng

cannot exceed d — 1. We conclude that there exists an m =n € 0 with
m %ikogﬁi ﬁ17
d.

since (8.26) has Newton degree

8.6.3 On the stagnation of the depth

This section deals with two important consequences of proposition 8.28.
Roughly speaking, after one atomic unravelling, the terms of degree >d do
no longer play a role in the unravelling process. If P is exponential, and
modulo the hypothesis that ]5d(h) =0 only admits exponential starting mono-
mials, it will follow that the process only involves monomials in 2N &, where &
denotes the set of exponential transmonomials.

Lemma 8.29. Consider an equation (E) of Newton degree d and assume that
Py,...,Pi_1€C[z][€T and P;€ CILED. Then any non-differential starting
term of multiplicity d is in O 2N €.

Proof. Let ¢cm be a non-differential starting term of multiplicity d, so that
Np, .. =a(F —c)? for some a € C. Then m is the (i, j)-equalizer for all 0 <i <
j<d. In particular, cm is a starting term for the linear equation Py+ P;(f)=0.
Hence, m € 2N &, by proposition 7.8 and the incomplete transbasis theorem. [
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Theorem 8.30. Consider an atomic unravelling (R) for an equation (E) of
Newton degree d, followed by a compatible refinement (RR) such that Pg,=0.

Assume that P and o are exponential and that Py(h) =0 admits only exponen-
tial starting monomials. Then @ € C[x][L€].

Proof. If =0, then we have nothing to prove, so assume that #0. By Ul
and lemma 8.29, it follows that 95 € aNe. Modulo a multiplicative conjugation
with an element in € and the division of P by 03, we may therefore assume

without loss of generality that m € 2N and P= Q = 1. Notice that m/m»e”®
since m > m and m is exponential.
By theorem 8.28, our assumption 4,52:] =0 implies

m m
— <X log—
o] m

for all v € supp ¢. Since m > 1 is exponential, this relation simplifies to
v <X logm.
Now assume that @ ¢ C[z] [€T, let n € supp ¢ be maximal with @ ¢ 2™ &, and
let =3 . . @uut. Since 7,<m is a starting term for (E) of multiplicity d,
we have Py i < Pxm,q for all i >d. It follows that me,i < me_yd, E <m15d/m
and Py i <m Pyy.a/m for all i > d. Now consider
7= Prpan

u<m

By what precedes, we have degT = d. Furthermore, Ty,...,Ty—1 € C[z] [&1
and Ty € C[¢]. By proposition 8.8, n is a starting monomial for

T(g)=0  (g<supp).

Moreover, n is a differential starting monomial, by lemma 8.29. Since

1= Z pd.,uuv

u<<m

proposition 8.8 also implies that n is a starting monomial for ]5d(h) =0. Our
assumptions thus result in the contradiction that m € €. ([l

8.6.4 Bounding the depths of solutions

If we can bound the number of upward shiftings which are necessary for satis-
fying the conditions of proposition 8.30, then the combination of propositions
8.28 and 8.30 implies that any sequence of compatible atomic unravellings
is necessarily finite. Now the problem of finding such a bound is a problem
of order r» — 1, by proposition 8.16. Using induction, we obtain the following
theorem:



8.6 Unravelling almost multiple solutions 191

Theorem 8.31. Consider an equation (E) of Newton degree d and weight w,
with exponential coefficients. If f € T is a normalized solution to (E) modulo
an nitial segment A &V, then f has depth < By 4,4, where By 4., =0 and
Braw=2d(4w) " ifr>0.

Proof. We prove the theorem by a double recursion over r and d. If »=0, then
the theorem follows from corollary 3.9. In the case when d =0 we also have
nothing to prove, since there are no solutions. So assume that » >0, d >0 and
that we have proved the theorem for all strictly smaller r or for the same r
and all strictly smaller d. We may also assume that f =0, since the theorem
is clearly satisfied when f=0.

Let m € 20\ U be the dominant monomial of f. If f is algebraic, then

proposition 8.14 implies that its depth is bounded by w. If m is differential,
1

Togeiogloge)
its depth is bounded by A, _1 = Br_1,w,w—1= W, because of the induction
hypothesis. Modulo A, _ ,, upward shiftings and a multiplicative conjugation
with m, we may thus reduce the general case to the case when m=1 and
Np = Dp. It remains to be shown that f has depth <B; 4w — Ar—1,w-

If c=cy is a root of multiplicity < d of Np, then the Newton degree of

P+c(f):0 (f<m)
is < d by proposition 8.13 and f — ¢ is a root of this equation modulo 2U.
The induction hypothesis now implies that f —c has depth < By g—1,4 <
Br,d,w - A'rfl,w-

Assume now that ¢ is a root of multiplicity d of Np. Consider a finest
atomic unraveling (R) for which f=f—¢eCIVI. Then 7, and P71, are
exponential, by theorem 8.23. Let ¢ < f be the longest truncation of f , such
that the Newton degree of

then >0 and m' is a root of Rp, modulo o( for some 4. Hence,

P(f)=Pyg(f) = Prorp(f)=0  (FeCIVD A f<supp p)
is equal to d. By the induction hypothesis, pdTTJr A,_;., only admits exponen-
tial solutions. Now theorem 8.30 implies that ¢ has depth <7+ A, _1 ,+ 1.
If fz f - gb:q, then we are done. Otherwise, T is a starting term of multi-
plicity < d for P, by the definition of ¢. By what precedes, we conclude that
f has depth <r+ Ay 10+ 14 A 1w+ Bra 1< Brgw— A1 0

Corollary 8.32. Consider an equation (E) of Newton degree d and a non-
empty set % of partial unravellings for (E). Then % admits a finest element.

Proof. Let us first assume for contradiction that there exists an infinite
sequence of compatible atomic unravellings

f=fo = ot fi  (fi<o)
fi = p1+ fo (f2<102)
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Modulo a finite number of upward shiftings, it follows from theorem 8.31
that we may assume without loss of generality that the coefficients of P,
are exponential and that Py, 4 only admits exponential solutions. Then
theorem 8.30 implies that ¢; € C[z][€] for all ¢ > 1. From theorem 8.28 it

also follows that if—i; = log ;il for all > 1. But this is impossible.

Now pick a partial unravelling (R) in . of maximal length. Then any finer
partial unravelling in . is obtained by replacing the last atomic unravelling
which composes (R) by a finer one. The result now follows from proposi-
tion 8.26. O

Exercise 8.22. In theorem 8.30, show that whenever m is a starting monomial
for Py(h) =0 of the form (loggx)® .- x* m? with m*f € & and ay# 0, then
d<wtP —1.

Exercise 8.23. Improve the bound in theorem 8.31 in the case when r=1.

Exercise 8.24. Show how to obtain a total unravelling (8.23) a posteriori, by
computing @ w.r.t. the monomial v instead of m.

8.7 Algorithmic resolution

In this section, we will give explicit, but theoretical algorithms for solving (E).
In order to deal with integration constants, we will allow for computations
with infinite sets of transseries. In practice, one rather needs to compute with
finite sets of “parameterized transseries”. However, the development of such
a theory (see [Hoe97, HoeOla]) falls outside the scope of the present book.

8.7.1 Computing starting terms

Theorem 8.6 implies that we may compute the Newton polynomial of a
differential polynomial P € T{F}* using the algorithm below. Recall that
a monomial m is a starting monomial if and only if Np_ & C F™N.

Algorithm Np
Input: PcT{F}7.
Output: The differential Newton polynomial Np of P.

1. If P is not exponential or Dp ¢ C[F] (F')N, then return Npj.
2. Return Dp.

The algebraic starting monomials can be found by computing all equalizers
and keeping only those which are starting monomials. The equalizers are
computed using the method from the proof of proposition 8.14.
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Algorithm ep ; ;
Input: P < T{F}7 and integers 7, j with P;# 0 and P; #0.
Output: The (7, j)-equalizer ep ; ; for P.

1. If P is not exponential or Dp, 1 p, ¢ C[F] (F')N, then return epy,; ;.
2. If o(P;) =9(F;) then return 1.

3. Let m:="7 V/o(P;)/o(P;) and return mep, ;. ;.

Algorithm alg_st_mon(P, D)
Input: P € T{F}7 and an initial segment U C ¥.
Output: The set of algebraic starting monomials for (E).

1. Compute M :={ep; ;:i<j<degPAP,#0AP;#0}NDV.
2. Return {m € M: Np, ¢ C FN}.

In fact, using proposition 8.17, it is possible to optimize the algorithm so that
only a linear number of equalizers needs to be computed. This proposition
also provides us with an efficient way to compute the Newton degree.

Algorithm Newton_degree(P, )
Input: P < T{F}7 and an initial segment U C ¥.
Output: The Newton degree of (E).

1. Compute M :=alg_st_mon(P, V).
2. Return max {deg Np, :m e M} U {val P}.

The algorithm for finding the differential starting terms is based on propo-
sition 8.16 and a recursive application of the algorithm ade_solve (which

will be specified below) in order to solve the Riccati equations modulo
1
A Tgetogtogs )"

Algorithm diff_st_mon(P, )
Input: P € T{F}7 and an initial segment U C ¥.
Output: The set of differential starting monomials for (E).

1. If P is homogeneous, then

Let G:=ade_solve(Rp,T,{meT: fm=<1})

Return {/% ge G} ND.
2. Let M;:=diff_st_mon(P;, V) for each i < deg P with P;#£0.
3. Return {meM;:i <deg PAP,#£0A Np, ¢ C FN}.

Having computed the sets of algebraic and differential starting monomials,
it suffices to compute the roots of the corresponding Newton polynomials in
order to find the starting terms.



194 8 Algebraic differential equations

Algorithm st_term(P, D)
Input: P < T{F}7 and an initial segment U C ¥.
Output: The set of starting terms for (E).
1. Let ©:=alg_st_mon(P,Y)Udiff_st_mon(P,Y).
2. Return {em € C7®: Np_ (¢)=0}.

8.7.2 Solving the differential equation

Let us now show how to find all solutions to (E) and, more generally, all
normalized solutions of (E) modulo an initial segment 20 C . First of all, 0
is a solution if and only if the Newton degree of P(f)=0 (f€CI2T) is >0.
In order to find the other solutions, we first compute all starting terms 7 in
U\ 2. For each such 7, we next apply the subalgorithm ade_solve_sub in
order to find the set of solutions which starting term 7.

Algorithm ade_solve(P,T,20)
Input: Pe ’]I‘{FP& and initial segments W CY C .
Output: The set of normalized solutions to (E) modulo 20.
1. Compute T:=st_term(P,L)\ C 20.
2. Let S:=U, ¢ ade_solve_sub(P, 7,0, 7).
3. If Newton_degree(P,20) >0 then S:=SU{0}.
4. Return S.

Let d be the Newton degree of (E). In order to find the normalized solutions
with starting terms 7 of multiplicity < d, we may simply use the refinement

f=r+f  (F=7)
and recursively solve
Pi(f)=0  (f=7)

The other starting terms require the unravelling theory from section 8.6: we
start by computing the quasi-linear differentiated equation

Q(f)=0 (feClyl), (8.26)

with @ as in (8.24) and we will “follow” solutions to this equation as long as
possible using the subalgorithm unravel.

Algorithm ade_solve_sub(P,7,%U,2))

Input: P T{F}7, initial segments 20 C U C T and a starting term 7=cm €
C7 (V\ ) for (E).

Output: The set of normalized solutions to (E) modulo 20 with dominant
term 7.

1. Let p:=val Np,  +. and d:=Newton_degree(P,T).
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2. If p<d, then return 7+ ade_solve(Pi,, {n€T:n<m}, ).
3. Compute @ using (8.24), with minimal [, and let ¢ =7 + h, where h is the
distinguished solution to

Q+-(h)=0 (h=<T). (8.27)
4. Return g\ gy +unravel(Py g, Q1 4, {n€ T:n<m}, ).

The algorithm unravel is analogous to ade_solve, except that we now
compute the solutions with a given starting term using the subalgorithm
unravel_sub instead of ade_solve_sub.

Algorithm unravel(P, Q,,20)
Input: P, Q€ ’]P{F}# and initial segments W CY C T.
Output: The set of normalized solutions to (E) modulo 20.

1. Compute T:=st_term(P, )\ C'20.

2. Let S:=J, cpunravel_sub(P, Q, 7,7, ).

3. If Newton_degree(P,20) > 0, then S:=SU{0}.
4. Return §S.

In unravel_sub, we follow the solutions to (8.26) as far as possible. More
precisely, let @ be as in (8.24). Then the successive values of @ for calls
to unravel and unravel_sub are of the form Qyp,,...Q4ni+...4+hn, Where
hi>--- > hy satisfy Q(h1+---+h;) =0 for each i € {1,...,1}. At the end, the

refinement
f=hit i+ (F<h) (828)

is an atomic unravelling for the original equation. Moreover, at the recursive
call of ade_solve_sub, the next refinement will be compatible with (8.28).

Algorithm unravel_sub(P, Q, 7,0, )

Input: P,Qe rJl‘{F}f initial segments 2 CY C T and a starting term 7=
cme C7 (T\ W) for (E).

Output: The set of normalized solutions to (E) modulo 20 with dominant
term 7.

1. If Ng, .(c)#0, then return ade_solve_sub(P, 7,0, ).
2. Let ¢ =7+ h, where h is the distinguished solution to (8.27).
3. Return ¢\ gy +unravel(Py,, Q4 p, {n€T:n<m}, ).

The termination of our algorithms are verified by considering the three pos-
sible loops. In successive calls of solve and solve_sub we are clearly done,
since the Newton degree strictly decreases. As to successive calls of unravel
and unravel_sub, we have [ <r in (8.28), by theorem 8.25. Finally, any global
loop via solve_sub and unravel, during which the Newton degree d remains
constant, corresponds to a sequence of compatible atomic unravellings. But
such sequences are necessarily finite, by theorems 8.25, 8.30 and 8.31.
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Exercise 8.25. Assume that P € C [[zIl {F } and that we search for zeros of (E)
in the set of well-based transseries of finite exponential and logarithmic depths

Cll[=]1]-

a) Given Q € C[[[z]]]{F}, show there exists an [ with Dg1, € C[F] (F")N. Give
a definition for the differential Newton polynomial Ng of Q. Generalize
proposition 8.10.

b) Given i < j with P;#0 and P;#0, prove that there is at most one well-based
transmonomial m such that N(p, 4 p)),, is non-homogeneous.

¢) Show that proposition 8.16 still holds for well-based transmonomials.

d) Show that the set of solutions to (E) in C'[[zIl as computed by ade_solve
coincides with the set of solutions to (E) in C[[[z]]].

e) Show that ¢(z),

1 1 1
P@) = bt

x xt  xT

and
v =te o

T elogzx elog“x

do not satisfy an algebraic differential equation with coefficients in T.

f) Does ¢(x) satisfy an algebraic differential equation with coefficients in
T{¢(x)}? And does v (z) satisfy an algebraic differential equation with coef-
ficients in T{((z), p(z)}?

8.8 Structure theorems

8.8.1 Distinguished unravellers

Theorem 8.33. Let (E) be an equation of Newton degree d>1. Then there
exists a unique @ € C' U which is longest for < with the properties that

a) degg Pyo,=d, for P={meY:m=<suppp}.

b) For any m € supp p, the term pmm is an algebraic starting term for

Pip o (H=0  (fxm). (8.29)
Proof. Consider the set . of all partial unravellings
f=¢+f (feCmv), (8.30)

such that ¢ = o\  satisfies (a) and (b). Since . contains the identity refine-
ment, we may choose (8.30) to be finest in ., by corollary 8.32. We claim
that ¢ is maximal for <, such that (a) and (b) are satisfied.

Indeed, assume for contradiction that some v > ¢ also satisfies (a) and (b).
Then cm=7(1) — ) is the unique algebraic starting term for (8.29) and it
has multiplicity d. By proposition 8.27, there exists a partial unravelling

F=e+E+F  (F=9),
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which is finer than (8.30), and such that £ ~cm. By what precedes, p =
(4 &)g= ¢+ satisfies (a). Moreover, ¢ satisfies (b), since ¢ = ¢ does.
This contradicts the maximality of (8.30).

Let us now prove the uniqueness of ¢. Assume for contradiction that
Y # ¢ with ¥ € ¢ and ¢ € ¢ also satisfies (a) and (b). Let d =1 — ¢ and
§=2 mesPmm. Then

Pie(f)=0  (f=supp¢)

admits both 7(¢ — £) and 7(¢ — &) as algebraic starting terms of multiplicity
d. But this is impossible. O

The transseries ¢ from the theorem is called the distinguished unraveller
for (E). It has the property that for any algebraic starting term 7 for

Pio(f)=0  (f<suppy), (8.31)

the refinement

~n

~n
A
Rl

S—

f=o+7+
is a total unravelling.

Remark 8.84. Tt is easily checked that theorem 8.33 also holds for d=1, and
that ¢ coincides with the distinguished solution of (E) in this case.

Recall that £ stands for the group of logarithmic monomials.

Proposition 8.35. Let ¢ be as in theorem 8.33 and assume that P €
CIBCT{F}7 for a plane transbasis B = (by,...,b,). Then pc CLLBCT.

Proof. Assume the contrary, let m € supp ¢ be maximal, such that m ¢
CLELBT, and let p=3",  @nn. Modulo a finite number of upward shift-
ings, we may assume without loss of generality that P and 1) are exponential.
But then m =0,_, is an algebraic starting monomial for

Piy(f)  (F<supp ).
By remark 8.15, we conclude that me C[£B°T. |

8.8.2 Distinguished solutions and their existence

A solution ¢ € T to (E) is said to be distinguished, if for all m € supp ¢, the
term , m is an algebraic starting term for the equation

Pio(f)=0  (f=<m).

If d is odd, then there exists at least one distinguished solution.
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Theorem 8.36. Any equation (E) of odd Newton degree admits at least
one distinguished solution in T. Moreover, if the coefficients of P can be
expanded w.r.t. a plane transbasis B = (b1,...,b,), then any such solution is

in CLEBC].

Proof. We prove the theorem by induction over d. For d =1, the result follows
from corollary 8.24. So let d > 1 and assume that the theorem holds for all
smaller d.

Now proposition 8.17 implies that there exists at least one starting mono-
mial and equalizer ¢ € £ B¢ such that deg Np, — val Np, _ is odd. It follows
that P=A (F')" for some A € C[F] of odd degree. Since C is real closed, it
follows that A admits a root ¢ of odd multiplicity d.

If d <d, then proposition 8.13 and the induction hypothesis imply that

P(f):P-i-ce(f):O (f'<e) (8.32)
admits a distinguished solution f =C[LLB], whence
f=ce+ feCIEBCT

is a distinguished solution to (E). Inversely, if f#0 is a distinguished solution
to (E) whose dominant term ce has multiplicity d < d, then e is necessarily an
equalizer, and

f=f—ceecCLLBCT

a distinguished solution to (8.32), whence f € CL£CT.
If d=d, then let ¢ be the distinguished unraveller for (E), so that the
equation

P(f)=Ppo(f)=0  (f=suppyp) (8.33)

does not admit an algebraic starting term of multiplicity d. Modulo some
upward shiftings and by what precedes, it follows that (8.33) admits a distin-

guished solution fe CLLBCT. We conclude that
f=p+ feCLLBCT

is a distinguished solution to (E). Inversely, we have ¢ < f for any distin-
guished solution f of (E), and f=f—¢is a distinguished solution to (8.33),
whence f € CLLBT. |

8.8.3 On the intrusion of new exponentials

In this chapter, we have shown how to solve (E) directly as an equation
in F,...,F". A more advanced method for solving (E) is to use integral
refinements

f=eletl  (fecrvD)
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in addition to usual refinements. This gives a better control over the number
of exponentials and integration constants introduced in the resolution process,

because e/ ¥/ is often “strongly transcendental” over the field generated by
the coefficients of P, so that the equation rewritten in f has lower order. A full
exposition of these techniques is outside the scope of this book, but the proof
of the following theorem will illustrate some of the involved ideas to the reader.

Theorem 8.37. Consider P € CIBCTI{F}" of order r for some plane
transbasis B. Then for each exponential solution f €T to (E), there exists

a transbasis B for f with card B \B<Lr
Proof. Let us construct sequences fy,..., €T, ¢o,..., €T and r1,...,5 €T
such that

1. %, =B U{r1,...,5} is totally ordered for <.
2. ;€ CLXYT for each i={0,...,1} (where we understand that X =13).

We take fo= f. Given i >0, let ; be the longest truncation of f;, such that
;€ CIXST. If ;= f;, then the sequence is complete. Otherwise, we let
Lit1 = 0(fi— i)
fixr = (fi—e)'.
If B is an arbitrary transbasis for f, then
CIX§1 G- ¢ CIXFD CCIBCT,

so that the construction finishes for [ < card B \ B. Setting B = X, we also
observe that logg; < ffi c CI[B] for all i € {1,...,1}. Tt follows that B is
a transbasis for f.

Let us now consider another sequence 91, ..., 5; with

fi— i
Vit1=—7—— ~Li+1,

ClJi— ©;
so that (fi= i)

fi+1=U¢T+1~
Denoting ;=B U {n1,...,n;} for all i € {1,...,1}, we notice that C[Y{T is
isomorphic to C[X{T. Now for all i € {1,...,l — 1}, we have

vi=10i0f =i fi=v; (@i +c(fi — i) niy1) € CIVF 1.

By strong linearity, it follows that for all g € CIY{T and i €{0,...,1 -1},
we have g’ € C[9% .1 . Moreover, if

geCIYPI T & CIY 17y,
then the above formula also yields

g eCIYPCT & COYST7 e,
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In particular,
fDeCIET @ CIVFT i1,

for all i €{0,...,l—1}.

Now assume for contradiction that [ >7 and let f(") =g+ hp, 1 with g,
heCIYPST. Then substitution of f& e CIYST for FO) in P for all i <r
and g+ h F for F(") yields a non-zero polynomial S € C'[YST[F], which
admits n, 1 ¢ CIYST as a root. But this contradicts the fact that C [T
is real closed. We conclude that [ <r, whence B is a transbasis for f with
card B\ B=1<r. 0

Corollary 8.38. Consider P€ C[BY1{F} of orderr for some transbasis B.
Then for each solution f €T to (E), there exists a transbasis B for f with
card B \ (B Uexpgx) <.

Exercise 8.26. Give an alternative algorithm for the resolution of (E), where,

after the computation of a starting term 7, we perform the refinement
f=r+e+f (F=m),

where ¢ is the distinguished unraveller for Py (f)=0 (f <7).

Exercise 8.27. If, in the algorithms of section 8.7, we let st_term only return

the algebraic starting terms, then show that the algorithm ade_solve will return
the set of all distinguished solutions.

Exercise 8.28. Show that there exist at most d=degqy P distinguished solutions
to (E).

Exercise 8.29. If f is a distinguished solution to (E) and ¢ < f, then show
that f — ¢ is a distinguished solution to P+q,(f) =0 (f <supp ).

Exercise 8.30. Improve theorem 8.31 and show that we can take B, 4. =
2rdw. Hint: use exercise 8.22 in combination with the proof technique from
theorem 8.37.
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The intermediate value theorem

The main aim of this chapter is to prove the intermediate value theorem: given
a differential polynomial P € T{F'} over the transseries and f < g €T with
P(f)P(g)<0, there exists an h€ T with f <h< g and P(h)=0. In particular,
any differential polynomial P € T{F} of odd degree admits a zero in T.

The intermediate value theorem is interesting from several points of view.
First of all, it gives a simple sufficient condition for the existence of zeros
of differential polynomials. This is complementary to the theory from the
previous section, in which we gave a theoretical algorithm to compute all
solutions, but no simple criterion for the existence of a solution (except for
theorem 8.33).

Secondly, the intermediate value theorem has a strong geometric appeal.
When considering differential polynomials as functions on T, a natural ques-
tion is to determine their geometric behaviour and in particular to localize
their zeros. Another question would be to find the extremal and inflexion
points. It is already known that extremal values are not necessarily attained.
For instance, the differential polynomial

P(f)y=r2+2f
admits its minimal “value”

11 1 _
2?2 a?logZx  a2log?xlogix ---

(Linﬁ
1 1 1
f = —

x xlogx xlogxlogsx

In the future, we plan to classify all such non-standard “cuts” which occur as
local extrema of differential polynomials. In particular, we expect that a cut
occurs as a local minimum if and only of it occurs as a local maximum for
another differential polynomial.
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Finally, the intermediate value theorem is a starting point for the further
development of the model theory for ordered differential algebra. Indeed,
the field of transseries is a good candidate for an existentially closed model
of this theory, i.e. a “real differentially algebraically closed field”. Such fields
are necessarily closed under the resolution of first order linear differential
equations and they satisfy the intermediate value theorem. It remains to be
investigated which additional properties should be satisfied and the geometric
aspects of real differential polynomials may serve as a source of inspiration.

In order to prove the intermediate value theorem, the bulk of this chapter
is devoted to a detailed geometric study of the “transline” T and differen-
tially polynomial functions on it. Since the field of transseries is highly non-
archimedean, it contains lots of cuts. Such cuts may have several origins:
incompleteness of the constant field (if C #R), the grid-based serial nature
of T, and exponentiation. In sections 9.1, 9.2, 9.3 and 9.4 we study these
different types of cuts and prove a classification theorem.

Although the classification of cuts gives us a better insight in the geom-
etry of the transline, the representation we use is not very convenient with
respect to differentiation. In section 9.5, we therefore introduce another way
to represent cuts using integral nested sequences of the form

en_rtep_1el TR

F=poteoelerrac’

This representation makes it possible to characterize the behaviour of differen-
tial polynomials in so called “integral neighbourhoods” of cuts, as we will see in
section 9.6. In the last section, we combine the local properties of differential
polynomials near cuts with the Newton polygon method from chapter 8, and
prove the intermediate value theorem. We essentially use a generalization of
the well-known dichotomic method for finding roots.

9.1 Compactification of total orderings

9.1.1 The interval topology on total orderings

Any totally ordered set F has a natural topology, called the interval topology,
whose open sets are arbitrary unions of open intervals. We recall that an
interval is a subset I of E, such that for each x <y < z with x, 2z € I, we have
y€I. An interval I C E is said to be open, if for each x € I we have: z is
minimal resp. maximal in I, if and only if z is minimal resp. maximal in F.

A set U C FE is open if every point in U is contained in an open interval
I CU. Arbitrary unions of open sets are clearly open. The intersection of two
open intervals I and J is again open: if x is minimal or maximal in I NJ, then
it is in particular minimal resp. maximal in I or J, whence x is minimal resp.
maximal in F. It follows that the intersection of two open sets is also open,
so the open sets of E form a topology.
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We observe that an increasing union of open intervals is again an open
interval. Hence, given an open set U and x € U, there exists a maximal open
interval M, CU with x € U. It follows that each open set U admits a unique
decomposition

U=]] {MpzeU} (9.1)

as the disjoint union of its maximal open subintervals.

Proposition 9.1. A totally ordered set E with the interval topology is Haus-
dorff if and only if for each v <y € F there exists a z € E, with x <z <y.

Proof. Assume that F is Hausdorff and let z < y€E. There exist open subsets
Uz and V >y with UNV =g. Without loss of generality, we may assume
that we have replaced U and V by subintervals which contain x resp. y. Since x
is not maximal in F and U is open, there exists an ' € U with 2’ >z. We must
also have x’ < y: otherwise y € U whence y e UNV =&, since U is an interval.

Conversely, assume that for all z <y € E there existsa z€ F, withx <z <y.
Then given = #+ y € F, and assuming by symmetry that z < y, there exists
az€FE, with t<z<y. Then («,2)={ueE:u<z} and (z,—)={u€kE:
u >z} are disjoint intervals with x € («, z) and y € (2, —). Moreover, for
any u € («—, z) there exists a v € E with u <v < z, and w is minimal in («, ) if
and only if it is minimal in E. Hence (+, z) is open, and similarly for (z,—). O

Example 9.2. Any totally ordered field F is Hausdorff.

9.1.2 Dedekind cuts

Given a totally ordered set E, let E denote the set of its open initial segments
without maximal elements, ordered by inclusion. We have a natural increasing

mapping

vwE — FE

x —— interior («, x).

Elements in E \ ¢(F) are called cuts. If F is Hausdorff, then we have already
seen that («,z) is open for all x € F, so ¢ yields a natural inclusion of E into E.

The elements Lz=@ and Tg=J FE are minimal and maximal in E. If
FE admits no maximal element, then Tz = FE. More generally, any non-empty
subset of E admits an infimum and a supremum:

Proposition 9.3. Any non-empty subset of E admits a supremum and an
infimum in E.
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Proof. Let S+ @ be a subset of E and consider the open initial segment
without a maximal element
u=|J 8.

We claim that 7 =sup S. By construction, 7 <@ for all 7€ S. Conversely, if
v € E satisfies ¥ < @, then we may pick 2 € @\ 9. Now let @ € S be such that
x €w. Then v Cw, whence v <w € S. In a similar way, it can be shown that
the interior of N S equals the infimum of S. |

Proposition 9.4. Let I be an interval of a Hausdorff total ordering E. Then
there exists unique f < g€ E such that I has one and only one of the following
forms:

a) I

b) I
¢) 1
d) 1

(f.9)N

[f,g)ﬁE and f € E.
(f,g9]NE and g€ E.
[f

y9]NE and f,ge E.

Proof. Let f=infI and g=sup . Then clearly
(= NNE=(9,=)NE=0
and (f,g)NE CI. Consequently,
IC([f,gINnECTU{f, g}

Depending on whether f and g are in I or not, we are therefore in one of the
four cases (a), (b), (¢) or (d). O

9.1.3 The compactness theorem

Theorem 9.5. Let E be a Hausdorff totally ordered set. Then

a) E is Hausdorﬁ.
b B
c) E is connected
d) E is compact.

Proof. In order to show that E is Hausdorff, let < 7 be in E. Choose u € 7 \ 7.
Since 7 has no maximal element, there exist v,w € § with u <v <w. It follows
that T< u <v <w < 7, which proves (a).

From (a) it follows that the natural mapping z: E —Eis injective. In order
to see that 7 is also surjective, consider an open initial segment I C F without
a maximal element, and consider @=sup I. We claim that 7(7) = I. Indeed, if
T ei(u), so that T <@, then there exists a § € I with Z< 7, by the definition of
7. Hence T €1, since T is an initial segment. Conversely, if Z € I, then there
exists a 7 € I with T < 7, since I has no maximal element. We have 7 < < 1,
so T € t(w). This proves our claim and (b).
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Let us now show that E is connected. Assume the contrary. Then E is
the disjoint union of two open sets. By (9.1), it follows that
E=]] I
Ieys
where .# is a set of at least two open intervals. Let K € .# be non-maximal.
Then we also have a decomposition of E as the disjoint union of two non-
empty open intervals
EEHB:( 1T j)ﬂ( 1T j).
Jes <K Jes,I>K
Now consider & = sup I. We have either we I; or @€ I. In the first case,
7+ Tg would be a maximal element of I;. In the second case, u# Lz would
be a minimal element of I,. This gives us the desired contradiction which
proves (c¢).

Let us finally show that E is compact. In view of (9.1), it suffices to show
that from any covering (I)ae 4 of E with open intervals we can extract a finite
subcovering. Consider the sequence o <Z1 < --- € E which is inductively
defined by Top= 2 and

Tpy1=sup U I,
ac€A,TrEl,
for all k> 0. If « is such that Zy € I, then we notice that either T € I, < Tp 11
or Tr4+1= |5, since I, is an open interval.

We claim that T = Tz for all sufficiently large k. Assuming the contrary,
consider %= sup {Zo, Z1, ... }. There exists an o with @€ I,,. Since I, is open,
there exists an 7 < @ in I,. Now take k € N with 7 < Z;. Then Z}, and Trr1< g
are both in fa, which contradicts the fact that 11 =Tz or I,< ZTr4+1. This
proves the claim.

Denoting by [ the minimal number with z; = Tz, let us now show how to
choose ay,...,a0€ A with T € I, (0< k<), and 1o, N1y, ,, #2 (0<k<I).
This is clear for kK =1. Having constructed ay, ..., ax+1, pick an element 3 €
(Th, Thot1) ﬁfak+1. Then there exists an oy, € A with Zy, € I,, and 7 < Z for some
z€I,,. Since I, is an interval, it follows that 7 € I,,,, whence I_akﬂfakﬂ# .
This completes our construction.

We contend that E =1I,,U---UI,,. Indeed, given § € E, we either have
ye{zo,..., i1} C Tao U---UlI,,, or there exists there exists a unique k with
7€ (Tp, Tet1). In the second case, let z€ I, N1, Then we have either

g<zand j€l,, or y>Zand g€, O

k+4+1°
k+1°

Exercise 9.1. Let E be a totally ordered set. Given Z< 7€ E, show that 7\ T
contains infinitely many elements.

Exercise 9.2.

a) Determine @ for all ordinals «.
b) Determine a°P for all ordinals .
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9.2 Compactification of totally ordered fields

Let C be a totally ordered field. A natural question is to see whether the
algebraic structure on C' can be extended to its compactification C' and which
algebraic properties are preserved under this extension. In section 9.2.1, we
first show that increasing and decreasing mappings naturally extend when
compactifying. After that, we will show how this applies to the field operations
on C. We will denote m=sup C.

9.2.1 Functorial properties of compactification

Proposition 9.6. Let E and F be Hausdorff total orderings and ¢: E— F.

a) Any increasing mapping ¢: E — F extends to an increasing mapping
p: E— F, given by

poEF — F
T — sup{p(z)iz€ EAx<T}.

b) Any decreasing mapping p: E— F extends to a decreasing mapping @: E—F,
given by

@:E — F
T — inf{p(x):x€e EAnx<T}.

Moreover, in both cases, the mapping p is injective resp. surjective if and only
if v is. Also, if ¢ is surjective, then @ is its unique extension to a monotonic
mapping from E into F.

Proof. Assume that ¢ is increasing (the decreasing case is proved similarly).
The mapping @ defined in (a) is clearly increasing. Assume that ¢ is injective
and let T <y € E. Choosing u,v € E with T <u <v <y, we have

P(T) < P(u) = p(u) < (v) = §(v) <@(Y),
so {p is injective.

Assume from now on that ¢ is surjective and let 7€ F. Then T={u € E:
w(u) < g} is an open initial segment without a maximal element. Indeed, if
u € T were maximal, then we may choose v € F' with ¢(u) <v < 7 and there
would exist a u’ € E with ¢(u') =v < 7 and necessarily u <wu’. This shows that
T € E. By construction, we have 3(Z) < 7. Given v € 7, so that v < 7, there
exists an u € F with ¢(u)=v. Consequently, v €T and v = ¢(u) = p(u) < (7).
This proves that 7 < &(T).

Now let : E — F be another increasing mapping which extends ¢ on E.
Assume for contradiction that 3(Z) < ¢(Z) for some Z € E '\ E (the case §(T) >
() is treated similarly) and let v € (B(Z), 1 (Z)). Since ¢ is surjective, there
exists a u € E with ¢(u) =v. But if u <Z, then p(u) < §(Z) and if v > 7,
then ¢(u) > @(Z). This contradiction shows that @ is the unique increasing
extension of ¢ to a mapping from E into F. O
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Corollary 9.7. Let E be a Hausdorff ordering and E* the set E ordered by
the opposite ordering of <. Then there exists a natural bijection

T — infg. 7. ]
The following proposition is proved in a similar way as proposition 9.6: see
exercise 9.3.

Proposition 9.8. Let E be a Hausdorff ordering and I C E an interval. Then
there exists a natural inclusion

T — sup{geE:g<T}.

This inclusion is unique with the property that «(I) is an interval. [l

9.2.2 Compactification of totally ordered fields
Opposites and inverses
By proposition 9.6(b), the mapping
—C — C
f=—f

extends to unique decreasing bijection C' — C, which we also denote by — and
the inversion

o> S oc>
f=f
extends to a unique decreasing bijection C> — C>. Notice that C>={0}UC>

and 0~'=#. For f <0, we may also set (—f) "' =—f~", so that - ~! is bijective
on C'\ {-m,0,m}.

Addition

The addition on C? may be extended to an increasing mapping +: C? — C by
applying proposition 9.6(a) twice: first to mappings of the form f+-:C— C;
g— f+ g with f€C and next to mappings of the form -+73:C—C; f— f+§
with g€ C. This is equivalent to setting

—i—:éx@ — C
(Z,y) — sup{z+y:z,ycCAx<TAY<LG}.
Notice that the mapping f+ - C — C; g+ f+ g is an isomorphism for each
f € C. Subtraction on C? is defined as usual by T — =7 + (—%). Since the

definition of the addition is symmetric in T and g, the addition is commutative.
Clearly, we also have T+ 0=7 for all T € C, and

T+ (g+z)=sup{e+y+zz,y,2€CAxc<TAY<GN2<Z}=(T+7y)+Z
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for all Z, 7,z € C. However, C' cannot be an additive group, because @ — @ =
—m#0. Nevertheless,

—(@+y)=(=2)+(-y)

forallz€ C and y € C. Indeed, given z € C, we have z < —(T+y) & —2>T+y&
—Z2—Y>Toz4+y<-IT&z<(-T)+ (-y).

Multiplication

The multiplication extends first to (C>)2 by

(Z,7) + sup{ry:z,ycC” Az <TAY<Y}

and next to C? by

(27 = ~@p)
#(-p) = (@)
()(-0) = 77

forallz,ye C>. This definition is coherent if Z=0 or y=0,sincez0=0x=0
for all 7. We define division on C? as usual by Z /=277~ '. The multiplication
is clearly commutative, associative and with neutral element 1. We also have
distributivity Z (g + 2) =Z § + T Z whenever T > 0. However, (—1) (@ —m) =
(1) (—»)=m#—m=(—m) +m.

Exercise 9.3. Prove proposition 9.8.

Exercise 9.4. Show that —(—Z) =7 for all 7 € T.

9.3 Compactification of grid-based algebras

Let C be a totally ordered field and 9t a totally ordered monomial group and
consider the algebra $=C [ of grid-based series. In this section we study
the different types of cuts which may occur in $. We will denote 5=inf C~,
m=supC, O =sup$. We will also denote C# =C\ (C U {-»,7}).

9.3.1 Monomial cuts

Let C be a totally ordered field and 9t a totally ordered monomial group. An
element EEE\S is said to be a monomial if m>0 and cm=m for all ce C~.
We denote by 9 the union of the set of such monomials and the set 9 of
usual monomials. The ordering < on 9t naturally extends to 9%, by letting it
coincide with the usual ordering <.
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Given f €8, we define the dominant monomial 5f of f as follows. If
|fl<c|f| fornoceC, sothat |f| €M\ M, thenwetakebf |fI- IE | fl<clf]
for some ¢ € C, then there exists a g € T with |f| < g <c|f|. Moreover,
0, does not depend on the choice of g and we set 5f= 04. Thanks to the
notion of dominant monomials, we may extend the asymptotic relations <,
<, < and ~ to $ by f< g@hf 07, f%g@DfKDg, f= g@Df—Dg and
f~g<:>af 5 =05 =10z

Proposition 9.9. For any f, fi, f2€S, we have
o7 = 07; (9.2)
07,47, < max{05,07,}. (9.3)
Proof. The first relation is clear from the definition of dominant monomials.

As to the second one, we first observe that | fi| <c107, and | fo| <07, for
sufficiently large ¢y, co € C'. Hence,

|f1+ fol <|fil+ | ol < (c1+ c2) max {05, 07,}.

Since we also have | f + f2| P cbf1+f for a sufficiently small c € C~, it follows
that Of +5S maX{Ofl,DfZ} O

9.3.2 Width of a cut

Let fe€$. We define the width of f by
Pr=inf{07_,:gcS}eM.
Notice that fe€$ < or=0.
Proposition 9.10. For any f, f1, f2€ S, we have
w_5 = ivy; (9.4)
W7 47 = max{ig, oz} (9.5)
Proof. We have
7= inf{o_5_,ge$}
= inf{d_7, :9€3}
= inf{d_(5_,:9€%}
= inf{ﬁf,g: geS}= oy
which proves (9.4). Similarly, we have
Efl"‘fZ = inf{§f1+f2—£J: g€$}
inf{af1+f2*91*92: 91,92 € S}

inf {max {07, _,,07,_,,}: 91, 92 € B}
max {10y, vy, }.

A
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Conversely, given g € $ with g < fi + f2, let g1, g2 €$ be such that g1 < fi,
go < f2 and g = g1 + g2. Then f1 g1 =My and fg— g2 = 1og,, whence
fit fo—g=fi— g1+ fo— g2'> max {fy,, [0y, }.

The case g > f1+ fo is treated in a similar way. |

9.3.3 Initializers

Let f€3. Given m € 9 with m > vz, there exists a g € $ with f—g=<m.
Moreover, gm does not depend on the choice of g, and we set fu = gm. We
define the initializer o5 of f by

f>mf Z fm

m>mf

We claim that g€ C[[90]], where we recall that C[[9)]] stands for the set of
well-based seriias in 9 over C'. Indeed, consider m € supp ¢7. Then there exists
a g €S with f —g<m and we have (¢f).m= g-m € 3. In particular, there
exists no infinite sequence n; <ny <--- in supp ¢7 with m=n;.

Proposition 9.11. For any f, f1, f2€ S, we have
Y5 = —¥5 (9.6)
or+7. = (o5t 07) w7, 5, (9.7)

Proof. In order to prove (9.6), let m € M be such that m > = —toz, and let

g€% besuch that f —g=<m. Then (—f) — (—g) <m, f=gm and (— f)m=—gm.
Similarly, given m € M with m = vz, , 7, = max {7, 07}, let g1,g2€ 3 be
such that f; — g1 <m and fy — go <m. Then we have

(it fo)— (1 +g2)=(fi—g1)+ (fo—g2) <m

and
(f1+f2)m—(91+92)m—glm+92m f1m+f2m
This proves (9.7). O

9.3.4 Serial cuts

Let f€$\$ be a cut with ¢; ¢ 3. Then for any ¢ < ¢; and m=02(p; —¢),

there exists a g €$ with f — g <m and we have (PF)rm=Y=g-m€S. In
other words, we always have ¢; € $\'$, where

$={feclm):vgeCllM], g< f=geS}.
A cut feS\$ is said to be serial, if there exists a ¥ € C[[I]] with
f=1(v)=sup{geS:g<v}. (9:8)
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From the proposition below it follows that we may always replace 1 by
¢w; €3\ S and obtain the same serial cut. For this reason, we will iden-
tify the set of serial cuts with 3\ $.

Proposition 9.12. Given a serial cut fz[(l/)), we have

a) Pi= 1/)>Bf~
b) t(pp) =1(¢).

Proof. The equation (9.8) implies g <Af<:> g< for ges. Now,Agiven m- Ef,
let n<m and g €3 be such that f —¢g<n. Then g —n< f<g+n and
g—n<Y < g+n,so that ©F m= fin = g = tm. This proves (a).

Given g €3, we hz}ve g— >6f, since otherwise g —n < 1 < g +n for some
n<5f, whence g — f<n<6f. We even have g77,ZJ>-5f, since gfwxﬁf
would imply 7/1>Ef~ -y = ﬁf and 1/);@ € grm; + C ﬁf C$. Consequently,
g<¥ g<v.wm, = p; so that 1(¢;) =1(¥). O

9.3.5 Decomposition of non-serial cuts

Proposition 9.13. For any f € §\$, we have either

1. wr €M and for some c e C# we have

f:@f+(_35f.
2. oy M\ M and

[=p5L vy

Proof. Modulo substitution of f — o5 for f, we may assume without loss of
generality that ¢7=0, since Ef—g&j: foy.
Suppose that F=m €M and consider
c=sup{ceC:cm< fleC.

We must have € C' \ O, since otherwise f —cm <m= twy. We also cannot
have ¢=+m, since otherwise y=mm. Hence ¢ € C#. If ém < f, then there
exists a 1) €8 with em < < f. If ¢y <m, then ¢/m < f for some ¢’ € C with
c<c' <. If ¥ >=m, then fopm=1Um # 0, which is again impossible. This
proves that ém > f. Applying the same argument for —f, we also obtain
é¢m< f, whence f=ém.

Assume now that vy e 9\ O and let us show that f= +iv7. Replacing f
by — f in the case when f <0, we may assume without loss of generality that
f>0. For g€ $ we now have

0<g<f & 0<grm; < frm;=0 & 0< g <oy D
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The above proposition allows us to extend the notions of dominant coefficients
and terms to $. Indeed, given f e $7, we have either @7 # 0, in which case
we set Efi Corand T5 = CFOF = Tyr, OF =0, in Whifh case f= cioy=_coy for
some ¢€ C#*U{~1,1}, and we set ¢r=c and Tr= f. By convention, we also
set co=T9=0.

Exercise 9.5. Show that for all m, 7 € M we have

em
€M\ M.

meMAReEM =

n
meMvneM = mn

m
m
Exercise 9.6. Show that @ is closed under -—! and show that one may extend
the flatness relation < to 9.

Exercise 9.7. Given f, €S, what can be said about 37, and tv7,?

Exercise 9.8. If C' =R, then show that oy € 9\ M.

Exercise 9.9. Given f€$, compute (—f)+ f.
Exercise 9.10. Given f, g€ 3, show that
f<§ &= 3ceC,|f|<cq

f<§ < VeeC,cf<|g|

Exercise 9.11. Generalize the theory of section 9.3.4 to other types of supports,
like those from exercise 2.1. Show that there exist no serial cuts in the well-based
setting.

Exercise 9.12. Characterize the embeddings of C'[9T into C[[9N]].

Exercise 9.13. Given f €3 and m € M, we may define the coefficient fg of
m in f as follows. If m < vz, then fmz=0. If m > 7 then we have already
defined fg if M €9 and we set fm =0 if m ¢ M. If m=torand f= p7+cm with
ce C#*U{~-1,0,1}, then f;==¢. Show that we may see $ as a subset of C[[M]].
Also give a characterization of the elements in $.

Exercise 9.14. If C =R, then define a “symmetric addition” on C IO by
f+7=05+ ¢g,-w; 07 if 07~ 05, likewise if 07 < g, f+ 7= 5+ ¢5if 0F=T0;
but (f —¢5) (7 — ¢3) <0, and f+ g= @5+ @5+ 07 for equal signs. Show that
this addition is commutative and that f+ (—f)=0 for all f€$. Show also that
the symmetric addition is not necessarily associative.

9.4 Compactification of the transline

Let us now consider the field T = C[L%] of grid-based transseries. Given
a transseries cut f, the aim of this section is to find an explicit expression for
f in terms of cuts in C, the field operations, seriation and exponentiation. We
will denote 3, =sup { f € T:expo(f) =k} for all k€ Z.
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9.4.1 Exponentiation in T

By proposition 9.6(a), the functions exp: T — T~ and log: T~ — T uniquely
extend to increasing bijections exp: T — T> and log: T> — T, which are nec-
essarily each others inverses.

Proposition 9.14.
a) For alle€ C'\ {-»}, we have

expT C = expg C.
b) For all f,g€T, we have

exp (f+g) =exp () exp (7).
¢) For any m €T, we have

R‘lGi\T@ 610g5>~1.

Proof. Let c€ C \ {-»}. If € O, then expp ¢ =expgzc € C~. Assume that
¢ ¢ C. Then it follows from logs exp ¢ = ¢ that expg ¢ ¢ C' and similarly
expgc ¢ C. For any A\ € C' with A\ < ¢, we have e* < expg &. It follows that
expg ¢ < exp ¢. Conversely, for any g € T with —m < g <¢, there exists a ¢’ € C
with g— < ¢’ <&, so that e? =e9= < e¢’ <expzé. This shows that we also have
expT C < expg C.

Now consider f, 7€ T. We have

eft7 = sup{e?t:peTAp< fFAYeTAY <G}

= sup{e?:pcT A< fysup{e®:pcTAY <G}
— ofed
= efed.

This proves (b).

Let meX. If Wioem > 1, then assume for contradiction that there exists
a c€C” with em#m, and take ¢ > 1. Then there exists a g € T with
m< g <cm. But then logm <log g <logm+ logc and logm —log g < 1,
which contradicts our assumption. We conclude that m € ¥\ . Similarly,
if M1ogm <1, then let g €T and ¢y, c2 € C be such that ¢; <logm — g <co. Then
m<edtee<e1m, so that m¢ T\ T. This completes the proof of (¢). [

9.4.2 Classification of transseries cuts

Let f € T. The nested sequence for f is the possibly finite sequence fo, fi,...
defined as follows. We take fy= f. Given f;, we distinguish two cases for
the construction of f;,1:

NS1. If f;e TU+{0}U+3zUC, then the construction has been completed.
NS2. Otherwise, we let ;= @5, ¢;=sign (f; — ;) and f;11=loge; (fi— i),
so that

fi=pite efi+1, (9.9)
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We will denote by I € N the number such that f; is the last term of the nested
sequence; if no such term exists, then we let [ = +oo.
For any 0< i < j <, repeated application of (9.9) entails

f.
cwj—ttej e’

Ji= it eerititeine : (9.10)
In particular, if [ < +o0, then we call

Cer—1te_pell

F=po+eerrtae (9.11)

the nested expansion of f. If =400, then the nested expansion of f is defined
to be

f: @0+606@1+61e¢2+629’ ) (912)

In this latter case, the nested expansion of each f; is given by
@itoteitae »

ﬁ' =pi+e€ e¥ititeitie

The following proposition is a direct consequence of our construction:

Proposition 9.15. Each f € T admits a unique nested expansion of one and
only one of the following forms:

feT; (9.13)
f = £0; (9.14)
_ er1te 1Tk

f = @oteerrtac (keZ); (9.15)
_ ep_1te_1e” _

[ = woteertae (ceC\CO); (9.16)
_ er_1tep_ged R

f = got+eerrtac (geT\T); (9.17)
f = @O+eoes&1+ele“’2+€2e‘ ] (918)

In order to completely classify the elements in T, we still need to determine
under which conditions on the ¢;, €;, s, ¢ and g, the expressions (9.15),
(9.16), (9.17) and (9.18) are the nested expansion of a cut f €T \ T. This
problem will be addressed in the next sections.

9.4.3 Finite nested expansions

Proposition 9.16. Assume that f € T admits a finite nested expansion. Then

a) 1 22=p1€T, and 1<z'<l:><pi€’1[‘5.
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b) 1<i<INpi=0=¢=1 and
I>0Np_1=0= e \TV(I=1A fe—3y).

. pr_1te_1ell

c) ePit1teitie <supp @; for all 0 <i<l.
d)1>1= fi¢ TU+{T}.
e)1=2=fi>0V ficC\{-m}.

Proof. Given 0 < i <, proposition 9.13 implies that either efi= oy € ‘f\ T
or efi=zm for some € C# and m € T. In the first case, proposition 9.14(c¢)
implies to7, > 1 whence ¢; € T\ and fit1>0. In the second case, we obtain
fi =logm+log & with log @€ C#. We cannot have m =1, since otherwise | =1.
Therefore, p; =logm € 'I[“f, & =sign (log @), f;=log|logé| and [ =i+ 1. This
proves (a). Similarly, if 1<i=1, then either ;e C# or /1€ T\ T. In the second
case, o7, -1 and vy, | > 1 yield either fie (T \'T)>, fi€ 5y or fi=. This
proves (e). B

Now let 1 <i <. By what precedes, we necessarily have efi-1 = oy
and f;>0. If ¢; =0, then it follows that €; =1, since ¢; :efi“/ﬁ > 0. This
proves the first part of (b). Assume that [ >1. We cannot have f; € T, since
otherwise fi_1= 1+ €1 efleT. Similarly, f,=0 would imply fi_1=0
and f; = —0 would imply f_1 = pr—1€T. If ¢;_1=0 and fi = 3%, then
fii1=€—1 5041 ¢ 5y, whence [ =1 and ¢,_1 = —1. We cannot have ¢;_1=0
and f; € C, since this would imply f,_1 =€ _; efieC. Finally, if f; €T, then
we have shown above that toz =1, so that fie ’IT; \ T. This completes the
proof of (b) and also proves (d).

f1
PL—1ter—qe
In order to prove (c), let 0<i <[ and m=e¥i+1Hei+1e , so that

fi= pi+€;m. We conclude that m = tom = vy, < supp ¢;. ([l

Proposition 9.17. Let f €T be as in (9.11), where @o,..., 1 €T,
€0, 6-1€{=1,1} and e TUX{B}U+37,UC are such that the con-

ditions (a—e) of proposition 9.16 are satisfied. Then, f admits (9.11) as its
nested expansion.

Proof. Let us prove by induction over t=1,1l —1,...,0 that

er1te _qell

fi=i+eeriritene (9.19)
satisfies
A)iz1= fi¢ TUL{D}.
B)iz=2= fi>0V(=iA f;cC\{-m}).
C)1<i<l=fi=1.
D) 0<i <l=fo7, < efitt,
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E) f; admits (9.19) as its nested expansion.

These properties are is trivially satisfied for i =1. So assume that they hold
for 4+ 1 and let us show that they again hold for .

From (A) at order i + 1, we get f; 1 ¢ TU+{0}. Since f;y1=1log (e; (fi—
©i)), we have f; € TU+{0}= f;11 € TU+{0}. This proves (A) at order i.
For i > 2, we have either ;#0, in which case ¢; € TS implies fi>0,0r p;=0,
in which case ¢;=1 and f;1>0 imply f;=efi+1>0. This proves (B).

As to (C), if 1<i<1 and ¢; #0, then ; € T\ implies f; ~ ; = 1. If
1<i<l—1and ¢;=0, then fi;;>1 and f;;1>0 imply f;=efi+1 1. If
1<i=l—1and ¢;=0, then e, \T and fi_y=elt>1. ~

Now let 0<i <. In order to prove (D), it suffices to show that efi+1 ¢
(T\T)UC# . Assume first that i <! — 1, so that 7, < efiv2 If fiio€
C\{@}, then ¢; 1 #0and efi+1 € C#T. If f,o¢ C or fiyo=m, then fi,o>1
and foy, | =efi+2 - 1. Hence efi+1 € T\ T, by proposition 9.14(¢). Assume now
that i=1—1. Then either f; € C# and efic C#, or f;=3, for some k € Z and
efl=3,,,€T\%, or fie T, \T and e/i+1 €T\ T, since foz, > 1. This proves
(D). The last property (E) follows from (D) and (E) at stage ¢ + 1. O

9.4.4 Infinite nested expansions

To any f €T, we may associate a natural interval
Ty={geT: f<g}=[f -, [+,

where f <7< f <z and t =inf {m € T:supp f > m}. Given a sequence
(v0,€0), (p1,€1),... with @o, p1,... €T and €1,€9,... € {—1,1}, we denote

Ty

A j=piteerititane

for all i < j and A;= ZO,i for all 7. We also denote
I,= Zi,i N Zi,i—o—l N Zi,i+2 n---

for all i >0 and I=1,. Given f €T, we finally define n(f) € N by
0 if f=0

n(f)=491 if feexpgx
mMaXmesupp £77(logm) + 1 otherwise.

Proposition 9.18. Assume that f € T admits an infinite nested expansion.
Then

a) p1 €T and a2, @3, . .. GTE.
b) We have ¢;#0 for infinitely many i, and ¢;=0=¢;=1 for all i > 1.
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c¢) For every i =0, we have Aon--- ﬁzi#ﬁ.

Proof. Property (a) is proved in a similar way as in proposition 9.16, as well
as the fact that ¢;=0=¢;=1 for all ¢ > 1. Property (c) is obvious, since
fezoﬂ'uﬂzi for all i > 0.

Let us prove that ¢; # 0 for infinitely many i. It suffices to prove that
©i70 for one i, modulo repetition of the same argument for f; | instead of f.
Considering f; instead of f, we may also assume without loss of generality
that f>0and f>1. Since f ¢ +{0} U432z U+{®}, there exist g,h € T with
g < f <h and expo(g) =expo(h) = k. For a sufficiently large r, we now have
log, g =expr—rx + 0(1) and log, h = expr_,x + o(1). But then expy_,x <
log, f so that ¢;# 0 for some i <r. This completes the proof of (b). O

Proposition 9.19. Consider g, ¢1,... €T and €g, €1,... € {—1,1}, which
satisfy conditions (a—c) of proposition 9.18. Then ;N T =1, T + T,

Proof. Let f1 €I;N'T and define fo=log (e1 (f1— 1)), f3=1log (e2(f2— ¥2))
and so on. We claim that f; — ¢; > 1 for all > 1. Indeed, let k& be such that
@iy1="=@iyk—1=0 but i1 #0. Then log (€; (fi — ¢i)) = @iyr € TZ,
whence f; — p;=€;expr (@itr+ )= 1.

Given 61 € TS, we have to prove that fi +6; €1;. Let us construct a sequence
32, 03,... of elements in TS as follows. Assuming that we have constructed
0;, we deduce from f; — ;=1 that f;+d0; — p; > 1, so, taking

84
(51‘ =lo 1+ ‘ >,
i g( fi— @i

we indeed have 6,41 <1< 1 as well as
fit1+dir1=1log (Ei(fi—i-(si— L,Oi)). (9.20)

Now f; e Zi,i and § < 1 <supp p; imply f;+4d; € Zm. By induction over j —1,
the formula (9.20) therefore yields f;+ ;€ Zi,j for all 1 <i< j. In other words,
fi+6; €1, for all i > 1 and in particular for i =1. O

Proposition 9.20. Consider ¢g, ¢1,... €T and €g, €1,... € {—1,1}, which
satisfy conditions (a—c) of proposition 9.18. Then I={f} for some f €T\ T
with nested expansion (9.18).

Proof. Since I=A¢N (AgNA)N(AgNA;NAL)N--- is a decreasing inter-
section of compact non-empty intervals, I contains at least one element. If
T contains more than one element, then it contains in particular an element
f€T. Assume for contradiction that INT # @. Then we may choose (o, €9),
(p1,€1),... and f €1 such that n(f) is minimal.
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Let m=0(f — ¢o) and g=logm. From ¢y < f, it follows that m € supp f
and 7(g) <max{1,n(f)—1}. Since log (e (f — ¢o)) —logm =<1, we also have
g €14, by proposition 9.19. Hence 7(g) > n(f) and n(f) <1, by the minimality
of the counterexample f. Now f = g is impossible, since otherwise pg— f=
0€egexply. It follows that f 0, since f = @, whence n(f)=n(g)=1. We
cannot have f € C, since otherwise m=1, ¢=0 and n(g) =0. Therefore, there
exists an | € Z with f=exp;z, po=0 and g=exp;_1z. Repeating the same

argument, we conclude that ¢g= ¢1="---=0, which is impossible.

Now that we have proved that I={f} for some f€T\T, let us show
that f admits (9.18) as its nested expansion. Indeed, we also have I = {g}
for g=1log (eo (f — o)) and proposition 9.19 implies e7 € T\ ¥. Consequently,
=105 = Mes= e, since e/ <supp po. This shows that g= fi1. Using the
same argument, it follows by induction that I, = { fi} for all k. O

Proposition 9.21. Assume that f € T admits an infinite nested expansion.
Then for every 1 >0 and m € supp g;, there exists a j > with A; ; — @; <m.

Proof. Let G5 be the set of monomials m € supp ¢, such that for all i >0
there exists a § € A; with §— ¢o=m. Let & be the union of all Sy, for nested
expansions f of the form (9.12). If & = @, then we are clearly done, since we

would in particular have &7, =& for each fi=pi+e ePi+1teit1e Qo Jot us
assume for contradiction that & is non-empty and choose f and me &7 C &
such that n(m) is minimal. Let ¢ >0 be minimal such that ¢; #0. If §=1 or
m 1, then let § =1. Otherwise, let § = —1. Setting 1 =log; m? and n=0y,_y
(whenever ¢; # 1), we distinguish the following four cases:

Case ¢p; = 1. We first observe that ¢;41 = —40. Now let j >4 be minimal
such that ;0. Then exp;_; 7= 1 and m = exp? (p; — S exp;_; k) for all
ht ¢j. This contradicts the fact that m € G7.

Case n ¢ supp 9. For all & ¢;, we have §— ¢~ @; — )~ @; o1, so the sign
of g— 1 does not depend on the choice of g. Since m € &7, we may choose
g such that m < exp; §. But then sign (§ — ) # sign (f; — ).

Case n € supp 9 \ &5,. Let j >1i be such that n- g— ¢; for all g€ A; ;.
Given ge Zm, it follows that g — 1~ ; — 1), so the sign on g — 1 does not
depend on the choice of g. We obtain a contraction as in the previous case.

Case n € supp 9 N &y,. The minimality hypothesis entails n(n) > n(m). By
the construction of n, we thus must have 7(m) < 1. Since m=1 implies ¥ =0
and n ¢ supp v, it follows that m =expy « for some k € Z and ¢ =expy—; z.
Since supp ¥ is a singleton, we also must have n =1 =expr_; . Now if
Te; > 1, then we would have exp; fi = m, which is impossible. If Tp, <M,
then exp; g <m for all g ¢;, which contradicts the fact that m € &5.
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In all cases, we thus obtain a contradiction, so we conclude that S =g. O

Exercise 9.15. Prove that e =3 and e” =®. In the case when C' =R, show
that (modulo suitable adjustments of the theory) the “halting condition” NS1
may be replaced by the alternative condition that

fie TUL{0} U+, U+{5,7}%.
Exercise 9.16. Show that the condition (d) is needed in proposition 9.20.

Exercise 9.17. Show that the conclusion of proposition 9.21 may be replaced
by the stronger statement that for all ¢ >0, there exists a j >¢ with A; CA,.
Does this still hold in the case of well-based transseries?

9.5 Integral neighbourhoods of cuts

9.5.1 Differentiation and integration of cuts

Let J be an interval of ¥. Any cut f=supggsy /€ C LI\ CIIT (where I
is an open initial segment without maximal element) naturally induces an
element «(f) =supg I in T. Identifying f with ¢(f), this yields a natural
inclusion of C'IJT into T, which extends the inclusion of C'[J1 into T. For
any g€l with g < f, there exists a he I with g<h< fsothat f—g>h—g€
CI31>. In other words, f is a cut in T \ T whose width lies in J. From
proposition 9.13 it now follows that either f= S m or f= $F+ choF
for some pre C'[7] and c€ C.=C\{-m,m}. In other words,

CIOT = CL[O)NT.
In particular, each element f €T admits a canonical decomposition
f=Ft =+ F< (9.21)

with f. € T, =CIZ, 1, f~€Cx and foeT2=COZT.
Denote 4= (zlogxzlogax --+)~! and consider the differential operator 0

on T. The restrictions of d to Ty and T respectively yield increasing and
decreasing bijections

8>:T> — C'IT}»V]]
8<:T< — C'IT<»7]]
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By proposition 9.6, we may extend J.. and O« to the compactifications of Ty
and T-. This allows us to extend d to T by setting 9 f = s f.. + 0~ f< for
all f€T. Notice that @ = (—3)' =4 and (—)’ =3 = —7. The logarithmic
derivative of feT7 is defined by ff= (log | f])".

Similarly, the inverses of d. and O, which coincide with restrictions of
the distinguished integration, extend to the compactifications of C'[%, 51
and C[T<~1. By additivity, the distinguished integration therefore extends
to T\ (T\-5%7). The distinguished integrals of § and —¥ are undetermined,
since [+ 4 can be chosen among +# and F3.

9.5.2 Integral nested expansions

Let f €T\ T be a cut. We say that f has integral height [, if either

e [=0and feT.
e !=0and f=p;+&m for some ¢€ (CU{-3,5}) and me <.

e f¢T and oy ¢ {5,1,m} T, so that f:<p+eeff for p=preT, e=
sign (f —¢) and f=(f — ¢)%, and f has integral height [ — 1.

The integral height of f is defined to be [ = o0, if none of the above conditions
holds for a finite [ € N.

We say that f is right-oriented (vesp. left-oriented) if

e [=0and f:goern_om (resp. f= goffn_om) for some me %.
e [=0and f:goffim (resp. f:goer 5m) for some me¥.

e [>0and f= <,0J?—|—ef)E (resp. f= 05— eff), where f is a right-oriented cut
of height [ — 1. ~ B

e [>0and f= 0F — et (resp. f= o7+ eff)7 where f is a left-oriented cut
of height [ — 1.

e [=o0and f=-0 (resp. f=0).

An oriented cut is a cut which is either left- or right-oriented. A cut f is said
to be pathological if f= 5+ cm for some c€ C#andme%, or f= cp;:l:eff,
where f is a pathological cut. If C'=1R, then there are no pathological cuts.
If f is neither an oriented nor a pathological cut, then f is said to be reqular.

For each k <1, we recursively define ¢, € T, e, € {—1,1} and fr 1€ T\ T
by taking ¢ = o5, (starting with fo=1f), ex =sign (fr — ¢r) and fri1=
(fx — &) . The sequence fo, f1,... is called the integral nested sequence of f
and the sequence g, ©1,... its integral guiding sequence. For each k € N with
k<, we call

E
Pk —1tep—1e
f: <P0+€0 eftp1+e1ef_
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the integral nested expansion of f at height k. If f is an irregular cut of height
I <00, so that f;= 7+ &m for certain ¢€ CU{-3,5}\ C and me T, then we
also define ¢; = p5, and ¢; 1 =logm. In that case, we call [+ 2 the extended

integral height of f and o, ..., @141 the extended integral guiding sequence.
If f is a regular cut, then the extended integral height and guiding sequence
are defined to be same as the usual ones.

9.5.3 Integral neighbourhoods

Let feT \ T be a cut of integral height [ and with extended integral guiding
sequence g, ©1,.... Let g <h be transseries in TU {«, —}, where «— and —
are formal symbols with «— <T < —. Then the set

Y
fs01+01ef“'%71+ e #
Loo,....on_1,9,h=] Po+coe 1C0y-- 1 €ECT g< fu<h

is called a basic integral neighbourhood of extended height k, if either one of
the following conditions holds:

e k=0and g< f<h. This must be the case if f¢€ T.

o k=1,1=0, fis irregular and g < @1 —7< o1+ < h.

o k=21=0, fisirregular and g < 7' <h.

o k>0,l>0and Ly,,... o 1 g,n is a basic integral neighbourhood of fi.

The height of Lo, ... 4. 1,9,n is the minimum of & and [. An integral

neighbourhood of f is a superset V of a finite intersection of basic integral
neighbourhoods. The (extended) height of such a neighbourhood is the max-
imal (extended) height of the components in the intersection.

Let V be an integral neighbourhood of f of height k£ and consider
a transseries f €V close to f. We define the integral coordinates of f by

fo = f
fi = (fo— o)t

fe = (frm1—r—1)t

If W is an integral neighbourhood of fi, then we notice that V= ¢g+ C# e/
is an integral neighbourhood of f, and it is convenient to denote the integral
coordinates of fi €W by fi,..., fr.

Ezxample 9.22. Let ¢€ CU{—3,3}\ C and consider a basic integral neighbour-
hood V of ¢ of height k£ > 0.
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If k=1, then V="Lg 4.0, with g < -5 <¥ <h. In particular, there exists
an [ € N with g < —(log;z)" and h > (log;z)’. For any f €T with f*1 and
f =<log;_1x, it follows that fT=(log|f|)’ < (log;z)’, whence f€V. For any
feT with =<1, we also have | f | <| f’| < ¥, whence f € V. By distinguishing
the cases = +3, ¢=+m and ¢ € C#, it follows that V D (g, fL) for certain g,
heT with g<é<h.

If k=2, then V= Lo,0,g,5, where VT =Lg 4 j, is an integral neighbourhood
of both 4 and —%. Hence,

1 1 1
log /) = —— — _ — ... <h
g<(log7) rz =xlogr xlogzlogax <
so there exists an [ € N with
1 2

and

It follows that for any f%#1 with f <«log;z, we have

fT=(log f)' < (logi11x) = (log; )
and
f11=(log f1)" < (log (log; ) )’ = (log; ) T,

so that feV. Similarly, if f=c+e with c€ C7 and (log;z)~' <& <1, then

fixe' = ((log;z)~ 1) =< (log;z)" /log; =,

whence
f11=(log f1)' > (log ((log; )t /log; x))’ = (log; x) T — (log; ) T

and feV.

9.5.4 On the orientation of integral neighbourhoods

Let fe T\ T be a cut. A one-sided neighbourhood U of f is either a superset
of an interval (f, g) with g €T and g > f (and we say that U is a right
neighbourhood of f) or a superset of an interval (g, ]?) with g€ T and g < f
(and we say that U is a left neighbourhood of f). A neighbourhood of f is
a set U which is both a left neighbourhood of f (unless f= —(_5) and a right
neighbourhood of f (unless f="0).
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Proposition 9.23. Let f € T\ T be a non-pathological cut and let V be an
integral neighbourhood of f.

a) If f is regular, then there exists a neighbourhood U of f with U C V.
b) If f is right-oriented, then f admits a right neighbourhood U with U C V.
¢) If f is left-oriented, then f admits a left neighbourhood U with U C V.

Proof. We prove the proposition by induction over the height k& of V. If
f==0, or k=0 and f is regular, then we may take { =V. If k=0 and f#=+0
is oriented, then the result follows from what has been said in example 9.22.
Assume therefore that k>0 and let f= g+ € eft be the integral expansion
of f at height 1.

We have V D VyN--- NV, where each V; is a basic integral neighbourhood
of f of height k. Modulo a final adjustment of U/, we may assume without
loss of generality that Vy="T. We have V; = ¢o+ C#* e/ for all i > 0, where
each Wi is a basic integral neighbourhood of fi. Let W=W;N--- N W

a) If f is regular, then so is fi, hence the induction hypothesis implies that
there exist g, h € T with g < fi <h and (g,h) CW. We conclude that either
eo=1 and (g0+efg7ap+efh) CVor ¢g=—1 and (Lp—efh7ap—efg) cv.

b) If f is right-oriented, then either eg=1 and f; is right-oriented, or ¢g= —1
and f is left-oriented. In the first case, the induction hypothesis implies
that there exists a g € T with f; < g and (f1,g) CW, so that ( f, <p+ef9) cy.
In the second case, there exists a g € T with g < f; and (g, f1) C W,
so that (o —el9, F)CV.

¢) The case when f is left-oriented is treated in a similar way as (b). O

Proposition 9.24. Let f € T\ T be a cut and V an integral neighbour-
hood of f, of height k. Then there exists an integral neighbourhood W of f of

height k, such that W CV and fo— ¢o,.--, fr—1 — @r—1 have constant sign
for few.

Proof. We prove the proposition by induction over k. If k=0, then we may
take W =V. So assume that k>0 and write f = g+ € e/ 71, We have
VY D VyNV,, where V is a basic integral neighbourhood of height 0 of f
and V. an intersection of basic integral neighbourhoods of heights > 0. By
the induction hypothesis, there exists an integral neighbourhood X of fj,
such that X € (V. — ¢o)T and fi — ¢1,..., fu—1 — @x_1 have constant sign
for all f; € X. Now take

W Vo (g0, —) N (po+CFel ) if ¢g=1
Vo (<, ¢0) N (po+CFel¥) if eg=—1
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Exercise 9.18. Show that y=inf{f": feT>"}.
Exercise 9.19. Show that & maps T into T.

];)xercise 9.20. If ferl“, then show that either f. ¢ T and f<=0, or f. €T,
fx%c and f<:07 or f&ET.

Exercise 9.21. Show that the extension of 8 to T is not additive.

Exercise 9.22.
a) Show that the operators o: T x T~ — T and -°~%:T">> — T" > naturally
extend to T x T"> resp. T~>.
b) Give an explicit formula for fom, where f€T.
¢) Does the post-composition operator o, T — T with g € T preserve addition
and/or multiplication?

Exercise 9.23.

a) Compute the nested integral sequences for U,  and .

b) Prove analogues of the results from section 9.4 for nested integral sequences.

9.6 Differential polynomials near cuts

Let P T{F}* and feT\T. In this section, we study the asymptotic
behaviour of P(f) for f close to f. In particular, we study the sign of P(f)
for f close to f.

9.6.1 Differential polynomials near serial cuts

Lemma 9.25. Let fe T\T Then there exist g,h € T with g < f <h and
T€C7 X, such that P(f)~ 7 for all f € (g,h). Moreover, if oy =7, then g
and h may be chosen such that deg 5P r=0 for all f €(g,h).

Proof. If there exists a ¢ <1 f with deg <supp p P+ =0, then the lemma follows
for =Py, 0and any g,h €T with g< f <h and h — g <supp . Assume for
contradiction that d =min ,_ ; deg <supp, Pryp > 0.

If d=1, then each ¢ < f with deg <supp o P+ =1 induces a solution f,=
@+ h to P(f)=0, by letting h be the distinguished solution to the equation
Py ,(h) =0 (h<supp ¢). Now pick p1<9p2<1---< f such that

(fw - fwi)l{mrﬂnesuppwymkn} #0
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for all j > 4. This is possible, since supp f would be a subset of the grid-based
set supp fo,, if (fy — fo.)|{m:Inesuppy,m=n} = 0 for some 7 and all p; <) < f.
Now d(fy, 0= for)s-- 2 0(fiorsn — fooin) are pairwise distinct starting mono-
mials for the linear differential equation P, ., 1(h)=0, which is impossible.

Assume now that d >1 and choose x < 1/3 with d=deg <suppy Pt Consider
the set . of all partial unravellings

f=¢+f (feCcrTD) (9.22)

relative to the equation P+X(f) =0 (f <supp x), such that o= Er\i < f and
deg g Pt ,=d. Since . contains the identity refinement, we may choose (9.22)

to be finest in ., by corollary 8.32. We claim that ¢ < f is maximal for <,
such that deg ssuppy Pt =d.

Indeed, assume for contradiction that some 1 > ¢ also satisfies
deg <suppy Pry =d,

and let 7=7(v¢ — ¢). By proposition 8.27, there exists a partial unravelling

F=E+E+f  (F=9),

which is finer than (9.22), and such that € ~7. But then ¢ +7= (£ + é)ﬁz af
and deg_z Pty =d, which contradicts the maximality of (9.22).

Our claim implies that deg <suppw Py < d for any ¢ < f with ¢ <. This
contradicts the definition of d. O

9.6.2 Differential polynomials near constants

Lemma 9.26. Let f € CU{—3,3}\C and meT . Then there exist an integral
neighbourhood V of f and weX, such that

P(f)~Np(f)n
and degm Pry=0 for all feV.

Proof. Let [ >0 be such that P1; is exponential, Np = Dp1, and log; x < m.
Let @ € C[F] and v € N be such that Np=Q (F")".

Take V =L o (log,2) 11— (log,z) T, (log,z) 1T and let f e V. If =4, then
fi < (log;2)', so ft < (log;x)" and f Xlog;z. If f1T <74, then fif>
(logs ) T — (log )T, whence 5= (logi2)1/logi, log (f/ f) = 1/logi and
f — f<=1/log;x. This proves that either f1;>1 and f1; Xz, or f1;x1
and (fT)¢ Xz
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If f1;>1, then Np(f1)) ~c f1E(£1])7, where ¢ #0 is the leading coef-
ficient of @ and d=deg Q. Since (f1])” Xz, it follows that Np(f1;) == 1,
whence P(f)~ Np(f)n for n=0n,,0p1,i. Moreover, ?( f1;) is not a starting
monomial for P1;(f) = Np(f)opt,+ -~ =0, since d(f1;) # 1. Consequently
deg<m P r<deg<rPyy=0.

Similarly, if f1;<1, then Np(le) ~c 1 (f11)", where ¢#+0 and p are
such that Q(fx +¢)=cet+ ---. Again, we have (f1])” Xz, Np(f11) me= 1
and P(f)~Np(f)n. Furthermore, 0((fT1)) #1,500((f11)%) is not a starting
monomial for Py r_1,(f) = NP+fx(f) opp, + - - - =0. Therefore, deg<m Py s <
degr<f*<F1rf:::0. (]

Corollary 9.27. Let f = @0_1_56[%1 be an wrreqular cut of height 0. Then
there exist an integral neighbourhood V of f, Q € C[F|* (F")N, and ne ¥, such
that for all f €V, we have

P(f)~ QL)

ofe1

Moreover, if eler v, then we may take V such that deg 5 P,s=0 for
all feV.

9.6.3 Differential polynomials near nested cuts

Lemma 9.28. Let f= o+ € ST eT \T be a cut of integral height >1.
Then there exist g,h € TU{«, —} with g< f <h and i € N, such that for all
f€(g,h), so that 0, is not a starting monomial for Py ,.(f)=0, we have

P(f)~Rp,,, .((f— ©o) ") (f — o)™

Moreover, if wz>7, then g and h may be chosen such that deg<5P1¢=0 for
all f as above.

Proof. Let P = P, ,,. By proposition 8.17, there exists a unique integer ¢
such that for each equalizer ¢ ) for P(f) =0, we have either ¢; » < oy and
k<iore;>toyand j<i. 1\~Tow let f:cpo—i—f?’l[‘ be such thzit ﬁlZUJ; is not
a starting monomial for P(f)=0, and ¢; , < f if k<i and f<e;pif i<
for all equalizers ¢;  for P(f)=0. Then Np,_=cF' for some c & C7 and
Pyali=cnFi4 oe(n) for some sufficiently large I and ne . Consequently,

P(f)=P(f) = <mem<<f/
i

P()=E )T L~ (en) b
Rs(f1) fP=P(f) = (Pxa0)((f/m)T) i~ (en)li,
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which proves the first statement of the lemma. Moreover, since m is not

a starting monomial for Py, (f) =0, we have deg-m Pyy=0. If toz =7, it
follows that deg 5 P} s=0 whenever f is chosen such that f=7. |

9.6.4 Differential polynomials near arbitrary cuts

Theorem 9.29. Let P € T{F}7 and let f € T\'T be a cut of height | with
integral guédz’ng sequence pg, p1,.... Then there exists an integral neighbour-
hood V of f of height k <min{l,r}, such that one of the following holds:

o There exist ig, ... i1 €N and 7 € C* X, such that for all f €V, we have

P(f)~(fo— o) (fo—1—pr—1)" "7, (9.23)
e The cut f is irreqular, k=1, and there exist ig,...,ix_1 €N, Q€
C[F] (F")N\C and n€ T, such that for all f €V, we have
P(f)~(fo— o) (frm1—pr—1)"*" Q(f’}@;kff) n. (9.24)
€

Moreover, if toz >4, then V may be chosen such that deg<5P.f=0 for
all feV.

Proof. We prove the theorem by induction over r. So assume that we proved
the theorem for all smaller 7 (for r <0, there is nothing to prove). If f¢& T,
then the result follows from lemma 9.25. If f= ¢ +ém with m < supp ¢ and
c¢ecCuU{-3,3}\C, then we are done by corollary 9.27.

In the last case, we have f= o+ € e/ 7t for some €o=+t1. By lemma 9.28,
there exists an ig and an integral neighbourhood V; of f of height 0, such that
for all f €V so that 95—, is not a starting monomial for P, ,( f) =0, we have

P(f)~Rp,_ . (fo— o) (fo— o)™ (9.25)

+v0>
By the induction hypothesis, there exists an integral neighbourhood W of f;
of height k', such that k:=%"4+1<min{/,r} and one of the following holds:

e There exist i1,...,ix—1 €N, and 7 € Cc* %, such that for all f, € W, we have

Rp, o o(f0)~ (fi=@0) - (fro1 = pr—1)™ ' (9.26)

e The cut f; is irregular, k =1, and there exist iy,...,ix_1 €N, Q€
C[F] (F")N\ C and n €%, such that for all f; € W, such that

Rp, o (f1)~ (fi—1) - (fro1— or—1)* " Q(%) n. (9.27)

Moreover, for f; € W, the induction hypothesis and proposition 8.16 also
imply that e/ /! is not a starting monomial for PJWO(];) =0, since tog, > 7.
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Now take V="VyN (¢ + C#e/™). Then the relations (9.25) and (9.26)
resp. (9.27) entail (9.23) resp. (9.24) for all f €V. Moreover, if oz~ ¥, then
Vo may be chosen such that deg <5 P4 f=0for all f €V CVp, by lemma 9.28. [

9.6.5 On the sign of a differential polynomial

Let P e T{F} be a differential polynomial. We denote by op: T — {—1,0,1}
the sign function associated to P:

—1, if P(f)<0
op(f)=sign P(f)={ 0, it P(f)=0.
1, if P(f)>0

We say that op is constant at the right of f €T, if there exist e€ {—1,0,1} and
g> f such that op(f) =e for all f€(f,g). In that case, we denote o (f) =e.
We say that op is constant at the left of f €T, if there exist e € {—1,0,1} and
g < f such that op(f)=efor all fc(f,g), and we denote op(f)=e. If op is

constant at the left and at the right of f, then we say that op is constant at
both sides of f.

Proposition 9.30. Let Q€ Q=(QuF¥+ -+ Q,F°) (F') € C[F] (F")N with
Q4a#0 and Q,#0. Then

oH(@) = sign Qq (9.28)
oo(—m) = (—1)¥signQq (9.29)
og(3) = (—1)"signQ, (9.30)
cH(=3) = (—1)"sign Qs (9.31)
Proof. For feT>"~, we have
QUf)~Qafe(f)”
and f’>0. That proves (9.28). The other properties follow by considering
Q(—f) and Q(£1/ f) f4e? instead of Q(f). O

Theorem 9.31. Let P€ T{F} and f € T. Then

a) If f is reqular, then op is constant on both sides of f, and op(f)=op (f).
b) If f is left-oriented, then op is constant at the left of f.

c) If f is right-oriented, then op is constant at the right of f.

d) If f €T, then P is constant at both sides of f.

Proof. Propositions 9.24, 9.30 and theorem 9.29 imply (a), (b) and (¢). Prop-
erty (d) follows by considering P(1/ f) f4°8" instead of P(f). O



9.6 Differential polynomials near cuts 229

Proposition 9.32. Let P € T{F}7, me ¥ and denote i = val Np, . <j=

deg Np, ... Then
mm) = op(mm) = aé;j_(mT—i—i)

op(3m) = op(Gm) = Uﬁpi(mT*V)

Proof. From (9.28), it follows that oy, ()=op, (). Consequently,
Xm J,Xm
Pyw(f) ~ Pj xm(f) for all sufficiently small f € T>>, so that of(mm) =

0'?3;({_*) m). Similarly, we obtain op(5m)=o0p (5m). Since

0p, /) = Orp(ml+ fT)

UPi,Xm(f) = URPi(mT + fT)
for all feT~>, we also have
0’1—%((_”7111) = UEPJ(mT—l— )
op,(5m) = og, (mf—7). O

Let 20 be an initial segment of €. The sign op gy of P modulo 20 at a point
f €T is defined as follows. If degoy Py ¢ >0, then we set op gu(f) =0. Recall
that deggy P4 s is the multiplicity of f as a zero of P modulo 20 in this case.
If deggy Py s =0, then for all § € C[WI, we have op, ,(0) =sign P, and we
set op gn(f) =sign Py€ {—1,1}. Given f€T and f €T, we write f <gy f if
f<f+6foral édcCIWI. Given f, e T, we denote

(f, g)w:{heT: f<gnh<gng}.

We say that op gy is constant at the right of feT, if there exist e € {-1,0,1}
and g >qy f such that op gn(f) =€ for all f€(f,g)aw. In that case, we denote
o an(f) =€. Constance at the left is defined similarly. If 20 is of the form
W={me T:m =<1}, then we also write op < =0p oy, Op L =0p gy and

Op, 4w =0p, 95
Exercise 9.24. Let H D T{F} be a Hardy field. Consider a cut f €T and

an element h € H, such that g < f<> g <h for g€ T". If o (f) is defined, then
show that there exists a g € H with g > h and op(p) =0cp(f) for all p € (h, g).

Exercise 9.25. Show that ¢(z),

1 1 1
O

x Tt "

and
1 1 1

T elong elog4 x

do not satisfy an algebraic differential equation with coefficients in T. Compare
with the technique from exercise 8.25.
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Exercise 9.26. Let L be a real analytic solution to L(logz) = L(z) —1 (for a
construction of such a solution, see [Kne50]). Show that TV{L} is a Hardy field.

9.7 The intermediate value theorem

In this section, we assume that C' is a real closed field. Our main aim is to
prove the following intermediate value theorem:

Theorem 9.33. Let PET{F'} and f,g€T be such that f < g and P(f) P(g) <
0. Then there exists a he (f, g) with P(h)=0.

In fact, we will prove the following stronger version of the theorem:

Theorem 9.34. Let P T{F} and let 20 be an initial segment of . Assume
that f,g€T are such that f <g g and op a(f)op,a(g) <0. Then there exists
a he(f,qg)w such that deggy Pyp, is odd.

In both theorems, the interval (f, g) may actually be replaced by a more
general interval (f_, g) with f,g€T. More precisely, we say that P changes sign
on (f,g) modulo 20, if U}rﬁm(f) and op gy(g) exist and crfgr’m(f) op.am(g) <0.
Notice that P changes sign on (f, ) modulo 20 if and only if P changes
sign on (f, 7)ay. We say that P changes sign at h € T modulo 20 if deggy Py 1,
is odd. Now if P changes sign on (f, J), then it also changes sign on (f, g)
for some f,g€ T with f< f<g<g, opaw(f)= JIJ{QB(]?) and op a(g) =
op a(g). Consequently, if theorem 9.34 holds for all intervals (f, g) with
f,g €T, then it also holds for all intervals (f,g) with f, g€ T.

Remark 9.35. The fact that P changes sign at h € T modulo 20 does not nec-
essarily imply o g5(h) op gn(h) <0. Indeed, P=F' changes sign modulo o(1)
at h=0, but o, _;(0) and o5/ ,(0) are not defined.

9.7.1 The quasi-linear case

Lemma 9.36. Let P C{F} be of order r and let 20 be an initial segment
of X. Assume that the theorem 9.3/ holds for all differential polynomials of
order <r. Let v €% be such that the equation

P(f)=0  (f=v) (9-32)

is quasi-linear and assume that P changes sign on (0,30)gy. Then there exists
ahe (0, 30)93 with degoy Pyp=1.
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Proof. Modulo an additive conjugation by a sufficiently small ¢ € (0, 30)qy,
we may assume without loss of generality that deggy P =0. Since (9.32) is
quasi-linear, it admits only a finite number of starting monomials. Let m be
the largest such monomial. Modulo a multiplicative conjugation with m, we
may assume without loss of generality that m=1. We must have 20 < 1, since
otherwise 1=deg<; P <deggy P=0. Furthermore, since Np € C[F] (F")N, we
either have Np =« F + 8 with a, 8 € C%, or Np=a F' with a € C*.

If Np=a F + (3, then the distinguished solution h to (9.32) satisfies h~
—fB/a#0. Moreover, from proposition 9.32, it follows that

opm(0) = op(3) = og,(=7) = signf;
Fawl@) = of@) = of(7) = sima;
op.am(30) = op(30) = agpl(nT—i) = —sign (.

We claim that og,, (V)= O'Rpl(UT —4). Otherwise, theorem 9.34 applied to Rp,
implies the existence of a 1 € (0,07) <5 with

deg<7Rp17+¢ S 2N+ 1.

Taking ¢ such that ©¥.5=0 (whence [ €T\, ), it follows that e/ 1 would
be a starting monomial for (9.32). Our claim implies that sign = —sign «,
so that h € (0,30)gy. Furthermore, Py 0=0, so

1< degay Prp <deg<o Prp=1.

If Np=aF’, then deg <1 Pyyx=1for any A€ C. Let h=1+¢, where ¢ is the
distinguished solution to Py1(¢)=0 (¢ <1). Then h € (0,30)9y and Pyj,0=0
again implies deggy Pp=1. O

9.7.2 Preserving sign changes during refinements

Lemma 9.37. Let P€ C{F} and let I be of one of the following forms:

a) I= (01, 62)41 = (Cl +3,¢c0— 3) with c1,co € C.

b) I=(c1,m)<1=(c1+3,m) with c; €C.

¢) I=(—m,3) 21 = (—m,5).

If P changes sign on I, then there exists a c € I NC with

op(c—3)op(c+3)<0.

Proof. In cases (b) and (¢), we may replace @ (and —®) by a sufficiently large
co € C (resp. small ¢; € C). Therefore, it suffices to deal with intervals I of the
form (a). From lemma 9.26, it follows that o/ (c —3) =0}, (c —3), op (c+3) =
on,(c+3) for all c€ C. Without loss of generality, we may therefore assume
that P=Np=A (F’)” with A€ C[F] and v € N.
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If v is odd, then we choose c € INC with A(c) #0, and obtain
o (c—3) op(c+3) =0(pnu(c—3) opn(c+3) = (=1)" <0.
If v is even, then A changes sign on 1. Since C is real closed, it follows that
there exists a ¢ € I NC where A admits a root of odd multiplicity u, and
op(c—=3)op(c+3)=04(c—3) a4 (c+3)=(-1)"<0. O

Lemma 9.38. Let P C{F} be of order r and let 20 be an initial segment
of X. Assume that the theorem 9.3/ holds for all differential polynomials of
order <r. Let m€ T be such that op g3(0) 0p gp(3m) <0. Then there exists

ceC” and v €T with W<v<m and U;+Cn<—3b) op,,,(50) <0.

Proof. Modulo an additive conjugation with a sufficiently small ¢ € (0,3m)gy,
we may assume without loss of generality that

0% a0(0) = 0 20(0) = sign Py £0.

We prove the lemma by induction over d=deg <, P. If d=0, then the assump-
tions cannot be met, so we have nothing to prove. So assume that d > 0.
Since Py # 0, there exists an equalizer of the form e =¢e, 4 for the equation
P(f)=0 (f <m). We distinguish the following cases:

0';_,%(0) op,m(5¢) <0. Since deg <. P=v <d, we are done by the induction
hypothesis.

e> 20 and op (5¢) o (@e) <0. The result follows immediately when
applying lemma 9.37 to Py, and the interval (3,).

e € or op(Pe)op(3m) <0. If e € 2, then let g >gqy 0 be such that
op(f)=0p g5(0) for all f € (0, g)ay. Then for any n€ T with W<n=< g,
we have o (mn) op (3m) <0. So both if e € 20 and if o (Me) op (5m) <0,
there exists an n € ¥ with W <n~<m, ni=e¢ and of(@n) op (5m) <0.

Since m > n = ¢, we must have deg Np,, =d. From proposition 9.32, it
follows that
Uérpd(nf +7) agpd(mT —)=0p(mn) op,(5m) =0 (@n) op (5m) <0.

Applying theorem 9.34 to Rp,, we infer that there exists a g € (nf, mf)s

with deg 5 Rp, € 2N + 1. Taking g such that g<5=0 (whence [geT\),

it follows that v =e/9 is a starting monomial for P(f)=0. Moreover, N =

Np,, is of the form N =a F4~¥ (F')” with a € C7, since deg N =val N =d.

Furthermore, since Uﬁpd(g -9) agpd(g +7) <0, we have

(—1)" = 0% (5) 03 (7) = 07,(30) 0, (P0) = o, (9 — 7) 7y (9+7) <O,
whence v is odd. For any ¢ >0, we conclude that

0};”(—30) 013“\1(30) =of(c—3) oy(c+3)=(-1)"<0. O
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9.7.3 Proof of the intermediate value theorem

We will prove the following variant of theorem 9.34:

Theorem 9.39. Let P € T{F'} and let 20 be an initial segment of T. Given
v €T, consider an interval I of one of the following forms:

a) I=(& X)) with &, x €T and x — E~ b with A€ C~.

b) I=(&,&+50)gy with € T.

c) I=(£—30,&)n with £€T.

d) I=(£—30,8+30)gy with €T

If P changes sign on I, then there exists a point h € I such that degsoy Pyp
s odd.

Proof. We prove the theorem by a double induction over the order of P and
the Newton degree d of

P(f)=0  (f=v).

The case when d =0 is contrary to our assumptions. So assume that d >0
and that the hypothesis holds for all smaller orders, as well as for the same
order and smaller d. Notice that we must have 20 < v, since P changes sign
modulo 20 on I.

Let us first show that cases (a), (¢) and (d) can all be reduced to case (b).
This is clear for (c¢) by considering P(—f) instead of P(f). In case (d),
there exists a x € (£ — 350, £ +30)gy such that o (& —3v) = op(n) for all
n €T with n€ (£ —3v, x)gy. For any such 7, it follows that P changes sign
on (n,n+30)w=(n,n+30)w. As to (a), we observe that P changes sign
either on (£,€+30)gy, on (x — 30, X)a, or on (§+30,x —30)m=(£+ 3,
X — 30). The first to cases have already been dealt with. The last case reduces
to (d) when applying lemma 9.37 to the polynomial Py¢ «, and the interval
(3’ (X - €)U - 5)'

Let us now show how to prove (b). Modulo an additive conjugation, we
may assume without loss of generality that £ =0. If d=1, then we are done
by lemma 9.36. So assume that d > 1. Consider the set . of all partial
unravellings

f=e+f (f=D) (9.33)

with either ¢ =0 and 6 =1, or ¢ €(0,30)9y and

0';3:»@7%(736) 0—1;4,(‘,,%(56) < 0

By corollary 8.32, we may choose a finest partial unravelling (9.33) in ..

Take n=0if ¢ =0 and 5 < b such that O’]J:-r+¢(*3t~)) :O';+Wm(77> otherwise.
By lemma 9.38, applied to Py 4y, there exists a term cm € (1, 3v)qy with
20 < m, and such that

+

O'P+Ap+cm(_§m) GI;+¢+Cm(§m) <0.
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We claim that we cannot have deg 4 Py 4 cm=d. Indeed, by proposition 8.27,
this would imply the existence of a partial unravelling

f=et+o+f  (f=m)
with @~ ¢m, which is finer than (9.33). But then

+ (_—

O—P+4>+A7> m) 01;+¢+¢(§m) = U;+¢+cm(_§m> UE+¢+cm(§m) <0

contradicts the maximality of (9.33). Consequently, we have
deg<m P+Lp+cm <d

and the theorem follows by applying the induction hypothesis for Py, 4cm on
the interval (—3m,5m). O

Exercise 9.27.

a) Prove that ‘O’p’m(f” < |O’pygn(f)| if %0 2 2.
b) Prove that op gn(3m)=0p (5m) if W <m.
¢) Other similar properties.
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