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Foreword

Transseries find their origin in at least three different areas of mathematics:
analysis, model theory and computer algebra. They play a crucial role in
Écalle’ s proof of Dulac’ s conjecture, which is closely related to Hilbert’ s 1 6-th
problem.

I personally became interested in transseries because they provide an
excellent framework for automating asymptotic calculus. While developing
several algorithms for computing asymptotic expansions of solutions to non-
linear differential equations, it turned out that still a lot of theoretical work
on transseries had to be done. This led to part A of my thesis. The aim of
the present book is to make this work accessible for non-specialists. The book
is self-contained and many exercises have been included for further studies.
I hope that it will be suitable for both graduate students and professional
mathematicians. In the later chapters, a very elementary background in dif-
ferential algebra may be helpful.

The book focuses on that part of the theory which should be of common
interest for mathematicians working in analysis, model theory or computer
algebra. In comparison with my thesis, the exposition has been restricted to
the theory of grid-based transseries, which is sufficiently general for solving
differential equations, but less general than the well-based setting. On the
other hand, I included a more systematic theory of “strong linear algebra”,
which formalizes computations with infinite summations. As an illustration of
the different techniques in this book, I also added a proof of the “differential
intermediate value theorem”.

I have chosen not to include any developments of specific interest to
one of the areas mentioned above, even though the exercises occasionally
provide some hints. People interested in the accelero-summation of diver-
gent transseries are invited to read Écalle’ s work. Part B of my thesis contains
effective counterparts of the theoretical algorithms in this book and work
is in progress on the analytic counterparts. The model theoretical aspects
are currently under development in a joint project with Matthias Aschen-
brenner and Lou van den Dries.



The book in its present form would not have existed without the help of
several people. First of all, I would like to thank Jean Écalle, for his support
and many useful discussions. I am also indoubted to Lou van den Dries and
Matthias Aschenbrenner for their careful reading of several chapters and their
corrections. Last, but not least, I would like to thank Sylvie for her patience
and aptitude to put up with an ever working mathematician.

We finally notice that the present book has been written and typeset
using the GNU TEXMACS scientific text editor. This program can be freely
downloaded from http: //www. texmacs . org .

Joris van der Hoeven
Chevreuse 1 999–2006
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Introduction

The field with no escape

A transseries is a formal object, constructed from the real numbers and an
infinitely large variable x � 1 , using infinite summation, exponentiation and
logarithm. Examples of transseries are:

1

1 − x− 1 = 1 +
1

x
+

1

x 2 +
1

x 3 + � ( 1 )

1

1 − x− 1 − e− x
= 1 +

1

x
+

1

x 2 + � + e− x + 2
e− x

x
+ � + e− 2 x + � ( 2 )

e

x

1 − 1 / log x

1 − x− 1 = e
x+

x

log x
+

x

log2 x
+ �

+
1

x
e
x+

x

log x
+

x

log2 x
+ �

+ � ( 3)

− ex
∫ e− x

x
=

1

x
− 1

x2 +
2

x 3 − 6

x4 +
24
x 5 − 1 20

x 6 + � ( 4)

Γ(x ) =
2 p
√

ex ( log x − 1 )

x 1 / 2
+

2 p
√

ex ( log x − 1 )

1 2 x 3/ 2
+

2 p
√

ex ( log x − 1 )

288 x 5/ 2
+ � ( 5)

ζ (x ) = 1 + 2− x + 3− x + 4− x + � ( 6)

ϕ (x ) =
1

x
+ ϕ (xπ) =

1

x
+

1

xπ
+

1

xπ
2 +

1

xπ
3 + � ( 7)

ψ (x ) =
1

x
+ ψ ( e log

2 x ) =
1

x
+

1

elog
2 x

+
1

e log
4 x

+
1

e log
8 x

+ � ( 8)

As the examples suggest, transseries are naturally encountered as formal
asymptotic solutions of differential or more general functional equations.
The name “transseries” therefore has a double signification: transseries are
generally transfinite and they can model the asymptotic behaviour of tran-
scendental functions.

Whereas the transseries ( 1 ) , ( 2 ) , ( 3) , ( 6) ( 7) and ( 8) are convergent, the
other examples ( 4) and ( 5) are divergent. Convergent transseries have a clear
analytic meaning and they naturally describe the asymptotic behaviour of



their sums. These properties surprisingly hold in the divergent case as well.
Roughly speaking, given a divergent series

f =
∑

n= 1

∞
fn
xn

=
∑

n= 1

∞
(− 1 ) n− 1 (n − 1 ) !

xn

like ( 4) , one first applies the formal Borel transformation

f̂ ( ζ) = ( B̃ f ) ( ζ ) =
∑

n= 1

∞
fn

(n − 1 ) !
ζn =

1

1 + ζ
.

If this Borel transform f̂ can be analytically continued on [ 0 , +∞ ) , then the
inverse Laplace transform can be applied analytically:

f̄ ( x) = (L f̂ ) ( x) =

∫

0

∞
f̂ ( ζ) e− x ζ dx =

∫

0

∞ e− x ζ

1 + ζ
dx.

The analytic function f̄ obtained admits f as its asymptotic expansion. More-
over, the association f � f̄ preserves the ring operations and differentiation.
In particular, both f and f̄ satisfy the differential equation

f ′ − f = − 1

x
.

Consequently, we may consider f̄ as an analytic realization of f . Of course,
the above example is very simple. Also, the success of the method is indirectly
ensured by the fact that the formal series f has a “natural origin” ( in our case,
f satisfies a differential equation) . The general theory of accelero-summation
of transseries, as developed by Écalle [É92 , É93] , is far more complex, and
beyond the scope of this book. Nevertheless, it is important to remember that
such a theory exists : even though the transseries studied in this this book are
purely formal, they generally correspond to genuine analytic functions.

The attentive reader may have noticed another interesting property which
is satisfied by some of the transseries ( 1 –8) above: we say that a transseries
is grid- based , if

GB1 . There exists a finite number m1 , � , mk of infinitesimal “transmono-
mials”, such that f is a multivariate Laurent series in m1 , � , mk :

f =
∑

ν1 6 α 1 ∈ Z

�

∑

νk6 αk ∈ Z
fα 1 , � , α k m1

α 1
� mk

αk .

GB2. The property GB1 is recursively satisfied when replacing f by the
logarithm of one of the mi .

The examples ( 1 –5) are grid-based. For instance, for ( 2) , we may take m1 = x− 1

and m2 = e− x . The examples ( 6–8) are not grid-based, but only well- based . The
last example even cannot be expanded w. r. t. a finitely generated asymptotic
scale with powers in R. As we will see in this book, transseries solutions
to algebraic differential equations with grid-based coefficients are necessarily
grid-based as well. This immediately implies that the examples ( 6–8) are
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differentially transcendental over R ( see also [GS91 ] ) . The fact that grid-
based transseries may be considered as multivariate Laurent series also makes
them particularly useful for effective computations. For these reasons, we will
mainly study grid-based transseries in this book, although generalizations to
the well-based setting will be indicated in the exercises.

The resolution of differential and more general equations using transseries
presupposes that the set of transseries has a rich structure. Indeed, the
transseries form a totally ordered field T ( chapter 4) , which is real closed
( chapter 3) , and stable under differentiation, integration, composition and
functional inversion ( chapter 5) . More remarkably, it also satisfies the dif-
ferential intermediate value property:

Given a differential polynomial P ∈ T{F } and transseries f <
g ∈ T with P( f ) P( g) < 0 , there exists a transseries h ∈ T with
f < h < g and P(h) = 0 .

In particular, any algebraic differential equation of odd degree over T , like

f3 ( f ′) 2 ( f ′′′) 4 + eex f7 − Γ( Γ( x log x) ) f3 f ′ = log log x

admits a solution in T . In other words, the field of transseries is the first
concrete example of what one might call a “real differentially closed field”.

The above closure properties make the field of transseries ideal as a frame-
work for many branches of mathematics. In a sense, it has a similar status
as the field of real or complex numbers. In analysis, it has served in Écalle’ s
proof of Dulac’ s conjecture — the best currently known result on Hilbert’ s 1 6-
th problem. In model theory, it can be used as a natural model for many the-
ories ( reals with exponentiation, ordered differential fields, etc. ) . In computer
algebra, it provides a sufficiently general formal framework for doing asymp-
totic computations. Furthermore, transseries admit a rich non-archimedean
geometry and surprising connections exist with Conway’ s “field” of surreal
numbers.

Historical perspectives

Historically speaking, transseries have their origin in several branches of math-
ematics, like analysis, model theory, computer algebra and non-archimedean
geometry. Let us summarize some of the highlights of this interesting history.

1 Resolution of differential equations by means of power series

It was already recognized by Newton that formal power series are a powerful
tool for the resolution of differential equations [New71 ] . For the resolution
of algebraic equations, he already introduced Puiseux series and the Newton
polygon method, which will play an important role in this book. During the
1 8-th century, formal power series were used more and more systematically
as a tool for the resolution of differential equations, especially by Euler.
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However, the analytic meaning of a formal power series is not always clear.
On the one hand side, convergent power series give rise to germs which can
usually be continued analytically into multi-valued functions on a Riemann
surface. Secondly, formal power series can be divergent and it is not clear
a priori how to attach reasonable sums to them, even though several recipes
for doing this were already known at the time of Euler [Har63, Chapter 1 ] .

With the rigorous formalization of analysis in the 1 9-th century, criteria for
convergence of power series were studied in a more systematic way. In partic-
ular, Cauchy and Kovalevskaya developed the well-known majorant method
for proving the convergence of power series solutions to certain partial differ-
ential equations [vK75] . The analytic continuation of solutions to algebraic
and differential equations were also studied in detail [Pui50, BB56] and the
Newton polygon method was generalized to differential equations [Fin89] .

However, as remarked by Stieltjes [Sti86] and Poincaré [Poi93, Chapître 8] ,
even though divergent power series did not fit well in the spirit of “rigorous
mathematics” of that time, they remained very useful from a practical point
of view. This raised the problem of developing rigorous analytic methods to
attach plausible sums to divergent series. The modern theory of resummation
started with Stieltjes, Borel and Hardy [Sti94, Sti95 , Bor28] , who insisted on
the development of summation methods which are stable under the common
operations of analysis. Although the topic of divergent series was an active
subject of research in the early 20-th century [Har63] , it went out of fashion
later on.

2 Generalized asymptotic scales

Another approach to the problem of divergence is to attach only an asymptotic
meaning to series expansions. The foundations of modern asymptotic calculus
were laid by Dubois-Raymond, Poincaré and Hardy.

More general asymptotic scales than those of the form xZ , xQ or xR were
introduced by Dubois-Raymond [dBR75, dBR77] , who also used “Cantor’ s”
diagonal argument in order to construct functions which cannot be expanded
with respect to a given scale. Nevertheless, most asymptotic scales occur-
ring in practice consist of so called L-functions, which are constructed from
algebraic functions, using the field operations, exponentiation and logarithm.
The asymptotic properties of L-functions were investigated in detail by
Hardy [Har1 0, Har1 1 ] and form the start of the theory of Hardy fields [Bou61 ,
Ros80, Ros83a, Ros83b, Ros87, Bos81 , Bos82 , Bos87] .

Poincaré [Poi90] also established the equivalence between computations
with formal power series and asymptotic expansions. Generalized power series
with real exponents [LC93] or monomials in an abstract monomial group
[Hah07] were introduced about the same time. However, except in the case of
linear differential equations [Fab85 , Poi86, Bir09] , it seems that nobody had
the idea to use such generalized power series in analysis, for instance by using
a monomial group consisting of L-functions.
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Newton, Borel and Hardy were all aware of the systematic aspects of
their theories and they consciously tried to complete their framework so as to
capture as much of analysis as possible. The great unifying theory nevertheless
had to wait until the late 20-th century and Écalle’ s work on transseries and
Dulac’ s conjecture [É85 , É92 , É93, Bra91 , Bra92 , CNP93] .

His theory of accelero-summation filled the last remaining source of
instability in Borel’ s theory. Similarly, the “closure” of Hardy’ s theory of
L-functions under infinite summation removes its instability under functional
inversion ( see exercise 5. 20) and the resolution of differential equations. In
other words, the field of accelero-summable transseries seems to correspond
to the “framework-with-no-escape” about which Borel and Hardy may have
dreamed.

3 Model theory

Despite the importance of transseries in analysis, the first introduction of the
formal field of transseries appeared in model theory [Dah84, DG86] . Its roots
go back to another major challenge of 20-th century mathematics: proving
the completeness and decidability of various mathematical theories.

Gödel’ s undecidability theorem and the undecidability of arithmetic are
well-known results in this direction. More encouraging were the results on
the theory of the field of real numbers by Artin-Schreier and later Tarski-
Seidenberg [AS26, Tar31 , Tar51 , Sei54] . Indeed, this theory is complete, decid-
able and quantifier elimination can be carried out effectively. Tarski also
raised the question how to axiomatize the theory of the real numbers with
exponentiation and to determine its decidability. This motivated the model-
theoretical introduction of the field of transseries as a good candidate of a
non-standard model of this theory, and new remarkable properties of the real
exponential function were stated.

The model theory of the field of real numbers with the exponential function
has been developed a lot in the nineties. An important highlight is Wilkie’ s
theorem [Wil96] , which states that the real numbers with exponentiation form
an o-minimal structure [vdD98, vdD99] . In these further developments, the
field of transseries proved to be interesting for understanding the singularities
of real functions which involve exponentiation.

After the encouraging results about the exponential function, it is
tempting to generalize the results to more general solutions of differential
equations. Several results are known for Pfaffian functions [Kho91 , Spe99] ,
but the thing we are really after is a real and/or asymptotic analogue of Ritt-
Seidenberg’ s elimination theory for differential algebra [Rit50, Sei56, Kol73] .
Again, it can be expected that a better understanding of differential fields
of transseries will lead to results in that direction; see [AvdD02, AvdD01 ,
AvdD04, AvdDvdH05 , AvdDvdH] for ongoing work.
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4 Computer algebra and automatic asymptotics

We personally became interested in transseries during our work on automatic
asymptotics. The aim of this subject is to effectively compute asymptotic
expansions for certain explicit functions ( such as “exp-log” function) or solu-
tions to algebraic, differential, or more general equations.

In early work on the subject [GG88, Sha90, GG92 , Sal91 , Gru96, Sha04] ,
considerable effort was needed in order to establish an appropriate framework
and to prove the asymptotic relevance of results. Using formal transseries as
the privileged framework leads to considerable simplifications: henceforth,
with Écalle’ s accelero-summation theory in the background, one can con-
centrate on the computationally relevant aspects of the problem. Moreover,
the consideration of transfinite expansions allows for the development of a
formally exact calculus. This is not possible when asymptotic expansions are
restricted to have at most ω terms and difficult in the framework of nested
expansions [Sha04] .

However, while developing algorithms for the computation of asymptotic
expansions, it turned out that the mathematical theory of transseries still had
to be further developed. Our results in this direction were finally regrouped in
part A of our thesis, which has served as a basis for this book. Even though
this book targets a wider public than the computer algebra community, its
effective origins remain present at several places: Cartesian representations,
the incomplete transbasis theorem, the Newton polygon method, etc.

5 Non-archimedean geometry

Last but not least, the theory of transseries has a strong geometric appeal.
Since the field of transseries is a model for the theory of real numbers with
exponentiation, it is natural to regard it as a non-standard version of the
real line. However, contrary to the real numbers, the transseries also come
with a non-trivial derivation and composition. Therefore, it is an interesting
challenge to study the geometric properties of differential polynomials, or
more general “functions” constructed using the derivation and composition.
The differential intermediate value theorem can be thought of as one of the
first results in this direction.

An even deeper subject for further study is the analogy with Conway’ s
construction of the “field” of surreal numbers [Con76] . Whereas the surreal
numbers come with the important notion of “earliness”, transseries can be dif-
ferentiated and composed. We expect that it is actually possible to construct
isomorphisms between the class of surreal numbers and the class of generalized
transseries of the reals with so called transfinite iterators of the exponential
function and nested transseries. A start of this project has been carried out
in collaboration with my former student M. Schmeling [Sch01 ] . If this project
could be completed, this would lead to a remarkable correspondence between
growth-rate functions and numbers.
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Outline of the contents

Orderings occur in at least two ways in the theory of transseries. On the one
hand, the terms in the expansion of a transseries are naturally ordered by
their asymptotic magnitude. On the other hand, we have a natural ordering
on the field T of transseries, which extends the ordering on R. In chapter 1 ,
we recall some basic facts about well-quasi-orderings and ordered fields. We
also introduce the concept of “asymptotic dominance relations” 4 , which can
be considered as generalizations of valuations. In analysis, f 4 g and f ≺ g

are alternative notations for f = O ( g) and f = o( g) .

In chapter 2 , we introduce the “strong C-algebra of grid-based series”
C[[ M]] , where M is a so called monomial monoid with a partial quasi-
ordering 4 . Polynomials, ordinary power series, Laurent series, Puiseux series
and multivariate power series are all special types of grid-based series. In
general, grid-based series carry a transfinite number of terms ( even though
the order is always bounded by ωω ) and we study the asymptotic proper-
ties of C[[ M]] .

We also lay the foundations for linear algebra with an infinitary sum-
mation operator, called “strong linear algebra”. Grid-based algebras of the
form C[[ M]] , Banach algebras and completions with respect to a valuation
are all examples of strong algebras, but we notice that not all strong “serial”
algebras are of a topological nature. One important technique in the area of
strong linear algebra is to make the infinite sums as large as possible while
preserving summability. Different regroupings of terms in such “large sums”
can then be used in order to prove identities, using the axiom of “strong
associativity”. The terms in “large sums” are often indexed by partially ordered
grid-based sets. For this reason, it is convenient to develop the theory of grid-
based series in the partially ordered setting, even though the ordering 4 on
transmonomials will be total.

The Newton polygon method is a classical technique for the resolution
of algebraic equations with power series coefficients. In chapter 3, we will
give a presentation of this method in the grid-based setting. Our exposition
is based on the systematic consideration of “asymptotic equations”, which
are equations with asymptotic side-conditions. This has the advantage that
we may associate invariants to the equation like the Newton degree, which
simplifies the method from a technical point of view. We also systematically
consider derivatives of the equation, so as to quickly separate almost multiple
roots.

Chapter 3 also contains a digression on Cartesian representations, which
are both useful from a computational point of view and for the definition of
convergence. However, they will rarely be used in the sequel, so this part may
be skipped at a first reading.
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In chapter 4, we construct the field T = C[[[ x]]] of grid-based transseries
in x over an “ordered exp-log field” of constants C . Axioms for such constant
fields and elementary properties are given in section 4. 1 . In practice, one
usually takes C = R. In computer algebra, one often takes the countable
subfield of all “real elementary constants” [Ric97] . It will be shown that T is
again an ordered exp-log field, so it is also possible to take C= T and construct
fields like R[[[ x]]] [[[ y]]] . Notice that our formalism allows for partially defined
exponential functions. This is both useful during the construction of T and
for generalizations to the multivariate case.

The construction of T proceeds by the successive closure of C[[ xR]]
under logarithm and exponentiation. Alternatively, one may first close under
exponentiation and next under logarithm, following Dahn and Göring or
Écalle [DG86, É92 ] . However, from a model-theoretical point of view, it is
more convenient to first close under logarithm, so as to facilitate general-
izations of the construction [Sch01 ] . A consequence of the finiteness properties
which underlie grid-based transseries is that they can always be expanded
with respect to finite “transbases”. Such representations, which will be studied
in section 4. 4, are very useful from a computational point of view.

In chapter 5, we will define the operations ∂ ,
∫
, ◦ and · inv on T and

prove that they satisfy the usual rules from calculus. In addition, they satisfy
several compatibility properties with the ordering, the asymptotic relations
and infinite summation, which are interesting from a model-theoretical point
of view. In section 5. 4. 2 , we also prove the Translagrange theorem due to
Écalle, which generalizes Lagrange’ s well-known inversion formula for power
series.

Before going on with the study of differential equations, it is convenient
to extend the theory from chapter 2 and temporarily return to the general
setting of grid-based series. In chapter 6, we develop a “functional analysis”
for grid-based series, based on the concept of “grid-based operators”. Strongly
multilinear operators are special cases of grid-based operators. In particular,
multiplication, differentiation and integration of transseries are grid-based
operators. General grid-based operators are of the form

Φ( f ) = Φ 0 + Φ 1 ( f ) + Φ 2 ( f , f ) + � ,

where each Φ i is a strongly i-linear operator. The set G(C[[ M]] , C[[ N]] ) of
grid-based operators from C[[ M]] into C[[ N]] forms a strong C-vector space,
which admits a natural basis of so called “atomic operators”. At the end of
chapter 6, we prove several implicit function theorems, which will be useful
for the resolution of differential equations.

In chapter 7, we study linear differential equations with transseries coef-
ficients. A well-known theorem [Fab85] states that any linear differential equa-
tion over C [ [ z ] ] admits a basis of formal solutions of the form

( f0 ( z
p√

) + � + fd( z
p√

) logd z ) zα eP ( 1 / zp√ ) ,
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with f0 , � , fd ∈ C [ [ z ] ] , α ∈ C , P ∈ C [X ] and p, d ∈ N> . We will present
a natural generalization of this theorem to the transseries case. Our method
is based on a deformation of the algebraic Newton polygon method from
chapter 3.

Since the only transseries solution to f ′′ + f = 0 is 0 , the solution space of
an equation of order r does not necessarily have dimension r . Nevertheless, as
will be shown in section 7. 7, one does obtain a solution space of dimension r
by considering an oscillatory extension of the field of transseries. A remarkable
consequence is that linear differential operators can be factored into first order
operators in this extension. It will also be shown that operators in T [∂ ] can
be factored into first and second order operators.

It should also be noticed that the theory from chapter 7 is compatible with
the strong summation and asymptotic relations on T . First of all, the trace TL
of a linear differential operator L ∈ T [∂ ] , which describes the dominant asymp-
totic behaviour of L , satisfies several remarkable properties ( see section 7. 3 . 3) .
Secondly, any operator L ∈ T [∂ ] admits a so called distinguished strong right-
inverse L− 1 , with the property that (L− 1 g) h = 0 when h is the dominant
monomial of a solution to Lh = 0 . S imilarly, we will construct distinguished
bases of solutions and distinguished factorizations.

Non-linear differential equations are studied in chapter 8. For simplicity,
we restrict our attention to asymptotic algebraic differential equations like

P( f ) = 0 ( f ≺ v ) ,

with P ∈ T{F } = T [F, F ′ , � ] , but similar techniques apply in more general
cases. The generalization of the Newton polygon method to the differential
setting contains two major difficulties. First, the “slopes” which lead to the
first terms of solutions cannot directly be read off from the Newton polygon.
Moreover, such slopes may be due to cancellations of terms of different degrees
( like in the usual case) or terms of the same degree. Secondly, it is much
harder to “unravel” almost multiple solutions.

In order to circumvent the first problem, we first define the differential
Newton polynomial NP ∈ C {F } associated to the “horizontal slope” ( it actu-
ally turns out that NP is always of the form NP = Q (F ′) ν with Q ∈ C [F ] ) .
Then the slope which corresponds to solutions of the form f = c m + �

is “admissible” if and only if NP× m admits a non-zero root in C . Here P× m

is the unique differential polynomial with P× m( f ) = P(m f ) for all f . In sec-
tion 8 . 4, we next give a procedure for determining the admissible slopes. The
second problem is more pathological, because one has to ensure the absence of

iterated logarithms logl = log ◦ �

l × ◦ log with arbitrarily high l in the expansions
of solutions. This problem is treated in detail in section 8 . 6 .

The suitably adapted Newton polygon methods allows us to prove several
structure theorems about the occurrence of exponentials and logarithms into
solutions of algebraic differential equation. We also give a theoretical algo-
rithm for the determination of all solutions.
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The last chapter of this book is devoted to the proof the intermediate
value theorem for differential polynomials P ∈ T{F } . This theorem ensures
the existence of a solution to P( f ) = 0 on an interval I = [ g , h ] under the
simple hypothesis that P admits a sign-change on I . The main part of the
chapter contains a detailed study of the non-archimedean geometry of T . This
comprises a classification of its “cuts” and a description of the behaviour of
differential polynomials in cuts. In the last section, this theory is combined
with the results of chapter 8, and the interval on which a sign-change occurs
is shrunk further and further until we hit a root of P .

Notations

A few remarks about the notations used in this book will be appropriate.
Notice that a glossary can be found at the end.

1 . Given a mapping f : A1 × � × An→ B and S1 ⊆ A1 , � , Sn ⊆ An , we write

f (S1 , � , Sn) = { f ( a1 , � , an) : a1 ∈ S1 , � , an ∈ Sn } .
Similarly, given a set S , we will write S > 0 or S ≺ 1 if a > 0 resp. a ≺ 1
for all a ∈ S . These and other classical notations for sets are extended to
families in section 2 . 4. 1 .

2 . We systematically use the double index convention ( fi) j = fi , j . G iven a
set S of monomials, we also denote fS =

∑
m∈ S

fm m ( this is an exception
to the above notation) .

3. Given a set S , we will denote by S> its subset of strictly positive elements,
S4 its subset of bounded elements, S< , ≺ of negative infinitesimal ele-
ments, etc. If S ⊆ C[[ M]] is a set of series, then we also denote S� = { f� :
f ∈ S } , where f� = fM� , and similarly for S< , S≺ , etc. Notice that this is
really a special case of notations 1 and 2 .

4. Intervals are denoted by ( f , g) , ( f , g ] , [ f , g) or [ f , g ] depending on whether
the left and right sides are open or closed.

5 . We systematically denote monomials m , n, � in the fraktur font and fam-
ilies F , G , � using calligraphic characters.

Those readers who are familiar with my thesis should be aware of the following
notational changes which occurred during the past years:

Former
� � � ∼ � � � f ↑ f c f ↓

New 4 ≺ � ∼ � � � � f� f� f≺

There are also a few changes in terminology:

Former New
normal basis transbasis
purely exponential transseries exponential transseries
potential dominant — starting —
privileged refinement ≈ unravelling
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1

Orderings

In this chapter, we will introduce some order-theoretical concepts, which pre-
pare the study of generalized power series in the next chapter. Orderings occur
in at least two important ways in this study.

First, the terms of a series are naturally ordered according to their asymp-
totic magnitudes. For instance, the support of 1 + z + z2 + � ∈ R[ [ z ] ] ,
considered as an ordered set, is isomorphic to N . More interesting examples
are

1 + z1 + z1
2 + � + z2 + z1 z2 + z1

2 z2 + � + z2
2 + z1 z2

2 + � ∈ R[ [ z1 ] ] [ [ z2 ] ]

and
1 + z1 + z1

2 + � +

z2 + z1 z2 + z1
2 z2 + � +

z2
2 + z1 z2

2 + z1
2 z2

2 + � +�
+

�
+

�
+ �

∈ R[ [ z1 , z2 ] ] ,

whose supports are isomorphic to N � N and N × N respectively. Here N � N
denotes the set N2 with the total anti-lexicographical ordering

(m, n) 6 (m ′ , n ′) ⇔ ( (n < n ′) ∨ (m 6 m ′ ∧ n= n ′) )

and N × N denotes the set N2 with the partial product ordering

(m, n) 6 (m ′ , n ′) ⇔ (m 6 m ′ ∧ n 6 n ′) .
In general, when the support is totally ordered, it is natural to require

the support to be well-ordered. If we want to be able to multiply series, this
condition is also necessary, as shown by the example

( 1 + z + z2 + � ) ( 1 + z− 1 + z− 2 + � ) .

For convenience, we recall some classical results about well-ordered sets and
ordinal numbers in section 1 . 2 . In what follows, our treatment will be based on
well-quasi-orderings, which are the analogue of well-orderings in the context
of partial quasi-orderings. In sections 1 . 3 and 1 . 4, we will prove some classical
results about well-quasi-orderings.



A second important occurrence of orderings is when we consider an algebra
of generalized power series as an ordered structure. For instance R[ [ z ] ] is
naturally ordered by declaring a non-zero series fn zn + fn+ 1 z

n+ 1 + � with
fn � 0 to be positive if and only if fn > 0 . This gives R[ [ z ] ] the structure of a
so called totally ordered R-algebra.

In section 1 . 5 , we recall the definitions of several types of ordered algebraic
structures. In section 1 . 6, we will then show how a certain number of typical
asymptotic relations, like ≺ , 4 , � and ∼ , can be introduced in a purely
algebraic way. In section 1 . 8 , we define groups and fields with generalized
exponentiations, and the asymptotic relations

�
,

� � and � . Roughly
speaking, for infinitely large f and g , we have f

�
g, if fλ ≺ g for all λ . For

instance, x
�

ex , but x � x1 000 , for x→ ∞ .

1 . 1 Quasi-orderings

Let E be a set. In all what follows, a quasi- ordering on E is reflexive and
transitive relation 6 on E ; in other words, for all x , y , z ∈ E we have

O1 . x 6 x ;
O2. x 6 y ∧ y 6 z⇒ x 6 z .
An ordering is a quasi-ordering which is also antisymmetric:

O3. x 6 y ∧ y 6 x⇒ x = y.

We sometimes write 6 E instead of 6 in order to avoid confusion. A mapping
ϕ : E→ F between two quasi-ordered sets is said to be increasing ( or a mor-
phism of quasi-ordered sets) , if x 6 y⇒ ϕ ( x) 6 ϕ ( y) , for all x , y ∈ E .

Given a quasi-ordering E , we say that x , y ∈ E are comparab le if x 6 y
or y 6 x . If every two elements in E are comparable, then the quasi-ordering
is said to be total . Two elements x , y ∈ E are said to be equivalent , and
we write x ≡ y , if x 6 y and y 6 x . If x 6 y and y � x , then we write x < y
( see also exercise 1 . 1 ( a) below) . The quasi-ordering on E induces a natural
ordering on the quotient set E/ ≡ by X 6 Y⇔ (∀x ∈ X, ∀y ∈ Y, x 6 y) and the
corresponding projection E→ E/ ≡ is increasing. In other words, we do not
really gain in generality by considering quasi-orderings instead of orderings,
but it is sometimes more convenient to deal with quasi-orderings.

Some simple examples of totally ordered sets are ∅ , { 0} , { 0 , 1 } , � and N .
Any set E can be trivially quasi-ordered both by the finest ordering, for which
x 6 y⇔ x= y , and by the roughest quasi-ordering, for which all x , y ∈ E satisfy
x 6 y . In general, a quasi-ordering 6 on E is said to be finer than a second
quasi-ordering 6 ′ on E if x 6 y⇒ x 6 ′ y for all x , y ∈ E . G iven quasi-ordered
sets E and F , we can construct other quasi-ordered sets as follows:

1 . The disjoint union E q F is naturally quasi-ordered, by taking the quasi-
orderings on E and F on each summand, and by taking E and F mutually
incomparable. In other words,

x 6 EqFy ⇔ ( x ∈ E ∧ y ∈ E ∧ x 6 E y) ∨ ( x ∈ F ∧ y ∈ F ∧ x 6 Fy) .
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2 . Alternatively, we can quasi-order E qF , by postulating any element in E
to be strictly smaller than any element in F . This quasi-ordered set is
called the ordered union of E and F , and we denote it by E � F . In other
words,

x 6 E � F y ⇔ x 6 EqFy ∨ ( x ∈ E ∧ y ∈ F) .

3. The Cartesian product E × F is naturally quasi-ordered by

( x , y) 6E × F (x ′ , y ′) ⇔ x 6 x ′ ∧ y 6 y ′ .

4. Alternatively, we can quasi-order E × F anti- lexicographically by

(x , y) 6 E � F (x ′ , y ′) ⇔ ( x , y) 6 E × F ( x ′ , y ′) ∨ y < y ′ .

We write E � F for the corresponding quasi-ordered set.

E q F

E × F

E � F

E � F

E F

Fig. 1 . 1 . Examples of some basic constructions on ordered sets.

5. Let E∗ be the set of words over E . Such words are denoted by sequences
x1

� xn (with x1 , � , xn ∈ E) or [x1 , � , xn ] if confusion may arise. The empty
word is denoted by ε and we define E+ = E∗ \ { ε} . The embeddab ility quasi-
ordering on E∗ is defined by x1

� xn 6 y1
� ym , if and only if there exists

a strictly increasing mapping ϕ : { 1 , � , n} → { 1 , � , m} , such that x i 6 yϕ ( i)

for all i . For instance,

[ 2 , 31 , 1 5 , 7] 6N∗ [ 2 , 8 , 35 , 1 7 , 3 , 7 , 1 ] ;

[ 2 , 31 , 1 5 , 7] 
N∗ [ 2 , 8 , 35 , 1 7 , 3 , 2 , 1 ] .
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6. An equivalence relation ∼ on E is said to be compatib le with the quasi-
ordering if

x 6 y ∧ x ∼ x ′ ∧ y∼ y ′⇒ x ′ 6 y ′

for all x , y , x ′ , y ′ ∈ E . In that case, E/∼ is naturally quasi-ordered by

X 6 E/∼ Y⇔ (∀x ∈ X, ∀y ∈ Y, x 6 E y) ,

and the canonical projection π : E→ E/∼ is increasing.

If E and F are ordered sets, then it can be verified that the quasi-orderings
defined in 1 –6 above are actually orderings.

Let ϕ : E→ F be an increasing mapping between quasi-ordered sets (E, 6 )
and (F, 6 ) . Consider the quasi-ordering 4 on E defined by

x 4 y⇔ ϕ (x ) 6 ϕ ( y) .

Then 6 is finer than 4 and the mapping ϕ admits a natural factorization

(E, 6 ) � ϕ (F, 6 )�
π � ι

(E, 4 ) /≡4 � ϕ̄ ( Im ϕ , 6 )

. ( 1 . 1 )

Here π is the identity on E composed with the natural projection from (E, 4 )
on (E, 4 ) /≡4 , ι is the natural inclusion of Im ϕ into F and ϕ̄ is an isomor-
phism.

Exercise 1 . 1 . Let E be a set.

a) A strict ordering on E is a transitive and antireflexive relation < on E
( i . e. x < x for no elements x ∈ E) . Given a quasi-ordering 6 show that the
relation < defined by x < y⇔ x 6 y ∧ y � x is a strict ordering. Show also
how to associate an ordering to a strict ordering.

b) Let 6 be a quasi-ordering on E . Show that the relation > defined by
x > y⇔ y 6 x is also a quasi-ordering on E ; we call it the opposite quasi-
ordering of 6 .

c) Let 6 be a quasi-ordering on E . Show that x 6 ! y⇔ x = y ∨ x < y defines an
ordering on E . Show that 6 ! is the roughest ordering which is finer than 6 .

Exercise 1 . 2 . Two quasi-ordered sets E and F are said to be isomorphic , and we
write E � F , if there is an increasing bijection between E and F , whose inverse
is also increasing. Prove the following:

a) q and × are commutative modulo � ( i . e. E qF � FqE) , but not � and � .
b) q , × , � and � are associative modulo � .
c) q is distributive w. r. t . × modulo � .
d) � is right ( but not left) distributive w. r. t . � modulo � ( in other words

E � (F � G) � (E � F) � (E � G ) ) .
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Exercise 1 . 3 . Let E be a quasi-ordered set. We define an equivalence relation on
E∗ , by taking two words to be equivalent if they are obtained one from another
by a permutation of letters. We call E� = E∗ /∼ the set of commutative words
over E . Show that:

a) We define a quasi-ordering 4 on E by u 4 v⇔ ∃w ∈ E, u 6 w ∧ v∼ w .
b) For all x 1 � xm , y1 � ym ∈ E∗ , we have x 1 � xm 4 y1 � yn if and only if there

exists an injection ϕ : { 1 , � , m } → { 1 , � , n} with x i 6 yϕ ( i ) for all i .
c) The equivalence relation ∼ is compatible with 4 , so that we may order E�

by the quotient quasi-ordering induced by 4 .
d) The quasi-ordering 6 is finer than 4 and we have a natural increasing

surjection E∗ → E� .
e) For all ordered sets E, F , prove that (E q F) � � E� × F� .
f) For all ordered sets E, F prove that there exists an increasing bijection

(E � F) �→ E� � F� , whose inverse is not increasing, in general.

Exercise 1 . 4. Let E and F be ordered sets and denote by F(E, F) the set of
mappings from E into F . For ϕ , ψ ∈ F(E, F) , we define

ϕ 6 ψ � ∀x ∈ E, ϕ (x ) 
 ψ(x ) ⇒
( ∃ y > x , ϕ ( y) < ψ( y) ∧ (∀z > y, ϕ ( z ) 6 ψ( z ) ) ) .

Prove that 6 defines an ordering on F (E, F) . Also prove the following proper-
ties:

a) If A = {0} q {0} , then F (A, B ) � B × B .
b) If A = {0 , 1 } , then F(A, B ) � B � B .
c) F(E q F, G ) � F (E, G ) × F (F, G) .
d) F(E � F, G ) � F (E, G ) � F (F, G) .

Exercise 1 . 5 . Show that the category of quasi-ordered sets admits direct sums
and products, pull-backs, push-outs, direct and inverse limits and free objects
( i. e. the forgetful functor to the category of sets admits a right adjoint) .

1 . 2 Ordinal numbers

Let E be a quasi-ordered set. The quasi-ordering on E is said to be well-
founded , if there is no infinite strictly decreasing sequence in E . A total well-
founded ordering is called a well- ordering . A total ordering is a well-ordering
if and only if each of its non-empty subsets has a least element. The following
classical theorems are implied by the axiom of choice [Bou70, Mal79] :

Theorem 1 . 1 . Every set can be well- ordered. �

Theorem 1 . 2 . ( Zorn’ s lemma) Let E be a non-empty ordered set, such
that each non-empty totally ordered subset ofE has an upper bound. Then E
admits a maximal element. �
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An ordinal number or ordinal is a set α , such that the relation ∈ forms
a strict well-ordering on α . In particular, the natural numbers can “be defined
to be” ordinal numbers: 0 = ∅ , 1 = { 0} , 2 = 1 ∪ { 1 } , 3 = 2 ∪ { 2 } , � . The set
ω = { 0 , 1 , 2 , � } of natural numbers is also an ordinal. More generally, if α is
an ordinal, then so is α ∪ {α } . For all ordinals α , its elements are also ordinals.

5 : • • • • •
ω : • • • �

ω 2 + 1 : • • • � • • • � •
ω2 : • • • � • • • � • • • � � �

Fig. 1 . 2 . Some examples of ordinal numbers.

It is classical [Mal79] that the class of all ordinal numbers has all the
properties of an ordinal number: if α , β and γ are ordinal numbers, then
α

�
α , α ∈ β⇒ β

�
α , α ∈ β ∧ β ∈ γ⇒ α ∈ γ, α ∈ β ∨ β ∈ α ∨ α = β and each non-

empty set of ordinals admits a least element for ∈ . The following classification
theorem is also classical [Mal79] :

Theorem 1 . 3. Each well- ordered set is isomorphic to a unique ordinal. �

The usual induction process for natural numbers admits an analogue for
ordinal numbers. For this purpose, we distinguish between successor ordinals
and limit ordinals: an ordinal α is called a successor ordinal if α = β ∪ { β}
for some ordinal β ( and we write α = β + 1 ) and a limit ordinal if not ( in
which case α =

⋃
β∈ α β) . For example, the inductive definitions for addition,

multiplication and exponentiation can now be extended to ordinal numbers
as follows:

0 Successor ordinals β + 1 Limit ordinals λ > 0

+ α + 0 = 0 α + ( β + 1 ) = (α + β) + 1 α + λ =
⋃
β∈ λ α + β

× α · 0 = 0 α · ( β + 1 ) = (α · β) + α α · λ =
⋃
β∈ λ α · β

ˆ α0 = 1 αβ+ 1 = αβ · α αλ =
⋃
β∈ λ α

β

Table 1 . 1 . Basic arithmetic on ordinal numbers.

Similarly, one has the transfinite induction principle: assume that a prop-
erty P for ordinals satisfies P(α) ⇒ P(α + 1 ) for all α and (∀α ∈ λ , P(α ) ) ⇒
P(λ ) for all limit ordinals λ . Then P(α ) holds for all ordinals α .

The following theorem classifies all countable ordinals smaller than ωω ,
and is due to Cantor [Can99] :

Theorem 1 .4. Let α < ωω be a countab le ordinal. Then there exists a unique
sequence of natural numbers nd , � , n0 (with nd > 0 if d > 0) , such that

α = ωd · nd + � + ω · n1 + n0 . �

Exercise 1 . 6 . Prove the transfinite induction principle.
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Exercise 1 . 7. For any two ordinals α , β , show that

a) α + β � α � β ;
b) α · β � α � β .

In particular, + and · are associative and + is right distributive w. r. t . · ,
by exercise 1 . 2 .

Exercise 1 . 8. For all ordinals α , β and γ , prove that

a) (αβ ) γ = αβ · γ ;
b) αβ+ γ = αβ · αγ .
Do we also have (α · β) γ = αγ · βγ?

1 . 3 Well-quasi-orderings

Let E be a quasi-ordered set. A chain in E is a subset of E which is totally
ordered for the induced quasi-ordering. An anti- chain is a subset of E of pair-
wise incomparable elements. A well- quasi- ordering is a well-founded quasi-
ordering without infinite anti-chains.

A final segment is a subset F of E , such that x ∈ F ∧ x 6 y ⇒ y ∈ F ,
for all x , y ∈ E . Given an arbitrary subset A of E , we denote by

fin(A) = { y ∈ E : ∃x ∈ A, x 6 y }
the final segment generated by A . Dually, an initial segment is a subset I
of E , such that y ∈ I ∧ x 6 y⇒ x ∈ I, for all x , y ∈ E . We denote by

in(A) = { y ∈ E : ∃x ∈ A, y 6 x }
the initial segment generated by A .

Proposition 1 . 5 . Let E be a quasi-ordered set. Then the following are equiv-
alent:

a ) E is wel l- quasi- ordered.
b ) Any final segment ofE is finitely generated.
c ) The ascending chain condition w. r. t. inc lusion holds for final segments

ofE.
d ) Each sequence x1 , x2 , � ∈ E admits an increasing subsequence .
e ) Any extension of the quasi- ordering on E to a total quasi- ordering on E

yields a well-founded quasi- ordering.

Proof. Assume ( a ) and let F be a final segment of E and G ⊆ F the subset
of minimal elements of F . Then G is an anti-chain, whence finite. We claim
that G generates F . Indeed, in the contrary case, let x1 ∈ F \ fin(G) . S ince
x1 is not minimal in F , there exists an x2 ∈ F \fin(G) with x1 > x2 . Repeating
this argument, we obtain an infinite decreasing sequence x1 > x2 > � . This
proves ( b ) . Conversely, if x1 , x2 , � is an infinite anti-chain or an infinite
strictly decreasing sequence, then the final segment generated by {x1 , x2 , � }
is not finitely generated. This proves ( a ) ⇔ ( b ) .
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Now let F1 ⊆ F2 ⊆ � be an ascending chain of final segments. If the final
segment F=

⋃
n Fn is finitely generated, say by G , then we must have G ⊆ Fn ,

for some n. This shows that ( b ) ⇒ ( c ) . Conversely, let G be the set of minimal
elements of a final segment F . If x1 , x2 , . . . are pairwise distinct elements of G ,
then fin(x1 )  fin(x1 , x2 )  � forms an infinite strictly ascending chain of final
segments.

Now consider a sequence x1 , x2 , � of elements in E , and assume that 6
is a well-quasi-ordering. We extract an increasing sequence xi1 , xi2 , � from it
by the following procedure: Let Fn be the final segment generated by the xk ,
with k > in and xk > x in (F0 = E by convention) and assume by induction
that the sequence x1 , x2 , � contains infinitely many terms in Fn . S ince Fn is
finitely generated by ( b ) , we can select a generator xin+1 , with in+ 1 > in and
such that the sequence x1 , x2 , � contains infinitely many terms in Fn+ 1 . This
implies (d ) . On the other hand, it is clear that it is not possible to extract
an increasing sequence from an infinite strictly decreasing sequence or from a
sequence of pairwise incomparable elements.

Let us finally prove ( a )⇔ ( e ) . An ordering containing an infinite anti-chain
or an infinite strictly decreasing sequence can always be extended to a total
quasi-ordering which contains a copy of −N , by a straightforward application
of Zorn’ s lemma. Inversely, any extension of a well-quasi-ordering is a well-
quasi-ordering. �

The most elementary examples of well-quasi-orderings are well-orderings
and quasi-orderings on finite sets. Other well-quasi-orderings can be con-
structed as follows.

Proposition 1 . 6. Assume that E and F are wel l- quasi- ordered sets. Then

a ) Any subset ofE with the induced ordering is well-quasi-ordered.
b ) Let ϕ : E → F be a morphism of ordered sets. Then Im ϕ is wel l- quasi-

ordered.
c ) Any ordering on E which extends 6 E is a well-quasi-ordering.
d ) E/∼ is wel l- quasi- ordered, for any compatib le equivalence relation ∼ on E.
e ) E q F and E � F are wel l- quasi- ordered.
f) E × F and E � F are wel l- quasi- ordered.

Proof. Properties ( a ) , ( b ) , ( e ) and ( f) follow from proposition 1 . 5(d ) . The
properties ( c ) and ( d ) are special cases of ( b ) . �
Corollary 1 . 7. (Dickson’ s lemma) For each n ∈ N , the set Nn with the
partial, componentwise ordering is a well- quasi- ordering. �
Theorem 1 . 8. (Higman) Let E is be a wel l- quasi- ordered set. Then E∗ is
a well- quasi- ordered set.

Proof. Our proof is due to Nash-Williams [NW63] . If 6 denotes any ordering,
then we say that ( x1 , x2 , � ) is a bad sequence , if there do not exist i < j with
xi 6 xj . A quasi-ordering is a well-quasi-ordering, if and only if there are no
bad sequences.
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Now assume for contradiction that s = (w1 , w2 , � ) is a bad sequence
for 6 E ∗ . Without loss of generality, we may assume that each wi was chosen
such that the length ( as a word) of wi were minimal, under the condition that

wi ∈ E∗ \ fin(w1 , � , wi− 1 ) .

We say that (w1 , w2 , . . . ) is a minimal bad sequence .
Now for all i , we must have wi � ε, so we can factor wi = x i ui , where xi

is the first letter of wi . By proposition 1 . 5(d ) , we can extract an increasing
sequence xi1 , x i2 , � from x1 , x2 , � . Now consider the sequence

s ′ = (w1 , � , wi1 − 1 , ui1 , ui2 , � ) .

By the minimality of s , this sequence is good. Hence, there exist j < k with
ui j 6E ∗ uik . But then,

wi j = xi j ui j 6 E ∗ x ik uik = wik ,

which contradicts the badness of s . �

Exercise 1 . 9 . Show that E is a well-quasi-ordering if and only if the ordering
on E/≡ is a well-quasi-ordering.

Exercise 1 . 1 0 . Prove the principle of Noetherian induction : let P be a property
for well-quasi-ordered sets, such that P(E) holds, whenever P holds for all proper
initial segments of E . Then P holds for all well-quasi-ordered sets.

Exercise 1 . 1 1 . Let E and F be well-quasi-ordered sets. With F(E, F) as in
exercise 1 . 4, when is F(E, F) also well-quasi-ordered?

Exercise 1 . 1 2 . Let E be a well-quasi-ordered set. The set In(E) of initial seg-
ments of E is naturally ordered by inclusion. Show that In(E) is not necessarily
well-quasi-ordered. We define E to be a strongly well-quasi-ordered set if In(E)
is also well-quasi-ordered. Which properties from proposition 1 . 6 generalize to
strongly well-quasi-ordered sets?

Exercise 1 . 1 3 . A limit wel l-quasi-ordered set is a well-quasi-ordered set E , such
that there are no final segments of cardinality 1 . Given two well-quasi-ordered
sets E and F , we define E and F to be equivalent if there exists an increasing
injection from E into F and vice versa. Prove that a limit well-quasi-ordered set
is equivalent to a unique limit ordinal.

1 . 4 Kruskal’ s theorem

An unoriented tree is a finite set T of nodes with a partial ordering 6 T , such
that T admits a minimal element root(T) , called the root of T, and such
that each other node admits a predecessor. Given a , b ∈ T, we recall that a is
a predecessor of b ( and b a successor of a) if a <Tb and c6 Ta for any c∈ T with
c < T b . A node without successors is called a leaf. Any node a ∈ T naturally
induces a subtree Ta = { b ∈ T: b >T a } with root a . S ince T is finite, an easy
induction shows that any two nodes a , b of T admit an infimum a ∧ b w. r. t . 6 T ,
for which a ∧ b 6 Ta , a ∧ b 6Tb and c6Ta ∧ b for all c ∈ T with c6Ta and c6 Tb .
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An oriented tree ( or simply tree ) is an unoriented tree T, together with
a total ordering PT which extends 6 T and which satisfies the condition

a P T b ∧ a 
 T b ∧ a 6 T a ′ ∧ b 6T b ′ ⇒ a ′ PT b
′ .

It is not hard to see that such a total ordering P T is uniquely determined by
its restrictions to the sets of 6 T -successors for each node a .

Two unoriented or oriented trees T and U will be understood to be equal
if there exists a bijection ϕ : T → U which preserves 6 resp. 6 and P . In
particular, under this identification, the sets of unoriented and oriented trees
are countable.

Given a set E , an E- labe led tree is a tree T together with a labeling
l : T→ E . We denote by E> the set of such trees. An E-labeled tree T may
be represented graphically by

T= x

T1
� Tn

, ( 1 . 2 )

where x= l ( root(T) ) and T1 = Ta 1
, � , Tn= Tan ∈ E> are the subtrees associated

to the successors a1 C T � CT an of root(T) . We call T1 , � , Tn the children of
the root and n its arity . Notice that we may have n= 0 .

Example 1 . 9. We may see usual trees as { • } -labeled trees, where { • } is the set
with one symbolic element • . The difference between unoriented and oriented
trees is that the ordering on the branches is important. For instance, the two
trees below are different as oriented trees, but the same as unoriented trees:

•

•

• •

• •

• • •

• •

•

•

•

•

• •

• • •

• •

• •

If E is a quasi-ordered set, then the embeddab ility quasi- ordering on E> is
defined by T6 E> T ′ , if and only if there exists a strictly increasing mapping
ϕ : T→ T ′ for P T , such that ϕ ( a ∧ b) = ϕ ( a) ∧ ϕ ( b) , and l ( a) 6 E l ( ϕ ( a) ) , for
all a , b ∈ T. An example of a tree which embeds into another tree is given by

6

4 3

1 2

6N> 7

1 2

5 1

3

3 1 1

5 8

1

.
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The following theorem is known as Kruskal’ s theorem:

Theorem 1 . 1 0. IfE is a wel l- quasi- ordered set, then so is E> .

Proof. Assume that there exists a bad sequence T1 , T2 , � . We may assume
that we have chosen each

Ti = x i

Ti , 1 � Ti , n i

of minimal cardinality ( assuming that T1 , � , Ti− 1 have already been fixed) ,
i. e. T1 , T2 , � is a “minimal bad sequence”. We claim that the induced quasi-
ordering on S = { Ti , j : j 6 ni } is a well-quasi-ordering. Indeed, suppose the
contrary, and let

Ti1 , j1 , Ti2 , j2 , �

be a bad sequence. Let k be such that ik is minimal. Then the sequence

T1 , � , Tik − 1 , Tik , jk , Tik+1 , jk+1 , �

is also bad, which contradicts the minimality of T1 , T2 , � . Hence, S is well-
quasi-ordered, and so is E × S∗ , by Higman’ s theorem and proposition 1 . 6( f) .
But each tree Ti can be interpreted as an element of E × S∗ . Hence, {T1 , T2 , � }
is a well-quasi-ordered subset of E> , which contradicts our assumption that
T1 , T2 , � is a bad sequence. �

Remark 1 . 1 1 . In the case when we restrict ourselves to trees of bounded arity,
the above theorem was already due to Higman. The general theorem was
first conjectured by Vázsonyi. The proof we have given here is due to Nash-
Williams.

Exercise 1 . 1 4. Let X be a quasi-ordered set and let Ω be an ordered set of
operations on X . That is, the elements of Ω are mappings f : Xn f → X . We say
that such an operation f is extensive , if for all x ∈ Xn f and 1 6 i 6 nf , we have

x i 6X f (x 1 , � , xn f )

We say that the orderings of X and Ω are compatib le , if for all f 6 Ω g, x ∈ Xn f

and y ∈ Xn g , we have

f (x 1 , � , xn f ) 6X g( y1 , � , ygn ) ,

whenever there exists an increasing mapping ϕ : {1 , � , nf } → { 1 , � , ng } with
x i 6X yϕ ( i ) for all 1 6 i 6 nf .

Assume that these conditions are satisfied and let G be a subset of X . The
smallest subset of X which contains G and which is stable under Ω is said to
be the subset of X generated by G w. r. t . Ω , and will be denoted by (G) Ω . If G
is a well-quasi-ordered subset of X and the ordering on Ω is well-quasi-ordered,
then prove that (G ) Ω is well-quasi-ordered.
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1 . 5 Ordered structures

In what follows, all monoids, groups and rings will be commutative and all
rings unitary. The following ordered structures will be encountered frequently
throughout this book. Recall that we systematically understand all orderings
to be partial ( contrary to what is customary for certain structures) .

• An ordered monoid is a monoid X with an ordering 6 such that

OM. x 6 y ∧ x ′ 6 y ′⇒ x x ′ 6 y y ′

for all x , y , x ′ , y ′ ∈ X . If X is rather an additive monoid ( in which case X
is assumed to be abelian) , then OM becomes

OA. x 6 y ∧ x ′ 6 y ′⇒ x + x ′ 6 y + y ′ .

• An ordered ring is a ring R with an ordering 6 with the following prop-
erties:

OR1 . 0 6 1 ;
OR2. x 6 y ∧ x ′ 6 y ′⇒ x + x ′ 6 y + y ′ ;
OR3. 0 6 x ∧ 0 6 y⇒ 0 6 x y ,
for all x , y , x ′ , y ′ ∈ R .

• An ordered field is a field K with an ordering 6 which makes K an ordered
ring and such that 0 < x⇒ 0 < x − 1 for all x ∈ K . Notice that this latter
condition is automatically satisfied if 6 is total.

• An ordered R-module over an ordered ring R is an R-module M with an
ordering 6 which satisfies

OM1 . x 6 y ∧ x ′ 6 y ′⇒ x + x ′ 6 y + y ′ ;
OM2. 0 6 λ ∧ 0 6 x⇒ 0 6 λ x ,
for all λ ∈ R and x , y , x ′ , y ′ ∈ M. Any abelian group is trivially an ordered
Z -module.

• An ordered R- algebra is a morphism ϕ : R → A of ordered rings, i. e. an
increasing ring morphism of an ordered ring R into an ordered ring A . As
usual, we denote λ x = ϕ (λ ) x , for λ ∈ R and x ∈ A . Notice that A is in
particular an ordered R-module. Any ordered ring R is trivially an ordered
Z -algebra.

Let S be an ordered abelian group, ring, R-module or R-algebra. We denote

S> = {x ∈ S : x > 0} ;

S> = {x ∈ S : x > 0} ;

S � = {x ∈ S : x � 0} ;

S6 = {x ∈ S : x 6 0} ;

S< = {x ∈ S : x < 0} .
We observe that the ordering 6 is characterized by S> . If S is totally ordered,
then we define the abso lute value of x ∈ S by | x | = x if x > 0 and | x | = − x ,
if x 6 0 .
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Example 1 . 1 2. Q and R are the most common examples of totally ordered
fields. N and Z are respectively a totally ordered monoid and a totally ordered
group. The complex numbers form an ordered abelian group when setting
u < v ⇔ Re u < Re v . However, this ordering is partial and not compatible
with the multiplication. Notice that u and u + y i are incomparable for u ∈ C
and y ∈ R � .
Example 1 . 1 3. The ring of germs at +∞ of infinitely differentiable real valued
functions on intervals ( a , +∞ ) with a ∈ R can be ordered by f 6 g , if there
exists an x0 ∈ R, such that f (x ) 6 g(x ) for all x > x0 . A totally ordered subfield
of this ring is called a Hardy field .

Example 1 . 1 4 . The above definitions naturally generalize to the case of quasi-
orderings instead of orderings. If A is a quasi-ordered abelian group, then A/≡
is an ordered abelian group, and similarly for quasi-ordered rings, R-mod-
ules, etc.

Example 1 . 1 5. Let A and B be two quasi-ordered abelian groups, rings, R-
modules or R-algebras. Their direct sum A ⊕ B � A × B is naturally quasi-
ordered by the product quasi-ordering

(x , y) 6 (x ′ , y ′) ⇔ x 6 x ′ ∧ y 6 y ′ .
Similarly, the anti- lexicographical direct sum A

�
B � A � B of A and B is

A × B with the anti-lexicographical quasi-ordering

(x , y) 6 (x ′ , y ′) ⇔ (x 6 x ′ ∧ y = y ′) ∨ y < y ′ .

If A and B are ordered, then so are A ⊕ B and A
�
B .

Example 1 . 1 6. Let A and B be two quasi-ordered abelian groups, rings, R-
modules or R-algebras. Their tensor product A⊗ B is naturally quasi-ordered,
by declaring an element of A ⊗ B to be positive if it is a sum of elements of the
form x ⊗ y with x > 0 and y > 0 . S imilarly, we define the anti- lexicographical
tensor product A � B : its set of positive elements is additively generated by
elements in A ⊗ B of the form x ⊗ y + x1 ⊗ y1 + � + xn ⊗ yn , with x , y > 0
and y1 R + � + yn R < y . If A and B are ordered, then the same does not
necessarily hold for

Exercise 1 . 1 5 . Let R be a totally ordered integral domain and let K be its
quotient field.

a) Show that x > R 0 ∧ y > R 0⇒ x y > R 0 , for all x , y ∈ R .
b) If 6 R is a total ordering, then show that there exists a unique total ordering

on K , which extends 6 R , and for which K is an ordered field.

Exercise 1 . 1 6 . Let R be a totally ordered ring.

a) Show that x y = 0 ⇒ (x 2 = 0 ∨ y2 = 0) , for all x , y ∈ R . In particular, if R
contains no nilpotent elements, then R is an integral domain.

b) Show that R may contain nilpotent elements.
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c) Show that R may contain zero divisors which are not nilpotent.
d) Show that positive non-nilpotent elements are larger than any nilpotent

element in R .

Exercise 1 . 1 7. Let A, B and C be quasi-ordered rings. Prove the following
properties:

a) (A ⊕ B ) ⊕ C � A ⊕ (B ⊕ C ) and (A � B ) � C � A � (B � C ) ;
b) (A ⊗ B ) ⊗ C � A ⊗ (B ⊗ C ) and (A � B ) � C � A � (B � C ) ;
c) A ⊗ (B ⊕ C ) � (A ⊗ B ) ⊕ (A ⊗ C ) and (A ⊕ B ) ⊗ C � (A ⊗ C ) ⊕ (B ⊗ C ) ;
d) A � (B � C ) � (A � B ) � (A � C ) , but not always (A � B ) � C �

(A � C ) � (B � C ) .

Exercise 1 . 1 8 .

a) Show that the categories of ordered abelian groups, rings, R-modules and
R-algebras ( its morphisms are increasing morphisms of abelian groups,
rings, etc. ) admit direct sums and products, pull-backs, push-outs, direct
and inverse limits and free objects ( i . e. the forgetful functor to the cat-
egory of sets admits a right adjoint) .

b) Show that the same thing holds for the categories of ordered torsion free
groups, rings without nilpotent elements, torsion free R-modules and ordered
R-algebras A without nilpotent elements, and such that the mapping R→ A,
λ � λ · 1 is injective.

c) What can be said about the operations ⊕ and ⊗ introduced above?

Exercise 1 . 1 9 . Let S be an ordered abelian group, ring, R-module or R-algebra.
We wish to investigate under which circumstances the ordering 6 can be
extended into a total ordering.

a) If S is an ordered abelian monoid, prove that 6 can be extended into a total
ordering if and only if S is torsion free ( i. e. n x = 0⇒ x = 0 , for all n > 0 and
x ∈ S) . Hint: use Zorn’ s lemma.

b) If S is an ordered ring without nilpotent elements, prove that 6 can be
extended into a total ordering if and only if S is an integral domain, such that

a1
2 + � + an

2 + ( b1
2 + � + bm

2 ) x = 0⇒ a1 = 0 ,

for all a1 , � , an , b1 , � , bm , x ∈ S , such that x > 0 . Hint: first reduce the problem
to the case when all squares in S are positive. Next reduce the problem to
the case when a > 0 ∧ b > 0 ∧ a x = b⇒ x > 0 , for all a , b , x ∈ S .

c) Generalize b to the case when S is an ordered ring, which may contain
nilpotent elements.

d) Give conditions in the cases when S is an ordered R-module or an ordered
R-algebra without nilpotent elements.

Exercise 1 . 20. Let S be an ordered group, ring, R-module or R-algebra. For
each morphism ϕ : S→ T of S into a totally ordered structure T of the same kind
as S , we define a relation 4 ϕ on S by x 4 ϕ y⇔ ϕ (x ) 6 ϕ ( y) . Let E be the set
of all such relations 4 ϕ on S .

a) Prove that 6̂ =
⋂
6 ′ ∈ E 6 ′ is a quasi-ordering.

b) Show that 6̂ is an ordering, if and only if 6 can be extended into a total
ordering on S .
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c) Let ≡̂ the equivalence relation associated to 6̂ and let Ŝ = S/ ≡̂ . Show that
the ordered set Ŝ can be given the same kind of ordered algebraic structure
as S , in such a way that the natural projection π : S→ Ŝ is a morphism. We
call Ŝ the closure of S .

d) S is said to be perfect if π is a bijection. Prove that the closure of S is perfect.
e) Show that an ordered abelian group S is perfect if and only if n x > 0⇒ x > 0 ,

for all n > 0 and x ∈ S .
f) Show that an ordered ring without nilpotent elements is perfect, if and only

if x 2 > 0 , for all x ∈ S and a x = b ∧ a > 0 ∧ b > 0⇒ x > 0 , for all a , b , x ∈ S .
g) Under which conditions is an ordered R-module perfect? And an ordered R-

algebra without nilpotent elements?

1 . 6 Asymptotic relations

Let f and g be two germs of real valued functions at infinity. Then we have
the following classical definitions of the domination and neglection relations 4
resp. ≺ :

f 4 g ⇔ f = O ( g) ⇔ ∃C ∈ R, ∃x0 ∈ R, ∀x > x0 , | f (x ) | 6 C | g( x) |
f ≺ g ⇔ f = o( g) ⇔ ∀ε > 0 , ∃x0 ∈ R, ∀x > x0 , | f ( x) | < ε | g( x) | .

Considered as relations on the R-algebra of germs of real valued functions
at infinity, 4 and ≺ satisfy a certain number of easy to prove algebraic
properties. In this section, we will take these properties as the axioms of
abstract domination and neglection relations on more general modules and
algebras.

Let R be a ring and M an R-module. In all what follows, we denote by R∗

the set of non-zero-divisors in R . A dominance re lation is a quasi-ordering 4
on M , such that for all λ ∈ R , µ ∈ R∗ and x , y , z ∈ M , we have

D1 . ( x 4 z ∧ y 4 z ) ⇒ x − y 4 z ;
D2. λ x 4 x and y 4 µ y .
Notice that D1 and D2 imply that Oy = {x ∈ M : x 4 y } is a submodule of M
for each y ∈ M . If x 4 y , then we say that x is dominated by y , and we also
write x = O ( y) . If x 4 y and y 4 x , then we say that x and y are asymptotic ,
and we also write x� y . We say that 4 is total , if x 4 y or y4 x for all x , y ∈M .

A neglection re lation is a strict ordering ≺ on M ( i. e. an anti-reflexive,
transitive relation) , such that for all λ ∈ R and µ ∈ R∗ and x , y , z ∈M , we have

N1 . (x ≺ z ∧ y ≺ z ) ⇒ x − y ≺ z ;
N2. x ≺ y⇒ λ x ≺ µ y and µ y ≺ λ x⇒ y ≺ x .
N3. (x ≺ z ∧ y ≺ z ) ⇒ x ≺ y + z .

Notice that oy = {x ∈M : x ≺ y} is a submodule of M if 0 ∈ oy . However, this is
not always the case, since 0 ⊀ 0 . If x ≺ y , then we say that x can be neglected
w. r. t. y , and we also write x = o( y) . If x − y ≺ x , then we also say that x and
y are equivalent , and we write x∼ y . Indeed, ∼ is an equivalence relation:

x ∼ y⇒ (x − y ≺ x ∧ y − x ≺ x) ⇒ x − y ≺ y⇒ y − x ≺ y⇒ y∼ x.
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Similarly,

(x ∼ y ∧ y∼ z ) ⇒ ( x − y ≺ y ∧ y − z ≺ y) ⇒ y − z ≺ (x − y) + y = x ,

whence

(x ∼ y ∧ y∼ z ) ⇒ ( x − y ≺ x ∧ y − z ≺ x ) ⇒ x − z ≺ x⇒ x ∼ z .
We say that ≺ is compatib le with a dominance relation 4 , if x ≺ y⇒ x 4 y
and x ∼ y⇒ x � y, for all x , y ∈ M . In that case, we call M an asymptotic
R-module . We say that 4 and ≺ are associated , if ≺ is the strict ordering
associated to 4 , i . e. x ≺ y⇔ ( x 4 y ∧ y � x ) for all x , y ∈ M .

Proposition 1 . 1 7.

a ) Let 4 be a dominance re lation such that the stric t ordering ≺ assoc iated
to 4 satisfies N1 and N2 . Then ≺ also satisfies N3 .

b ) Let 4 and ≺ be a dominance and a neglection re lation. If 4 and ≺ are
associated, then they are compatib le .

Proof. Assume that 4 satisfies the condition in ( a ) , and let x , y , z ∈ M be
such that x ≺ z and y ≺ z . If z � y + z , then y + z 4 z implies y + z ≺ z and
z ≺ z : contradiction. Hence, we have z 4 y + z and x ≺ z 4 y + z .

As to ( b ) , assume that 4 and ≺ are associated. Then we clearly have
x ≺ y⇒ x 4 y . Furthermore, x∼ y⇒ x − y ≺ x⇒ x − y 4 x⇒ y 4 x . S imilarly,
x∼ y⇒ y∼ x⇒ x 4 y . Hence, x ∼ y⇒ x � y . �

Proposition 1 . 1 8. Let K be a totally ordered field and V an ordered K- vector
space . Then V is an asymptotic K- vector space for the relations 4 and ≺
defined by

x 4 y ⇔ ∀λ ∈ K, ∃ µ ∈ K, λ x 6 µ y ;

x ≺ y ⇔ ∃ µ ∈ K, ∀λ ∈ K, λ x < µ y.

Moreover, ifV is totally ordered, then ≺ is assoc iated to 4 .

Proof. Let us first show that 4 is a quasi-ordering. We clearly have x 4 x for
all x ∈ V , since λ x 6 λ x for all λ ∈ K . If x 4 y4 z and λ ∈ K , then there exists
a µ ∈ K with λ x 6 µ y and a ν ∈ K with λ x 6 µ y 6 ν z . Let us next prove D1 .
Assume that x 4 z and y 4 z and let λ ∈ K . Then there exist µ, ν ∈ K with
λ x 6 µ z and − λ y 6 ν z , whence λ (x − y) 6 ( µ + ν ) z . As to D2 , let x ∈ V ,
α ∈ K and β ∈ K∗ . Then for all λ ∈ K , we have λ α x 6 λ α x and λ x6 (λ/β) βx .

In order to prove the remaining relations, we first notice that

x ≺ y ⇔ ( ( 0 < y ∨ 0 > y) ∧ ∀λ ∈ K, λ x < | y | ) .
Indeed, if x ≺ y , then there exists a µ ∈ K with λ x < µ y for all λ . In particular,
0 < µ y , whence either 0 < y ( if µ > 0 ) or 0 < − y ( if µ < 0 ) . Furthermore, for all
λ ∈ K , we have λ | µ | x < µ y , whence λ x < | y | . Let us show that ≺ is a strict
ordering. We cannot have x ≺ x , since | x | ≮ | x | . If x ≺ y ≺ z , then we have
λ x < | y | < | z | for all λ ∈ K .
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Let us now prove N1 . If x ≺ z , y ≺ z and λ ∈ K , then 2 λ x < | z | and
− 2 λ y < | z | , whence λ (x − y) < | z | . As to N2 , let α ∈ K , β ∈ K∗ and λ ∈ K . If
x ≺ y , then (λ α/ | β | ) x < | y | , whence λ α < | β y | . If β x ≺ α y, then α � 0 and
(λ | α | /β) βx < | α y | , whence λ x < | y | . Let us finally prove N3 . Assume that
x ≺ z , y ≺ z and λ ∈ K . Then 2 y < | z | implies 1

2
| z | < | y + z | . From 2 λ x < | z |

it thus follows that λ x < 1

2
| z | < | y + z | .

Assuming that V is totally ordered, the relation ≺ is associated to 4 ,
since x ≺ y⇔ y � x . In general, we clearly have x ≺ y⇒ x 4 y . Furthermore, if
x∼ y , then both y − x 6 | x | and x 6 | x | , whence y 6 2 | x | . S imilarly, x 6 2 | y | ,
so that x � y . �

If R is a totally ordered ring, then R cannot have zero-divisors, so its
ring of quotients Q (R) = (R∗ ) − 1 R is a totally ordered field. Moreover, for
any ordered, torsion-free R-module, the natural map M → Q (R) ⊗ M is an
embedding. This allows us to generalize proposition 1 . 1 8 to the case of totally
ordered rings.

Corollary 1 . 1 9. Let R be a total ly ordered ring and M an ordered, torsion-
free R-module . Then M is an asymptotic R-module for the restric tions to M
of the relations 4 and ≺ on Q (R) ⊗ M. Moreover, ifM is total ly ordered,
then ≺ is associated to 4 . �

Assume now that A is an R-algebra. A dominance relation on A is defined
to be a quasi-ordering 4 , which satisfies D1 , D2 and for all x , y , z ∈ A :
D3. x 4 y⇒ x z 4 y z .
A neglection relation on A is a strict ordering ≺ , which satisfies N1 , N2 , N3 ,
and for all x , y ∈ A and z ∈ A∗ :
N4. x ≺ y⇒ x z ≺ y z .

An element x ∈ A is said to be infinitesimal , if x ≺ 1 . We say that x is bounded ,
if x 4 1 ( and unbounded if not) . Elements with x� 1 are called archimedean . If
all non-zero elements of A are archimedean, then A is said to be archimedean
itself. In particular, a totally ordered ring said to be archimedean, if it is
archimedean as an ordered Z -algebra. If 4 and ≺ are compatible, then we
call A an asymptotic R- algebra .

Proposition 1 . 20. Let R be a total ly ordered ring and A a non-trivial totally
ordered R- algebra. Define the relations 4 and ≺ on A as in corol lary 1 . 1 9.
Then A is an asymptotic R- algebra and ≺ is assoc iated to 4 .

Proof. Let x , y , z ∈ A be such that x 4 y, and let λ ∈ Q (R) . Then there exists
a µ ∈ Q (R) with λ x < µ y . If z > 0 , then we infer that λ x z < µ y z , whence
x z 4 y z . If z 6 0 , then we obtain − x z 4 − y z , whence again x z 4 y z , by D2 .
This proves D3 . As to N4 , let x , y , z ∈ A be such that x ≺ y . Then for all
λ ∈ Q (R) , we have (λ z/ | z | ) x < | y | , whence λ x z = (λ z/ | z | ) x | z | < | y z | . �
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Example 1 . 21 . Let A be a totally ordered R-algebra. We may totally order
the polynomial extension A [ ε] of A by an infinitesimal element ε by setting
a0 + a1 ε+ � + ad εd > 0 , if and only if there exists an index i with a0 = � =
ai− 1 = 0 < ai . This algebra is non-archimedean, since 1 � ε� ε2 � � . S imilarly,
one may construct an extension A [ω ] with an infinitely large element ω , in
which 1 ≺ ω ≺ ω2 ≺ � .

Exercise 1 . 21 .

a) Given a totally ordered vector space V over a totally ordered field K , show
that

x 4 y ⇔ ∃λ ∈ K, | x | 6 λ y ;

x ≺ y ⇔ ∀λ ∈ K, λ x < | y | .

b) Given a totally ordered module M over a totally ordered ring R , show that

x 4 y ⇔ ∃λ ∈ R, ∃µ ∈ R∗ , | µ x | 6 λ y ;

x ≺ y ⇔ ∀λ ∈ R, ∀µ ∈ R∗ , λ x < | µ y | .

Exercise 1 . 22 . Let A be a totally ordered ring. Is it true that the relations ≺
and 4 are totally determined by the sets of infinitesimal resp. bounded elements
of A?

Exercise 1 . 23. Prove that the sets of infinitesimal and bounded elements in
a totally ordered ring A are both convex ( a subset B of A is convex if for
all x , z ∈ B and y ∈ A , we have x < y < z ⇒ y ∈ B ) . Prove that the set of
archimedean elements has two “convex components”, provided that 0 < 1 .

Exercise 1 . 24. Show that the nilpotent elements of a totally ordered ring A
are infinitesimal. Does the same thing hold for zero divisors?

Exercise 1 . 25 . Let K be a field. We recall that a valuation on K is a mapping
v : K∗ → Γ of K∗ into a totally ordered additive group, such that

V1 . v (x y) = v(x ) + v( y) for all x , y ∈ K∗ .
V2. v (x + y) > min ( v(x ) , v( y) ) , for all x , y ∈ K∗ with x + y ∈ K∗ .
Show that the valuations on K correspond to total dominance relations.

Exercise 1 . 26 .

a) Let R be any ring and define x 4 y , if and only if ∀z ∈ R, y z = 0 ⇒ x z = 0 ,
for all x , y ∈ R . Show that 4 is a domination relation, for which R is the set
of bounded elements, and R∗ the set of archimedean elements.

b) Assume that R is a ring with a compatible dominance relation and neglection
relation. Show that we may generalize the theory of this section, by replacing
all quantifications over λ ∈ R resp. µ ∈ R∗ by quantifications over λ 4 1
resp. µ � 1 . For instance, the condition D2 becomes x ≺ y⇒ λ x 4 µ y for
all x , y ∈ M , λ 4 1 and µ� 1 .
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Exercise 1 . 27. Let R be a perfect totally ordered ring and M a perfect ordered
R-module. Given x , y ∈ M , we define x 4 y resp. x ≺ y , if ϕ (x ) 4 ϕ ( y) resp.
ϕ (x ) 4 ϕ ( y) for all morphisms ϕ : M→ N of M into a totally ordered R-module
N . P rove that 4 and ≺ compatible domination and neglection relations. Prove
that the same thing holds, if we take a perfect ordered R-algebra A instead of M .

Exercise 1 . 28. Let M be an R-module with a dominance relation 4 . Let D
be the set of total dominance relations 4 ′ on M , with 4 ′ ⊇ 4 . Prove that
4 =

⋂
4 ′ ∈ D 4 ′ .

1 . 7 Hahn spaces

Let K be a totally ordered field and V a totally ordered K-vector space. We
say that V is a Hahn space , if for each x , y ∈ V with x� y , there exists a λ ∈ K ,
with x ∼ λ y .

Proposition 1 . 22 . Let K be a totally ordered field and V a finite dimensional
Hahn space over K. Then V admits a basis b1 , � , bn with b1 ≺ � ≺ bn .

Proof. We prove the proposition by induction over the dimension n of V . If
n = 0 , then we have nothing to prove. So assume that n > 0 , and let H be
a hyperplane in V of dimension n− 1 . By the induction hypothesis, H admits
a basis a1 ≺ � ≺ an− 1 .

We claim that there exists an x ∈ V \H , such that x is asymptotic to none
of the ai . Indeed, if not, let i be minimal such that there exists an x ∈ V \ H
with x � ai . S ince V is saturated, there exists a λ ∈ K with x ∼ λ ai . Then
x − λ ai ≺ ai , whence x − λ ai � aj with j < i, since x − λ ai ∈ V \ H . This
contradicts the minimality of i .

So let x ∈ V \ H be such that x is asymptotic to none of the ai . S ince
x ≺ a i ∨ x � ai ∨ x � ai for all i, the set { a1 , � , an− 1 , x } is totally ordered
w. r. t. ≺ . �

Exercise 1 . 29. Show that any totally ordered R-vector space is a Hahn space.
Do there exist other totally ordered fields with this property?

Exercise 1 . 30. Let K be a totally ordered field and V a finite dimensional
Hahn space over K . Assume that b1 ≺ � ≺ bn and b1

′ ≺ � ≺ bn
′ are both bases

of K and denote by B resp. B ′ the column matrices with entries b1 , � , bn resp.
b1
′ , � , bn

′ . Show that B ′ = TB for some lower triangular matrix T.

Exercise 1 . 31 .

a) Prove that each Hahn space of countable dimension admits a basis which is
totally ordered w. r. t . ≺ .

b) Prove that there exist infinite dimensional Hahn spaces, which do not admit
bases of pairwise comparable elements for ≺ .
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1 . 8 Groups and rings with generalized powers

Let G be a multiplicative group. For any x ∈ G and n ∈ Z , we can take the
n-th power xn of x in G . We say that G is a group with Z -powers. More
generally, given a ring R , a group with R-powers is an R-module G , such that
R acts on G through exponentiation. We also say that G is an exponential
R-module . If R and G are ordered, then we say that G is an ordered group
with R-powers if 1 6 x ∧ 0 6 α⇒ 1 6 xα , for all x ∈ G and α ∈ R .

Example 1 . 23. Let G be any group with R-powers and let S be an R-algebra.
Then we may form the group GS | R with S-powers, by tensoring the R-mod-
ules G and S . However, there is no canonical way to order GS | R , if G, R and S
are ordered.

A ring with R-powers is a ring A , such that a certain multiplicative sub-
group A× of A carries the structure of a group with R-powers. Any ring A
is a ring with Z -powers by taking the group of units of A for A× . If A is an
ordered ring, then we say that the ordering is compatible with the R-power
structure if

∀x ∈ A× , ∀λ ∈ R, x > 0⇒ xλ > 0 .

An ordered field with R-powers is an ordered field K , such that the ordered
group K× = K> of strictly positive elements in K has R-powers.

Example 1 . 24 . The field C ( z ) is a field with Z -powers by taking C ( z ) × =

C ( z ) � . The field R(x ) is a totally ordered field with Z -powers for the ordering

f > 0 ⇔ ∃x0 ∈ R, ∀x > x0 , f (x ) > 0 .

from example 1 . 1 3 .

Let A be an asymptotic ring with R-powers , i . e. A is both an asymptotic
ring and a ring with R-powers, and 1 4 x or x ≺ 1 for all x ∈ A× . G iven x ∈ A× ,
we denote ‖ x ‖ = x if x < 1 and ‖ x ‖ = x− 1 otherwise. Then, given x , y ∈ A× ,
we define

x
�

y ⇔ ∃λ ∈ R, ∃ µ ∈ R∗ , ‖ xµ ‖ 4 yλ ;

x
�

y ⇔ ∀λ ∈ R, ∀µ ∈ R∗ , xλ ≺ ‖ yµ ‖ ,
and we say that x is flatter than y resp. flatter than or as flat as y . If
x

�
y

�
x , then we say that x is as flat as y and we write x � y . Given

x ∈ K× , the set of y ∈ K× with y � x is also called the comparability c lass of
x . Finally, if y/x

�
x , then we say that x and y are similar modulo flatness ,

and we write x � y .

Example 1 . 25. Consider the totally ordered field R( x) ( ex ) with Z -powers and
the natural asymptotic relations 4 and ≺ for x→ ∞ . Then we have x

�
ex ,

ex � x e1 000x and ex � x e1 000x .
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Let A be an asymptotic ring with R-powers and consider a subring A[

with R-powers such that A[ , × = A[ ∩ A× . The subring A[ is said to be flat if

∀x ∈ A× , ∀y ∈ A[ , × , x
�

y⇒ ( ∃x ′ ∈ A[ , × , x ′ � x) .

In that case, we define

x 4 ] y ⇔ ∃ϕ ∈ A[ , × , x 4 ϕ y ;

x ≺ ] y ⇔ ∀ϕ ∈ A[ , × , x ≺ ϕ y,
for x , y ∈ A . In virtue of the next proposition, we call 4 ] a flattened dominance
re lation and ≺ ] a flattened neglection relation .

Proposition 1 . 26.

a ) A is an asymptotic ring with R-powers for 4 ] and ≺ ] .
b ) If for al l x , y ∈ A and ϕ ∈ A[ , × we have

x 4 y ∧ ϕ y � x⇒ x ≺ ϕ y, ( 1 . 3)

then 4 ] and ≺ ] are assoc iated.

Proof. Assume that x 4 ] z and y 4 ] z so that x 4 ϕ z and y 4 ψ z for certain
ϕ , ψ ∈ A[ , × . We also have ϕ 4 ψ or ψ 4 ϕ , so, by symmetry, we may assume
that ϕ 4 ψ . Now x 4 ψ z , whence x − y 4 ψ z , which proves D1 . We trivially
have D2 , since x4 y⇒ x 4 ] y for all x , y ∈ A . The properties D3 , N1 , N2 , N3 ,
N4 and the quasi-ordering properties directly follow from the corresponding
properties for 4 and ≺ .

Assume now that x ≺ ] y . Then in particular x ≺ y , whence x 4 y and
x 4 ] y . Furthermore, if we had y 4 ] x , then we would both have x 4 ϕ y

and y ≺ ϕ− 1 x for some ϕ ∈ A[ , × , which is impossible. This proves that
x ≺ ] y⇒ x 4 ] y ∧ y � ] x .

Conversely, assume that we have x 4 ] y and y � ] x , together with ( 1 . 3) .
Then x 4 ϕ y for some ϕ ∈ A[ , × and y � ψ x for all ψ ∈ A[ , × . G iven ψ ∈ A[ , × ,
we then have ψ y � x , since otherwise y 4 ψ− 1 x . Applying ( 1 . 3) to x , ϕ y and
ψ ϕ− 1 , we conclude that x ≺ ψ y and x ≺ ] y . �

Example 1 . 27. Given an element ϕ ∈ A , we may take A[ = 〈 x ∈ A× : x
�
ϕ 〉 to

be the ring generated by all x ∈ A× with x
�

ϕ . Then we define

4 ϕ = 4 ]
≺ ϕ = ≺ ] .

We may also take A[ = 〈 x ∈ A× : x
�

ϕ 〉 , in which case we define

4 ϕ∗ = 4 ]
≺ ϕ∗ = ≺ ] .

For instance, if A = R(x ) ( ex ) , then x1 0 ex ≺ ex e2 x , x1 0 ex 4 ex ex and f � ex
∗ g for

all f , g ∈ A � .
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Exercise 1 . 32 . Let K be a totally ordered field with R-powers and let L be its
smallest subfield with R-powers.

a) Show that K has a natural asymptotic L-algebra structure with R-powers.
b) Show that � and � are characterized by

x � y ⇔ ∃λ ∈ R, ∃µ ∈ R∗ , ‖ xµ ‖ 6 yλ ;

x � y ⇔ ∀λ ∈ R, ∀µ ∈ R∗ , xλ < ‖ yµ ‖ .

Exercise 1 . 33. Consider A× as a “quasi-ordered vector space” for 4 and the
R-power operation. Show that we may quotient this vector space by � and
that � and � correspond to the natural dominance and neglection relations
on this quotient.
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2

Grid-based series

Let C be a commutative ring, and M a quasi-ordered monomial monoid. In
this chapter, we will introduce the ring C[[ M]] of generalized power series
in M over C . For the purpose of this book, we have chosen to limit ourselves
to the study of grid-based series, whose supports satisfy a strong finiteness
property. On the other hand, we allow M to be partially ordered, so that
multivariate power series naturally fit into our context. Let us briefly discuss
these choices.

In order to define a multiplication on C[[ M]] , we have already noticed
in the previous chapter that the supports of generalized power series have to
satisfy an ordering condition. One of the weakest possible conditions is that
the supports be well-based and one of the strongest conditions is that the
supports be grid-based. But there is a wide range of alternative conditions,
which correspond to the natural origins of the series we want to consider ( see
exercises 2 . 1 and 2 . 7) . For instance, a series like

f =
1

x
+

1

xp +
1

xp 2 + �

is the natural solution to the functional equation

f ( x) = x− 1 + f ( xp ) .

However, f is not grid-based, whence it does not satisfy any algebraic differ-
ential equation with power series coefficients ( as will be seen in chapter 8) .

Actually, the setting of grid-based power series suffices for the resolution
of differential equations and that is the main reason why we have restricted
ourselves to this setting. Furthermore, the loss of generality is compensated
by the additional structure of grid-based series. For example, they are very
similar to multivariate Laurent series ( as we will see in the next chapter) and
therefore particularly suitable for effective purposes [vdH97] . In chapter 4, we
will also show that grid-based “transseries” satisfy a useful structure theorem.



Although we might have proved most results in this book for series with
totally ordered supports only, we have chosen to develop theory in a partially
ordered setting, whenever this does not require much additional effort. First of
all, this lays the basis for further generalizations of our results to multivariate
and oscillating transseries [vdH97, vdH01 a] . Secondly, we will frequently have
to “fully expand” expressions for generalized series. This naturally leads to
the concepts of grid-based families and strong linear algebra ( see sections 2 . 4,
2 . 5 . 3 and 2 . 6) , which have a very “partially-ordered” flavour. Actually, certain
proofs greatly simplify when we allow ourselves to use series with partially
ordered supports.

Let us illustrate the last point with a simple but characteristic example.
Given a classical power series f and an “infinitesimal” generalized power series
g, we will define their composition f ◦ g . In particular, when taking f ( z ) =∑

i= 0
∞ zn/n! , this yields a definition for the exponential eg = f ◦ g of g . Now

given two infinitesimal series g1 and g2 , the proof of the equality eg1 + g2 = eg1 eg2

is quite long in the totally ordered context. In the partially ordered context,
on the contrary, this identity trivially follows from the fact that ez1 + z2 = ez1 ez2

in the ring Q [ [ z1 , z2 ] ] of multivariate power series.

2 . 1 Grid-based sets

Let M be a commutative, multiplicative monoid of monomials , quasi-ordered
by 4 . A subset G ⊆M is said to be grid- based , if there exist m1 , � , mm , n1 , � ,
nn ∈ M, with m1 , � , mm ≺ 1 , and such that

G ⊆ {m1 , � , mm } ∗ {n1 , � , nn } . ( 2 . 1 )

In other words, for each monomial v ∈ G , there exist k1 , � , km ∈ N and l with

v = m1
k 1

� mm
km nl .

Notice that we can always take n= 1 if the ordering on M is total.
By Dickson’ s lemma, grid-based sets are well-quasi-ordered for the oppo-

site quasi-ordering of 4 ( carefully notice the fact that this is true for the
opposite quasi-ordering of 4 and not for 4 itself) . Actually, a grid-based
set is even well-quasi-ordered for the opposite ordering of 4 ! ( recall that
x 4 ! y⇔ x = y ∨ x ≺ y) . More generally, a subset of M which has this latter
property is said to be well- based .

Proposition 2. 1 . Let G and H be grid- based subsets of M. Then

a ) Each finite set is grid- based.
b ) G ∪ H is grid-based.
c ) G H is grid- based.
d ) If G ≺ 1 , then G ∗ is grid- based.
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Proof. The first three assertions are trivial. As to the last one, we will prove
that G ≺ 1 implies that there exist elements v 1 , � , v v ≺ 1 in M, with

G ⊆ { v 1 , � , v v } ∗ .
This clearly implies the last assertion. So assume that we have G ≺ 1 and ( 2 . 1 ) .
For each l , the set

{ ( k1 , � , km) ∈ Nm : m1
k 1

� mm
km nl ≺ 1 }

is a final segment of Nm . Let Fl be a finite set of generators of this final
segment and let

Vl = {m1
k 1

� mm
km nl : ( k1 , � , km) ∈ Fl } .

Then { v 1 , � , v v } = V1 ∪ � ∪ Vn ∪ {m1 , � , mm } fulfills our requirements. �

���

���

���

Fig. 2 . 1 . Illustration of a grid-based set with three base points n1 , n2 , n3

and two infinitesimal generators m1 and m2 . Notice that we used “logarithmic
paper” in the sense that multiplication by m1 or m2 corresponds to a trans-
lation via one of the vectors in the picture. Alternatively, one may write
M = zΓ , where z is a formal variable and Γ is a formal ordered additive “value
group” which is “anti-isomorphic” to M . Instead of representing monomials
M , one may then represent their values in Γ .

Exercise 2 . 1 . Show that proposition 2 . 1 also holds for the following types of
subsets of M :

a) Well-based subsets;
b) Countable well-based subsets ;
c) R-finite subsets, when M is an ordered group with R-powers. Here an
R-finite subset of M is a well-based subset, which is contained in a finitely
generated subgroup with R-powers of M ;

d) Accumulation-free subsets, when M is an ordered group with R-powers. Here
an accumulation-free sub set of M is a subset S , such that for all m, n ∈ M

with n ≺ 1 , there exists an ε > 0 , such that

∀v ∈ S , ( v nε ≺ m⇒ (∀δ > 0 , v nδ ≺ m) ) .
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Exercise 2 . 2 . Assume that M is a group. Show that Z -finite subsets of M are
not necessarily grid-based.

Exercise 2 . 3. If M = zR = {zα : α ∈ R} , with zα < zβ⇔ α 6 β , then accumulation-
free subsets of M are also called Levi-C ivitian subsets . Show that infinite Levi-
C ivitian subsets of M are of the form {zα 1 , zα 2 , � } , with limn→∞ αn = + ∞ .

Exercise 2 . 4. Assume that M is a partially ordered monomial group with
Q -powers. A subset S of M is said to be weakly based , if for each injective
morphism ϕ : M → N of M into a totally ordered monomial group N with
Q -powers we have:

1 . The image ϕ (S ) is well-ordered.
2 . For every n ∈ N , the set {m ∈ S : ϕ (m) = n} is finite.

Show that proposition 2 . 1 also holds for weakly based subsets and give an
example of a weakly based subset which is not well-based.

Exercise 2 . 5 .

a) For grid-based sets E 1 ≺ 1 and E 2 ≺ 1 , show that there exists a grid-based set
D ≺ 1 with D ∗ = E 1

∗ ∩ E 2
∗ .

b) Given a grid-based set D ≺ 1 , does there exist a smallest grid-based set E ≺ 1

for inclusion, such that D ⊆ E ∗ ? Hint: consider {z1 z2
− 2 , z2} ∗ ∩ {z1

2 z2
− 1 , z2

3} ∗
for a suitable ordering on z1

Z z2
Z .

2 . 2 Grid-based series

Let C be a commutative, unitary ring of coefficients and M a commutative,
multiplicative monoid of monomials . The support of a mapping f : M→ C is
defined by

supp f = {m ∈ M: f (m) � 0} .

If supp f is grid-based, then we call f a grid-based series . We denote the set
of all grid-based series with coefficients in C and monomials in M by C[[ M]] .
We also write fm = f ( m) for the coefficient of m ∈ M in such a series and∑

m∈M
fm m for f . Each fm m with m ∈ supp f is called a term occurring in f .

Let ( fi) i∈ I be a family of grid-based series in C[[ M]] . We say that ( fi) i∈ I
is a grid- based family , if

⋃
i∈ I supp fi is grid-based and for each m ∈ M there

exist only a finite number of i ∈ I with m ∈ supp fi . In that case, we define its
sum by

∑

i∈ I
fi =

∑

m∈M

( ∑

i∈ I
fi , m

)
m . ( 2 . 2 )

This sum is again a grid-based series. In particular, given a grid-based series f ,
the family ( fm m) m∈M is grid-based and we have f =

∑
m∈M

fm m .
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Let us now give C[[ M]] the structure of a C-algebra; we will say that
C[[ M]] is a grid-based algebra . C and M are clearly contained in C[[ M]] via
c � c · 1 resp. m � 1 · m . Let f , g ∈ C[[ M]] . We define

f + g =
∑

m∈ supp f ∪ supp g
( fm + gm) m

and

f g =
∑

( m , n ) ∈ supp f × supp g
fm gn m n.

By propositions 1 . 6 and 2 . 1 , f + g and f g are well-defined as sums of grid-
based families. It is not hard to show that C[[ M]] is indeed a C-algebra. For
instance, let us prove the associativity of the multiplication. For each v ∈ M,
we have

( ( f g) h) v =
∑

m∈ supp fg
n∈ supp h

mn= v

( f g) m hn =
∑

m ′∈ supp f
m ′ ′∈ supp g
n∈ supp h
m ′m ′ ′ n= v

fm ′ gm ′ ′ hn .

The right hand side of this equation is symmetric in f , g and h and a similar
expression is obtained for ( f ( g h) ) v .

Let g ∈ C [ [ z ] ] be a power series and f ∈ C[[ M]] an infinitesimal grid-based
series, i. e. m ≺ 1 for all m ∈ supp f . Then we define

g ◦ f =
∑

m1
� mn ∈ ( supp f ) ∗

gn fm1
� fmn m1

� mn ,

where the sum ranges over all words over the alphabet supp f . The right
hand side is indeed the sum of a grid-based family, by Higman’ s theorem and
proposition 2 . 1 . In section 2 . 5 . 3, we will consider more general substitutions
and we will prove that ( g h) ◦ f = ( g ◦ f ) (h ◦ f ) and (h ◦ g) ◦ f = h ◦ ( g ◦ f ) for
all g , h ∈ C [ [ z ] ] .

In particular, we have ( ( 1 + z ) ◦ f ) ( ( 1 + z ) − 1 ◦ f ) = 1 for all f with
supp f ≺ 1 . This yields an inverse for all elements g ∈ C[[ M]] of the form
g= 1 + f with supp f ≺ 1 . Assume now that C is a field and that M is a totally
ordered group. Then we claim that C[[ M]] is a field. Indeed, let f � 0 be
a series in C[[ M]] and let fd d be its dominant term ( i. e. d is maximal for ≺
in supp f ) . Then we have

f− 1 = fd
− 1 d− 1

(
f

fd d

) − 1

.

Example 2. 2. Let M be any multiplicative monoid with the finest ordering for
which no two distinct elements are comparable. Then C[[ M]] is the polyno-
mial ring C [M] .
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Example 2. 3. Let A be any ordered abelian monoid and z ≺ 1 a formal,
infinitely small variable. We will denote by zA the formal ordered multiplica-
tive monoid of powers zα with α ∈ A , where zα ≺ zβ⇔ α > β ( i. e. A and zA are
anti- isomorphic ) . We call C[[ zA]] the ring of grid- based series in z over C and
along A . If A is clear from the context, then we also write C[[ z ]] = C[[ zA]] .
The following special cases are classical:

a) C[[ zN]] is the ring C [ [ z ] ] of formal power series in z .
b) C[[ zZ ]] is the field C( ( z ) ) of Laurent series in z . Elements of C[[ zZ ]] are

of the form
∑

n> v fn z
n with v ∈ Z .

c) C[[ zQ ]] is the field of Puiseux series in z . Elements of C[[ zQ ]] are of the
form

∑
n> v fn z

n/ k with v ∈ Z and k ∈ N> .

d) C[[ zN
n
]] is the ring C [ [ z1 , � , zn ] ] of multivariate power series , when Nn

is given the product ordering.
e) C[[ zZ

n
]] is the ring C( ( z1 , � , zn) ) of multivariate Laurent series, when Zn

is given the product ordering. We recall that a multivariate Laurent series
f ∈ C( ( z1 , � , zn) ) is the product of a series in C [ [ z1 , � , zn ] ] and a monomial
z1
α 1

� zn
αn ∈ zZn . Given f ∈ C[[ zZn ]] � , let { z1

β1 , j
� zn

βn , j : 1 6 j 6 p} be the
set of dominant monomials of f . Then we may take αi = min1 6 j6 p βi , j
for each i .

Often, we rather assume that z � 1 is an infinitely large variable. In that case,
zA is given the opposite ordering zα ≺ zβ⇔ α < β .

Example 2. 4 . There are two ways of explicitly forming rings of multivariate
grid-based series: let z1 , � , zn be formal variables and A1 , � , An ordered addi-
tive monoids. Then we define the rings of natural grid-based power series resp.
recursive grid- based power series in z1 , � , zn over C and along A1 , � , An by

C[[ z1
A 1 , � , zn

An ]] = C[[ z1
A 1 × � × znAn ]] ;

C[[ z1
A 1 ; � ; zn

An ]] = C[[ z1
A 1 � � � zn

An ]] .

If A1 = � = An = A , where A is clear from the context, then we simply write

C[[ z1 , � , zn]] = C[[ z1
A , � , zn

A]] ;

C[[ z1 ; � ; zn]] = C[[ z1
A ; � ; zn

A]] .

Any series f in C[[ z1 ; � ; zn]] may also be considered as a series in
C[[ z1 ]] � [[ zn]] and we may recursively expand f as follows:

f =
∑

αn ∈ A
fαn zn

αn

�

fαn , � , α 2 =
∑

α 1 ∈ A
fαn , � , α 1 z1

α 1 .

Notice that C[[ z1 ; � ; zn]] $ C[[ z1 ]] � [[ zn]] , in general ( see exercise 2 . 6) .
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Exercise 2 . 6 . Show that, in general,

C[[ z1 , � , zn]] $ C[[ z1 ; � ; zn]] $ C [[ z1 ]] � [[ zn]]

and

C[[ z1 ; � ; zn]] � C[[ zσ ( 1 ) ; � ; zσ (n ) ]] ,

for non-trivial permutations σ of {1 , � , n} .

Exercise 2 . 7. Show that the definitions of this section generalize to the case
when, instead of considering grid-based subsets of M , we consider subsets of one
of the types from exercise 2 . 1 or 2 . 4. Accordingly, we have the notions of well-
based families , well-based series, accumulation-free series, etc. The C -algebra of
well-based series in M over C will be denoted by C [ [M] ] .

Now consider the monomial group

M = xR � expR x � expR exp x � � ,

where x , exp x , exp exp x , � � 1 . The order type of a series is the unique ordinal
number which is isomorphic to the support of the series, considered as an ordered
set. Determine the order types of the following series in C [ [M ] ] , as well as their
origins ( like an equation which is satisfied by the series) :

a) 1

x
+

1

exp x
+

1

exp exp x
+ � ;

b) 1 +
1

x
+

1

x 2 + � +
1

ex
+

1

x ex
+

1

x 2 e x
+ � +

1

e 2 x +
1

x e 2 x +
1

x 2 e 2 x + � ;
c) 1 + 2− x + 3− x + 4− x + � ;

d) 1

x
+

1

x p +
1

x p 2 +
1

x p 3 + � ;

e) 1 +
1

x
+

1

x 2 +
1

x e +
1

x 3 +
1

x e + 1 +
1

x 4 +
1

x e + 2 +
1

x 5 +
1

x 2 e +
1

x e + 3 +
1

x 6 + � ;

f) x + x
√

+ x
√√

+ x
√√√

+ � ;

g) 1 +
1

x 1 / 2
+

1

x 3 / 4
+ � +

1

x
+

1

x 3 / 2
+

1

x 7 / 4
+ � +

1

x 2 +
1

x 5 / 2
+

1

x 1 1 / 4
+ � .

Also determine the order types of the squares of these series.

Exercise 2 . 8. Let C be a Noetherian ring and let M be a well-based monomial
monoid. Show that C[[ M]] is a Noetherian ring.

Exercise 2 . 9 . For all constant rings C and monomial groups, let C [ [M ] ] either
denote the ring of well-based, countably well-based, R-finite or accumulation-
free series over M in C . In which cases do we have C [ [M � N] ] � C [ [M ] ] [ [N] ] for
all M and N?

Exercise 2 . 1 0 . Let M be a monomial group and let � be the equivalence
relation associated to 4 as in exercise 1 . 1 ( c ) Let U= {m ∈ M : m� 1 } and let π− 1

be a right inverse for the projection π : M→ M/� . Show that we have natural
embeddings

ν1 : C[[ M/� ]] [U] � C[[ M]]
∑

n ∈ U

∑

m ∈M /�
fm , n m n �

∑

n ∈ U

∑

m ∈M /�
fm , n π− 1 (m) n
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and

ν2 : C[[ M]] � C [U] [[ M/� ]]
∑

m ∈M /�

∑

n ∈ U

fm , n π
− 1 (m) n �

∑

m ∈M /�

∑

n ∈ U

fm , n m n .

Show that the embeddings ν1 and ν2 are strict, in general.

Exercise 2 . 1 1 . Let M be a quasi-ordered monomial group and N an “ideal” of
M in the sense that m n ∈ N , for all m ∈ M and n ∈ N . Define a ring structure
on C [[ M\N]] , such that m n = 0 in C[[ M\N]] , for all m, n ∈ M\N with m n ∈ N .

2 . 3 Asymptotic relations

2. 3. 1 Dominance and neglection relations

Let f ∈ C[[ M]] be a grid-based power series. The set of maximal elements
for 4 in the support of f is called its set ofdominant monomials . If this set is
a singleton, then we say that f is regular , we denote by df or d ( f ) its unique
dominant monomial , by cf = fd f its dominant coefficient , and by τf = cf df

its dominant term . If τf is invertible, then we also denote δf =
f

τf
− 1 , so that

f = τf ( 1 + δf ) .
Notice that any grid-based series f can be written as a finite sum of regular

series. Indeed, let d1 , � , dn be the dominant monomials of f . Then we have

f =
∑

i= 1

n [ ∑

m∈ in ( d 1 , � , d i ) \ in ( d 1 , � , d i − 1 )

fm m

]
,

where we recall that in( d1 , � , di) = {m ∈ M: m 4 d1 ∨ � ∨ m 4 d i } .
Assume that C is an ordered ring. We give C[[ M]] the structure of an

ordered C-algebra by setting f > 0 , if and only if for each dominant mono-
mial d of f , we have fd > 0 ( see exercise 2 . 1 2) .

Assume now that C and M are totally ordered, so that each non-zero series
in C[[ M]] is regular. Then we define a dominance relation 4 on C[[ M]] ,
whose associated strict quasi-ordering ≺ is a neglection relation, by

f 4 g⇔ ( f = 0 ∨ ( f � 0 ∧ g � 0 ∧ df 4 dg) ) .

For non-zero f and g, we have

f 4 g ⇔ df 4 dg ;

f ≺ g ⇔ df ≺ d g ;

f � g ⇔ df = dg ;

f ∼ g ⇔ τf = τg .

Given f ∈ C[[ M]] , we define its canonical decomposition by

f = f� + f� + f≺ ,
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where f� =
∑

m� 1 fm m, f� = f1 and f≺ =
∑

m≺ 1 fm m are respectively
the purely infinite , constant and infinitesimal parts of f . We also define
f< = f� + f� , f4 = f� + f≺ and f� = f − f� ; we call f4 the bounded part of
f . The canonical decomposition of C[[ M]] itself is given by:

C[[ M]] = C[[ M]] � ⊕ C ⊕ C[[ M]] ≺ ,

where
C[[ M]] � = C[[ M� ]] = { f ∈ C[[ M]] : f� = f } ;
C[[ M]] ≺ = C[[ M≺ ]] = { f ∈ C[[ M]] : f≺ = f } .

Similarly, we define C[[ M]] < = C[[ M< ]] = { f ∈ C[[ M]] : f< = f } and
C[[ M]] 4 = C[[ M4 ]] = { f ∈ C[[ M]] : f4 = f } .

Example 2. 5. Let f =
x4

x − 1
∈ C [[ xZ]] with x � 1 . Then the canonical decom-

position of with f is given by

f = f� + f� + f≺
� � �

x3 + x2 + x 1
x− 1

1 − x− 1

Warning 2. 6. One should not confuse C[[ M]] � with C[[ M]] � , since C[[ M]] �
is strictly contained in C[[ M]] � , in general. We always do have C[[ M]] ≺ =
C[[ M]] ≺ and C[[ M]] 4 = C[[ M]] 4 .

Proposition 2 . 7. Assume that C is a total ly ordered integral domain and M
a total ly ordered monomial group. Then

a ) C[[ M]] is a totally ordered C- algebra.
b ) The re lations 4 and ≺ coincide with those defined in proposition 1 . 20.
c ) IfC is a field, then C[[ M]] is a Hahn space over C.
d ) C[[ M]] 4 is the set of bounded e lements in C[[ M]] .
e ) C[[ M]] ≺ is the set of infinitesimal elements in C[[ M]] .

Proof. Given f in C[[ M]] , we have either f = 0 , or cf > 0 ( and thus f > 0 ) ,
or cf < 0 ( and thus f < 0 ) . This proves ( a ) .

Assume that f 4 g , i . e. f = 0 or f � 0 ∧ g � 0 ∧ df 4 dg . If f = 0 , then
clearly | f | 6 | g | . If f � 0 , then either df ≺ dg and c | g | − | f | = | cg | > 0 implies
| f | < | g | , or df = d g and c | 2 cfg | − | cgf | = | cf cg | > 0 implies | cg f | < | 2 cf g | .
Inversely, assume that f � g , i . e. f � 0 and either g = 0 or df � d g . If g = 0 ,
then clearly | λ f | > | µ g | = 0 , for all λ ∈ C∗ and µ ∈ C . Otherwise, d | λf | = df
and | µ g | = 0 or d | µg | = dg for all λ ∈ C∗ and µ ∈ C , so that d | λ f | − | µg | = df and
again | λ f | > | µ g | . We conclude that the above definition of 4 coincides with
the definition in proposition 1 . 20, using exercise 1 . 21 ( b ) . This proves ( b ) , since
for both definitions of ≺ we have f ≺ g⇔ g � f .
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If C is a field, then for f , g ∈ C[[ M]] � , we have f � g ⇔ df = dg ⇒
τf = τ( cf / cg ) g⇔ f ∼ ( cf/cg) g . This shows ( c ) . If f ∈ C[[ M]] is bounded, then
either f = 0 and clearly f ∈ C[[ M]] 4 , or f � 0 ∧ df 4 1 and m 4 df 4 1 for all
m∈ supp f , whence again f ∈ C[[ M]] 4 . If f is unbounded, then df � 1 , whence
f

�
C[[ M]] 4 . This proves ( d ) , and ( e ) is proved similarly. �

In the case when M is not necessarily totally ordered, we may still define
the constant and infinitesimal parts of a series f ∈ C[[ M]] by f� = f1 and f≺ =∑

m≺ 1 fm . We say that f is bounded resp. infinitesimal , if f ∈ C ⊕ C[[ M]] ≺
resp. f ∈ C[[ M]] ≺ . In other words, f is bounded resp. infinitesimal, if for all
m ∈ supp f , we have m 4 1 , resp. m ≺ 1 .

2. 3. 2 Flatness relations

Assume now that C is both a totally ordered R-module and a totally ordered
field with R-powers, for some totally ordered ring R , and assume that M
is a totally ordered group with R-powers. Let f ∈ C[[ M]] > and write
f = cf df ( 1 + ε) with ε ≺ 1 . Given λ ∈ R, let πλ ( z ) = ( 1 + z ) λ · 1 ∈ C [ [ z ] ] .
Then we define

fλ = cf
λ df

λ (πλ ◦ ε) . ( 2 . 3)

In this way, we give the field C[[ M]] the structure of a C-algebra with
R-powers, by taking

C[[ M]] × = { f ∈ C[[ M]] � : cf ∈ C× } .

Indeed, πλ+ µ ◦ ε= (πλ πµ) ◦ ε= (πλ ◦ ε) (πµ ◦ ε) for all λ , µ ∈ R and infinitesimal
ε ∈ C[[ M]] .

Proposition 2. 8. Let C, M and R be as above and let
�

and
�

be defined
as in section 1 . 8. For m ∈ M , denote ‖ m‖ = m if m < 1 and ‖ m‖ = m− 1

otherwise . Then, given f , g ∈ C[[ M]] > , we have

a ) f
�

g⇔ ( ∃λ ∈ R, ∃µ ∈ R∗ , ‖ dfµ ‖ 4 d g
λ ) ;

b ) f
�

g⇔ (∀λ ∈ R, ∀µ ∈ R∗ , dfλ ≺ ‖ dgµ ‖ ) .

Proof. The characterizations of
�

and
�

immediately follow from the fact
that fλ � df

λ for all f ∈ C[[ M]] > . �

2. 3. 3 Truncations

Let M be an arbitrary monomial monoid and f ∈ C[[ M]] . Given a subset
S ⊆ M, we define the restriction fS ∈ C[[ S ]] ⊆ C[[ M]] of f to S by

fS =
∑

m∈ S ∩ supp f
fm m .
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For instance, f� = fM� , f� = f{ 1 } , f≺ = fM≺ and f{m} = fm m . By our general
notations, we recall that FS = { fS : f ∈ F } , for sets F ⊆ C[[ M]] . Notice that
M� = MM� = M� , M≺ = M≺ , etc.

Given two series f , g ∈ C[[ M]] , we say that f is a truncation of g ( and
we write f P g) , if there exists a final segment F of supp g, such that f = gF .
The truncation P is a partial ordering on C[[ M]] .

Let ( fi) i∈ I ∈ C[[ M]] I be a non-empty family of series. A common trunca-
tion of the fi is a series g ∈ C[[ M]] , such that g P fi for all i ∈ I . A greatest
common truncation of the fi is a common truncation, which is greatest for P .
S imilarly, a common extension of the fi is a series g ∈ C[[ M]] , such that fiP g
for all i ∈ I . A least common extension of the fi is a common extension, which
is least for P . Greatest common truncations always exist:

Proposition 2. 9. Any non-empty family ( fi) i∈ I ∈ C[[ M]] I admits a greatest
common truncation.

Proof. Fix some j ∈ I and consider the set F of initial segments F of supp fj ,
such that fj , FP fi for all i ∈ I . We observe that arbitrary unions of initial seg-
ments of a given ordering are again initial segments. Hence Fmax=

⋃
F∈F F is

an initial segment of each supp fi . Furthermore, for each m ∈ Fmax, there exists
an F ∈ F with fj , F , m = fj , m = fi ,m for all i ∈ I . Hence fj , Fmax = fi , Fmax P fi
for all i ∈ I . This proves that fFmax is a common truncation of the fi . It is
also greatest for P , since any common truncation is of the form fj , F for some
initial segment F ∈ F of Fmax with fj , F P fj , Fmax . �

Exercise 2 . 1 2 . Let C be an ordered ring and M a monomial group. Given
λ ∈ C> and series f , g ∈ C[[ M]] > , determine the sets of dominant monomials of
λ f , f + g and f g. Show that C [[ M]] is an ordered C-algebra.

Exercise 2 . 1 3 . Assume that C is a perfect ordered ring and M a perfect ordered
monoid.

a) Show that C[[ M]] is a perfect ordered C -algebra.
b) Let ≺ and 4 be defined as in exercise 1 . 27 . Show that z1

2 + z2
3 ⊀ z1 − z2 in

C [ [ z1 , z2 ] ] .
c) For f , g ∈ C[[ M]] and g regular, show that f ≺ g, if and only if supp f ≺ d g .
d) For f , g ∈ C [[ M]] and g regular, show that f 4 g, if and only if supp f 4 d g .

In other words, there is no satisfactory way to define the relations ≺ and 4
purely formally, except in the case when the second argument is regular.

Exercise 2 . 1 4.

a) Let C be an ordered ring and let M be a monomial set, i . e. a set which is
ordered by 4 . Show that the set C [ [M ] ] of series f : M→ C with well-based
support has the natural structure of an ordered C-module. Show also that
this ordering is total if the orderings on C and M are both total.

b) Prove Hahn’ s embedding theorem [Hah07] : let V be a Hahn space over a
totally ordered field C . Then V/� is a totally ordered set for � /� and V
may be embedded into C [ [V/� ] ] .
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c) If V ⊆ C [ [M] ] in proposition 1 . 22 , then show that V admits a unique basis
( b1 , � , bn ) , such that b1 ≺ � ≺ bn and bi , d ( b j ) = δi , j for all i , j ∈ { 1 , � , n} .

Exercise 2 . 1 5 .

a) Let L ⊇ K be a field extension and M a monomial set. Given a K-subvector
space V of K [ [M] ] , show that L ⊗KC [ [M] ] is isomorphic to the L-subvector
space of L [ [M ] ] , which is generated by V .

b) Let L ⊇ K be an extension of totally ordered fields. Given a Hahn space V
over K , show that L ⊗KV has the structure of a Hahn space over L .

Exercise 2 . 1 6 . Let M be a totally ordered monomial group and let M[ ⊆ M

be a flat subset ( i . e. ∀m ∈ M , ∀n ∈ M[ : m � n⇒ m ∈ M[ ) .

a) Show that C[[ M[ ]] is a flat subring of C [[ M]] .
b) Characterize the relations 4 ] and ≺ ] .

Exercise 2 . 1 7. Generalize the notion of truncation to the well-based setting.
A directed index set is an ordered set I , such that for any i , j ∈ I , there exist a
k ∈ I with i6 k and j6 k . Let ( fi ) i ∈ I be a P -increasing family of series in C [ [M ] ] ,
i . e. fi P fj whenever i 6 j . If M is Noetherian or totally ordered, then show that
there exists a least common extension of the fi . Show that this property does
not hold in the grid-based setting.

2 . 4 Strong linear algebra

Just as “absolutely summable series” provide a useful setting for doing analysis
on infinite sums ( for instance, they provide a context for changing the order
of two summations) , “grid-based families” provide an analogue setting for
formal asymptotics. Actually, there exists an abstract theory for capturing
the relevant properties of infinite summation symbols, which can be applied in
both cases. In this section, we briefly outline this theory, which we call “strong
linear algebra”.

2. 4. 1 Set-like notations for families

It will be convenient to generalize several notations for sets to families. We
will denote families by calligraphic characters F , G , � and write F (S ) for
the collection of all families with values in S . Explicit families ( fi) i∈ I will
sometimes be denoted by ( fi : i ∈ I) . Consider two families F = ( fi) i∈ I ∈ SI
and G = ( gj) ∈ SJ , where I , J and S are arbitrary sets. Then we define

Fq G = (hi) i∈ Iq J , where hi =
{
fi if i ∈ I
gi if i ∈ J

F× G = ( fi , gj) ( i , j) ∈ I × J

More generally, if I=
∐

j∈ J Ij , and Gj = ( fi) i∈ Ij for all j ∈ J , then we denote
∐

j∈ J
Gj = F.
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Given an operation ϕ : S1 × � × Sn→ T and families Fk = ( fk , i) i∈ Ik ∈ SkIk for
k = 1 , � , n, we define

ϕ (F1 , � , Fn) = ( ϕ ( f1 , i1 , � , fn , in ) ) ( i1 , � , in ) ∈ I1 × � × In . ( 2 . 4)

It is also convenient to allow bounded variables to run over families. This
allows us to rewrite ( 2 . 4) as

ϕ (F1 , � , Fn) = ( ϕ ( f1 , � , fn) ) f1 ∈ F1 , � , fn ∈ Fn

Similarly, sums of grid-based families F= ( fi) i∈ I ∈ C[[ M]] I may be denoted
by ∑

F=
∑

f ∈ F
f =

∑

i∈ I
fi

We say that F= ( fi) i∈ I and G = ( gj) j∈ J are equivalent , and we write F≈ G ,
if there exists a bijection ϕ : I → J with fi = gϕ ( i ) for all i ∈ I . If ϕ is only
injective, then we write F � G . If I ⊆ J and ϕ is the natural inclusion, then
we simply write F⊆ G .

2. 4. 2 Infinitary operators

The main idea behind strong linear algebra is to consider classical algebraic
structures with additional infinitary summation operators

∑
. These sum-

mation symbols are usually only partially defined and they satisfy natural
axioms, which will be specified below for a few structures. Most abstract
nonsense properties for classical algebraic structures admit natural strong
analogues ( see exercise 2 . 20) .

A partial infinitary operator on a set S is a partial map

Φ : P (κ ; S ) ⇀ S,

where κ is an infinite cardinal number and

P (κ ; S ) =
⋃

I⊆ κ
SI .

We call κ the maximal arity of the operator Φ . For our purposes, we may
usually take κ = ω , although higher arities can be considered [vdH97] . The
operator Φ : P (κ ; S ) ⇀ S is said to be strongly commutative , if for all equiv-
alent families F and G in P (κ ; S ) , we have F ∈ dom Φ ⇔ G ∈ dom Φ and
F∈ dom Φ ⇒ Φ (F) = Φ ( G ) .

It is convenient to extend commutative operators Φ to arbitrary families
F = ( fi) i∈ I ∈ SI of cardinality card I 6 κ . This is done by taking a bijec-
tion ϕ : I → J with J ⊆ κ and setting Φ(F) = Φ ( ( fϕ − 1 ( j) ) j∈ J ) , whenever
( fϕ− 1 ( j) ) j∈ J ∈ dom Φ . When extending Φ in this way, we notice that the
domain dom Φ of Φ really becomes a class ( instead of a set) and that Φ is not
really a map anymore.
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2. 4. 3 Strong abelian groups

Let A be an abelian group with a partial infinitary operator
∑

: P (κ ; A) ⇀ A .
We will denote by S (A) the domain of

∑
. We say that A is a strong abelian

group , if

SA1 .
∑

is strongly commutative.
SA2. For all I ⊆ κ and OI = ( 0) i∈ I , we have

∑ OI = 0 .
SA3. For all x ∈ A and Sx = ( x) , we have

∑ Sx = x .
SA4. For all F , G ∈ S (A) , we have

∑ Fq G =
∑ F+

∑ G .
SA5. For all F∈ S (A) and decompositions F=

∐
j∈ J Gj , we have

∑

j∈ J

∑
Gj =

∑
F.

SA6. For all F= (nj fj) i∈ J ∈ S (A) with (nj) j∈ J ∈ (N> ) J , we have
∑

j∈ J
1 6 i6 n j

fj =
∑
F.

We understand that F ∈ S (A) , whenever we use the notation
∑ F. For

instance, SA2 should really be read: for all I ⊆ κ and OI = ( 0) i∈ I , we have
OI ∈ S (A) and

∑ OI = 0 .

Remark 2. 1 0. Given a strong abelian group A , it is convenient to extend the
summation operator

∑
to arbitrary families F ∈ F (A) : we define F to be

summable in the extended sense if and only if G = ( f ∈ F: f � 0) is summable
in the usual sense; if this is the case, then we set

∑ F=
∑ G .

Example 2. 1 1 . Any abelian group A carries a trivial strong structure , for which
F∈ S (A) if only if ( f ∈ F: f � 0) is a finite family of elements in A .

We call SA5 the axiom of strong associativity . It should be noticed that
this axiom can only be applied in one direction: given a large summable
family F, we may cut it into pieces Gj , which are all summable and whose
sums are summable. On the other hand, given summable families Gj such that
(
∑ Gj) j∈ J is again summable, the sum

∑ ∐
j∈ J Gj is not necessarily defined:

consider ( 1 − 1 ) + ( 1 − 1 ) + � = 0 . The axiom SA6 of strong repetition aims
at providing a partial inverse for SA5 , in the case when each piece consists
of a finite number of repetitions of an element.

Remark 2. 1 2. In SA5 , we say that the family F refines the family (
∑ Gj) j∈ J .

In order to prove identities of the form
∑ F=

∑ G , a common technique is
to construct a large summable family H , which refines both F and G .
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2. 4. 4 Other strong structures

Let R be a ring with a strong summation
∑

(which satisfies SA1–SA6 ) . We
say that R is a strong ring if

SR. For all F , G ∈ S (A) , we have
∑
FG =

( ∑
F
) ( ∑

G
)
.

Let M be a module over such a strong ring R and assume that we also have
a strong summation on M . Then M is said to be a strong R-module if

SM. For all F∈ S (R) and G ∈ S (M) , we have
∑
FG =

( ∑
F
) ( ∑

G
)
.

Notice that SM is trivially satisfied when R carries the trivial strong struc-
ture. We say that M is an ultra- strong R-module , if we also have

UM. For all (λ i) i∈ I ∈ RI and ( fi) i∈ I ∈ S (M ) , we have (λ i fi) i∈ I ∈ S (M ) .

A strong R- algebra ( resp. an ultra- strong R-algebra ) is an R-algebra A ,
together with a strong summation, for which A carries both the structures
of a strong ring and a strong R-module ( resp. an ultra-strong R-module) .

Let M and N be two strong R-modules. A linear mapping ϕ : M→ N is
said to be strong if it preserves the infinite summation symbols, i. e.

SL. For all F∈ S (M ) , we have
∑

ϕ (F) = ϕ (
∑ F) .

In the case of ultra-strong modules, this condition implies

ϕ
( ∑

i∈ I
λ i x i

)
=
∑

i∈ I
ϕ ( λ i xi) =

∑

i∈ I
λ i ϕ (x i) ,

whenever ( λ i) i∈ I ∈ RI and (x i) i∈ I ∈ S (M) . Notice that strong abelian groups
and rings can be considered as strong Z -modules resp. Z -algebras, so the
definition of strongly linear mappings also applies in these cases.

Exercise 2 . 1 8 . Let F= ( fi) i ∈ I ∈ AI and G = ( gj ) j ∈ J ∈ AJ . P rove that

F≈ G ⇔ (∀x ∈ A, card { i ∈ I : fi = x } = card { j ∈ J : gj = x } ) ;

F � G ⇔ (∀x ∈ A, card { i ∈ I : fi = x } 6 card { j ∈ J : gj = x } ) .

Deduce that F≈ G⇔F � G � F.

Exercise 2 . 1 9 .

a) Let C = R , or a more general Banach algebra. Consider the infinite summa-
tion operator on C , which associates

∑
i ∈ N x i to each absolutely summable

family (x i) i ∈ N . Show that C is a strong ring for this operator ( and the usual
finite summation operators) .

b) Given a set S , show how to construct the free strong R-module in S .
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c) Let B be a σ-algebra on a set E . We define MB to be the free strong
R-module in B , quotiented by all relations

∑
i ∈ I Ui =

∐
i ∈ I Ui for at most

countable families (Ui ) i ∈ I ∈ BI , whose members are mutually disjoint. Show
that finite measures can then be interpreted as strongly linear mappings
from MB into R .

Exercise 2 . 20 . Strong abelian groups, rings, modules and algebras form
categories, whose morphisms are strongly linear mappings. Show that these
categories admit direct sums and products, direct and inverse limits, pull-backs,
push-outs and free objects ( i. e. the forgetful functor to the category of sets
admits a left adjoint) .

2 . 5 Grid-based summation

Let C[[ M]] be a grid-based algebra as in section 2 . 2 . Given a countable family
F∈ F (C[[ M]] ) , we define F to be summable if and only if F is a grid-based
family, in which case its sum is given by formula ( 2 . 2 ) . After extension of the
strong summation operator to arbitrary families using remark 2 . 1 0, it can be
checked that the notions of strong summation and summation of grid-based
families coincide.

2. 5 . 1 Ultra-strong grid-based algebras

Proposition 2. 1 3. C[[ M]] is an ultra- strong C-algebra.

Proof. The proof does not present any real difficulties. In order to familiarize
the reader with strong summability, we will prove SA5 and SR in detail. The
proofs of the other properties are left as exercises.

Let F be a countable grid-based family and F=
∐

j∈ J Gj a decomposition
of F. For each m ∈ M, let F; m = ( f ∈ F: fm � 0) and Gj ; m = ( f ∈ Gj : fm � 0) ,
so that

F; m =
∐

j∈ J
Gj ; m ( 2 . 5 )

Now Gj is a grid-based family for all j ∈ J , since ⋃
f ∈ G j supp f ⊆

⋃
f ∈ F supp f

and Gj ; m ⊆ F; m is finite for all m ∈ M . Furthermore,
⋃

j∈ J
supp

∑
Gj ⊆

⋃

j∈ J

⋃

f ∈ G j
supp f =

⋃

f ∈ F
supp f ,

and the set { j ∈ J : (
∑ Gj) m � 0} ⊆ { j ∈ J : Gj ; m � ∅} is finite for all m ∈ M,

because of ( 2 . 5) . Hence, the family (
∑ Gj) j∈ J is grid-based and for all m ∈M,

we have ( ∑

j∈ J

∑
Gj

)

m

=
∑

j∈ J

∑

f ∈ G j ; m
fm =

∑

f ∈ F; m

fm =
( ∑

F
)

m
.

This proves SA5 .
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Now let F and G be two grid-based families. Then
⋃

( f , g) ∈ F× G
supp f g ⊆

⋃

( f , g) ∈ F× G
( supp f ) ( supp g)

=
( ⋃

f ∈ F
supp f

) ( ⋃

g∈ G
supp g

)

is grid-based. Given m ∈ M, the couples

( v , w ) ∈ (
⋃

f ∈ F
supp f ) × (

⋃

g∈ G
supp g)

with v w = m form a finite anti-chain; let ( v 1 , w 1 ) , � , ( vn , wn) denote those
couples. Then

( ( f , g) ∈ F × G : ( f g) m � 0)

⊆ ( ( f , g) ∈ F × G : ∃k ∈ { 1 , � , n} , fv k � 0 ∧ gw k � 0)

is finite, whence ( fg) ( f , g ) ∈ F× G is a grid-based family. Given m ∈M, and using
the above notations, we also have

( ∑

( f , g) ∈ F× G
fg

)

m

=
∑

( f , g ) ∈ F× G

∑

1 6 k6 n
fv k gw k

=
∑

1 6 k6 n

( ∑
F

)
v k

( ∑
G
)

w k

=
( ( ∑

F
)( ∑

G
) )

m
.

This proves SR. �

2. 5 . 2 Properties of grid-based summation

Let C[[ M]] be a grid-based algebra. Given F∈ F (C[[ M]] ) , let

termF = ( fm m) f ∈ F , m∈ supp f
monF = ( m) f ∈ F ,m∈ supp f

We have

F∈ S (C[[ M]] ) ⇔ termF∈ S (C[[ M]] ) ( 2 . 6)

⇔ monF∈ S (C[[ M]] ) ( 2 . 7)

Indeed,
⋃

f ∈ F
supp f =

⋃

f ∈ term F
supp f =

⋃

f ∈ mon F
supp f
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and for every m ∈ M,

card ( f ∈ F: fm � 0) = card ( f ∈ termF: fm � 0)

= card ( f ∈ monF: fm � 0) .

Moreover, if F is a grid-based, then termF refines F.
It is convenient to generalize proposition 2 . 1 to grid-based families. Given

F= ( fi) i∈ I ∈ C[[ M]] I , we denote

F≺ 1 ⇔ (∀i ∈ I, fi ≺ 1 )

F∗ = ( fi1
� fin ) i1 � in ∈ I∗

Proposition 2. 1 4. Given grid- based families F , G ∈ F (C[[ M]] ) , we have

a ) Fq G is grid- based.
b ) FG is grid- based.
c ) IfF≺ 1 , then F∗ is grid- based.

Proof. Properties ( a ) and ( b ) follow from SA4 and SR. As to ( c ) , let S be
the well-based set of pairs ( f , m) with f ∈ F and m ∈ M, for the ordering

( f , m) ≺ ( g , n) ⇔m ≺ n.

Now consider the family T= ( τw ) w ∈ S ∗ with τw = f1 , m1
� fl , ml

m1
� ml for each

word w = ( f1 , m1 ) � ( fl , ml ) ∈ S ∗ . This family is well-based, since S ∗ is well-
based and the mapping w � τw increasing. Moreover,

⋃

τ∈ T
supp τ ⊆

( ⋃

f ∈ F
supp f

) ∗
,

so T is a grid-based. Hence F∗ is grid-based, since T refines F∗ . �

2. 5 . 3 Extension by strong linearity

Let C[[ M]] and C[[ N]] be two grid-based algebras. A mapping ϕ : M →
C[[ N]] is said to be grid-based if grid-based subsets S ⊆ M are mapped to
grid-based families ( ϕ ( m) ) m∈ S .

Proposition 2 . 1 5 . Let ϕ : M → C[[ N]] be a grid- based mapping. Then ϕ
extends uniquely to a strongly linear mapping ϕ̂ : C[[ M]] → C[[ N]] .

Proof. Let f ∈ C[[ M]] . Then ( ϕ ( m) ) m∈ supp f is a grid-based family, by defi-
nition, and so is ( fm ϕ (m) ) m∈ supp f . We will prove that

ϕ̂ : C[[ M]] � C[[ N]]

f �
∑

m∈ supp f
fm ϕ (m)

is the unique strongly linear mapping which coincides with ϕ on M .
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Given λ ∈ C and f ∈ C[[ M]] we clearly have ϕ̂ (λ f ) = λ ϕ̂ ( f ) , by SM . Now
let F∈ S (C[[ M]] ) and S =

⋃
f ∈ F supp f . We claim that

( fm ϕ ( m) ) ( f , m) ∈ F× S

is grid-based. Indeed,
⋃

( f ,m) ∈ F× S

supp fm ϕ (m) ⊆
⋃

m∈ S

supp ϕ (m)

is grid-based. Secondly, given n ∈ N, the set {m ∈ S : ϕ (m) n � 0} is finite, since
( ϕ (m) ) m∈ S is grid-based. Finally, for each m ∈ S with ϕ (m) n � 0 , the family
( f ∈ F: fm � 0) is finite. Hence, the family ( ( f , m) ∈ F × S : fm ϕ (m) n � 0) is
finite, which proves our claim. Now our claim, together with SA5 , proves that
ϕ̂ (F) = (

∑
m∈ S

fm ϕ ( m) ) f ∈ F is grid-based and

∑
ϕ̂ (F) =

∑

f ∈ F

∑

m∈ S

fm ϕ (m)

=
∑

( f , m) ∈ F× S

fm ϕ (m)

=
∑

m∈ S

∑

f ∈ F
fm ϕ (m) = ϕ̂

( ∑
F
)
.

This establishes the strong linearity of ϕ̂ .
In order to see that ϕ̂ is unique with the desired properties, it suffices

to observe that for each f ∈ C[[ M]] , we must have ϕ̂ ( fm m) = fm ϕ (m) by
linearity and ϕ̂ ( f ) =

∑
m∈ supp f fm ϕ (m) by strong linearity. �

Proposition 2 . 1 6. Assume, with the notations from the previous proposition
that ϕ preserves multiplication. Then so does ϕ̂ .

Proof. This follows directly from the fact that the mappings ( f , g) � ϕ̂ ( f g)

and ( f , g) � ϕ̂ ( f ) ϕ̂ ( g) are both strongly bilinear mappings from C[[ M]] 2

into C[[ N]] , which coincide on M2 .
Strong bilinearity will be treated in more detail in section 6. 2 . Translated

into terms of strong linearity, the proof runs as follows. Given m ∈M, we first
consider the mapping ξm : n � ϕ (m n) = ϕ (m) ϕ (n) . Its extension by strong
linearity maps g ∈ C[[ M]] to

∑

n∈ supp g
gn ϕ (m n) = ϕ̂

( ∑

n∈ supp g
gn m n

)
= ϕ̂ ( m g) ,

but also to
∑

n∈ supp g
gn ϕ (m) ϕ ( n) = ϕ̂ ( m) ϕ̂ ( g) .
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We next consider the mapping χ : m � ξm( g) . Its extension by strong linearity
maps f ∈ C[[ M]] to

∑

m∈ supp f
fm ϕ̂ ( m g) = ϕ̂

( ∑

m∈ supp f
fm m g

)
= ϕ̂ ( fg) ,

but also to ∑

m∈ supp f
fm ϕ̂ ( m) ϕ̂ ( g) = ϕ̂ ( f ) ϕ̂ ( g) . �

Proposition 2 . 1 7. Let ϕ : M→ C[[ N]] and ψ : N→ C[[ V]] be two grid- based
mappings. Then

ψ̂ ◦ ϕ = ψ̂ ◦ ϕ̂ .

Proof. This follows directly from the uniqueness of extension by strong lin-
earity, since ψ̂ ◦ ϕ and ψ̂ ◦ ϕ̂ coincide on M . �

In section 2 . 2 , we defined the composition ϕ ◦ f for ϕ ∈ C [ [ z ] ] and
infinitesimal f ∈ C[[ M]] . We now have a new interpretation of this def-
inition as follows. Consider the mapping ϕ : zN → C[[ M]] , which maps zn

to fn . By proposition 2 . 1 and Higman’ s theorem, ( fn) n∈N is a grid-based
family, whence we may extend ϕ by strong linearity. Given g ∈ C [ [ z ] ] , we have

g ◦ f =
∑

m1
� mn ∈ ( supp f ) ∗

gn fm1
� fmn m1

� mn

=
∑

n∈ N

∑

( m1 , � , mn ) ∈ ( supp f ) n

gn fm1
� fmn

m1
� mn

=
∑

n∈ N
gn

[ ∑

( m1 , � ,mn ) ∈ ( supp f ) n

fm1
� fmn m1

� mn

]

=
∑

n∈ N
gn fn = ϕ̂ ( g) .

Now propositions 2 . 1 6 and 2 . 1 7 respectively imply that

( g h) ◦ f = ( g ◦ f ) (h ◦ f )

and

(h ◦ g) ◦ f = h ◦ ( g ◦ f )

for all g , h ∈ C [ [ z ] ] . More generally, we have

Proposition 2 . 1 8. Let f1 , � , fk be infinitesimal grid- based series in C[[ M]]

and consider the mapping

ϕ : z1
N

� zk
N → C[[ M]]

z1
n1

� zk
nk � f1

n1
� fk

nk .
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Given g ∈ C [ [ z1 , � , zk ] ] , we define g ◦ ( f1 , � , fk ) = ϕ̂ ( g) . Then

a ) For g, h ∈ C [ [ z1 , � , zk ] ] , we have

( g h) ◦ ( f1 , � , fk ) = g ◦ ( f1 , � , fk ) h ◦ ( f1 , � , fk ) .

b ) For h ∈ C [ [ z1 , � , zl ] ] and infinitesimal g1 , � , gl ∈ C [ [ z1 , � , zk ] ] , we have

(h ◦ ( g1 , � , gl ) ) ◦ ( f1 , � , fk ) = h ◦ ( g1 ◦ ( f1 , � , fk ) , � , gl ◦ ( f1 , � , fk ) ) .

Exercise 2 . 21 . Assume that C is a strong ring and M a monomial monoid.
A family F∈ F (C[[ M]] ) is said to be grid-based , if

⋃
f ∈ F supp f is grid-based

and ( fm ) f ∈ F ∈ S(C ) , for each m ∈ M . Show that this definition generalizes the
usual definition of grid-based families and generalize proposition 2 . 1 3 .

Exercise 2 . 22 . Give R the strong field structure from exercise 2 . 1 9( a ) and
R[[ M]] the strong ring structure from exercise 2 . 21 . Show that the strong sum-
mation on R[[ M]] does not necessarily satisfy US . Prove that it does satisfy
the following axiom:

RS. Let F∈ S (R[[ M]] ) and Gf ∈ S(R> ) be such that
∑ Gf = 1 for all f ∈ F.

Then (λ f ) f ∈ F , λ ∈ G f ∈ S (R[[ M]] ) .

Exercise 2 . 23. Generalize the results from this section to the case when we
consider well-based ( or R-finite, accumulation-free series, etc. ) series instead of
grid-based series.

2 . 6 Asymptotic scales

Let C both be an R-module and a field with R-powers, for some ring R , and
let M be an ordered monomial group with R-powers. The the definition of
fλ in ( 2 . 3) generalizes to the case when f ∈ C[[ M]] is a regular series with
cf ∈ C× . As before, the group C[[ M]] × of such f has R-powers.

Proposition 2 . 1 9. Let N be another ordered monomial group with R-powers
and let ϕ : M→ C[[ N]] be a grid- based mapping such that

• ϕ (m) ∈ C[[ N]] × , for all m ∈ M .
• ϕ (m n) = ϕ ( m) ϕ ( n) and ϕ ( mλ ) = ϕ (m) λ , for all m , n ∈ M and λ ∈ R .
• The mapping d ◦ ϕ : M→ N , m � dϕ ( m) is increasing.

Then

a ) ϕ̂ ( fg) = ϕ̂ ( f ) ϕ̂ ( g) and ϕ̂ ( fλ ) = ϕ̂ ( f ) λ , for all f , g ∈ C[[ M]] × and λ ∈ R .
b ) If ker d ◦ ϕ = 1 , then ϕ̂ is injective .

Proof. By proposition 2 . 1 6, ϕ̂ preserves multiplication. Let f = cf df ( 1 + ε) ∈
C[[ M]] × be a regular series and λ ∈ R . Then

ϕ̂ ( fλ ) = cf
λ ϕ ( df ) λ ( ( 1 + z ) λ ◦ ϕ̂ ( ε) ) = cf

λ ϕ ( df ) λ ( 1 + ϕ̂ ( ε) ) λ ,
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by the propositions of the previous section. Furthermore, d ◦ ϕ is strictly
increasing ( otherwise, let m ∈ M be such that m ≺ 1 , but dϕ ( m) = 1 . Then
( ϕ (mn) ) n∈ N is not grid-based) . Hence, 1 + ϕ̂ ( ε) is in C[[ N]] × , and so are cf
and ϕ ( df ) . Therefore,

ϕ̂ ( fλ ) = cf
λ ϕ ( df ) λ ( 1 + ϕ̂ ( ε) ) λ = ( cf ϕ ( df ) ( 1 + ϕ̂ ( ε) ) λ = ϕ̂ ( f ) λ ,

since C[[ N]] × is a group with R-powers. This proves ( a ) .
Assume now that ker d ◦ ϕ = 1 . Then d ◦ ϕ is injective and strictly

increasing. Given f ∈ C[[ M]] with dominant monomials d1 , � , dn , the mono-
mials dϕ ( d 1 ) , � , dϕ ( dn ) are pairwise distinct. Consequently, the dominant
monomials of ϕ̂ ( f ) are precisely the maximal elements for 4 among the dϕ ( d i ) .
In particular, if f � 0 , then there exists at least one such maximal ele-
ment, so that ϕ̂ ( f ) � 0 . This proves ( b ) . �

An asymptotic scale in C[[ M]] is a subgroup S of C[[ M]] × with
R-powers, such that d | S : S → M is injective. Then S is naturally ordered
by f < g ⇔ df < dg , for all f , g ∈ S . The previous proposition now shows
that we may identify C[[ S ]] with a subset of C[[ M]] via the strongly linear
extension ν̂S of the inclusion νS : S → C[[ M]] . This identification is coherent
in the sense that ν̂S ◦ ν̂T = ν̂ν̂S ( T ) , for any asymptotic scale T in C[[ S ]] ,
by proposition 2 . 1 7.

A basis of an asymptotic scale S is a basis of S , when considering S as
an exponential R-module. If B is such a basis, then dB is a basis of dS . In
particular, if dS = M, then dB is a basis of M. In this case, the bijection
d | S : S → M is called a scale change and its restriction to B a base change .
We also say that B is an asymptotic basis for C[[ M]] in this case.

When dealing with finite bases, it will often be convenient to consider them
as ordered n-tuples B = ( b 1 , � , b n) instead of sets without any ordering.

Exercise 2 . 24. Generalize the results from this section to the case when we
consider well-based series instead of grid-based series. In the definition of asymp-
totic scales, one should add the requirement that the natural inclusion mapping
S→ C [[ M]] be well-based ( i. e. well-based subsets of S are mapped to well-based
families) .

Exercise 2 . 25 .

a) Assume that M is a perfect monomial group, i. e. mn 4 1 ⇒ m 4 1 , for all
m ∈M and n > 1 . Prove that a series f ∈ C [[ M]] is invertible, if and only if f
is regular. Hint: show that for each dominant monomial m of f ∈ C[[ M]] ,
there exists an extension 4 ′ of the ordering on M , such that n 4 ′ m, for all
n ∈ supp f .

b) Prove that the above characterization of invertible series does not hold for
general monomial groups.
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Exercise 2 . 26. Let K be a field and M be a monomial group with K-powers.
Assume that M admits a finite basis B = ( b 1 , � , b n) .

a) Let B ′= ( b 1
′ , � , b n ′

′ ) be another asymptotic basis of C[[ M]] . Show that n ′= n
and that there exists a square matrix

PB ′ , B =




λ 1 , 1 � λ 1 , n
� �

λn , 1 � λn , n


 ,

such that d (B ′ ) = BPB ′ , B , that is, d ( b i
′) = b 1

λ i , 1
� b n

λ i , n for all n .
b) Show that PB , B ′ PB ′ , B = Idn .
c) If C[[ M]] = C[[ b 1 , � , b n]] = C [[ b 1

′ , � , b n
′ ]] , then show that the matrix PB ′ , B

is diagonal, modulo a permutation of the elements of B ′ .
d) If C[[ M]] = C[[ b 1 ; � ; b n]] = C [[ b 1

′ ; � ; b n
′ ]] , then show that the matrix PB ′ , B

is lower triangular.
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3

The Newton polygon method

Almost all techniques for solving asymptotic systems of equations are explic-
itly or implicitly based on the Newton polygon method. In this section we
explain this technique in the elementary case of algebraic equations over grid-
based algebras C[[ M]] , where C is a constant field of characteristic zero
and M a totally ordered monomial group with Q -powers. In later chapters of
this book, the method will be generalized to linear and non-linear differential
equations.

In section 3. 1 , we first illustrate the Newton polygon method by some
examples. One important feature of our exposition is that we systemat-
ically work with “asymptotic algebraic equations”, which are polynomial
equations P( f ) = 0 over C[[ M]] together with asymptotic side-conditions,
like f ≺ v . Asymptotic algebraic equations admit natural invariants, like
the “Newton degree”, which are useful in the termination proof of the method.
Another important ingredient is the consideration of equations P ′( f ) = 0 ,
P ′′( f ) = 0 , etc. in the case when P( f ) = 0 admits almost multiple roots.

In section 3. 2 , we prove a version of the implicit function theorem for
grid-based series. Our proof uses a syntactic technique which will be further
generalized in chapter 6. The implicit function theorem corresponds to the
resolution of asymptotic algebraic equations of Newton degree one. In sec-
tion 3. 3 , we show how to compute the solutions to an asymptotic algebraic
equation using the Newton polygon method. We also prove that C[[ M]] is
algebraically closed or real closed, if this is the case for C .

The end of this chapter contains a digression on “Cartesian representa-
tions”, which allow for a finer calculus on grid-based series. This calculus is
based on the observation that any grid-based series can be represented by
a multivariate Laurent series. By restricting these Laurent series to be of a
special form, it is possible to define special types of grid-based series, such as
convergent, algebraic or effective grid-based series. In section 3. 5 , we will show
that the Newton polygon method can again be applied to these more special
types of grid-based series.



Cartesian representations are essential for the development of effective
asymptotics [vdH97] , but they will only rarely occur later in this book ( the
main exceptions being section 4. 5 and some of the exercises) . Therefore, sec-
tions 3. 4 and 3. 5 may be skipped in a first reading.

3. 1 The method illustrated by examples

3. 1 . 1 The Newton polygon and its slopes

Consider the equation

P( f ) =
∑

i> 0

Pi f
i = z3 f6 + z4 f 5 + f4 − 2 f3 + f 2 +

z

1 − z2
f +

z3

1 − z = 0 ( 3 . 1 )

and a Puiseux series f = c zµ + � ∈ C [ c] [[ zQ ]] , where c � 0 is a formal
parameter. We call µ = val f the dominant exponent or valuation of f . Then

α = min
i

val(Pi z iµ) = min { 3 , µ + 1 , 2 µ, 3 µ, 4 µ, 5 µ + 4 , 6 µ + 3}

is the dominant exponent of P( f ) ∈ C [ c] [[ zQ ]] and

NP , z µ ( c) � P( f ) zα = 0 ( 3 . 2 )

is a non-trivial polynomial equation in c. We call NP , zµ and ( 3. 2 ) the Newton
polynomial resp. Newton equation associated to zµ .

Let us now replace c by a non-zero value in C , so that f = c zµ + � ∈
C [[ zQ ]] . If f is a solution to ( 3. 1 ) , then we have in particular NP , zµ ( c) = 0 .
Consequently, NP , zµ must contain at least two terms, so that α occurs at least
twice among the numbers 3 , µ+ 1 , 2 µ, 3 µ, 4 µ, 5 µ + 4 , 6 µ + 3 . It follows that

µ ∈ { 2 , 1 , 0 , − 3

2
} .

We call 2 , 1 , 0 and − 3

2
the starting exponents for ( 3. 1 ) . The corresponding

monomials z2 , z , 1 and z− 3/ 2 are called starting monomials for ( 3. 1 ) .

The starting exponents may be determined graphically from the Newton
polygon associated to ( 3. 1 ) , which is defined to be the convex hull of all
points ( i , ν ) with ν > val Pi . Here points ( i , ν ) ∈ N × Q really encode points
( f i , zν ) ∈ fN × zQ ( recall the explanations below figure 2 . 1 ) . The Newton
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polygon associated to ( 3. 1 ) is drawn at the left hand side of figure 3. 1 . The
diagonal slopes

( 1 , z3 ) → ( f , z ) ( µ = 2)

( f , z ) → ( f 2 , 1 ) ( µ = 1 )

( f 2 , 1 ) → ( f4 , 1 ) ( µ = 0)

( f4 , 1 ) → ( f6 , z3 ) ( µ = − 3

2
)

correspond to the starting exponents for ( 3. 1 ) .
Given a starting exponent µ ∈ Q for ( 3. 1 ) , a non-zero solution c of the

corresponding Newton equation is called a starting coefficient and c zµ a
starting term . Below, we listed the starting coefficients c as a function of µ
in the case of equation ( 3. 2 ) :

µ NP , µ c multiplicity
2 c+ 1 − 1 1

1 c2 + c − 1 1

0 c4 − 2 c3 + c2 1 2
3

2
c6 + c4 − i , i 1

Notice that the Newton polynomials can again be read off from the Newton
polygon. Indeed, when labeling each point ( f i , zµ) by the coefficient of zµ

in Pi , the coefficients of NP , z µ are precisely the coefficients on the edge with
slope µ .

Given a starting term c zµ ∈ C zQ , we can now consider the equation
P̃ ( f̃ ) = 0 which is obtained from ( 3. 1 ) , by substituting c zµ + f̃ for f , and
where f̃ satisfies the asymptotic constraint f̃ ≺ zµ . For instance, if c zµ = 1 z0 ,
then we obtain:

P̃ ( f̃ ) = z3 f̃ 6 + ( 6z3 ) f̃ 5 + ( 1 5 z3 + 5 z4 + 1 ) f̃ 4 +

( 20 z3 + 1 0 z4 + 2) f̃ 3 + ( 1 5 z3 + 1 0 z4 + 1 ) f̃ 2 +(
6 z3 + 5 z4 +

z

1 − z2

)
f̃ + z4 + z3 +

z4 + z 3 + z

1 − z2 = 0 ( f̃ ≺ 1 ) ( 3 . 3)

The Newton polygon associated to ( 3. 3) is illustrated at the right hand side of
figure 3. 1 . It remains to be shown that we may solve ( 3. 3) by using the same
method in a recursive way.

3. 1 . 2 Equations with asymptotic constraints and refinements

First of all, since the new equation ( 3. 3) comes with the asymptotic side-con-
dition f̃ ≺ 1 , it is convenient to study polynomial equations with asymptotic
side-conditions

P( f ) = 0 ( f ≺ zν ) ( 3 . 4)
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Fig. 3. 1 . The left-hand side shows the Newton polygon associated to the
equation ( 3 . 1 ) . The slopes of the four edges correspond to the starting expo-
nents 2 , 1 , 0 and − 3

2
( from left to right) . After the substitution

f→ 1 + f̃ ( f̃ ≺ 1 ) ,

we obtain the equation ( 3 . 3) , whose Newton polygon is shown at the right-
hand side. Each non-zero coefficient Pi , zα in the equation ( 3 . 1 ) for f induces
a “row” of ( potentially) non-zero coefficients P̃ı̃ , zα in the equation for f̃ , in
the direction of the arrows. The horizontal direction of the arrows corre-
sponds to the slope of the starting exponent 0 . Moreover, the fact that 1 is
a starting term corresponds to the fact that the coefficient of the lowest left-
most induced point vanishes.

in a systematic way. The case of usual polynomial equations is recovered by
allowing ν = −∞ . In order to solve ( 3. 4) , we now only keep those starting
monomials zµ for P( f ) = 0 which satisfy the asymptotic side condition zµ≺ zν ,
i . e. µ > ν .

The highest degree of NP , zµ for a monomial zµ ≺ zν is called the Newton
degree of ( 3. 4) . If d > 0 , then P is either divisible by f ( and f = 0 is a solution
to ( 3. 4) ) , or ( 3. 4) admits a starting monomial ( and we can carry out one step
of the above resolution procedure) . If d = 0 , then ( 3. 4) admits no solutions.

Remark 3. 1 . Graphically speaking, the starting exponents for ( 3. 4) correspond
to sufficiently steep slopes in the Newton polygon ( see figure 3. 2 ) . Using
a substitution f = zν f̃ , the equation ( 3. 4) may always be transformed into an
equation

P̃ ( f̃ ) = 0 ( f̃ ≺ 1 )

with a normalized asymptotic side-condition ( the case ν = −∞ has to be
handled with some additional care) . Such transformations, called multiplica-
tive conjugations , will be useful in chapter 8 , and their effect on the Newton
polygon is illustrated in figure 3. 2 .
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Fig. 3 . 2 . At the left-hand side, we have illustrated the Newton polygon for
the asymptotic equation P( f ) = 0 ( f ≺ z 1 / 2 ) . The dashed line corresponds
to the slope 1 /2 and the edges of the Newton polygon with slope > 1 /2 have
been highlighted. Notice that the Newton degree d = 2 corresponds to the
first coordinate of the rightmost point on an edge with slope > 1 /2 . At the
right-hand side, we have shown the “pivoting” effect around the origin of the
substitution f = z 1 / 2 f̃ on the Newton polygon.

Given a starting term ϕ = τ = c zµ or a more general series ϕ = c zµ + � ∈
C [[ zQ ]] , we next consider the transformation

f = ϕ + f̃ ( f̃ ≺ z ν̃ ) , ( 3 . 5 )

with z ν̃ 4 zµ , which transforms ( 3. 4) into a new asymptotic polynomial equa-
tion

P̃ ( f̃ ) = 0 ( f̃ ≺ z ν̃ ) . ( 3 . 6)

Transformations like ( 3. 5) are called refinements . A refinement is said to be
admissib le , if the Newton degree of ( 3. 6) does not vanish.

Now the process of computing starting terms and their corresponding
refinements is generally infinite and even transfinite. A priori , the process
therefore only generates an infinite number of necessary conditions for Puiseux
series f to satisfy ( 3. 4) . In order to really solve ( 3. 4) , we have to prove that,
after a finite number of steps of the Newton polygon method, and whatever
starting terms we chose (when we have a choice) , we obtain an asymptotic
polynomial equation with a unique solution. In the next section, we will prove
an implicit function theorem which guarantees the existence of such a unique
solution for equations of Newton degree one. Such equations will be said to
be quasi- linear .

Returning to our example equation ( 3. 1 ) , it can be checked that each of
the refinements

f = − z2 + f̃ ( f̃ ≺ z2 ) ;

f = − z + f̃ ( f̃ ≺ z ) ;

f = − i z− 3/ 2 + f̃ ( f̃ ≺ z− 3/ 2 ) ;

f = i z− 3/ 2 + f̃ ( f̃ ≺ z− 3/ 2 )
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leads to a quasi-linear equation in f̃ . The case

f = 1 + f̃ ( f̃ ≺ 1 )

leads to an equation of Newton degree 2 ( it will be shown later that the
Newton degree of ( 3. 6) coincides with the multiplicity of c as a root of NP , zµ ) .
Therefore, the last case necessitates one more step of the Newton polygon
method:

f̃ = − i z
√

+ f̃
˜

( f̃
˜ ≺ z1 / 2 ) ;

f̃ = i z
√

+ f̃
˜

( f̃
˜ ≺ z1 / 2 ) .

For both refinements, it can be checked that the asymptotic equation in f̃
˜

is quasi-linear. Hence, after a finite number of steps, we have obtained a
complete description of the set of solutions to ( 3. 1 ) . The first terms of these
solutions are as follows:

fI = − z2 − 2 z3 − 4 z4 − 1 3 z5 − 50 z6 + O ( z7 ) ;

fII = − z + 3 z2 − 8 z3 + 46 z4 − 200 z5 + O ( z6 ) ;

fIII = 1 − i z1 / 2 +
1

2
z +

5 i

8
z3/ 2 − z2 + O ( z5/ 2 ) ;

fIV = 1 + i z1 / 2 +
1

2
z − 5 i

8
z3/ 2 − z2 + O ( z5/ 2 ) ;

fV = − i z− 3/ 2 − 1 − 1

2
z − i z3/ 2 − i

2
z5 / 2 + O ( z3 ) ;

fVI = i z− 3/ 2 − 1 − 1

2
z + i z3/ 2 +

i

2
z5/ 2 + O ( z3 ) .

3. 1 . 3 Almost double roots

Usually the Newton degrees rapidly decreases during refinements and we are
quickly left with only quasi-linear equations. However, in the presence of
almost multiple roots, the Newton degree may remain bigger than two for
quite a while. Consider for instance the equation

(
f − 1

1 − z

) 2

= ε2 ( 3 . 7)

over C [[ z ; ε]] , with z ≺ 1 and ε ≺ 1 . This equation has Newton degree 2 , and
after n steps of the ordinary Newton polygon method, we obtain the equation

(
f̃ − zn

1 − z

) 2

= ε2 ( f̃ ≺ zn− 1 ) ,

which still has Newton degree 2 . In order to enforce termination, an additional
trick is applied: consider the first derivative

2 f − 2

1 − z = 0
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of the equation ( 3. 7) w. r. t . f . This derived equation is quasi-linear, so it
admits a unique solution

ϕ =
1

1 − z .

Now, instead of performing the usual refinement f = 1 + f̃ ( f̃ ≺ 1 ) in the
original equation ( 3. 7) , we perform refinement

f = ϕ + f̃ ( f̃ ≺ 1 ) .

This yields the equation
f̃ 2 = ε2 ( f̃ ≺ 1 ) .

Applying one more step of the Newton polygon method yields the admissible
refinements

f̃ = − ε + f̃̃ ( f̃ ≺ ε) ;
f̃ = ε+ f̃

˜
( f̃ ≺ ε) .

In both cases, we obtain a quasi-linear equation in f̃
˜ :

− 2 ε f̃
˜

+ f̃
˜ 2

= 0 ( f̃ ≺ ε) ;
2 ε f̃

˜
+ f̃

˜ 2
= 0 ( f̃ ≺ ε) .

In section 3. 3 . 2 , we will show that this trick applies in general, and that the
resulting method always yields a complete description of the solution set after
a finite number of steps.

Remark 3. 2. The idea of using repeated differentiation in order to handle
almost multiple solutions is old [Smi75] and has been used in computer algebra
before [Chi86, Gri91 ] . Our contribution has been to incorporate it directly into
the Newton polygon process, as will be shown in more detail in section 3. 3. 2 .

3. 2 The implicit series theorem

In the previous section, we have stressed the particular importance of quasi-
linear equations when solving asymptotic polynomial equations. In this sec-
tion, we will prove an implicit series theorem for polynomial equations. In the
next section, we will apply this theorem to show that quasi-linear equations
admit unique solutions. The implicit series theorem admits several proofs ( see
the exercises) . The proof we present here uses a powerful syntactic technique,
which will be generalized in chapter 6.

Theorem 3.3. Let C be a ring and M a monomial monoid. Consider the
polynomial equation

Pn f
n + � + P0 = 0 ( 3 . 8 )

with coefficients P0 , � , Pn ∈ C[[ M4 ]] , such that P0 , 1 = 0 and P1 , 1 ∈ C∗ .
Then ( 3 . 8 ) admits a unique so lution in C[[ M≺ ]] .
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Proof. Since P1 , 1 ∈ C∗ , the series P1 is invertible in C[[ M4 ]] . Modulo division
of ( 3. 8 ) by P1 , we may therefore assume without loss of generality that P1 = 1 .
Setting Q i = −Pi for all i � 1 , we may then rewrite ( 3. 8 ) as

f = Q0 + Q2 f
2 + � + Qn f

n . ( 3 . 9 )

Now consider the set T of trees with nodes of arities in { 0 , 2 , � , n} and such
that each node of arity i is labeled by a monomial in suppQ i . To each such tree

t = v

t1 � ti

∈ T

we recursively associate a coefficient ct ∈ C and a monomial mt ∈ M by

ct = Q i , v ct1
� cti ;

mt = v mt1
� mti .

Now we observe that each of these monomials mt is infinitesimal, with

mt ∈ ( supp Q0 ) · ( supp Q0 ∪ supp Q2 ∪ � ∪ supp Qn)
∗ . ( 3. 1 0)

Hence the mapping t � mt is strictly increasing, when T is given the embed-
dability ordering from section 1 . 4. From Kruskal’ s theorem, it follows that
the family ( ctmt) t∈T is well-based and even grid-based, because of ( 3. 1 0) . We
claim that f =

∑
t∈T ct mt is the unique solution to ( 3. 9) .

First of all, f is indeed a solution to ( 3. 9) , since

f =
∑

i∈ { 0 , 2 , � , n }

∑

v ∈ supp Q i

∑

t1 , � , ti ∈T

c v

t1 � ti

m v

t1 � ti

=
∑

i∈ { 0 , 2 , � , n }

∑

v ∈ supp Q i

∑

t1 , � , ti ∈T

(Q i , v v ) ( ct1 mt1 )
� ( cti mti )

=
∑

i∈ { 0 , 2 , � , n }

( ∑

v ∈ supp Q i

Q i , v v

)
 ∏

j= 1

i ∑

tj ∈T

ctj mtj




=
∑

i∈ { 0 , 2 , � , n }
Q i f

i = Q0 + Q2 f
2 + � + Qn f

n .

In order to see that f is the unique solution to ( 3. 8) , consider the polynomial
R( δ) = P( f + δ) . S ince f ≺ 1 , we have Ri = Pi + o( 1 ) for all i , whence in
particular R1 = 1 + o( 1 ) . Furthermore, P( f ) = 0 implies R0 = 0 . Now assume
that g ≺ 1 were another root of P . Then δ = g − f ≺ 1 would be a root of R ,
so that

δ = (R1 + R2 δ + � + Rn− 1 δ
n− 1 ) − 1 R( δ) = 0 , ( 3. 1 1 )

since R1 + R2 δ + � + Rn− 1 δ
n− 1 = 1 + o( 1 ) is invertible. �

Exercise 3. 1 . Generalize theorem 3. 3 to the case when ( 3 . 8 ) is replaced by

P0 + P1 f + P2 f
2 + � = 0 ,

where (Pi) i ∈ N ∈ C[[ M4 ]] is a grid-based family with P0 , 1 = 0 and P1 , 1 ∈ C∗ .
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Exercise 3. 2 . Give an alternative proof of theorem 3. 3, using the fact that ( 3. 9)
admits a unique power series solution in Z [ [Q 2 Q 0 , � , Qn Q 0

n− 1 ] ] Q 0 , when
considered as an equation with coefficients in Z [ [Q 0 , Q 2 , � , Qn ] ] .

Exercise 3. 3 . Assuming that M is totally ordered, give yet another alternative
proof of theorem 3. 3 , by computing the terms of the unique solution by trans-
finite induction.

Exercise 3. 4. Let C 〈 〈 z1 , � , zn 〉 〉 denote the ring of non-commutative power
series in z1 , � , zn over C . Consider the equation

f ( g( z1 , � , zn) , z1 , � , zn) = 0 ( 3 . 1 2 )

with f ∈ C 〈 〈 y, z1 , � , zn 〉 〉 , f1 = 0 and invertible fy . P rove that ( 3 . 1 2 ) admits
a unique infinitesimal solution g ∈ C 〈 〈 z1 , � , zn 〉 〉 .

3. 3 The Newton polygon method

3. 3. 1 Newton polynomials and Newton degree

Let C be a constant field of characteristic zero and M a totally ordered
monomial group with Q -powers. Consider the asymptotic polynomial equation

Pn f
n + � + P0 = 0 ( f ≺ v ) , ( 3. 1 3)

with coefficients in C[[ M]] and v ∈ M . In order to capture ordinary polyno-
mial equations, we will also allow v = >M , where >M is a formal monomial
with >M�M . A starting monomial of f relative to ( 3. 1 3) is a monomial m≺ v

in M, such that there exist 0 6 i < j 6 n and n ∈ M with Pi mi� Pjmj� n and
Pk mk 4 n for all other k . To such a starting monomial m we associate the
equation

NP , m( c) = Pn , n/md cn + � + P0 , n = 0 , ( 3. 1 4)

and NP , m is called the Newton polynomial associated to m . A starting term
of f relative to ( 3. 1 3) is a term τ = c m, where m is a starting monomial
of f relative to ( 3. 1 3) and c ∈ C � a non-zero root of NP , m . In that case, the
multiplic ity of τ is defined to be the multiplicity of c as a root of NP , m. Notice
that there are only a finite number of starting terms relative to ( 3. 1 3) .

Proposition 3. 4. Let f be a non-zero solution to ( 3. 1 3) . Then τf is a starting
term for ( 3 . 1 3) . �

The Newton degree d of ( 3. 1 3) is defined to be the largest degree of the
Newton polynomial associated to a monomial m ≺ v . In particular, if there
exists no starting monomial relative to ( 3. 1 3) , then the Newton degree equals
the valuation of P in f . If d= 1 , then we say that ( 3. 1 3) is quasi- linear . The
previous proposition implies that ( 3. 1 3) does not admit any solution, if d= 0 .
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Lemma 3.5 . If ( 3 . 1 3) is quasi- linear, then it admits a unique solution
in C[[ M]] .

Proof. If P0 = 0 , then our statement follows from proposition 3. 4, since
there are no starting monomials. Otherwise, our statement follows from the-
orem 3. 3, after substitution of f n for f in ( 3 . 1 3) , where n is chosen 4 -maximal
such that dP1 < dPi n

i− 1 for all i , and after division of ( 3. 1 3) by dP1 . �

3. 3. 2 Decrease of the Newton degree during refinements

A refinement is a change of variables together with the imposition of an
asymptotic constraint:

f = ϕ + f̃ ( f̃ ≺ ṽ ) , ( 3. 1 5)

where ϕ ≺ v and ṽ 4 v . Such a refinement transforms ( 3. 1 3) into an asymptotic
polynomial equation in f̃ :

P̃n f̃
n + � + P̃ 0 = 0 ( f̃ ≺ ṽ ) , ( 3. 1 6)

where

P̃ i =
1

i !
P( i ) ( ϕ ) =

∑

k= i

n (
k
i

)
Pk ϕ

k − i , ( 3. 1 7)

for each i . We say that the refinement ( 3. 1 5) is admissib le if the Newton degree
of ( 3. 1 6) is strictly positive.

Lemma 3. 6. Consider the refinement ( 3 . 1 5) with ṽ = dϕ . Then

a ) The Newton degree of ( 3 . 1 6) coincides with the multiplicity of c as a root
ofNP , m . In particular, ( 3 . 1 5) is admissib le if and only if cm is a starting
term for ( 3. 1 3) .

b ) The Newton degree of ( 3 . 1 6) is bounded by the Newton degree of ( 3 . 1 3) .

Proof. Let d be maximal such that Pd md < Pi mi for all i , and denote
n = d (Pd) md . Then d is bounded by the Newton degree of ( 3. 1 3) and

P̃ i =
1

i !

∑

k= i

n (
k
i

)
Pk ϕk − i

=
1

i !

∑

k= i

n (
k
i

)
(Pk , nm− k + o( 1 ) ) n m− k ( c+ o( 1 ) ) k − i mk − i

=
1

i !
NP , m

( i)
( c) n mi + o( n mi) ,

for all i . In particular, denoting the multiplicity of c as a root of NP , m by d̃ ,
we have P̃ d̃ � n m− d̃ . Moreover, for all i > d̃ , we have P̃ i 4 n m− i . Hence, for
any i > d̃ and m̃ ≺ m, we have P̃ i m̃

i ≺ P̃ d̃ m̃d̃ . This shows that the Newton
degree of ( 3. 1 6) is at most d̃ .
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Let us now show that the Newton degree of ( 3. 1 6) is precisely d̃ . Choose
m̃ ≺ m large enough, so that

m̃ <
dP̃ i ( f̃ )

dP̃ d̃ ( f̃ )

d̃ − i
√

for all i < d̃ . Then degNP̃ , m̃ = d̃ . �

If one step of the Newton polygon method does not suffice to decrease
the Newton degree, then two steps do, when applying the trick from the next
lemma:

Lemma 3.7. Let d be the Newton degree of ( 3. 1 3) . If f admits a unique
starting monomial m and NP , m a unique root c ofmultiplic ity d, then

a ) The equation

P( d− 1 ) ( ϕ ) = 0 ( ϕ ≺ v ) ( 3. 1 8)

is quasi- linear and its unique so lution satisfies ϕ = cm + o(m) .
b ) The Newton degree of any refinement

f̃ = ϕ̃ + f̃
˜

( f̃
˜ ≺ ṽ̃ )

relative to ( 3. 1 6) with ṽ̃ = d ϕ̃̃ is stric tly inferior to d .

Proof. Notice first that NP ′ , m = NP , m
′ for all polynomials P and monomials m .

Consequently, ( 3 . 1 8) is quasi-linear and c is a single root of NP ( d − 1 ) ,m . This
proves ( a ) .

As to ( b ) , we first observe that P̃d− 1 = P( d− 1 ) ( ϕ ) = 0 . G iven m̃ ≺ ṽ , it
follows that NP̃ , m , d− 1 = 0 . In particular, there do not exist α � 0 , β � 0

with NP̃ , m̃( c̃ ) = α ( c̃ − β) d . In other words, NP̃ , m̃ does not admit roots of
multiplicity d . We conclude by lemma 3. 6. �

3. 3. 3 Resolution of asymptotic polynomial equations

Theorem 3.8. Let C be an algebraically closed field of characteristic zero
and M a totally ordered monomial group with Q -powers. Then C[[ M]] is
algebraical ly closed.

Proof. Consider the following algorithm:

Algorithm polynomial_solve
Input: An asymptotic polynomial equation ( 3. 1 3) .
Output: The set of solutions to ( 3. 1 3) .

1 . Compute the starting terms c1 m1 , � , cν mν of f relative to ( 3. 1 3) .
2 . If ν = 1 and c1 is a root of multiplicity d of NP ,m1 , then let ϕ be the unique

solution to ( 3. 1 8) . Refine ( 3. 1 5) and apply polynomi al_solve to ( 3. 1 6) .
Return the so obtained solutions to ( 3. 1 3) .
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3. For each 1 6 i 6 ν , refine

f = ci mi + f̃ ( f̃ ≺ mi)

and apply polynomi al_solve to the new equation in f̃ . Collect and return
the so obtained solutions to ( 3. 1 3) , together with 0 , if P is divisible by f .

The correctness of polynomi al_solve is clear; its termination follows from
lemmas 3. 6( b ) and 3. 7( b ) . S ince C is algebraically closed, all Newton poly-
nomials considered in the algorithm split over C . Hence, polynomi al_solve
returns d solutions to ( 3. 1 3) in C[[ M]] , when counting with multiplicities.
In particular, when taking v = >M � M, we obtain n solutions, so C[[ M]] is
algebraically closed. �

Corollary 3.9. Let C be a real closed field and M a totally ordered monomial
group with Q -powers. Then C[[ M]] is real closed.

Proof. By the theorem, a polynomial equation P(n) = 0 of degree n over
C[[ M]] admits n solutions in C [ i ] [[ M]] , when counting with multiplicities.
Moreover, each root ϕ ∈ C [ i] [[ M]] \ C[[ M]] is imaginary, because

i =
ϕ − Re ϕ
Im ϕ

∈ C[[ M]] [ ϕ ]

for such ϕ . Therefore all real roots of P are in C[[ M]] . �

Corollary 3. 1 0. The field C[[ zQ ]] of Puiseux series over an algebraically
resp. real closed field C is algebraically resp. real closed. �

Exercise 3. 5 . Consider an asymptotic algebraic equation ( 3. 1 3) of Newton
degree d . Let τ1 , � , τk be the starting terms of ( 3 . 1 3) , with multiplicities µ1 , � ,
µk . P rove that

µ1 + � + µk 6 d.

Also show that µ1 + � + µk = d if C is algebraically closed.

Exercise 3. 6 .

a) Show that the computation of all solutions to ( 3. 1 3) can be represented
by a finite tree, whose non-root nodes are labeled by refinements. Applied
to ( 3. 1 ) , this would yields the following tree:

f = f̃

f = − z2+ f̃

f̃ ≺ z2

f = − z+ f̃
f̃ ≺ z

f = 1 + f̃

f̃ ≺ 1

f = 1 − i z1 / 2+ f̃

f̃ ≺ z1 / 2

f = 1 + i z1 / 2+ f̃

f̃ ≺ z1 / 2

f = − i z− 3/ 2+ f̃

f̃ ≺ z− 3/ 2

f = i z− 3/ 2+ f̃

f̃ ≺ z− 3/ 2
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b) Show that the successors of each node may be ordered in a natural way, if C
is a real field, and if we restrict our attention to real algebraic solutions. Prove
that the natural ordering on the leaves, which is induced by this ordering,
corresponds to the usual ordering of the solutions.

Exercise 3. 7.

a) Generalize the results of this chapter to asymptotic equations of infinite
degree in f , but of finite Newton degree.

b) Give an example of an asymptotic equation of infinite degree in f , with
infinitely many solutions.

Exercise 3. 8. Consider an asymptotic polynomial equation

P( f ) = 0 ( f ≺ v )

of Newton degree d , with P ∈ C[[ M]] [F ] and v ∈ M . Consider the monomial
monoid U= M × FN with

mFi ≺ 1 ⇔ m v i ≺ 1 ∨ (m v i = 1 ∧ i > 0) .

a) Show that there exists a unique invertible series u ∈ C[[ U]] such that P̃ = uP
is a monoic polynomial in C[[ M]] [F ] .

b) Show that deg P̃ = d .

3. 4 Cartesian representations

In this section, we show that grid-based series may be represented by ( finite
sums of) multivariate Laurent series in which we substitute an infinitesimal
monomial for each variable. Such representations are very useful for finer
computations with grid-based series.

3. 4. 1 Cartesian representations

Let C[[ M]] be a grid-based algebra. A Cartesian representation for a series
f ∈ C[[ M]] is a multivariate Laurent series f̌ ∈ C( ( ž 1 , � , ž k ) ) , such that
f = ϕ̂ ( f̌ ) for some morphism of monomial monoids ϕ : ž 1

Z
� ž k

Z→M. Writing
f̌ = ǧ ž 1

α 1 � ž k
αk , with ǧ ∈ C [ [ ž 1 , � , ž k ] ] , we may also interpret f as the product

of a “series” ϕ̂ ( ǧ ) in ϕ ( ž 1 ) , � , ϕ ( ž k ) and the monomial m = ϕ ( ž 1
α 1 � ž k

αk ) .
More generally, a semi-Cartesian representation for f ∈ C[[ M]] is an

expression of the form
f = ϕ̂ ( ǧ1 ) m1 + � + ϕ̂ ( ǧl ) ml ,

where g1 , � , gl ∈ C [ [ ž 1 , � , ž k ] ] , m1 , � , ml ∈ M and ϕ : ž 1
N � ž k

N → M is a
morphism of monomial monoids.

Proposition 3. 1 1 .
a ) Any grid- based series f ∈ C[[ M]] admits a semi-Cartesian representation.
b ) If M is a monomial group, which is generated by its infinitesimal elements,

then each grid- based series f ∈ C[[ M]] admits a Cartesian representation.

3. 4 Cartesian representations 79



Proof.

a ) Let m1 , � , mk ∈ M≺ and n1 , � , nl ∈ M be such that

supp f ⊆ {m1 , � , mk } ∗ {n1 , � , nl } .
For each v ∈ supp f , let

nv = card { (α1 , � , αk , i) ∈ Nk × { 1 , � , l } : v = m1
α 1

� mk
αk ni } .

Let

ǧi =
∑

α 1 , � , α k ∈ Nk

fm1
α 1 � mk

αk ni

nm1
α 1 � mk

αk n i

ž 1
α 1 � ž k

αk

for all 1 6 i 6 l and let ϕ : ž 1
N

� ž k
N→M, ž 1

α 1 � ž k
αk � m1

α 1
� mk

αk . Then

f = ϕ̂ ( ǧ1 ) n1 + � + ϕ̂ ( ǧl ) nl .

b ) For certain mk+ 1 , � , mp ∈ M≺ and βi , j ∈ Z , we may write

ni = mk+ 1
βi , k+1

� mp
βi , p ,

for all 1 6 i 6 l . Let ψ : ž 1
Z

� ž p
Z→M, ž 1

α 1 � ž p
α p � m1

α 1
� mp

α p and

f̌ =
∑

i= 1

l

ǧi ž k+ 1
βi , k+1

� ž p
βi , p .

Then f = ψ̂ ( f̌ ) . �

Cartesian or semi-Cartesian representations f1 = ϕ̂ 1 ( f̌1 ) and f2 = ϕ̂2 ( f̌2 ) are
said to be compatib le , if f̌1 and f̌2 belong to the same algebra C( ( ž 1 , � , ž k ) )
of Laurent series, and if ϕ 1 = ϕ2 .

Proposition 3. 1 2 .

a ) Any f1 , � , fn ∈ C[[ M]] admit compatib le semi-Cartesian representations.
b ) If M is a monomial group, which is generated by its infinitesimal elements,

then any f1 , � , fn ∈ C[[ M]] admit compatib le Cartesian representations.

Proof. By the previous proposition, f1 , � , fn admit semi-Cartesian represen-
tations fi = ϕ̂ i( f̌i) , where f̌i ∈ C( ( ž i , 1 , � , ž i , k i ) ) and ϕ i : ž i , 1

N � ž i , k i
N → M for

each i . Now consider

ψ :
∏

i= 1

n ∏

j= 1

k i

ž i , j
N � M

∏

i= 1

n ∏

j= 1

k i

ž i , j
α i , j �

∏

i= 1

n

ϕ̂ i

( ∏

j= 1

k i

ž i , j
α i , j

)
.

Then fi = ψ̂ ( F̌i) for each i, where F̌i is the image of f̌i under the natural
inclusion of C( ( ž i , 1 , � , ž i , k i ) ) into C( ( ž 1 , 1 , � , ž 1 , k 1

, � , žn , 1 , � , žn , kn ) ) . This
proves ( a ) ; part ( b ) is proved in a similar way. �
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3. 4. 2 Inserting new infinitesimal monomials

In proposition 3. 1 2 we drastically increased the size of the Cartesian basis in
order to obtain compatible Cartesian representations. The following lemma
is often useful, if one wants to keep this size as low as possible.

Lemma 3. 1 3. Let z1 , � , zk , m1 , � , ml be infinitesimal elements of a totally
ordered monomial group M with Q -powers, such that m1 , � , ml ∈ z 1

Z
� zk

Z .
Then there exist infinitesimal z 1

′ , � , zk
′ ∈ z 1

Q
� zk

Q with z 1 , � , zk , m1 , � ,

ml ∈ ( z 1
′ ) N � ( zk

′ ) N .

Proof. It suffices to prove the lemma for l = 1 ; the general case follows by
induction over l . The case l = 1 is proved by induction over k . For k = 0 ,
there is nothing to prove. So assume that k > 1 and let m1 = z 1

α 1
� zk

αk with
α1 , � , αk ∈ Z . Without loss of generality, we may assume that αk > 0 , modulo
a permutation of variables. Putting n = z1

α 1
� zk − 1

αk − 1 , we now distinguish the
following three cases:

1 . If n ≺ 1 , then there exist infinitesimal z 1
′

� zk − 1
′ ∈ z 1

Z
� zk − 1

Z , such that
z 1 , � , zk − 1 , n∈ ( z 1

′ )N � ( zk − 1
′ )N , by the induction hypothesis. Taking zk

′ = zk ,
we now have zk , m1 = n zk

αk ∈ ( z 1
′ )N � ( zk

′ )N , since αk > 0 .
2 . If n = 1 , then m1 = zk

α k , and we may take z1
′ = z1 , � , zk

′ = zk .
3 . If n � 1 , then there exists infinitesimal z 1

′
� zk − 1
′ ∈ z 1

Z
� zk − 1

Z , such that

z 1
1 /αk , � , zk − 1

1 /αk , n− 1 /αk ∈ ( z 1
′ )N � ( zk − 1

′ )N . Taking zk
′ = z1

α 1 /αk
� zk − 1

αk − 1 /αk zk ,
we again have zk = zk

′ n− 1 /α k , m1 = ( zk
′ ) αk ∈ ( z1

′ )N � ( zk
′ )N . �

When doing computations on grid-based series in C[[ M]] , one often works
with respect to a Cartesian basis Z = ( z1 , � , zk ) of infinitesimal elements in M.
Each time one encounters a series f ∈ C[[ M]] which cannot be represented
by a series in C( ( ž 1 , � , ž k ) ) , one has to replace Z by a wider Cartesian basis
Z ′ = ( z 1

′ , � , zk ′
′ ) with z1 , � , zk ∈ ( z 1

′ )N � ( zk ′
′ )N . The corresponding mapping

C( ( ž 1 , � , ž k ) ) → C( ( ž 1
′ , � , ž k ′

′ ) ) is called a widening . Lemma 3. 1 3 enables us
to keep the Cartesian basis reasonably small during the computation.

3. 5 Local communities

Let C be a ring and M a monomial group which is generated by its infinites-
imal elements. Given a set Ak ⊆ C [ [ z 1 , � , zk ] ] for each k ∈ N , we denote by
C[[ M]] A the set of all grid-based series f ∈ C[[ M]] , which admit a Cartesian
representation f̌ ∈ Ak z 1

Z
� zk

Z for some k ∈ N . In this section, we will show
that if the Ak satisfy appropriate conditions, then many types of computations
which can be carried out in C[[ M]] can also be carried out in C[[ M]] A .
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3. 5 . 1 Cartesian communities

Let C be a ring. A sequence (Ak ) k ∈ N with Ak ⊆ C [ [ z 1 , � , zk ] ] is said to be
a Cartesian community over C , if the following conditions are satisfied:
CC1 . z 1 ∈ A1 .
CC2. Ak is a C-algebra for each k ∈ N .
CC3. The Ak are stable under strong monomial morphisms.
In CC3 , a strong monomial morphism is strong C-algebra morphism which
maps monomials to monomials. In our case, a monomial preserving strong
morphism from C [ [ z1 , � , zk ] ] into C [ [ z1 , � , zk ′ ] ] is always of the form

σ : C [ [ z1 , � , zk ] ] � C [ [ z1 , � , zk ′ ] ] ;

f ( z1 , � , zk ) � f ( z 1
α 1 , 1

� zk ′
α 1 , k ′ , � , z 1

αk , 1
� zk ′

αk , k ′ ) ,

where αi , j ∈ N and
∑

j αi , j � 0 for all i . In particular, CA3 implies that
the Ak are stable under widenings.

Proposition 3. 1 4. Let (Ak ) k ∈ N be a Cartesian community over C and let M
be a monomial group. Then C[[ M]] A is a C- algebra.

Proof. We clearly have C ⊆ C[[ M]] A . Let f̂ , ĝ ∈ C[[ M]] A . Mimicking the
proof of proposition 3. 1 2 , we observe that f and g admit compatible Cartesian
representations f , g ∈ Ak z1

Z
� zk

Z . Then f + g , f − g and f g are Cartesian
representations of f̂ + ĝ , f̂ − ĝ resp. f̂ ĝ . �

3. 5 . 2 Local communities

A local community is a Cartesian community (Ak ) k ∈ N , which satisfies the
following additional conditions:
LC1 . For each f ∈ Ak with [ zk

0 ] f = 0 , we have f/ zk ∈ Ak .
LC2. Given g ∈ Ak and f1 , � , fk ∈ Al≺ , we have g ◦ ( f1 , � , fk ) ∈ Al .
LC3. Given f ∈ Ak+ 1 with [ z 1

0
� zk+ 1

0 ] f = 0 and [ z 1
0

� zk
0 zk+ 1

1 ] f ∈ C∗ , the
unique series ϕ ∈ C [ [ z1 , � , zk ] ] with f ◦ ( z 1 , � , zk , ϕ ) = 0 belongs to Ak .

In LC1 and LC3 , the notation [ z1
α 1

� zp
α p] f stands for the coefficient of

z1
α 1

� z p
α p in f . The condition LC3 should be considered as an implicit function

theorem for the local community. Notice that Ak is stable under ∂/∂ z i for
all { i ∈ 1 , � , k} , since

∂f

∂ z i
=
f ◦ ( z1 , � , z i + zk+ 1 , � , zk ) − f

zk+ 1
◦ ( z 1 , � , zk , 0) . ( 3. 1 9)

Remark 3. 1 5. In [vdH97] , the conditions LC2 and LC3 were replaced by
a single, equivalent condition: given f ∈ Ak+ 1 as in LC3 , we required that
im ϕ ⊆ Ak , for the unique strong C-algebra morphism ϕ : C [ [ z1 , � , zk+ 1 ] ] →
C [ [ z 1 , � , zk ] ] , such that ϕ | C [ [ z 1 , � , zk ] ] = IdC [ [ z 1 , � , zk ] ] and ϕ ( f ) = 0 . We also
explicitly requested the stability under differentiation, although ( 3. 1 9) shows
that this is superfluous.
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Example 3. 1 6. Let C be a subfield of C and let Ak = C {{ z 1 , � , zk }} be the set
of convergent power series in k variables over C , for each k ∈ N . Then the Ak
form a local community. If M is a monomial group, then C {{M}} = C[[ M]] A
will also be called the set of convergent grid- based series in M over C .

Example 3. 1 7. For each k ∈ N , let Ak be the set of power series in C [ [ z1 , � , zk ] ] ,
which satisfy an algebraic equation over C [ z1 , � , zk ] . Then the Ak form a local
community.

3. 5 . 3 Faithful Cartesian representations

In this and the next section, A = (Ak ) k ∈N is a local community. A Cartesian
representation f ∈ C( ( z1 , � , zk ) ) is said to be faithful , if for each dominant
monomial d of f , there exists a dominant monomial d̂

′ of f̂ , with d̂ 4 d̂
′ .

Proposition 3. 1 8. Let (Ai) i∈ N be a local community and f ∈ Ak . Then

a ) For each 1 6 i 6 k and α ∈ Z , we have [ zk
α ] f ∈ Ak − 1 .

b ) For each initial segment I ⊆ z1
Z

� zk
Z , we have

fI =
∑

m∈ I

fm m ∈ Ak .

Proof. For each α , let fα = [ zk
α ] f . We will prove ( a ) by a weak induction over α .

If α = 0 , then [ zk
0 ] f = f ◦ ( z 1 , � , zk − 1 , 0) ∈ Ak − 1 . If α > 0 , then

[ zk
α ] f =

f − ( [ zk
0 ] f ) zk

0 − � − ( [ zk
α − 1 ] f ) zk

α− 1

zk
α .

By the weak induction hypothesis and LC1 , we thus have [ zk
α ] f ∈ Ak .

In order to prove ( b ) , let D = { d1 , � , d l } be the finite anti-chain of maximal
elements of I , so that I = in( d1 , � , d l ) . Let n be the number of variables which
effectively occur in D , i . e. the number of i ∈ { 1 , � , k } , such that d j= z 1

α 1
� zk

αk

with α i � 0 for some j . We prove ( b ) by weak induction over n. If n= 0 , then
either l = 0 and fI = 0 , or l = 1 , d1 = { 1 } and fI = f .

Assume now that n> 0 and order the variables z 1 , � , zk in such a way that
zk effectively occurs in one of the d i . For each α ∈ N , let

Iα = {m ∈ z 1
N

� zk − 1
N : m zk

α ∈ I} ;
Dα = {m ∈ z 1

N
� zk − 1

N : m zk
α ∈ D } .

We observe that

Iα = in(D 0 q � q Dα ) ∩ z1
N

� zk − 1
N .

In particular, if ν is maximal with Dν � ∅ , then Iα = Iν for all α > ν and

I = I0 q � q Iν− 1 zk
ν− 1 q Iν zk

ν+N ,
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so that

fI = f0 , I 0 zk
0 + � + fν− 1 , Iν − 1 zk

ν− 1 +(
f − f0 zk

0 − � − fk − 1 zk
ν− 1

zk
ν

)

Iν zk
N

zk
ν .

Moreover, for each α , at most n − 1 variables effectively occur in the set
D 0 q � q Dα of dominant monomials of Iα . Therefore fI ∈ Ak , by the
induction hypothesis. �

Proposition 3. 1 9. Given a Cartesian representation

f ∈ Ak z1
Z

� zk
Z

of a series f̂ ∈ C[[ M]] , its truncation

f̃ = f{m∈ z 1
N � zk

N : ∃ n̂∈ supp f̂ , m̂4 n̂} ∈ Ak z1
Z

� zk
Z

is a faithful Cartesian representation of the same series f̂. �

3. 5 . 4 Applications of faithful Cartesian representations

Proposition 3. 20. Let f̂ ∈ C[[ M]] A be series, which is either

a ) infinitesimal,
b ) bounded, or
c ) regular.

Then f̂ admits a Cartesian representation in Ak z 1
Z

� zk
Z for some k ∈ N , which

is also infinitesimal, bounded resp. regular.

Proof. Assume that f̂ is infinitesimal and let f ∈ Ak z1
Z

� zk
Z be a faithful

Cartesian representation of f̂ , with dominant monomials d1 , � , d l ≺ 1 . For
each i ∈ { 1 , � , l } , let

fi = fin ( d 1 , � , d i ) − fin( d 1 , � , d i − 1 ) ∈ Ak z 1
Z

� zk
Z ,

with dfi = d i . Then f = f1 + � + fl and

f̃ =
∑

i= 1

l

fi
d1

d i
zk+ i

is an infinitesimal Cartesian representation of f̂ in Ak+ l , when setting ẑ k+ i =
d̂i/ d̂1 for each i ∈ { 1 , � , l } . This proves ( a ) .

If f̂ is bounded, then let g ∈ Ak be an infinitesimal Cartesian represen-
tation of ĝ = f̂ − f̂{ 1 } . Now f = g + f̂{ 1 } z1

0
� zk

0 ∈ Ak is a bounded Cartesian

representation of f̂ . This proves ( b ) .
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Assume finally that f̂ � 0 is regular, with dominant monomial d̂ . Let g ∈ Ak
be a bounded Cartesian representation of ĝ = f̂ / d̂ . S ince ĝ0 � 0 , the series g
is necessarily regular. Now take a Cartesian monomial d which represents d̂
( e. g. among the dominant monomials of a faithful Cartesian representation
of d̂ ) . Then f = g d is a regular Cartesian representation of f̂ . �

3. 5 . 5 The Newton polygon method revisited

Theorem 3.21 . Let (Ak ) k ∈ N be a local community over a ring C and let M

be a monomial monoid. Consider the polynomial equation

P̂n f̂
n

+ � + P̂0 = 0 ( 3. 20)

with coefficients P̂0 , � , P̂n ∈ C[[ M4 ]] A , such that ( P̂0 ) 1 = 0 and ( P̂1 ) 1 ∈ C∗ .
Then ( 3 . 20) admits a unique solution in C[[ M≺ ]] A .

Proof. By proposition 3. 20, there exist bounded Cartesian representations
P0 , � , Pn ∈ Ak for certain ẑ 1 , � , ẑ k ∈ M . Now consider the series

P = P0 + P1 zk+ 1 + � + Pn zk+ 1
n ∈ Ak+ 1 .

We have [ z1
0

� zk+ 1
0 ]P= 0 and [ z 1

0
� zk

0 zk+ 1
1 ]P ∈ C∗ , so there exists a f ∈ Ak with

P ◦ ( z1 , � , zk , f ) = P0 + P1 f + � + Pn f
n = 0 ,

by LC3 . We conclude that f̂ ∈ C[[ M]] A satisfies P̂n f̂
n

+ � + P̂0 = 0 . The
uniqueness of f̂ follows from theorem 3. 3 . �

Theorem 3. 22 . Let (Ak ) k ∈N be a local community over a (real) algebraically
closed field C and M a total ly ordered monomial group with Q -powers. Then
C[[ M]] A is a (real) algebraically closed field.

Proof. The proof is analogous to the proof of theorem 3. 8 . In the present case,
theorem 3. 21 ensures that ϕ ∈ C[[ M]] A in step 2 of polynomi al_solve . �

Exercise 3. 9 . Let C be a ring, M a monomial monoid and (Ak ) k ∈ N a local
community. We define C[[ M]] A to be the set of series f in C [[ M]] , which admit
a semi-Cartesian representation

f = ϕ̂ ( f̌1 ) m1 + � + ϕ̂ ( f̌p) mp

with f̌1 , � , f̌p ∈ Ak for some k ∈ N , ϕ : ž 1
N

� ž k
N→M and m1 , � , mp ∈ M . Which

results from this section generalize to this more general setting?

Exercise 3. 1 0 . Let C be a field. A series f in C [ [ z1 , � , zk ] ] is said to be dif-
ferential ly algeb raic , if the field generated by its partial derivatives ∂i 1 + � + ik f /
(∂ z1 ) i 1 � (∂ zk ) ik has finite transcendence degree over C . P rove that the collection
of such series forms a local community over C .
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Exercise 3. 1 1 . Assume that C is an effective field, i. e. all field operations can
be performed by algorithm. In what follows, we will measure the complexity of
algorithms in terms of the number of such field operations.

a) A series f ∈ C [ [ z1 , � , zk ] ] is said to be effective , if there is an algorithm which
takes α1 , � , αk ∈ N on input, and which outputs fα 1 , � , α k . Show that the
collection of effective series form a local community.

b) An effective series f ∈ C [ [ z1 , � , zk ] ] is said to be of po lynomial time com-
plexity , if there is an algorithm, which takes n ∈ N on input and which
computes fα 1 , � , α n for all α1 , � , αn with α1 + � + αn 6 k in time

(
n + k
n

)
O ( 1 ) .

Show that the collection of such series forms a local community. What about
even better time complexities?

Exercise 3. 1 2 . Let (Ak ) k ∈ N be a local community and let

f ∈ Ak z1
Z

� zk
Z

be a Cartesian representation of an infinitesimal, bounded or regular grid-based
series f̂ in C[[ M]] . Show that, modulo widenings, there exists an infinitesimal,
bounded resp. regular Cartesian representation of f̂ , with respect to a Cartesian
basis with at most k elements.

Exercise 3. 1 3. Let (Ak ) k ∈ N be a local community over a field C .

a) If f ∈ C[[ M]] A , ≺ and g ∈ A1 , then show that g ◦ f ∈ C[[ M]] A .
b) If M is totally ordered, then prove that C[[ M]] A is a field.

Exercise 3. 1 4. Let (Ak ) k ∈ N be a local community over a field C and let M

be a totally ordered monomial group. Prove that f� , f� , f≺ ∈ C[[ M]] A for any
f ∈ C[[ M]] A , and

C [[ M]] A = C [[ M]] A , � ⊕ C ⊕ C[[ M]] A , ≺ .

Exercise 3. 1 5 . Let (Ak ) k ∈ N be a Cartesian community. Given monomial
groups M and N , let A(C[[ M]] , C [[ N]] ) be the set of strong C-algebra
morphisms from C[[ M]] into C [[ N]] and A(C[[ M]] , C[[ N]] )A the set of
ϕ ∈ A(C[[ M]] , C [[ N]] ) , such that ϕ (m) ∈ C [[ N]] A for all m ∈ M .

a) Given ϕ ∈ A(C[[ M]] , C [[ N]] )A and ψ ∈ A(C[[ N]] , C[[ V]] )A , where V is
a third monomial group, prove that ψ ◦ ϕ ∈ A(C[[ M]] , C [[ V]] )A .

b) Given ϕ ∈ A(C [[ M]] , C[[ N]] )A and ψ ∈ A(C[[ N]] , C[[ M]] ) such that
ψ ◦ ϕ = IdC [[ M ]] , prove that ψ ∈ A(C[[ N]] , C [[ M]] )A .

Exercise 3. 1 6 . Let C be a subfield of C and let M and N be monomial groups
with M ⊆ N . Prove that C {{M}} = C [[ M]] ∩ C {{N}} . Does this property
generalize to other local communities?

Exercise 3. 1 7. Let (Ak ) k ∈ N be the local community from example 3. 1 7 and
let M be a totally ordered monomial group. Prove that C[[ M]] A is isomorphic
to the algebraic closure of C [M ] .

Exercise 3. 1 8. Does theorem 3. 22 still hold if we remove condition LC2 in the
definition of local communities?
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Exercise 3. 1 9 . Consider the resolution of P( f ) = 0 ( f ≺ v ) , with P ∈ C[[ M]] A
and v ∈ M .

a) Given a starting term c m of multiplicity d , let n be minimal for 4 such
that Pi mi 4 n for all i . Show that there exist Cartesian coordinates z1 , � , zk
with m, n ∈ z1

Z
� zk

Z , in which Pi m
i/n admits a bounded Cartesian represen-

tations ui for all 0 6 i 6 n = deg P .
b) Consider a bounded Cartesian representation ϕ ∈ Ak with ϕ ∼ c and let

ũi =
∑

k= i

n (
k
i

)
uk ϕ

k − i . Given w ∈ z1
Q >

� zk
Q > , let

Qw =
∑

i= 0

n

ũi , w d − i Fi .

Show that Q =
∑

w
Qw w is a series in C [F ] [ [ z1

1 /d ! , � , zk
1 /d ! ] ]A .

c) For each µ ∈ {0 , � , d} , let Iµ be initial segment generated by the w such
that val Qw < µ , and Fµ its complement. We say that ϕF µ

is the part of
multiplicity > µ of ϕ as a zero of u0 + � + un Fn . Show that ϕF µ

∈ Ak can
be determined effectively for all µ .

d) In polynomi al_solve , show that refinements of the type

f = ϕ̂ m + f̃ ( f̃ ≺ m) ,

where ϕ ∈ Ck is the unique solution to ∂d− 1 (u0 + � + un F
n ) /∂Fd− 1 , may

be replaced by refinements

f = ϕF d − 1
m + f̃ ( f̃ ≺ m) .
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4

Transseries

Let C be a totally ordered exp-log field. This means that C is a totally ordered
field with an exponential function and a partial logarithmic function which
satisfies similar properties as those defined on the real numbers. Axioms for
exp-log fields will be given in section 4. 1 . For the moment, the reader may
assume that C = R.

The aim of this chapter is the construction of the totally ordered exp-log
field C[[[ x]]] of grid-based transseries in x over C . This means that C[[[ x]]] is
a field of grid-based series with an additional exponential structure. Further-
more, C[[[ x]]] contains x as an infinitely large monomial. Actually, the field
C[[[ x]]] carries much more structure: in the next chapter, we will show how
to differentiate, integrate, compose and invert transseries. From corollary 3. 9 ,
it also follows that C[[[ x]]] is real closed. In chapter 9, this theorem will be
generalized to algebraic differential equations.

As to the construction of C[[[ x]]] , let us first consider the field C[[ x]] =

C[[ xC ]] . G iven an infinitesimal series f , we may naturally define

exp f = 1 + f +
1

2
f 2 + �

log ( 1 + f ) = f − 1

2
f 2 + �

Using the exp-log structure of C , these definitions may be extended to
C[[ x]] 4 = C ⊕ C[[ x]] ≺ for exp and to C> + C[[ x]] ≺ for log. However,
nor the logarithm of x , nor the exponential of any infinitely large series f are
defined. Consequently, we have to add new monomials to xC in order to obtain
a field of grid-based series which is stable under exponentiation and logarithm.

Now it is easy to construct a field of grid-based series L which is stable
under logarithm ( in the sense that log f is defined for all strictly positive f ) .
Indeed, taking L = C[[ � ; log log x ; log x ; x]] , we set

log xα 0 � logn
αn x = α0 log x + � + αn logn+ 1 x



for monomials log xα 0 � logn
αn x ( here logn = log ◦ �

n× ◦ log stands for the n-th
iterated logarithm) . For general f ∈ L> , we define

log f = log df + log cf + log( 1 + δf ) ,

where log( 1 + δf ) = δf − 1

2
δf

2 + � as above.
In order to construct a field T = C[[ M]] of grid-based series with an

exponentiation, we first have to decide what monomial group M to take. The
idea is to always take exponentials of purely infinite series for the monomials
in M . For instance, ex

2 + x is a monomial. On the other hand, ex
2 + x+ x− 1

is
not a monomial and we may expand it in terms of ex

2 + x using

ex
2 + x+ x− 1

= ex
2 + x + x− 1 ex

2 + x +
1

2
x− 2 ex

2 + x + � .

More generally, as soon as each purely infinite series in T admits an exponen-
tial, then T is closed under exponentiation: for all f ∈ T we take

exp f = exp f� exp f� exp f≺ ,

with exp f≺ = 1 + f≺ +
1

2
( f≺ ) 2 + � as above.

In section 4. 2 , we first study abstract fields of transseries. These are totally
ordered fields of grid-based series, with logarithmic functions that satisfy some
natural compatibility conditions with the serial structures. Most of these
conditions were briefly motivated above. In section 4. 3 we construct the field
C[[[ x]]] of transseries in x . We start with the construction of the field L
of logarithmic transseries. Next, we close this field under exponentiation by
repeatedly inserting exponentials of purely infinite series as new monomials.
In section 4. 4, we prove the incomplete transbasis theorem, which provides a
convenient way to represent and compute with grid-based transseries.

4. 1 Totally ordered exp-log fields

A partial exponential ring is a ring R with a partial exponential function
exp : R→ R , such that
E1 . exp 0 = 1 .
E2. exp y = exp( y − x ) exp x , for all x , y ∈ dom exp.

The second condition stipulates in particular that y − x ∈ dom exp, whenever
x , y ∈ dom exp. If dom exp = R , then we say that R is an exponential ring . If
exp is an exponential function, then we will also write ex for exp x and expn
for the n-th iterate of exp ( i. e. exp0 = Id and expn+ 1 = exp ◦ expn for all b ∈ N) .

The field R of real numbers is a classical example of an exponential field.
Moreover, the real numbers carry an ordering and it is natural to search for
axioms which model the compatibility of the exponential function with this
ordering. Unfortunately, an explicit set of axioms which imply all relations
satisfied by the exponential function on R has not been found yet. Neverthe-
less, Dahn and Wolter have proposed a good candidate set of axioms [DW84] .
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We will now propose a similar system of axioms in the partial context. For
each n ∈ N , we denote the Taylor expansion of exp x at order n by

En(x ) = 1 + x + � +
1

(n − 1 ) !
xn− 1 .

We also denote

Nn =

{
1 , if n= 0
(n − 1 ) ! , otherwise

so that NnEn ∈ Z [x ] . An ordered partial exponential ring is a partially ordered
ring R , with a partial exponential function exp : R→ R , which satisfies E1 , E2
and

E3. N2n exp x > N2nE2n(x ) , for all x ∈ dom exp and n ∈ N .

If dom exp = R , then we say that R is an ordered exponential ring .

Proposition 4. 1 . Let R be an ordered ring in which x � 0 ⇒ x2 > 0 . Given
a partial exponential function on R which satisfies E1 , E1 and E1 , we have

N2n exp x = N2nE2n( x) ⇒ x = 0 ,

for al l n ∈ N and x ∈ dom exp .

Proof. Assume that exp x = E2n(x ) . We cannot have x 6 − 2 n, since otherwise

N2nE2n(x ) =
∑

k= 0

n− 1
N2n

( 2 k + 1 ) !
( 2 k + 1 + x ) x2 k < 0 .

If − 2 n < x , then

0 > N2n+ 2 (E2n+ 2 (x ) − exp x )

= N2n+ 2 (E2n+ 2 (x ) − E2n( x ) ) = x2n ( 2 n+ 1 + x ) ,

whence x = 0 . �

Proposition 4. 2 . R is a total ly ordered exponential field.

Proof. Let n ∈ N . For x > − 2 n, we have

exp x − E2n( x) =
∑

k= n

∞
x2 k

( 2 k ) !

(
1 +

x

2 k + 1

)
> 0 .

For x < − 2 n, we have shown above that E2n( x) < 0 6 exp x . �

Proposition 4. 3. Let R be an ordered partial exponential ring. Then

a ) exp is injective .
b ) x < y⇔ exp x < exp y, for all x , y ∈ dom exp .
c ) If dom exp is a Q -module , then

∀n ∈ N , ∃xn ∈ R, ∀x ∈ dom exp , x > x0⇒ exp x > xn .
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Proof. Assume that exp x = exp y , for some x , y ∈ R . Then
exp( y − x ) = exp y exp (− x ) = exp x exp(− x ) = 1

and similarly exp(x − y) = 1 . Hence,

1 = exp( y − x ) > 1 + y − x
1 = exp(x − y) > 1 + x − y,

so that both y 6 x and x 6 y . This proves that x = y , whence exp is injective.
Assume now that x < y for some x , y ∈ dom exp. Then

exp ( y − x ) > 1 + y − x > 1 .

Consequently,
exp y = exp( y − x ) exp x > exp x

and exp y > exp x , by the injectivity of exp. Inversely, assume that exp x <
exp y for some x , y ∈ dom exp. Then

1 + x − y 6 exp( x − y) = exp x exp(− y) 6 exp y exp(− y) = 1 ,

whence x 6 y . We again conclude that x < y, since exp y � exp x . This
proves ( b ) .

If n= 0 , then ( c ) follows from ( b ) . If n > 0 , then exp(x/ 2 n) > (x/2 n) + 1
implies

exp x >
( x

2 n
+ 1

) 2n
>
( x

2 n

) 2n
> xn ,

for all x > ( 2 n) 2 . �
Instead of axiomatizing partial exponential functions on a ring, it is also

possible to axiomatize partial logarithmic functions . The natural counterparts
of E1 , E2 and E3 are

L1 . log 1 = 0 .
L2. log y = log y

x
+ log x , for all x , y ∈ dom log.

L3. N2n x > N2n E2n( log x ) , for all x ∈ dom log and n ∈ N .

Notice that the second condition assumes the existence of a partial inversion
x � 1

x
, whose domain contains dom log. The n-th iterate of log will be denoted

by logn .
In a similar fashion, we define a partial logarithmic ring to be a ring R with

a partial logarithmic function which satisfies L1 and L2 . An ordered partial
logarithmic ring is an ordered ring R with a partial logarithmic function which
satisfies L1 , L2 and L3 . In the case when dom log= R> for such a ring, then
we say that R is an ordered logarithmic ring.

Proposition 4. 4.
a ) Let R be a partial exponential ring, such that exp is injective . Then the

partial inverse log of exp satisfies L1 and L2 .
b ) If R is an ordered partial exponential ring, then exp is injective , and its

partial inverse log satisfies L1 , L2 and L3 .
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c ) Let R be a partial logarithmic ring, such that log is injective . Then the
partial inverse exp of log satisfies E1 and E2 .

d ) If R is an ordered partial logarithmic ring, then log is injective , and its
partial inverse exp satisfies E1 , E2 and E3 .

Proof. Let R be a partial exponential ring, such that exp is injective. Then
we clearly have L1 . Now assume that x = exp x ′ ∈ dom log = im exp. Then
( exp x ′) · ( exp(− x ′) ) = 1 , whence exp(− x ′) = 1 /x ∈ dom log. Furthermore,
if y = exp y ′ ∈ dom log = im exp, then exp y ′ = exp( y ′ − x ′) exp x ′ ,
so that exp( y ′ − x ′) = y/x . Consequently, y/x ∈ im exp = dom log and
log y − log x = y ′ − x ′ = log( y/x ) . This proves L2 and ( a ) . As to ( b ) , if R is
an ordered partial exp-log ring, then exp is injective by proposition 4. 3( a ) .
The property L3 directly follows from E3 .

Assume now that R is a partial logarithmic ring, such that log is injective.
We clearly have E1 . G iven x= log x ′ and y= log y ′ in dom exp= im log, we have
log y = log( y/x ) + log x and in particular log( y/x ) ∈ dom exp. It follows that
exp y ′/exp x ′= y/x= exp( log y − log x) = exp( y ′− x ′) . This proves E2 and ( c ) .

Assume finally that R is an ordered partial logarithmic ring. Let x , y ∈
dom log be such that log x = log y . Then

x/ y > 1 + log(x/ y) = 1 + log x − log y = 1 .

Hence x > y, since y ∈ dom log⇒ y> 0 . S imilarly, y> x and x= y , which proves
that log is injective. The property E3 directly follows from L3 . �

If ( a ) and ( c ) ( resp. ( b ) and (d ) ) are satisfied in the above proposition,
then we say that R is a partial exp- log ring ( resp. an ordered partial exp- log
ring ) . An ordered exp- log ring is an ordered partial exp-log ring R , such that
dom exp = R and im exp = R> . An ordered ( partial) exponential, logarithmic
resp. exp-log ring, which is also an ordered field is called an ordered (partial)
exponential, logarithmic resp. exp- log field . In a partial exp-log ring, we extend
the notations expn and logn to the case when n ∈ Z , by setting expn = log− n
and logn = exp− n , if n < 0 .

Assume now that R is a ring with C-powers, for some subring C ⊆ R .
An exponential resp. logarithmic function is said to be compatible with the
C-powers structure on R if

E4. exp (λ f ) = ( exp f ) λ , for all f ∈ dom exp and λ ∈ C ; resp.
L4. log fλ = λ log f , for all f ∈ dom exp and λ ∈ C .

Here we understand that im exp ⊆ R× in E4 and dom log ⊆ R× in L4 . Notice
that E4 and L4 are equivalent, if exp and log are partial inverses. Notice
also that any totally ordered exp-log field C naturally has C-powers: set
λµ = exp( µ log λ ) for all λ ∈ C> and µ ∈ C .

Exercise 4. 1 . Let R be an exponential ring. Show that for all x ∈ R, we have
exp x = 0⇒ 1 = 0 .

Exercise 4. 2 . Show that the only exponential function on the totally ordered
field of real numbers R is the usual exponential function.
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Exercise 4. 3. Let R be a totally ordered exponential field. Show that the
exponential function on R is continuous. That is, for all x and ε > 0 in R , there
exists a δ > 0 , such that | exp x ′ − exp x | < ε , for all x ′ ∈ R with | x ′ − x | < δ . Show
also that the exponential function is equal to its own derivative.

Exercise 4. 4. Let R be an ordered partial exponential ring. Given x ∈ dom exp
and n ∈ N , prove that

a) exp x > E2 n+ 1 (x ) , if x > 0 .
b) exp x < E2 n+ 1 (x ) , if x < 0 .

4. 2 Fields of grid-based transseries

Let C be a totally ordered exp-log field, T a totally ordered monomial group
with C-powers. Assume that we have a partial logarithmic function on the
totally ordered field T = C[[ T]] with C-powers. We say that T is a field of
grid- based transseries ( or a field of transseries) if
T1 . dom log = T> .
T2. logm ∈ T� , for all m ∈ T.
T3. log ( 1 + ε) = l ◦ ε, for all ε ∈ T≺ , where l =

∑
k= 1
∞ (− 1 ) k+1

k
zk ∈ C [ [ z ] ] .

Intuitively speaking, the above conditions express a strong compatibility
between the logarithmic and the serial structure of T .

Example 4 . 5. Assume that T is a field of transseries, such that x ∈ T� , and
such that T is stable under exponentiation. Then x5 ex

3 + x e + x2 + x e− 1
is a

monomial in T. The series ex
2/ ( 1 − x− 1 ) is not a monomial, since x2/ ( 1 − x− 1 ) .

We have

exp
(

x2

1 − x− 1

)
= ex

2 + x exp
(

1

1 − x− 1

)

= e · ex 2 + x + e · ex
2 + x

x
+ 3 e

2
· ex

2 + x

x 2
+ � .

On the other hand, eex / ( 1 − x− 1 ) is a monomial, since

ex/ ( 1 − x− 1 ) = ex + ex/x + � ∈ T� .

Proposition 4. 6. Let T be a field of transseries. Then
a ) Given f ∈ T> , the canonical decomposition of log f is given by

log f = ( log f ) � + ( log f )� + ( log f ) ≺
� � �

log df log cf log ( 1 + δf )

b ) Given f , g ∈ T> , we have

f 4 g ⇔ ( log f ) � 6 ( log g) � ;

f � g ⇔ ( log f ) � = ( log g) � ;

f ≺ g ⇔ ( log f ) � < ( log g) � ;

f ∼ g ⇔ ( log f ) < = ( log g) < .
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c ) Given f , g ∈ T> , � , we have

f
�

g ⇔ log f 4 log g ;

f
�

g ⇔ log f ≺ log g ;

f � g ⇔ log f � log g ;

f � g ⇔ log f ∼ log g

d ) For all f ∈ T> , � , we have log f ∈ T> , log f ≺ f and log f
�

f.

Proof.

a ) Follows from L1 , L2 , T2 and T3 .
b ) We have

f 4 g ⇔ df 4 dg

⇔ df 6 dg

⇔ ( log f ) � = log df 6 log dg = ( log g) � .

The other relations are proved in a similar way.
c ) We have

f
�

g ⇔ ∃µ ∈ C, f 4 gµ
⇔ ∃µ ∈ C, ( log f ) � 6 ( µ log g) � = µ ( log g) �
⇔ log f 4 log g.

The other relations are proved similarly.
d ) Let f ∈ T> , � . Then ( log f ) � > 0 , by ( b ) , whence g = log f ∈ T> , � .

Furthermore,

log( g/ 3 ) + 1 < ( g/ 3) ⇒ 3 ( log g − log 3) < g.

Consequently, 2 log g < g , since log g ∈ T> , � ⇒ log g > 3 log 3 . It follows that

C + log g < 2 log g < g.

Since exp is total on C , we infer that C> log f < f . Therefore, log f ≺ f .
Finally, log2 f ≺ log f and ( c ) imply that log f

�
f by ( c ) . �

The following lemma, which is somehow the inverse of proposition 4. 6(a ) and
(d ) , will be useful for the construction of fields of transseries.

Lemma 4.7. Let log be a partial function on T , which satisfies T1 , T2 and

a ) log ( mλ n) = λ logm + log n , for all m , n ∈ T and λ ∈ C.
b ) log f = log df + log cf + l ◦ δf, for al l f ∈ T> .
c ) 0 < logm ≺ m , for al l m ∈ T� .

Then log is a logarithmic function, which is compatib le with the ordering and
C-powers on T . Hence , T is a field of grid- based transseries.
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Proof. We clearly have L1 . Given f , g ∈ T> , we also have

log( f/ g) = log df / g + log cf / g + l ◦ δf / g

= log ( df/dg) + log ( cf/cg) + l ◦
(
δf − δg
1 + δg

)

= log df − log d g + log cf − log cg + l ◦ δf − l ◦ δg
= log f − log g.

Here

l ◦ (
δf − δg
1 + δg

) = l ◦ δf − l ◦ δg

by proposition 2 . 1 8 and the fact that l ( z1 − z2

1 + z2
) = l ( z1 ) − l ( z2 ) in C [ [ z1 , z2 ] ] .

This proves L2 .
Let us now show that

f > E2n( log f ) = 1 + log f + � +
1

( 2 n − 1 ) !
( log f ) 2n− 1 ,

for all f ∈ T> \ { 1 } and n ∈ N . Assume first that f � 1 . If f ∼ 1 , then we have

f − E2n( log f ) =

(
z2n

( 2 n) !
+

z2n+ 1

( 2 n+ 1 ) !
+ �

)
◦ l ◦ δf ∼

δf
2n

( 2 n) !
> 0 .

Otherwise, cf > E2n( log cf ) and

f − E2n( log f ) ∼ cf − log cf − 1 > 0 .

If f ≺ 1 , then log f = − log( 1 / f ) ∈ T< , � . Consequently,

f − E2n( log f ) ∼ − 1

( 2 n − 1 ) !
( log f ) 2n− 1 > 0 .

If f � 1 , let us show that ( log f ) k ≺ f , for all k ∈ N , which clearly implies
that f > E2n( log f ) . We first observe that log ϕ ∈ T> , � for all ϕ ∈ T> , � ,
since log dϕ ∈ T�

> ⊆ T> , � and log ϕ = log dϕ + O ( 1 ) . Furthermore, log ϕ ∼
log dϕ ≺ dϕ � ϕ , for all ϕ ∈ T> , � . Taking ϕ = d log f = d log d f , we get
log d log f ≺ d log d f ⇒ k log d log f < log df ⇒ d log f

k ≺ df ⇒ ( log f ) k ≺ f . This
proves L3 .

Let us finally show that log fλ = λ log f for any f ∈ T> and λ ∈ C . Denoting
πλ = ( 1 + z ) λ ∈ C [ [ z ] ] , we have

log fλ = log( cf
λ df

λ πλ ◦ δf )

= λ log df + λ log cf + l ◦ (πλ ◦ δf − 1 )

= λ log df + λ log cf + λ l ◦ δf
= λ log f .

Indeed, proposition 2 . 1 8 implies that l ◦ (πλ ◦ δf − 1 ) = λ l ◦ δf , since
l (πλ ( z ) − 1 ) = λ l ( z ) is a formal identity in C [ [ z ] ] . �
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Exercise 4. 5 . Let T be a field of transseries.

a) Show that exp f = e ◦ f for all f ∈ T≺ , where e =
∑

k= 0

∞ 1

k !
zk ∈ C [ [ z ] ] .

b) For each f ∈ dom exp, show that

exp f = ( exp f� ) · ( exp f� ) · ( exp f≺ )
� � �

dexp f cexp f ( 1 + δexp f )

c) For each f ∈ dom exp ∩ T> , � , show that exp f ∈ T> , � , f ≺ exp f and
f � exp f .

Exercise 4. 6 . Let e( z ) =
∑

k= 0

∞ 1

k !
zk , l ( z ) =

∑
k= 1

∞ (− 1 ) k + 1

k
zk and πλ =∑

k= 0

∞ λ � ( λ − k + 1 )

k !
zk be as above. Prove the following formal identities:

a) e( z1 + z2 ) = e( z1 ) e( z2 ) ;
b) l ( z 1 − z 2

1 + z 2
) = l ( z1 ) − l ( z2 ) ;

c) e( l ( z ) ) = 1 + z ;

d) l (πλ ( z ) − 1 ) = λ l ( z ) .

Hint: prove that the left and right hands sides satisfy the same ( partial) differ-
ential equations and the same initial conditions.

Exercise 4. 7. Let T = C[[ T]] be a field of transseries and consider a flat
subset T[ of T ( i . e. ∀m ∈ T , ∀n ∈ T[ : m � n⇒ m ∈ T[ ) .

a) Show that there exists an initial segment I of T� such that

T[ = {ef : f ∈ T� , d f ∈ I} .

b) Show that T = C[[ T[ � T ] ]] , where

T] = {ef : f ∈ T� , supp f ∩ I = ∅ } .

We call T] the steep complement of T[ .

4. 3 The field of grid-based transseries in x

Let C be a fixed totally ordered exp-log field, such as R, and x a formal
infinitely large variable. In this section, we will construct the field C[[[ x]]] of
grid-based transseries in x over C . We proceed as follows:

• We first construct the field

L = C[[ L]] = C[[ � ; log log x ; log x ; x]]

of logarithmic transseries in x .
• Given a field of transseries T = C[[ T]] , we next show how to construct

its exponential extension Texp = C[[ Texp]] : this is the smallest field of
transseries with Texp ⊇ T and such that exp f is defined in Texp for
all f ∈ T .
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• We finally consider the sequence

L ⊆ Lexp ⊆ Lexp , exp ⊆ �

of successive exponential extensions of L . Their union

C[[[ x]]] = L ∪ Lexp ∪ � = C[[ L ∪ Lexp ∪ � ]]

is the desired field of grid-based transseries in x over C .

4. 3. 1 Logarithmic transseries in x

Consider the field L = C[[ L]] , where

L = � � log2
C x � logC x � xC .

Given a monomial m = xα 0 � logk
α k x ∈ L , we define logm by

log (xα 0 � logk
αk x) = α0 log x + � + αk logk+ 1 x.

We extend this definition to L> , by setting

log f = log df + log cf + l ◦ δf

for each f ∈ L> . Here we recall that l =
∑

k= 1
∞ (− 1 ) k+1

k
zk ∈ C [ [ z ] ] .

Proposition 4. 8. L is a field of transseries.

Proof. Clearly, log ( mλ n) = λ logm + log n, for all m , n ∈ L and λ ∈ C . Now let
m∈ L� . Then m = logi

α i x � logk
α k x , for certain α i , � , αk ∈ C with α i> 0 . Hence,

0 < logm≺ m, since logm∼ αi logi+ 1 x and 0 < α i logi+ 1 x ≺ logi
α i x � logk

αk x= m .
Now the proposition follows from lemma 4. 7. �

4. 3. 2 Exponential extensions

Let T = C[[ T]] be a field of transseries and let

Texp = exp T�

be the monomial group of formal exponentials exp f with f ∈ T� , which is
isomorphic to the totally ordered C-module T� : we define ( exp f ) λ ( exp g) =
exp(λ f + g) and exp f < exp g⇔ f > g for all f , g ∈ T� and λ ∈ C.

Now the mapping ν : T→ Texp , m
� exp( log m) is an injective morphism

of monomial groups, since m 4 n ⇔ log m 6 log n ⇔ ν ( m) 4 ν (n) for all m ,
n ∈ T. Therefore, we may identify T with its image in Texp and T with
the image of the strongly linear extension ν̂ of ν in Texp = C[[ Texp]] . We
extend the logarithm on T to Texp by setting log m = f ∈ T� for monomials
m = exp f ∈ Texp , and log f = log df + log cf + l ◦ δf for general f ∈ (Texp) > .

Proposition 4. 9. Rexp is a field of transseries.
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Proof. By construction, log ( mλ n) = λ logm + logn, for all m , n∈ Texp and λ ∈ C .
Given m ∈ Texp , � , we have logm ∈ T�> ⊆ T> . Consequently, logm and log logm
are both in T , and proposition 4. 6( d ) implies that log log m ≺ log m . Hence,
( log log m) � < ( logm) � and log f � exp( ( log log m) � ) ≺ exp( ( log f ) � ) = f . We
conclude by lemma 4. 7. �

4. 3. 3 Increasing unions

Proposition 4. 1 0. Let I be a total ly ordered set and let (Ti) i∈ I be a family of
fields of transseries of the form Ti = C[[ Ti]] , such that Ti ⊆ Tj and Ti ⊆ Tj,
whenever i 6 j. Then T = C[[

⋃
i∈ I Ti]] =

⋃
i∈ I Ti is a field of transseries.

Proof. Clearly
⋃
i∈ I Ti ⊆ C[[

⋃
i∈ I Ti]] . Inversely, assume that

f ∈ C[[
⋃

i∈ I
Ti]] .

Since f is grid-based, there exist m1 , � , mn , n ∈
⋃
i∈ I Ti , such that

supp f ⊆ {m1 , � , mn } ∗ n.
For sufficiently large i ∈ I, we have m1 , � , mn , n ∈ Ti , since I is totally ordered.
Hence, supp f ⊆ Ti and f ∈ Ti . This proves that C[[

⋃
i∈ I Ti]] ⊆

⋃
i∈ I Ti .

S imilarly, one verifies that T is a field of transseries, using the fact that given
f1 , � , fn ∈ T , we actually have f1 , � , fn ∈ Ti for some i ∈ I . �

4. 3. 4 General transseries in x

Let (Ln) n∈ N be the sequence defined by L0 = L and Ln+ 1 = Ln , exp for all n.
By propositions 4. 8 , 4. 9 and 4. 1 0,

C[[[ x]]] = L0 ∪ L1 ∪ L2 ∪ �

is a field of transseries. We call it the field ofgrid- based transseries in x over C .
The exponential height of a transseries in C[[[ x]]] is the smallest index n,
such that f ∈ Ln . A transseries of exponential height 0 is called a logarithmic
transseries .

Intuitively speaking, we have constructed C[[[ x]]] by closing C[[ x]] first
under logarithm and next under exponentiation. It is also possible to construct
C[[[ x]]] the other way around: let En be the smallest subfield of C[[[ x]]] ,
which contains logn x and which is stable under grid-based summation and
exponentiation. We have C[[[ x]]] = E0 ∪ E1 ∪ E2 ∪ � of C[[[ x]]] . The
logarithmic depth of a transseries in C[[[ x]]] is the smallest number n ∈ N ,
such that f ∈ En .

We will write Cp
q[[[ x]]] for the field of transseries of exponential height 6 p

and logarithmic depth 6 q . We will also write Cp[[[ x]]] = Lp=
⋃
q∈ N Cp

q[[[ x]]]
and Cq[[[ x]]] = Eq =

⋃
p∈ N Cp

q[[[ x]]] .
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Example 4 . 1 1 . The divergent transseries

1 + log x e− x + 2 ! log2 x e− 2 x + 3! log3 x e− 3x + � ( 4. 1 )

is an example of a transseries of exponential height and logarithmic depth 1 .
The transseries ex

2/ ( 1 − x− 1 ) and eex / ( 1 − x− 1 ) from example 4. 5 have exponential
height 1 resp. 2 and logarithmic depth 0 .

For the purpose of differential calculus, it is convenient to introduce slight
variations of the notions of exponential height and logarithmic depth. The
leve l of a transseries is the smallest number n ∈ Z for which f ∈ E− n . The field
E= E− 1 of transseries of level > 1 is called the field of exponential transseries .
The depth of a transseries is the smallest number n ∈ N with f ∈ En− 1 .

Example 4 . 1 2. The transseries ( 4. 1 ) has level − 1 and depth 2 . Both transseries
ex

2 / ( 1 − x− 1 ) and eex / ( 1 − x− 1 ) have level 0 and depth 1 . The transseries
exp exp (x + e− ex ) has level 2 and depth 0 .

4. 3. 5 Upward and downward shifting

In this section, we define the right compositions of transseries in x with exp x
and log x . G iven f ∈ C[[[ x]]] , we will also denote f ◦ exp x and f ◦ log x by f ↑
resp. f ↓ and call them the upward and downward shifts of f . The mappings
↑ , ↓ : C[[[ x]]] → C[[[ x]]] are strong difference operators and will be constructed
by induction over the exponential height.

For monomials m = xα 0 logα 1 x � logn
αn x ∈ L , we define

(xα 0 logα 1 x � logn
αn x) ↑ = expα 0 x xα 1 � logn− 1

αn x ;

(xα 0 logα 1 x � logn
αn x) ↓ = logα 0 x log2

α 1 x � logn+ 1
αn x.

Extending these definitions by strong linearity, we obtain mappings

↑ : C0[[[ x]]] → C1 [[[ x]]]

↓ : C0[[[ x]]] → C0[[[ x]]] .

Now assume that we have further extended these mappings into mappings

↑ : Cp[[[ x]]] → Cp+ 1 [[[ x]]]

↓ : Cp[[[ x]]] → Cp[[[ x]]] .

Then we define

( exp f ) ↑ = exp ( f ↑ ) ;
( exp f ) ↓ = exp ( f ↓ ) ,

for monomials m = exp f ∈ exp Cp[[[ x]]] � . Extending these definitions by
strong linearity, we obtain mappings

↑ : Cp+ 1 [[[ x]]] → Cp+ 2 [[[ x]]]

↓ : Cp+ 1 [[[ x]]] → Cp+ 1 [[[ x]]] .
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By induction over p, we have thus defined ↑ and ↓ on C[[[ x]]] . Notice that ↑
and ↓ are mutually inverse, since f ↑ ↓ = f for all f ∈ Cp[[[ x]]] and p ∈ N , by
induction over p.

There is another way of interpreting right compositions of transseries in x
with exp x and log x as formal substitutions x � exp x and x � log x ,
considered as mappings from C[[[ x]]] into C[[[ exp x]]] resp. C[[[ log x]]] . Postu-
lating that these mappings coincide with the upward and downward shiftings
amounts to natural isomorphisms between C[[[ x]]] and C[[[ exp x]]] resp.
C[[[ log x]]] .

Exercise 4. 8. Let T be any non-trivial field of grid-based transseries. Prove
that there exists a strongly linear ring homomorphism ϕ : L→ T .

Exercise 4. 9 . For all p, q ∈ N , prove that

a) Cp
q[[[ log x ]]] ⊆ Cp

q+1 [[[ x]]] ;

b) Cp
q+ 1 [[[ x ]]] ⊆ Cp+ 1

q [[[ log x]]] ;

c) Ep = C0 [[[ logp x]]] ;
d) Cp+1

q [[[ x]]] = C[[ logpC x � exp Cp
q[[[ x]]] � ]] .

Exercise 4. 1 0 . Given f ∈ C[[[ x ]]] > , � , we call con f = log ◦ f ◦ exp the
contraction and dil f = exp ◦ f ◦ log the dilatation of f . Determine dil (x + 1 ) ,
dil dil (x + 1 ) and dil dil dil (x + 1 ) . P rove that for any f ∈ C[[[ x ]]] > , � , we have
conk f ∼ exp l x for some l ∈ Z and all sufficiently large k ∈ N . Here conk denotes
the k-th iterate of con.

Exercise 4. 1 1 . A field of well- based transseries is a field of well-based series of
the form T = C [ [T] ] , which satisfies T1 , T2 , T3 and

T4. Let (mi) i ∈ N be a sequence of monomials in T , such that mi+1 ∈ supp logmi ,
for each i ∈ N . Then there exists an index i0 , such that for all i > i0 and all
n ∈ supp log mi , we have n < mi+ 1 and ( log mi) m i + 1

= ±1 .

Show that the results from sections 4. 3 . 1 , 4. 3 . 2 and 4. 3 . 3 generalize to the well-
based context.

Exercise 4. 1 2 . Define a transfinite sequence (Cα [ [ [x ] ] ] ) α = (C [ [ [Tα ] ] ] ) α of fields
of well-based transseries as follows: we take T0 = L , Tα+1 = (Tα ) exp for each
ordinal α and Tλ =

⋃
α < λ

Tα , for each limit ordinal λ .

a) Prove that Cα [ [ [x ] ] ]  Cβ [ [ [x ] ] ] for all ordinals α < β . Hint: one may consider
the transfinite sequence of transseries ( fα ) α > 0 defined by

fα = x 2 −
∑

0< β< α

efβ ◦ log .

b) If we restrict the supports of well-based transseries to be countable, then
prove that the transfinite sequence (Cα [ [ [x ] ] ] ) α stabilizes. Hint: find a suit-
able representation of transseries by labeled trees.
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Exercise 4. 1 3.

a) Prove that T1 , T2 and T3 do not imply T4 .
b) A transseries f ∈ T> , � is said to be log- confluent , if there exists an index i0 ,

such that for all i > i0 , we have d log i + 1 f = log d log i f . Prove that T4 implies
the log-confluence of all transseries in T> , � .

c) Prove that T1 , T2 , T3 and the log-confluence of all transseries in T> , � do
not imply T4 .

Exercise 4. 1 4.

a) Prove that there exists a field of well-based transseries T in the sense of
exercise 4. 1 1 , which contains the transseries

f = ex
2 +e l o g 2

2 x + e
l o g 4

2 x + �

b) Prove that the functional equation

g(x ) = ex
2 + g ( log2 x ) + log x

admits a solution in T .

4. 4 The incomplete transbasis theorem

A transbasis is a finite basis B = ( b 1 , � , b n) of an asymptotic scale, such that

TB1 . b 1 , � , b n � 1 and b 1
�

�

�
b n .

TB2. b 1 = expl x , for some l ∈ Z .
TB3. log b i ∈ C[[ b 1 ; � ; b i− 1 ]] � for all 1 < i 6 n.
The integer l in TB2 is called the level of the transbasis B . We say that B is a
transbasis for f ∈ T ( or that f can be expanded w. r. t. B ) , if f ∈ C[[ b 1 ; � ; b n]] .

Remark 4 . 1 3. Although the axiom TB3 is well-suited to the purpose of this
book, there are several variants which are more efficient from a computational
point of view: see exercise 4. 1 5 .

Example 4 . 1 4 . The tuple (x , e x
√
, ex x
√

) is a transbasis for e ( x+ 1 ) 3/ 2

and so is
(x , e ( x+ 1 ) x

√
) . Neither (x , ex , eex+ x− 1

) nor (x , ex , ex ex , ex ex+ ex ) is a transbasis.

Theorem 4. 1 5 . Let B be a transbasis and f ∈ C[[[ x]]] a transseries. Then
f can be expanded w. r. t. a super- transbasis B̂ of B . Moreover, B̂ may be
chosen so as to fulfill the following requirements:

a ) The leve l of B̂ is the minimum of the levels of B and f.
b ) If B and f be long to a flat subring of C[[[ x]]] of the form C[[[ x]]] [ =

C[[ T[ ]] , then so does B̂ .

Proof. Let l be the level of B = ( b 1 , � , b n) . Without loss of generality, we may
assume that f ∈ C0[[[ expl x]]] . Indeed, there exists an l ′ with f ∈ C0[[[ expl ′ x]]] ;
if l ′ < l , then we insert expl ′ x , � , expl− 1 x into B . We will now prove the
theorem by induction over the minimal p, such that f ∈ Cp

0[[[ expl x]]] . If p= 0 ,
then we clearly have nothing to prove. So assume that p> 0 .
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Let us consider the case when f = eg , with g ∈ C[[ b 1 ; � ; b n]] . We
distinguish three cases:

g is bounded. We may take B̂ = B .
g

�
log b i for each i . B̂ = ( b 1 , � , b i , e

| g� | , b i+ 1 , � , b n) is again a transbasis
for some i ∈ { 1 , � , n} and

f = eg� eg� eg≺ = e± | g� | eg� ( 1 + g− +
1

2
( g− ) 2 + � )

can be expanded w. r. t. B̂ . Moreover, B̂ satisfies the extra requirements ( a )
and ( b ) . Indeed, B̂ has level l and

eg ∈ C[[[ x]]] [⇒ e | g� | ∈ C[[[ x]]] [ ,
since e | g� | � eg .

g � log b i for some i . We rewrite g= λ i log b i + g̃ , with g̃ ≺ g . If g̃ is again
equivalent to some log b ı̃ , then ı̃ < i , and we may rewrite g̃ = λ ı̃ log b ı̃ + g̃̃ ,
with g̃̃ ≺ g̃ . Repeating this procedure, we end up with an expression of
the form

g = λ i1 log b i1 + � + λ ik log b ik + h,

with i1 > � > ik and where h is either bounded or infinitely large with

h � log b j , for all j . By what precedes, eh and f = eg = b i1
λ i 1 � b ik

λ ik eh may
be expanded w. r. t. a super-transbasis B̂ of B which satisfies the additional
requirements ( a ) and ( b ) .

This proves the theorem in the case when f = eg , with g ∈ C[[ b 1 ; � ; b n]] .
Assume now that f is a general grid-based transseries in Cp

0[[[ expl x]]] .
Then supp f is contained in a set of the form eg0 + g1N+ � + gkN , where g0 , � , gk ∈
Cp− 1

0 [[[ expl x]]] � and eg1 , � , egk ≺ 1 . Moreover, if f ∈ C[[[ x]]] [ , then we may
choose g0 , g1 , � , gk ∈ C[[[ x]]] [ . Indeed, setting

g̃i =
∑

m∈ T� , em ∈ T [

gi , m m ∈ C[[[ x]]] [

for all i, we have

eg0 + g1N+ � + gkN ∩ T[ ⊆ e g̃0 + g̃1N+ � + g̃kN .

Using the induction hypothesis, and modulo an extension of B , we may there-
fore assume without loss of generality that g0 , � , gk ∈ C[[ b 1 ; � ; b n]] . By what
precedes, it follows that there exists a super-transbasis B̂ of B for eg0 , � , egk

which satisfies the requirements ( a ) and ( b ) . By strong linearity, we conclude
that B̂ is the required transbasis for f . �

Exercise 4. 1 5 . Consider the following alternatives for TB3 :

TB3-a. log b i ∈ C[[ b 1 ; � ; b n]] � , for all 1 < i 6 n ;
TB3-b. log b i ∈ C[[ b 1 ; � ; b i∗ ]] , for all 1 < i 6 n , where i∗ is such that d log b i � b i∗ ;
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TB3-c. log b i ∈ C [[ b 1 ; � ; b i− 1 ]] for all 1 < i 6 n ;
TB3-d. log b i ∈ C[[ b 1 ; � ; b n]] for all 1 < i 6 n .
We respectively say that B is a heavy, normal, light or sloppy transbasis.

a) Show that TB3-a ⇒ TB3-b ⇒ TB3-c ⇒ TB3-d .
b) Show that theorem 4. 1 5 holds for any of the above types of transbases.

Exercise 4. 1 6 . Find heavy, normal, light and sloppy normal transbases with
respect to which the following “exp-log transseries” can be expanded:

a) ee e x + e − e x

;

b) ee e x + e − e e x

;

c) e
x 1 0 0 0

1 − x − 1 ;

d) e
x 1 0 0 0

1 − e − x + e
x 1 0 0 0

1 − e − e x ;
e) log log (x ex ex + 1 ) − exp exp ( log log x +

1

x
) .

More precisely, an exp-log transseries ( resp. function) is a transseries ( resp.
function) built up from x and constants in C , using the field operations + , − ,
× , / , exponentiation and logarithm.

Exercise 4. 1 7. Let B = ( b 1 , � , b n) be a transbasis. Prove that there exists a
unique transbasis B̃ = ( b̃ 1 , � , b̃ n ) , such that

i . B̃C = BC

ii . clog b̃ i
= 1 for all 1 6 i 6 n .

i ii . ( log b̃ j ) d l o g b̃ i
= 0 for all 1 6 i < j 6 n .

Exercise 4. 1 8. Let A be a local community.

a) If f and B belong to C[[[ x ]]] A in theorem 4. 1 5 , then show that B̃ may be
chosen to belong to C[[[ x ]]] A as well.

b) Show that ( a ) remains valid if LC3 is replaced by the weaker axiom that
for all f ∈ Ak+ 1 we have f ( z1 , � , zn , 0) ∈ Ak .

c) Given a transbasis B ⊆ C[[[ x ]]] A , show that C[[ b 1 ; � ; b n]] A ⊆ C[[[ x ]]] A and
that the coefficients of recursive expansions of f ∈ C[[ b 1 ; � ; b n]] A are again
in C[[ b 1 ; � ; b n]] A .

d) Given f ∈ C[[[ x ]]] A , show that f� , f≺ ∈ C[[[ x ]]] A .

4. 5 Convergent transseries

Assume now that C = R and let us define the exp-log subfield C {{{x }}}
of C[[[ x]]] convergent transseries in x . The field Cp{{{x }}} of convergent
transseries of exponentiality 6 p is defined by induction over p by taking
C0{{{x }}} = C {{L}} and Cp+ 1 {{{x }}} = C {{ exp Cp{{{x }}} � }} . Here we notice that
log L ⊆ C0{{{x }}} � , so that C0{{{x }}} ⊆ C1 {{{x }}} ⊆ � , by induction. Now
we define C {{{x }}} =

⋃
l ∈ N Cl {{{x }}} . By exercises 3. 1 3 and 3. 1 4, the set C {{{x }}}

is an exp-log subfield of C[[[ x]]] .
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Let G be the ring of germs at infinity of real analytic functions at infinity.
We claim that there exists a natural embedding C {{{x }}} � G , which preserves
the ordered exp-log field structure. Our claim relies on the following lemma:

Lemma 4.1 6. Let M be a totally ordered monomial group and ϕ : M � G>

an injection, which preserves multiplication and ≺ . Then for each f ∈ C {{M}} ,

ϕ̂ ( f ) =
∑

m∈ supp f
fm ϕ (m)

is a wel l-defined function in G and the mapping ϕ̂ : C {{M}} � G is an injective
morphism of totally ordered fields.

Proof. Let f = ψ ( f̌ ) be a regular convergent Cartesian representation for f ,
with f̌ ∈ C( ( z1 , � , zk ) ) . Let U = ( 0 , ε) k be such that f̌ is real analytic on U .
Consider the mapping

ξ : x � ( ϕ ( ψ ( z1 ) ) (x ) , � , ϕ ( ψ ( zk ) ) (x ) ) .

Since ϕ preserves ≺ , we have ξ( x) ∈ U , for sufficiently large x . Hence,
ϕ̂ ( f ) ( x) = f̌ ◦ ξ( x) is defined and real analytic for all sufficiently large x .

Assume now that f > 0 and write f̌ = ǧ z1
α 1

� zk
α k , where ǧ is a convergent

series in z1 , � , zk with ǧ ( 0 , � , 0) > 0 . Then

ǧ ( z1 , � , zk ) >
1

2
ǧ ( 0 , � , 0) > 0

for ( z1 , � , zk ) ∈ U , when choosing ε sufficiently small. Hence,

ϕ̂ ( f ) (x ) = ǧ ◦ ξ( x) ϕ ( ψ ( z1
α 1

� zk
α k ) ) (x ) > 0 ,

for all sufficiently large x , i . e. ϕ̂ ( f ) > 0 . Consequently, ϕ̂ is an injective,
increasing mapping and it is clearly a ring homomorphism. �

Let us now construct embeddings ϕ̂ p: Cp{{{x }}} � G , by induction over p.
For p= 0 , the elements in L may naturally be interpreted as germs at infinity,
which yields a natural embedding ϕ̂0 : C0{{{x }}} � G by lemma 4. 1 6 . Assume
that we have constructed the embedding ϕ̂ p and consider the mapping

ϕ p+ 1 : expCp{{{x }}} � � G

exp f � exp ϕ̂ p( f ) .

Clearly, ϕ p+ 1 is an injective multiplicative mapping. Given f , g ∈ Cp{{{x }}} � ,
we also have

exp f ≺ exp g ⇔ f < g

⇒ g − f ∈ T> , �

⇒ 0 < ϕ̂ p( g) − ϕ̂ p( f ) � 1

⇒ exp ϕ̂ p( g) /exp ϕ̂ p( f ) � 1

⇔ ϕ p+ 1 ( exp f ) ≺ ϕ p+ 1 ( exp g) .
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Applying lemma 4. 1 6 on ϕ p+ 1 , we obtain the desired embedding ϕ̂ p+ 1 :
Cp+ 1 {{{x }}} � G . Using induction over p, we also observe that ϕ̂ p+ 1 coin-
cides with ϕ̂ p on Cp{{{x }}} for each p. Therefore, we have a natural embedding
of C {{{x }}} into G , which coincides with ϕ̂ p on each Cp{{{x }}} .

Remark 4 . 1 7. In the case of well-based transseries, the notion of convergence
is more complicated. In general, sums like e− x + e− exp x + e− exp2 x + � only
yield quasi-analytic functions and for a more detailed study we refer to [É92 ,
É93] . For natural definitions of convergence like in exercise 4. 21 , it can be
hard to show that convergence is preserved under simple operations, like
differentiation.

Exercise 4. 1 9 .

a) Given f ∈ C [[ M]] , let

f =
∑

m ∈M

| fm | m.

We say that F∈ F (C {{M}} ) is summable in C {{M}} , if F is grid-based and∑ F ∈ C {{M}} . Show that this defines a strong ring structure on C {{M}} .
b) Let F be a family of elements in G . Define f =

∑ F by f (x ) =
∑

f ∈ F f (x ) ,
whenever there exists a neighbourhood U of infinity, such that f is defined
on U for each f ∈ F and such that

∑ F is normally convergent on each
compact subset of U . Show that this defines a strong ring structure on G .

c) Reformulate lemma 4. 1 6 as a principle of “convergent extension by strong
linearity”.

Exercise 4. 20 . Prove that
∫

ex
2

=
1

2 x
ex

2

+
1

4 x3
ex

2

+
3

8 x5
ex

2

+ �

�
C {{{x }}} .

Exercise 4. 21 . Let T = C [ [ [x ] ] ] be the field of well-based transseries of finite
exponential and logarithmic depths. Given σ ∈ R , let C be the set of infinitely
differentiable real germs at infinity and Cσ the set of infinitely differentiable real
functions on (σ , → ) .

a) Construct the smallest subset Tcv , σ of T , together with a mapping
ϕσ : Tcv , σ→ Cσ , such that

CT1 . If σ > exp l 0 , then log l x ∈ Tcv , σ and ϕ ( logl x ) = log l .
CT2 . If f ∈ T is such that logm∈ Tcv , σ for all m∈ supp f and

∑
m
| fm ϕ (m) |

is convergent on (σ , → ) , then f ∈ Tcv , σ and ϕσ ( f ) =
∑

m
fm ϕ (m) .

Show that Tcv , σ is a ring.
b) Show that Tcv , σ ⊆ Tcv , τ for τ > σ . Denoting Tcv =

⋃
σ ∈ R Tcv , σ , show that

there exists a mapping ϕ : Tcv → C , such that ϕ ( f ) is the germ associated
to ϕσ ( f ) for every σ with f ∈ Tcv , σ . Show also that Tcv is a field.
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5

Operations on transseries

One of the major features of the field T = C[[[ x]]] of grid-based transseries
in x is its stability under the usual operations from calculus: differentiation,
integration, composition and inversion.

What is more, besides the classical properties from calculus, these oper-
ations satisfy interesting additional properties, which express their compati-
bility with infinite summation, the ordering, and the asymptotic relations 4 ,
≺ , etc. Therefore, the field of transseries occurs as a natural model of “ordered
or asymptotic differential algebra”, in addition to the more classical Hardy
fields. It actually suggests the development of a whole new branch of model
theory, which integrates the infinitary summation operators. Also, not much
is known on the model theory of compositions.

In section 5. 1 , we start by defining the differentiation w. r. t. x as the unique
strongly linear C-differentiation with x ′ = 1 and ( ef ) ′ = f ′ ef for all f . This
differentiation satisfies

f ≺ g ∧ g � 1 ⇒ f ′ ≺ g ′

f > 0 ∧ f � 1 ⇒ f ′ > 0

In section 5 . 2 , we show that the differentiation has a unique right inverse
∫

with the property that (
∫
f )� = 0 for all f ∈ T ; for this reason, we call

∫
f

the “distinguished integral” of f . Moreover, the distinguished integration is
strongly linear and we will see in the exercises that one often has (

∫
f ) (

∫
g) =∫

f
∫
g +

∫
g
∫
f .

In section 5 . 3, we proceed with the definition of a composition on T . More
precisely, given g ∈ T> , � , we will show that there exists a unique strongly
linear C-difference operator ◦ g with ◦ g (x ) = g and ◦ g ( ef ) = e ◦ g ( f ) for all f .
This difference operator satisfies

f � 1 ⇒ ◦ g ( f ) � 1

f > 0 ⇒ ◦ g ( f ) > 0



Moreover, the composition defined by f ◦ g= ◦ g( f ) is associative and compat-
ible with the differentiation: ( f ◦ g) ′ = g ′ ( f ′ ◦ g) for all f ∈ T and g ∈ T> , � .
Finally, the Taylor series expansion f ◦ ( x + δ) = f + f ′ δ +

1

2
f ′′ δ2 + � holds

under mild hypotheses on f and δ .
In section 5. 4, we finally show that each g ∈ T> , � admits a unique func-

tional inverse g inv with g ◦ g inv = ginv ◦ g = x . We conclude this chapter with
Écalle’ s “Translagrange theorem” [É03] , which generalizes Lagrange’ s classical
inversion formula.

5. 1 Differentiation

Let R be a strong totally ordered partial exp-log C-algebra. A strong deriva-
tion on R is a mapping ∂ : R→ R ; f � f ′ = ∂f , which satisfies

D1 . ∂c= 0 , for all c ∈ C .
D2. ∂ is strongly linear.
D3. ∂ ( f g) = (∂f ) g + f ∂g, for all f , g ∈ R .
We say that ∂ is an exp- log derivation , if we also have

D4. ∂ ( exp f ) = ( ∂f ) exp f , for all f ∈ dom exp ⊆ R .
We say that ∂ is ( strictly) asymptotic resp. positive , if

D5. f ≺ g⇒ ∂f ≺ ∂g , for all f , g ∈ R with g � 1 .
D6. f � 1 ⇒ ( f > 0⇒ ∂f > 0) , for all f ∈ R .
In this section, we will show that there exists a unique strong exp-log deriva-
tion ∂ on T , such that ∂x = 1 . This derivation turns out to be asymptotic
and positive. In what follows, given a derivation ∂ on a field, we will denote
by f † = f ′/ f the logarithmic derivative of f � 0 .

Lemma 5. 1 . Let T = C[[ T]] be an arb itrary field of transseries and let
∂ : T→T be a mapping, which satisfies ∂ (m n) = ( ∂m) n + m ∂n for all m, n∈ T.
Then

a ) ∂ is a grid- based mapping, which extends unique ly to a strong derivation
on T .

b ) If ∂( logm) = ∂m/m for all m ∈ T , then ∂ is an exp- log derivation on T .

Proof. Let G be a grid-based subset of T , so that

G ⊆ {m1 , � , mn } ∗ n

for certain monomials m1 ≺ 1 , � , mn ≺ 1 and n in T. For any m1
α 1

� mn
αn n ∈ T,

we have

(m1
α 1 � mn

αn n) ′ =
(
α1 m1

† + � + αn mn
† + n †

)
m1
α 1 � mn

αn n.
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Hence supp v ′ ⊆ ( suppm1
† ∪ � ∪ supp mn

† ∪ supp n† ) v for all v ∈ G , and ∂ a grid-
based mapping. The strongly linear extension of ∂ is indeed a derivation, since
( f , g) � ( fg) ′ and ( f , g) � f ′ g+ fg ′ are both strongly bilinear mappings from
T2 into T , which coincide on T2 ( a proof which does not use strong bilinearity
can be given in a similar way as for proposition 2 . 1 6) . This proves ( a ) .

As to ( b ) , assume that ( log m) ′ = m † for all m ∈ T. Obviously, in order to
prove that ∂ is a strong exp-log derivation, it suffices to prove that ( log f ) ′= f †

for all f ∈ T> . Now each f ∈ T> may be decomposed as f = cm ( 1 + ε) , with c ∈
C> , m ∈ T and ε≺ 1 . For each k ∈ N> , we have (

(− 1 ) k − 1

k
εk ) ′= (− 1 ) k − 1 εk − 1 ε ′ .

Hence,
( log ( 1 + ε) ) ′ = ε ′/ ( 1 + ε) = ( 1 + ε) † ,

by strong linearity. We conclude that

( log f ) ′ = ( log c) ′ + ( logm) ′ + ( log ( 1 + ε) ) ′

= m † + ( 1 + ε) † = ( cm ( 1 + ε) ) † . �

Proposition 5. 2 . There exists a unique strong exp- log derivation ∂ on T
with ∂x = 1 .

Proof. We will show by induction over p∈ N that there exists a unique strong
exp-log derivation ∂ on Cp[[[ x]]] = C[[ Tp]] with ∂x = 1 . S ince this mapping ∂
is required to be strongly linear, it is determined uniquely by its restriction
to Tp. Furthermore, ∂ will be a strong exp-log derivation, if its restriction
to Tp satisfies the requirements of lemma 5. 1 .

For p = 0 , the derivative of a monomial m = xα 0 � logq
α q x ∈ T0 must be

given by

(xα 0 � logq
α q x ) ′ =

(
α0

x
+ � +

αq
x � logq x

)
xα 0 � logq

α q x

in view of axioms D3 and D4 and the requirements of lemma 5. 1 are easily
checked.

If p > 0 , then the induction hypothesis states that there exists a unique
strong exp-log derivation ∂ on Cp− 1 [[[ x]]] with ∂x = 1 . In view of D4 , any
strong exp-log derivation on Cp[[[ x]]] should therefore satisfy

( ef ) ′ = f ′ ef ,

for all ef ∈ Tp = exp Cp− 1 [[[ x]]] � . On the other hand, when defining ( ef ) ′ in
this way, we have

( ef eg) ′ = ( f ′ + g ′) ef+ g = ( f ′ ef ) eg + ef ( g ′ eg) = ( ef ) ′ eg + ef ( eg) ′

for all ef , eg ∈ Tp. Hence, there exists a unique strong derivation ∂ with ∂x = 1
on Cp[[[ x]]] , by lemma 5. 1 . Moreover, ∂ is a strong exp-log derivation, since

( log ef ) ′ = f ′ = ( f ′ ef ) / ef = ( ef ) ′/ef

for all monomials ef ∈ Tp. �
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Fig. 5 . 1 . We will often adopt a geometric point of view for which the deriva-
tive ∂ is a function on the “transline” T . Due to the highly non-archimedean
character of T , it is difficult to sketch the behaviour of this function. An
attempt has been made in the left figure above. The two squares corre-
spond to the regions where both coordinates are infinitesimal resp. bounded.
Notice that ∂ is locally decreasing everywhere ( the small curves) , although
its restriction to T� is increasing ( the fat curve) . At the right hand side,
we also sketched the behaviour of the functions m / dm ′ and m / dm † for
transmonomials ( using logarithmic coordinates) .

Proposition 5. 3. For all f ∈ T , we have

f ↑ ′ = ex ( f ′↑ ) ;
f ↓ ′ =

1

x
( f ′↓ ) .

Proof. The mappings d1 : f 0 ( e− x ( f ↑ ′) ) ↓ and d2 : f 0 ( x ( f ↓ ′) ) ↑ are both
strong exp-log derivations with d1 x = d2 x = 1 . We conclude by proposi-
tion 5. 2 . �

Proposition 5. 4. Let B = ( b 1 , 1 , b n) be a transbasis.

a ) If b 1 = x or b 1 = exp x , then C[[ b 1 ; 1 ; b n]] is stab le under ∂.
b ) If b 1 = logl x and logl− 1 x , 1 , x ∈ B , then C[[ b 1 ; 1 ; b n]] is stab le under ∂.

Proof. Let us prove ( a ) by induction over n. C learly, C[[ x]] and C[[ exp x]] are
stable under differentiation. So assume that n > 1 and that C[[ b 1 ; 1 ; b n− 1 ]]

is stable under differentiation. Then b n
′ = ( log b n) ′ b n ∈ C[[ b 1 ; 1 ; b n]] . Hence

( b 1
α 1 2 b n

αn ) ′ =
(
α1 b 1

† + 2 + αn b n
†
)

b 1
α 1 2 b n

αn ∈ C[[ b 1 ; 1 ; b n]] ,

for all monomials b 1
α 1 2 b n

αn ∈ BC . Consequently, C[[ b 1 ; 1 ; b n]] is stable under
differentiation, by strong linearity.
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As to ( b ) , we first observe that ( b 1 ◦ expl , � , b n ◦ expl ) is also a trans-
basis, so C[[ b 1 ◦ expl ; � ; b n ◦ expl]] is stable under differentiation. Given
f ∈ C[[ b 1 ; � ; b n]] , we now have

f ′ = ( f ◦ expl ◦ logl ) ′

=
1

x log x � logl− 1 x
( ( f ◦ expl ) ′ ◦ logl ) ∈ C[[ b 1 ; � ; b n]] . �

Proposition 5. 5 . The derivation ∂ on T is asymptotic and positive .

Proof. Let B = ( b 1 , � , b n) be a transbasis with b 1 = ex . We will first prove
by induction over n, that ∂ is asymptotic and positive on C[[ b 1 ; � ; b n]] , and
f ′ � 1 , for all f � 1 in C[[ b 1 ; � ; b n]] . This is easy in the case when n= 1 . So
assume that n > 1 .

Given a monomial m = b 1
α 1

� b n
αn , we first observe that

m† = α1 b 1
† + � + αn b n

†

= α1 + α2 ( log b 2 ) ′ + � + αn( log b n) ′

belongs to C[[ b 1 ; � ; b n− 1 ]] . Moreover,

b i
† = ( log b i)

′ ≺ ( log b n) ′ = b n
† ,

for all 1 < i < n, by the induction hypothesis. Actually, the induction hypoth-
esis also implies that b 1

† = 1 ≺ b n
† , since log b n � 1 . Consequently, m† � b n

† ,
if αn � 0 .

Secondly, let m = b 1
α 1

� b n
αn and n = b 1

β1
� b n

βn be monomials with m≺ n � 1 .
If αn = βn = 0 , then m ′ ≺ n ′ by the induction hypothesis. If αn < βn , then

m ′ ∈ C[[ b 1 ; � ; b n− 1 ]] b n
αn

n ′ ∈ C[[ b 1 ; � ; b n− 1 ]] b n
βn ,

whence m ′ ≺ n ′ . If αn = βn � 0 , then

m ′ � b n
† m ≺ b n

† n� n ′ .

Hence m ′ ≺ n ′ in all cases. Given f ∈ C[[ b 1 ; � ; b n]] with f � 0 and f � 1 ,
we thus get m ′ ≺ df

′ , for all m ∈ supp f \ { df } , whence f ′ ∼ cf df
′ , by strong

linearity.
Let us now prove that the induction hypothesis is satisfied at order n.

Given f , g ∈ C[[ b 1 ; � ; b n]] , with 1 � f ≺ g � 1 , we have

f ′ ∼ cf df
′ ≺ cg dg

′ ∼ g ′ .

If f � 1 , we still have f ′ ≺ g ′ , since f ′ = f � ′ and f� ≺ f ≺ g . Now let
f ∈ C[[ b 1 ; � ; b n]]

> , � . By the induction hypothesis, we have df
† > 0 , since

log f ∈ C[[ b 1 ; � ; b n− 1 ]]
> , � . We conclude that

f ′ ∼ cf df
′ = cf df

† df > 0 .
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At this point, we have proved that ∂ is asymptotic and positive on
C[[ b 1 ; � ; b n]] . By theorem 4. 1 5(a ) , this also proves that ∂ asymptotic and
positive on C0[[[ exp x]]] . Now let f , g ∈ Cl[[[ exp x]]] be such that f ≺ g � 1 .
Then

f = ( f ◦ expl ◦ logl ) ′ =
( f ◦ expl ) ′
x � logl− 1 x

≺ ( g ◦ expl ) ′
x � logl− 1 x

= ( g ◦ expl ◦ logl ) ′ = g ′ .

Similarly, if f ∈ Cl [[[ exp x]]] is such that f � 1 and f > 0 , then

f ′ =
( f ◦ expl ) ′
x � logl x

> 0 . �

Remark 5. 6. A transbasis B = ( b 1 , � , b n) of level 1 will also be called a plane
transbasis . The two facts that C[[ b 1 ; � ; b i]] is stable under differentiation for
each i and m†

�
m for all m = b 1

α 1
� b n

αn � 1 , make plane transbases particularly
useful for differential calculus.

By theorem 4. 1 5(a ) , we notice that any exponential transseries can be
expanded with respect to a plane transbases. Computations which involve
more general transseries can usually be reduced to the exponential case using
the technique of upward and downward shifting.

Exercise 5 . 1 . For all f , g ∈ T , prove that

f 4 g ∧ f ≺ 1 ∧ g ≺ 1 ⇒ f † < g † ;
f ≺ 1 ∧ g � 1 ⇒ f ′ ≺ g† .

Exercise 5 . 2 . For all f , g ∈ T � with f � 1 and g � 1 , show that

f � g ⇔ f † 4 g† ;
f � g ⇔ f † ≺ g† ;
f � g ⇔ f † � g† ;
f � g ⇔ f † ∼ g† .

Exercise 5 . 3. Let f ∈ T . Prove that

a) f � 1 ⇔ f ′ � 1

x log x log log x �

.

b) f ′ > 0 ⇔ ( ( f � 1 ∧ f > 0) ∨ ( f 4 1 ∧ f � < 0) ) .
c) f ′ > 0 ⇔ ( (∀λ ∈ C , f > λ) ∨ ( ∃λ ∈ C , ∀µ ∈ C , µ < λ⇒ µ < f < λ ) ) .

In the case of ( a) , notice that we may for instance interpret f ′ � 1

x log x log log x �

as a relation in a field of well-based transseries in x .

Exercise 5 . 4. Consider a derivation ∂ on a totally ordered C-algebra R , which
is also a field. We say that ∂ is asymptotic resp. positive, but not necessarily
strictly, if

D5 ′ . f 4 g⇒ ∂f 4 ∂g, for all f , g ∈ R with g � 1 .
D6 ′ . f � 1 ⇒ ( f > 0⇒ ∂f > 0) , for all f ∈ R .
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If d is an asymptotic derivation, prove that fd is again an asymptotic derivation
for any f ∈ R. Given positive derivations d1 , � , dn , prove that f1 d1 + � + fn dn
is again a positive derivation. Prove that neither the set of asymptotic, nor the
set of positive derivations necessarily form a module.

Exercise 5 . 5 . Let T = C [[[ x 1 ]]] � [[[ xn]]] . Characterize

a) The strong C -module of all strong exp-log derivations on T .
b) The set of all ( not necessarily strictly) asymptotic strong exp-log derivations

on T .
c) The set of all ( not necessarily strictly) positive strong exp-log derivations

on T .

Exercise 5 . 6 . Let T[ 3 x be a flat subset of the set T of transmonomials and
let T ] be its steep complement ( see exercise 4. 7) .

a) Show that T [ = C [[ T[ ]] is stable under differentiation.
b) Considering T as a strong T [ -algebra, show that there exists a unique

strongly T [ -linear mapping ∂ ] : T→ T with ∂ ] m] = (m] ) ′ for all m] ∈ T] .
c) Show that ( ∑

m ] ∈ T ]

fm ] m]
) ′

=
∑

m ] ∈ T ]

fm ]
′ m] +

∑

m ] ∈ T ]

fm ] ∂ ] m]

for all f ∈ T .

Exercise 5 . 7. Let f be a convergent transseries. Prove that f ′ is convergent
and that the germ at infinity associated to f ′ coincides with the derivative of
the germ at infinity associated to f . In other words, C {{{x }}} is a Hardy field.

Exercise 5 . 8 . Construct a strong exp-log derivation on the field C [ [ [x ] ] ] of well-
based transseries of finite exponential and logarithmic depths. Show that there
exists a unique such derivation ∂ with ∂x = 1 , and show that ∂ is asymptotic
and positive. Hint: see [vdH97] .

5. 2 Integration

In this section, we show that each transseries f ∈ T admits an integral in T .
S ince the derivative of a transseries vanishes if and only if it is a constant,
we infer that f admits a unique, distinguished integral

∫
f , whose constant

term (
∫
f)� vanishes. The distinguished property immediately implies that

mapping
∫

: f �
∫
f is linear. We will show that

∫
is actually strongly linear.

Proposition 5. 7. There exists a unique right inverse
∫

: T → T of ∂, such
that the constant term (

∫
f )� of

∫
f vanishes for al l f ∈ T . This right inverse

is strongly linear.
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Proof. We will first consider the case when f ∈ E is exponential. Let B =
( b 1 , � , b n) be a plane transbasis for f . Consider the double sum

∫
f = f� x +

∑

m∈ supp f \ { 1 }

∑

k> 0

fmFm , k m , ( 5 . 1 )

where

Fm , 0 =
1

m †
;

Fm , k = − 1

m †
Fm , k − 1
′ for k > 1 .

We will show that the family ( fm Fm, k m) m∈ supp f \ { 1 } , k> 0 is grid-based, so
that ( 5 . 1 ) defines an integral of f .

Let us first study the Fm , k for a monomial m = b 1
α 1

� b i
α i with αi � 0 . We

observe that m ′ = (α1 b 1
† + � + αi b i

† ) m� db i
† m . Setting

di = db i
† ;

D i = ( ( supp b 1
† ∪ � ∪ supp b i

† ) di
− 1 ) ∗ d i ,

D< i = D 1 ∪ � ∪ D i− 1

we thus have supp m ′ ⊆ D i m and supp Fm , 0 ⊆ D i/d i
2 . Moreover, for any

v ∈ suppFm, k , we have supp v ′ ⊆ D< i v . Now define families Tm , k by

Tm , 0 = term (
1

m †
)

Tm , k = − Tm, 0 Tm , k − 1
′

where

Tm , k − 1
′ = ( ( v ′) v w v w ) v ∈ Tk − 1 , w ∈ D < i .

Then Fm, k =
∑ Tm, k for all k ∈ N . Setting Tm =

⋃
k ∈ N Tm , k , we have

monTm � ( (monD< i) (monTm , 0 ) ) ∗ (monTm , 0 )

monTm , 0 � monD i/di
2 ,

whence Tm is grid-based by proposition 2 . 1 4( c ) and ( 2 . 7) . We conclude that∫
m =

∑
k> 0 Fm , k m is well-defined, and

∫
m =

∑

k> 0

(Fm , k
′ + m † Fm , k ) m

=
∑

k> 0

m † (Fm , k − Fm , k+ 1 ) m = m † Fm , 0 m = m .

Let us now show that the mapping
∫

: BC→T is grid-based. Given a grid-
based subset G of BC , we may decompose

G \ { 1 } = G 1 q � q G n ,

where the G i ( i = 1 , � , n) are given by

G i = {m ∈ G : m � b i } .
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By what precedes,
∐

m∈ S i
Tm is grid-based for each i . Hence,

∫
is a grid-

based mapping which extends uniquely to T by strong linearity. Furthermore,
given m = b 1

α 1
� b i

α i with αi � 0 , we have D i ⊆ C[[ b 1 ; � ; b i− 1 ]] , so that

supp fmFm, k m ⊆ C[[ b 1 ; � ; b i− 1 ]] b i
α i � { 1 } .

This implies that
∫

is a distinguished, strongly linear integral on C0 [[[ exp x]]] .
Assume now that we have defined a distinguished, strongly linear inte-

gral
∫

on Cp[[[ exp x]]] . We claim that we may extend
∫

to Cp+ 1 [[[ exp x]]] by
∫
f = (

∫
ex f ↑ ) ↓ . ( 5 . 2 )

Indeed, ( 5 . 2 ) defines a distinguished integral, since

(
∫

ex f ↑ ) ↓ ′ = 1

x
( ( ex f ↑ ) ↓ ) = f

and
(
∫

ex f ↑ ) ↓� = (
∫

ex f ↓ )� = 0 ,

for all f ∈ Cp+ 1 [[[ exp x]]] . Its distinguished property implies that it extends
the previous integral on Cp[[[ exp x]]] . Its strong linearity follows from the fact
that we may see

∫
as the composition of four strongly linear operations. Our

proposition now follows by induction over p. �

Proposition 5. 8. Let B = ( b 1 , � , b n) be a transbasis.

a ) If b 1 = x or b 1 = exp x , then C[[ b 1 ; � ; b i]] [ log b 1 ] is stab le under
∫

for all i .
b ) If b 1 = logl x and logl− 1 x , � , x ∈ B , then C[[ b 1 ; � ; b n]] [ log b 1 ] is stab le

under
∫
.

Proof. We will consider the case when b 1 = ex and i= n. The other cases follow
by upward shifting. Now given

f = fd x
d + � + f0

with f0 , � , fd ∈ C[[ b 1 ; � ; b n]] , we claim that
∫
f = F � gd+ 1 x

d+ 1 + � + g0 ,

where g0 , � , gd+ 1 ∈ C[[ b 1 ; � ; b n]] are given by

gd+ 1 = fd , �/ ( d + 1 ) ;

gd = fd− 1 , �/d +
∫

( fd − ( d + 1 ) gd+ 1 ) � ;

gd− 1 = fd− 2 , �/ ( d − 1 ) +
∫

( fd− 1 − d gd) � ;
�

g0 =
∫

( f0 − g1 ) � .

Indeed, it is easily checked that F ′ = f . Furthermore,

F� = g0 , � = (
∫

( f0 − g1 ) � )� = 0 ,

whence F =
∫
f , by the distinguished property of integration. �
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Exercise 5 . 9 . Let m � 1 be a transmonomial. Show that there exists a unique
transmonomial n � m, so that n ′ is a transmonomial.

Exercise 5 . 1 0 . Let f , g ∈ T .

a) If
∫
f ≺ 1 and

∫
g ≺ 1 , then show that

(
∫
f ) (
∫
g) =

∫
f
∫
g+

∫
g
∫
f . ( 5 . 3)

b) Give a necessary and sufficient condition for ( 5 . 3) to hold.
c) Prove that there does not exist a strong integration on C ( ( ex ) ) so that ( 5 . 3)

holds for all f , g ∈ C ( ( ex ) ) .

Exercise 5 . 1 1 . Show that
∫

ex
2

is divergent. Deduce that
∫

ex
2

is not an exp-
log function.

Exercise 5 . 1 2 . Let ϕ : H � T an embedding of a Hardy field into T = R[[[ x ]]] .
The embedding ϕ is assumed to preserve the differential ring structure and
the ordering. Given f ∈ H , show that ϕ can be extended into an embedding
ϕ̂ : H(

∫
f ) � T .

5. 3 Functional composition

Let R and S be strong totally ordered partial exp-log C-algebras. A strong
difference operator of R into S is an injection δ : R→ S , which satisfies

∆1 . δc= c, for all c ∈ C .
∆2 . δ is strongly linear.
∆3. δ ( f g) = δ( f ) δ( g) , for all f , g ∈ R .
If S = R , then we say that δ is a strong difference operator on R . We say
that δ is an exp- log difference operator , if we also have

∆4. δ ( exp f ) = exp δ( f ) , for all f ∈ R ∩ dom exp.

We say that δ is asymptotic resp. increasing , if

∆5. f ≺ 1 ⇒ δ ( f ) ≺ 1 , for all f ∈ R .
∆6. f > 0⇒ δ( f ) > 0 , for all f ∈ R .
In this section, we will show that for each g ∈ T> , � , there exists a unique
strong exp-log difference operator ◦ g on T , such that ◦ g ( x ) = g . This allows
us to define a composition on T by

◦ : T × T> , � → T

( f , g) � ◦ g ( f ) .

We will show that this composition is associative, that it satisfies the chain
rule, and that we can perform Taylor series expansion under certain condi-
tions.
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Lemma 5.9. Let T = C[[ T]] ⊆ T̂ = C[[ T̂]] be arb itrary fields of transseries
and let δ : T → T̂ be a mapping, which satisfies δ(m n) = δ( m) δ( n) and
1 ≺ m⇒ δ(m) ∈ T̂> , � for all m , n ∈ T. Then
a ) δ is a grid- based mapping, which extends uniquely to a strong, asymptotic

and increasing difference operator from T into T̂ .
b ) Ifδ ( logm) = log δ(m) for al l m ∈ T , then the extension of δ to T is an exp-

log difference operator.

Proof. Let G be a grid-based subset of T with G ⊆ {m1 , � , mn } ∗ n, for
certain monomials m1 , � , mn ≺ 1 and n in T. Then the family F∗ with
F= ( δ(mi) ) 1 6 i6 n is grid-based, by proposition 2 . 1 4( c ) . It follows that δ : T→ T̂
is grid-based, since ( δ( v ) ) v ∈ G � F∗ δ(n) . By proposition 2 . 1 6, the extension
of δ to T is a strong difference operator. If f ∈ T≺ , then δ(m) ≺ 1 for all
m ∈ supp f , whence δ( f ) =

∑
fm δ (m) ≺ 1 . This proves that δ is asymptotic

and, given f ∈ T � , it also follows that δ( f ) ∼ δ( τf ) = cf δ( df ) . In particular,
if f > 0 , then δ( f ) > 0 . This completes the proof of ( a ) .

Now assume that δ( log m) = log δ (m) for all m ∈ T. In order to prove ( b ) ,
it obviously suffices to show that δ( log f ) = log δ( f ) for all f ∈ T> . Now
each f ∈ T> may be decomposed as f = c m ( 1 + ε) , with c ∈ C> , m ∈ T

and ε ≺ 1 . For each k ∈ N> , we have δ( (− 1 ) k − 1

k
εk ) =

(− 1 ) k − 1

k
δ( ε) k . Hence,

δ( log ( 1 + ε) ) = log ( 1 + δ ( ε) ) , by strong linearity. We conclude that

δ( log f ) = δ ( log c) + δ ( log df ) + δ( log( 1 + ε) )
= log c+ log δ( df ) + log ( 1 + δ( ε) )
= log ( c δ( df ) ( 1 + δ( ε) ) )
= log δ( c df ( 1 + ε) )
= log δ( f ) . �

Proposition 5. 1 0. Let g ∈ T> , � . Then there exists a unique strong exp-
log difference operator ◦ g on T with ◦ g (x ) = g. This difference operator is
asymptotic and increasing.

Proof. We will show by induction over p∈ N that there exists a unique strong
exp-log difference operator ◦ g from Cp[[[ x]]] = C[[ Tp]] into T with ◦ g x = g ,
and we will show that this difference operator is asymptotic and increasing.

For p= 0 , the axioms ∆3 and ∆4 imply that

◦ g ( xα 0 � logq
α q x) = gα 0 � logq

α q g

for all monomials xα 0 � logq
α q x ∈ T0 . If xα 0 � logq

α q x � 1 , i . e. α0 = � = α i− 1 = 0

and αi > 0 for some i , we also get

◦ g (xα 0 � logq
α q x) ∈ T> , � ,

since
logi+ 1

α i+1 g � logq
α q g

�
logi

α i g ∈ T> , � .

This completes the proof in the case when p= 0 , by lemma 5. 9 .
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If p > 0 , then the induction hypothesis states that there exists a unique
strong exp-log difference operator ◦ g : Cp− 1 [[[ x]]] → T with ◦ g (x ) = g, and ◦ g
is asymptotic and increasing. In view of ∆4 , any extension of ◦ g to Cp[[[ x]]]

should therefore satisfy ◦ g ( ef ) = e◦ g ( f ) for all ef ∈ Tp = exp Cp− 1 [[[ x]]] � . On
the other hand, when defining ◦ g in this way on Tp, we have

◦ g ( ef1 ef2 ) = e◦ g ( f1 + f2 ) = e ◦ g ( f1 ) e ◦ g ( f2 ) = ◦ g ( ef ) ◦ g ( eg)

for all ef1 , ef2 ∈ Tp. S imilarly,

( f = f� ∧ ef � 1 ) ⇒ ( f > 0 ∧ f � 1 )

⇒ ◦ g ( f ) ∈ T> , �

⇒ ◦ g ( ef ) = e ◦ g ( ef ) ∈ T> , �

for all ef ∈ Tp. This completes the proof in the general case, by lemma 5. 9 . �

Proposition 5. 1 1 .

a ) f ◦ ( g ◦ h) = ( f ◦ g) ◦ h , for all f ∈ T and g, h ∈ T> , � .
b ) ( f ◦ g) ′ = g ′ ( f ′ ◦ g) , for al l f ∈ T and g ∈ T> , � .
c ) Let f , δ ∈ T be such that δ ≺ x and m † δ ≺ 1 for al l m ∈ supp f. Then

f ◦ ( x + δ) = f + f ′ δ +
1

2
f ′′ δ2 + � ( 5 . 4)

Proof. Property ( a ) follows from proposition 5. 1 0 and the fact that ( ◦h ) ◦ ( ◦ g )
and ◦ g◦ h are both strong exponential difference operators which map x
to g ◦ h .

Let Φ be the set of f ∈ T , for which ( f ◦ g) ′ = g ′ ( f ′ ◦ g) . We have x ∈ Φ
and Φ is stable under grid-based summation, since the mappings f � ( f ◦ g) ′

and g ′ ( f ′ ◦ g) are both strongly linear. Φ is also stable under exponentiation
and logarithm: if f ∈ Φ , then

( ef ◦ g) ′ = ( ef ◦ g) ′

= ( f ◦ g) ′ ef ◦ g

= g ′ ( f ′ ◦ g) ef ◦ g

= g ′ ( ( f ′ ef ) ◦ g)

= g ′ ( ( ef ) ′ ◦ g)

and f > 0 implies

( ( log f ) ◦ g) ′ = ( log ( f ◦ g) ) ′

= g ′ ( f ′ ◦ g) / f ◦ g
= g ′ ( ( log f ) ′ ◦ g) .

This proves ( b ) , since the smallest subset Φ of T which satisfies the above
properties is T itself.
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As to ( c ) , we first have to prove that the right hand side of ( 5 . 4) is
well-defined. Let δ ≺ x be a transseries in T and denote by T[ the set of
transseries f , such that m † δ ≺ 1 for all m ∈ supp f . Given a transmono-
mial m, we have

m † δ ≺ 1 ⇔ ( logm) ′ ≺ 1 /δ⇔ logm ≺
∫

1 /δ⇔m
�

e
∫

1 / δ ,

since 1 /δ � 1 /x . We infer that

T[ = { f ∈ T : ∀m ∈ supp f , m �
e
∫

1 /δ } .

Let us show that T[ is stable under differentiation. By the strong linearity of
the differentiation, it suffices to prove that m ′ ∈ T[ , for all transmonomials m

with m
�

e
∫

1 /δ . If m
�
x , then n

�
x

�
e
∫

1 /δ , for all n ∈ suppm ′ . If m
�
x ,

then n/m
�

m for all n ∈ suppm ′ , whence n � m
�

e
∫

1 /δ .
Now consider a transbasis B = ( b 1 , � , b n) , such that b 1 = logp x , � , x ∈ B

and b 1 , � , b n ∈ T[ . By theorem 4. 1 5( b ) , any f ∈ T[ can be expanded with
respect to such a transbasis. Let

D = supp b 1
† ∪ � ∪ supp b n

† ≺ 1

δ
,

so that supp f ′ ⊆ ( supp f ) D ⊆ BC , for all f ∈ C[[ BC ]] . Now let f ∈ C[[ BC ]] ,
l ∈ N , and consider the family Tl of all terms

τv , ( m1 , n1 ) � ( ml , n l ) =
1

l !
( fv v ) ( vm1

† m1 ) ( δn1 n1 ) � ( ( v m1
� ml− 1 ) ml

† ml ) ( δn l nl ) .

Then
1

l !
f ( l ) δ l =

∑
Tl .

Moreover, setting T=
∐

l ∈N Tl , we have

monT � mon( f ) (mon(D ) mon( δ ) ) ∗ ,

so T is grid-based, by proposition 2 . 1 4( c ) . S ince T refines the family
(

1

l !
f ( l ) δ l ) l ∈N , it follows that the Taylor series in ( 5 . 4) is well-defined. For

a similar reason, the mapping BC → T ; v �
∑

l> 0

1

l !
v ( l ) δ l is grid-based,

so the mapping C[[ BC ]] → T ; f �
∑

l> 0
1

l !
f ( l ) δ l is actually strongly linear.

Now let Φ be the subset of T[ of all f , such that ( 5 . 4) holds. Clearly,
x ∈ Φ and Φ is stable under strongly linear combinations. We claim that Φ is
also stable under exponentiation and logarithm. Indeed, assume that f ∈ Φ
and ef ∈ T[ . Then 1 / f ′ � def/def

′ � δ , f ′/ f ′′ � δ , f ′′/ f ′′ ′ � δ , � , since def , f
′ ,

f ′ ′ , � ∈ T[ . Hence f (n) δn ≺ 1 for all n > 1 , which allows us to expand

A = ( ef ) ◦ (x + δ) = e
f+ f ′ δ+

1

2
f ′ ′ δ2 + �

= ef ( 1 + δ +
1

2
f ′′ δ2 + � + ( δ +

1

2
f ′ ′ δ2 + � ) 2 + � ) .
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We have to show that A coincides with

B = ef + ( ef ) ′ δ +
1

2
( ef ) ′′ δ2

= ef ( 1 + f ′ δ +
1

2
( ( f ′) 2 + f ′′) δ2 + � ) .

But this follows from the fact that we may see A= B as a formal identity in the
ring C [ [ ef , δ , f ′ , f ′′ , � ] ] . Indeed, A and B satisfy the same differential equation

∂A

∂δ
=

(
f ′ + f ′ ′ δ +

1

2
f ′′′ δ2 + �

)
A

= f ′ A +

(
∂A

∂f ′
f ′′ +

∂A

∂f ′′
f ′′′ + �

)
δ ;

∂B

∂δ
= f ′ B +

(
∂B

∂f ′
f ′ ′ +

∂B

∂f ′′
f ′′′ + �

)
δ ,

and [ δ0 ]A = [ δ0 ]B = ef . S imilarly, one may show that Φ is stable under
logarithm. This proves ( c ) , since the smallest subset of T[ , which contains x
and which is stable under strongly linear combinations, exponentiation and
logarithm, is T[ itself. �

Exercise 5 . 1 3 . Let f ∈ T and g ∈ T> , � .

a) Prove that the exponentiality of f ◦ g equals the sum of the exponentialities
of f and g.

b) Prove that the exponential height resp. logarithmic depth of f ◦ g is bounded
by the sum of the exponential heights resp. logarithmic depths of f and g.

c) Improve the bound in ( b ) by taking into account the exponentialities of f
and g .

Exercise 5 . 1 4. Let f , h ∈ T and g ∈ T> , � be such that h ≺ g . Under which
condition do we have

f ◦ ( g + h) = f ◦ g+ ( f ′ ◦ g) h +
1

2
( f ′ ′ ◦ g) h2 + � ?

Exercise 5 . 1 5 . Let f ∈ T and let D a grid-based family of transseries, such
that m† δ ≺ 1 , for all m ∈ supp f and δ ∈ D . prove that

f ◦
(
x +

∑
D
)

=
∑

δ 1 � δ l ∈ D∗

1

l !
f ( l ) δ1 � δl .

Exercise 5 . 1 6 . Let m be a transmonomial in T and g ∈ T> , � a transseries,
such that m ◦ g � x and n � log m ◦ g for all n ∈ supp g. P rove that m ◦ g is
a transmonomial.

Exercise 5 . 1 7 . Show that R{{{x }}} is stable under composition.

Exercise 5 . 1 8. Let A = ( a 1 , � , am ) and B = ( b 1 , � , b n) be two transbases and
consider two series f ∈ C[[ a 1 ; � , am]] and g ∈ C[[ b 1 ; � ; b n]]

> , � . Construct
a transbasis for f ◦ g of size 6 m + n .
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5. 4 Functional inversion

5. 4. 1 Existence of functional inverses

Theorem 5.1 2 . Any g ∈ T> , � admits a functional inverse g inv ∈ T> , � with

g inv ◦ g = g ◦ ginv = x.

Proof. Without loss of generality, one may assume that g= x + ε, where ε ≺ 1
is exponential. Indeed, it suffices to replace g by logl− p ◦ g ◦ expl for sufficiently
large l , where p is the exponentiality of g . Let B = ( b 1 = ex , � , b n) be a plane
transbasis for ε . We will prove that g admits a functional inverse of the form
f = x + δ , where δ ≺ 1 can be expanded with respect to a plane transbasis
( a 1 , � , an) which satisfies

an = b n ◦ (x + δ0 )

an− 1 = b n− 1 ◦ ( x + δ0 , 0 )
�

Let us first assume that the constant coefficient ε0 of ε in b n vanishes.
Then proposition 5 . 1 1 ( c ) implies that

Kf � f ◦ ( x + ε) − f = f ′ ε +
1

2
f ′′ ε2 + � ( 5 . 5 )

for any f ∈ C[[ x ; b 1 ; � ; b n]] . In particular, for every m ∈ xC b 1
C

� b n
C , we have

supp
Km

m
⊆ K � ( {x− 1 , b 1

† , � , b n
† } supp ε) ∗ .

Now the functional inverse of g is given by

ginv = x − Kx + K2 x − K3 x + � .

=
∑

( k 1 , � , k l ) ∈ K∗
(− 1 ) l (Kx ) k 1

(K k1 ) k2
� (K kl− 1 ) k l ( x k1

� kl )

Since Kx = ε ∈ C[[ b 1 ; � ; b n]] and K maps C[[ b 1 ; � ; b n]] into itself, we
conclude that ginv = x + δ , with δ ∈ C[[ b 1 ; � ; b n]] ≺ .

The general case is proved by induction over n. If n= 1 , then we must have
ε0 = 0 , so we are done. So assume that n > 1 . By the induction hypothesis,
there exists a functional inverse f̃ = x + δ̃ for g̃ = x + ε̃ = x + ε0 , such that
δ̃ ∈ C[[ a 1 ; � ; an− 1 ]] ≺ , where

an− 1 = b n− 1 ◦ ( x + δ̃0 )

an− 2 = b n− 2 ◦ ( x + δ̃0 , 0 )
�

Now

g ◦ f̃ = x + ( g − g̃ ) ◦ f̃ ∈ C[[ a 1 ; � ; an]] ,
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where an = b n ◦ f̃ , and ( ( g − g̃ ) ◦ f̃ ) 0 = 0 . It follows that g ◦ f̃ has a functional
inverse of the form ( g ◦ f̃ ) inv = x + η with η ∈ C[[ a1 ; � ; an]] and η0 = 0 . We
conclude that ginv = f̃ ◦ ( g ◦ f̃ ) inv is a functional inverse of g and we have

g inv = f̃ ◦ (x + η) = f̃ + f̃
′
η +

1

2
f̃
′ ′
η2 + � ∈ C[[ a 1 ; � ; an]] . �

5. 4. 2 The Translagrange theorem

We define a scalar product on T by

〈 f , g 〉 = ( f g)� .

Given transseries M, N ∈ T and f ∈ T> , � , let us denote

f[M, N ] = 〈M ◦ f , N 〉 .

When taking transmonomials for M and N , then the coefficients f[M, N ]

describe the post-composition operator with f . More precisely, for all m ,
n ∈ T we have

(m ◦ f ) n = f[m, n− 1 ] .

Theorem 5. 1 3. Let M, N, ε ≺ 1 be exponential transseries and f = x + ε.
Then g = f inv satisfies

g[M, N ′ ] = − f[N , M ′ ] .

Proof. Since h� = (
∫
h) x for all h ∈ T , we have

g[M, N ′ ] = 〈M ◦ g , N ′〉 = [
∫

(M ◦ g) N ′ ] x ;

f[N , M ′ ] = 〈N ◦ f , M ′〉 = [
∫

(N ◦ f ) M ′ ] x .

Since [
∫

(N ◦ f ) M ′ ] − [
∫

(N ◦ f ) M ′ ] x x and g − x are exponential, we have

[
∫

(N ◦ f ) M ′ ] x = [ (
∫

(N ◦ f ) M ′) ◦ g ] x .

Using the rule (
∫
h) ◦ g =

∫
(h ◦ g) g ′ , it follows that

[
∫

(N ◦ f ) M ′ ] x = [
∫
N (M ′ ◦ g) g ′ ] x = [

∫
N (M ◦ g) ′ ] x .

Now integration by parts yields

g[M, N ] + f[N , M ′ ] = [
∫

(M ◦ g) N ′ ] x + [
∫
N (M ◦ g) ′ ] x = [N (M ◦ g) ] x

But [N (M ◦ g) ] x = 0 , since N (M ◦ g) is exponential. �

The theorem generalizes to the case when M, N and ε are no longer
exponential, by applying the following rule a finite number of times:

f[M, N ] = ( log ◦ f ◦ exp) [M ◦ exp , N ◦ exp ] .
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Corollary 5. 1 4. Let M, N, ε ≺ 1 be transseries of depths 6 l and f = x + ε .
Then g = f inv satisfies

g[M, N ′/ logl′ ] = − f[N , M ′/ logl′ ] .

Exercise 5 . 1 9 . Let g = x + ε where ε is exponential and let K be as in ( 5 . 5 ) .

a) Show that we do not always have gi nv = x − Kx + K2 x + � .
b) Give a necessary and sufficient condition for which

gi nv = x − Kx + K2 x + � .

Exercise 5 . 20 .

a) A classical theorem of Liouville [Lio37, Lio38] states that (x log x ) inv is
not an exp-log function. Show that there exists no exp-log function f with
f � ( log x log log x ) inv ( see [Har1 1 ] for a variant of this problem) .

b) Show that there exists no exp-log function f with f � e
∫

e x
2

. Hint: use
exercise 5 . 1 1 .

c) Assume that g ∈ T> , � is not an exp-log function. Show that there exists an
n ∈ N , such that there exists no exp-log function f with f � expn g.

Exercise 5 . 21 . Show that R{{{x }}} is stable under functional inversion.

Exercise 5 . 22 . Classify the convex subgroups of (T> , � , ◦ ) . Hint: G is a convex
subgroup of T> , � if and only if its contraction con G is a convex subgroup.

Exercise 5 . 23. Show that Lagrange’ s inversion formula is a special case of
theorem 5. 1 3 .

Exercise 5 . 24. Show that theorem 5. 1 3 still holds when M = x and N is
exponential.

Exercise 5 . 25 . Let M, N be transseries and let f ∈ T> , � be a transseries of
level 0 . Show that for all sufficiently large l , the inverse g= f i nv satisfies

g[M , N ] = − f[
∫

(N log l′ ) , M ′ / log l′ ] .

If one allows l = ω , then show that the formula holds for transseries of arbitrary
levels.
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6

Grid-based operators

Besides multiplication and strong summation, we have introduced other inter-
esting operations on the field of transseries in the previous chapter, like differ-
entiation, integration, composition and functional inversion. In this chapter
we will perform a theoretical study of an even larger class of operations on
transseries, which contains the above elementary operations, but also many
natural combinations of them.

This theoretical study is carried out best in the context of “grid-based
modules”. Let C be a ring. In chapter 2 , we defined a grid-based algebra to
be a strong C-algebra of the form C[[ M]] , where M is a monomial monoid.
An arbitrary subset S of M is called a monomial set and the set C[[ S ]] of
strong linear combinations of elements in S a grid- based module .

In section 6. 1 , we start by generalizing the notion of strongly linear
mappings from chapter 2 to the multilinear case. Most natural elementary
operations like multiplication, differentiation, right composition, etc. can then
be seen as either linear or bilinear “grid-based operators”. In section 6. 3 ,
we next introduce the general concept of a grid-based operator. Roughly
speaking, such an operator is a mapping Φ : C[[ M]] → C[[ N]] which admits
a “generalized Taylor series expansion”

Φ = Φ 0 + Φ 1 + Φ 2 + � ,

such that there exists a d-linear grid-based operator

Φ̌ d : C[[ M]] d→ C[[ N]]

with

Φ d( f ) = Φ̌ d( f , � , f )

for each d . If C ⊇ Q , then such Taylor series expansions are unique and we
will show that the Φ̌ d may be chosen to be symmetric.



Multilinear grid-based operators may both be reinterpreted as general
grid-based operators and linear grid-based operators using the “syntactic
sugar isomorphisms”

C[[ M1 q � qMm]] � C[[ M1 ]] × � × C[[ Mm]]

C[[ M1 × � × Mm]] � C[[ M1 ]] ⊗ � ⊗ C[[ Mm]]

The first isomorphism also provides a notion of grid-based operators in several
variables.

As promised, many operations can be carried with grid-based operators:
they can be composed and one may define a natural strong summation on
the space of grid-based operators Φ : C[[ M]] → C[[ N]] . An explicit strong
basis of “symmetric atomic operators” for this space will be established in sec-
tion 6. 4. 2 . Last but not least, we will prove several implicit function theorems
for grid-based operators in section 6. 5 . These theorems will be a key ingredient
for the resolution of differential ( and more general functional equations) in
the next chapters.

6. 1 Multilinear grid-based operators

6. 1 . 1 Multilinear grid-based operators

Let M1 , � , Mm and N be strong modules over a ring C . A mapping

Φ : M1 × � × Mm→ N

is said to be strongly multilinear , if for all F1 ∈ S (M1 ) , � , Fm ∈ S (Mm) , we
have M (F1 , � , Fm) ∈ S (N ) and

Φ
( ∑

F1 , � ,
∑
Fm

)
=
∑

Φ (F1 , � , Fm) .

If M1 , � , Mm and N are grid-based modules, then we also say that Φ is
a multilinear grid- based operator .

Example 6. 1 . Given monomial monoids M and N, all strongly linear map-
pings L : C[[ M]] → C[[ N]] are multilinear grid-based operators. Denoting
S = C[[ M]] , we have in particular the following important types of linear grid-
based operators:

1 . Left multiplication operators × f : S → S , g � f g, with f ∈ S .
2 . Strong derivations d : S → S . If S admits R-powers, then such derivations

should also satisfy dfλ = λ ( df ) fλ− 1 , whenever fλ is well-defined for f ∈ S
and λ ∈ R .

3 . Strong integrations ; these are partial, strongly linear right inverses I : S→ S
of strong derivations d : S → S , i . e. d I = Id.
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4. Strong difference operators δ : S → S . If S admits R-powers, then such
difference operators should also satisfy δfλ = ( δ f ) λ , whenever fλ is well-
defined for f ∈ S and λ ∈ R) .

5 . Strong summation operators ; these are partial, strongly linear right
inverses Σ : S → S of finite difference operators, i. e. ( δ − Id) Σ = Id,
for some strong difference operator δ : S→ S .

Example 6. 2. Given a monomial monoid M, the multiplication · : C[[ M]] 2→
C[[ M]] and the scalar product C[[ M]] 2 → C ; ( f , g) � 〈 f , g 〉 = ( f g)� are
strongly bilinear mappings.

Example 6. 3. Compositions

Ψ ◦ ( Φ 1 , � , Φn) :
∏

i= 1

n ∏

j= 1

mi

Mi , j � V ;

( ( fi , j) 1 6 j6mn ) 1 6 i6 n � Ψ( Φ 1 ( f1 , 1 , � , f1 , m1 ) ,
� ,
Φn( fn , 1 , � , fn , mn ) )

of multilinear grid-based operators

Ψ : N1 × � × Nn � V

Φ i : Mi , 1 × � × Mi , mi � Ni ( i = 1 , � , n)

are again multilinear grid-based operators.

Example 6. 4 . The m-linear grid-based operators of the form Φ : C[[ M1 ]] × � ×
C[[ Mm]] → C[[ N]] form a C-module. For instance, if d : S → S is a strong
derivation, where S = C[[ M]] , then strong differential operators of the form

L = Lr d
r + � + L0

are linear grid-based operators. In section 6. 4. 1 , we will see that we may
actually define strong summations on spaces of grid-based operators.

6. 1 . 2 Operator supports

Let Φ : C[[ M1 ]] × � × C[[ Mm]] → C[[ N]] be an m-linear grid-based operator,
such that M1 , � , Mm and N are all subsets of a common monomial group G .
Then the operator support of L is defined by

supp Φ =
⋃

( m1 , � , mm ) ∈M 1 × � × Mm

supp
Φ(m1 , � , mm)

m1
� mm

.

The operator support is the smallest subset of G , such that

supp Φ( f1 , � , fm) ⊆ ( supp Φ) ( supp f1 ) � ( supp fm) , ( 6 . 1 )
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for all ( f1 , � , fm) ∈ C[[ M1 ]] × � × C[[ Mm]] . Given S 1 ⊆ M1 , � , Sm ⊆ Mm ,
we also denote

suppS 1 × � × SmΦ = supp Φ | C [[ S 1 ]] × � × C [[ Sm ]] .

Example 6. 5. We have

supp · = { 1 } ;

supp Ψ ◦
∏

i= 1

n

Φ i ⊆ ( supp Ψ) ( supp Φ 1 ) � ( supp Φn) ,

for multilinear operators Φ k : C[[ M1 ]] × � × C[[ Mm]] → C[[ Nk ]] (k = 1 , � , n)
and Ψ: C[[ N1 ]] × � × C[[ Nn]] → C[[ V]] .

Exercise 6 . 1 . Let L 1 , � , Lk : C[[ M]] → C[[ M]] be infinitesimal linear grid-based
operators ( i . e. supp L i ≺ 1 for i = 1 , � , k ) .

a) Show that f (L1 , � , Lk ) is well-defined for non-commutative series f ∈
C 〈 〈 z1 , � , zn 〉 〉 .

b) Determine the largest subspace of T = C [[[ x]]] on which e∂
2

is a well-defined
bijection.

Exercise 6. 2 .

a) Is a multilinear grid-based operator necessarily a multilinear well-based oper-
ator?

b) Show that C [ [M4 ] ] ∗ � C [ [M< ] ] for well-based series, if M is totally ordered.
Here C [ [M4 ] ] ∗ denotes the strong dual of C [ [M4 ] ] .

c) Show that ( b ) does not hold for grid-based series. How to characterize
C[[ M]] ∗ ?

Exercise 6. 3.

a) Let T [ = C[[ T[ ]] = T � ex be the set of transseries f ∈ T with m � ex for all
m ∈ supp f and consider the space DT [ of operators

L =
∑

n ∈ N
Ln ∂

n ∈ T [ [ [∂ ] ] , ( 6 . 2 )

such that
⋃
n ∈ N supp Ln is a grid-based. Show that DT [ operates on T [ and

that DT [ is stable under composition.
b) Let T [ = C [[ T[ ]] = T � ex and consider the space DT [ of operators ( 6 . 2 ) , such

that (Ln) n ∈ N is a grid-based family. Show that DT [ operates on T [ and
that DT [ is stable under composition.

6. 2 Strong tensor products

It is often useful to consider multilinear mappings

M1 × � × Mm→ N

as linear mappings

M1 ⊗ � ⊗Mm→ N.
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A similar thing can be done in the strongly linear setting. We will restrict
ourselves to the case when M1 , � , Mm are grid-based modules, in which case
the tensor product has a particularly nice form:

Proposition 6. 6. Let M1 , � , Mm be monomial sets and denote

M = M1 × � × Mm .

Consider the mapping

µ : C[[ M1 ]] × � × C[[ Mm]] � C[[ M]]

( f1 , � , fm) �
∑

m∈M

f1 , m1
� fm, mm (m1 , � , mm)

This mapping is well-defined and strongly multilinear. Moreover, for every
strongly multilinear mapping

Φ : C[[ M1 ]] × � × C[[ Mm]] → N

into an arbitrary strong C-module , there exists a unique strongly linear map-
ping

L : C[[ M]] → N,

such that Φ = L ◦ µ .

Lemma 6.7. Let F be a grid- based family of monomials in M. Then there
exist grid- based families G1 ∈ F (M1 ) , � , Gm ∈ F ( Mm) with F � G1 × � × Gm .

Proof. Let S k be the projection of S =
⋃
f ∈ F supp f on Mk , for k = 1 , � , m.

We have S k ⊆ ek , 1
N

� e k , pk
N { fk , 1 , � , fk , qk } for certain ek , l ≺ 1 and fk , l . Given

m ∈ S k , we will denote

degm = min { i1 + � + ipk : m = e k , 1
i1

� ek , pk
ipk fk , j } .

Given m ∈ M, we define its multiplicity by

µ(m) = card ( f ∈ F: fm � 0) .

Given mk ∈ S k , let

µk ( mk ) = max {µ( m1 , � , mm) :
∀i ∈ { 1 , � , m} , mi ∈ S i ∧ degmi 6 degmk } .

Then for all ( m1 , � , mm) ∈ S , we have

µ(m1 , � , mm) 6 max { µ1 ( m1 ) , � , µm(mm) }
6 µ1 (m1 ) � µm(mm) .

Hence

F � G1 × � × Gm
for Gk = (mk ) mk ∈ S k , i∈ { 1 , � , µk ( mk ) } (k = 1 , � , m) . �
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Proofofproposition 6. 6. Given grid-based subsets G k ⊆ Mk with k = 1 , � , m,
the set G 1 × � × Gm is clearly a grid-based subset of M. This implies
that µ is well-defined. More generally, given grid-based families of terms
Tk ∈ F (CMk ) ( k = 1 , � , m) , the family µ(T1 , � , Tm) ∈ F (CM) is again grid-
based. Now consider arbitrary grid-based families Fk ∈ S (C[[ Mk ]] ) and let
Tk = termFk , for k = 1 , � , m. Then

µ
( ∑

F1 , � ,
∑
Fm

)
= µ

( ∑
T1 , � ,

∑
Tm

)

=
∑

µ(T1 , � , Tm)

=
∑

µ(F1 , � , Fm) .

This shows that µ is multilinear.
Inversely, if G is a grid-based subset of M, then its projections πk (G )

on Mk for j = 1 , � , m are again grid-based, and we have

G ⊆ π1 ( G ) × � × πm( G ) .

Consequently, given a strongly multilinear mapping

Φ : C[[ M1 ]] × � × C[[ Mm]] → N,

the mapping

L : C[[ M]] � N∑

m∈M

fm m �
∑

m∈M

fm Φ (m)

is well-defined. Moreover, if F ∈ S (C[[ M]] ) , then the above lemma implies
that there exist Gk ∈ F (Mk ) ( k = 1 , � , m) with monF � G1 × � × Gm , whence

L (monF) � Φ( G1 , � , Gm) .

It follows that L(mon F) , L ( term F) and L (F) are summable families in N .
Finally, using strong associativity, we have

L
( ∑

termF
)

= L
( ∑

m∈M

( ∑

cm∈ term F
c
)

m
)

=
∑

m∈M

( ∑

cm∈ term F
c
)

Φ(m)

=
∑

L ( termF) .

We conclude that L (
∑ F) =

∑
L(F) . �

We call C[[ M1 ]] ⊗ � ⊗ C[[ Mm]] = C[[ M1 × � × Mm]] ( together with
the mapping µ) the strong tensor product of C[[ M1 ]] , � , C[[ Mm]] . An
immediate consequence of proposition 6. 6 is the principle of extension by
strong multilinearity:
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Corollary 6.8. Let M1 , � , Mm and N be monomial monoids and assume
that ϕ is a mapping, such that

( ϕ ( m1 , � , mm) ) ( m1 , � ,mm ) ∈ G 1 × � × Gm

is a grid-based family for any grid- based subsets G 1 ⊆M1 , � , Gm ⊆Mm . Then
there exists a unique strongly multilinear mapping

Φ : C[[ M1 ]] × � × C[[ Mm]] → C[[ N]]

with Φ |M1 × � × Mm
= ϕ .

Proof. Using extension by strong linearity, there exists a unique strongly
linear mapping L : C[[ M1 × � × Mm]] → C[[ N]] , with L |M 1 × � × Mm

= ϕ . Then
Φ = L ◦ µ is the unique mapping we are looking for. �

Exercise 6. 4. When do we have L(C[[ M]] , C[[ N]] ) � C[[ M]] ∗ ⊗ C[[ N]] , where
L(C[[ M]] , C [[ N]] ) denotes the space of strongly linear mappings from C[[ M]]

into C [[ N]] ?

Exercise 6. 5 .

a) Generalize proposition 6 . 6 to the case of well-based series.
b) Show that a well-based family ( fi ) i ∈ I ∈ C [ [M] ] I corresponds to an element

of C [ [I × M ] ] .
c) Define a family F ∈ F(C [[ M]] ) to be super-grid-based F ≈ ( fi ) i∈ I with

I⊆ zNn

and f =
∑

( i , m )
fi , m ( i, m) ∈ C [[ I × M]] . Show that C[[ M]] is a strong

C-algebra for super-grid-based summation.
d) Give an example of a grid-based family which is not super-grid-based.

Exercise 6 . 6 . Show that tensor products exist in the general strongly linear
setting ( see also exercise 2 . 20) . Hint:

a) Let M1 , � , Mm be strong modules. Consider the set F of all mappings f :

M1 × � × Mm→ C , whose support is contained in a set S1 × � × Sm such
that each Si is a summable subset of Mi . Construct a natural embedding
ν : M1 × � × Mm→ F and give F the structure of a strong C-module.

b) Let Z be the strong submodule of F , which is generated by all elements of
the form

(
∑

i 1 ∈ I1

λ i 1 x i 1 , � ,
∑

im ∈ Im
λ im x im ) −

∑

i 1 ∈ I1
�

im ∈ Im

λ i 1 � λ im (x i 1 , � , x im ) ,

where the Ik are mutually disjoint. Then the strong quotient

M1 ⊗ � ⊗Mm = F/Z

with µ= πF /Z ◦ ν satisfies the universal property of the strong tensor product.
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6. 3 Grid-based operators

6. 3. 1 Definition and characterization

Let M and N be monomial sets. A mapping Φ : C[[ M]] → C[[ N]] is said to
be a grid-based operator if there exists a family ( Φ̌ i) i∈ N of multilinear grid-
based operators Φ̌ i : C[[ M]] i→ C[[ N]] , such that for all F∈ S (C[[ M]] ) , the
family ( Φ̌ i( f1 , � , fi) ) i∈ N , f1 , � , fi ∈ F is grid-based, and

Φ
( ∑

F
)

=
∑

i∈N
f1 , � , fi ∈ F

Φ̌ i( f1 , � , fi) . ( 6 . 3)

We call ( Φ̌ i) i∈ N a multilinear family for Φ . Considering the family of a single
element f ∈ C[[ M]] , the formula ( 6. 3) reduces to

Φ( f ) =
∑

i∈ N
Φ i( f ) , with ( 6. 4)

Φ i( f ) = Φ̂̌ i( f ) = Φ̌ i( f , � , f ) .

Assuming that C ⊇ Q , each Φ i is uniquely determined and we call it the
homogeneous part of degree i of Φ :

Proposition 6.9. Let Φ : C[[ M]] → C[[ N]] be a grid- based operator and let
Φ̌ i : C[[ M]] i→C[[ N]] be multilinear grid-based operators, such that ( 6. 4) holds
for al l f ∈ C[[ M]] . IfC ⊇ Q and Φ = 0 , then Φ i = 0 for each i ∈ N .

Proof. We observe that it suffices to prove that Φ i = 0 for each i ∈ N , since
the Φ̌ i are symmetric and C ⊇ Q is torsion-free. Assume the contrary and let
f ∈ C[[ M]] be such that Φ i( f ) � 0 for some i . Choose

m ∈ S =
⋃

i∈ N
supp Φ i( f ) � ∅ .

Since ( Φ i( f ) ) i∈ N is a grid-based family, there exist only a finite number of
indices i , such that m ∈ supp Φ i( f ) . Let i1 < � < in be those indices.

Let ck = Φ ik ( f ) m for all k ∈ { 1 , � , n} . For any l ∈ { 1 , � , n} , we have
Φ ik ( l f ) m = l ik ck , by multilinearity. On the other hand,

Φ( l f ) m = Φ i1 ( l f ) m + � + Φ in ( l f ) m = 0

for each l , so that 


1 � 1� �

ni1 � nin






c1�

cn


 = 0 .

The matrix on the left hand side admits an inverse with rational coefficients
( indeed, by the sign rule of Descartes, a real polynomial α1 x

i1 + � + αn x
in

cannot have n distinct positive zeros unless α1 = � = αn = 0 ) . S ince C ⊇ Q ,
it follows that c1 = � = cn = 0 . This contradiction completes the proof. �
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Proposition 6. 1 0. Let Φ : C[[ M]] → C[[ N]] be a grid- based operator and
assume that C ⊇ Q . Then there exist a unique multilinear family ( Φ̌ i) i∈ N
for Φ , such that each Φ̌ i is symmetric .

Proof. Let ( Φ̃ i) i∈ N be an arbitrary multilinear family for Φ . Then the Φ̌ i

defined by

Φ̌ i( f1 , � , fi) =
1

i !

∑

σ ∈ S i

Φ̃ i( fσ ( 1 ) , � , fσ ( i ) ) .

form a multilinear family of symmetric operators for Φ . Moreover, each Φ̌ i is
determined uniquely in terms of Φ i by

Φ̌ i( f1 , � , fi) =
1

i !

∑

J ⊆ { 1 , � , i }
(− 1 ) i− | J | Φ i

( ∑

j∈ J
fj

)
.

We conclude by proposition 6. 9 . �

Assume that M and N are subsets of a common monomial group G . If we
have C ⊇ Q and Φ and ( Φ̌ i) i∈N are as in proposition 6. 1 0, then we call

supp Φ = supp Φ̌ 0 ∪ supp Φ̌ 1 ∪ supp Φ̌ 2 ∪ �

the operator support of Φ . For all f ∈ C[[ M]] , we have

supp Φ( f ) ⊆ ( supp Φ) ( supp f ) ∗ .

Notice also that supp Φ i = supp Φ̌ i for all i .

6. 3. 2 Multivariate grid-based operators and compositions

In a similar way that we have the natural isomorphism

C[[ M1 × � × Mm]] � C[[ M1 ]] ⊗ � ⊗ C[[ Mm]] ,

for tensor products, we also have a natural isomorphism

C[[ M1 q � qMm]] � C[[ M1 ]] × � × C[[ Mm]] ,

f �

( ∑

m∈M 1

fm m , � ,
∑

m∈Mm

fm m

)

for Cartesian products. This allows us to reinterpret mappings “in sev-
eral series” C[[ M1 ]] × � × C[[ Mm]] → N as mappings “in one series”
C[[ M1 q � q Mm]] → N . In particular, any multilinear grid-based oper-
ator Φ : C[[ M1 ]] × � × C[[ Mm]] → C[[ N]] can be seen as a grid-based
operator in from C[[ M1 q � qMm]] into C[[ N]] . More generally, the nat-
ural isomorphism may be used in order to extend the notion of grid-based
operators to mappings C[[ M1 ]] × � × C[[ Mm]] → C[[ N]] .
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Let Φ : C[[ M]] → C[[ N]] and Ψ : C [[ N]] → C[[ V]] be two grid-based
operators. Then Ψ ◦ Φ is again a grid-based operator. Indeed, let ( Φ̌ i) i∈ N and
( Ψ̌ j) j∈N be multilinear families for Φ and Ψ . Then for all F ∈ S (C[[ M]] ) ,
we have

Ψ ◦ Φ
( ∑

F
)

= Ψ




∑

i∈ N
f1 , � , fi ∈K

Φ̌ i( f1 , � , fi)




=
∑

j∈ N
i1 , � , i j ∈ N

f1 , 1 , � , f1 , i 1 ∈ F
�

fj , 1 , � , fj , i j ∈ F

Ψ̌ j( Φ̌ i1 ( f1 , 1 , � , f1 , i1 ) ,
� ,

Φ̌ i j ( fj , 1 , � , fj , i j ) )

so that the ( Ψ ◦ Φ ) l defined by

( Ψ ◦ Φ) l =
∑

j∈ N
i1 + � + i j= l

Ψ̌ j ◦ ( Φ̌ i1 , � , Φ̌ i j )

form a multilinear family for Ψ ◦ Φ .

Exercise 6 . 7 . Assume that C ⊇ Q and let Φ : C[[ M]] → C[[ N]] be a grid-based
operator. Is it true that for any S  supp Φ there exists an f ∈ C[[ M]] with
supp Φ( f ) * S ( supp f ) ∗ ?

Exercise 6. 8. Define the “derivative” of a grid-based operator Φ : C[[ M]] →
C[[ N]] .

Exercise 6. 9 .

a) Characterize the intervals I of the set of infinitesimal transmonomials T≺
( i . e. for all m, n ∈ I and v ∈ T , we have m 4 v 4 n⇒ v ∈ I) , such that for all
g ∈ x + C [[ I]] , the operator ◦ g is a grid-based operator on C[[ I]] .

b) With I as in ( a ) , show that the operators C[[ I]] 2 → C[[ I]] ; ( ε , δ) �
(x + ε) ◦ (x − δ) − x and C[[ I]] → C[[ I]] ; ε � (x + ε) inv − x are grid-based.

6. 4 Atomic decompositions

6. 4. 1 The space of grid-based operators

Let L(M1 , � , Mm , N) be the space of strongly multilinear operators
Φ : M1 × � × Mm → N . Then L(M1 , � , Mm , N) is clearly a C-module.
More generally, a family ( Φ i) i∈ I of elements in L(M1 , � , Mm , N) is said
to be summab le , if for all F1 ∈ S (M1 ) , � , Fm ∈ S (Mm) , we have

∐

i∈ I
Φ i(F1 , � , Fm) ∈ S (N) .
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In that case, we define the sum
∑

i∈ I Φ i ∈ L(M1 , � , Mm , N) by
∑

i∈ I
Φ i : ( f1 , � , fm) �

∑

i∈ I
Φ i( f1 , � , fm) .

This gives L(M1 , � , Mm , N) the structure of a strong C-module.
Similarly, let G(C[[ M]] , C[[ N]] ) denote the space of grid-based operators

Φ : C[[ M]] → C[[ N]] . This space is clearly a C-module. A family ( Φ j) j∈ J ∈
G(C[[ M]] , C[[ N]] ) J is said to be summable , if for all F ∈ S (C[[ M]] ) , the
family

( Φ̌ j , i( f1 , � , fi) ) j∈ J , i∈ N , ( f1 , � , fi ) ∈ Fi

is a grid-based family. In that case, the sum
∑

j∈ J
Φ j : f

�

∑

j∈ J
Φ j( f )

is a grid-based operator and G(C[[ M]] , C[[ N]] ) is a strong C-module for this
summation. In particular, we have

Φ = Φ 0 + Φ 1 + Φ 2 + � ( 6 . 5 )

for all Φ ∈ G(C[[ M]] , C[[ N]] ) . We call ( 6 . 5 ) the decomposition of Φ into
homogeneous parts .

6. 4. 2 Atomic decompositions

Let M1 , � , Mm and N be monomials sets. Given m1 ∈ M1 , � , mm ∈ Mm and
n ∈ N, the operator

Ωm1 , � ,mm , n : C[[ M1 ]] × � × C[[ Mm]] � C[[ N]]

with
Ωm1 , � , mm , n( f1 , � , fm) = c f1 , m1

� fm,mm n

is an m-linear grid-based operator. Operators of this form, which are said
to be atomic , form a strong basis of L(C[[ M1 ]] , � , C[[ Mm]] , C[[ N]] ) ,
since any operator Φ ∈ L(C[[ M1 ]] , � , C[[ Mm]] , C[[ N]] ) may be uniquely
decomposed as

Φ =
∑

m1 ∈M 1 , � ,mm ∈Mm

n∈N

Φ(m1 , � , mm) n Ωm1 , � , mm , n . ( 6 . 6)

We call ( 6 . 6) the atomic decomposition of Φ . More generally, an atomic family
is a summable family A = ( cα Ωα ) α ∈ A, with cα ∈ C and Ωα = Ω iα , 1 , � , iα , m , o α ,
where iα , 1 , � , iα , m ∈ M and o α ∈ N .

Assume now that C ⊇ Q . G iven a grid-based operator Φ : C[[ M]] →
C[[ N]] , let the Φ̌ i be as in proposition 6. 1 0. Then we have

Φ =
∑

m1
� mi ∈M∗ , n∈N

Φ̌ i(m1 , � , mi) n Ωm1 , � , mi , n ( 6 . 7)
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and we call this formula the atomic decomposition of Φ . More generally,
a family A = ( cα Ωα ) α ∈ A, where cα ∈ C and Ωα = Ω iα , 1 , � , iα , | α | , o α , is called
an atomic family , if the family Â = ( cα Ω̂α ) α ∈ A is summable in G(C[[ M]] ,
C[[ N]] ) .

S ince the Φ̌ i in ( 6. 7) are symmetric, the atomic decomposition is slightly
redundant. Let ∼ be the equivalence relation on M∗ , such that m1

� mi ∼
n1

� nj if and only if j = i and there exists a permutation of indices α , such
that ni = mα ( i ) for all i . G iven m̂ ∈ M∗/∼ , m1

� mm ∈ m̂ and n ∈ N, we define

Ωm̂ , n = Ωm1 , � , mi , n .

Clearly, Ωm̂ , n does not depend on the choice of m1
� mm ∈ m̂ and operators of

the form Ωm̂ , n will be called symmetric atomic operators . Setting

Φ̌ ( m̂) =
∑

m1
� mi ∈ m̂

Φ̌ i(m1 , � , mi) ,

for all m̂ ∈ M∗/∼ , the decomposition

Φ =
∑

m̂∈M∗ /∼ , n∈N

Φ̌ ( m̂) n Ωm̂ , n

is unique. We call it the symmetric atomic decomposition of Φ .

6. 4. 3 Combinatorial interpretation of atomic families

Consider an atomic family A with Ωα : C[[ M]] | α | → C[[ N]] for each α ∈ A.
We may interpret the Ωα as combinatorial boxes with inputs iα , 1 , � , iα , | α | ∈M

and output o α ∈ N. We define a partial ordering on A by α ≺ α ′⇔ o α ≺ o α ′ .
Given a subset S of M, we denote by AS the atomic family of all α ∈ A with
{ iα , 1 , � , iα , | α | } ⊆ S . Finally, given a monomial set M, we denote by DM the
atomic family ( Ωm , m) m∈M , so that

∑ DM is the identity operator on C[[ M]] .

Remark 6. 1 1 . A convenient way to check whether a family A= ( cα Ωα ) α ∈ A is
atomic is to prove that for each grid-based subset S ⊆ M we have

1 . The set oAS is grid-based.
2 . For each n ∈ N, there exist only a finite number of α ∈ AS with o α = n.

Consider two atomic families A and B, where Ωα : C[[ N]] | α | → C[[ V]] and
Ωβ : C[[ M]] | β | → C[[ N]] for all α ∈ A and β ∈ B . We define their composition
to be the family ( cς Ω ς) ς∈ A◦ B with formal index set

A◦ B = {α ◦ ( β1 , � , β | α | ) :
α ∈ A ∧ β1 , � , β | α | ∈ B ∧ o β1 = iα , 1 ∧ � ∧ o β | α | = iα , | α | }

and

cα ◦ ( β1 , � , β | α | ) = cα cβ1
� cβ | α | ;

Ωα ◦ ( β1 , � , β | α | ) = Ω iβ1 , 1
, � , iβ1 , | β1 | , � , iβ | α | , 1 , � , iβ | α | , | β | α | | , o α

.
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We may see the α ◦ ( β1 , � , β | α | ) as combinatorial structures, such that the
outputs o βk of the βk coincide with the inputs iα , k of α ( see figure 6. 1 ) .
A similar computation as at the end of section 6. 3 . 2 yields:

Proposition 6. 1 2 . Let A and B be two atomic families as above . Then A◦ B
is again an atomic family and

∑
A◦ B = (

∑
Â ) ◦ (

∑
B̂ ) . �

��� ��� ���

�	��
 � �� � ��� � ���

Fig. 6 . 1 . Combinatorial interpretation of the composition of atomic opera-
tors.

Exercise 6. 1 0 . Show that the mapping

◦L 1 , � , L k
: C 〈 〈 z1 , � , zk 〉 〉 → L(C[[ M]] , C[[ M]] )

f � f (L1 , � , Lk )
from exercise 6 . 1 is a strong C-algebra morphism.

Exercise 6. 1 1 . Show that L(M1 , � , Mm , N) and L(M1 ⊗ � ⊗ Mm , N) are
naturally isomorphic as sets. Show that this natural isomorphism also preserves
the strong C-module structure.

Exercise 6 . 1 2 . Show that an atomic family A is summable, if and only if AS

is grid-based for every grid-based subset S ⊆ M .

Exercise 6. 1 3. Generalize the theory from sections 6. 3 and 6 . 4 to the well-
based setting.

6. 5 Implicit function theorems

Let M and N be monomial sets which are contained in a common monomial
monoid. Consider a grid-based operator

Φ : C[[ M]] × C[[ N]] � C[[ M]]

( f , g) � Φ( f , g)
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together with its atomic decomposition Φ =
∑ A. We say that

• Φ is stric tly extensive in f if o α ≺ iα , k whenever iα , k ∈ M.
• Φ is extensive in f with multipliers in a set E , if o α ∈ iα , k E whenever

iα , k ∈ M.
• Φ is contracting in f if Φ ( f2 , g) − Φ( f1 , g) � f2 − f1 for all f1 , f2 ∈ C[[ M]]

and g ∈ C[[ N]] . Here we write f � g if for all m ∈ supp f , there exists an
n ∈ supp g with m ≺ n.

If Φ is strictly extensive in f , then we have in particular

Φ( f , g) m = (
∑
A{m ′∈ m : m ′� m} qN) ( f , g) m

for all f ∈ C[[ M]] , g ∈ C[[ N]] and m ∈M . Consequently, Φ is also contracting
in f , since Φ( f2 , g) m = Φ( f1 , g) m, whenever f1 , f2 ∈ C[[ M]] , g ∈ C[[ N]] and
m ∈ M are such that f1 , n = f2 , n for all n� m .

Given a grid-based operator Φ as above, the aim of the implicit function
theorems is to construct a grid-based operator Ψ: C[[ N]] → C[[ M]] , such that

Φ( Ψ ( g) , g) = Ψ ( g) ( 6 . 8 )

for all g ∈ C[[ N]] . In the well-based context, a sufficient condition for the
existence ( and uniqueness) of such an operator is the strict extensiveness of
Φ in f . In the grid-based context we need additional conditions in order to
preserve the grid-based property. In this section, we present three possible
choices for these extra conditions, which lead each to a grid-based implicit
function theorem.

6. 5 . 1 The first implicit function theorem

Theorem 6. 1 3. Consider a grid- based operator

Φ : C[[ M]] × C[[ N]] → C[[ M]]

( f , g) � Φ( f , g) ,

which is extensive in f with multipliers in a grid- based set E ≺ 1 . Then for each
g ∈ C[[ N]] , there exists a unique Ψ( g) which satisfies ( 6 . 8 ) and the operator
Ψ: C[[ N]] → C[[ M]] is grid- based. Furthermore , for all g ∈ C[[ N]] , we have

supp Ψ( g) ⊆ ( supp Φ( 0 , g) ) E ∗ .

IfC ⊇ Q , then we also have

supp Ψ ⊆ ( supp Φ ) + .

Proof. Let Φ =
∑ A be the atomic decomposition of Φ . Consider the family

B = qd∈ N Bd , where the Bd are recursively defined by

B0 = AN

Bd+ 1 = (A \ AN) ◦ (Bdq DN)
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See figure 6. 2 for the illustration of a member of B . We claim that B is an
atomic family. Indeed, let S ⊆ N be a grid-based set. Let us prove by induction
over d that

supp o ς ⊆ S Ed ( 6 . 9 )

for all ς ∈ Bd , S . This is clear if d = 0 . If d > 1 , then we may write ς =
α ◦ ( β1 , � , βd) , where iα , k = o βk ∈ M for at least one k . By the induction
hypothesis, we have supp o βk ⊆ S Ed− 1 , so that o ς ∈ o βk E ⊆ S E d . This
shows that

⋃
ς∈ BS

o ς ⊆ S E ∗ . Moreover, given m ∈ S E ∗ , there are only
a finite number of d with m ∈ S Ed . It follows that B is an atomic family, by
remark 6. 1 1 and the fact that each Bd is atomic.

Fig. 6 . 2 . Illustration of a member of B3 . The white dots correspond to
elements of M and the black dots to elements of N . The light boxes belong
to A and the dark ones to DN .

Now consider the grid-based operator

Ψ =
∑
B : C [[ M]] × C[[ N]] → C[[ M]] .

Identifying C [[ M]] × C[[ N]] and C[[ M qN]] via the natural isomorphism,
we have

( Ψ ( g) , g) = Ψ ( g) + g = (
∑
B q DN) ( g) ,

for all g ∈ C[[ N]] . S imilarly, for all ( f , g) ∈ C[[ M]] × C[[ N]] , we have

Φ rest( f , g) = Φ ( f , g) − Φ( 0 , g) = (
∑
A \ AN) ( f , g) .

Applying proposition 6. 1 2 , we conclude that

Ψ( g) = (
∑
B0 ) ( g) + (

∑
B \ B0 ) ( g)

= (
∑
AN) ( g) + (

∑
(A \ AN) ◦ (B q DN) ) ( g)

= Φ ( 0 , g) + Φ rest( Ψ ( g) , g)

= Φ ( Ψ ( g) , g) ,
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for all g ∈ C[[ N]] . As to the uniqueness of Ψ( g) , assume that f1 , f2 ∈ C[[ N]]

are such that Φ( f1 , g) = f1 and Φ( f2 , g) = f2 . Then we have

Φ ( f2 , g) − Φ( f1 , g) = f2 − f1 � f2 − f1 ,

which is only possible if f2 = f1 .
Let us finally prove the bounds on the supports. The first one follows

directly from ( 6. 9) . The second one follows from the fact that the operator
support of an element in B is the product of the operator supports of all
combinatorial boxes on the nodes of the corresponding tree. �

6. 5 . 2 The second implicit function theorem

Theorem 6. 1 4. Consider a grid- based operator

Φ : C[[ M]] × C[[ N]] → C[[ M]]

( f , g) � Φ( f , g) ,

such that

Em = supp Φ 1 ∪ ( supp Φ 2 ) m ∪ ( supp Φ 3 ) m2 ∪ �

is grid- based and infinitesimal for all m ∈ M . Then, for each g ∈ C[[ N]] ,
there exists a unique Ψ( g) which satisfies ( 6 . 8 ) and the operator Ψ : C[[ N]] →
C[[ M]] is grid- based.

Proof. Let g ∈ C[[ N]] , with support S = supp g . There exist finite sets F and
D ≺ 1 , such that S ⊆ F D ∗ . Let

E =

( ⋃

m∈ F

Em

)+

D ∗

Then we have E ≺ 1 and

E ⊇
⋃

m∈ F ( D ∪ E ) ∗
Em .

We now observe that Φ( · , g) maps C[[ F (D ∪ E ) ∗ ]] into itself, so we may apply
theorem 6. 1 3 to this mapping with the same E . This proves the existence and
uniqueness of Ψ( g) . With similar notations as in theorem 6. 1 3, it also follows
that B is again a grid-based atomic family, so that Ψ =

∑ B̂ is a grid-based
operator. �

6. 5 . 3 The third implicit function theorem

Theorem 6. 1 5 . Consider a grid- based operator

Φ : C[[ M]] × C[[ N]] → C[[ M]]

( f , g) � Φ( f , g) ,
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which is strictly extensive in f. Assume that

G = supp Φ 0 ∪ supp Φ 1 ∪ �

is grid- based and G ≺ 1 . Then for each g ∈ C[[ N]] , there exists a unique Ψ( g)
which satisfies ( 6 . 8) and the operator Ψ: C[[ N]] → C[[ M]] is grid- based.

Proof. With the notations of the proof of theorem 6. 1 3, let us first show that
BS is a well-based family for every grid-based set S ⊆ N. For each α ∈ A, let
ᾱ = o α/ ( iα , 1 � iα , | α | ) ∈ G . To each β ∈ BS , we associate a tree β̄ ∈ ( G q S ) > ,
by setting β̄ = o β if β ∈ DN q B0 , and

α ◦ ( β1 , � , β | α | ) = ᾱ

β̄1
� β̄ | α |

for α ◦ ( β1 , � , β | α | ) ∈ B \ B0 . S ince Φ is strictly extensive in f , this mapping is
strictly increasing. Furthermore, the inverse image of each tree in (S q G ) > is
finite and (S q G ) > is well-based by Higman’ s theorem. This together implies
that BS is well-based.

Let us show that BS is actually a grid-based. For each tree β̄ ∈ (S q G )> ,
let o β̄ =

∏
a ∈ β̄ l ( a) , so that o β̄ = o β for all β ∈ B . Now consider

T = { ( ᾱ , ( β̄1 , � , β̄l ) ) ∈ G × (S q G ) > ∗ : o ᾱ o β̄1

� o β̄l ≺ 1 } .

Let F be the finite subset of 4 -maximal elements of T. Notice that we may
naturally interpret elements

( ᾱ , ( β̄1 , � , β̄l ) ) ∈ G × ( S q G )> ∗

as trees

ᾱ

β̄1
� β̄l

∈ (S q G )> .

Given a grid-based set A and m ∈ A, let us denote

resA m = { n

m
: n ∈ A, n ≺ m} .

Consider

E =


 G ∪ { o ς̄ : ς̄ ∈ F} ∪

⋃

ς̄ ∈ F
l ∈ l ( ς̄ )

resG qS l



∗
\ { 1 } .

We claim that E satisfies the hypothesis of theorem 6. 1 3 .
Indeed, consider ς= α ◦ ( β1 , � , β | α | ) ∈ BS ∩ Bd and let us show by induction

over d that o ς ∈ iς , k E for every k with o βk ∈ M. Now

ς̄ = ( ᾱ , ( β̄1 , � , β̄k − 1 , β̄k+ 1 , � , β̄ | α | ) ) 4 ς̄ ′
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for some ς̄ ′ ∈ F. In other words, there exists an embedding ϕ : ς̄ ′→ ς̄ which
fixes the root. Consider a factorization ϕ = ψ ◦ ϕ ′ of this embedding through
a tree ω̄ with o ω̄ ∈ iς , k E , such that a ∈ im ϕ ′ for all a ∈ ω̄ with l ( ψ ( a) ) � l ( a) ,
and such that

δψ = card { b ∈ ς̄ : ∀a ∈ ω̄ , b = ψ ( a) ⇒ l ( b) � l ( a) }

is minimal. Assume for contradiction that δψ � 0 . We distinguish three cases:

Case 1 . l ( ψ ( a) ) � l ( a) for some a ∈ ω̄ .
Consider the tree ω̄ ′ with the same nodes as ω̄ and lω̄ ′ ( b) = lω̄ ( b) if b � a
and lω̄ ′ ( a) = l ς̄ ( ψ ( a) ) . Then we may factor ψ = ξ ◦ ψ ′ through ω̄ ′ with
δξ = δψ − 1 and o ω̄ ′ ∈ o ω̄ E ⊆ iς , k E .

Case 2 . arity( ψ ( a) ) > arity( a) for some a ∈ ω̄ .
Let κ̄ be a child of ψ ( a) whose root is not in the image of ψ . Then we
may factor ψ = ξ ◦ ψ ′ through a tree ω̄ ′ which is obtained by adding κ̄ as
a child to a at the appropriate place, in such a way that δξ = δψ − card κ̄ .
Moreover, since κ ∈ B0 ∪ � ∪ Bd− 1 , the induction hypothesis implies that
o κ̄ ∈ E , so that o ω̄ ′ = o ω̄ o κ̄ ∈ iς , k E .

Case 3. we are not in cases 1 and 2 .
Since δψ � 0 , there exists a b ∈ ς̄ \ im ψ with a successor c = ψ ( a) . Let
κ̄1 , � , κ̄p be the children of b , so that c is the root of κ̄ i for some i . Consider
the tree ω̄ ′ which is obtained by substituting the subtree λ̄ of ω̄ with root
a by

λ̄ ′ = l ( b)

κ̄1
� κ̄ i− 1 λ̄ κ̄ i+ 1

� κ̄p

By the induction hypothesis, we have o λ̄ ′ ∈ o λ̄ E , so that o ω̄ ′ ∈ o ω̄ E ⊆ iς , k E .
Furthermore, we may factor ψ = ξ ◦ ψ ′ through ω̄ ′ in such a way that
δξ = δψ + card λ̄ − card λ̄ ′ .

In each of these three cases, we have thus shown how to obtain a factorization
ϕ = ξ ◦ ( ψ ′ ◦ ϕ ′) through a tree ω̄ ′ with δξ < δψ and o ω̄ ′ ∈ iς , k E . This
contradiction of the minimality assumption completes the proof of our claim.
We conclude the proof by applying theorem 6. 1 3 and by noticing that B is
grid-based, so that Ψ =

∑ B̂ is a grid-based operator. �

Exercise 6. 1 4. Give an example of a contracting mapping which is not strictly
extensive.

Exercise 6. 1 5 . In the first implicit function theorem, show that the condition
that f has multipliers in a grid-based set E ≺ 1 cannot be omitted. Hint: consider
the equation f (x ) = x + f ( x

√
) .

Exercise 6 . 1 6 . Give an example where the second implicit function theorem
may be applied, but not the first. Also give an example where the third theorem
may be applied, but not the second.
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Exercise 6. 1 7. Prove the following implicit function theorem for well-based
series:

Let Φ: C [ [M ] ] × C [ [N] ] → C [ [M ] ] ; ( f , g) � F( f , g) be a well-
based operator which is extensive in f . Then for each g ∈ C [ [N] ] ,
there exists a unique Ψ( g) which satisfies ( 6 . 8) and the operator
Φ : C [ [N] ] → C [ [M ] ] is well-based.

6. 6 Multilinear types

One obtains interesting subclasses of grid-based operators by restricting
the homogeneous parts to be of a certain type. More precisely, let M be
a monomial monoid and let T be a set of strongly multilinear mappings
Φ : C[[ M]] | Φ | → C[[ M]] . We say that T is a multilinear type if

MT1 . The constant mapping { 0} � f is in T , for each f ∈ C[[ M]] .
MT2. The projection mapping πi : C[[ M]] k → C[[ M]] is in T , for each

i ∈ { 1 , � , k } .
MT3. The multiplication mapping · : C[[ M]] 2→ C[[ M]] is in T .
MT4. If Ψ , Φ 1 , � , Φ | Ψ | ∈ T , then Ψ ◦ ( Φ 1 , � , Φ | Ψ | ) ∈ T .

Given subsets V1 , � , Vv , W1 , � , Ww of M, we say that a strongly multilinear
mapping

Φ : C[[ V1 ]] × � × C[[ Vv]] → C[[ W1 ]] × � × C[[ Ww ]]

is an atom of type T , if for i= 1 , � , w , there exists a mapping Φ i : C[[ M]] v→
C[[ M]] in T , such that πi ◦ Φ coincides with the restriction of the domain
and image of Φ i to C[[ V1 ]] × � × C[[ Vv ]] resp. C[[ Wi]] . We say that Φ is
of type T , if Φ is the sum of a grid-based family of atoms of type T . A grid-
based operator

Φ : C[[ V1 ]] × � × C[[ Vv]] → C[[ W1 ]] × � × C[[ Ww ]]

is said to be of type T , if Φ̌ i is of type T for all i .

Example 6. 1 6. For any set S of grid-based operators C[[ M]] → C[[ M]] ,
there exists a smallest multilinear type T = 〈S 〉 which contains S . Taking
T = C[[ M]] to be the field of grid-based transseries, interesting special cases
are obtained when taking S = {∂ } or S = {

∫
} . Grid-based operators of type

〈 {∂ } 〉 resp. 〈 {
∫
} 〉 are called differential resp. integral grid- based operators .

Exercise 6. 1 8. Show that compositions of grid-based operators of type T are
again of type T .

Exercise 6. 1 9 . State and prove the implicit function theorems from the pre-
vious section for grid-based operators of a given type T .

Exercise 6. 20 . For which subfields of T and g ∈ T> , � do the grid-based
operators of types 〈 { ◦ g } 〉 and 〈 {∂ } 〉 coincide?
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7

Linear differential equations

Let L = Lr ∂r + � + L0 ∈ T [∂ ] be a linear differential operator with transseries
coefficients and g ∈ T . In this chapter, we study the linear differential equation

Lf = g. ( 7. 1 )

In our grid-based context, it is convenient to study the equation ( 7. 1 ) in
the particular case when L0 , � , Lr and g can be expanded w. r. t. a plane
transbasis B . In order to solve the equation f ( r ) = 1 , we necessarily need
to consider solutions in C [x ] . Therefore, we will regard L as an operator on
C[[ xN BC ]] = C [x ] [[ BC ]] . Assuming that we understand how to solve ( 7. 1 )
for L ∈ C[[ BC ]] [∂ ] and f , g ∈ C[[ xN BC ]] and assuming that we understand
how this resolution depends on B and upward shiftings, the incomplete trans-
basis theorem will enable us to solve ( 7. 1 ) in the general case.

A first step towards the resolution of ( 7. 1 ) is to find candidates for dom-
inant terms of solutions f . It turns out that the dominant monomial of Lf
only depends on the dominant term of f , except if τf ∈ C � HL , where HL is
a finite set of “irregular” monomials. The corresponding mapping TL : τf

� τL f
is called the trace of L , and its properties will be studied in section 7. 3 . In
particular, we will show that TL is invertible.

In section 7. 4 we will show that the invertibility of the trace implies the
existence of a strong right inverse L− 1 of L . Moreover, the constructed right
inverse is uniquely determined by the fact that (L− 1 g) h = 0 for all h ∈ HL ( for
which we call it “distinguished”) . Furthermore, we may associate to each h ∈ HL

a solution hh = h − L− 1 L h ∼ h to the homogeneous equation Lh= 0 and these
solutions form a “distinguished basis” of the space HL of all solutions.

Now finding all solutions to ( 7. 1 ) it equivalent to finding one particular
solution f = L− 1 g and the space HL of solutions to the homogeneous equation.
Solving the homogeneous equation Lh = 0 is equivalent to solving the Riccati
equation

RL ( f ) = 0 , ( 7. 2 )



which is an algebraic differential equation in f = h † ( see section 7. 2 ) . In
section 7. 5 , we will show that ( 7. 2 ) is really a “deformation” of the algebraic
equation Lr f

r + � + L0 = 0 , so we apply a deformation of the Newton
polygon method from chapter 3 to solve it. In fact, we will rather solve the
equation “modulo o( 1 ) ”, which corresponds to finding the dominant monomials
in HL of solutions to the homogeneous equation ( see section 7. 6) .

Of course, an equation like f ′′ + f = 0 does not admit any non-trivial
solutions in the transseries. In order to guarantee that the solution space HL

of the homogeneous equation has dimension r , we need to consider transseries
solutions with complex coefficients and oscillating monomials. In section 7. 7
we will briefly consider the resolution of ( 7. 1 ) in this more general context. In
section 7. 8 we will also show that, as a consequence of the fact that dimHL = r ,
we may factor L as a product of linear operators.

7. 1 Linear differential operators

7. 1 . 1 Linear differential operators as series

Let T = C[[ T]] = C[[[ x]]] be the field of grid-based transseries in x over
a real-closed exp-log field of constants C . In what follows, it will often be
convenient to regard linear differential operators L = Lr ∂

r + � + L0 ∈ T [∂ ] as
elements of C [∂ ] [[ T]] . In particular, each non-zero operator L admits a dom-
inant monomial

dL = max4 { dL 0 , � , dLr }
and a dominant coefficient

cL = LdL = Lr , dL ∂
r + � + L0 , dL ∈ C [∂ ] ,

for which we will also use the alternative notation

L∗ = cL .

Similarly, the asymptotic relations 4 , ≺ , 4 ] , ≺ ] , etc. extend to T [∂ ] . In order
to avoid confusion with the support of L as an operator, the support of L as
a series will be denoted by suppser L .

Proposition 7. 1 . Given K, L ∈ T [∂ ] � with L � 1 , we have

cKL = cK cL .

Proof. Without loss of generality, one may assume that K� 1 , modulo division
of K by dK . Then

KL = cK cL +
∑

06 i , j

∑

06 k6 i

∑

m4 1 , n4 1
m≺ 1 ∨ n≺ 1

(
k
i

)
Ki , m Lj , n m n( i− k ) ∂k+ j .

Now each term in the big sum at the right hand side is infinitesimal. �
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7. 1 . 2 Multiplicative conjugation

Given a linear differential operator L ∈ T [∂ ] and a non-zero transseries h , there
exists a unique linear differential operator L× h , such that

L× h ( f ) = L (h f )

for all f . We call L× h a multiplicative conjugate of L . Its coefficients are given
by

L× h , i =
∑

j> i

(
j
i

)
Lj h

( j− i ) . ( 7. 3)

Notice that L× h 1 h2 = L× h 1 , × h2 for all h1 , h2 ∈ T � .

Proposition 7. 2 . If h �
x , then

L× h �h h L.

Proof. From h
�

x it follows that h( i ) �h h for all i . Then ( 7. 3) implies
L× h 4 h h L. Conversely, we have

L = L× h , /h 4 h h− 1 L× h . �

7. 1 . 3 Upward shifting

In order to reduce the study of a general linear differential equation Lf = g
over the transseries to the case when the coefficients are exponential, we
define the upward shifting L ↑ and downward shifting L ↓ of L to be the unique
operators with

(L ↑ ) ( f ↑ ) = (Lf ) ↑
(L ↓ ) ( f ↓ ) = (Lf ) ↓

for all f . In other words, the resolution of Lf = g is equivalent to the resolution
of (L ↑ ) ( f ↑ ) = g↑ . The coefficients of L ↑ and L↓ are explicitly given by

(L ↑ ) i =
∑

j> i
s j , i e

− jx (L j↑ ) , ( 7. 4)

(L ↓ ) i =
∑

j> i
Sj , i x

i (Lj↓ ) , ( 7. 5 )

where the s j , i , Sj , i ∈ Z are Stirling numbers of the first resp. kind, which are
determined by

f ( log x ) ( j) =
∑

i= 0

j

s j , i x
− j f ( i ) ( log x ) .

( f ( ex ) ) ( j) =
∑

i= 0

j

Sj , i e
ix f ( i) ( ex ) .
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Upward and downward shifting are compatible with multiplicative conjuga-
tion in the sense that

L× h ↑ = (L ↑ ) × h ↑
L× h ↓ = (L ↓ ) × h ↓

for all h ∈ T � . We will denote by ↑ l resp. ↓ l the l-th iterates of ↑ and ↓ .

Exercise 7. 1 . Let g ∈ T> , � and L ∈ T [∂ ] .

a) Show that there exists a unique L◦ g ∈ T [∂ ] with

L◦ g ( f ◦ g) = L ( f ) ◦ g
for all f ∈ T .

b) Give an explicit formula for L◦ g , i for each i ∈ N .
c) Show that L � L◦ g is a ring homomorphism.

Exercise 7. 2 . Let ϕ ∈ T � and ∂̃ = ϕ ∂ . Denote by ϕT the field T with
differentiation ∂̃ .

a) Show that each L ∈ ( Tϕ ) [ ∂̃ ] can be reinterpreted as an operator Lϕ ∈ T [∂ ] .
b) Given L ∈ T [∂ ] , let σϕ (L ) ∈ ( Tϕ ) [ ∂̃ ] be the result of the substitution of ∂̃

for ∂ in L . If
∫
ϕ− 1 ∈ T> , � , then show that σϕ (L) ϕ = L◦ ∫ ϕ − 1 .

Exercise 7. 3. Let g ∈ T> , � and ϕ = 1 / g ′ , so that (T , ∂) � (T ◦ g, ϕ ∂) ; f � f ◦ g .
a) Given L ∈ DT � e x

( see exercise 6 . 3) , let σϕ (L) =
∑

n ∈ N Ln ( ϕ ∂) n . Show that
σϕ (L) naturally operates on T � e g . Also show that the space DT � e g

of all
such operators only depends on d g .

b) Same question, but for L ∈ DT � e x
.

c) Under which condition on g can the operator L̃ = σϕ (L) in either of the above
questions be rewritten as an operator of the form

∑
n ∈ N L̃n ∂n?

Exercise 7. 4. Let T [ = C[[ T[ ]]
� {C , T} be a flat subspace of T .

a) Extend the definition of DT [ in exercises 6 . 3 and 7. 3 to the present case.
b) Let T [ 1 ⊆ T [ 2 be two flat subspaces of T of the above type. Characterize

DT [ 1 ∩ DT [ 2 .

Exercise 7. 5 . Let g ∈ T> , � .

a) Determine ϕ ∈ T so that ◦ g = eϕ ∂ .
b) Given λ ∈ C , construct the λ-th iterate g◦ λ of g .
c) Determine the maximal flat subspace T [ = C[[ T[ ]] of T such that ◦ g ∈ DT [ .

Exercise 7. 6 . Let g1 , � , gk ∈ x + T � ex , 4 . Consider an operator

L =
∑

i= 1

k ∑

j= 0

r i − 1

Ai , j ◦ g i ∂j ,
where Ai , j ∈ T � ex .

a) Show that L ∈ DT � e x
and let L0 , L1 , � be such that L =

∑
n ∈ N Ln ∂n .

b) Assuming that L � 0 , show that there exists a ν < r1 + � + rk with
dL ν

= maxn ∈ N dLn
.
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Exercise 7. 7. Let T [ be as in exercise 7. 3( a ) or ( b ) , and λ ∈ C .

a) Given E =
∑

n ∈ N En ( ϕ ∂) n ∈ DT [ with dE = max4 dEn
4 1 and E0 ≺ 1 . Show

that

log ( 1 + E) =
∑

n> 1

(− 1 ) n+1

n
En ∈ DT [

exp E =
∑

n> 0

1

n !
En ∈ DT [

( 1 + E) λ =
∑

n ∈ N

(
λ
n

)
En = exp(λ log ( 1 + E) ) ∈ DT [

are well-defined.
b) Let ϕ ∈ T [ , < , > , `= log ϕ , K = ϕ + E and L = log ( 1 + ϕ− 1 E) . Show that

log (K ) = `+ L +
1

2
[ `, L ] +

1

1 2
[ `, [ `, L ] ] +

1

1 2
[L , [L , `] ] + �

Kλ = exp (λ log (K) )

are well-defined.
c) Given a transmonomial m ∈ T with m� 1 and m � x , show that

∂λ (m) = m (m− 1 ∂m) λ ( 1 )

is well-defined. Extend the definition of ∂λ to T� , � x and show that ∂− 1

corresponds to the distinguished integration.

7. 2 Differential Riccati polynomials

7. 2 . 1 The differential Riccati polynomial

Given a transseries f ∈ T , we may rewrite the successive derivatives of f ( i ) as

f ( i ) = Ui( f
† ) f , ( 7. 6)

where the Ui ∈ Z{F } are universal differential polynomials given by

U0 = 1

Ui+ 1 = FUi + Ui
′ .

For instance:

U0 = 1

U1 = F

U2 = F2 + F ′

U3 = F3 + 3 FF ′ + F ′ ′

U4 = F4 + 6 F2 F ′ + 4FF ′′ + 3 (F ′) 2 + F ′′ ′
�

In particular, for each linear differential operator L = Lr ∂
r + � + L0 ∈ T [∂ ] ,

there exists a unique differential polynomial RL = Lr Ur + � + L0 U0 ∈ T{F }
such that

L ( f ) = RL ( f † ) f ( 7. 7)
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for all f ∈ T . We call RL the differential Riccati po lynomial associated to L .
Notice that RL is uniquely determined by the polynomial

RL , alg = Lr F
r + � + L0 ∈ T [F ] ,

which is called the algebraic part of RL .

7. 2 . 2 Properties of differential Riccati polynomials

Let P ∈ T{F } be a differential polynomial with transseries coefficients. Like in
the case of differential operators, we may consider P as a series in C {F } [[ T]] ,
where T denotes the set of transmonomials. Given ϕ ∈ T we also define P+ ϕ

to be the unique differential polynomial in T{F } , such that

P+ ϕ ( f ) = P( ϕ + f )

for all f ∈ T . We call P+ ϕ an additive conjugate of P . Additive conjugates of
the differential Riccati polynomials correspond to multiplicative conjugates of
the corresponding linear differential operators:

Proposition 7. 3. For all L and ϕ ∈ T � , we have

RL , + ϕ † = Rϕ − 1 L × ϕ . ( 7. 8 )

Proof. For all f ∈ T , we have

( ϕ− 1 L× ϕ ) ( f ) = ϕ− 1 L ( ϕ f ) = ϕ− 1 RL ( f † + ϕ † ) ϕ f = RL , + ϕ † ( f ) ,

so ( 7. 8) follows from the uniqueness property of differential Riccati polyno-
mials. �

Given a linear differential operator L = Lr ∂
r + � + L0 ∈ T [∂ ] , we call

L ′ = r Lr ∂
r− 1 + � + L1 ∈ T [∂ ]

the derivative of L .

Proposition 7. 4. For all L ∈ T [∂ ] , we have

RL ′ =
∂RL

∂F
; ( 7. 9 )

RL ′ , alg = RL , alg
′ . ( 7. 1 0)

Proof. We claim that ∂Ui
∂F

= i Ui− 1 for all i > 1 . Indeed, ∂U1

∂F
= 1 and, using

induction,

∂Ui+ 1

∂F
= Ui + F

∂Ui
∂F

+
∂2 Ui
∂F∂F

F ′ + � +
∂2 Ui

∂F ( i− 1 ) ∂F
F ( i)

= Ui + i FUi− 1 + i
∂Ui− 1

∂F
F ′ + � + i

∂Ui− 1

∂F ( i− 1 )
F ( i)

= Ui + i FUi− 1 + i Ui− 1
′

= ( i + 1 ) Ui
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for all i > 2 . Our claim immediately implies ( 7. 9 ) and ( 7. 1 0) . �

Corollary 7.5 . For all L = Lr ∂
r + � + L0 ∈ T [∂ ] and ϕ ∈ T , we have

RL , + ϕ =
1

r !
RL ( r ) ( ϕ ) Ur + � + RL ( ϕ ) U0 ; ( 7. 1 1 )

RL , + ϕ , alg =
1

r !
RL ( r ) ( ϕ ) Fr + � + RL ( ϕ ) . ( 7. 1 2 )

Exercise 7. 8. Prove that

Un(F + G) =
∑

i= 0

n (
n
i

)
Ui(F) Un− i(G) .

Exercise 7. 9 . Show that

RL ↑ = RL ↑ × e− x ;

RL ↓ = RL ↓ × x ,

where RL ↑ and RL ↓ are defined in section 8 . 2 . 3 .

7. 3 The trace of a linear differential operator

Let L : C[[ M]] → C[[ N]] be a linear grid-based operator. A term υ = c m ∈
C � M is said to be regular for L , if L f is regular for all f ∈ C[[ M]] with
τ( f ) = υ and if τ(L f ) does not depend on the choice of such an f . In
particular, a monomial in M is said to be regular for L if it is regular as
a term. We will denote by RL ⊆ M the set of all regular monomials for L and
by HL ⊆ M the set of irregular monomials. The mapping

TL : C � RL � C � N

υ � τ(Lυ )

is called the trace of L . For all υ1 , υ2 ∈ C � RL , we have

υ1 4 υ2
�

TL (υ1 ) 4 TL (υ2 ) . ( 7. 1 3)

Given a linear differential equation Lf = g over the transseries T with g � 0 ,
finding a term υ with TL (υ ) = τg corresponds to finding a good candidate for
the first term of a solution. In the next section we will show that this first
term may indeed be completed into a full solution.

7. 3. 1 The trace relative to plane transbases

Let L ∈ C[[ BC ]] [∂ ] be a linear differential operator, where B = ( b 1 , � , b n) is
a plane transbasis. We will consider L as a grid-based operator on C[[ xN BC ]] ,
so that its trace TL = TL ; B is a mapping from xN BC \ HL into xN BC .
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Proposition 7. 6. Given x i m ∈ xN BC, we have

x i m ∈ HL � L× m, ∗ ( xi) = 0 .

Proof. Modulo replacing L by d(L× m) − 1 L× m, we may assume without loss
of generality that m = 1 and L � 1 . Let j be minimal with L∗ , j � 0 , so that
L∗ (x i) = 0 if and only if i < j .

Now i < j implies L( xi) = (L − L∗ ) (x i) ≺ ex 1 . Furthermore, L× e− α x ( 1 ) �
e− α x for all but the finite number of α such that L∗ ( e− αx ) = 0 . It follows that
L( xi) ≺ L ( e− αx ) for a sufficiently small α > 0 , whence x i ∈ HL .

If i > j , then L∗ ( xi) � x i− j . Given n ∈ xN BC with n ≺ x i , we have either
n ≺ ex 1 or n = xk with k < i . In the first case, L (n) = L× n( 1 ) 4 L× n ≺ ex 1 .
In the second case, we have either k < j and L (n) ≺ ex 1 or k > j and
L( n) � xk − j ≺ x i− j . So we always have L (n) ≺ x i− j . Hence x i ∈ HL , by strong
linearity. �

Proposition 7.7. For every m ∈ BC there exists a unique n ∈ BC with
L× n � m .

Proof. Let m ∈ BC and consider v = m/dL = b 1
α 1

� b n
αn . We will prove the

proposition by induction over the maximal i such that αi � 0 . If such an i does
not exist, then we have nothing to prove. Otherwise, proposition 7. 2 implies

ṽ � m

d(L× b i
α i )
� b i

m

b i
α i d(L)

= b 1
α 1 � b i− 1

α i − 1 .

It follows that ṽ = b 1
α̃ 1

� b i− 1
α̃ i − 1 for certain α̃1 , � , α̃ i− 1 . By the induction

hypothesis, there exists an ñ with L× b i
α i , × ñ � m . Hence L× n � m for n = ñ b i

α i .
Furthermore, given e ∈ BC \ { 1 } , we have L× ne � e m e � e m . This proves the
uniqueness of n. �

Proposition 7. 8. The trace TL ofL is invertib le .

Proof. Let τ = c x i m̃ ∈ xN BC . By the previous proposition, there exists a
unique ñ with L× ñ � m̃ . Modulo the replacement of L by m̃− 1 L× ñ we may
assume without loss of generality that m̃ = ñ = 1 . Let j be minimal with
L∗ , j � 0 . Then

L (x i+ j) =
∑

k> j
L∗ , k

∂k x i+ j

∂xk
+ oex ( 1 ) =

( i + j) !

i !
L∗ , j x i + o( xi) .

Setting

υ =
c i !

( i + j) ! L∗ , j
xi+ j ,

we thus have TL (υ ) = τ . Notice that proposition 7. 6 implies x i+ j
�

HL . �

Example 7. 9. Let B = ( ex , eex ) and consider the operator

L = e− 2 x ∂3 − 2 e− x ∂2 + ∂ + 1 .
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Given m = ea ex+ bx and K = m− 1 L× m, we have

K = e− 2 x ∂3 +(
( 3 a − 2 ) e− x + 3 b e− 2 x

)
∂2 +(

1 − 4 a + 3 a2 + ( 6 a b − 4 b + 3 a) e− x + 3 b2 e− 2 x
)
∂ +

( a3 − 2 a2 + a) ex + 3 a2 b − 4 a b + b + 3 a2 − 2 a + 1 +

( 3 a b2 − 2 b2 + 3 a b + a) e− x + b3 e− 2 x .

Now the following cases may occur:

Case dK cK xi m ∈ HL TL (x i m)

α
� { 0 , 1 } ex a ( a − 1 ) 2 no a ( a − 1 ) 2 ex x i m

α = 0 , β � − 1 1 b + 1 + ∂ no ( b + 1 ) xi m

α = 0 , β = − 1 1 ∂ iff i = 0 i x i− 1 m ( if i � 0)

α = 1 1 2 no 2 x i m

.

7. 3. 2 Dependence of the trace on the transbasis

Let L ∈ C[[ BC ]] [∂ ] , where B is a plane transbasis and let us study the
dependence of the trace TL ; B = TL of L on B . G iven a plane supertransbasis
B̂ of B , proposition 7. 6 implies that HL ; B ∩ xN BC = HL ; B and TL ; B clearly
coincides with TL ; B on C � xN BC \ HL ; B . S imilarly, if B̂ is a second transbasis
such that C[[ xN B̂C

]] and C[[ xN BC]] coincide as subsets of T , then HL ; B =

( d ◦ TI) (HL ; B ) and TL ; B ◦ TI = TI ◦ TL ; B , where I : C[[ xN B̂C
]] → C[[ xN BC ]]

denotes the “identification mapping”.

Proposition 7. 1 0. Let B̂ = ( ex , b 1 ↑ , � , b n↑ ) . Then HL ↑ ; B = HL , B↑ and
TL ↑ ; B (υ ↑ ) = TL ; B ( υ ) ↑ for al l υ ∈ C � ( xN BC \ HL ; B ) .

Proof. We clearly have

TL ↑ ; B ( υ ↑ ) = τ(L ↑ ( υ ↑ ) ) = τ(L (υ ) ↑ ) = τ(L ( υ ) ) ↑ = TL ; B (υ ) ↑

for all υ ∈ C � ( xN BC \ HL ; B ) . Given

n = ( log x) j x i m ∈ ( log x )N xC BC ,

let us show that n ∈ HL ; B ⇔ n↑ ∈ HL ↑ ; B . Modulo replacing L by
d(L× m) − 1 L× m, we may assume without loss of generality that m = 1 and L� 1 .

Assume that n ∈ HL ; B , so that j = 0 , i ∈ N and L∗ (x i) = 0 . Then
L = L∗ + oex ( 1 ) implies L ↑ = L∗↑ + oeex ( 1 ) and L ↑ × ei x = L∗↑ × ei x + oeex ( 1 ) .
Hence L ↑ × ei x , ∗ = L∗↑ × ei x , ∗ . S ince L∗ ( xi) = 0 , we also observe that L× x i , 0 , ∗ = 0 ,
whence L ↑ × ei x , 0 , ∗ = 0 . But this means in particular that

L↑ × ei x , ∗ = L∗↑ × ei x , ∗ ( 1 ) = L∗↑ × ei x , d (L ∗ ↑ × e i x ) , 0 = 0 .

In other words, n↑ ∈ HL ↑ ; B .
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Assume now that n
�

HL ; B and let k be minimal with L∗ , k � 0 . Then
L∗ (n) � n( k ) �x x i− k � 0 so

L∗↑ × ei x (x
j) � n( k ) ↑ � ex e ( i− k ) x .

On the other hand, L∗↑ � e− k x , whence L∗↑ × ei x 4 e ( i− k ) x . This is only possible
if L∗↑ × ei x � e ( i− k ) x and L∗↑ × ei x , ∗ (x j) � 0 . In other words, n↑ �

HL ↑ ; B . �

Proposition 7. 1 1 . Let B be a transbasis of leve l 1− l 6 1 containing
logl− 1 x , � , x and denote SB = ( logl x )N BC . Let L ∈ C[[ BC ]] and let
HL ; B be the set of singular monomials ofL as an operator on C[[ SB ]] . Then

HL ; B = HL ∩ SB .

Proof. Clearly, HL ; B ⊆ HL ∩ SB . Assume for contradiction that there exists
an m ∈ (HL ∩ SB ) \ HL ; B . Then there exists an n ∈ T with n≺ m and Lm4 Ln.
Let B ′ be a super-transbasis of B for n, of level 1 − l ′ , and which contains
logl− 1 x , � , x . Setting B̂ = { logl ′− 1 x , � , logl x } , proposition 7. 1 0 now implies

HL ↑ l ′ ; B ′↑ l ′ ∩ SB ↑ l ′ = HL ↑ l ′ ; B ↑ l ′ ∩ S B ↑ l ′ = HL ↑ l ; B ↑ l ↑ l ′− l = HL ; B ↑ l ′ .

Hence, m↑ l ′
�

HL ↑ l ′ ; B ′↑ l ′ so that (Lm) ↑ l ′ = L↑ l ′ (m↑ l ′ ) � L ↑ l ′ ( n↑ l ′ ) = (L n) ↑ l ′ .
This contradiction completes the proof. �

Proposition 7. 1 2 . Let L ∈ T [∂ ] � be a linear differential operator on T . Then
the trace TL ofL is invertib le .

Proof. Given τ ∈ C � T, the incomplete transbasis theorem implies that there
exists a transbasis B for τ like in proposition 7. 1 1 . By proposition 7. 8 , there
exists an υ ↑ l ∈ xN B ↑ lC \ HL ↑ l ; B ↑ l with TL ↑ l ( υ ↑ l ) = τ↑ l . By proposition 7. 1 1 ,
we have υ ∈ C � RL and TL (υ ) = TL ↑ l (υ ↑ l ) ↓ l = τ . �

7. 3. 3 Remarkable properties of the trace

Assume again that L ∈ C[[ BC ]] [∂ ] , where B is a plane transbasis.

Proposition 7. 1 3. The set

F =
⋃

m∈ BC

d (L× m)

m
is finite .

Proof. Considering λ 1 , � , λn as indeterminates, the successive derivatives of
m = b 1

λ 1
� b n

λn satisfy

m( i) /m = Ui(λ 1 b 1
† + � + λnb n

† ) ∈ C [λ1 , � , λn ] [[ BC]] ,

where the Ui are as in ( 7. 6) . Consequently, we may see

L̃ =
L× m

m
=
∑

i= 0

r ∑

j= i

r (
j
i

)
L jUj− i(m † ) ∂ i
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as an element of C [λ 1 , � , λn ] [[ BC ]] [∂ ] for each i .
Assume for contradiction that F is infinite. Since F ⊆ suppser L̃ , there

exists an infinite sequence v 1 � v 2 � � of elements in F. For each v i , let
ni = b 1

α i , 1
� b n

αn , i be such that v i = d (L× ni ) /ni . Now each v i induces an
ideal Ii of C [λ 1 , � , λn ] , generated by all coefficients of L̃w with w � v i .
We have Z1 ⊆ Z2 ⊆ � and each (αi+ 1 , 1 , � , αi+ 1 , n) is a zero of Zi , but not
of Zi+ 1 . It follows that Z1  Z2  � , which contradicts the Noetherianity
of C [λ1 , � , λn ] . �

Corollary 7. 1 4. There exist unique strongly linear mappings

∆: C[[ xN BC \ HL ]] � C[[ xN BC ]]

∆− 1 : C[[ xN BC ]] � C[[ xN BC \ HL ]]

which extend TL and TL
− 1 . Furthermore ,

a ) supp ∆ ⊆ { 1 , � , x− r } F and supp ∆− 1 ⊆ { 1 , � , xr } F− 1 .
b ) T∆ = TL and T∆− 1 = TL

− 1 . �

Proposition 7. 1 5 . Given K, L ∈ C[[ BC ]] [∂ ] � , we have

HKL = HL q d (TL
− 1 ( HK ) )

and
TKL = TK ◦ TL .

Proof. Let m ∈ RL \ d (TL
− 1 (HK ) ) . Then for all n ≺ m, we have L n ≺ Lm

and KL n ≺ KLm. By strong linearity, it follows that KLf ≺ KLm for
all f ∈ C[[ xN BC ]] with f ≺ m . This shows that m ∈ RKL and HKL ⊆
HL q d(TL

− 1 (HK ) ) .
Conversely, let m ∈ HL and assume that Lm � 0 . Then L n � Lm for all

n ≺ m with n � TL
− 1 ( τ(Lm) ) . If x i v ∈ HL , then proposition 7. 6 implies i < r

and xj v ∈ HL for all j < i . Hence TL
− 1 (τ(Lm) ) ≺ ex m and we may choose n so

that n
�
TL
− 1 (HK ) . But then KL n � KLm and m ∈ HKL . If m ∈ HL satisfies

Lm = 0 , then we clearly have m ∈ HKL .
S imilarly, let m = xi v ∈ HK ∩ im TL and denote m̃ = d (TL

− 1 ( m) ) . Then
K n � Km for all n ≺ m with Km � 0 ⇒ n � TK

− 1 (τ(Km) ) . Moreover,
we may choose n ∈ RK such that n � ( supp L m̃) ≺ v and K (x j v ) � 0 ⇒
n � TK

− 1 ( τ(K (x j v ) ) ) for all j 6 i . This ensures that K n � KL m̃ . Denoting
ñ = d (TL

− 1 ( n) ) ≺ m̃, we conclude that KL ñ� K n � KL m̃, whence m̃ ∈ HKL .
As to second identity, let υ ∈ C � RKL . Then L υ ∼ TL ( υ ) and TL ( υ )

�

C � HK implies KLυ ∼ K(TL ( υ ) ) . Hence TKL ( υ ) = τ(KLυ ) = τ(K (TL ( υ ) ) =
TK (TL ( υ ) ) . �

Exercise 7. 1 0 . Prove the propositions of section 7. 3 . 3 for operators L ∈ T [∂ ] .

Exercise 7. 1 1 . Generalize the results from this section to the well-based setting.

Exercise 7. 1 2 . Let L = 1 + ◦ x+ 1 − 2 ◦ x+ p ∈ DT � e x
. Determine RL .
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7. 4 Distinguished solutions

Let M and N be monomial sets, such that M is totally ordered. Given
a linear grid-based operator L : C[[ M]] → C[[ N]] and g ∈ C[[ N]] , we say
that f ∈ C[[ M]] is a distinguished so lution to the equation

Lf = g , ( 7. 1 4)

if for any other solution f̂ ∈ C[[ M]] , we have fd ( f̂ − f ) = 0 . Clearly, if a distin-

guished solution exists, then it is unique. A mapping L− 1 : C[[ N]] → C[[ M]]

is said to be a distinguished right inverse of L , if LL− 1 = Id and L− 1 g is
a distinguished solution solution to ( 7. 1 4) for each g ∈ C[[ N]] . A distinguished
solution to the homogeneous equation

Lh = 0 ( 7. 1 5)

is a series h ∈ C[[ M]] with ch = 1 and hd ( ĥ ) = 0 for all other solutions ĥ with
d ĥ � dh . A distinguished basis of the solution space HL of ( 7. 1 5) is a strong
basis which consists exclusively of distinguished solutions. If it exists, then
the distinguished basis is unique.

Remark 7. 1 6. Distinguished solutions can sometimes be used for the renor-
malization of “divergent” solutions to differential equations; see [vdH01 b] for
details.

7. 4. 1 Existence of distinguished right inverses

Theorem 7.1 7. Assume that the trace TL is invertib le and both TL and TL
− 1

extend to strongly linear mappings

∆: C[[ RL ]] → C[[ N]]

∆− 1 : C[[ N]] → C[[ RL ]] .

Assume also that supp L and supp ∆− 1 are grid-based. Then

a ) L admits a distinguished and grid-based right inverse

L− 1 : C[[ N]] → C[[ RL ]] .

b ) The elements hh = h − L− 1 L h with h ∈ HL form a distinguished basis
for HL .

Proof. Let R = L − ∆ . Then the operator R ∆− 1 is strictly extensive, and
the operator ( Id + R∆− 1 ) ∆ coincides with L on C[[ RL ]] . Now consider the
functional

Φ( f , g) = g − R∆− 1 f .

By theorem 6. 1 4, there exists a strongly linear operator

Ψ = ( Id + R∆− 1 ) − 1 = Id − R∆− 1 + (R∆− 1 ) 2 + � ,
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such that Φ( Ψ( g) , g) = Ψ ( g) for all g ∈ C[[ N]] . Consequently,

L− 1 = ∆− 1 ( Id + R∆− 1 ) − 1 : C[[ N]] → C[[ RL ]]

is a strongly linear right inverse for L . G iven h ∈ HL
� , we also observe that

dh ∈ HL ; otherwise, τL h = TL (τh ) � 0 . Consequently, f = L− 1 g is the
distinguished solution of ( 7. 1 4) for all g ∈ C[[ N]] . This proves ( a ) .

As to ( b ) , we first observe that

Lhh = L h − LL− 1 L h = 0

for all h ∈ HL . The solution hh is actually distinguished, since

supp hh ∩ HL ⊆ { h }
and d ĥ ∈ HL for all ĥ ∈ HL . In fact, we claim that

hh ∼ h . ( 7. 1 6)

Indeed, if L− 1 L h � h , then we would have dL− 1 L h ∈ RL , so

L h ≺ L (L− 1 Lh) = Lh,

which is impossible. Now let h be an arbitrary solution to ( 7. 1 5) and consider

h̃ =
∑

h ∈ H L

hh h .

ĥ = h̃ − L− 1 L h̃ =
∑

h ∈ H L

hh h
h .

Then we have ĥh = hh for all h ∈ HL , by the distinguished property of the hh

and ( 7. 1 6) . Consequently, ĥ − h ∈ HL ∩ C[[ RL ]] = { 0} . This proves ( b ) . �

Corollary 7. 1 8. Let B = ( b 1 , � , b n) be a plane transbasis and let L ∈
C[[ BC ]] [∂ ] be a linear differential operator on C[[ xN BC ]] . Then L admits
a distinguished right inverse L− 1 and HL admits a finite distinguished basis.

Proof. In view of proposition 7. 8 and corollary 7. 1 4, we may apply theorem
7. 1 7. By general differential algebra, we know that HL is finite dimensional. �

Corollary 7. 1 9. Let L ∈ T [∂ ] be a linear differential operator on T . Then L
admits a distinguished right inverse and HL admits a finite distinguished basis.

Proof. Given g ∈ T , let us first prove that L f = g admits a distinguished
solution. Let B be a transbasis for g as in proposition 7. 1 1 and consider
f = L ↑ l− 1 ( g↑ l ) ↓ l . Then

Lf = L ↑ l ( f ↑ l ) ↓ l = L↑ l (L ↑ l− 1 ( g↑ l ) ) ↓ l = g.

From proposition 7. 1 1 , it follows that

fh = (L↑ l− 1 ( g↑ l ) ) h ↑ l = 0
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for all

h ∈ HL ∩ SB = ( HL ↑ l ∩ SB ↑ l ) ↓ l = HL ↑ l ; B ↑ l ↓ l .
Hence f is the distinguished solution to Lf = g . In particular, the construction
of L− 1 g � f is independent of the choice of B . The operator L− 1 is strongly
linear, since each grid-based family in F (T) is also a family in F (C[[ SB ]] )
for some B as above, and L− 1 is strongly linear on C[[ SB ]] . �

Example 7. 20. With L as in example 7. 9 , we have

L− 1 ex =
1

2
ex + 1 − 1

2
x e− x + (x − 1 ) e− 2 x +

(
− 1 5

4
x +

43
8

)
e− 3x + � .

7. 4. 2 On the supports of distinguished solutions

Let B = ( b 1 , � , b n) be a plane transbasis and let L ∈ C[[ BC ]] [∂ ] be a linear
differential operator on C[[ xN BC ]] of order r .

Proposition 7. 21 . The operator support ofL− 1 is bounded by

supp L− 1 ⊆ V W∗ ,

where

V = { 1 , � , xr }
{

m

d (L× m)

∣∣∣∣ m ∈ BC

}
;

W = { 1 , � , xr }
( ⋃

m∈ BC

suppser L× m

d (L× m)

∖
{ 1 }

)
∪ {x− 1 , x− 2 , � }

are grid-based sets and W ≺ 1 .

Proof. With the notations from the proof of theorem 7. 1 7,

supp ∆− 1 ⊆ V ;

supp (R∆− 1 ) ⊆ W .

It follows that

supp L− 1 = supp ∆− 1 ( Id + R∆− 1 ) − 1

⊆ ( supp ∆− 1 ) ( supp (R∆− 1 ) ) ∗

⊆ V W∗ .

Recall that V is finite, by proposition 7. 1 3. This also implies that W is grid-
based. �

Proposition 7. 22 . Given d ∈ N , let

C[[ BC ]] [x ] d = { f ∈ C[[ BC ]] [x ] : degx f 6 d}
⊆ C[[ xN BC ]] = C [x ] [[ BC ]] .
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Setting s = card HL 6 r, we have

a ) L maps C[[ BC ]] [x ] d into C[[ BC]] [x ] d .
b ) L− 1 maps C[[ BC ]] [x ] d into C[[ BC]] [x ] d+ s .
c ) HL ⊆ C[[ BC ]] [x ] s .

Proof. For all f = fd x
d + � + f0 ∈ C[[ BC ]] [x ] d , we have

Lf = L× xd fd + � + L× x f1 + Lf0

= ( (Lfd) x
d + � + L ( d) fd) + � + ( (Lf1 ) x + L ′ f1 ) + Lf0

= (Lfd) x
d + � + (L ( d− 1 ) fd + � + Lf1 ) x + (L ( d) fd + � + Lf0 ) .

This shows ( a ) . As to ( b ) , let g ∈ C[[ BC ]] [x ] d and consider

D = {x i m ∈ RL : i 6 d + card { h ∈ HL : h < m} } ;

I = {x i m ∈ xN BC : i 6 d + card { h ∈ HL : L× h < m} }
( d ◦ L ) ( D ) .

Then TL is a bijection between C � D and C � I and L maps C[[ D ]] into
C[[ I]] . By theorem 7. 1 7, it follows that the restriction of L to C[[ D ]] admits
a distinguished right inverse, which necessarily coincides with the restriction
of L− 1 to C[[ I]] . This proves ( b ) , since C[[ D ]] ⊆ C[[ BC ]] [x ] d+ s and C[[ I]] ⊇
C[[ BC ]] [x ] d . Moreover, for each element hh of the distinguished basis of HL ,
we have hh = h + L− 1 L h ∈ C[[ BC ]] [x ] s . This proves ( c ) . �

Exercise 7. 1 3. Show that TL − 1 = TL
− 1 .

Exercise 7. 1 4. Show that we actually have HL ⊆ C [[ BC]] [x ] s − 1 in proposition
7. 22 ( c ) .

Exercise 7. 1 5 . Let B and B̂ be plane transbases in the extended sense of
exercise 4. 1 5 . Given L ∈ C [[ BC]] [∂ ] , let L ; B

− 1 denote the distinguished right
inverse of L as an operator on C[[ xN BC]] .

a) Show that L ; B
− 1 is the restriction of L

; B
− 1 to C [[ xN BC]] , if B̂ is a supertrans-

basis of B .
b) If C[[ BC]] = C [[ B̂

C
]] , then show that L ; B

− 1 = L
; B
− 1 if and only if B̂

C
= BC .

c) If B̂ = ( ex , b 1 ↑ , � , b n ↑ ) , then show that L ↑
; B
− 1 ( g↑ ) = L ; B

− 1 ( g) ↑ for all g ∈
C[[ xN BC]] .

Exercise 7. 1 6 . Let T [ = C [[ T[ ]] 3 x be a flat subspace of T and T] the steep
complement of T[ , so that T = T [ [[ T ] ]] . Consider L ∈ T [∂ ] as a strong operator
on T [ [[ T ] ]] ( notice that L is not T [ -linear) . Let RL

] be the set of monomials
m] ∈ T] such that d ] (L (λ ] m] ) ) does not depend on λ ] ∈ T [ , � and such that the
mapping λ ] � c] (L (λ ] m] ) ) ; T [ , � → T [ , � is invertible.

a) Exhibit an operator in T [ [∂ ] which maps λ ] to c] (L (λ ] m] ) ) and relate RL
]

and RL .
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b) Generalize theorem 7. 1 7 to the setting of strongly additive operators and
relate the distinguished right inverses of L as an operator on T and as an
operator on T [ [[ T ] ]] .

c) Given a plane transbasis B , L ∈ C [[ BC]] [∂ ] and g ∈ C[[ BC ]] [x ] , give a con-
crete algorithm to compute the recursive expansion of L ; B

− 1 g.

Exercise 7. 1 7. Let L ∈ T [∂ ] � and let m be a transmonomial. Prove that

(L × m ) − 1 = × m
− 1 L− 1

( × m L) − 1 = L− 1 × m
− 1

Exercise 7. 1 8. Let L ∈ T [∂ ] � and g ∈ T> , � . When do we have

(L◦ g ) − 1 = (L− 1 ) ◦ g ?

Here (L− 1 ) ◦ g is the unique operator such that

(L− 1 ) ◦ g ( f ◦ g) = (L− 1 f ) ◦ g
for all f .

Exercise 7. 1 9 .

a) Show that (KL) − 1 = L− 1 K− 1 for K = ∂2 + ee x and L = ∂2 + 2 ∂ + ex .
b) Show that (KL) − 1 � L− 1 K− 1 for K = ∂2 − ee x and L = ∂2 + 2 ex ∂ + 1 .
c) Do we always have (L L) − 1 = L− 1 L− 1 ?

Exercise 7. 20 .

a) Prove that each non-zero L ∈ DT � e x
admits a distinguished right-inverse

on T � ex .
b) Can HL be infinite?
c) Same questions for L ∈ DT � e x

.

Exercise 7. 21 . Consider an operator L as in exercise 7 . 6 .

a) For any g ∈ T � ex
2� , show that g− 1 L× g is an operator of the same kind.

b) Show that L admits a distinguished right-inverse on T � ex
2 .

c) Assuming that Ai , j ∈ T � ex , show that L admits a distinguished right-inverse
on T � ex

2 .
d) Given g ∈ T � e x

O ( 1 ) , show that Lf = g admits a distinguished solution, which
is not necessarily grid-based, but whose support is always well-based and
contained in a finitely generated group.

e) Show that ( d ) still holds if Ai , j ∈ T � e x
O ( 1 ) .

f) Given a general g ∈ T , show that Lf = g admits a well-based distinguished
solution.

g) Give a bound for the cardinality of HL .

Exercise 7. 22 . Let O be the space of partial grid-based operators L : T ⇀ T ,
such that dom L is a space of finite codimension over C in T . Two such operators
are understood to be equal if they coincide on a space of finite codimension in T .

a) Show that O is a T-algebra under composition.
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b) Show that each L ∈ T [∂ ] � induces a unique operator in O with LL− 1 =

L− 1 L = 1 .
c) Show that the skew fraction field T (∂) of T [∂ ] in O consists of operators
K− 1 L with K, L ∈ T [∂ ] and K � 0 . Hint: show that for any K, L ∈ T [∂ ] with
K � 0 , there exist K̃ , L̃ ∈ T [∂ ] with K̃ � 0 and KL̃ = L K̃ .

Exercise 7. 23. Let L ∈ E [∂ ] � , where E= C[[ E ]] denotes the field of exponential
transseries.

a) If L � L0 , then show that there exists a decomposition

L = cm ( 1 + K1 ) � ( 1 + Kn ) ,

with cm ∈ C E , K1 , � , Kn ∈ T(∂) 4 and suppK1 � � � suppKn .
b) If c > 0 and K1 is sufficiently small, then show how to define log L .
c) Given λ ∈ C , extend the definition of ∂λ from exercise 7. 7( c ) to a definition

of Lλ on a suitable strong subvector space of T .

7. 5 The deformed Newton polygon method

Let L ∈ T [∂ ] � be a linear differential operator and consider the problem of
finding the solutions to the homogeneous equation Lh = 0 . Modulo upward
shiftings it suffices to consider the case when the coefficients of L can all be
expanded w. r. t . a plane transbasis B . Furthermore, theorem 7. 1 7 and its
corollaries imply that it actually suffices to find the elements of HL .

Now solving the equation L h = 0 is equivalent to solving the equation
RL ( f ) = 0 for f = h † . As we will see in the next section, finding the domi-
nant monomials of solutions is equivalent to solving the “Riccati equation
modulo o( 1 ) ”

RL , + f , ∗ ( 0) = 0 ( 7. 1 7)

for f ∈ C[[ BC ]] < . It turns out that this equation is really a “deformation” of
the algebraic equation

RL , alg( f ) = 0 . ( 7. 1 8)

In this section, we will therefore show how to solve ( 7. 1 7) using a deformed
version of the Newton polygon method from chapter 3.

7. 5 . 1 Asymptotic Riccati equations modulo o( 1 )

Let B is a plane transbasis and L ∈ C[[ BC]] [∂ ] � . We regard L as a linear
differential operator on C[[ xN BC ]] . G iven v ∈ BC ∪ {>} , consider the
asymptotic versions

RL , + f , ∗ ( 0 ) = 0 ( f ≺ v ) ( 7. 1 9)

and

RL , alg( f ) = 0 ( f ≺ v ) ( 7. 20)
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of ( 7. 1 7) resp. ( 7. 1 8) . We call ( 7. 1 9) an asymptotic Riccati equation modulo
o( 1 ) . A solution f ∈ C[[ BC ]] < of ( 7. 1 9) is said to have multiplicity µ , if
RL , + f , alg , i ≺ RL , + f for all i < µ and RL , + f , alg , µ � RL , + f .

Given f ∈ C[[ BC ]] < , we notice that for all k ,

Uk ( f ) = fk + Of ( fk − 1 ) . ( 7. 21 )

We say that m ∈ (BC ) < is a starting monomial of f relative to ( 7. 1 9) , if m
is a starting monomial of f relative to ( 7. 20) . Starting terms of solutions
and their multiplicities are defined similarly. The Newton degree of ( 7. 1 9)
is defined to be the Newton degree of ( 7. 20) . The formula ( 7. 21 ) yields the
following analogue of proposition 3. 4:

Proposition 7. 23. If f ∈ C[[ MC ]] < is a solution to ( 7. 1 9) , then τf is
a starting term of f relative to ( 7. 1 9) .

Proof. Assume the contrary, so that there exists an index i ∈ { 0 , � , r } with
Lj f j ≺ L i f i for all j � i . But then

LjUj( f ) ∼ L j f j ≺ L i f i∼ Li Ui( f )

for all j . Hence

RL , + f , alg , 0 = RL ( f ) ∼ L i f i
and similarly

RL , + f , alg , j = RL ( j ) ( f ) 4 Li f i− j

for all j . In other words,

RL , + f � RL , + f , alg , 0

and RL , + f , ∗ ( 0) = (Li f i) ∗ � 0 . �

7. 5 . 2 Quasi-linear Riccati equations

We say that ( 7. 1 9) is quasi- linear if its Newton degree is one ( i. e. if ( 7. 20) is
quasi-linear) . We have the following analogue of lemma 3. 5 :

Proposition 7.24. If ( 7. 1 9) is quasi- linear, then it admits a unique solution
f ∈ C[[ BC ]] < .

Proof. Let V = {m ∈ BC : 1 4 m ≺ v } and consider the well-based operator

Φ : C[[ V]] � C[[ V]]

f � −
(
L0 + L2 U2 ( f ) + � + Lr Ur ( f )

L1

)

<
.

Since ( 7. 1 9) is quasi-linear, we have

L i v
i 4 L1 v ( 7. 22 )
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for all i and L0 ≺ L1 v . Moreover, on V ⊆ {m ∈ BC : m
�

v } we have
( supp ∂ ) 4 v †

�
v . S ince Ui( f ) − f i is a differential polynomial of degree < i ,

we thus have
suppUi 4 v i , ( 7. 23)

when considering Ui as an operator on C[[ V]] . Combining ( 7. 22 ) and ( 7. 23) ,
we conclude that

supp Φ 1 ∪ ( supp Φ 2 ) m ∪ � ∪ ( supp Φ r ) mr− 1 ≺ 1

for all m ∈ BC with 1 4 m ≺ v . By theorem 6. 1 4, it follows that the equation

Φ( f ) = f ( 7. 24)

admits a unique fixed point f in C[[ V]] . We claim that this is also the unique
solution to ( 7. 1 9) .

Let us first show that f is indeed a solution. From ( 7. 24) , we get

RL , + f , alg , 0 = RL ( f ) = o(L1 ) . ( 7. 25)

On the other hand, we have for i > 1 :

RL , + f , alg , 1 = RL ′ ( f )

= L1 + O (L2 f ) + � + O (Lr f
r− 1 ) ∼ L1 ( 7. 26)

RL , + f , alg , i = RL ( i ) ( f )

O (L i) + � + O (Lr fr− i) 4 L1 v 1 − i . ( 7. 27)

In other words, RL , + f � L1 and RL , + f , ∗ ( 0 ) = 0 . Assume finally that
f̃ ∈ C[[ V]] is such that 1 4 δ = f̃ − f ≺ v . Then ( 7. 25) , ( 7. 26) and ( 7. 27)
also imply that

RL , + f̃ , alg , 0 = RL , + f ( δ) ∼ L1 δ < L1 ∼ RL , + f̃ , alg , 1 .

In other words, RL , + f̃ , ∗ ( 0) � 0 . �

7. 5 . 3 Refinements

Given a refinement
f = ϕ + f̃ ( f̃ ≺ ṽ ) , ( 7. 28)

where 1 4 ϕ ≺ v and ṽ = dϕ , the equation ( 7. 1 9) becomes

RL̃ , + f̃ , ∗ ( 0) = 0 ( f̃ ≺ ṽ ) , ( 7. 29)

where L̃ = e−
∫
ϕ L× e

∫
ϕ satisfies RL̃ = RL , + ϕ . We recall that the coefficients of

the corresponding algebraic equation

RL̃ , alg( f̃ ) = 0 ( f̃ ≺ ṽ ) ( 7. 30)
are given by

RL̃ , alg , i = RL ( i ) ( ϕ ) .
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Let us show that the analogues of lemmas 3. 6 and 3. 7 hold.

Proposition 7. 25 . Let ϕ ∈ C[[ BC ]] < . Then the Newton degree of

RL , + ϕ , + f̃ , ∗ ( 0 ) = 0 ( f̃ ≺ ϕ ) ( 7. 31 )

equals the multiplicity of τϕ as a starting term of f re lative to ( 7. 1 9) .

Proof. For a certain transmonomial n, the Newton polynomial relative to
m = dϕ is given by

NRL , m( c) = NRL , alg , m( c) = Ld , n/md cd + � + L0 , n .

Then, similarly as in the proof of lemma 3. 6, we have

L̃ i =
1

i !
RL ( i ) ( ϕ )

=
1

i !

∑

k= i

n (
k
i

)
Lk ( ϕk − i + Oϕ ( ϕk − i− 1 ) )

=
1

i !

∑

k= i

n (
k
i

)
(Lk , nm− k + o( 1 ) ) n m− k ( c+ o( 1 ) ) k − i mk − i

=
1

i !
NP , m

( i) ( c) n mi + o(n mi)

for all i, and we conclude in the same way. �

Proposition 7.26. Let d be the Newton degree of ( 7. 1 9) . Iff admits a unique
starting term τ ofmultiplicity d, then

a ) The equation

RL ( d − 1 ) , + ϕ , ∗ ( 0) = 0 ( ϕ ≺ v ) ( 7. 32 )

is quasi- linear and has a unique so lution with ϕ = τ + o( τ) .
b ) Any refinement

f̃ = ϕ̃ + f̃̃ ( f̃̃ ≺ ṽ̃ ) ( 7. 33)

transforms ( 7. 32 ) into an equation ofNewton degree < d .

Proof. Part ( a ) follows immediately from lemma 3. 7(a ) and the fact that

RL ( d − 1 ) , alg = RL , alg
( d− 1 ) . Now consider a refinement ( 7. 33) . As to ( b ) , let ñ be

such that the the Newton polynomial associated to m̃ = d ϕ̃ is given by

NR L̃ , m̃
( c) = NR L̃ , alg , m̃

( c) = L̃d , ñ/ m̃d cd + � + L̃0 , ñ .

By the choice of ϕ , we have

L̃d− 1 = RL ( d − 1 ) ( ϕ ) = RL ( d − 1 ) , + ϕ , alg , 0 ≺ RL ( d − 1 ) , + ϕ , 1 = RL ( d ) ( ϕ ) = L̃d .

It follows that the term of degree d − 1 in NR L̃ , m̃
( c) vanishes, so NR L̃ , m̃

cannot
admit a root of multiplicity d . We conclude by proposition 7. 25 . �
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7. 5 . 4 An algorithm for finding all solutions

Putting together the results from the previous sections, we obtain the fol-
lowing analogue of polynomi al_solve :

Algorithm ri ccati _solve
Input: An asymptotic Riccati equation ( 7. 1 9) modulo o( 1 ) .
Output: The set of solutions to ( 7. 1 9) in C[[ BC]] < .

1 . Compute the starting terms c1 m1 , � , cν mν of f relative to ( 7. 20) .
2 . If ν = 1 and c1 is a root of multiplicity d of NP ,m1 , then let ϕ be the unique

solution to ( 7. 32 ) . Refine ( 7. 28) and apply ri ccati _solve to ( 7. 29) .
Return the so obtained solutions to ( 7. 1 9) .

3. For each 1 6 i 6 ν , refine f = ci mi + f̃ ( f̃ ≺ mi) and apply ri ccati _solve
to the new equation in f̃ . Collect and return the so obtained solutions
to ( 7. 1 9) , together with 0 , if L0 = 0 .

Proposition 7.27. The algorithm ri ccati _solve terminates and returns
al l solutions to ( 7. 1 9) in C[[ BC]] < . �

Since C is only real closed, the equation ( 7. 1 9) does not necessarily admit d
starting terms when counting with multiplicities. Consequently, the equation
may admit less than d solutions. Nevertheless, we do have:

Proposition 7. 28. Ifthe Newton degree d of ( 7. 1 9) is odd, then ( 7. 1 9) admits
at least one solution in C[[ BC ]] < .

Proof. If d = 1 , then we apply the proposition 7. 24. Otherwise, there always
exists a starting monomial m, such that deg NRL , m − val NRL ,m is odd as
well. S ince C is real closed, it follows that their exists at least one starting
term of the form τ = c m of odd multiplicity d̃ . Modulo one application
of proposition 7. 26, we may assume that d̃ < d, and the result follows by
proposition 7. 25 and induction over d . �

Example 7. 29. Consider the linear differential operator

L = e− 2 ex ∂3 − 2 e− ex ∂2 + ∂ − 2 ex ,

with

RL , alg = e− 2 ex F3 − 2 e− ex F2 + F − 2 ex .

The starting terms for RL ( f ) = 0 are τ = 2 ex and τ = eex ( of multiplicity 2 ) .
The refinement f = 2 ex + f̃ ( f̃ ≺ ex ) leads to

RL , + 2 ex , alg = F + O ( e2 x − ex ) ,

so f = 2 ex is a solution to ( 7. 1 7) . The other starting term τ = eex leads to

RL , + eex , alg = e− ex F3 + F2 + 3 ex F − eex+ x + e2 x + ex ,
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and RL , + eex , alg( f̃ ) = 0 ( f̃ ≺ eex ) admits two starting terms τ̃ = ± e ( ex+ x ) / 2 .
After one further refinement, we obtain the following two additional solutions
to ( 7. 1 7) :

f = eex + e ( ex+ x ) / 2 − 9

4
ex − 1

4
;

f = eex − e ( ex+ x ) / 2 − 9

4
ex − 1

4
.

7. 6 Solving the homogeneous equation

Let L ∈ C[[ BC]] [∂ ] � be a linear differential operator on C[[ xN BC]] , where
B is a plane transbasis. Let f1 , � , fs be the solutions to ( 7. 1 7) , as computed
by ri ccati _solve , and µ1 , � , µs their multiplicities. We will denote

HL ; B
∗ = { e

∫
f1 , � , xµ1 − 1 e

∫
f1 , � , e

∫
fs , � , xµs − 1 e

∫
fs } .

The following proposition shows how to find the elements of HL ; B when we
consider L as an operator on C[[ BC ]] :

Proposition 7. 30. We have

HL ; B = HL ; B
∗ ∩ xN BC .

Proof. Let x i m ∈ xN BC and consider the operator K = m− 1 L× m . Then

x i m ∈ HL ⇔ c(K ) ( xi) = 0

⇔ i < min {d : Kd � K }
⇔ i < min {d : RK , alg , d � RK }
⇔ i < min {d : RL , + m † , alg , d � RL , + m † }

But min { d : RL , + m † , alg , d � RL , + m † } is precisely the multiplicity of m † ∈
C[[ BC ]] < as a solution of ( 7. 1 7) . �

In order to find the elements of HL when we consider L as an operator
on T , we have to study the dependence of HL ; B

∗ under extensions of B and
upward shifting. Now ri ccati _solve clearly returns the same solutions if
we enlarge B . The proposition below ensures that we do not find essentially
new solutions when shifting upwards. In the more general context of oscil-
lating transseries, which will be developed in the next section, this proposition
becomes superfluous ( see remark 7. 38) .

Proposition 7. 31 . Assume that

B = ( b 1 , � , b n)

B̂ = { ex , b 1 ↑ , � , b n↑ } .
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Then

HL ↑ ; B
∗ = HL ; B

∗ ↑ .

Proof. Assume that g ∈ C[[ B̂C
]] < is a solution to

RL ↑ , + g , ∗ ( 0) = 0 ( 7. 34)

of multiplicity l . Let f = g� ↓ /x , α = g� and let k be the multiplicity of f as
a solution of ( 7. 1 7) . We have to prove that

l > 0⇔ α ∈ { 0 , � , k − 1 } ⇒ l = 1 .

Let m be 4 -maximal in supp f \ BC and set ψ =
∑

n� m
fn n. If such an m

does not exist, then set ψ = f . Then, modulo replacing L by e
∫
ψ L× e−

∫
ψ , we

may assume without generality that either df
�

BC or f = 0 .
Let us first consider the case when m = df

�
BC . S ince all starting

monomials for RL , alg( f ) = 0 are necessarily in BC , there exists an i with
Lj mj ≺ L i mi for all j � i . It follows from ( 7. 4) that

(L ↑ ) i (m↑ ex ) i = (Li↑ + O (L i+ 1 ↑ ) + � + O (Lr ↑ ) ) m↑ i
� L i↑ m↑ i

(L ↑ ) j (m↑ ex ) j = (O (Lj↑ ) + � + O (Lr↑ ) ) m↑ j
≺ L i↑ m↑ i � (L ↑ ) i (m↑ ex ) i ( j � i) .

In other words, dg = m↑ ex is not a starting monomial for RL ↑ , alg( g) = 0 , so
neither ( 7. 1 7) nor ( 7. 34) holds.

Let us now consider the case when f = 0 and observe that k is minimal
with L∗ , k � 0 . If k = 0 , then RL ↑ , ∗ = L0 , ∗ , so we neither have ( 7. 1 7) nor ( 7. 34) .
If α

� { 0 , � , k − 1 } , then
RL ↑ , + α ( 0) = e− α x (L↑ ) ( eαx )

= (x− α L( xα ) ) ↑
� Lk ↑ e− k x

� L↑ ,
so g does not satisfy ( 7. 34) . S imilarly, if α ∈ { 0 , � , k − 1 } , then RL ↑ , + α ( 0 ) ≺
Lk ↑ e− k x � L ↑ , which implies ( 7. 34) . Moreover, setting K = e− αx L ↑ × eα x , we
have

RK ↑ , + 1 ( 0 ) = RL ↑ ↑ , + α ex+ 1 ( 0 )

= ( x− α log− 1 x L ( xα log x ) ) ↑ ↑
� Lk ↑ ↑ e− k ex − x

� K ↑ e ( l− 1 ) x

< K ↑
In other words, RK ↑ , + 1 , ∗ ( 0 ) � 0 , whence l = 1 . �
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Theorem 7.32 . Let L ∈ T [∂ ] be a linear differential operator on T of order
r, whose coefficients can be expanded w. r. t. a plane transbasis B . Assume
that f1 , � , fs are the so lutions to ( 7. 1 7) , with multiplic ities µ1 , � , µs . Then

HL = { e
∫
f1 , � , xµ1 − 1 e

∫
f1 , � , e

∫
fs , � , xµs − 1 e

∫
fs } ; ( 7. 35)

HL ⊆ C[[ BC ]] [ x ] r { e
∫
f1 , � , e

∫
fs } . ( 7. 36)

Proof. Let E denote the set of exponential transmonomials and let us first
assume that HL ⊆ xN E . Then there exists a supertransbasis B̂ of B , with
HL ⊆ xN B̂C ⊆ xN E and e

∫
f1 , � , e

∫
fs ∈ B̂C . Now ri ccati _solve returns the

same solutions with respect to B and B̂ . Therefore, proposition 7. 30 yields

HL = HL ∩ xN B̂C = HL ; B = HL ; B
∗ = HL ; B

∗ .

In general, we have HL ↑ l = HL ↑ l for some l > 0 . So applying the above argument
to L ↑ l , combined with proposition 7. 31 , we again have ( 7. 35) . As to ( 7. 36) ,
assume that h = xj efi ∈ HL and let K = e−

∫
fi L× e

∫
fi ∈ C[[ BC ]] [∂ ] . Then

hh = h − L− 1 L h = (xj − K− 1 Kx j) e
∫
fi ∈ C[[ BC ]] [x ] r e

∫
fi .

The result now follows from the fact that the hh form a basis of HL . �

Since the equation ( 7. 1 7) may admit less than r solutions ( see remark
7. 27) , we may have dim HL < r . Nevertheless, proposition 7. 28 implies:

Corollary 7.33. If L ∈ T [∂ ] is a linear differential operator of odd order,
then the equation Lh = 0 admits at least one non- trivial solution in T . �

7. 7 Oscillating transseries

Let L ∈ T [∂ ] � be a linear differential operator of order r . S ince C is only real
closed, the dimension of the solution space HL of Lh = 0 can be strictly less
than r . In order to obtain a full solution space of dimension r , we have both to
consider transseries with complex coefficients and the adjunction of oscillating
transmonomials. In this section we will sketch how to do this.

7. 7. 1 Complex and oscillating transseries

Let T be the set of transmonomials and consider the field

T̃ = T ⊕ i T � (C + iC) [[ T]] = C̃ [[ T]]

of transseries with complex coefficients. Then most results from the previous
sections can be generalized in a straightforward way to linear differential
operators L ∈ T̃ [∂ ] . We leave it as an exercise for the reader to prove the
following particular statements:
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Proposition 7. 34. Let L ∈ T̃ [∂ ] � be a linear differential operator on T̃ .
Then L admits a distinguished right inverse L− 1 and HL admits a finite dis-
tinguished basis.

Proposition 7. 35. Let L ∈ C̃ [[ BC ]] [∂ ] � be a linear differential operator,
where B is a plane transbasis, and v ∈ BC ∪ {>} . If the Newton degree
of ( 7. 1 9) is d, then ( 7. 1 9) admits d so lutions, when counted with multiplicities.

An osc il lating transseries is an expression of the form

f = f; ψ1 e iψ1 + � + f; ψk e iψk , ( 7. 37)

where f; ψ1 , � , f; ψk ∈ T̃ and ψ1 , � , ψk ∈ T� . Such transseries can be differen-
tiated in a natural way

f ′ = ( f; ψ1

′ + i ψ1
′ ) e iψ1 + � + ( f; ψk

′ + i ψk
′ ) e iψk .

We denote by

O =
⊕

ψ ∈ T�
T̃ e iψ

the differential ring of all oscillating transseries. Given an oscillating
transseries f ∈ O , we call ( 7. 37) the spectral decomposition of f . Notice that

O � C[[ eT̃� ]] ,

where ef 4 eg if and only if <f 6 <g and =f = =g .

7. 7. 2 Oscillating solutions to linear differential equations

Consider a linear differential operator L ∈ T̃ [∂ ] � . We have

Lf =
∑

ψ ∈ T�
(L ; ψ f; ψ ) e iψ ,

where

L ; ψ � e− iψ L× e iψ ∈ T̃ [∂ ] ,

since ( e iψ ) † ∈ T̃ for all ψ ∈ T� . In other words, L “acts by spectral components”
and its trace TL is determined by

RL =
⋃

ψ ∈T�
RL ; ψ

e iψ

TL ( cm e iψ ) = TL ; ψ ( cm) e iψ .

Now let g ∈ O and consider the differential equation

Lf = g. ( 7. 38)

This equation is equivalent to the system of all equations of the form

L ; ψ f; ψ = g; ψ . ( 7. 39)
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By proposition 7. 34, the operators L ; ψ all admit distinguished right inverses.
We call

f = L− 1 g =
∑

ψ ∈ T�
L ; ψ
− 1 g; ψ e iψ

the distinguished solution of ( 7. 38) . The operator L− 1 : g � L− 1 g , which is
strongly linear, is called the distinguished right inverse of L . The solutions to
the homogeneous equation may be found as follows:

Theorem 7.36. Let L ∈ T̃ [∂ ] be a linear differential operator on T̃ oforder r,
whose coefficients can be expanded w. r. t. a plane transbasis B . Assume that
f1 , � , fs are the solutions to ( 7. 1 7) , with multiplicities µ1 , � , µs . Then

HL = { e
∫
f1 , � , xµ1 − 1 e

∫
f1 , � , e

∫
fs , � , xµs − 1 e

∫
fs } ; ( 7. 40)

HL ⊆ C[[ BC ]] [ x ] r { e
∫
f1 , � , e

∫
fs } . ( 7. 41 )

Proof. Let h = x j m, where m = e
∫
fi , 1 6 i 6 s and 0 6 j < µi . Then

K = m− 1 L× m, considered as an operator on T̃ , satisfies

RK , alg , j = RL , + fi , alg , j ≺ RL , + fi = RK .

Hence Kj ≺ K , xj ∈ HK and h ∈ HL . Furthermore,

hh = h − L− 1 L h = ( xj − K− 1 Kx j) e
∫
fi ∈ C[[ BC ]] [x ] r e

∫
fi

is an element of HL with dominant monomial h . By proposition 7. 35 , there
are r such solutions hh and they are linearly independent, since they have
distinct dominant monomials. Consequently, they form a basis of HL , since
dimHL 6 r . This proves ( 7. 41 ) . S ince each element h ∈ HL induces an element
hh = h − L− 1 L h with dominant monomial h in HL , we also have ( 7. 40) . �

Corollary 7.37. Let L ∈ T̃ [∂ ] be a linear differential operator on T̃ of order
r. Then dimHL = r. �

Remark 7. 38. Due to the fact that the dimension r of HL is maximal in
theorem 7. 36, its proof is significantly shorter than the proof of theorem 7. 32 .
In particular, we do not need the equivalent of proposition 7. 31 , which was
essentially used to check that upward shifting does not introduce essentially
new solutions.

Exercise 7. 24. Assume that C is a subfield of K and consider a strongly linear
operator L : C [[ M]] → C[[ N]] . Show that L extends by strong linearity into
a strongly linear operator L̃ : K [[ M]] → K[[ N]] . If L admits a strongly linear
right inverse L− 1 , then show that the same holds for L̃ and ( L̃ − 1 ) | C [[ N ]] = L− 1 .

Exercise 7. 25 . Let L ∈ C̃ [[ BC ]] [∂ ] � .
a) Let τ < 1 be a starting term for ( 7. 1 9) and assume that ϕ is a solution

of ( 7 . 20) with τϕ = τ . Consider the refinement f = ϕ + f̃ ( f̃ ≺ τ) and let
P̃ = P+ ϕ . Prove that P̃0 4 τ τ− 1 P0 .
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b) Prove that any sequence of refinements like in ( a ) is necessarily finite.
c) Design an alternative algorithm for solving ( 7. 1 9) .
d) Given a solution f ∈ T to ( 7 . 1 9) , prove that there exists a f̂ in the algebraic

closure of C {L0 , � , Lr } , such that f̂ − f ≺ 1 .

Exercise 7. 26 . Let M ∈ Mr ( T̃) be an r × r matrix with coefficients in T̃ and
consider the equation

V ′ = MV ′ ( 7 . 42)

for V ′ ∈ O r .

a) Show that the equation L h = 0 can be reduced to an equation of the
form ( 7. 42 ) and vice versa .

b) If
∫
M ≺ 1 , then show that

V = I +
∫
M +

∫
M
∫
M + �

is a solution to ( 7 . 42 ) .
c) Assume that M is a block matrix of the form

M =

(
M1 M2

M3 M4

)
,

where M2 , M3 , M4 ≺ M1 and M1 is invertible with d (M1
− 1 ) = d (M1 ) − 1 .

Consider the change of variables

V = PṼ =

(
I E
0 I

)
Ṽ ,

which transforms M into

M̃ = P− 1 MP − P− 1 P ′

=

(
M1 − M3 E M2 + M1 E − EM4 − EM3 E − E ′

M3 M3 E + M4

)
.

Show that

M2 + M1 E − EM4 − EM3 E − E ′ = 0

admits a unique infinitesimal solution E . Also show that the coefficient M3

can be cleared in a similar way.
d) Show that the equation ( 7 . 42 ) can be put in the form from ( c ) modulo

a constant change of variables V = PṼ with P ∈ Mr ( C̃ ) .
e) Give an algorithm for solving ( 7. 42 ) when there exist r different dominant

monomials of eigenvalues of M . What about the general case?
f) Check the analogue of exercise 7 . 25 ( d ) in the present setting.

Exercise 7. 27. Take C = R and let L be as in exercise 7. 6 , but with coefficients
in Li , j ∈ T̃ � ex .

a) Determine the maximal flat subspace of O on which L is defined.
b) Show that L admits a distinguished right-inverse on O � ex . Can HL be

infinite?
c) Same question for O � ex instead of O � ex .
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7. 8 Factorization of differential operators

7. 8. 1 Existence of factorizations

One important consequence of corollary 7. 37, i. e. the existence a full basis of
solutions of dimension r of HR , is the possibility to factor the L as a product
of linear operators:

Theorem 7.39. Any linear differential operator L ∈ T̃ [∂ ] � of order r admits
a factorization

L = Lr ( ∂ − a1 ) � ( ∂ − ar )
with a1 , � , ar ∈ T̃ [∂ ] .

Proof. We prove the theorem by induction over the order r . For r = 0 we have
nothing to prove. If r > 1 , then there exists a non-trivial solution h ∈ T̃ � to
the equation Lh = 0 , by corollary 7. 37. Now the division of L by ∂ − h † in
the ring T̃ [∂ ] yields a relation

L = L̃ (∂ − h † ) + ρ,

for some ρ ∈ T̃ , and Lh = ρh = 0 implies ρ= 0 . The theorem therefore follows
by induction over r . �

Theorem 7.40. Any linear differential operator L ∈ T [∂ ] � admits a factor-
ization as a product of a transseries in T and operators

∂ − a
with a ∈ T , or

∂2 −
(
2 a + b †

)
∂ +

(
a2 + b2 − a ′ + a b †

)
=(

∂ − ( a − b i + b † )
)

(∂ − ( a + b i) )
with a , b ∈ T .

Proof. We prove the theorem by induction over the order r of L . If r = 0 then
we have nothing to do. If there exists a solution h ∈ T to Lh = 0 , then we
conclude in a similar way as in theorem 7. 39 . Otherwise, there exists a solution
h † ∈ T̃ to the Riccati equation RL (h † ) , such that h † = a + b i with a , b ∈ T and
b � 0 . Now division of L by

(
∂ − ( a − b i + b † )

)
(∂ − ( a + b i) ) in the ring T [∂ ]

yields

L = L̃
(
∂ − ( a − b i + b † )

)
(∂ − ( a + b i) ) + R

= L̃
(
∂ − ( a + b i + b † )

)
( ∂ − ( a − b i) ) + R

for some differential operator R of order < 2 . Moreover, R is both a multiple
of ∂ − ( a + b i) and ∂ − ( a − b i) , when considered as an operator in T̃ [∂ ] . But
this is only possible if R = 0 . We conclude by induction. �
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7. 8. 2 Distinguished factorizations

We have seen in section 7. 4 that the total ordering on the transmonomials
allows us to isolate a distinguished basis of solutions to the equation L h = 0 .
A natural question is whether such special bases of solutions induce special
factorizations of L and vice versa.

We will call a series f monic , if f is regular and cf = 1 . S imilarly, a differ-
ential operator L of order r is said to be monic if Lr = 1 . A tuple of elements
is said to be monic if each element is monic. Given a regular series f , the
series mon f � f/cf is monic. In what follows we will consider bases of HL as
tuples (h1 , � , hr ) . We will also represent factorizations L = ( ∂ − f1 ) � (∂ − fr )
of monic differential operators by tuples ( f1 , � , fr ) .

Proposition 7. 41 . Let L ∈ T̃ [∂ ] � be a monic linear differential operator on O
of order r. Then

a ) To any monic basis (h1 , � , hr ) ofHL , we may associate a factorization

L = (∂ − f1 ) � (∂ − fr ) ,
fi = [ ( ∂ − fi+ 1 ) � ( ∂ − fr) hi ]

† ( i = r , � , 1 ) ,

and we write ( f1 , � , fr) = fact (h1 , � , hr) .
b ) To any factorization

L = ( ∂ − f1 ) � ( ∂ − fr ) ,

we may associate a monic basis (h1 , � , hr ) = sol ( f1 , � , fr) ofH by

hi = mon [ (∂ − fi+ 1 ) � (∂ − fr ) ] − 1 e
∫
fi ( i = r , � , 1 ) .

We have hi , d ( h j ) = 0 for al l i < j.
c ) For any factorization represented by ( f1 , � , fr ) we have

fact sol ( f1 , � , fr) = ( f1 , � , fr) .

d ) If (h1 , � , hr ) is a monic basis ofHL such that hi , d ( h j ) = 0 for all i < j, then

sol fact (h1 , � , hr) = ( h1 , � , hr ) .

Proof. Assume that (h1 , � , hr) is a monic basis of HL and let us prove by
induction that (∂ − fi+ 1 ) � (∂ − fr) is a right factor of L for all i = r , � , 0 .
This is clear for i = r . Assume that

L = K ( ∂ − fi+ 1 ) � (∂ − fr )
for some i ∈ { 1 , � , r } . Then

K ( ∂ − fi+ 1 ) � (∂ − fr ) hi = 0

implies that ∂ − fi is a right factor of K , in a similar way as in the proof of
theorem 7. 39 . Hence ( a ) follows by induction.
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As to ( b ) , the hi are clearly monic solutions of Lh= 0 , and, more generally,

( ∂ − fi+ 1 ) � (∂ − fr ) hj = 0

for j > i . The distinguished property of [ ( ∂ − fi+ 1 ) � ( ∂ − fr) ]
− 1 therefore

implies that hi , d ( h j ) = 0 for all j > i . This also guarantees the linear indepen-
dence of the hi . Indeed, assume that we have a relation

λ 1 h1 + � + λ i hi = 0 .

Then
0 = (λ 1 h1 + � + λ i hi) d ( h i ) = λ i ,

and, repeating the argument, λ i− 1 = � = λ 1 = 0 . This proves ( b ) .
Now consider a factorization L = ( ∂ − f1 ) � ( ∂ − fr) and let

( f̃1 , � , f̃r ) = fact sol ( f1 , � , fr ) .

Given i ∈ { 1 , � , r } with f̃i+ 1 = fi+ 1 , � , f̃r = fr , we get

f̃i = [ ( ∂ − f̃i+ 1 ) � ( ∂ − f̃r ) mon [ ( ∂ − fi+ 1 ) � ( ∂ − fr ) ]
− 1 e

∫
fi ] †

= [ c− 1 ( ∂ − fi+ 1 ) � (∂ − fr ) [ ( ∂ − fi+ 1 ) � ( ∂ − fr ) ]
− 1 e

∫
fi ] †

= ( c− 1 e
∫
fi ) † = fi ,

where c ∈ C � is the dominant coefficient of

[ (∂ − fi+ 1 ) � (∂ − fr ) ] − 1 e
∫
fi .

Applying the above argument for i = r , � , 1 , we obtain ( c ) .
Let us finally consider a monic basis (h1 , � , hr ) of HL such that hi , d ( h j ) = 0

for all i < j . Let

( f1 , � , fr ) = fact (h1 , � , hr )

( h̃1 , � , h̃r ) = sol ( f1 , � , fr )

Assume that h̃i+ 1 = hi+ 1 , � , h̃r = hr for some i ∈ { 1 , � , r } and let

K = (∂ − fi) � ( ∂ − fr) .

Then both (hi , � , hr ) and ( h̃i , hi+ 1 , � , hr) form monic bases for HK and
hi , d ( h j ) = h̃i , d ( h j ) = 0 for all j > i . It follows that ( h̃i − hi) h = 0 for all h ∈ HK ,

whence h̃i = hi . Applying the argument for i = r , � , 1 , we obtain ( d ) . �
The distinguished basis of HL is the unique monic basis (h1 , � , hr ) such

that hi , d ( h j ) = 0 for all i < j and h1 � � � hr . The corresponding factorization
of L is called the distinguished factorization .

Exercise 7. 28. Assume that L ∈ T [∂ ] admits a factorization

L = (∂ − f1 ) � (∂ − fr)
with f1 , � , fr ∈ T . Then

a) Prove that there exists a unique such factorization with f1 > � > fr .
b) Prove that this unique factorization is the distinguished factorization.
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8

Algebraic differential equations

Let T = C[[[ x]]] be the field of grid-based transseries in x over a real closed
field C and let P ∈ T{F } be a differential polynomial of order r . In this
chapter, we show how to determine the transseries solutions of the equation

P( f ) = 0 .

More generally, given an initial segment V ⊆ T of transmonomials, so that

v ∈ V ∧ w 4 v ⇒ w ∈ V ,

we will study the asymptotic algebraic differential equation

P( f ) = 0 ( f ∈ C[[ V]] ) . (E)

Usually, we have V = T or V = {w ∈ T: w ≺ v } for some v .
In order to solve ( E) , we will generalize the Newton polygon method from

chapter 3 to the differential setting. This program gives rise to several diffi-
culties. First of all, the starting monomials for differential equations cannot
be read off directly from the Newton polygon. For instance, the equation
f ′= eex admits a starting monomial eex − x whereas the Newton polygon would
suggest eex instead. Also, it is no longer true that cancellations are necessarily
due to terms of different degrees, as is seen for the equation f ′ = f , which
admits ex as a starting monomial.

In order to overcome this first difficulty, the idea is to find a criterion
which tells us when a monomial m is a starting monomial for the equation
(E) . The criterion we will use is the requirement that the differential Newton
polynomial associated to m admits a non-zero solution in the algebraic closure
of C . Differential Newton polynomials are defined in section 8 . 3. 1 ; modulo
multiplicative conjugations, it will actually suffice to define them in the case
when m = 1 . In section 8 . 3. 3, we will show how to compute starting monomials
and terms. Actually, the starting monomials which correspond to cancel-
lations between terms of different degrees can almost be read off from the
Newton polygon. The other ones are computed using Riccati equations.



A second important difficulty with the differential Newton polygon method
is that almost multiple solutions are harder to “unravel” using the differen-
tiation technique from section 3. 1 . 3 . One obvious reason is that the quasi-
linear equation obtained after differentiation is a differential equation with
potentially multiple solutions. Another more pathological reason is illustrated
by the example

f 2 + 2f ′ +
1

x2
+

1

x2 log2 x
+ � +

1

x2 log2 x � logl2 x
= 0 . ( 8 . 1 )

Although the coefficient of f in this equation vanishes, the equation admits
1

x
as a starting term of multiplicity 2 . Indeed, setting f =

1

x
f̃ , we get

f̃ 2 + 2 f̃
′ − 2 f̃ + 1 +

1

log2 x
+ � +

1

log2 x � logl2 x
= 0 .

Differentiation yield the quasi-linear equation

2 f̃ − 2 = 0 ,

but after the refinement f̃ = 1 + f̃
˜

( f̃
˜ ≺ 1 ) and upward shifting, we obtain an

equation
f̃
˜ 2

+ 2 f̃
˜ ′

+
1

x2
+

1

x2 log2 x
+ � +

1

x2 log2 x � logl− 1
2 x

= 0 ,

which has the same form as ( 8 . 1 ) . This makes it hard to unravel almost
multiple solutions in a constructive way. Nevertheless, as we will see in section
8. 6 , the strong finiteness properties of the supports of grid-based transseries
will ensure the existence of a brute-force unravelling algorithm.

In section 8 . 7 we put all techniques of the chapter together in order to
state an explicit ( although theoretical) algorithm for the resolution of ( E) . In
this algorithm, we will consider the computation of the distinguished solution
to a quasi-linear equation as a basic operation. Quasi-linear equations are
studied in detail in section 8. 5 .

In the last section, we prove a few structural results about the solutions
of ( E) . We start by generalizing the notion of distinguished solutions to equa-
tions of Newton degree d > 1 . We next prove that ( E) admits at least one
solution if d is odd. We will also prove a bound for the number of “new
exponentials” which may occur in solutions to ( E) .

8. 1 Decomposing differential polynomials

8. 1 . 1 Serial decomposition

Let P ∈ T{F } be a differential polynomial over T of order r . In the previous
chapter, we have already observed that we may interpret P as a series

P =
∑

m∈ T

Pm m , ( 8 . 2 )
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where the coefficients are differential polynomials in C {F } . We call ( 8 . 2 ) the
serial decomposition of P . As before, the embedding T{F } � C {F } [[ T]]
induces definitions for the asymptotic relations 4 , ≺ , etc. and dominant
monomials and coefficients of differential polynomials. We will denote by DP

the dominant coefficient of P .

8. 1 . 2 Decomposition by degrees

The most natural decomposition of P is given by

P( f ) =
∑

i

Pi f i . ( 8 . 3)

Here we use vector notation for tuples

i = ( i0 , � , ir)

j = ( j0 , � , jr )

of integers:

‖ i ‖ = i0 + � + ir ;

f i = f i0 ( f ′) i1 � ( f ( r ) ) ir ;

i 6 j ⇔ i0 6 j0 ∧ � ∧ ir 6 jr ;(
j
i

)
=

(
j0
i0

)
�

(
jr
ir

)
.

We call ( 8 . 3) the decomposition of P by degrees . The i-th homogeneous part
of P is defined by

Pi =
∑

‖ i ‖ = i
Pi f

i ,

so that

P =
∑

i

Pi . ( 8 . 4)

We call ( 8 . 4) the decomposition of P into homogeneous parts . If P � 0 , then
the largest d = deg P with Pd � 0 is called the degree of P and the smallest
ν = valP with Pν � 0 the differential valuation of P .

8. 1 . 3 Decomposition by orders

Another useful decomposition of P is its decomposition by orders :

P( f ) =
∑

ω

P[ω ] f
[ω ] ( 8 . 5 )
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In this notation, ω runs through tuples ω = (ω1 , � , ωl ) of integers in { 0 , � , r }
of length l 6 degP , and P[ω ] = P[ωσ ( 1 ) , � , ωσ ( l ) ] for all permutations of integers.
We again use vector notation for such tuples

| ω | = l ;

‖ ω ‖ = ω1 + � + ωl ;

f [ω ] = f (ω1 )
� f (ω l ) ;

ω 6 τ ⇔ ω1 6 τ1 ∧ � ∧ ωl 6 τl ;(
τ
ω

)
=

(
τ1

ω1

)
�

(
τl
ωl

)
.

For the last two definitions, we assume that | ω | = | τ | = l . We call ‖ ω ‖ the
weight of ω . The ω-th isobaric part of P is defined by

P[ω ] =
∑

‖ ω ‖ =ω
P[ω ] f

[ω ] ,

so that

P =
∑

ω

P[ω ] . ( 8 . 6)

We call ( 8 . 6) the decomposition of P into isobaric parts . If P � 0 , then the
largest ω = wt P with P[ω ] � 0 is called the weight of P and the smallest
ω = wvP with P[ω ] � 0 the weighted differential valuation of P .

8. 1 . 4 Logarithmic decomposition

It is convenient to denote the successive logarithmic derivatives of f by

f † = f ′/ f ;

f 〈 i 〉 = f †
� † ( i times) .

Then each f ( i ) can be rewritten as a polynomial in f , f † , � , f 〈 i 〉 :

f = f ;

f ′ = f † f ;

f ′′ = ( ( f † ) 2 + f † † f † ) f ;

f ′′′ = ( ( f † ) 3 + 3 f † † ( f † ) 2 + ( f † † ) 2 f † + f † † † f † † f † ) f ;
�

We define the logarithmic decomposition of P by

P( f ) =
∑

i= ( i0 , � , ir )

P〈 i 〉 f
〈 i 〉 , ( 8 . 7)

where

f 〈 i 〉 = f i0 ( f † ) i1 � ( f 〈 r 〉 ) ir .
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Now consider the total lexicographical ordering 6 lex on Nr+ 1 , defined by

i < lex j � ( i0 < j0 ) ∨
( i0 = j0 ∧ i1 < j0 ) ∨

�

( i0 = j0 ∧ � ∧ ir− 1 = jr− 1 ∧ ir < jr ) .

Assuming that P � 0 , let i be maximal for 6 lex with P〈 i 〉 � 0 . Then

P( f ) ∼ P〈 i 〉 f 〈 i 〉 ( 8 . 8 )

for f→∞T or f→ −∞T .

8. 2 Operations on differential polynomials

8. 2 . 1 Additive conjugation

Given a differential polynomial P ∈ T{F } and a transseries h ∈ T , the additive
conjugation of P with h is the unique differential polynomial P+ h ∈ T{F } ,
such that

P+ h ( f ) = P(h + f )

for all f ∈ T . The coefficients of P+ h are explicitly given by

P+ h , i =
∑

j> i

(
j
i

)
hj− iPj . ( 8 . 9 )

Notice that for all i ∈ N , we have
(

∂P

∂F ( i)

)

+ ϕ

=
∂P+ ϕ

∂F ( i)
.

Proposition 8. 1 . If h = c+ ε with c ∈ C and ε ≺ 1 , then

P+ h � P

DP+ h = DP , + c

Proof. The relation ( 8. 9) both yields P+ h 4 P and

P = P+ h , − h 4 P+ h ,

so P+ h � P . Furthermore,

P+ h , i = Pi +
∑

j> i
( cj− i + o( 1 ) ) Pj = P+ c , i + o(P)

for all i, whence the second relation. �
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8. 2 . 2 Multiplicative conjugation

The multiplicative conjugation of a differential polynomial P ∈ T{F } with
a transseries h ∈ T is the unique differential polynomial P× h ∈ T{F } , such that

P× h ( f ) = P(h f )

for all f ∈ T . The coefficients of P× h are given by

P× h , [ω ] =
∑

τ> ω

(
τ
ω

)
h [τ− ω ] P[τ ] . ( 8 . 1 0)

Proposition 8. 2 .

a ) If h �
x , then for all i,

Pi , × h �h hiPi .
b ) If h �

x , then

P× h �h∗ P.
c ) IfP and h > 0 are exponential, then

P× h � log h
∗ h P.

Proof. If h
�

x , then the equation ( 8 . 1 0) implies Pi , × h 4 h hi Pi and
Pi 4 h h− i Pi , × h , whence ( a ) . Part ( b ) follows directly from ( a ) , and ( c )
is proved in a similar way. �

8. 2 . 3 Upward and downward shifting

The upward and downward shiftings of a differential polynomial P are the
unique differential polynomials P↑ resp. P↓ in T{F } such that

P↑ ( f ↑ ) = P( f ) ↑
P↓ ( f ↓ ) = P( f ) ↓

for all f ∈ T . The non-linear generalizations of the formulas ( 7. 4) and ( 7. 5)
for the coefficients of P↑ and P↓ are

(P↑ ) [ω ] =
∑

τ> ω
sτ , ω e− ‖ τ ‖ x (P[τ ]↑ ) ( 8 . 1 1 )

(P↓ ) [ω ] =
∑

τ> ω
Sτ , ω x

‖ ω ‖ (P[τ ]↓ ) , ( 8 . 1 2 )

where the sτ , ω are generalized Stirling numbers of the first kind

sτ , ω = sτ1 , ω1
� sτl , ω l

( f ( log x ) ) ( j) =
∑

i= 0

j

s j , i x
− j f ( i ) ( log x)
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and the Sτ , ω are generalized Stirling numbers of the second kind

Sτ , ω = Sτ1 , ω1
� Sτl , ω l

( f ( ex ) ) ( j) =
∑

i= 0

j

Sj , i e
ix f ( i ) ( ex ) .

Proposition 8. 3. We have

P↑ � ex
∗ dP ↑ .

Proof. We get P↑ 4 ex
∗ dP ↑ from ( 8 . 1 1 ) and P = P↑ ↓ 4 x∗ dP ↑↓ from ( 8. 1 2 ) . �

Proposition 8. 4. IfP ∈ T{F } is exponential, then

DP ↑ = DDP ↑ .

Proof. Since P = (DP + oex ( 1 ) ) dP , the equation ( 8 . 1 1 ) yields

P↑ = (DP ↑ + oeex ( 1 ) ) ( dP ↑ )

and suppDP ↑ ⊆ { e−Nx } � eex 1 . This clearly implies the relation. �

Exercise 8. 1 . Let g ∈ T> , � and P ∈ T{F } .
a) Show that there exists a unique P◦ g ∈ T{F } with

P◦ g ( f ◦ g) = P( f ) ◦ g
for all f ∈ T .

b) Give an explicit formula for P◦ g , [ω ] for all ω .
c) Show that · ◦ g is a differential ring homomorphism:

(T{F } , ∂) � (T{F } , ( g ′ ) − 1 ∂)

P � P◦ g

Exercise 8. 2 . Let P ∈ T{F1 , � , Fk } and Q 1 , � , Q k ∈ T{F1 , � , Fl } .
a) Let P ◦ (Q 1 , � , Q k ) ∈ T{F1 , � , Fl } be the result of the substitution of Q i for

each Fi in P . Show that P � P ◦ (Q 1 , � , Q l ) is a morphism of differential
rings.

b) Reinterpret additive and multiplicative conjugation using composition like
above.

c) Show that T [∂ ] is isomorphic to (T{F } l in , + , ◦ ) , where

T{F } l in = T F ⊕ T F ′ ⊕ � .

Exercise 8. 3. Let P =
∑
i
Pi F

i ∈ T � ex [ [F, F
′ , � ] ] .

a) If (Pi ) forms a grid-based family, then show that P( f ) is well-defined for all
f ∈ T � e x

4 .
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b) For two operators P and Q like in ( a ) , with Q 4 1 , show that P ◦ Q is well-
defined.

c) Generalize ( b ) to operators in several variables and to more general subspaces
of the form C [[ V]] of T � ex .

8. 3 The differential Newton polygon method

8. 3. 1 Differential Newton polynomials

Recall from the introduction that, in order to generalize the Newton polygon
method to the differential setting, it is convenient to first define the differential
Newton polynomial associated to a monomial m . We will start with the case
when m = 1 and rely on the following key observations:

Lemma 8.5 . Let P ∈ C {F } be isobaric , ofweight ν and assume that DP ↑ = P.
Then P ∈ C [F ] (F ′) ν.

Proof. For all isobaric H ∈ C {F } of weight ν , let us denote

H∗ =
∑

j

H( j , ν , 0 , � , 0) F
j (F ′) ν .

Then Q = P − P∗ satisfies DQ ↑ = Q and Q∗ = 0 . Furthermore, ( 8 . 1 1 ) yields

Q ↑ = e− νx Q.

Consequently, if Q ( f ) = 0 for some f ∈ T , then

Q ( f ↑ ) = eνx (Q ↑ ) ( f ↑ ) = eνx (Q ( f ) ↑ ) = 0 .

Since Q∗ = 0 implies Q (x ) = 0 , it follows by induction that Q ( expi x) = 0
for any iterated exponential of x . From ( 8 . 8) , we conclude that Q = 0 and
P ∈ C [F ] (F ′) ν . �

Theorem 8.6. Let P be a differential polynomial with exponential coefficients.
Then there exists a polynomial Q ∈ C [F ] and an integer ν, such that for al l
l > wtP, we have DP ↑ l = Q (F ′) ν .

Proof. By formula ( 8 . 1 1 ) , we have DP ↑ � e− (wv DP ) x and

DP ↑ (F ) =
∑

‖ ω ‖ =wv DP

( ∑

τ> ω
sτ , ωDP , [τ ]

)
F [ω ] . ( 8 . 1 3)

Consequently,

wtDP > wvDP = wtDP ↑ > wvDP ↑ = wtDP ↑ ↑ > � .
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Hence, for some l 6 wt P , we have wt DP ↑ l+ 1 = wv DP ↑ l+ 1 = wt DP ↑ l .
Now ( 8. 1 3) applied on P↑ l instead of P yields DP ↑ l +1 = DP ↑ l . Proposition 8. 4
therefore gives

DP ↑ l = DP ↑ l+1 = DDP ↑ l ↑ = DDP ↑ l +1
↑ = DP ↑ l+2 = � .

We conclude by applying lemma 8. 5 with DP ↑ l for P . �

Given an arbitrary differential polynomial P , the above theorem implies
that there exists a polynomial Q ∈ C [F ] and an integer ν , such that DP ↑ l =
Q (F ′) ν for all sufficiently large l . We call

NP = Q (F ′) ν

the differential Newton polynomial for P . More generally, if m is an arbitrary
monomial, then we call NP× m

the differential Newton polynomial for P assoc i-
ated to m . If P is exponential and NP = DP , then we say that P is transparent .
Notice that a transseries is transparent if and only if it is exponential.

8. 3. 2 Properties of differential Newton polynomials

Proposition 8. 7.

a ) NP ↑ = NP for all P.
b ) If c ∈ C and ε ≺ 1 , then NP+ c+ ε = NP , + c .
c ) If m ≺ n , then valNP× m

6 degNP× m
6 valNP× n

6 degNP× n
.

Proof. Assertion ( a ) is trivial, by construction.
In ( b ) , modulo a sufficient number of upward shiftings, we may assume

without loss of generality that P , P+ c+ ε and ε are transparent. Dividing P
by dP , we may also assume that P � 1 . Then ( 8 . 9) implies

P+ c+ ε = DP , + c+ ε + oex ( 1 ) = DP , + c + oex ( 1 ) ,

so that NP+ c+ ε = DP+ c+ ε = DP , + c = NP , + c .
As to ( c ) , it clearly suffices to consider the case when m ≺ 1 and n = 1 .

After a finite number of upward shiftings, we may also assume that P and
P× m are transparent and m

�
x . Let d = val P . Then for all i > d we have

Pi 4 Pd, whence
P× m , d = Pd , × m�m mdPd � miPi �mPi , × m = P× m , i ,

by proposition 8 . 2 (a ) . This implies degD× m 6 d, as desired. �

Proposition 8. 8. Let P ∈ T{F } � , m � ex and T =
∑

u�mP
Pu u. Then we

have NP× n
= NT× n

for al l n
�

m .

Proof. Since m � ex , we first notice that

T↑ =
∑

u�m ↑ P

P↑ u u.
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Hence, modulo division by dP and a sufficient number of upward shiftings,
we may assume without loss of generality that P � 1 , that P and n are
exponential, that NP× n = DP× n , and NT× n = DT× n . Then

(P − T) × n �n (P − T) n ≺m n

and P× n�n n, whence P× n = T× n + om(P× n) . We conclude that NP× n
= DP× n

=
DT× n = NT× n . �

8. 3. 3 Starting terms

We call m ∈ V a starting monomial , if NP× m
admits a non-zero root c in

the algebraic closure Calg of C . This is the case if and only if NP× m

�
CFN .

We say that m is algebraic if NP× m is non-homogeneous, and differential if
NP× m

�
C [F ] . A starting monomial, which is both algebraic and differential,

is said to be mixed .

Example 8. 9. Let m be a starting monomials for P( f ) = 0 , where P = LF
and L ∈ T [∂ ] . Then NL × m ↑ l = DL × m ↑ l ∈ C F ′ for all sufficiently large l . By
proposition 7. 6, it follows that m↑ l ∈ HL ↑ l for all sufficiently large l , whence
m∈ HL . S imilarly, if m is not a starting monomial, then NL × m ↑ l = DL × m ↑ l ∈ CF
for all sufficiently large l , and m

�
HL .

Assuming that we have determined a starting monomial m for (E) , let
c ∈ Calg be a non-zero root of NP× m

. If c ∈ C , then we call cm a starting term
for (E) . If NP× m = Q (F ′) ν with Q ∈ C [F ] and Q ( c) = 0 , then cm is said to be an
algebraic starting term . If ν � 0 , then we say that cm is a differential starting
term . The multiplic ity of c ( and of cm) is the differential valuation of NPm , + c .
Notice that the definition of the multiplicity extends to the case when c= 0 .

Proposition 8. 1 0. Assume that f is a non-zero transseries so lution to (E) .
Then τf is a starting term.

Proof. Assume that τf = cm is not a starting term. Modulo normalization, we
may assume without loss of generality that P is transparent and m = dP = 1 .
Then

P( f ) = NP ( f ) + oex ( 1 ) = NP ( c) + oex ( 1 ) � 0 ,

since NP ( c) � 0 . �

The Newton degree of (E) is defined to be the maximum d = degV P of
val P and the largest possible degree of NP× m for monomials m ∈ V . The
above proposition shows that equations of Newton degree zero do not admit
solutions.

Proposition 8. 1 1 . If ϕ ∈ C[[ V]] , then

degV P+ ϕ = degV P.
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Proof. Consider a monomial m ∈ V with m < ϕ . Modulo a multiplicative
conjugation with m we may assume without loss of generality that m = 1 , so
that ϕ = c + ε with c ∈ C and ε ≺ 1 . Modulo upward shifting, we may also
assume that P , P+ ϕ and ϕ are transparent. Then deg NP+ ϕ = deg NP , + c =
degNP , by proposition 8. 7( b ) . �

Geometrically speaking, we may consider the Newton degree as “the mul-
tiplicity of zero as a root of P modulo V”. More generally, given an initial
segment W⊆ V, we say that ϕ ∈ C[[ V]] is a so lution to (E) modulo W, if the
Newton degree of

P+ ϕ ( f̃ ) = 0 ( f̃ ∈ C[[ W]] ) ( 8 . 1 4)

is strictly positive. The multiplicity of such a solution is defined to be the
Newton degree of ( 8 . 1 4) . If ψ ∈ ϕ + C[[ W]] , then the multiplicities of ϕ and
ψ as solutions of (E) modulo W coincide, by proposition 8 . 1 1 . In particular, if
ϕ is a solution of ( E) modulo W, then so is ψ = ϕV \W =

∑
m∈V\W ϕm m. We

call ψ a normalized solution , because it is the unique solution in ϕ + C[[ W]]

such that ψm = 0 for all m ∈ W .

8. 3. 4 Refinements

Given a starting term τ = c m for ( E) , we will generalize the technique of
refinements in order to compute the remaining terms. In its most general
form, a refinement for (E) is a change of variables together with an asymptotic
constraint

f = ϕ + f̃ ( f̃ ∈ C[[ Ṽ]] ) , (R)

where ϕ ∈ C[[ V]] and Ṽ ⊆ V is an initial segment of transmonomials. Such
a refinement transforms ( E) into

P̃ ( f̃ ) = P+ ϕ ( f̃ ) = 0 ( f̃ ∈ C[[ Ṽ]] ) . ( RE)

Usually, we take Ṽ = { w̃ ∈ T: w̃ ≺ ϕ } , in which case (RE) becomes

P̃ ( f̃ ) = 0 ( f̃ ≺ ϕ ) . ( 8 . 1 5)

In particular, we may take ϕ = cm, but, as in section 3. 3 . 2 , it is useful to allow
for more general ϕ in presence of almost multiple solutions.

Consider a refinement (R) and a second refinement

f̃ = ϕ̃ + f̃
˜

( f̃
˜ ∈ C[[ Ṽ̃]] ) (RR)

with ϕ̃ ∈ C[[ Ṽ]] and Ṽ
˜ ⊆ Ṽ. Then we may compose (R) and (RR) so as to

yield another refinement

f = ϕ + ϕ̃ + f̃
˜

( f̃
˜ ∈ C[[ Ṽ˜ ]] ) . ( 8 . 1 6)

Refinements of the form ( 8. 1 6) are said to be finer as (R) .

8 . 3 The differential Newton polygon method 1 85



Proposition 8. 1 2 . Consider a refinement (R) with ϕ ∈ C[[ V]] . Then the
Newton degree of (RE) is bounded by the Newton degree of (E) .

Proof. By the definition of Newton degree, the result is clear if ϕ = 0 . In
general, we may decompose the refinement in a refinement with Ṽ = V and a
refinement with ϕ = 0 . We conclude by proposition 8. 1 1 . �

Proposition 8. 1 3. Let ϕ ∈ C[[ V]] and m < ϕ . Then the Newton degree of

P̃ ( f̃ ) = P+ ϕ ( f̃ ) = 0 ( f̃ ≺ m)

is equal to the multiplicity d̃ of c= ϕm as a root ofNP× m .

Proof. Let us first show that degNP̃× n
6 d̃ for any monomial n≺ m. Modulo

multiplicative conjugation and upward shifting, we may assume without loss
of generality that m = 1 and that P , P̃× n , n and ϕ are transparent. The
differential valuation of NP , + c = DP̃ being d̃ , we have in particular P̃d̃ � P̃ .
Hence,

P̃× n , i �n P̃i n
i ≺ n P̃d̃ nd̃ �n P̃× n , d̃

for all i > d̃ . We infer that degNP̃× n
6 d̃ .

At a second stage, we have to show that deg NP̃× n
> d̃ . Without loss of

generality, we may again assume that m= 1 , and that P and ϕ are transparent.
The differential valuation of NP , + c = DP̃ being d̃ , we have P̃i ≺ P̃ for all i < d̃ .
Taking n = x− 1 , we thus get

P̃× n , i � ex P̃i ≺ ex P̃ � P̃d̃ � ex P̃× n , d̃

for all i < d̃ . We conclude that degNP̃× n
> d̃ . �

Exercise 8. 4. If NP = DP ∈ C [F ] (F ′) k , then show that

a) DP ↑ = DP .
b) P↑ � dP ↑ e− k x .

Exercise 8. 5 . If P= LF+ g , with L ∈ T [∂ ] and g ∈ T � , then show that TL
− 1 (τg )

is the unique algebraic starting term for P( f ) = 0 .

Exercise 8. 6 .

a) Give a definition for the composition

f = ϕ + f̃ ( f̃ ∈ C[[ Ṽ]] )

of an infinite sequence of refinements

f = f0 = ϕ 1 + f1 ( f1 ∈ C[[ V1 ]] )

f1 = ϕ 2 + f2 ( f2 ∈ C[[ V2 ]] )
�

b) What can be said about the Newton degree of ( RE) ?
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Exercise 8. 7. Let P, Q ∈ T{F } and let V ⊆ T be an initial segment.

a) Show that degV PQ = degV P + degV Q .
b) What can be said about degV (P + Q ) ?
c) If degV P > 0 and A0 , � , An ∈ T , then show that

degV (A0 P + � + An P
(n ) ) > 0 .

Hint: first reduce to the case when V = { v ∈ T : v ≺ 1 } . Next, considering
P = 0 , � , P (n ) = 0 as algebraic equations in F, � , F ( r+n ) , show that there
exists a common solution F = φ0 , � , F ( r+n ) = φr+n with φi ≺ 1 for all i ( i . e.
we do not require that φi+1 = φi

′ for i < r + n − 1 ) .

Exercise 8. 8. Improve the bound i > wt P in theorem 8. 6 for P of degree 6 3 .

Exercise 8. 9 . Show that r upward shiftings may indeed be needed in the-
orem 8. 6 .

Exercise 8. 1 0 . Let P ∈ C {F ′} and let Λ be such that

Λ ′ =
1

x log x log2 x �

.

a) Show that

dP
as = dP ( Λ) = x− i0 ( log x ) − i 1 ( log2 x ) − i 3 � ,

with i0 > i1 > � > 1 .
b) Let C {F ′} d , w be the subset of C {F ′} of homogeneous and isobaric polyno-

mials of degree d and weight w . For P ∈ C {F ′} d , w , show that

dP
as = x− w ( log x ) − i 1 ( log2 x ) − i 2 �

and limk→∞ ik = d .
c) If l is such that NP = DP ↑ l , then show that

dP ↑ l = ( exp l x ) − i0 � ( exp x ) − i l − 1 .

d) Show that NP = DP ↑ l if and only if i l = i l+ 1 = � .

Exercise 8. 1 1 . [AvdDvdH] Let H be a Hardy field such that for every f ∈ H ,
there exist g, h ∈ H with g ′ = f and h † = f . Given P ∈ K{F } � , the aim of this
exercise is to define the differential Newton polynomial NP of P .

a) A derivation ∂ ′ = ϕ ∂ on K is said to be infinitesimal if f ≺ 1 ⇒ ∂f ≺ 1 for
all f ∈ K . Show that this is the case if and only if

∫
ϕ− 1 � 1 . We denote

by Kϕ the differential field (K , ϕ ∂) and recall that P = P(F, � , F ( r ) ) can be
reinterpreted as a differential polynomial

Pϕ = P(F, � , ( ϕ− 1 ∂ ′) r F) ∈ Kϕ {F } .
In the remainder of this exercise, ϕ and ψ will always assumed ( or required)
to be such that ϕ ∂ and ψ ∂ are infinitesimal.

b) Show that there exists a group M⊆ H � with R-powers, such that M contains
exactly one element m in each equivalence class of H � /� . Show also that
there exists a unique dP ϕ ∈M with Pϕ � dP ϕ and a unique DP ϕ ∈ R{F } with
Pϕ − DP ϕ dP ϕ ≺ dP ϕ .
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c) Show that ψ < ϕ implies wtDP ψ 6 wtDP ϕ and wvDP ψ 6 wvDP ϕ . Given ϕ ,
show also that there exists a ψ < ϕ such that DP ψ is isobaric.

d) We say that Pϕ is clean if (Pϕ − DP ϕ dP ϕ ) [w ] ≺ Φ dP ϕ , where Φ † = ϕ− 1 and
all w > wt DP ϕ . Show that there exists a ψ < ϕ for which Pψ is clean.

e) Given a homogeneous and isobaric differential polynomial P ∈ R{F ′} of
degree d and weight w , show by explicit computation that there exists homo-
geneous and isobaric differential polynomial P∗ ∈ R{F ′} of degree d and
weight w − 1 , such that

Pϕ =
1

ϕw
P +

ϕ ′

ϕw
P∗ + �

for all ϕ , where the remainder has weight 6 w − 2 .
f) Assume that P ∈ K{F ′} is clean and P� 1 . If both DP and DP ϕ ↑ = P

P ϕ
∫
ϕ − 1

are isobaric, of weight w , then show that

P = DP[ w ]
+ DP[ w ]

∗ ϕ † + � ,

where the remaining terms have smaller weight or smaller asymptotic mag-
nitude.

g) With the assumptions of ( f) , denote Q = DP[ w ]

∗ , let ω be such that Qω � 0 and
consider ψ = exp (

∫
Pω/Qω ) . Show that ϕ ∂ is infinitesimal, either for ϕ = ψ

or ϕ = ψ (
∫
χ− 1 ) 2 . Show also that wvDP ϕ ↑ < wt DP .

h) Assume that P ∈ K{F ′} is homogeneous of degree d . Show that there exists
a ϕ for which Pϕ is clean and DP ϕ ∈ R � (F ′) d .

i) For general P ∈ K{F } , show that there exists a ϕ for which DP ϕ ∈ R[F ] (F ′)N

and Pϕ − DP ϕ dP ϕ ≺ Φ dP ϕ , where Φ † = ϕ− 1 . Under the condition that ϕ ∈M ,
show that NP = DP ϕ does not depend on the choice of ϕ . Show also that, for
a different choice of M , the resulting NP is the same up to a multiplicative
constant.

8. 4 Finding the starting monomials

8. 4. 1 Algebraic starting monomials

The algebraic starting monomials correspond to the slopes of the Newton
polygon in the non-differential setting. However, they can not be determined
directly from the dominant monomials of the Pi , because of the introductory
example f ′ = eex and because there may be some cancellation of terms in the
different homogeneous parts during multiplicative conjugations. Instead, the
algebraic starting monomials are determined by successive approximation:

Proposition 8. 1 4. Let i < j be such that Pi � 0 and Pj � 0 .

a ) If P is exponential, then there exists a unique exponential monomial m ,
such that Pi , × m � Pj , × m .

b ) Denoting by mP the monomial m in ( a ) , there exists an integer k 6 wtP,
such that for al l l > k we have mP ↑ l = mP ↑ k ↑ l− k .
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c ) There exists a unique monomial m , such that N(Pi+Pj ) × m
is non-homoge-

neous.

Proof. In ( a ) , let B = ( b 1 , � , b n) be a plane transbasis for the coefficients
of P . We prove the existence of m by induction over the least k , such that
d(Pi) /d(Pj) = b 1

α 1
� b k

α k for some α1 , � , αk . If k = 0 , then we have m = 1 .
Otherwise, let Q = P× n with n = b k

αk / ( j− i ) . Then

Q i � b k Pi n
i � b k Pj nj � b k Q j ,

so that d(Q i) /d (Q j) = b 1
β1

� b l
βl for some l < k and β1 , � , βl . By the induction

hypothesis, there exists a exponential monomial w , such that Q i , × w � Q j , w .
Hence we may take m = n w . As to the uniqueness of m, assume that n =
m b 1

α 1
� b k

α k with αk � 0 . Then

Pi , × n � b k Pi , × m b k
iαk � b k Pj ,m b k

jαk � b k Pj , × n .

This proves ( a ) .
The above argument also shows that mP ↑ = mP ↑ eαx for some α ∈ Q , since

Pi , × m↑ e (wv Pi , × m ) x � Pj , × m↑ e (wv Pj , × m ) x .

Now, with the notations from theorem 8. 6, we have shown that wt DPi ↑ 6
wt DPi and that equality occurs if and only if DPi = Fi− wt DPi (F ′)wt DPi .
Because of ( 8 . 1 0) , we also notice that wt DPi , × eα x = wt DPi for all α ∈ Q . It
follows that

wtDPi , × mP
> wtDPi ↑ , × mP ↑ > �

and similarly for Pj instead of Pi . We finally observe that wt DPi , × mP =
wtDPi ↑ , × mP ↑ and wtDPj , × mP = wtDPj ↑ , × mP ↑ imply that mP ↑ = mP ↑ , since

wtD(Fα (F ′ ) β ) × eγx
= 0 � β = wtDFα (F ′ ) β

whenever β � 0 and γ � 0 . Consequently, wt DPi ↑ l , × mP ↑ l
and wtDPj ↑ l , × mP ↑ l

stabilize for l > k with k 6 wtP . For this k , we have ( b ) .
With the notations from ( b ) , mP ↑ k ↓ k is actually the unique monomial m

such that

D(Pi+Pj ) × m ↑ l = DPi , × m ↑ k + DPj , × m ↑ k

is non-homogeneous for all sufficiently large l . Now N(Pi+Pj ) × m
= D(Pi+Pj ) × m ↑ l

for sufficiently large l . This proves ( c ) for exponential differential polynomials
P , and also for general differential polynomials, after sufficiently many upward
shiftings. �

The unique monomial m = eP , i , j from part ( c ) of the above proposition is
called the ( i , j) -equalizer for P . An algebraic starting monomial is necessarily
an equalizer. Consequently, there are only a finite number of algebraic starting
monomials and they can be found as described in the proof of proposition 8 . 1 4.
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Remark 8. 1 5. From the proof of proposition 8 . 1 4, it follows that if P can be
expanded w. r. t. a plane transbasis B = ( b 1 , � , b n) , then all equalizers for P
belong to ( logwt PC b 1 ) � ( logC b 1 ) BC .

8. 4. 2 Differential starting monomials

In order to find the differential starting monomials, it suffices to consider the
homogeneous parts Pi of P , since NP× m , i= NPi , × m , if F

′ |NP× m and NP× m , i � 0 .
Now, using ( 7. 6) , we may rewrite

Pi( f ) = RPi ( f
† ) f i ,

where RPi is a differential polynomial of order 6 r − 1 in f † . We call RPi the
differential Riccati po lynomial associated to Pi .

For a linear differential operator L with exponential coefficients, we have
seen in the previous chapter that finding the starting terms for the equation
Lh = 0 is equivalent to solving RL ( f † ) = 0 modulo o( 1 ) . Let us now show
that finding the starting monomials for the equation Pi( f ) = 0 is equivalent
to solving RPi ( f

† ) = 0 modulo o( 1

x log x log log x �

) . In the exponential case, this

is equivalent to solving the equation RPi ( f
† ) = 0 modulo o( 1 ) .

Proposition 8. 1 6. The monomial m ≺ v is a starting monomial of f w. r. t.

Pi( f ) = 0 ( 8 . 1 7)
if and only if the equation

RPi , + m † ( f
† ) = 0

(
f † ≺ 1

x log x log log x �

)
( 8 . 1 8)

has strictly positive Newton degree .

Proof. We first notice that R(P ↑ ) i = (RPi ↑ ) × e− x for all P and i . We claim that
the equivalence of the proposition holds for P and m if and only if it holds for
P↑ and m↑ . Indeed, m is starting monomial w. r. t. ( 8 . 1 7) , if and only if m is
a starting monomial w. r. t.

Pi↑ ( f ↑ ) = 0 ( 8 . 1 9)

and ( 8 . 1 8) has strictly positive Newton degree if and only if

RPi , + m † ↑ ( f †↑ ) = 0
(
f †↑ ≺ 1

ex x log x �

)
( 8 . 20)

has strictly positive Newton degree. Now the latter is the case if and only if

(RPi , + m †↑ ) × e− x ( f ↑ † ) = 0
(
f ↑ † ≺ 1

x log x log log x �

)

has strictly positive Newton degree. But

(RPi , + m †↑ ) × e− x = (RPi ↑ ) + m † ↑ , × e− x = (RPi ↑ ) × e− x , + m↑ † = R(P ↑ ) i , + m↑ † .

This proves our claim.
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Now assume that m is a starting monomial w. r. t. ( 8 . 1 7) . In view of our
claim, we may assume without loss of generality that Pi , × m and m are trans-
parent. S ince Pi is homogeneous, we have DPi , × m = α Fi− j (F ′) j for some
α ∈ C � and j > 0 , and

DR
Pi , + m †

= α F j .

Since RPi , + m † is exponential, it follows that NR
Pi , + m † , × x − 2

has degree j , so

that the Newton degree of ( 8 . 1 8) is at least j > 0 . S imilarly, if m is not
a starting monomial w. r. t. ( 8 . 1 7) , then DPi , × m = α Fi and

DR
Pi , + m †

= α

for some α ∈ C � . Consequently, NR
Pi , + m † , × n

= α for any infinitesimal mono-

mial n, and the Newton degree of ( 8 . 1 8) vanishes. �

8. 4. 3 On the shape of the differential Newton polygon

Proposition 8. 1 7. Let d be the Newton degree of (E) . Then the algebraic
starting monomials are equalizers of the form

eP , i0 , i1 ≺ eP , i1 , i2 ≺ � ≺ eP , i l − 1 , i l ,

where i0 = valP < i1 < � < il− 1 < il = d .

Proof. Let us prove the proposition by induction over d − valP . If d = valP ,
then there is nothing to prove, so assume that d > val P . Let i < d be such
that m = eP , i , d is maximal for 4 . Modulo a multiplicative conjugation with
m and upward shifting, we may assume without loss of generality that m = 1
and that P is transparent.

We claim that 1 is a starting monomial for ( E) . Indeed, let n ∈ V be such
that d = deg NP× n . By proposition 8 . 7( c ) , we already have 1 4 n ∈ V, since
otherwise

d = valNP× n
= valN(Pi+Pd ) × n

6 valNPi+Pd = i.

Now assume for contradiction that 1 is not a starting monomial for (E) , so
that P � Pi � Pd, and let j be such that P � Pj . We must have j < d, since
proposition 8. 7( c ) implies

degNP 6 degNP× n = d.

Now consider the equalizer v = eP , j , d 4 1 . After sufficiently many upward
shiftings, we may assume without loss of generality that P× v and v are trans-
parent. But then

P× v , j � v v jPj � v vdPd � v P× v , d ,

which contradicts the fact that P× v , j � P× v , d .
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Having proved our claim, let k = val NP and NP = Q (F ′) ν . S ince P is
exponential, we have P = NP + oex ( 1 ) , whence

P× x− 1 ↑ ↑ = ( (− 1 ) νQk − ν + oex ( 1 ) ) Fk e− ( k+ ν ) ex .

In other words, NP× x − 1 = (− 1 ) νQk − νFk . It follows that the equation

P( f ) = 0 ( f ≺ 1 )

has Newton degree k . We conclude by applying the induction hypothesis to
this equation. �

Proposition 8. 1 8. Assume that m is a non-algebraic starting monomial
for ( E) . Then, with the notations from proposition 8. 1 7 , there exists a unique
p∈ { 0 , � , l } such that

valNP× m = degNP× m = ip.

Moreover, p> 0⇒ eP , ip− 1 , ip ≺ m and p< l⇒ m ≺ eP , ip , ip+1 .

Proof. By proposition 8 . 7( c ) ,

p= min { q : m ≺ eP , i q , i q+1 ∨ q = l } = max { q : eP , iq − 1 , i q ≺ m ∨ q = 0}

fulfills the requirements. �

Exercise 8. 1 2 . Compute the starting terms for

e− ex f 3 + f ′ ′ f − ( f ′) 2 + x4 e− 3 x f ′ ′ ′ + e− ex = 0 .

Exercise 8. 1 3. Let P ∈ E{F } � be a differential polynomial with exponential
coefficients and assume that xα 0

� logl
α l x with α l � 0 is a starting monomial for

P( f ) = 0 . Then prove that l 6 wt P . Hint: if P is homogeneous, then show that

wt DP > wt DP× x α 0 ↑ > � > wt DP× x
α 0

� l o g l
α l x
↑ l .

Exercise 8. 1 4. Let K be a differential field and f ∈ K , P ∈ K {F } . If P( f ) = 0 ,
then show that there exists a homogeneous H ∈ K {F } of degree 6 wtP+ degP ,
such that H( e

∫
f ) = 0 .

Exercise 8. 1 5 . Prove that there are exactly d − valP algebraic starting terms
in Calg T for an equation ( E) of Newton degree d .

Exercise 8. 1 6 . Let T{F } d denote the space of homogeneous P ∈ T{F } of
degree d . Given P ∈ T{F } 2 , let ϕ (P) ∈ T [F, F † ] be the result of substituting
F † † = F † † † = � = 0 in the logarithmic decomposition of RP .

a) Show that ϕ (P) ∈ T [F, F ′ ] , when rewriting F † = F ′/F .
b) Show that ϕ : T{F } 2 → T [F, F ′ ] is an isomorphism.
c) What about higher degrees?
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8. 5 Quasi-linear equations

8. 5 . 1 Distinguished solutions

The equation (E) is said to be quasi- linear if its Newton degree is one.
A solution f to a quasi-linear equation is said to be distinguished if we have
fd ( f̃ − f ) = 0 for all other solutions f̃ to ( E) . Distinguished solutions are
unique: if f and f̃ are distinct distinguished solutions, then we would have
fd ( f̃ − f ) = f̃d ( f − f̃ ) = 0 , whence ( f − f̃ ) d ( f − f̃ ) = 0 , which is absurd.

Lemma 8.1 9. Assume that the equation (E) is quasi- linear and that the
coefficients of P can be expanded w. r. t. a plane transbasis B = ( b 1 , � , b n) .
Assume also that P � 1 , P0 ≺ b n 1 , and let

I = {m ∈ ( log b 1 )
N BC : m ≺ b n 1 } .

Then, considering L = −P1 , � b n 1 and R = P − P0 + L as operators on C[[ I]] ,
the equation (E) admits a distinguished solution f given by

f = L− 1 ( Id − R L− 1 ) − 1 P0 . ( 8 . 21 )

Proof. Since C [x ] [[ b 1 ; � ; b n− 1 ]] b n
α is stable under L and L− 1 for each α ∈ C ,

the operator R L− 1 is strictly extensive on C[[ I]] and supp RL− 1 is grid-
based. By theorem 6. 1 5 , the operator Id − R L− 1 therefore admits an inverse

( Id − R L− 1 ) − 1 = Id + R L + (R L− 1 ) 2 + � .

This shows that f is well-defined. In order to show that f is the distinguished
solution, assume that f̃ is another solution and let d = d f̂ − f . If d � b n 1 , then
we clearly have fd = 0 , since f ≺ b n 1 . If d ≺ b n 1 , then let

δ =
∑

m� b n d

( f̃ − f ) m m .

Since P( f̃ ) − P( f ) = 0 , we have L δ = 0 , so that d = dδ is the dominant
monomial of a solution to the equation L h = 0 . Hence fd = 0 , since f ∈
im L− 1 . �

Lemma 8. 20. Consider a quasi- linear equation ( E) whose coefficients can be
expanded w. r. t. a plane transbasis B = ( b 1 , � , b n) . Assume that P � P0 � P1

and NP = DP. Then (E) admits a distinguished so lution

f ∈ C[[ logn− 1 x ; � ; x ; b 1 ; � ; b n]] .

Proof. Modulo division of the equation by dP , we may assume without loss of
generality that P� 1 . We prove the result by induction over n. If n= 0 , then

P = DP = NP = α + βF
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for some α ∈ C and β ∈ C � . Hence f = − β

α
is the distinguished solution to

P( f ) = 0 . Assume now that n > 0 . By the induction hypothesis, there exists
a distinguished solution to the quasi-linear equation

P� b n 1 ( ϕ ) = 0 ( ϕ ≺ C[[ V]] ) ( 8 . 22 )

with ϕ ∈ C[[ logn− 2 x ; � ; x ; b 1 ; � ; b n− 1 ]] . By lemma 8. 1 9, the equation

P+ ϕ ↑n− 1 ( ψ ) = 0 ( ψ ≺ C[[ V]] ↑n− 1 )

admits a distinguished solution

ψ ∈ C [x ] [[ exp x , � , expn− 2 x ; b 1 ↑n− 1 ; � ; b n↑n− 1 ]]

with ψ ≺ b n 1 . Then the distinguished properties of ϕ and ψ imply that
f = ϕ + ψ ↓n− 1 is the distinguished solution to (E) . �

Theorem 8.21 . Assume that the equation ( E) is quasi- linear. Then it admits
a distinguished transseries solution f. Moreover, if the coefficients of P can
be expanded w. r. t. a plane transbasis B = ( b 1 , � , b n) , then

f ∈ C[[ logn x ; � ; x ; b 1 ; � ; b n]] .

Proof. If P0 = 0 , then 0 is the trivial distinguished solution of ( E) . Assume
therefore that P0 � 0 . Modulo some upward shiftings we may assume without
loss of generality that the coefficients of P and the transbasis B are exponen-
tial. Modulo a multiplicative conjugation and using proposition 8 . 1 4(a ) , we
may also assume that P0 � P1 . Now consider the ( 0 , 1 ) -equalizer e = eP , 0 , 1 for
P , which is also the only algebraic starting monomial. If

DP0 +P1 = α + βνF
( ν ) + � + βl F

( l )

with βν � 0 , then e = xν and

DP ↑ × e ↑ = α + βν ν
νF.

In other words, after one more upward shifting and a multiplicative con-
jugation with e↑ , we may also assume that NP = DP . We conclude by
lemma 8. 20. �

8. 5 . 2 General solutions

Lemma 8. 22 . Consider a quasi- linear equation (E) with exponential coeffi-
cients and a solution f which is not exponential. Let l be the largest monomial
in supp f which is not exponential. Then l = xk l ] for some k ∈ N and an
exponential monomial l ] ∈ HP+ f , 1 .

Proof. Consider the exponential transseries ϕ =
∑

m� l
fm m . Then

P+ ϕ ( f̃ ) = 0 ( f̃ ∈ C[[ V]] )
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admits f̃ = f − ϕ as a solution, so it is quasi-linear and l is a starting
monomial. Consequently, l is also a starting monomial for the equation L f̃ =
−P+ ϕ , 0 , where L = P+ ϕ , 1 . It follows that l = xk l ] for some exponential
monomial l ] ∈ HL .

Let us show that l ] ∈ H L̃ , where L̃ = P+ f , 1 . Modulo an additive conjugation
with ϕ , a multiplicative conjugation with l ] , and division of the equation
by dP , we may assume without loss of generality that ϕ = 0 , l ] = 1 and P � 1 .
S ince the equation P↑ × ek x ( f̃ ) ( f̃ 4 1 ) is quasi-linear, we have

P↑ × ek x = P0↑ + Lk ↑ ∂k ↑ × ek x + oex ( 1 ) .

It follows that

P+ f ↑ × ek x = P↑ × ek x , + f ↑ ek x = Lk ↑ ∂k ↑ × ek x + oex ( 1 ) ,

whence

P+ f ↑ = ∂k ↑ + oex ( e
− k x ) .

In other words, 1 is a starting monomial for the equation

( L̃ ↑ ) (h) = 0 .

We conclude that 1 ∈ H L̃ ↑ and 1 ∈ H L̃ . �

Theorem 8.23. Let f be a so lution to a quasi- linear equation (E) . If the
depths of the coefficients ofP are bounded by d, then the depth off is bounded
by d + r .

Proof. For each i, such that the depth of f is > d + i , let l i be the minimal
element in the support of f of depth > d + i . By the previous lemma, we
have l i↑ d+ i ∈ HP+ f , 1 ↑ d+ i

, whence l i ∈ HP+ f , 1
. Therefore, l i↑ d+ i ∈ xN E , where E

denotes the set of exponential transmonomials. The result now follows from
the fact that card HP+ f , 1

= dimHP+ f , 1
6 r . �

Corollary 8. 24. If the coefficients of P can be expanded w. r. t. a plane
transbasis ( b 1 , � , b n) , then the distinguished solution to (E) belongs to
C[[ logr− 1 x ; � ; x ; b 1 ; � ; b n]] .

Theorem 8. 25 . Let f be a solution to a quasi- linear equation ( E) . Then f
may be written in a unique way as

f = f∗ + h1 + � + hs ,

where f∗ is the distinguished solution to (E) , s 6 r, and

h1 � � � hs ∈ T �
are such that each hi − τ(hi) is the distinguished so lution to the equation

P+ f ∗+ h 1 + � + h i − 1 + τ ( h i ) ( ϕ ) = 0 ( ϕ ≺ C[[ V]] ) .
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Proof. Consider the sequence h1 , h2 , � with hi = τi + δi for all i , where

τi = τ( f − h1 − � − hi− 1 )

and δi is the distinguished solution to

P+ f ∗+ h 1 + � + h i − 1 + τi ( ϕ ) = 0 ( ϕ ≺ C[[ V]] ) .

Since the equation

P+ f ∗+ h 1 + � + h i − 1 + τi ( ϕ ) = 0 ( ϕ ≺ τi)

is quasi-linear ( it admits f − h1 − � − hi− 1 − τi as a solution) , δi is also the
distinguished solution to this latter equation, whence δi ≺ τi . By induction, it
follows that h1 � h2 � � .

Let us now prove that the sequence h1 , h2 , � has length at most r. Assume
the contrary and consider

P̃ = P+ f ∗+ h 1 + � + hr+1 .

Then

P̃ (− hi − � − hr+ 1 ) = 0

for all i ∈ { 1 , � , r + 1 } , so dh 1 , � , dhr+ 1 are starting monomials for

P̃ ( f̃ ) = 0 ( f̃ ≺ C[[ V]] ) .

Since this equation is quasi-linear and P̃0 = 0 , it follows that dh 1 , � , dhr+1 are
also starting monomials for the linear differential equation

L̃ f̃ = P̃1 ( f̃ ) = 0 .

In other words, { dh 1 , � , dhr+1 } ⊆ H L̃ . But then

r + 1 6 card H L̃ = dimHL̃ 6 r. �

Exercise 8. 1 7. If f is the distinguished solution to a quasi-linear equation
( E) and ϕ P f a truncation of f , then show that f̃ = f − ϕ is the distinguished
solution to

P+ ϕ ( f̃ ) = 0 ( f̃ ∈ C[[ V]] ) .

Exercise 8. 1 8. Assume that ( E) is quasi-linear, with distinguished solution
f . Show that the equation P× m ( g) = 0 ( g ∈ m− 1 V) is also quasi-linear, with
distinguished solution g= m− 1 f . And if m is replaced by a transseries?

Exercise 8. 1 9 . Show that f ∈ C [[ logexpo ( b n ) − 1 x ; � ; x ; b 1 ; � ; b n]] in the-
orem 8. 21 .

Exercise 8. 20 . Show that the dependence of f on logd+ r− 1 x is polynomial in
theorem 8. 23 .
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Exercise 8. 21 . Give an example of a quasi-linear equation ( E) such that the set

{d g − f : P( f ) = P( g) = 0 ∧ f , g ∈ C [[ V]] ∧ g � f }
is infinite.

Exercise 8. 22 . Can you give an example for which

f ∈ C[[ logr− 1 x ; � ; x ; b 1 ; � ; b n]] \ C [[ logr− 2 x ; � ; x ; b 1 ; � ; b n]]

in corollary 8 . 24?

8. 6 Unravelling almost multiple solutions

As pointed out in the introduction, “unravelling” almost multiple solutions is a
more difficult task than in the algebraic setting. As our ultimate goal, a total
unravel ling is a refinement

f = ϕ + f̃ ( f̃ ≺ ṽ ) , ( 8 . 23)

such that deg4 ṽ P= d and deg≺ ṽ P < d . Unfortunately, total unravellings can
not be read off immediately from the equation or its derivatives. Nevertheless,
we will show how to “approximate” total unravellings by so called partial
unravellings which are constructed by repeatedly solving suitable quasi-linear
equations.

8. 6. 1 Partial unravellings

In order to effectively construct a total unravelling, consider a starting mono-
mial m such that NP× m admits a root of multiplicity d . Assume that l ∈ Z is
sufficiently large so that P× m is exponential and

NP× m ↑ l = DP× m ↑ l
= a (F − c) d− k (F ′) k

for some a , c ∈ C � and k . Let

Q =





(
∂ d − 1 P× m ↑ l

(∂F ) d − 1 − k (∂F ′ ) k

)
× m− 1

�
l
if k < d

(
∂ d − 1 P× m ↑ l

(∂F ′ ) d − 1

)
× m− 1

�
l

if k = d
( 8 . 24)

and consider a refinement ( R) such that

AU1 . The Newton degree of ( RE) equals d .
AU2. Q ( ϕ ) = 0 and dϕ = m .
AU3. We have Ṽ = {m ∈ T: m ≺ h } for some starting monomial for

Q̃ (h) = Q+ ϕ (h) = 0 ( h ∈ C[[ V]] ) .

Then we call ( R) an atomic unravel ling .
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Proposition 8. 26. Let S be a set of atomic unrave llings for (E) . Then S
admits a finest element.

Proof. Assume for contradiction that there exists an infinite sequence

f = ϕ0 + f1 ( f1 ≺ v 1 )
f = ϕ0 + ϕ 1 + f2 ( f2 ≺ v 2 )�

of finer and finer atomic unravellings in S , so that

ϕ i ≺ v i 4 ϕ i− 1

for all i > 0 . Setting

ψ = ϕ0 + � + ϕr+ 1 ,

it follows for all i > 0 that

Q+ ψ (− ϕ i − � − ϕr+ 1 ) = 0 .

Consequently, dϕ i is a starting monomial for Q+ ψ , 1 (h) = 0 and i ∈ { 1 , � , r+ 1 } .
But this is impossible, since card HQ+ ψ , 1 6 r . �

Given an atomic unravelling ( R) followed by a second refinement (RR)
such that the Newton degree of

P̃̃ ( f̃
˜
) = P̃+ ϕ̃ ( f̃

˜
) = 0 ( f̃

˜ ∈ C[[ Ṽ˜ ]] )

equals d, we say that (RR) is compatib le with (R) if ϕ̃ � 0 , Ṽ
˜ ≺ ϕ̃ and d ϕ̃ is

not a starting monomial for

Q̃ (h) = 0 ( h ∈ C[[ Ṽ]] ) . ( 8 . 25)

If the second refinement (RR) is not compatible with (R) , then we may con-
struct a finer atomic unravelling

f = ϕ + ψ + f̃ ( f̃ ≺ ψ )

such that τ( ψ ) = τ( ϕ̃ ) . Indeed, it suffices to take ψ = τ( ϕ̃ ) + h , where h is the
distinguished solution to the equation

Qϕ+ τ ( ϕ̃ ) (h) = 0 ( h ≺ ϕ̃ ) .

In other words, during the construction of solutions of ( E) we “follow” the solu-
tions to Q (h) = 0 as long as possible whenever the Newton degree remains d .

A partial unravel ling is the composition of a finite number l of compatible
atomic unravellings. We call l the length of the partial unravelling. By con-
vention, the identity refinement

f = f̃ ( f̃ ∈ C[[ V]] )

is a partial unravelling of length 0 . We have shown the following:
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Proposition 8. 27. Assume that ( E) has Newton degree d . Given a partial
unravel ling ( R) and a starting term τ̃ for (RE) ofmultiplicity d, there exists
a finer partial unravel ling

f = ϕ + ϕ̃ + f̃
˜

( f̃
˜ ≺ τ̃ )

with ϕ̃ ∼ τ̃. �

8. 6. 2 Logarithmic slow-down of the unravelling process

The introductory example ( 8 . 1 ) shows that an atomic unravelling does not
necessarily yield a total unravelling. Nevertheless, when applying a succession
of compatible atomic unravellings, the following proposition shows that the
corresponding monomials m change by factors which decrease logarithmically.

Theorem 8. 28. Consider an atomic unravel ling (R) , fo llowed by a compat-

ib le refinement (RR) . Then, denoting m̃ = d ϕ̃ , there exists an m̃̃ ∈ Ṽ̃ with

m̃

m̃̃

�
log

m

m̃
.

Proof. Modulo some upward or downward shiftings, we may assume without
loss of generality that l = 0 in ( 8 . 24) , so that P× m is exponential. Modulo
a multiplicative conjugation with m and division of P by dP , we may also

assume that m = 1 and that P� 1 . By proposition 8 . 1 it follows that P̃ � P̃̃ �
Q � Q̃ � 1 .

Let us first show that m̃ � ex . Assuming the contrary, we have either
ϕ − c

�
ex or ϕ − c � ex , where c = cϕ . In the first case, v = dϕ − c

�
ex is

a starting monomial for

Q+ c( f̃ ) = 0 ( f̃ ≺ 1 ) ,

and DQ+ c
∈ C FN (F ′)N . S ince Q+ c is exponential, it follows that NQ+ c

=

DQ+ c , as well as NQ+ c , × v = NDQ+ c
, × v , by proposition 8. 8 . So v is also a

starting monomial for the equation NQ+ c (h) = 0 (h ≺ 1 ) . But this is impos-
sible, since NQ+ c

∈ CFN (F ′)N . In the second case, v = m̃
�

ex is a starting
monomial for

P+ c( f̃ ) = 0 ( f̃ ≺ 1 ) .

Again P+ c is exponential and DP+ c ∈ CFN (F ′)N , so we obtain a contradiction
in a similar way as above.

Since m̃ is not a starting monomial for ( 8 . 25) , we have

Q̃ ( ϕ̃ ) ↑ p = Q̃× m̃( ϕ̃ / m̃) ↑ p � d ( Q̃× m̃↑ p)

8. 6 Unravelling almost multiple solutions 1 99



for a sufficiently large p∈ N such that m↑ p, Q̃ ↑ p and ϕ̃ ↑ p are exponential and
DQ̃ × m ↑ p = NQ̃ × m ↑ p . Using proposition 8. 3 and the fact that m̃ � ex , it follows
that

Q̃ ( ϕ̃ ) � log m̃
∗ d ( Q̃× m̃) .

On the other hand,
d( Q̃× m̃)

d( Q̃ ) m̃

�
m̃ †

�
log m̃ ,

whence

Q̃ ( ϕ̃ ) < log m̃
∗ d( Q̃ ) m̃ = m̃ .

We conclude that

P̃̃d− 1 < log m̃
∗ m̃ ,

since Q̃ ( ϕ̃ ) is the coefficient of F d− 1 − k (F ′) k in P̃̃ for some k .
Now let n be a monomial with n ≺ log m̃

∗ m̃, so that n ≺ log n
∗ m̃ and

P̃̃d− 1 � log n
∗ n. Then, proposition 8 . 2 implies

P̃̃× n , d− 1 � log n
∗ P̃̃d− 1 nd− 1 � log n

∗ nd � log n
∗ P̃̃× n , d ,

From propositions 8 . 3 and 8. 8 , it therefore follows that the degree of N
P̃̃× n

cannot exceed d − 1 . We conclude that there exists an m̃̃ = n ∈ Ṽ
˜ with

m̃̃ < log m̃
∗ m̃ ,

since ( 8 . 26) has Newton degree d . �

8. 6. 3 On the stagnation of the depth

This section deals with two important consequences of proposition 8. 28 .
Roughly speaking, after one atomic unravelling, the terms of degree > d
do no longer play a role in the unravelling process. If P̃ is exponential, and
modulo the hypothesis that P̃d(h) = 0 only admits exponential starting mono-
mials, it will follow that the process only involves monomials in xN E , where E
denotes the set of exponential transmonomials.

Lemma 8. 29. Consider an equation ( E) ofNewton degree d and assume that
P0 , � , Pd− 1 ∈ C [x ] [[ E ]] and Pd ∈ C[[ E ]] . Then any non-differential starting
term ofmultiplic ity d is in C � xN E .

Proof. Let c m be a non-differential starting term of multiplicity d, so that
NP× m = a (F − c) d for some a ∈ C . Then m is the ( i , j) -equalizer for all
0 6 i < j 6 d . In particular, c m is a starting term for the linear equation
P0 + P1 ( f ) = 0 . Hence, m ∈ xN E , by proposition 7. 8 and the incomplete
transbasis theorem. �
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Theorem 8.30. Consider an atomic unrave lling ( R) for an equation (E) of
Newton degree d , fo llowed by a compatib le refinement ( RR) such that ϕ̃

Ṽ̃
= 0 .

Assume that P and ϕ are exponential and that P̃d(h) = 0 admits only expo-
nential starting monomials. Then ϕ̃ ∈ C [x ] [[ E ]] .

Proof. If ϕ̃ = 0 , then we have nothing to prove, so assume that ϕ̃ � 0 . By
U1 and lemma 8. 29, it follows that d ϕ̃ ∈ xN E . Modulo a multiplicative
conjugation with an element in E and the division of P̃ by dP̃ , we may
therefore assume without loss of generality that m̃ ∈ xN and P̃ � Q̃ � 1 . Notice
that m/ m̃ � ex since m � m̃ and m is exponential.

By theorem 8. 28 , our assumption ϕ̃
Ṽ̃

= 0 implies

m̃

v

�
log

m

m̃

for all v ∈ supp ϕ̃ . S ince m � 1 is exponential, this relation simplifies to

v
�

logm .

Now assume that ϕ̃
�
C [x ] [[ E ]] , let n ∈ supp ϕ̃ be maximal with ϕ̃

�
xN E , and

let ψ =
∑

u� n
ϕ̃u u. S ince τϕ � m is a starting term for ( E) of multiplicity d,

we have P× m , i 4 P× m , d for all i > d . It follows that P̃× m , i 4 P̃× m , d , P̃i 4m P̃d/m

and P̃+ ψ , i 4m P̃+ ψ , d/m for all i > d . Now consider

T=
∑

u � m

P̃+ ψ , u u.

By what precedes, we have deg T = d . Furthermore, T0 , � , Td− 1 ∈ C [x ] [[ E ]]
and Td ∈ C[[ E ]] . By proposition 8 . 8 , n is a starting monomial for

T( g) = 0 ( g ≺ supp ψ ) .

Moreover, n is a differential starting monomial, by lemma 8. 29 . Since

Td =
∑

u � m

P̃d , u u,

proposition 8. 8 also implies that n is a starting monomial for P̃d(h) = 0 . Our
assumptions thus result in the contradiction that m ∈ E . �

8. 6. 4 Bounding the depths of solutions

If we can bound the number of upward shiftings which are necessary for satis-
fying the conditions of proposition 8. 30, then the combination of propositions
8. 28 and 8. 30 implies that any sequence of compatible atomic unravellings
is necessarily finite. Now the problem of finding such a bound is a problem
of order r − 1 , by proposition 8 . 1 6. Using induction, we obtain the following
theorem:

8. 6 Unravelling almost multiple solutions 201



Theorem 8.31 . Consider an equation (E) ofNewton degree d and weight w ,
with exponential coefficients. If f ∈ T is a normalized solution to (E) modulo
an initial segment W  V , then f has depth 6 Br , d , w , where B0 , d , w = 0 and
Br , d , w = 2 d ( 4 w ) r− 1 if r > 0 .

Proof. We prove the theorem by a double recursion over r and d . If r= 0 , then
the theorem follows from corollary 3. 9 . In the case when d = 0 we also have
nothing to prove, since there are no solutions. So assume that r > 0 , d > 0 and
that we have proved the theorem for all strictly smaller r or for the same r
and all strictly smaller d . We may also assume that f � 0 , since the theorem
is clearly satisfied when f = 0 .

Let m ∈ W \ V be the dominant monomial of f . If f is algebraic, then
proposition 8. 1 4 implies that its depth is bounded by w . If m is differential,
then r > 0 and m † is a root of RPi modulo o( 1

x log x log log x ) for some i . Hence,
its depth is bounded by Ar− 1 , w = Br− 1 , w , w− 1 > w , because of the induction
hypothesis. Modulo Ar− 1 , w upward shiftings and a multiplicative conjugation
with m, we may thus reduce the general case to the case when m = 1 and
NP = DP . It remains to be shown that f has depth 6 Br , d , w − Ar− 1 , w .

If c= cf is a root of multiplicity < d of NP , then the Newton degree of

P+ c( f̃ ) = 0 ( f̃ ≺ m)

is < d by proposition 8 . 1 3 and f − c is a root of this equation modulo W.
The induction hypothesis now implies that f − c has depth 6 Br , d− 1 , w 6
Br , d , w − Ar− 1 , w .

Assume now that c is a root of multiplicity d of NP . Consider a finest
atomic unraveling (R) for which f̃ = f − ϕ ∈ C[[ Ṽ]] . Then ϕ ↑ r and P̃ ↑ r are
exponential, by theorem 8. 23. Let ϕ̃ P f̃ be the longest truncation of f̃ , such
that the Newton degree of

P̃̃ ( f̃
˜
) = P̃+ ϕ̃ ( f̃

˜
) = P+ ϕ+ ϕ̃ ( f̃

˜
) = 0 ( f̃

˜ ∈ C[[ V]] ∧ f̃˜ ≺ supp ϕ̃ )

is equal to d . By the induction hypothesis, P̃d↑ r+Ar − 1 , w only admits exponen-
tial solutions. Now theorem 8. 30 implies that ϕ̃ has depth 6 r + Ar− 1 , w + 1 .
If f̃̃ = f̃ − ϕ̃ = 0 , then we are done. Otherwise, τ

f̃̃
is a starting term of

multiplicity < d for P̃̃ , by the definition of ϕ̃ . By what precedes, we conclude

that f̃˜ has depth 6 r + Ar− 1 , w + 1 + Ar− 1 , w + Br , d− 1 , w 6 Br , d , w − Ar− 1 , w . �
Corollary 8. 32 . Consider an equation (E) of Newton degree d and a non-
empty set S ofpartial unravel lings for ( E) . Then S admits a finest element.

Proof. Let us first assume for contradiction that there exists an infinite
sequence of compatible atomic unravellings

f = f0 = ϕ0 + f1 ( f1 ≺ v 1 )

f1 = ϕ 1 + f2 ( f2 ≺ v 2 )
�
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Modulo a finite number of upward shiftings, it follows from theorem 8. 31
that we may assume without loss of generality that the coefficients of P+ ϕ 0

are exponential and that P+ ϕ 0 , d only admits exponential solutions. Then
theorem 8. 30 implies that ϕ i ∈ C [x ] [[ E ]] for all i > 1 . From theorem 8. 28 it
also follows that ϕ i+1

ϕ i+2

�
log ϕ i

ϕ i+1
for all i > 1 . But this is impossible.

Now pick a partial unravelling (R) in S of maximal length. Then any finer
partial unravelling in S is obtained by replacing the last atomic unravelling
which composes (R) by a finer one. The result now follows from proposi-
tion 8. 26 . �

Exercise 8. 23. In theorem 8. 30, show that whenever m is a starting monomial
for Pd(h) = 0 of the form ( logd x ) α d � xα 0 m] with m] ∈ E and αd � 0 , then
d 6 wt P − 1 .

Exercise 8. 24. Improve the bound in theorem 8. 31 in the case when r = 1 .

Exercise 8. 25 . Show how to obtain a total unravelling ( 8 . 23) a posteriori , by
computing Q w. r. t . the monomial ṽ instead of m.

8. 7 Algorithmic resolution

In this section, we will give explicit, but theoretical algorithms for solving ( E) .
In order to deal with integration constants, we will allow for computations
with infinite sets of transseries. In practice, one rather needs to compute with
finite sets of “parameterized transseries”. However, the development of such a
theory ( see [vdH97, vdH01 a] ) falls outside the scope of the present book.

8. 7. 1 Computing starting terms

Theorem 8. 6 implies that we may compute the Newton polynomial of a dif-
ferential polynomial P ∈ T{F } � using the algorithm below. Recall that a
monomial m is a starting monomial if and only if NP× m

�
CFN .

Algorithm NP

Input: P ∈ T{F } � .
Output: The differential Newton polynomial NP of P .

1 . If P is not exponential or DP

�
C [F ] (F ′)N , then return NP ↑ .

2 . Return DP .

The algebraic starting monomials can be found by computing all equalizers
and keeping only those which are starting monomials. The equalizers are
computed using the method from the proof of proposition 8 . 1 4.
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Algorithm eP , i , j

Input: P ∈ T{F } � and integers i , j with Pi � 0 and Pj � 0 .
Output: The ( i , j) -equalizer eP , i , j for P .

1 . If P is not exponential or DPi+Pj

�
C [F ] (F ′) N , then return eP ↑ , i , j↓ .

2 . If d (Pi) = d (Pj) then return 1 .

3 . Let m � d (Pi) /d (Pj)
j − i√ and return m eP× m , i , j .

Algorithm alg_st_mon(P, V)

Input: P ∈ T{F } � and an initial segment V ⊆ T.
Output: The set of algebraic starting monomials for ( E) .

1 . Compute M � { eP , i , j : i < j 6 degP ∧ Pi � 0 ∧ Pj � 0} ∩ V.
2 . Return {m ∈ M: NP× m

�
CFN} .

In fact, using proposition 8 . 1 7, it is possible to optimize the algorithm so that
only a linear number of equalizers needs to be computed. This proposition
also provides us with an efficient way to compute the Newton degree.

Algorithm Newton_degree (P, V)

Input: P ∈ T{F } � and an initial segment V ⊆ T.
Output: The Newton degree of (E) .

1 . Compute M � alg_st_mon(P, V) .
2 . Return max {degNP× m : m ∈ M} ∪ {valP } .

The algorithm for finding the differential starting terms is based on propo-
sition 8 . 1 6 and a recursive application of the algorithm ade_solve (which
will be specified below) in order to solve the Riccati equations modulo
o(

1

x log x log log x �

) .

Algorithm di ff_st_mon(P, V)

Input: P ∈ T{F } � and an initial segment V ⊆ T.
Output: The set of differential starting monomials for ( E) .

1 . If P is homogeneous, then
Let G � ade_solve (RP , T, {m ∈ T:

∫
m ≺ 1 } )

Return { e
∫
g : g ∈ G } ∩ V.

2 . Let Mi � di ff_st_mon(Pi , V) for each i 6 degP with Pi � 0 .
3 . Return {m ∈ Mi : i 6 degP ∧ Pi � 0 ∧ NP× m

�
CFN} .

Having computed the sets of algebraic and differential starting monomials,
it suffices to compute the roots of the corresponding Newton polynomials in
order to find the starting terms.
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Algorithm st_term(P, V)

Input: P ∈ T{F } � and an initial segment V ⊆ T.
Output: The set of starting terms for ( E) .

1 . Let D � alg_st_mon(P, V) ∪ di ff_st_mon(P, V) .
2 . Return { cm ∈ C � D : NP× m ( c) = 0} .

8. 7. 2 Solving the differential equation

Let us now show how to find all solutions to ( E) and, more generally, all
normalized solutions of ( E) modulo an initial segment W⊆ V. First of all, 0 is
a solution if and only if the Newton degree of P( f ) = 0 ( f ∈ C[[ W]] ) is > 0 .
In order to find the other solutions, we first compute all starting terms τ in
V \ W. For each such τ , we next apply the subalgorithm ade_solve_sub in
order to find the set of solutions which starting term τ .

Algorithm ade_solve (P, V, W)
Input: P ∈ T{F } � and initial segments W ⊆ V ⊆ T.
Output: The set of normalized solutions to ( E) modulo W.

1 . Compute T � st_term(P, V) \ CW.
2 . Let S � ⋃

τ ∈ T ade_solve_sub(P, τ , V, W) .
3 . If Newton_degree (P, W) > 0 then S � S ∪ { 0} .
4. Return S .

Let d be the Newton degree of ( E) . In order to find the normalized solutions
with starting terms τ of multiplicity < d, we may simply use the refinement

f = τ + f̃ ( f̃ ≺ τ)

and recursively solve

P+ τ( f̃ ) = 0 ( f̃ ≺ τ) .

The other starting terms require the unravelling theory from section 8 . 6 : we
start by computing the quasi-linear differentiated equation

Q ( f ) = 0 ( f ∈ C[[ V]] ) , ( 8 . 26)

with Q as in ( 8 . 24) and we will “follow” solutions to this equation as long as
possible using the subalgorithm unravel .

Algorithm ade_solve_sub(P, τ , V, W)
Input: P ∈ T{F } � , initial segments W⊆ V⊆ T and a starting term τ= cm ∈

C � (V \W) for (E) .
Output: The set of normalized solutions to ( E) modulo W with dominant

term τ .

1 . Let µ � valNP× m , + c and d � Newton_degree (P, V) .
2 . If µ < d, then return τ + ade_solve (P+ τ , {n ∈ T: n≺ m} , W) .
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3. Compute Q using ( 8 . 24) , with minimal l , and let ϕ = τ + h , where h is the
distinguished solution to

Q+ τ(h) = 0 (h ≺ τ) . ( 8 . 27)

4. Return ϕV \W + unravel (P+ ϕ , Q+ ϕ , {n ∈ T: n ≺ m} , W) .

The algorithm unravel is analogous to ade_solve , except that we now
compute the solutions with a given starting term using the subalgorithm
unravel_sub instead of ade_solve_sub .

Algorithm unravel (P, Q , V , W)

Input: P, Q ∈ T{F } � and initial segments W ⊆ V ⊆ T.
Output: The set of normalized solutions to ( E) modulo W with dominant

term τ .

1 . Compute T � st_term(P, V) \ CW.
2 . Let S � ⋃

τ ∈ T unravel_sub(P, Q , τ , V , W) .
3 . If Newton_degree (P, W) > 0 , then S � S ∪ { 0} .
4. Return S .

In unravel_sub , we follow the solutions to ( 8. 26) as far as possible. More
precisely, let Q be as in ( 8 . 24) . Then the successive values of Q for calls
to unravel and unravel_sub are of the form Q+ h 1 , � Q+ h 1 + � + h l , where
h1 � � � hl satisfy Q (h1 + � + hi) = 0 for each i ∈ { 1 , � , l } . At the end, the
refinement

f = h1 + � + hl + f̃ ( f̃ ≺ hl ) ( 8 . 28)

is an atomic unravelling for the original equation. Moreover, at the recursive
call of ade_solve_sub , the next refinement will be compatible with ( 8 . 28) .

Algorithm unravel_sub(P, Q , τ , V , W)

Input: P, Q ∈ T{F } � , initial segments W ⊆ V ⊆ T and a starting term
τ = cm ∈ C � (V \W) for (E) .

Output: The set of normalized solutions to ( E) modulo W with dominant
term τ .

1 . If NQ × m
( c) � 0 , then return ade_solve_sub(P, τ , V, W) .

2 . Let ϕ = τ + h , where h is the distinguished solution to ( 8. 27) .
3. Return ϕV \W + unravel (P+ ϕ , Q+ ϕ , {n ∈ T: n ≺ m} , W) .

The termination of our algorithms are verified by considering the three pos-
sible loops. In successive calls of solve and solve_sub we are clearly done,
since the Newton degree strictly decreases. As to successive calls of unravel
and unravel_sub, we have l 6 r in ( 8 . 28) , by theorem 8. 25. Finally, any global
loop via solve_sub and unravel , during which the Newton degree d remains
constant, corresponds to a sequence of compatible atomic unravellings. But
such sequences are necessarily finite, by theorems 8 . 25 , 8 . 30 and 8. 31 .
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Exercise 8. 26. Assume that P ∈ C[[[ x ]]] {F } and that we search for zeros of ( E)
in the set of well-based transseries of finite exponential and logarithmic depths
C [ [ [x ] ] ] .

a) Given Q ∈ C [ [ [x ] ] ] {F } , show there exists an l with DQ ↑ l ∈ C [F ] (F ′ )N . Give
a definition for the differential Newton polynomial NQ of Q . Generalize
proposition 8. 1 0 .

b) Given i < j with Pi � 0 and Pj � 0 , prove that there is at most one well-based
transmonomial m such that N(Pi +Pj ) × m

is non-homogeneous.
c) Show that proposition 8 . 1 6 still holds for well-based transmonomials.
d) Show that the set of solutions to ( E) in C [[[ x ]]] as computed by ade_s olve

coincides with the set of solutions to ( E) in C [ [ [x ] ] ] .
e) Show that ζ (x ) ,

ϕ (x ) =
1

x
+

1

xp +
1

xp 2 + �

and

ψ(x ) =
1

x
+

1

e log
2 x

+
1

e log
4 x

+ �

do not satisfy an algebraic differential equation with coefficients in T .
f) Does ϕ (x ) satisfy an algebraic differential equation with coefficients in

T{ ζ (x ) }? And does ψ(x ) satisfy an algebraic differential equation with coef-
ficients in T{ ζ (x ) , ϕ (x ) } ?

8. 8 Structure theorems

8. 8. 1 Distinguished unravellers

Theorem 8.33. Let (E) be an equation ofNewton degree d > 1 . Then there
exists a unique ϕ ∈ C[[ V]] which is longest for P with the properties that

a ) degṼ P+ ϕ = d , for Ṽ = {m ∈ V: m ≺ supp ϕ } .
b ) For any m ∈ supp ϕ , the term ϕm m is an algebraic starting term for

P+ ϕ� m ( f̃ ) = 0 ( f̃ 4 m) . ( 8 . 29)

Proof. Consider the set S of all partial unravellings

f = ξ + f̃ ( f̃ ∈ C[[ Ṽ]] ) , ( 8 . 30)

such that ϕ = ξV\ Ṽ satisfies ( a ) and ( b ) . S ince S contains the identity
refinement, we may choose ( 8. 30) to be finest in S , by corollary 8 . 32 . We
claim that ϕ is maximal for P , such that ( a ) and ( b ) are satisfied.

Indeed, assume for contradiction that some ψ B ϕ also satisfies ( a ) and ( b ) .
Then c m = τ( ψ − ϕ ) is the unique algebraic starting term for ( 8 . 29) and it
has multiplicity d . By proposition 8 . 27, there exists a partial unravelling

f = ξ + ξ̃ + f̃
˜

( f̃
˜ ≺ ξ̃ ) ,
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which is finer than ( 8 . 30) , and such that ξ̃ ∼ c m . By what precedes, ϕ̃ =
( ξ + ξ̃ ) < ξ̃ = ϕ + c τ satisfies ( a ) . Moreover, ϕ̃ satisfies ( b ) , since ψ Q ϕ̃ does.
This contradicts the maximality of ( 8 . 30) .

Let us now prove the uniqueness of ϕ . Assume for contradiction that
ψ � ϕ with ψ R ϕ and ϕ R ψ also satisfies ( a ) and ( b ) . Let δ = ψ − ϕ and
ξ =

∑
m� δ ϕm m . Then

P+ ξ( f̃ ) = 0 ( f̃ ≺ supp ξ)

admits both τ( ϕ − ξ) and τ( ψ − ξ) as algebraic starting terms of multiplicity
d . But this is impossible. �

The transseries ϕ from the theorem is called the distinguished unrave ller
for (E) . It has the property that for any algebraic starting term τ̃ for

P+ ϕ ( f̃ ) = 0 ( f̃ 4 supp ϕ ) , ( 8 . 31 )

the refinement

f = ϕ + τ̃ + f̃
˜

( f̃
˜ ≺ τ̃ )

is a total unravelling.

Remark 8. 34 . It is easily checked that theorem 8. 33 also holds for d = 1 , and
that ϕ coincides with the distinguished solution of ( E) in this case.

Recall that L stands for the group of logarithmic monomials.

Proposition 8. 35. Let ϕ be as in theorem 8. 33 and assume that P ∈
C[[ BC ]] {F } � for a plane transbasis B = ( b 1 , � , b n) . Then ϕ ∈ C[[ L BC ]] .

Proof. Assume the contrary, let m ∈ supp ϕ be maximal, such that m
�

C[[ L BC ]] , and let ψ =
∑

n� m
ϕn n. Modulo a finite number of upward shift-

ings, we may assume without loss of generality that P and ψ are exponential.
But then m = dϕ − ψ is an algebraic starting monomial for

P+ ψ ( f̃ ) ( f̃ ≺ supp ψ ) .

By remark 8 . 1 5, we conclude that m ∈ C[[ L BC ]] . �

8. 8. 2 Distinguished solutions and their existence

A solution ϕ ∈ T to ( E) is said to be distinguished , if for all m ∈ supp ϕ , the
term ϕm m is an algebraic starting term for the equation

P+ ϕ ( f̃ ) = 0 ( f̃ 4 m) .

If d is odd, then there exists at least one distinguished solution.
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Theorem 8.36. Any equation ( E) of odd Newton degree admits at least
one distinguished so lution in T . Moreover, if the coefficients of P can be
expanded w. r. t. a plane transbasis B = ( b 1 , � , b n) , then any such solution is
in C[[ L BC]] .

Proof. We prove the theorem by induction over d . For d= 1 , the result follows
from corollary 8 . 24. So let d > 1 and assume that the theorem holds for all
smaller d .

Now proposition 8 . 1 7 implies that there exists at least one starting mono-
mial and equalizer e ∈ L BC such that degNP× e

− valNP× e
is odd. It follows

that P = A (F ′) ν for some A ∈ C [F ] of odd degree. Since C is real closed, it
follows that A admits a root c of odd multiplicity d̃ .

If d̃ < d, then proposition 8. 1 3 and the induction hypothesis imply that

P̃ ( f̃ ) = P+ c e ( f̃ ) = 0 ( f̃ ≺ e ) ( 8 . 32 )

admits a distinguished solution f̃ = C[[ L BC ]] , whence

f = c e + f̃ ∈ C[[ L BC ]]

is a distinguished solution to ( E) . Inversely, if f � 0 is a distinguished solution
to (E) whose dominant term c e has multiplicity d̃ < d , then e is necessarily
an equalizer, and

f̃ = f − c e ∈ C[[ L BC ]]

a distinguished solution to ( 8. 32 ) , whence f ∈ C[[ LC ]] .
If d̃ = d, then let ϕ be the distinguished unraveller for ( E) , so that the

equation

P̃ ( f̃ ) = P+ ϕ ( f̃ ) = 0 ( f̃ ≺ supp ϕ ) ( 8 . 33)

does not admit an algebraic starting term of multiplicity d . Modulo some
upward shiftings and by what precedes, it follows that ( 8 . 33) admits a distin-
guished solution f̃ ∈ C[[ L BC ]] . We conclude that

f = ϕ + f̃ ∈ C[[ L BC ]]

is a distinguished solution to ( E) . Inversely, we have ϕ P f for any distin-
guished solution f of ( E) , and f̃ = f − ϕ is a distinguished solution to ( 8 . 33) ,
whence f ∈ C[[ L BC ]] . �

8. 8. 3 On the intrusion of new exponentials

In this chapter, we have shown how to solve ( E) directly as an equation
in F, � , F ( r ) . A more advanced method for solving ( E) is to use integral
refinements

f = e
∫
ϕ+ f̃ ( f̃ ∈ C[[ Ṽ]] )
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in addition to usual refinements. This gives a better control over the number
of exponentials and integration constants introduced in the resolution process,

because e
∫
ϕ+ f̃ is often “strongly transcendental” over the field generated by

the coefficients of P , so that the equation rewritten in f̃ has lower order. A full
exposition of these techniques is outside the scope of this book, but the proof
of the following theorem will illustrate some of the involved ideas to the reader.

Theorem 8.37. Consider P ∈ C[[ BC ]] {F } � of order r for some plane
transbasis B . Then for each exponential solution f ∈ T to (E) , there exists
a transbasis B̂ for f with card B̂ \ B 6 r .

Proof. Let us construct sequences f0 , � , fl ∈ T , ϕ0 , � , ϕ l ∈ T and x1 , � , xl ∈ T
such that

1 . Xi = B ∪ { x1 , � , xi } is totally ordered for
�

.
2 . ϕ i ∈ C[[ Xi

C ]] for each i = { 0 , � , l } (where we understand that X0 = B ) .

We take f0 = f . Given i > 0 , let ϕ i be the longest truncation of fi , such that
ϕ i ∈ C[[ Xi

C ]] . If ϕ i = fi , then the sequence is complete. Otherwise, we let

xi+ 1 = d( fi − ϕ i)
fi+ 1 = ( fi − ϕ i)

† .

If B̃ is an arbitrary transbasis for f , then

C[[ X0
C]]  �  C[[ Xl

C ]] ⊆ C[[ B̃C]] ,

so that the construction finishes for l 6 card B̃ \ B . Setting B̂ = Xl , we also
observe that log xi P

∫
fi ∈ C[[ B̂ ]] for all i ∈ { 1 , � , l } . It follows that B̂ is

a transbasis for f .
Let us now consider another sequence y 1 , � , y l with

y i+ 1 =
fi − ϕ i

c( fi − ϕ i)
∼ xi+ 1 ,

so that

fi+ 1 = y i+ 1
† .

Denoting Y i = B ∪ { y 1 , � , y i } for all i ∈ { 1 , � , l } , we notice that C[[ Y l
C ]] is

isomorphic to C[[ Xl
C ]] . Now for all i ∈ { 1 , � , l − 1 } , we have

y i
′ = y i y i

† = y i fi = y i ( ϕ i + c( fi − ϕ i) y i+ 1 ) ∈ C[[ Y i+ 1
C ]] .

By strong linearity, it follows that for all g ∈ C[[ Y i
C ]] and i ∈ { 0 , � , l − 1 } , we

have g ′ ∈ C[[ Y i+ 1
C ]] . Moreover, if

g ∈ C[[ Y i− 1
C ]] ⊕ C[[ Y i− 1

C ]] � y i ,

then the above formula also yields

g ′ ∈ C[[ Y i
C ]] ⊕ C[[ Y i

C ]] � y i+ 1 .
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In particular,

f ( i) ∈ C[[ Y i
C ]] ⊕ C[[ Y i

C]] � y i+ 1 ,

for all i ∈ { 0 , � , l − 1 } .
Now assume for contradiction that l > r and let f ( r ) = g + h y r+ 1 with g ,

h ∈ C[[ Y r
C ]] . Then substitution of f ( i) ∈ C[[ Y r

C ]] for F ( i ) in P for all i < r
and g + h F for F ( r ) yields a non-zero polynomial S ∈ C[[ Y r

C ]] [F ] , which
admits y r+ 1

�
C[[ Y r

C ]] as a root. But this contradicts the fact that C[[ Y r
C ]]

is real closed. We conclude that l 6 r , whence B̂ is a transbasis for f with
card B̂ \ B = l 6 r . �

Corollary 8.38. Consider P ∈ C[[ BC]] {F } oforder r for some transbasis B .
Then for each solution f ∈ T to ( E) , there exists a transbasis B̂ for f with
card B̂ \ ( B ∪ expZ x ) 6 r.

Exercise 8. 27. Give an alternative algorithm for the resolution of ( E) , where,
after the computation of a starting term τ , we perform the refinement

f = τ + ϕ + f̃ ( f̃ ≺ τ) ,

where ϕ is the distinguished unraveller for P+ τ ( f̃ ) = 0 ( f̃ ≺ τ) .

Exercise 8. 28. If, in the algorithms of section 8. 7, we let st_term only return
the algebraic starting terms, then show that the algorithm ade_solve will return
the set of all distinguished solutions.

Exercise 8. 29. Show that there exist at most d= degV P distinguished solutions
to ( E) .

Exercise 8. 30. If f is a distinguished solution to ( E) and ϕ P f , then show
that f̃ − ϕ is a distinguished solution to P+ ϕ ( f̃ ) = 0 ( f̃ ≺ supp ϕ ) .

Exercise 8. 31 . Improve theorem 8. 31 and show that we can take Br , d , w =
2 r d w . Hint: use exercise 8 . 23 in combination with the proof technique from
theorem 8. 37 .
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9

The intermediate value theorem

The main aim of this chapter is to prove the intermediate value theorem: given
a differential polynomial P ∈ T{F } over the transseries and f < g ∈ T with
P( f ) P( g) < 0 , there exists an h ∈ T with f < h < g and P(h) = 0 . In particular,
any differential polynomial P ∈ T{F } of odd degree admits a zero in T .

The intermediate value theorem is interesting from several points of view.
First of all, it gives a simple sufficient condition for the existence of zeros
of differential polynomials. This is complementary to the theory from the
previous section, in which we gave a theoretical algorithm to compute all
solutions, but no simple criterion for the existence of a solution ( except for
theorem 8. 33) .

Secondly, the intermediate value theorem has a strong geometric appeal.
When considering differential polynomials as functions on T , a natural ques-
tion is to determine their geometric behaviour and in particular to localize
their zeros. Another question would be to find the extremal and inflexion
points. It is already known that extremal values are not necessarily attained.
For instance, the differential polynomial

P( f ) = f 2 + 2 f ′

admits its minimal “value”

− 1

x2
− 1

x2 log2 x
− 1

x2 log2 x log2
2 x �

− �

“in”

f =
1

x
+

1

x log x
+

1

x log x log2 x
+ � .

In the future, we plan to classify all such non-standard “cuts” which occur as
local extrema of differential polynomials. In particular, we expect that a cut
occurs as a local minimum if and only of it occurs as a local maximum for
another differential polynomial.



Finally, the intermediate value theorem is a starting point for the further
development of the model theory for ordered differential algebra. Indeed,
the field of transseries is a good candidate for an existentially closed model
of this theory, i. e. a “real differentially algebraically closed field”. Such fields
are necessarily closed under the resolution of first order linear differential
equations and they satisfy the intermediate value theorem. It remains to be
investigated which additional properties should be satisfied and the geometric
aspects of real differential polynomials may serve as a source of inspiration.

In order to prove the intermediate value theorem, the bulk of this chapter
is devoted to a detailed geometric study of the “transline” T and differen-
tially polynomial functions on it. Since the field of transseries is highly non-
archimedean, it contains lots of cuts. Such cuts may have several origins:
incompleteness of the constant field ( if C � R) , the grid-based serial nature
of T , and exponentiation. In sections 9 . 1 , 9 . 2 , 9 . 3 and 9 . 4 we study these
different types of cuts and prove a classification theorem.

Although the classification of cuts gives us a better insight in the geom-
etry of the transline, the representation we use is not very convenient with
respect to differentiation. In section 9 . 5 , we therefore introduce another way
to represent cuts using integral nested sequences of the form

f = ϕ0 + ε0 e
∫
ϕ 1 + ε 1 e

∫ � ϕ k − 1 + ε k − 1 e

∫
fk

.

This representation makes it possible to characterize the behaviour of differen-
tial polynomials in so called “integral neighbourhoods” of cuts, as we will see in
section 9. 6 . In the last section, we combine the local properties of differential
polynomials near cuts with the Newton polygon method from chapter 8, and
prove the intermediate value theorem. We essentially use a generalization of
the well-known dichotomic method for finding roots.

9. 1 Compactification of total orderings

9. 1 . 1 The interval topology on total orderings

Any totally ordered set E has a natural topology, called the interval topology ,
whose open sets are arbitrary unions of open intervals. We recall that an
interval is a subset I of E , such that for each x < y < z with x , z ∈ I, we have
y ∈ I . An interval I ⊆ E is said to be open , if for each x ∈ I we have: x is
minimal resp. maximal in I, if and only if x is minimal resp. maximal in E .

A set U ⊆ E is open if every point in U is contained in an open interval
I ⊆ U . Arbitrary unions of open sets are clearly open. The intersection of two
open intervals I and J is again open: if x is minimal or maximal in I ∩ J , then
it is in particular minimal resp. maximal in I or J , whence x is minimal resp.
maximal in E . It follows that the intersection of two open sets is also open,
so the open sets of E form a topology.
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We observe that an increasing union of open intervals is again an open
interval. Hence, given an open set U and x ∈ U , there exists a maximal open
interval Mx ⊆ U with x ∈ U . It follows that each open set U admits a unique
decomposition

U =
∐
{Mx : x ∈ U } ( 9 . 1 )

as the disjoint union of its maximal open subintervals.

Proposition 9. 1 . A total ly ordered set E with the interval topology is Haus-
dorff if and only if for each x < y ∈ E there exists a z ∈ E, with x < z < y.

Proof. Assume that E is Hausdorff and let x < y ∈ E . There exist open subsets
U 3 x and V 3 y with U ∩ V = ∅ . Without loss of generality, we may assume
that we have replaced U and V by subintervals which contain x resp. y . S ince x
is not maximal in E and U is open, there exists an x ′ ∈ U with x ′> x . We must
also have x ′ < y : otherwise y ∈ U whence y ∈ U ∩ V = ∅ , since U is an interval.

Conversely, assume that for all x < y ∈ E there exists a z ∈ E , with
x < z < y . Then given x � y ∈ E , and assuming by symmetry that x < y, there
exists a z ∈ E , with x < z < y . Then (← , z ) = {u ∈ E : u< z } and ( z , → ) = {u ∈ E :
u > z } are disjoint intervals with x ∈ (← , z ) and y ∈ ( z , → ) . Moreover, for any
u ∈ (← , z ) there exists a v ∈ E with u < v < z , and u is minimal in (← , z ) if and
only if it is minimal in E . Hence (← , z ) is open, and similarly for ( z , → ) . �

Example 9. 2. Any totally ordered field E is Hausdorff.

9. 1 . 2 Dedekind cuts

Given a totally ordered set E , let E denote the set of its open initial segments
without maximal elements, ordered by inclusion. We have a natural increasing
mapping

ι : E � E

x � interior (← , x ) .

Elements in E \ ι(E) are called cuts . If E is Hausdorff, then we have already
seen that (← , x ) is open for all x ∈ E , so ι yields a natural inclusion of E
into E .

The elements ⊥E = ∅ and >E =
⋃

E are minimal and maximal in E . If
E admits no maximal element, then >E = E . More generally, any non-empty
subset of E admits an infimum and a supremum:

Proposition 9.3. Any non-empty subset of E admits a supremum and an
infimum in E.
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Proof. Let S � ∅ be a subset of E and consider the open initial segment
without a maximal element

u =
⋃

S .

We claim that u = sup S . By construction, v 6 u for all v ∈ S . Conversely,
if v ∈ E satisfies v < u , then we may pick x ∈ u \ v . Now let w ∈ S be such
that x ∈ w . Then v ⊆ w , whence v 6 w ∈ S . In a similar way, it can be shown
that the interior of

⋂
S equals the infimum of S . �

Proposition 9. 4. Let I be an interval of a Hausdorff total ordering E. Then
there exists unique f 6 g ∈ E such that I has one and only one of the following
forms:

a ) I = ( f , g) ∩ E.
b ) I = [ f , g) ∩ E and f ∈ E.
c ) I = ( f , g ] ∩ E and g ∈ E.
d ) I = [ f , g ] ∩ E and f , g ∈ E.

Proof. Let f = inf I and g = sup I . Then clearly

(← , f ) ∩ E = ( g , → ) ∩ E = ∅

and ( f , g) ∩ E ⊆ I . Consequently,
I ⊆ [ f , g ] ∩ E ⊆ I ∪ { f , g } .

Depending on whether f and g are in I or not, we are therefore in one of the
four cases ( a ) , ( b ) , ( c ) or ( d ) . �

9. 1 . 3 The compactness theorem

Theorem 9. 5 . Let E be a Hausdorff totally ordered set. Then

a ) E is Hausdorff.
b ) E � E.
c ) E is connected.
d ) E is compact.

Proof. In order to show that E is Hausdorff, let x < y be in E . Choose
u ∈ y \ x . S ince y has no maximal element, there exist v , w ∈ y with u< v < w .
It follows that x 6 u < v < w 6 y , which proves ( a ) .

From ( a ) it follows that the natural mapping ι : E → E is injective. In
order to see that ι is also surjective, consider an open initial segment I ⊆ E
without a maximal element, and consider u = sup I . We claim that ι (u ) = I .
Indeed, if x ∈ ι (u ) , so that x < u , then there exists a y ∈ I with x 6 y , by
the definition of u . Hence x ∈ I , since I is an initial segment. Conversely, if
x ∈ I , then there exists a y ∈ I with x < y , since I has no maximal element.
We have x < y 6 u , so x ∈ ι (u ) . This proves our claim and ( b ) .
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Let us now show that E is connected. Assume the contrary. Then E is
the disjoint union of two open sets. By ( 9 . 1 ) , it follows that

E =
∐

I ∈I

I ,

where I is a set of at least two open intervals. Let K ∈ I be non-maximal.
Then we also have a decomposition of E as the disjoint union of two non-
empty open intervals

E = I1 q I2 �
( ∐

J ∈I , J 6 K
J

)
q
( ∐

J ∈I , J > K

J

)
.

Now consider u = sup I1 . We have either u ∈ I1 or u ∈ I2 . In the first case,
u � >E would be a maximal element of I1 . In the second case, u � ⊥E would
be a minimal element of I2 . This gives us the desired contradiction which
proves ( c ) .

Let us finally show that E is compact. In view of ( 9. 1 ) , it suffices to show
that from any covering ( Iα ) α ∈ A of E with open intervals we can extract a
finite subcovering. Consider the sequence x0 6 x1 6 � ∈ E which is inductively
defined by x0 = ∅̄ and

xk+ 1 = sup
⋃

α ∈ A , xk ∈ Iα
Iα

for all k > 0 . If α is such that xk ∈ Iα then we notice that either xk ∈ Iα < xk+ 1

or xk+ 1 = >E , since Iα is an open interval.
We claim that xk = >E for all sufficiently large k . Assuming the contrary,

consider u = sup {x0 , x1 , � } . There exists an α with u ∈ Iα . S ince Iα is
open, there exists an y < u in Iα . Now take k ∈ N with y 6 xk . Then xk
and xk+ 1 < >E are both in Iα , which contradicts the fact that xk+ 1 = >E or
Iα < xk+ 1 . This proves the claim.

Denoting by l the minimal number with x l = >E , let us now show how to
choose α l , � , α0 ∈ A with xk ∈ Iαk ( 0 6 k 6 l ) , and Iαk ∩ Iαk+1 � ∅ ( 0 6 k < l ) .
This is clear for k = l . Having constructed a l , � , ak+ 1 , pick an element y ∈ (xk ,
xk+ 1 ) ∩ Iαk+1

. Then there exists an αk ∈ A with xk ∈ Iαk and y 6 z for some
z ∈ Iα k . S ince Iαk is an interval, it follows that y ∈ Iαk , whence Iα k ∩ Iαk+1 � ∅ .
This completes our construction.

We contend that E = Iα 0 ∪ � ∪ Iαk . Indeed, given y ∈ E , we either have
y ∈ {x0 , � , x l } ⊆ Iα 0 ∪ � ∪ Iαk , or there exists there exists a unique k with
y ∈ (xk , xk+ 1 ) . In the second case, let z ∈ Iαk ∩ Iα k+ 1 . Then we have either
y 6 z and y ∈ Iαk , or y > z and y ∈ Iαk+1 . �

Exercise 9. 1 . Let E be a totally ordered set. Given x < y ∈ E , show that
y \ x contains infinitely many elements.

Exercise 9. 2 .
a) Determine α for all ordinals α .
b) Determine αop for all ordinals α .
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9. 2 Compactification of totally ordered fields

Let C be a totally ordered field. A natural question is to see whether the
algebraic structure on C can be extended to its compactification C and which
algebraic properties are preserved under this extension. In section 9 . 2 . 1 , we
first show that increasing and decreasing mappings naturally extend when
compactifying. After that, we will show how this applies to the field operations
on C . We will denote � = supC .

9. 2 . 1 Functorial properties of compactification

Proposition 9. 6. Let E and F be Hausdorff total orderings and ϕ : E→ F.

a ) Any increasing mapping ϕ : E → F extends to an increasing mapping
ϕ : E → F, given by

ϕ : E � F

x � sup { ϕ (x ) : x ∈ E ∧ x 6 x } .
b ) Any decreasing mapping ϕ : E → F extends to a decreasing mapping

ϕ : E → F, given by

ϕ : E � F

x � inf { ϕ (x ) : x ∈ E ∧ x 6 x } .
Moreover, in both cases, the mapping ϕ is injective resp. surjective ifand only
ifϕ is. Also , ifϕ is surjective , then ϕ is its unique extension to a monotonic
mapping from E into F.

Proof. Assume that ϕ is increasing ( the decreasing case is proved similarly) .
The mapping ϕ defined in ( a ) is clearly increasing. Assume that ϕ is injective
and let x < y ∈ E . Choosing u, v ∈ E with x < u < v < y , we have

ϕ (x ) 6 ϕ (u) = ϕ (u) < ϕ ( v ) = ϕ ( v ) 6 ϕ ( y ) ,

so ϕ is injective.
Assume from now on that ϕ is surjective and let y ∈ F . Then x = {u ∈ E :

ϕ (u) < y } is an open initial segment without a maximal element. Indeed,
if u ∈ x were maximal, then we may choose v ∈ F with ϕ (u) < v < y and
there would exist a u ′ ∈ E with ϕ (u ′) = v < y and necessarily u < u ′ . This
shows that x ∈ E . By construction, we have ϕ ( x ) 6 y . G iven v ∈ y , so
that v < y , there exists an u ∈ E with ϕ (u) = v . Consequently, u ∈ x and
v = ϕ (u) = ϕ (u) 6 ϕ (x ) . This proves that y 6 ϕ (x ) .

Now let ψ : E → F be another increasing mapping which extends ϕ on E .
Assume for contradiction that ϕ (x ) < ψ (x ) for some x ∈ E \ E ( the case
ϕ ( x ) > ψ ( x ) is treated similarly) and let v ∈ ( ϕ (x ) , ψ (x ) ) . S ince ϕ is
surjective, there exists a u ∈ E with ϕ (u) = v . But if u < x , then ϕ (u) 6 ϕ ( x )
and if u> x , then ϕ (u) > ϕ (x ) . This contradiction shows that ϕ is the unique
increasing extension of ϕ to a mapping from E into F . �
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Corollary 9. 7. Let E be a Hausdorff ordering and E∗ the set E ordered by
the opposite ordering of 6 . Then there exists a natural b ijection

· ∗ : E � E ∗

x � inf
E ∗

x . �

The following proposition is proved in a similar way as proposition 9 . 6: see
exercise 9 . 3.

Proposition 9. 8. Let E be a Hausdorffordering and I ⊆ E an interval. Then
there exists a natural inc lusion

ι : I � E

x � sup { y ∈ E : y 6 x } .
This inclusion is unique with the property that ι( I ) is an interval. �

9. 2 . 2 Compactification of totally ordered fields

6 Opposites and inverses

By proposition 9 . 6( b ) , the mapping

− : C → C

f � − f
extends to unique decreasing bijection C → C , which we also denote by −
and the inversion

· − 1 : C> → C>

f � f− 1

extends to a unique decreasing bijection C> →C> . Notice that C> = { 0} ∪ C >

and 0− 1 = � . For f < 0 , we may also set (− f ) − 1 = − f − 1 , so that · − 1 is
bijective on C \ {− � , 0 , � } .
7 Addition

The addition on C2 may be extended to an increasing mapping + : C 2 → C
by applying proposition 9 . 6( a ) twice: first to mappings of the form f + · :
C→ C ; g � f + g with f ∈ C and next to mappings of the form · + g : C→ C ;
f � f + g with g ∈ C . This is equivalent to setting

+ : C × C � C

( x , y ) � sup {x + y : x , y ∈ C ∧ x 6 x ∧ y 6 y } .
Notice that the mapping f + · : C → C ; g � f + g is an isomorphism for
each f ∈ C . Subtraction on C 2 is defined as usual by x − y = x + (− y ) .
S ince the definition of the addition is symmetric in x and y , the addition is
commutative. Clearly, we also have x + 0 = x for all x ∈ C , and

x + ( y + z ) = sup {x + y+ z : x , y , z ∈ C ∧ x 6 x ∧ y 6 y ∧ z 6 z } = ( x + y ) + z
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for all x , y , z ∈ C . However, C cannot be an additive group, because
� − � = − � � 0 . Nevertheless,

− (x + y) = (− x ) + (− y)

for all x ∈ C and y ∈ C . Indeed, given z ∈ C , we have z < − ( x + y) ⇔
− z > x + y⇔− z − y > x ⇔ z + y < − x ⇔ z < (− x ) + (− y) .

8 Multiplication

The multiplication extends first to (C> ) 2 by

· : C> × C> � C>

(x , y ) � sup {x y : x , y ∈ C> ∧ x 6 x ∧ y 6 y }

and next to C 2 by

(− x ) y = − (x y )

x (− y ) = − (x y )

(− x ) (− y ) = x y

for all x , y ∈ C> . This definition is coherent if x = 0 or y = 0 , since
x 0 = 0 x = 0 for all x . We define division on C 2 as usual by x / y = x y − 1 . The
multiplication is clearly commutative, associative and with neutral element 1 .
We also have distributivity x ( y + z ) = x y + x z whenever x > 0 . However,
(− 1 ) ( � − � ) = (− 1 ) (− � ) = � � − � = (− � ) + � .

Exercise 9. 3. Prove proposition 9. 8 .

Exercise 9. 4. Show that − (− x ) = x for all x ∈ T .

9. 3 Compactification of grid-based algebras

Let C be a totally ordered field and M a totally ordered monomial group and
consider the algebra S = C[[ M]] of grid-based series. In this section we study
the different types of cuts which may occur in S . We will denote � = infC> ,

� = supC , f = sup S . We will also denote C # = C \ (C ∪ {− � , � } ) .

9. 3. 1 Monomial cuts

Let C be a totally ordered field and M a totally ordered monomial group. An
element m ∈ S \ S is said to be a monomial if m> 0 and cm = m for all c ∈ C> .
We denote by M the union of the set of such monomials and the set M of
usual monomials. The ordering 4 on M naturally extends to M, by letting
it coincide with the usual ordering 6 .
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Given f ∈ S , we define the dominant monomial df of f as follows. If
| f | < c | f | for no c ∈ C , so that | f | ∈ M \ M, then we take df = | f | . If
| f | < c | f | for some c ∈ C , then there exists a g ∈ T with | f | < g < c | f | .
Moreover, d g does not depend on the choice of g and we set df = d g . Thanks
to the notion of dominant monomials, we may extend the asymptotic relations
4 , ≺ , � and ∼ to S by f 4 g ⇔ df 4 dg , f ≺ g ⇔ df ≺ dg , f � g ⇔ df = d g
and f ∼ g ⇔ df − g ≺ df = d g .

Proposition 9. 9. For any f , f1 , f2 ∈ S , we have

d− f = df ; ( 9 . 2 )
df1 + f2

4 max { df1
, df2
} . ( 9 . 3)

Proof. The first relation is clear from the definition of dominant monomials.
As to the second one, we first observe that | f1 | 6 c1 df1

and | f2 | 6 c2 df2
for

sufficiently large c1 , c2 ∈ C . Hence,

| f1 + f2 | 6 | f1 | + | f2 | 6 ( c1 + c2 ) max { df1
, df2
} .

Since we also have | f1 + f2 | > c df1 + f2
for a sufficiently small c ∈ C> , it follows

that df1 + f2
4 max { df1

, df2
} . �

9. 3. 2 Width of a cut

Let f ∈ S . We define the width of f by

w f = inf { df − g : g ∈ S } ∈ M .

Notice that f ∈ S⇔ w f = 0 .

Proposition 9. 1 0. For any f , f1 , f2 ∈ S , we have

w − f = w f ; ( 9 . 4)
w f1 + f2

= max {w f1
, w f2

} . ( 9 . 5 )

Proof. We have

w − f = inf { d− f − g : g ∈ S }
= inf { d− f + g : g ∈ S }
= inf { d− ( f − g ) : g ∈ S}
= inf { df − g : g ∈ S} = w f

which proves ( 9 . 4) . Similarly, we have

w f1 + f2
= inf { df1 + f2− g : g ∈ S }
= inf { df1 + f2− g1 − g2

: g1 , g2 ∈ S }
4 inf {max { df1 − g1

, df2− g2
} : g1 , g2 ∈ S }

= max {w f1
, w f2

} .
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Conversely, given g ∈ S with g 6 f1 + f2 , let g1 , g2 ∈ S be such that g1 6 f1 ,
g2 6 f2 and g = g1 + g2 . Then f1 − g1 < w f1

and f2 − g2 < w f2
, whence

f1 + f2 − g = f1 − g1 + f2 − g2 < max {w f1
, w f2

} .

The case g > f1 + f2 is treated in a similar way. �

9. 3. 3 Initializers

Let f ∈ S . G iven m ∈ M with m � w f , there exists a g ∈ S with f − g ≺ m .
Moreover, gm does not depend on the choice of g , and we set fm = gm . We
define the initializer ϕ f of f by

ϕ f = f� w f
=

∑

m� w f

fm m .

We claim that ϕ f ∈ C [ [M] ] , where we recall that C [ [M] ] stands for the set
of well-based series in M over C . Indeed, consider m ∈ supp ϕ f . Then there
exists a g ∈ S with f − g ≺ m and we have ( ϕ f ) � m = g� m ∈ S . In particular,
there exists no infinite sequence n1 ≺ n2 ≺ � in supp ϕ f with m = n1 .

Proposition 9. 1 1 . For any f , f1 , f2 ∈ S , we have

ϕ− f = − ϕ f ( 9 . 6)
ϕ f1 + f2

= ( ϕ f1
+ ϕ f2

) � w f1 + f2
. ( 9 . 7)

Proof. In order to prove ( 9. 6) , let m ∈ M be such that m � w f = −w f , and
let g ∈ S be such that f − g ≺ m . Then (− f ) − (− g) ≺ m, fm = gm and
(− f ) m = − gm .

S imilarly, given m ∈ M with m� w f1 + f2
= max {w f1

, w f2
} , let g1 , g2 ∈ S be

such that f1 − g1 ≺ m and f2 − g2 ≺ m . Then we have

( f1 + f2 ) − ( g1 + g2 ) = ( f1 − g1 ) + ( f2 − g2 ) ≺ m

and

( f1 + f2 ) m = ( g1 + g2 ) m = g1 ,m + g2 ,m = f1 ,m + f2 ,m .

This proves ( 9 . 7) . �

9. 3. 4 Serial cuts

Let f̂ ∈ S \ S be a cut with ϕ f̂
�
S . Then for any ψ C ϕ f̂ and m = d( ϕ f̂ − ψ ) ,

there exists a g ∈ S with f − g ≺ m and we have ( ϕ f ) � m = ψ = g� m ∈ S . In
other words, we always have ϕ f̂ ∈ Ŝ \ S , where

Ŝ = { f̂ ∈ C [ [M] ] : ∀g ∈ C [ [M] ] , g C f̂ ⇒ g ∈ S } .
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A cut f̂ ∈ S \ S is said to be serial , if there exists a ψ ∈ C [ [M] ] with

f̂ = ι ( ψ ) = sup { g ∈ S : g < ψ } . ( 9 . 8 )

From the proposition below it follows that we may always replace ψ by ϕw f
∈

Ŝ \ S and obtain the same serial cut. For this reason, we will identify the set
of serial cuts with Ŝ \ S .

Proposition 9. 1 2 . Given a serial cut f̂ = ι ( ψ ) , we have

a ) ϕ f̂ = ψ� w f̂
.

b ) ι ( ϕ f̂ ) = ι ( ψ ) .

Proof. The equation ( 9. 8) implies g < f̂⇔ g < ψ for g ∈ S . Now, given m� w f̂ ,
let n ≺ m and g ∈ S be such that f̂ − g ≺ n. Then g − n < f̂ < g + n and
g − n< ψ < g + n, so that ϕ f̂ , m = f̂m = gm = ψm. This proves ( a ) .

Given g ∈ S , we have g − ψ < w f̂ , since otherwise g − n< ψ < g+ n for some
n ≺ w f̂ , whence g − f̂ 4 n ≺ w f̂ . We even have g − ψ � w f̂ , since g − ψ � w f̂

would imply ψ< w f̂
− ψ ≺ w f̂ and ψ< w f̂

∈ g< w f̂
+ C w f̂ ⊆ S . Consequently,

g < ψ⇔ g < ψ� w f̂
= ϕ f̂ so that ι ( ϕ f̂ ) = ι ( ψ ) . �

9. 3. 5 Decomposition of non-serial cuts

Proposition 9. 1 3. For any f ∈ S \ Ŝ , we have either

1 . w f ∈ M and for some c ∈ C# we have

f = ϕ f + c w f .

2. w f ∈ M \M and
f = ϕ f ± w f .

Proof. Modulo substitution of f − ϕ f for f , we may assume without loss of
generality that ϕ f = 0 , since w f − ϕ f = w f .

Suppose that w f = m ∈ M and consider

c = sup { c ∈ C : cm < f } ∈ C .

We must have c ∈ C \ C , since otherwise f − cm ≺ m = w f . We also cannot
have c = ± � , since otherwise w f = � m . Hence c ∈ C# . If c m< f , then there
exists a ψ ∈ S with c m < ψ < f . If ψ 4 m, then c ′m < f for some c ′ ∈ C with
c < c ′ < ψm . If ψ � m, then f� m = ψ� m � 0 , which is again impossible. This
proves that c m > f . Applying the same argument for − f , we also obtain
c m 6 f , whence f = c m .

Assume now that w f ∈ M \M and let us show that f = ± w f . Replacing
f by − f in the case when f < 0 , we may assume without loss of generality
that f > 0 . For g ∈ S we now have

0 6 g < f ⇔ 0 6 g� w f
6 f� w f

= 0 ⇔ 0 6 g < w f . �
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The above proposition allows us to extend the notions of dominant coefficients
and terms to S . Indeed, given f ∈ S � , we have either ϕ f � 0 , in which case
we set cf = cϕ f and τf = cf df = τϕ f , or ϕ f = 0 , in which case f = c w f = c df

for some c ∈ C # ∪ {− 1 , 1 } , and we set cf = c and τf = f . By convention, we
also set c0 = τ0 = 0 .

Exercise 9. 5 . Show that for all m, n ∈ M we have

m ∈ M ∧ n ∈ M ⇒ m n ∈ M

m ∈ M ∨ n ∈ M ⇒ m n ∈ M \M .

Exercise 9. 6 . Show that M is stable under · − 1 and show that one may extend
the flatness relation � to M .

Exercise 9. 7. Given f , g ∈ S , what can be said about d fg and w fg ?

Exercise 9. 8. If C = R , then show that w f ∈ M \M .

Exercise 9. 9 . Given f ∈ S , compute (− f ) + f .

Exercise 9. 1 0 . Given f , g ∈ S , show that

f 4 g � ∃c ∈ C , | f | 6 c g
f ≺ g � ∀c ∈ C , c f < | g | .

Exercise 9. 1 1 . Generalize the theory of section 9. 3. 4 to other types of supports,
like those from exercise 2 . 1 . Show that there exist no serial cuts in the well-based
setting.

Exercise 9. 1 2 . Characterize the embeddings of C[[ M]] into C [ [M ] ] .

Exercise 9. 1 3. Given f ∈ S and m ∈ M , we may define the coefficient fm of
m in f as follows. If m ≺ w f , then fm = 0 . If m � w f , then we have already
defined fm if m ∈ M and we set fm = 0 if m

�
M . If m = w f and f = ϕ f + c m

with c ∈ C # ∪ {− 1 , 0 , 1 } , then fm = c . Show that we may see S as a subset of
C [ [M ] ] . Also give a characterization of the elements in S .

Exercise 9. 1 4. If C = R , then define a “symmetric addition” on C[[ M]] by
f + g = ϕ f + ϕ g , � w f

± w f if w f � w g , likewise if w f ≺ w g , f + g = ϕ f + ϕ g if
w f = w g but ( f − ϕ f ) ( g − ϕ g ) < 0 , and f + g = ϕ f + ϕ g ± w f for equal signs.
Show that this addition is commutative and that f + (− f ) = 0 for all f ∈ S .
Show also that the symmetric addition is not necessarily associative.

9. 4 Compactification of the transline

Let us now consider the field T = C[[ T]] of grid-based transseries. Given a
transseries cut f , the aim of this section is to find an explicit expression for
f in terms of cuts in C , the field operations, seriation and exponentiation.
We will denote κk = sup { f ∈ T : expo( f ) = k } for all k ∈ Z .
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9. 4. 1 Exponentiation in T

By proposition 9 . 6(a ) , the functions exp : T→ T> and log : T> → T uniquely
extend to increasing bijections exp : T → T> and log : T> → T , which are
necessarily each others inverses.

Proposition 9. 1 4.

a ) For all c ∈ C \ {− � } , we have

expT c = expC c .

b ) For all f , g ∈ T , we have

exp ( f + g ) = exp ( f ) exp ( g ) .

c ) For any m ∈ T > , we have

m ∈ T \ T ⇔ w log m � 1 .

Proof. Let c ∈ C \ {− � } . If c ∈ C , then expT c = expC c ∈ C> . Assume that
c

�
C . Then it follows from logT expT c = c that expT c

�
C and similarly

expC c
�
C . For any λ ∈ C with λ < c , we have eλ < expT c . It follows that

expC c 6 expT c . Conversely, for any g ∈ T with − � < g < c , there exists a
c ′ ∈ C with g� < c ′ < c , so that eg = eg� < ec

′ 6 expC c . This shows that we
also have expT c 6 expC c .

Now consider f , g ∈ T . We have

ef + g = sup { eϕ+ ψ : ϕ ∈ T ∧ ϕ < f ∧ ψ ∈ T ∧ ψ < g }
= sup { eϕ : ϕ ∈ T ∧ ϕ < f } sup { eψ : ψ ∈ T ∧ ψ < g }
= ef eg .

This proves ( b ) .
Let m ∈ T. If w log m � 1 , then assume for contradiction that there exists

a c ∈ C> with c m � m, and take c > 1 . Then there exists a g ∈ T with
m < g < c m . But then log m < log g < log m + log c and log m − log g 4 1 ,
which contradicts our assumption. We conclude that m ∈ T \ T. S imilarly, if
w log m 4 1 , then let g ∈ T and c1 , c2 ∈ C be such that c1 < logm − g < c2 . Then
m < eg+ c2 < ec2− c1 m, so that m

�
T \ T. This completes the proof of ( c ) . �

9. 4. 2 Classification of transseries cuts

Let f ∈ T . The nested sequence for f is the possibly finite sequence f0 ,
f1 , � ∈ T defined as follows. We take f0 = f . Given fi , we distinguish two
cases for the construction of fi+ 1 :

NS1 . If fi ∈ T̂ ∪ ±{f } ∪ ±κZ ∪ C , then the construction has been completed.
NS2. Otherwise, we let ϕ i = ϕ fi , ε i = sign ( fi − ϕ i) and fi+ 1 = log ε i ( fi − ϕ i) ,

so that

fi = ϕ i + ε i e
fi+1 . ( 9 . 9 )

9. 4 Compactification of the transline 225



We will denote by l ∈ N the number such that fl is the last term of the nested
sequence; if no such term exists, then we let l = + ∞ .

For any 0 6 i < j 6 l , repeated application of ( 9 . 9 ) entails

fi = ϕ i + ε i e
ϕ i+1 + ε i+1 e

� ϕ j − 1 + ε j − 1 e
f j

. ( 9 . 1 0)

In particular, if l < +∞ , then we call

f = ϕ0 + ε0 eϕ 1 + ε 1 e
� ϕ l − 1 + ε l − 1 e

fl

( 9 . 1 1 )

the nested expansion of f . If l = + ∞ , then the nested expansion of f is
defined to be

f = ϕ0 + ε0 eϕ 1 + ε 1 eϕ 2 + ε 2 e

�

. ( 9 . 1 2 )

In this latter case, the nested expansion of each fi is given by

fi = ϕ i + ε i e
ϕ i+1 + ε i+1 e

ϕ i+2 + ε i+2 e

�

.

The following proposition is a direct consequence of our construction:

Proposition 9. 1 5. Each f ∈ T admits a unique nested expansion ofone and
only one of the fol lowing forms:

f ∈ T ; ( 9 . 1 3)
f = ± f ; ( 9 . 1 4)

f = ϕ0 + ε0 eϕ 1 + ε 1 e
� ϕ l − 1 + ε l − 1 e

κk

( k ∈ Z ) ; ( 9 . 1 5)

f = ϕ0 + ε0 eϕ 1 + ε 1 e
� ϕ l − 1 + ε l − 1 ec

( c ∈ C \ C) ; ( 9 . 1 6)

f = ϕ0 + ε0 eϕ 1 + ε 1 e
� ϕ l − 1 + ε l − 1 e ĝ

( ĝ ∈ T̂ \ T) ; ( 9 . 1 7)

f = ϕ0 + ε0 eϕ 1 + ε 1 e
ϕ 2 + ε 2 e

�

. ( 9 . 1 8)

In order to completely classify the elements in T , we still need to determine
under which conditions on the ϕ i , ε i , κk , c and ĝ , the expressions ( 9 . 1 5) ,
( 9 . 1 6) , ( 9 . 1 7) and ( 9 . 1 8) are the nested expansion of a cut f ∈ T \ T . This
problem will be addressed in the next sections.

9. 4. 3 Finite nested expansions

Proposition 9. 1 6. Assume that f ∈ T admits a finite nested expansion.
Then

a ) l > 2 ⇒ ϕ 1 ∈ T� and 1 < i < l⇒ ϕ i ∈ T�> .
b ) 1 < i < l ∧ ϕ i = 0⇒ ε i = 1 and

l > 0 ∧ ϕ l− 1 = 0⇒ fl ∈ T̂� \ T ∨ ( l = 1 ∧ f ∈ −κZ ) .

226 9 The intermediate value theorem



c ) eϕ i+ 1 + ε i+ 1 e
� ϕ l − 1 + ε l − 1 e

fl

≺ supp ϕ i for all 0 6 i < l .
d ) l > 1 ⇒ fl

�
T ∪ ±{f } .

e ) l > 2 ⇒ fl > 0 ∨ fl ∈ C \ {− � } .

Proof. Given 0 < i < l , proposition 9 . 1 3 implies that either efi = w fi − 1
∈ T \ T

or efi = c m for some c ∈ C # and m ∈ T. In the first case, proposition 9 . 1 4( c )
implies w fi � 1 whence ϕ i ∈ T� and fi+ 1 > 0 . In the second case, we obtain
fi = log m + log c with log c ∈ C # . We cannot have m = 1 , since otherwise
l = i . Therefore, ϕ i = logm ∈ T�� , ε i = sign ( log c ) , fi = log | log c | and l = i + 1 .
This proves ( a ) . S imilarly, if 1 < i = l , then either fl ∈ C # or efl ∈ T \ T. In
the second case, w fl � 1 and w fl − 1

� 1 yield either fl ∈ ( T̂� \ T) > , fl ∈ κZ or
fl = � . This proves ( e ) .

Now let 1 < i < l . By what precedes, we necessarily have efi − 1 = w fi − 2

and fi > 0 . If ϕ i = 0 , then it follows that ε i = 1 , since ε i = efi+1 / fi > 0 . This
proves the first part of ( b ) . Assume that l > 1 . We cannot have fl ∈ T , since
otherwise fl− 1 = ϕ l− 1 + ε l− 1 efl ∈ T . S imilarly, fl = f would imply fl− 1 = f
and fl = −f would imply fl− 1 = ϕ l− 1 ∈ T . If ϕ l− 1 = 0 and fl = κk , then
fl− 1 = ε l− 1 κk+ 1

�
κZ , whence l = 1 and ε l− 1 = − 1 . We cannot have ϕ l− 1 = 0

and fl ∈ C , since this would imply fl− 1 = ε l− 1 efl ∈ C . Finally, if fl ∈ T̂ , then
we have shown above that w fl � 1 , so that fl ∈ T̂� \ T . This completes the
proof of ( b ) and also proves ( d ) .

In order to prove ( c ) , let 0 6 i < l and m = eϕ i+1 + ε i+1 e
� ϕ l − 1 + ε l − 1 e

fl

, so that
fi = ϕ i + ε i m . We conclude that m = wm = w fi ≺ supp ϕ i . �

Proposition 9. 1 7. Let f ∈ T be as in ( 9 . 1 1 ) , where ϕ0 , � , ϕ l− 1 ∈ T ,
ε0 , � , ε l− 1 ∈ {− 1 , 1 } and fl ∈ T̂ ∪ ±{f } ∪ ±κZ ∪ C are such that the conditions
(a–e ) of proposition 9 . 1 6 are satisfied. Then, f admits ( 9 . 1 1 ) as its nested
expansion.

Proof. Let us prove by induction over i = l , l − 1 , � , 0 that

fi = ϕ i + ε i e
ϕ i+1 + ε i+1 e

� ϕ l − 1 + ε l − 1 e
fl

( 9 . 1 9)

satisfies

A) l > 1 ⇒ fi
�
T ∪ ±{f} .

B) i > 2 ⇒ fi > 0 ∨ ( l = i ∧ fi ∈ C \ {− � } ) .
C) 1 6 i < l⇒ fi � 1 .
D) 0 6 i < l⇒ w fi � efi+1 .
E) fi admits ( 9 . 1 9) as its nested expansion.

These properties are is trivially satisfied for i = l . So assume that they hold
for i + 1 and let us show that they again hold for i .
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From (A) at order i+ 1 , we get fi+ 1

�
T ∪ ±{f} . S ince fi+ 1 = log ( ε i ( fi −

ϕ i) ) , we have fi ∈ T ∪ ±{f} ⇒ fi+ 1 ∈ T ∪ ±{f } . This proves (A) at order i .
For i> 2 , we have either ϕ i � 0 , in which case ϕ i ∈ T�> implies fi > 0 , or ϕ i= 0 ,
in which case ε i = 1 and fi+ 1 > 0 imply fi = efi+1 > 0 . This proves (B) .

As to (C) , if 1 6 i < l and ϕ i � 0 , then ϕ i ∈ T� implies fi ∼ ϕ i � 1 . If
1 6 i < l − 1 and ϕ i = 0 , then fi+ 1 � 1 and fi+ 1 > 0 imply fi = efi+1 � 1 . If
1 6 i = l − 1 and ϕ i = 0 , then fl ∈ T̂� \ T and fl− 1 = efl � 1 .

Now let 0 6 i < l . In order to prove (D) , it suffices to show that efi+1 ∈
(T \ T) ∪ C # T. Assume first that i < l − 1 , so that w fi+ 1

� efi+ 2 . If
fi+ 2 ∈ C \ { � } , then ϕ i+ 1 � 0 and efi+1 ∈ C # T. If fi+ 2

�
C or fi+ 2 = � , then

fi+ 2 � 1 and w fi+1
� efi+2 � 1 . Hence efi+1 ∈ T \ T, by proposition 9 . 1 4( c ) .

Assume now that i = l − 1 . Then either fl ∈ C # and efl ∈ C # , or fl = κk
for some k ∈ Z and efl = κk+ 1 ∈ T \ T, or fl ∈ T̂� \ T and e

fi+ 1 ∈ T \ T, since
w fi+1

� 1 . This proves (D) . The last property (E) follows from (D) and (E)
at stage i + 1 . �

9. 4. 4 Infinite nested expansions

To any f ∈ T , we may associate a natural interval

Tf = { g ∈ T : f P g } = [ f − tf , f + tf ] ,

where f P g ⇔ f P ϕ g and tf = inf {m ∈ T: supp f � m} . Given a sequence ( ϕ0 ,
ε0 ) , ( ϕ 1 , ε1 ) , � with ϕ0 , ϕ 1 , � ∈ T and ε1 , ε2 , � ∈ {− 1 , 1 } , we denote

∆ i , j = ϕ i + εi e
ϕ i+ 1 + ε i+1 e

� Tϕ j

for all i 6 j and ∆ i = ∆ 0 , i for all i . We also denote

Ii = ∆ i , i ∩ ∆ i , i+ 1 ∩ ∆ i , i+ 2 ∩ �

for all i > 0 and I = I0 . Given f ∈ T , we finally define η( f ) ∈ N by

η( f ) =





0 if f = 0
1 if f ∈ expZ x
maxm∈ supp f η( logm) + 1 otherwise .

Proposition 9. 1 8. Assume that f ∈ T admits an infinite nested expansion.
Then

a ) ϕ 1 ∈ T� and ϕ2 , ϕ3 , � ∈ T�> .
b ) We have ϕ i � 0 for infinitely many i , and ϕ i = 0⇒ ε i = 1 for al l i > 1 .
c ) For every i > 0 , we have ∆0 ∩ � ∩ ∆ i � ∅ .

Proof. Property ( a ) is proved in a similar way as in proposition 9 . 1 6, as well
as the fact that ϕ i = 0 ⇒ ε i = 1 for all i > 1 . Property ( c ) is obvious, since
f ∈ ∆ 0 ∩ � ∩ ∆ i for all i > 0 .
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Let us prove that ϕ i � 0 for infinitely many i . It suffices to prove that
ϕ i � 0 for one i , modulo repetition of the same argument for fi+ 1 instead of f .
Considering f1 instead of f , we may also assume without loss of generality
that f > 0 and f � 1 . S ince f

� ±{f} ∪ ±κZ ∪ ± { � } , there exist g , h ∈ T
with g < f < h and expo( g) = expo(h) = k . For a sufficiently large r , we
now have logr g = expk − r x + o( 1 ) and logr h = expk − r x + o( 1 ) . But then
expk − r x P logr f so that ϕ i � 0 for some i 6 r . This completes the proof
of ( b ) . �
Proposition 9. 1 9. Consider ϕ0 , ϕ 1 , � ∈ T and ε0 , ε1 , � ∈ {− 1 , 1 } , which
satisfy conditions ( a–c ) of proposition 9 . 1 8 . Then I1 ∩ T = I1 ∩ T + T4 .

Proof. Let f1 ∈ I1 ∩ T and define f2 = log ( ε1 ( f1 − ϕ 1 ) ) , f3 = log ( ε2 ( f2 − ϕ2 ) )
and so on. We claim that fi − ϕ i � 1 for all i > 1 . Indeed, let k be such that
ϕ i+ 1 = � = ϕ i+ k − 1 = 0 but ϕ i+ k � 0 . Then logk ( ε i ( fi − ϕ i) ) Q ϕ i+ k ∈ T�

> ,
whence fi − ϕ i = εi expk ( ϕ i+ k + � ) � 1 .

Given δ1 ∈ T4 , we have to prove that f1 + δ1 ∈ I1 . Let us construct a
sequence δ2 , δ3 , � of elements in T4 as follows. Assuming that we have
constructed δi , we deduce from fi − ϕ i � 1 that fi + δi − ϕ i � 1 , so, taking

δi+ 1 = log
(

1 +
δi

fi − ϕ i

)
,

we indeed have δi+ 1 ≺ 1 4 1 as well as

fi+ 1 + δi+ 1 = log ( ε i ( fi + δi − ϕ i) ) . ( 9 . 20)

Now fi ∈ ∆ i , i and δ 4 1 ≺ supp ϕ i imply fi + δi ∈ ∆ i , i . By induction over j − i ,
the formula ( 9. 20) therefore yields fi+ δi ∈ ∆ i , j for all 1 6 i6 j . In other words,
fi + δi ∈ Ii for all i > 1 and in particular for i = 1 . �
Proposition 9.20. Consider ϕ0 , ϕ 1 , � ∈ T and ε0 , ε1 , � ∈ {− 1 , 1 } , which
satisfy conditions (a–c ) ofproposition 9 . 1 8 . Then I = { f } for some f ∈ T \ T
with nested expansion ( 9 . 1 8) .

Proof. Since I = ∆ 0 ∩ ( ∆ 0 ∩ ∆ 1 ) ∩ ( ∆ 0 ∩ ∆ 1 ∩ ∆ 2 ) ∩ � is a decreasing
intersection of compact non-empty intervals, I contains at least one element.
If I contains more than one element, then it contains in particular an element
f ∈ T . Assume for contradiction that I ∩ T � ∅ . Then we may choose ( ϕ0 , ε0 ) ,
( ϕ 1 , ε1 ) , � and f ∈ I such that η( f ) is minimal.

Let m = d( f − ϕ0 ) and g = logm . From ϕ0 P f , it follows that m ∈ supp f
and η( g) 6 max { 1 , η( f ) − 1 } . S ince log ( ε0 ( f − ϕ0 ) ) − log m 4 1 , we
also have g ∈ I1 , by proposition 9 . 1 9 . Hence η( g) > η( f ) and η( f ) 6 1 , by
the minimality of the counterexample f . Now f = ϕ0 is impossible, since
otherwise ϕ0 − f = 0 ∈ ε0 exp I1 . It follows that f � 0 , since f Q ϕ0 , whence
η( f ) = η( g) = 1 . We cannot have f ∈ C , since otherwise m = 1 , g = 0 and
η( g) = 0 . Therefore, there exists an l ∈ Z with f = expl x , ϕ0 = 0 and
g= expl− 1 x . Repeating the same argument, we conclude that ϕ0 = ϕ 1 = � = 0 ,
which is impossible.

9. 4 Compactification of the transline 229



Now that we have proved that I = { f } for some f ∈ T \ T , let us show
that f admits ( 9 . 1 8) as its nested expansion. Indeed, we also have I1 = { g }
for g = log ( ε0 ( f − ϕ0 ) ) and proposition 9 . 1 9 implies eg ∈ T \ T. Consequently,
w f = w ε0 eg = w eg = eg , since eg ≺ supp ϕ0 . This shows that g = f1 . Using the
same argument, it follows by induction that Ik = { fk } for all k . �

Proposition 9. 21 . Assume that f ∈ T admits an infinite nested expansion.
Then for every i > 0 and m ∈ supp ϕ i , there exists a j > i with ∆ i , j − ϕ i ≺ m .

Proof. Let S f be the set of monomials m ∈ supp ϕ0 , such that for all i > 0
there exists a g ∈ ∆ i with g − ϕ0 < m. Let S be the union of all S f , for nested
expansions f of the form ( 9. 1 2 ) . If S = ∅ , then we are clearly done, since we

would in particular have S fi = ∅ for each fi = ϕ i + ε i eϕ i+ 1 + ε i+1 e
�

. So let us
assume for contradiction that S is non-empty and choose f and m ∈ S f ⊆ S

such that η(m) is minimal. Let i > 0 be minimal such that ϕ i � 0 . If δ = 1 or
m� 1 , then let δ = 1 . Otherwise, let δ = − 1 . Setting ψ = logimi

δ and n = dϕ i− ψ
(whenever ϕ i � ψ ) , we distinguish the following four cases:

Case ϕ i = ψ . We first observe that εi+ 1 = − δ . Now let j > i be minimal
such that ϕ j � 0 . Then expj− i h � 1 and m � expiδ ( ϕ i − δ expj− i h ) for
all h Q ϕ j . This contradicts the fact that m ∈ S f .

Case n
�
supp ψ . For all g Q ϕ i , we have g − ψ ∼ ϕ i − ψ ∼ ϕ i , n n, so the

sign of g − ψ does not depend on the choice of g . S ince m ∈ S f , we may
choose g such that m 4 expi g . But then sign ( g − ψ ) � sign ( fi − ψ ) .

Case n ∈ supp ψ \ S fi . Let j > i be such that n � g − ϕ i for all g ∈ ∆ i , j .
Given g ∈ ∆ i , j , it follows that g − ψ∼ ϕ i − ψ , so the sign on g − ψ does not
depend on the choice of g . We obtain a contraction as in the previous case.

Case n ∈ supp ψ ∩ S fi . The minimality hypothesis entails η(n) > η( m) . By
the construction of n, we thus must have η(m) 6 1 . S ince m= 1 implies ψ= 0
and n

�
supp ψ , it follows that m = expk x for some k ∈ Z and ψ = expk − i x .

S ince supp ψ is a singleton, we also must have n = ψ = expk − i x . Now if
τϕ i > n, then we would have expi fi � m, which is impossible. If τϕ i < n,
then expi g ≺ m for all g Q ϕ i , which contradicts the fact that m ∈ S f .

In all cases, we thus obtain a contradiction, so we conclude that S = ∅ . �

Exercise 9 . 1 5 . Prove that e− � = � and e � = � . In the case when C = R , show
that (modulo suitable adjustments of the theory) the “halting condition” NS1
may be replaced by the alternative condition that

fi ∈ T̂ ∪ ±{f} ∪ ±κZ ∪ ± { � , � } T .

Exercise 9. 1 6 . Show that the condition ( d ) is needed in proposition 9. 20.

Exercise 9. 1 7. Show that the conclusion of proposition 9. 2 1 may be replaced
by the stronger statement that for all i > 0 , there exists a j > i with ∆ j ⊆ ∆ i .
Does this still hold in the case of well-based transseries?
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9. 5 Integral neighbourhoods of cuts

9. 5 . 1 Differentiation and integration of cuts

Let I be an interval of T. Any cut f = supC [[ I ]] I ∈ C[[ I]] \ C[[ I]] (where I
is an open initial segment without maximal element) naturally induces an
element ι( f ) = supT I in T . Identifying f with ι( f ) , this yields a natural
inclusion of C[[ I]] into T , which extends the inclusion of C[[ I]] into T .
For any g ∈ I with g < f , there exists a h ∈ I with g < h < f so that
f − g > h − g ∈ C[[ I]] > . In other words, f is a cut in T \ T whose width
lies in I . From proposition 9 . 1 3 it now follows that either f = ϕ f ∈ C[[ I]] or
f = ϕ f + c w f for some ϕ f ∈ C[[ I]] and c ∈ C� = C \ {− � , � } . In other words,

C[[ I]] = C� [ [I ] ] ∩ T .

In particular, each element f ∈ T admits a canonical decomposition

f = f� + f� + f≺ , ( 9 . 21 )

with f� ∈ T� = C[[ T� ]] , f� ∈ C� and f≺ ∈ T≺ = C[[ T≺ ]] .
Denote γ = (x log x log2 x � ) − 1 and consider the differential operator ∂

on T . The restrictions of ∂ to T� and T≺ respectively yield increasing and
decreasing bijections

∂� : T� � C[[ T� γ ]]

∂≺ : T≺ � C[[ T≺ γ ]]

By proposition 9. 6, we may extend ∂� and ∂≺ to the compactifications of T�
and T≺ . This allows us to extend ∂ to T by setting ∂ f = ∂� f� + ∂≺ f≺ for
all f ∈ T . Notice that � ′ = (− � ) ′ = γ and (− � ) ′ = � ′ = − γ . The logarithmic
derivative of f ∈ T � is defined by f † = ( log | f | ) ′ .

S imilarly, the inverses of ∂� and ∂≺ , which coincide with restrictions of
the distinguished integration, extend to the compactifications of C[[ T� γ ]]
and C[[ T≺ γ ]] . By additivity, the distinguished integration therefore extends
to T \ (T� γ± γ ) . The distinguished integrals of γ and − γ are undetermined,
since

∫
± γ can be chosen among ± � and ∓ � .

9. 5 . 2 Integral nested expansions

Let f ∈ T \ T be a cut. We say that f has integral he ight l , if either

• l = 0 and f ∈ T̂ .
• l = 0 and f = ϕ f + c m for some c ∈ (C ∪ {− � , � } ) and m ∈ T.

• f
�
T̂ and w f

� { � , 1 , � } T, so that f = ϕ + ε e
∫
f̌ for ϕ = ϕ f ∈ T ,

ε = sign ( f − ϕ ) and f̌ = ( f − ϕ ) † , and f̌ has integral height l − 1 .
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The integral height of f is defined to be l =∞ , if none of the above conditions
holds for a finite l ∈ N .

We say that f is right-oriented ( resp. left- oriented ) if

• l = 0 and f = ϕ f + � m ( resp. f = ϕ f − � m) for some m ∈ T.
• l = 0 and f = ϕ f − � m ( resp. f = ϕ f + � m) for some m ∈ T.

• l > 0 and f = ϕ f + e
∫
f̌ ( resp. f = ϕ f − e

∫
f̌ ) , where f̌ is a right-oriented

cut of height l − 1 .
• l > 0 and f = ϕ f − e

∫
f̌ ( resp. f = ϕ f + e

∫
f̌ ) , where f̌ is a left-oriented

cut of height l − 1 .
• l = ∞ and f = − f ( resp. f = f ) .
An oriented cut is a cut which is either left- or right-oriented. A cut f is said
to be pathological if f = ϕ f + c m for some c ∈ C # and m∈ T, or f = ϕ f ± e

∫
f̌ ,

where f̌ is a pathological cut. If C = R, then there are no pathological cuts.
If f is neither an oriented nor a pathological cut, then f is said to be regular .

For each k < l , we recursively define ϕk ∈ T , εk ∈ {− 1 , 1 } and fk+ 1 ∈ T \ T
by taking ϕk = ϕ fk ( starting with f0 = f ) , εk = sign ( fk − ϕk ) and fk+ 1 =

( fk − ϕk ) † . The sequence f0 , f1 , � is called the integral nested sequence of f
and the sequence ϕ0 , ϕ 1 , � its integral guiding sequence . For each k ∈ N with
k 6 l , we call

f = ϕ0 + ε0 e
∫
ϕ 1 + ε 1 e

∫ � ϕ k − 1 + ε k − 1 e

∫
fk

the integral nested expansion of f at height k . If f is an irregular cut of
height l < ∞ , so that fl = ϕ fl + c m for certain c ∈ C ∪ {− � , � } \ C and m ∈ T,
then we also define ϕ l = ϕ fl and ϕ l+ 1 = log m . In that case, we call l + 2 the
extended integral height of f and ϕ0 , � , ϕ l+ 1 the extended integral guiding
sequence . If f is a regular cut, then the extended integral height and guiding
sequence are defined to be same as the usual ones.

9. 5 . 3 Integral neighbourhoods

Let f ∈ T \ T be a cut of integral height l and with extended integral guiding
sequence ϕ0 , ϕ 1 , � . Let g < h be transseries in T ∪ {← , →} , where ← and →
are formal symbols with ← < T < → . Then the set

Lϕ 0 , � , ϕk − 1 , g , h =

{
ϕ0 + c0 e

∫
ϕ 1 + c1 e

∫ � ϕ k − 1 + ck − 1 e

∫
fk

: c0 , � , ck − 1 ∈ C � , g < fk < h

}

is called a basic integral neighbourhood of extended height k , if either one of
the following conditions holds:

• k = 0 and g < f < h . This must be the case if f ∈ T̂ .
• k = 1 , l = 0 , f is irregular and g < ϕ 1 − γ < ϕ 1 + γ < h .
• k = 2 , l = 0 , f is irregular and g < γ † < h .
• k > 0 , l > 0 and Lϕ 1 , � , ϕ k − 1 , g , h is a basic integral neighbourhood of f1 .
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The height of Lϕ 0 , � , ϕ k − 1 , g , h is the minimum of k and l . An integral neigh-
bourhood of f is a superset V of a finite intersection of basic integral
neighbourhoods. The ( extended) height of such a neighbourhood is the max-
imal ( extended) height of the components in the intersection.

Let V be an integral neighbourhood of f of height k and consider
a transseries f ∈ V close to f . We define the integral coordinates of f by

f0 = f

f1 = ( f0 − ϕ0 )
†

�

fk = ( fk − 1 − ϕk − 1 )
†

If W is an integral neighbourhood of f1 , then we notice that V= ϕ0 + C � e
∫W

is an integral neighbourhood of f , and it is convenient to denote the integral
coordinates of f1 ∈ W by f1 , � , fk .

Example 9. 22. Let c ∈ C ∪ {− � , � } \ C and consider a basic integral
neighbourhood V of c of height k > 0 .

If k = 1 , then V = L0 , g , h , with g < − γ < γ < h . In particular, there exists
an l ∈ N with g < − ( logl x) ′ and h > ( logl x) ′ . For any f ∈ T with f � 1 and
f

�
logl− 1 x , it follows that f † = ( log | f | ) ′ ≺ ( logl x ) ′ , whence f ∈ V . For any

f ∈ T with f � 1 , we also have | f † | � | f ′ | < γ , whence f ∈ V . By distinguishing
the cases c = ± � , c = ± � and c ∈ C # , it follows that V ⊇ ( g̃ , h̃ ) for certain
g̃ , h̃ ∈ T with g̃ < c < h̃ .

If k = 2 , then V = L0 , 0 , g , h , where V † = L0 , g , h is an integral neighbourhood
of both γ and − γ . Hence,

g < ( log γ ) ′ = − 1

x
− 1

x log x
− 1

x log x log2 x
− � < h,

so there exists an l ∈ N with

g < ( logl x ) † † − ( logl x ) † = − 1

x
− � − 1

x � logl− 1 x
− 2

x � logl x
and

h > ( logl x) † † = − 1

x
− � − 1

x � logl x
.

It follows that for any f � 1 with f
�

logl x , we have

f † = ( log f ) ′ ≺ ( logl+ 1 x) ′ = ( logl x ) †

and

f † † = ( log f † ) ′ < ( log ( logl x ) † ) ′ = ( logl x ) † † ,

so that f ∈ V . S imilarly, if f = c+ ε with c ∈ C � and ( logl x ) − 1 ≺ ε ≺ 1 , then

f † � ε ′ � ( ( logl x ) − 1 ) ′ � ( logl x) †/ logl x ,
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whence

f † † = ( log f † ) ′ > ( log ( ( logl x) †/ logl x) ) ′ = ( logl x) † † − ( logl x ) †

and f ∈ V .

9. 5 . 4 On the orientation of integral neighbourhoods

Let f ∈ T \ T be a cut. A one- sided neighbourhood U of f is either a superset
of an interval ( f , g) with g ∈ T and g > f ( and we say that U is a right
neighbourhood of f ) or a superset of an interval ( g, f ) with g ∈ T and g < f

( and we say that U is a left neighbourhood of f ) . A neighbourhood of f is
a set U which is both a left neighbourhood of f ( unless f = −f ) and a right
neighbourhood of f ( unless f = f ) .

Proposition 9. 23. Let f ∈ T \ T be a non-pathological cut and let V be an
integral neighbourhood of f.

a ) If f is regular, then there exists a neighbourhood U of f with U ⊆ V.
b ) If f is right-oriented, then f admits a right neighbourhood U with U ⊆ V.
c ) If f is left- oriented, then f admits a left neighbourhood U with U ⊆ V.

Proof. We prove the proposition by induction over the height k of V . If
f = ± f , or k = 0 and f is regular, then we may take U = V . If k = 0 and
f � ± f is oriented, then the result follows from what has been said in
example 9. 22 . Assume therefore that k > 0 and let f = ϕ0 + ε0 ef1 be the
integral expansion of f at height 1 .

We have V ⊇ V0 ∩ � ∩ Vk , where each Vi is a basic integral neighbourhood
of f of height k . Modulo a final adjustment of U, we may assume without
loss of generality that V0 = T . We have Vi = ϕ0 + C � e

∫Wi for all i > 0 , where
each Wi is a basic integral neighbourhood of f1 . Let W =W1 ∩ � ∩ Wk .

a) If f is regular, then so is f1 , hence the induction hypothesis implies that
there exist g , h ∈ T with g < f1 < h and ( g, h) ⊆ W . We conclude that either
ε0 = 1 and ( ϕ + e

∫
g , ϕ + e

∫
h ) ⊆ V or ε0 = − 1 and ( ϕ − e

∫
h , ϕ − e

∫
g) ⊆ V .

b) If f is right-oriented, then either ε0 = 1 and f1 is right-oriented, or
ε0 = − 1 and f1 is left-oriented. In the first case, the induction hypoth-
esis implies that there exists a g ∈ T with f1 < g and ( f1 , g) ⊆ W ,
so that ( f , ϕ + e

∫
g) ⊆ V . In the second case, there exists a g ∈ T

with g < f1 and ( g , f1 ) ⊆ W , so that ( ϕ − e
∫
g , f ) ⊆ V .

c) The case when f is left-oriented is treated in a similar way as ( b ) . �

Proposition 9.24. Let f ∈ T \ T be a cut and V an integral neighbour-
hood of f, of height k . Then there exists an integral neighbourhood W of f
of height k , such that W ⊆ V and f0 − ϕ0 , � , fk − 1 − ϕk − 1 have constant sign
for f ∈ W.
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Proof. We prove the proposition by induction over k . If k = 0 , then we
may take W = V . So assume that k > 0 and write f = ϕ0 + ε0 e

∫
f1 . We have

V ⊇ V0 ∩ V∗ , where V0 is a basic integral neighbourhood of height 0 of f and
V∗ an intersection of basic integral neighbourhoods of heights > 0 . By the
induction hypothesis, there exists an integral neighbourhood X of f1 , such
that X ⊆ (V∗ − ϕ0 )

† and f1 − ϕ 1 , � , fk − 1 − ϕk − 1 have constant sign for all
f1 ∈ X . Now take

W =

{
V0 ∩ ( ϕ0 , → ) ∩ ( ϕ0 + C � e

∫X ) if ε0 = 1

V0 ∩ (← , ϕ0 ) ∩ ( ϕ0 + C � e
∫X ) if ε0 = − 1

�

Exercise 9. 1 8. Show that γ = inf { f ′ : f ∈ T> , � } .

Exercise 9. 1 9 . Show that ∂ maps T̂ into T̂ .

Exercise 9 . 20. If f ∈ T , then show that either f�
�
T and f4 = 0 , or f� ∈ T ,

f�
�
C and f≺ = 0 , or f< ∈ T .

Exercise 9. 21 . Show that the extension of ∂ to T is not additive.

Exercise 9. 22 .

a) Show that the operators ◦ : T × T� , > → T and · ◦ − 1 : T� , > → T� , > naturally
extend to T × T� , > resp. T� , > .

b) Give an explicit formula for f ◦ � , where f ∈ T .
c) Does the post-composition operator ◦ g : T→ T with g ∈ T preserve addition

and/or multiplication?

Exercise 9. 23.

a) Compute the nested integral sequences for f , � and κ0 .
b) Prove analogues of the results from section 9. 4 for nested integral sequences.

9. 6 Differential polynomials near cuts

Let P ∈ T{F } � and f ∈ T \ T . In this section, we study the asymptotic
behaviour of P( f ) for f close to f . In particular, we study the sign of P( f )

for f close to f .

9. 6. 1 Differential polynomials near serial cuts

Lemma 9.25 . Let f̂ ∈ T̂ \ T . Then there exist g , h ∈ T with g < f̂ < h and
τ ∈ C � T , such that P( f ) ∼ τ for al l f ∈ ( g , h) . Moreover, if w f � γ, then g

and h may be chosen such that deg≺ γP+ f = 0 for al l f ∈ ( g , h) .

9. 6 Differential polynomials near cuts 235



Proof. If there exists a ϕ C f̂ with deg≺ supp ϕ P+ supp ϕ = 0 , then the lemma
follows for τ = P+ ϕ , 0 and any g, h ∈ T with g < f̂ < h and h − g ≺ supp ϕ .
Assume for contradiction that d = minϕC f̂ deg≺ supp ϕ P+ ϕ > 0 .

If d = 1 , then each ϕ C f̂ with deg≺ supp ϕ P+ ϕ = 1 induces a solution
fϕ = ϕ + h to P( f ) = 0 , by letting h be the distinguished solution to the
equation P+ ϕ (h) = 0 ( h ≺ supp ϕ ) . Now pick ϕ 1 C ϕ 2 C � C f̂ such that

( fϕ j − fϕ i ) | {m : ∃n∈ supp ϕ j ,m< n} � 0

for all j > i . This is possible, since supp f̂ would be a subset of the grid-
based set supp fϕ i , if ( fψ − fϕ i ) | {m : ∃n∈ supp ψ ,m< n} = 0 for some i and all
ϕ i C ψ C f̂ . Now d( fϕr+ 2 − fϕ 1 ) , � , d ( fϕ r+ 2 − fϕ r+1 ) are pairwise distinct
starting monomials for the linear differential equation P+ ϕ r+2 , 1 (h) = 0 , which
is impossible.

Assume now that d > 1 and choose χ C ψ̂ with d = deg≺ supp χ P+ χ .
Consider the set S of all partial unravellings

f = ξ + f̃ ( f̃ ∈ C[[ Ṽ]] ) ( 9 . 22 )

relative to the equation P+ χ( f̃ ) = 0 ( f̃ ≺ supp χ) , such that ϕ = ξT \ Ṽ C f̂ and
degṼP+ ϕ = d . S ince S contains the identity refinement, we may choose ( 9. 22 )
to be finest in S , by corollary 8 . 32 . We claim that ϕ P f̂ is maximal for P ,
such that deg≺ supp ϕ P+ ϕ = d .

Indeed, assume for contradiction that some ψ B ϕ also satisfies

deg≺ supp ψP+ ψ = d ,

and let τ = τ( ψ − ϕ ) . By proposition 8 . 27, there exists a partial unravelling

f = ξ + ξ̃ + f̃̃ ( f̃̃ ≺ ξ̃ ) ,

which is finer than ( 9 . 22) , and such that ξ̃ ∼ τ . But then ϕ + τ= ( ξ+ ξ̃ ) < ξ̃ C f̂
and deg≺ ξ̃P+ ϕ+ τ = d, which contradicts the maximality of ( 9 . 22 ) .

Our claim implies that deg≺ supp ψP+ ψ < d for any ψ C f̂ with ϕ C ψ . This
contradicts the definition of d . �

9. 6. 2 Differential polynomials near constants

Lemma 9. 26. Let f ∈ C ∪ {− � , � } \ C and m ∈ T≺ . Then there exist an
integral neighbourhood V of f and n ∈ T , such that

P( f ) ∼ NP ( f ) n

and deg≺ mP+ f = 0 for all f ∈ V.

Proof. Let l > 0 be such that P↑ l is exponential, NP = DP ↑ l and logl x
�

m .
Let Q ∈ C [F ] and ν ∈ N be such that NP = Q (F ′) ν .
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Take V = L0 , 0 , ( logl x ) † † − ( logl x ) † , ( logl x ) † † and let f ∈ V . If f † † � γ , then
f † † < ( logl x ) † † , so f † 4 ( logl x ) † and f

�
logl x . If f † † ≺ γ , then f † † >

( logl x) † † − ( logl x ) † , whence f † < ( logl x ) †/ logl x , log ( f/ f� ) < 1 / logl x and
f − f� < 1 / logl x . This proves that either f ↑ l � 1 and f ↑ l

�
x , or f ↑ l 4 1 and

( f ↑ l ) �
�
x .

If f ↑ l � 1 , then NP ( f ↑ l ) ∼ c f ↑ ld ( f ↑ l′) ν , where c � 0 is the leading coefficient
of Q and d = deg Q . S ince ( f ↑ l′) ν

�
x , it follows that NP ( f ↑ l ) < ex 1 , whence

P( f ) ∼ NP ( f ) n for n = dNP ↓ l dP ↑ l ↓ l . Moreover, d ( f ↑ l ) is not a starting
monomial for P↑ l ( f̃ ) = NP ( f̃ ) dP ↑ l + � = 0 , since d ( f ↑ l ) � 1 . Consequently
deg≺ mP+ f 6 deg≺ fP+ f = 0 .

S imilarly, if f ↑ l 4 1 , then NP ( f ↑ l ) ∼ c f ↑ lµ ( f ↑ l′) ν , where c � 0 and µ are
such that Q ( f� + ε) = c εµ + � . Again, we have ( f ↑ l′) ν

�
x , NP ( f ↑ l ) < ex 1 and

P( f ) ∼ NP ( f ) n. Furthermore, d( ( f ↑ l ) � ) � 1 , so d( ( f ↑ l ) � ) is not a starting
monomial for P+ f�↑ l ( f̃ ) = NP+ f� ( f̃ ) dP ↑ l + � = 0 . Therefore, deg≺ m P+ f 6
deg≺ f � P+ f = 0 . �

Corollary 9. 27. Let f = ϕ0 + c e
∫
ϕ 1 be an irregular cut of height 0 . Then

there exist an integral neighbourhood V off, Q ∈ C [F ] � (F ′)N , and n∈ T , such
that for al l f ∈ V, we have

P( f ) ∼ Q (
f0 − ϕ 0

e
∫
ϕ 1

) n.

Moreover, if e
∫
ϕ 1 � γ, then we may take V such that deg≺ γ P+ f = 0 for

al l f ∈ V.

9. 6. 3 Differential polynomials near nested cuts

Lemma 9. 28. Let f = ϕ0 + ε0 e
∫
f1 ∈ T \ T be a cut of integral he ight > 1 .

Then there exist g , h ∈ T ∪ {← , →} with g < f < h and i ∈ N , such that for al l
f ∈ ( g, h) , so that df − ϕ 0 is not a starting monomial for P+ ϕ 0 ( f̃ ) = 0 , we have

P( f ) ∼ RP+ ϕ 0 , i
( ( f − ϕ0 )

† ) ( f − ϕ0 )
i .

Moreover, if w f � γ, then g and h may be chosen such that deg≺ γ P+ f = 0
for al l f as above .

Proof. Let P̃ = P+ ϕ 0 . By proposition 8. 1 7, there exists a unique integer i such
that for each equalizer e j , k for P̃ ( f̃ ) = 0 , we have either e j , k ≺ w f and k 6 i
or e j , k � w f and j 6 i . Now let f = ϕ0 + f̃ ∈ T be such that m̃ = d f̃ is not
a starting monomial for P̃ ( f̃ ) = 0 , and e j , k ≺ f̃ if k 6 i and f̃ ≺ e j , k if i 6 j

for all equalizers e j , k for P̃ ( f̃ ) = 0 . Then NP̃× m
= c Fi for some c ∈ C � and

P̃× m̃↑ l = c nFi + oex ( n) for some sufficiently large l and n ∈ T. Consequently,

P( f ) = P̃ ( f̃ ) = ( P̃× m̃↑ l ) ( ( f̃ / m̃) ↑ l ) ↓ l ∼ ( c n) ↓ l
RP̃i

( f̃ † ) f̃ i = P̃i( f̃ ) = ( P̃× m̃ , i↑ l ) ( ( f̃ /m̃) ↑ l ) ↓ l ∼ ( c n) ↓ l ,
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which proves the first statement of the lemma. Moreover, since m̃ is not a
starting monomial for P+ ϕ 0 ( f̃ ) = 0 , we have deg≺ m̃ P+ f = 0 . If w f � γ , it
follows that deg≺ γP+ f = 0 whenever f is chosen such that f̃ � γ . �

9. 6. 4 Differential polynomials near arbitrary cuts

Theorem 9. 29. Let P ∈ T{F } � and let f ∈ T \ T be a cut of height l with
integral guiding sequence ϕ0 , ϕ 1 , � . Then there exists an integral neighbour-
hood V of f of height k 6 min { l , r } , such that one of the following holds:

• There exist i0 , � , ik − 1 ∈ N and τ ∈ C � T , such that for all f ∈ V, we have

P( f ) ∼ ( f0 − ϕ0 ) i0 � ( fk − 1 − ϕk − 1 )
ik − 1 τ. ( 9 . 23)

• The cut f is irregular, k = l , and there exist i0 , � , ik − 1 ∈ N , Q ∈
C [F ] (F ′)N \ C and n ∈ T , such that for al l f ∈ V, we have

P( f ) ∼ ( f0 − ϕ0 ) i0 � ( fk − 1 − ϕk − 1 )
ik − 1 Q (

fk − ϕk
e
∫
ϕ k+1

) n. ( 9 . 24)

Moreover, if w f � γ, then V may be chosen such that deg≺ γ P+ f = 0 for
al l f ∈ V.

Proof. We prove the theorem by induction over r . So assume that we proved
the theorem for all smaller r ( for r < 0 , there is nothing to prove) . If f ∈ T̂ ,
then the result follows from lemma 9. 25 . If f = ϕ + c m with m≺ supp ϕ and
c ∈ C ∪ {− � , � } \ C , then we are done by corollary 9 . 27.

In the last case, we have f = ϕ0 + ε0 e
∫
f1 for some ε0 = ± 1 . By lemma 9. 28 ,

there exists an i0 and an integral neighbourhood V0 of f of height 0 , such that
for all f ∈ V0 so that df − ϕ 0 is not a starting monomial for P+ ϕ 0 ( f̃ ) = 0 , we have

P( f ) ∼ RP+ ϕ 0 , i0
( f0 − ϕ0 ) ( f0 − ϕ0 )

i0 . ( 9 . 25)

By the induction hypothesis, there exists an integral neighbourhood W of f1

of height k ′ , such that k � k ′ + 1 6 min { l , r } and one of the following holds:

• There exist i1 , � , ik − 1 ∈ N , and τ ∈ C � T, such that for all f1 ∈ W , we have

RP+ ϕ 0 , i 0
( f1 ) ∼ ( f1 − ϕ 1 )

i1 � ( fk − 1 − ϕk − 1 ) ik − 1 τ. ( 9 . 26)

• The cut f1 is irregular, k = l , and there exist i1 , � , ik − 1 ∈ N , Q ∈
C [F ] (F ′)N \ C and n ∈ T, such that for all f1 ∈ W , such that

RP+ ϕ 0 , i0
( f1 ) ∼ ( f1 − ϕ 1 )

i1 � ( fk − 1 − ϕk − 1 )
ik − 1 Q (

fk − ϕ k
e
∫
ϕ k+1

) n. ( 9 . 27)

Moreover, for f1 ∈ W , the induction hypothesis and proposition 8. 1 6 also
imply that e

∫
f1 is not a starting monomial for P+ ϕ 0 ( f̃ ) = 0 , since w f1

� γ .
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Now take V = V0 ∩ ( ϕ0 + C � e
∫W ) . Then the relations ( 9. 25) and ( 9. 26)

resp. ( 9 . 27) entail ( 9 . 23) resp. ( 9 . 24) for all f ∈ V . Moreover, if w f � γ , then
V0 may be chosen such that deg≺ γP+ f = 0 for all f ∈ V ⊆ V0 , by lemma 9. 28 . �

9. 6. 5 On the sign of a differential polynomial

Let P ∈ T{F } be a differential polynomial. We denote by σP : T→ {− 1 , 0 , 1 }
the sign function associated to P :

σP ( f ) = signP( f ) =




− 1 , if P( f ) < 0

0 , if P( f ) = 0
1 , if P( f ) > 0

.

We say that σP is constant at the right of f ∈ T , if there exist ε ∈ {− 1 , 0 , 1 } and
g > f such that σP ( f ) = ε for all f ∈ ( f , g) . In that case, we denote σP

+ ( f ) = ε .
We say that σP is constant at the left of f ∈ T , if there exist ε ∈ {− 1 , 0 , 1 } and
g < f such that σP ( f ) = ε for all f ∈ ( f , g) , and we denote σP

− ( f ) = ε . If σP
is constant at the left and at the right of f , then we say that σP is constant
at both sides of f .

Proposition 9. 30. Let Q ∈ Q = (QdF
d + � + QvF

v ) (F ′) ν ∈ C [F ] (F ′)N with
Qd � 0 and Qv � 0 . Then

σQ
+ ( � ) = sign Qd ( 9 . 28)

σQ
− (− � ) = (− 1 ) d+ ν sign Qd ( 9 . 29)

σQ
− ( � ) = (− 1 ) ν sign Qv ( 9 . 30)

σQ
+ (− � ) = (− 1 ) v sign Qv ( 9 . 31 )

Proof. For f ∈ T> , � , we have

Q ( f ) ∼ Qd f
d ( f ′) ν

and f ′ > 0 . That proves ( 9 . 28) . The other properties follow by considering
Q (− f ) and Q (± 1 / f ) fdeg Q instead of Q ( f ) . �

Theorem 9.31 . Let P ∈ T{F } and f ∈ T . Then

a ) Iff is regular, then σP is constant on both sides off, and σP
+ ( f ) = σP

− ( f ) .
b ) If f is left- oriented, then σP is constant at the left of f.
c ) If f is right-oriented, then σP is constant at the right of f.
d ) If f ∈ T , then P is constant at both sides of f.

Proof. Propositions 9 . 24, 9 . 30 and theorem 9. 29 imply ( a ) , ( b ) and ( c ) . Prop-
erty (d ) follows by considering P( 1 / f ) fdeg P instead of P( f ) . �
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Proposition 9. 32 . Let P ∈ T{F } � , m ∈ T and denote i = val NP× m 6 j =
degNP× m . Then

σP
+ ( � m) = σPj

+ ( � m) = σRPj
+ ( m † + γ )

σP
− ( � m) = σPi

− ( � m) = σRPi
− (m † − γ )

Proof. From ( 9 . 28) , it follows that σNP× m

+ ( � ) = σNPj , × m

+ ( � ) . Consequently,

P× m( f ) ∼ Pj , × m( f ) for all sufficiently small f ∈ T� , > , so that σP
+ ( � m) =

σPj
+ ( � m) . S imilarly, we obtain σP

− ( � m) = σPi
− ( � m) . S ince

σPj , × m ( f ) = σRPj ( m
† + f † )

σPi , × m ( f ) = σRPi ( m
† + f † )

for all f ∈ T> , we also have

σPj
+ ( � m) = σRPj

+ ( m † + γ )

σPi
− ( � m) = σRPi

− ( m † − γ ) . �

Let W be an initial segment of T. The sign σP , W of P modulo W at a point
f ∈ T is defined as follows. If degW P+ f > 0 , then we set σP , W( f ) = 0 . Recall
that degWP+ f is the multiplicity of f as a zero of P modulo W in this case.
If degW P+ f = 0 , then for all δ ∈ C[[ W]] , we have σP+ f ( δ) = sign P0 , and we
set σP , W( f ) = signP0 ∈ {− 1 , 1 } . G iven f ∈ T and f ∈ T , we write f <W f if
f < f + δ for all δ ∈ C[[ W]] . Given f , g ∈ T , we denote

( f , g ) W = {h ∈ T : f <W h <W g } .

We say that σP , W is constant at the right of f ∈ T , if there exist ε ∈ {− 1 , 0 , 1 }
and g >W f such that σP , W( f ) = ε for all f ∈ ( f , g) W . In that case, we denote
σP , W

+ ( f ) = ε . Constance at the left is defined similarly. If W is of the form
W = {m ∈ T: m ≺ w } , then we also write σP , ≺ w = σP , W , σP , ≺ w

+ = σP ,W
+ and

σP , ≺ w
− = σP , W

− .

Exercise 9. 24. Let H ⊇ Tcv{F } be a Hardy field. Consider a cut f ∈ T and
an element h ∈ H , such that g < f ⇔ g < h for g ∈ Tcv . If σP

+ ( f ) is defined, then
show that there exists a g ∈ H with g > h and σP ( ϕ ) = σP

+ ( f ) for all ϕ ∈ (h , g) .

Exercise 9. 25 . Show that ζ (x ) ,

ϕ (x ) =
1
x

+
1
xp

+
1

xp 2 + �

and

ψ(x ) =
1

x
+

1

e log
2 x

+
1

e log
4 x

+ �

do not satisfy an algebraic differential equation with coefficients in T . Compare
with the technique from exercise 8 . 26 .
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Exercise 9 . 26. Let L be a real analytic solution to L ( log x ) = L (x ) − 1 ( for a
construction of such a solution, see [Kne50] ) . Show that Tcv{L } is a Hardy field.

9. 7 The intermediate value theorem

In this section, we assume that C is a real closed field. Our main aim is to
prove the following intermediate value theorem:

Theorem 9.33. Let P ∈ T{F } and f , g ∈ T be such that f < g and
P( f ) P( g) < 0 . Then there exists a h ∈ ( f , g) with P(h) = 0 .

In fact, we will prove the following stronger version of the theorem:

Theorem 9.34. Let P ∈ T{F } and let W be an initial segment of T. Assume
that f , g ∈ T are such that f <W g and σP ,W( f ) σP , W( g) < 0 . Then there exists
a h ∈ ( f , g) W such that degW P+ h is odd.

In both theorems, the interval ( f , g) may actually be replaced by a more
general interval ( f , g ) with f , g ∈ T . More precisely, we say that P

changes sign on ( f , g ) modulo W, if σP ,W
+ ( f ) and σP , W

− ( g ) exist and
σP , W

+ ( f ) σP , W
− ( g ) < 0 . Notice that P changes sign on ( f , g ) modulo W

if and only if P changes sign on ( f , g ) W . We say that P changes sign
at h ∈ T modulo W if degW P+ h is odd. Now if P changes sign on ( f , g ) ,
then it also changes sign on ( f , g) for some f , g ∈ T with f < f < g < g ,
σP , W( f ) = σP , W

+ ( f ) and σP , W( g) = σP , W
− ( g ) . Consequently, if theorem 9. 34

holds for all intervals ( f , g) with f , g ∈ T , then it also holds for all inter-
vals ( f , g ) with f , g ∈ T .

Remark 9. 35. The fact that P changes sign at h ∈ T modulo W does not nec-
essarily imply σP , W

+ (h) σP , W
− (h) < 0 . Indeed, P= F ′ changes sign modulo o( 1 )

at h = 0 , but σF ′ , ≺ 1
+ ( 0) and σF ′ , ≺ 1

− ( 0 ) are not defined.

9. 7. 1 The quasi-linear case

Lemma 9.36. Let P ∈ C {F } be of order r and let W be an initial segment
of T. Assume that the theorem 9. 34 holds for al l differential polynomials of
order < r . Let v ∈ T be such that the equation

P( f ) = 0 ( f ≺ v ) ( 9 . 32 )

is quasi- linear and assume that P changes sign on ( 0 , � v ) W . Then there exists
a h ∈ ( 0 , � v ) W with degW P+ h = 1 .
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Proof. Modulo an additive conjugation by a sufficiently small δ ∈ ( 0 , � v ) W ,
we may assume without loss of generality that degW P = 0 . S ince ( 9. 32 ) is
quasi-linear, it admits only a finite number of starting monomials. Let m be
the largest such monomial. Modulo a multiplicative conjugation with m, we
may assume without loss of generality that m = 1 . We must have W≺ 1 , since
otherwise 1 = deg4 1 P 6 degWP = 0 . Furthermore, since NP ∈ C [F ] (F ′)N , we
either have NP = α F + β with α , β ∈ C � , or NP = α F ′ with α ∈ C � .

If NP = α F + β, then the distinguished solution h to ( 9 . 32) satisfies
h∼ − β/α � 0 . Moreover, from proposition 9. 32 , it follows that

σP , W( 0 ) = σP ( � ) = σRP0

− (− γ ) = sign β ;

σP ,W
+ ( � ) = σP

+ ( � ) = σRP1

+ ( γ ) = sign α ;

σP , W
− ( � v ) = σP

− ( � v ) = σRP1

− ( v † − γ ) = − sign β.

We claim that σRP1
( γ ) = σRP1

( v † − γ ) . Otherwise, theorem 9. 34 applied
to RP1 implies the existence of a ψ ∈ ( 0 , v † ) ≺ γ with

deg≺ γRP1 , + ψ ∈ 2 N + 1 .

Taking ψ such that ψ≺ γ = 0 ( whence
∫
ψ∈T� ) , it follows that e

∫
ψ � 1 would

be a starting monomial for ( 9 . 32 ) . Our claim implies that sign β = − sign α ,
so that h ∈ ( 0 , � v ) W . Furthermore, P+ h , 0 = 0 , so

1 6 degW P+ h 6 deg≺ v P+ h = 1 .

If NP = α F ′ , then deg≺ 1 P+ λ = 1 for any λ ∈ C . Let h = 1 + ε, where ε
is the distinguished solution to P+ 1 ( ε) = 0 ( ε ≺ 1 ) . Then h ∈ ( 0 , � v ) W and
P+ h , 0 = 0 again implies degW P+ h = 1 . �

9. 7. 2 Preserving sign changes during refinements

Lemma 9.37. Let P ∈ C {F } and let I be of one of the fol lowing forms:

a ) I = ( c1 , c2 ) ≺ 1 = ( c1 + � , c2 − � ) with c1 , c2 ∈ C.
b ) I = ( c1 , � ) ≺ 1 = ( c1 + � , � ) with c1 ∈ C.
c ) I = (− � , � ) ≺ 1 = (− � , � ) .

IfP changes sign on I, then there exists a c ∈ I ∩ C with

σP
+ ( c − � ) σP

− ( c+ � ) < 0 .

Proof. In cases ( b ) and ( c ) , we may replace � ( and − � ) by a sufficiently
large c2 ∈ C ( resp. small c1 ∈ C) . Therefore, it suffices to deal with intervals I
of the form ( a ) . From lemma 9. 26, it follows that σP

+ ( c − � ) = σNP

+ ( c − � ) ,
σP
− ( c + � ) = σNP

− ( c + � ) for all c ∈ C . Without loss of generality, we may
therefore assume that P = NP = A (F ′) ν with A ∈ C [F ] and ν ∈ N .
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If ν is odd, then we choose c ∈ I ∩ C with A( c) � 0 , and obtain

σP
+ ( c − � ) σP

− ( c+ � ) = σ(F ′ ) ν
+ ( c − � ) σ(F ′ ) ν

− ( c+ � ) = (− 1 ) ν < 0 .

If ν is even, then A changes sign on I . S ince C is real closed, it follows that
there exists a c ∈ I ∩ C where A admits a root of odd multiplicity µ , and

σP
+ ( c − � ) σP

− ( c+ � ) = σA
+ ( c − � ) σA

− ( c+ � ) = (− 1 ) µ < 0 . �

Lemma 9.38. Let P ∈ C {F } be of order r and let W be an initial segment
of T. Assume that the theorem 9. 34 holds for al l differential polynomials of
order < r. Let m ∈ T be such that σP , W

+ ( 0) σP , W
− ( � m) < 0 . Then there exists

c ∈ C> and v ∈ T with W ≺ v ≺ m and σP+ c v

+ (− � v ) σP+ c v

− ( � v ) < 0 .

Proof. Modulo an additive conjugation with a sufficiently small δ ∈ ( 0 , � m) W ,
we may assume without loss of generality that

σP , W
+ ( 0) = σP , W( 0) = signP0 � 0 .

We prove the lemma by induction over d = deg≺ m P . If d = 0 , then the
assumptions cannot be met, so we have nothing to prove. So assume that d > 0 .
S ince P0 � 0 , there exists an equalizer of the form e = e v , d for the equation
P( f ) = 0 ( f ≺ m) . We distinguish the following cases:

σP,W
+ ( 0) σP,W

− ( � e ) < 0 . Since deg≺ e P= v < d, we are done by the induction
hypothesis.

e � W and σP
− ( � e ) σP

+ ( � e ) < 0 . The result follows immediately when
applying lemma 9. 37 to P× e and the interval ( � , � ) .

e ∈ W or σP
+ ( � e ) σP

− ( � m) < 0 . If e ∈ W, then let g >W 0 be such that
σP ( f ) = σP ,W

+ ( 0 ) for all f ∈ ( 0 , g) W . Then for any n ∈ T with W ≺ n ≺ g ,
we have σP

+ ( � n) σP
− ( � m) < 0 . So both if e ∈ W and if σP

+ ( � e ) σP
− ( � m) < 0 ,

there exists an n ∈ T with W ≺ n ≺ m, n < e and σP
+ ( � n) σP

− ( � m) < 0 .
S ince m � n< e , we must have degNP× n

= d . From proposition 9. 32 , it
follows that

σRPd
+ (n† + γ ) σRPd

− ( m † − γ ) = σPd
+ ( � n) σPd

− ( � m) = σP
+ ( � n) σP

− ( � m) < 0 .

Applying theorem 9. 34 to RPd , we infer that there exists a g ∈ (n† , m † ) γ
with deg≺ γRPd ∈ 2 N + 1 . Taking g such that g≺ γ = 0 (whence

∫
g ∈ T� ) ,

it follows that v = e
∫
g is a starting monomial for P( f ) = 0 . Moreover, N =

NP× v
is of the form N= αFd− ν (F ′) ν with α ∈ C � , since degN= valN= d .

Furthermore, since σRPd
− ( g − γ ) σRPd

+ ( g + γ ) < 0 , we have

(− 1 ) ν = σN
− ( � ) σN

+ ( � ) = σPd
− ( � v ) σPd

+ ( � v ) = σRPd
− ( g − γ ) σRPd

+ ( g + γ ) < 0 ,

whence ν is odd. For any c > 0 , we conclude that

σP+ c v

+ (− � v ) σP+ c v

− ( � v ) = σN
+ ( c − � ) σN

− ( c+ � ) = (− 1 ) ν < 0 . �
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9. 7. 3 Proof of the intermediate value theorem

We will prove the following variant of theorem 9. 34:

Theorem 9.39. Let P ∈ T{F } and let W be an initial segment of T. Given
v ∈ T , consider an interval I of one of the following forms:

a ) I = ( ξ , χ) W with ξ , χ ∈ T and χ − ξ∼ λ v with λ ∈ C> .
b ) I = ( ξ , ξ + � v ) W with ξ ∈ T .
c ) I = ( ξ − � v , ξ) W with ξ ∈ T .
d ) I = ( ξ − � v , ξ + � v ) W with ξ ∈ T .

If P changes sign on I, then there exists a point h ∈ I such that degW P+ h

is odd.

Proof. We prove the theorem by a double induction over the order of P and
the Newton degree d of

P( f ) = 0 ( f ≺ v ) .

The case when d = 0 is contrary to our assumptions. So assume that d > 0
and that the hypothesis holds for all smaller orders, as well as for the same
order and smaller d . Notice that we must have W ≺ v , since P changes sign
modulo W on I .

Let us first show that cases ( a ) , ( c ) and (d ) can all be reduced to case ( b ) .
This is clear for ( c ) by considering P(− f ) instead of P( f ) . In case (d ) ,
there exists a χ ∈ ( ξ − � v , ξ + � v ) W such that σP

+ ( ξ − � v ) = σP ( η) for all
η ∈ T with η ∈ ( ξ − � v , χ) W . For any such η , it follows that P changes sign
on ( η , η + � v ) W = ( η , η + � v ) W . As to ( a ) , we observe that P changes sign
either on ( ξ , ξ+ � v ) W , on ( χ − � v , χ) W , or on ( ξ + � v , χ − � v ) W = ( ξ+ � v ,
χ − � v ) . The first to cases have already been dealt with. The last case reduces
to ( d ) when applying lemma 9. 37 to the polynomial P+ ξ , × v and the interval
( � , ( χ − ξ) v − � ) .

Let us now show how to prove ( b ) . Modulo an additive conjugation, we
may assume without loss of generality that ξ = 0 . If d = 1 , then we are done
by lemma 9. 36. So assume that d > 1 . Consider the set S of all partial
unravellings

f = ϕ + f̃ ( f̃ ≺ ṽ ) ( 9 . 33)

with either ϕ = 0 and ṽ = v , or ϕ ∈ ( 0 , � v ) W and

σP+ ϕ ,W
+ (− � ṽ ) σP+ ϕ , W

− ( � ṽ ) < 0 .

By corollary 8. 32 , we may choose a finest partial unravelling ( 9 . 33) in S .
Take η= 0 if ϕ = 0 and η ≺ ṽ such that σP+ ϕ

+ (− � ṽ ) = σP+ ϕ ,W
+ ( η) otherwise.

By lemma 9. 38 , applied to P+ ϕ+ η , there exists a term c m ∈ ( η , � v ) W with
W ≺ m, and such that

σP+ ϕ+ cm

+ (− � m) σP+ ϕ + cm

− ( � m) < 0 .
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We claim that we cannot have deg≺ mP+ ϕ+ cm = d . Indeed, by proposition 8 . 27,
this would imply the existence of a partial unravelling

f = ϕ + ϕ̃ + f̃
˜

( f̃
˜ ≺ m)

with ϕ̃ ∼ cm, which is finer than ( 9 . 33) . But then

σP+ ϕ + ϕ̃

+ (− � m) σP+ ϕ + ϕ̃

− ( � m) = σP+ ϕ + cm

+ (− � m) σP+ ϕ + cm

− ( � m) < 0

contradicts the maximality of ( 9 . 33) . Consequently, we have

deg≺ mP+ ϕ+ cm < d

and the theorem follows by applying the induction hypothesis for P+ ϕ+ cm on
the interval (− � m , � m) . �

Exercise 9. 27.

a) Prove that | σP , V ( f ) | 6 | σP ,W ( f ) | if V ⊇ W.
b) Prove that σP ,W

− ( � m) = σP
− ( � m) if W ≺ m.

c) Other similar properties.
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integral guiding sequence, 232
integral height, 232

extension
by strong linearity, 60
least common, 53

extensive
grid-based operator, 1 38
operation, 31
strictly — operator, 1 38

factorization
distinguished, 1 74

faithful Cartesian representation, 83
family

atomic, 1 36
equivalent, 55
grid-based, 46
refines, 56
well-based, 49

field
grid-based transseries, 94
ordered – with R-powers, 40
ordered exp-log —, 93

final segment, 27
generated by A , 27

finer refinement, 1 85
R-finite set, 45
flat

as – as, 40
subring, 41
subset, 54

flatter, 40
greatest common truncation, 53
grid-based

algebra, 47, 1 25
family, 46
field of — transseries, 94, 99
mapping, 60
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module, 1 25
operator, 1 32
composition, 1 34
contracting, 1 38
decomposition
atomic, 1 36
homogeneous parts, 1 35
symmetric atomic, 1 36

differential, 1 43
extensive, 1 38
homogeneous part , 1 32
integral, 1 43
multilinear, 1 26
multilinear family for —, 1 32
of type T , 1 43
strictly extensive, 1 38
with multipliers in E , 1 38

series, 46
convergent, 83

set, 44
summation, 58

group
ordered – with R-powers, 40
with R-powers, 40

Hahn space, 39
Hardy field, 33
Hausdorff interval topology, 21 5
height

exponential, 99
extended integral —, 232
integral cut, 231

Higman’ s theorem, 28
homogeneous

part, 1 32
decomposition into —s, 1 35
differential polynomial, 1 77
grid-based operator, 1 32 , 1 35

incomplete transbasis theorem, 1 02
increasing

difference operator , 1 1 6
mapping, 22

induction
Noetherian, 29
transfinite, 26

infimum, 29
infinitary operator, 55
infinitesimal, 37

series, 52
infinitesimal part , 51

initial segment, 27
generated by A , 27

initializer of cut, 222
integral

coordinates, 233
distinguished, 1 1 3
grid-based operator, 1 43
guiding sequence, 232
height
cut, 231
extended, 232

neighbourhood, 233
basic, 232

nested expansion, 232
nested sequence, 232
refinement, 209

integration
strong, 1 26

intermediate value theorem, 241
interval, 2 1 4

open, 2 1 4
topology, 21 4
Hausdorff, 21 5

inverse of transseries, 1 2 1
irregular monomial for L , 1 51
isobaric part , 1 78
Kruskal’ s theorem, 31
Laurent series , 48

multivariate, 48
leaf, 29
least common extension, 53
left neighbourhood, 234
left-oriented cut, 232
level

transbasis, 1 02
transseries, 1 00

Levi-Civitian set , 46
local community, 82
logarithmic

depth, 99
derivative, 1 08
iterated, 1 78

function, 92
transseries, 99

log-confluent transseries, 1 02
mixed starting monomial, 1 84
monic

differential operator, 1 73
series, 1 73
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monoid
monomial, 1 25

monomial, 44, 46
cut, 220
dominant, 50 , 221
monoid, 1 25
set, 1 25
starting, 75 , 1 62 , 1 84
algebraic, 1 84
differential, 1 84
mixed, 1 84

strong — morphism, 82
multilinear

family for grid-based operator, 1 32
grid-based operator, 1 26
composition, 1 27
summable family, 1 34

strongly, 1 26
type, 1 43

multiplicative conjugate, 70 , 1 47 , 1 80
multiplicity

solution modulo W , 1 85
starting term, 75 , 1 62 , 1 84

multipliers
grid-based operator with — in E , 1 38

multivariate
Laurent series , 48
series, 48

neglection relation, 35
associated, 36
compatible, 36
flattened, 41

negligible, 35
neighbourhood, 234

integral, 233
basic, 232

left, 234
one-sided, 234
right, 234

nested
expansion, 226
integral, 232

sequence, 225
integral, 232

Newton
degree, 75 , 1 62 , 1 84
equation, 68
polygon, 68
differential, 1 91

polynomial, 68 , 75
Newton_degree , 204
node, 29

leaf, 29
predecessor, 29
successor, 29

Noetherian induction, 29
normalized solution modulo W , 1 85
one-sided neighbourhood, 234
open interval, 21 4
operator

atomic, 1 35
input, 1 36
output, 1 36
symmetric, 1 36

differential
monic, 1 73

grid-based, 1 32
composition, 1 34
contracting, 1 38
decomposition
atomic, 1 36
homogeneous parts, 1 35
symmetric atomic, 1 36

differential, 1 43
extensive, 1 38
homogeneous part , 1 32
integral, 1 43
multilinear family for —, 1 32
of type T , 1 43
strictly extensive, 1 38
with multipliers in E , 1 38

infinitary, 55
strong differential, 1 27
support, 1 27 , 1 33

ordered
R-algebra, 32
exp-log field, 93
exp-log ring, 93
exponential ring, 91
field, 32
with R-powers, 40

group with R-powers, 40
R-module, 32
monoid, 32
partial exponential ring, 91
ring, 32
with R-powers, 40

ordering, 22
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anti-lexicographic, 23
Cartesian product, 23
commutative words, 25
disjoint union, 22
embeddability, 23, 30
finest, 22
opposite, 24
ordered union, 23
strict , 24
total, 22
compactification, 21 6

well-founded, 25
words, 23

ordinal, 26
countable, 26
limit, 26
successor, 26

oriented cut, 232
oscillating transseries , 1 69

spectral decomposition, 1 69
part

bounded, 51
constant, 51
homogeneous, 1 32
decomposition into —s, 1 35
differential polynomial, 1 77

infinitesimal, 51
purely infinite, 51

partial
exponential ring, 90
ordered, 91

unravelling, 1 98
pathological cut, 232
perfect ordered structure, 35
plane transbasis, 1 1 2
polynomial

differential
decomposition
by degrees, 1 77
by orders, 1 77
into homogeneous parts, 1 77
into isobaric parts, 1 78
logarithmic, 1 78
serial, 1 77

degree, 1 77
homogeneous part , 1 77
isobaric part , 1 78
Newton, 1 83
transparent, 1 83

valuation, 1 77
weight, 1 78
weighted valuation, 1 78

differential Riccati —, 1 90
Newton, 68 , 75
differential, 1 83

polynomial_solve , 77
positive derivation, 1 08 , 1 1 2
power series , 48
predecessor, 29
Puiseux series, 48
purely infinite part , 51
quasi-analytic function, 1 06
quasi-linear

asymptotic Riccati equation, 1 62
equation, 71 , 75 , 1 93

quasi-ordering, 22
anti-lexicographic, 23
Cartesian product, 23
commutative words, 25
compatible equivalence relation, 24
disjoint union, 22
embeddability, 23, 30
finer, 22
finest, 22
opposite, 24
ordered union, 23
roughest, 22
total, 22
well, 27
well-founded, 25
words, 23

recursive
expansion, 48
multivariate series, 48

refinement, 71 , 76 , 1 63, 1 85
admissible, 71 , 76
compatible, 1 98
finer, 1 85
integral, 209

regular
cut, 232
monomial for L , 1 51
series, 50
term for L , 1 51

relation
antisymmetric, 22
asymptotic, 35
dominance, 35
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neglection, 35
reflexive, 22
transitive, 22

representation
Cartesian, 79
faithful, 83

semi-Cartesian, 79
restriction of series, 52
Riccati

differential — polynomial, 1 50, 1 90
algebraic part , 1 50

equation modulo o( 1 ) , 1 61
asymptotic, 1 62

ri ccati _s olve , 1 65
right neighbourhood, 234
right-oriented cut, 232
ring

archimedean, 37
asymptotic — with R-powers, 40
exponential, 90
ordered, 91

ordered – with R-powers, 40
ordered exp-log —, 93
partial exp-log —, 93, 93
partial exponential —, 90
ordered, 91

with R-powers, 40
root

almost multiple, 72
scalar product of transseries , 1 22
scale

asymptotic, 64
change, 64

semi-Cartesian representation, 79
sequence

integral guiding —, 232
nested, 225
integral, 232

serial
cut, 223
decomposition, 1 77

series
bounded, 52
differentially algebraic, 85
dominant exponent, 68
effective, 86
grid-based, 46
convergent, 83

infinitesimal, 52

Laurent, 48
multivariate, 48

monic, 1 73
multivariate, 48
natural, 48
recursive, 48

order type, 49
power, 48
Puiseux, 48
regular, 50
restriction, 52
Taylor, 1 1 8 , 1 32 , 1 35
valuation, 68
well-based, 49

set
accumulation-free, 45
R-finite, 45
grid-based, 44
Levi-C ivitian, 46
monomial, 1 25
weakly based, 46
well-based, 44
countable, 45

shifting
downward, 1 00, 1 47 , 1 80
upward, 1 00 , 1 47 , 1 80

sign change, 241
similar modulo flatness, 40
solution

distinguished, 1 56 , 1 70 , 1 93 , 208
modulo W, 1 85
multiplicity, 1 85
normalized, 1 85

st_term, 205
starting

coefficient, 69
exponent, 68
monomial, 68 , 75 , 1 62 , 1 84
algebraic, 1 84
differential, 1 84
mixed, 1 84

term, 69, 75 , 1 62 , 1 84
algebraic, 1 84
differential, 1 84
multiplicity, 75 , 1 62 , 1 84

steep complement, 97
Stirling number, 1 47, 1 80
strong

Abelian group, 56
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R-algebra, 57
associativity, 56
commutativity, 55
derivation, 1 08 , 1 26
difference operator , 1 1 6 , 1 27
differential operator, 1 27
integration, 1 26
linear mapping, 57
R-module, 57
monomial morphism, 82
multilinear mapping, 1 26
repetition, 56
ring, 57
summation operator, 1 27
tensor product, 1 30
trivial — structure, 56

subtree, 29
successor, 29
support, 46

operator, 1 27, 1 33
Taylor series, 1 1 8 , 1 32 , 1 35
tensor product, 33

anti-lexicographical, 33
strong, 1 30

term, 46
dominant, 50
regular for L , 1 51
starting, 75 , 1 62 , 1 84
algebraic, 1 84
differential, 1 84
multiplicity, 75 , 1 62 , 1 84

theorem
Cantor, 26
compactness, 2 1 6
Higman, 28
incomplete transbasis , 1 02
intermediate value, 241
Kruskal, 31
Newton-Puiseux, 78
Translagrange, 1 22

trace of differential operator, 1 51
transbasis, 1 02

incomplete — theorem, 1 02
level, 1 02
plane, 1 1 2

transfinite induction, 26
Translagrange theorem, 1 22
transparent

differential polynomial, 1 83

transseries, 1 83
transseries

complex coefficients , 1 68
contraction, 1 01
convergent, 1 04
depth, 1 00
dilatation, 1 01
downward shift , 1 00
exp-log, 1 04
exponential, 1 00
exponential height , 99
field of grid-based —, 94
in x , 99
inverse, 1 2 1
level, 1 00
logarithmic, 99
logarithmic depth, 99
log-confluent, 1 02
oscillating, 1 69
spectral decomposition, 1 69

scalar product, 1 22
upward shift , 1 00
well-based, 1 01
convergent, 1 06

tree, 30, 30
arity, 30
E-labeled, 30
leaf, 29
node, 29
root, 29
unoriented, 29

truncation, 53
greatest common, 53

ultra-strong
R-algebra, 57
R-module, 57

unbounded, 37
unravel , 206
unravel_sub , 206
unraveller

distinguished, 208
unravelling

atomic, 1 97
partial, 1 98
total, 1 97

upward shifting, 1 00, 1 47, 1 80
valuation, 38 , 68

differential polynomial, 1 77
weighted, 1 78
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weakly based set , 46
weight

differential polynomial, 1 78
vector, 1 78

weighted valuation, 1 78
well-based

family, 49
series, 49
set, 44
countable, 45

transseries, 1 01
convergent, 1 06

well-ordering, 25
well-quasi-ordering, 27
widening, 81
wider Cartesian basis , 81
width of cut, 221
word, 23

commutative, 25
Zorn’ s lemma, 25
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