Errata

The following mistakes slipped into the final version of our book "*Transseries* and *Real Differential Algebra*". Please let us know if you find any other errors. (We also found some minor typos that are not included here.)

General

• "stable" (under various operations) should be "closed" at various locations throughout the manuscript.

Chapter 1

- **P.17, Proposition 1.5.** In the proof that $(a) \Rightarrow (b)$, it is understood that the set of minimal elements G is defined by $G = \{x \in F : \forall y \in F, y \leq x \Rightarrow y \equiv x\}$. Then G/\equiv (and not G) is a finite anti-chain. Nevertheless, for every $x \in G$, the set $\{y \in F : y \equiv x\}$ is finite, so G is indeed finite.
- **P.18, Proposition 1.6**(c). We meant "Any quasi-ordering on $E [\dots]$ ".
- P.18, definition "bad sequence". "ordering" should be "quasi-ordering".
- **P.22.** In **OM** (and **OA**), we should also assume the opposite directions, namely $x \ y \le x \ y' \Rightarrow y \le y'$ (and $x + y \le x + y' \Rightarrow y \le y'$). In particular, ordered monoids are "cancellative": $x \ y = x \ y' \Rightarrow y = y'$ (resp. $x + y = x + y' \Rightarrow y = y'$). (Recall the assumption that all monoids are commutative.)
- P.23, before Exercise 1.15. Suppress unfinished sentence.
- **P.27, l.11.** There exist totally ordered rings with nilpotent elements, such as $\mathbb{Q}[\varepsilon]/(\varepsilon^2)$ with $a + b \varepsilon > 0 \Leftrightarrow (a > 0) \lor (a = 0 \land b > 0)$; see Exercise 1.16 for more details. We should therefore assume R to be a totally ordered domain. This also holds for Corollary 1.19 and Proposition 1.20.
- **P.27.** $\mathscr{Q}(R) \otimes M$ should be $\mathscr{Q}(R) \otimes_R M$ (twice) and the positive elements of this set are sums of elements of the form $x \otimes y$ with $x \ge 0$ and $y \ge 0$, as in example 1.16. Moreover, we should have required $\lambda > 0 \land \lambda x > 0 \Rightarrow x > 0$ for all $\lambda \in R$ and $x \in M$, also in Proposition 1.19.
- **P.27.** In Proposition 1.20, the algebra should be torsion-free.
- P.29. In the proof of Proposition 1.22, "saturated" should be "a Hahn space".

2 Errata

P.31. In Proposition 1.26, one should add the assumption that \preccurlyeq and \prec are associated for the second assertion. In the second paragraph of the proof, we obtain $y \preccurlyeq \varphi x$ and $x \prec \varphi^{-1} y$ for some φ (x and y got inverted).

Chapter 2

- **P.34, Equation (2.1).** The notation $\mathfrak{S}^* = {\mathfrak{m}_1 \cdots \mathfrak{m}_k : \mathfrak{m}_1, \ldots, \mathfrak{m}_k \in \mathfrak{M}}$ for subsets $\mathfrak{S} \subseteq \mathfrak{M}$ was not properly introduced here. It plays a similar role as the set of words, but the notation is a bit confusing since it is not completely the same thing, technically speaking. It would have been better to use a different notation like E^w for the set of words with letters in E.
- **P.34, Definition of grid-based sets.** We can take n = 1 if \mathfrak{M} is a totally ordered group (n = 1 does not necessarily suffice if \mathfrak{M} is only a monoid).
- **P.38.** For the examples ring $C \llbracket x^{\mathbb{Z}} \rrbracket$ and $C \llbracket x^{\mathbb{Q}} \rrbracket$ to be fields, we need to assume that C is a field.
- **P.40.** In section 2.3.1, we need to assume that \mathfrak{M} is ordered (not merely quasi-ordered).
- **P.40.** At the start of the last paragraph, we only need to assume that \mathfrak{M} is totally ordered for what follows.
- **P.41, Warning 2.6.** We should have defined $C \llbracket \mathfrak{M} \rrbracket ^{\succ} = \{ f \in C \llbracket \mathfrak{M} \rrbracket : f \succ 1 \}, C \llbracket \mathfrak{M} \rrbracket ^{\prec} = \{ f \in C \llbracket \mathfrak{M} \rrbracket : f \prec 1 \}, \text{ etc. Note also that } 0 \notin C \llbracket \mathfrak{M} \rrbracket ^{\succ}, \text{ so we rather have } C \llbracket \mathfrak{M} \rrbracket ^{\succ} \setminus \{ 0 \} \supseteq C \llbracket \mathfrak{M} \rrbracket ^{\succ}.$
- **P.46.** To the axioms of strong abelian groups, one should add: for all $\mathcal{F} \in \mathscr{S}(A)$, we have $\sum (-\mathcal{F}) = -\sum \mathcal{F}$. On the other hand, it would be better to remove the axiom **SA6**, since it excludes the possibility of strong groups with torsion elements.
- **P.49, Line 6.** It should have been made precise that the couples $(\mathfrak{v}, \mathfrak{w})$ form an anti-chain for the ordering $\preccurlyeq!$.
- **P.50.** In the proof of Proposition 2.14, note that well-based families were only defined in Exercise 2.7.
- **P.52, Proposition 2.17.** It would have increased readability to invert the roles of φ and ψ , to make notations compatible with the role of φ below Proposition 2.17.
- **P.52.** In the displayed equation above Proposition 2.18, one should assume that $g \prec 1$.
- **P.53.** At the very start of section 2.6, we need to assume that C is a field of characteristic zero in order to define $(1+z)^{\lambda}$ for $\lambda \in R$.
- **P.53.** In the proof of Proposition 2.19, it should have been mentioned upfront that $\mathfrak{d} \circ \varphi$ is strictly increasing and that $\hat{\varphi}$ preserves infinitesimals.

Chapter 4

P.81, Proposition 4.1. The ring *R* should be an ordered domain and the partial exponential function should satisfy **E1**, **E2**, and **E3**.

- **P.81.** In he proof of Proposition 4.1, a few extra precisions are welcome: the first displayed formula in particular shows that $x \neq -(2n+1)$. If we also have $x \neq 0$, then the second displayed formula yields $0 \ge x^{4n}(2n+1+x)^2 > 0$, which is impossible.
- **P.81, Proposition 4.3.** Statement (c) should read: If R contains the ordered field \mathbb{Q} and dom exp is a \mathbb{Q} -module, then

$$\forall n \in \mathbb{N}, \forall x \in \operatorname{dom} \exp, \quad x > (2 n)^2 \Rightarrow \exp x > x^n.$$
(1)

- **P.84.** Just before **T1**, **T2**, and **T3**: we assume that the logarithm extends the one on $C^{>}$ and that it is compatible with the *C*-power structure on \mathbb{T} .
- **P.84, Example 4.5.** $x \in \mathfrak{T}_{\succ}$ should have been $x \in \mathfrak{T}^{\succ}$, "stable under exponentiation" means im $\log = \mathbb{T}$, and $x^2/(1-x^{-1}) \notin \mathbb{T}_{\succ}$.
- **P.85.** The fact that $f \in \mathbb{T}^{>,\succ} \Rightarrow \log f \in \mathbb{T}^{>,\succ}$ is implicitly used in the proof (c). The fact that $\log f \prec f$ for $f \in \mathbb{T}^{>,\succ}$ follows more directly from (1).
- **P.86.** In the proof of **L3**, the displayed equation $f E_{2n}(\log f) \sim c_f \log c_f 1 > 0$ should be $f E_{2n}(\log f) \sim c_f E_{2n}(\log c_f) > 0$.
- **P.88, Section 4.3.2.** Replace \mathfrak{T}_{\succ} by \mathbb{T}_{\succ} in the displayed formula $\mathfrak{T}_{exp} = \exp \mathfrak{T}_{\succ}$ and on two other occasions just below.
- **P.88.** In the statement of Proposition 4.9, \mathbb{R}_{exp} should be \mathbb{T}_{exp} .
- **P.89.** The last formula in the proof of Proposition 4.9 should read $\log \mathfrak{m} \approx \exp((\log \log \mathfrak{m})_{\succ}) \prec \exp((\log \mathfrak{m})_{\succ}) \approx \mathfrak{m}.$
- **P.89, L.-7.** In the definition of \mathbb{E}_n , replace $\log_n x$ by $C[(\log_n x)^C]$.
- **P.90.** In the definition of level, replace "smallest number $n \in \mathbb{Z}$ " by "largest number $n \in \mathbb{Z}$ ". Recall that $\log_n = \exp_{-n}$ for n < 0 in the definition of \mathbb{E}_n .
- **P.90-91.** In subsection 4.3.5, the subscripts and superscripts got inverted in the expressions of the form C^p and C^p_q .
- **P.91, Exercise 4.9.** It should be $\log_q^C x$ instead of $\log_p^C x$.
- **P.92, Ecercise 4.12(a).** It should be $f_{\alpha} = \sqrt{x} \sum_{0 < \beta < \alpha} e^{f_{\beta} \circ \log}$. By transfinite induction, one shows that (f_{α}) is a strictly decreasing sequence of transseries with purely large support (whence each $e^{f_{\beta} \circ \log}$ is a transmonomial) and such that the order type of supp f_{α} is precisely α .
- **P.92.** In the definition of transbasis, we understand that $\mathfrak{B} = (\mathfrak{b}_1, \ldots, \mathfrak{b}_n)$ is a finite basis of an asymptotic scale in \mathbb{T} with $n \ge 1$. Note that **TB2** and **TB3** implicitly imply that $\mathfrak{b}_1, \ldots, \mathfrak{b}_n \succ 1$.
- **P.92, Example 4.14.** The second transbasis should read $(x, e^{(x+3/2)\sqrt{x}})$.
- **P.93.** We should have said "Then supp f is contained in a set of the form $(\exp_l x)^C e^{g_0+g_1\mathbb{N}+\cdots+g_k\mathbb{N}}$, where $g_0,\ldots,g_k \in C_{p-1}^0 [\![\exp_l x]\!] \succ$ " (while dropping the assumption that $e^{g_1},\ldots,e^{g_k} \prec 1$, for the later reduction "without loss of generality"). Note also Exercise 4.9(d).

Chapter 5

P.102. In the displayed formulas for the proof of Proposition 5.5, replace $(f \circ \exp_l)'$ and $(g \circ \exp_l)'$ by $(f \circ \exp_l)' \log_l$ and $(g \circ \exp_l)' \circ \log_l$. Also replace $\log_l x$ by $\log_{l-1} x$ in the last formula.

4 Errata

- **P.105, Top.** It would be better to say: "By what precedes, for fixed *i*, the family $\mathcal{T}_{\mathfrak{m}}$ is grid-based and the same for any $\mathfrak{m} \in \mathfrak{G}_i$. Hence $\bigcup_{1 \leq i \leq n} \bigcup_{\mathfrak{m} \in \mathfrak{G}_i} \mathcal{T}_{\mathfrak{m}} \mathfrak{m}$ is again grid-based and \int is a grid-based mapping..."
- **P.105.** The last displayed formula of the proof of Proposition 5.7 should read $(\int e^x f^{\uparrow}) \downarrow_{\asymp} = (\int e^x f^{\uparrow})_{\asymp} = 0.$
- **P.112.** At the end of the proof of Theorem 5.13, the last displayed equation should be $g_{[M,N']} + f_{[N,M']} = \cdots$.

Chapter 6

P.125, Section 6.4.2, Second displayed equation. Suppress the *c*. P.133, Exercise 6.17. "extensive" should be "strictly extensive".

Chapter 7

P.164, Exercise 7.28. The coefficients of L should be exponential.

Chapter 8

P.172. Equation (8.13) should read

$$D_{P\uparrow}(F) = \sum_{\boldsymbol{\omega}} \left(\sum_{\substack{\boldsymbol{\tau} \geq \boldsymbol{\omega} \\ \|\boldsymbol{\tau}\| = \text{wv} D_P}} s_{\boldsymbol{\tau}, \boldsymbol{\omega}} D_{P, [\boldsymbol{\tau}]} \right) F^{[\boldsymbol{\omega}]}.$$

P.195. In the output of A; gorithm unravel, suppress "with dominant term τ ".

Chapter 9

P.207–208. The paragraph numbers in Section 9.2.2 should be removed.