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Abstract

Given a ring C and a totally (resp. partially) ordered set of “monomials” M, Hahn
(resp. Higman) defined the set of power series C[[M]] with well-ordered (resp. Noethe-
rian or well-quasi-ordered) support in M. This set C[[M]] can usually be given a lot of
additional structure: if C is a field and M a totally ordered group, then Hahn proved
that C[[M]] is a field. More recently, we have constructed fields of “transseries” of the
form C[[M]] on which we defined natural derivations and compositions.

In this paper we develop an operator theory for generalized power series of the
above form. We first study linear and multilinear operators. We next isolate a big class
of so-called Noetherian operators Φ: C[[M]] → C[[N]], which include (when defined)
summation, multiplication, differentiation, composition, etc. Our main result is the
proof of an implicit function theorem for Noetherian operators. This theorem may
be used to explicitly solve very general types of functional equations in generalized
power series.

1 Introduction

In [Hah07], Hahn introduced an abstract framework for algebraic computations on power
series with generalized exponents like

f = 1+ zlog2 + zlog3 + zlog4 +� ;

g = 1+ z+ z2 + ze + z3 + z1+e + z4 + z2+e + z5 + z2e + z3+e +� ;

h = 1+ z1/2 + z3/4 + z7/8 +� + z+ z3/2 + z7/4 +� + z2 +� +� .
One of his main results states that, given a field C and a totally ordered monomial group
M, the set C[[M]] of series f :C→M with well-ordered support in M carries a natural field
structure. This result was generalized by Higman [Hig52] to the case of partially ordered
monomial monoids M.

More recently, Dahn and Göring [DG86] and Écalle [É92] constructed so-called fields
of “transseries”, which are fields of generalized power series C[[M]] in the sense of Hahn,
with additional structure, such as exponentiation, differentiation, integration, composition,
etc. Examples of transseries are

ϕ = x+ log x+ log log x+ log log logx+� ;

ψ = ee
x+ex/2+ex/3+� + ee

x/2+ex/3+ex/4+�
+ ee

x/3+ex/4+ex/5+� +� ;

ξ = Γ(x) = 2π
√

e
xlogx−x−

1

2
logx

+�
In [vdH97], we have shown how to differentiate, integrate and compose such transseries,
and how to solve algebraic differential equations (whenever possible).
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In this paper, we will be concerned with the development of an abstract operator theory
for generalized power series, in the setting of partially ordered monomial sets introduced
by Higman. We start by recalling some basic results about Noetherian orderings (also
called well-quasi-orderings) in section 2. In Higman’s setting, generalized power series have
Noetherian support. For this reason, we shall actually call them Noetherian series.

In section 3, we recall the definition of Noetherian series and develop the theory of
strongly linear and strongly multilinear operators. More precisely, it is possible to define
a notion of infinite summation on algebras C[[M]] of Noetherian power series. One may
think of this as something analoguous to normal summable families in analysis. Strongly
linear mappings will then be linear mappings which also preserve infinite summation.

The remainder of this article focuses on the resolution of certain functional equations.
Translated into the terminology of operators, this comes down to the isolation of nice
classes of operators on which some kind of implicit function theorem holds (actually, we
will rather prove “parameterized fixed point theorems”). As a basic example, one would
like to solve implicit equations like

f = g+ f ′ f ′′ (1)

in fields of transseries, where g is a sufficiently small parameter (say g=o(e−x)) and f the
unknown.

In section 4, we start by developing a theory of continuous and contracting functions
for Noetherian series and we will prove the existence of a solution f = Ψ(g) to equations
like (1) using the technique of fixed points. Actually, we will prove an implicit function
theorem which is very similar to fixed point theorems from [PC90] and [PCR93], although
our proof is more constructive.

A more natural and even more explicit way of getting solutions to (1) would be to
replace the left hand side by the right hand side in a recursive manner, while expanding
all sums. This would lead to a formal solution of the form

f = g+ f ′ f ′′

= g+ g ′ g ′′+ (f ′ f ′′)′ g ′′+ g ′ (f ′ f ′′)′′+ (f ′ f ′′)′ (f ′ f ′′)′′

= g+ g ′ g ′′+ (g ′ g ′′)′ g ′′+ g ′ (g ′ g ′′)′′+� .
The main difficulty then resides in proving that the obtained formal expansion is indeed
summable in our generalized sense. In sections 5 and 6, we will prove that this is indeed
the case for a suitable class of “Noetherian operators”.

2 Noetherian orderings

Throughout this paper, orderings are understood to be partial, except when we explicitly
state them to be total. Actually, almost all ordered sets considered in this paper are
monomial sets, and we denote them by fraktur letters M,N,� . We denote by < (or by
<M,<N,� ) the orderings on such monomial sets. Usually, M is even a monomial monoid
or group, on which the multiplication is assumed to be compatible with the ordering, i.e.

m4 n ⇔ m v 4 n v ⇔ v m4 v n,

for all m, n, v∈M.

Example 1.

1. M={xαeβx|α, β∈R} with xαeβx<1⇔ (β>0∨ (β=0∧α>0)) is a totally ordered
monomial group.
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2. If M and N are monomial sets, then their disjoint union M∐N is naturally ordered,
by taking the orderings on M and N on each part of the disjoint union, and by
taking M and N mutually incomparable in M∐N.

3. If M and N are monomial sets, then the Cartesian product M × N is naturally
ordered by (m, n) <M×N (m′, n′) ⇔ m <M m′∧ n <N n′.

4. Let M⋆ be the set of non-commutative words over a monomial set M (and where
one may think of the elements of M as infinitesimals). Such words are denoted by
sequences m1 � mm, with m1, � , mm ∈ M. The empty word is denoted by ε. The
set M⋆ is “naturally” ordered by m1� mm <M⋆ n1� nn, if and only if there exists a
strictly increasing mapping ϕ:{1,� ,m}→{1,� ,n}, such that mi <M nϕ(i) for all i.

Let M be a monomial set. A chain in M is a subset of M which is totally ordered for
the induced ordering. An antichain is a subset of M of pairwise incomparable elements.
The ordering on M is said to be well-founded , if there are no infinite sequences m1 ≺
m2≺� of elements in M. A Noetherian ordering is a well-founded ordering without infinite
antichains.

Remark 2. In the literature, an ordered set (E,6 ) is usually said to be well-founded, if
there are no infinite sequences x1>x2>� of elements in E. This definition is compatible
with ours, if one interprets a monomial set M to be ordered by the opposite ordering <

of 4 (as we did).

Let M be a monomial set. A final segment is a subset F of M, such that m ∈ F ∧
m < n ⇒ n ∈ F, for all m, n ∈ M. Given an arbitrary subset S of M, we denote by
(S)={n∈M|∃m∈S,m<n} the final segment generated by S. Dually, an initial segment
is a subset I of M, such that n ∈ I ∧ m < n ⇒ m ∈ I, for all m, n ∈ M. The following
characterizations of Noetherian orderings are classical [Mil85], [Pou85].

Proposition 3. Let M be a monomial set. Then the following are equivalent:

a) The ordering < on M is Noetherian.

b) Any final segment of M is finitely generated.

c) The ascending chain condition w.r.t. inclusion holds for final segments of M.

d) Each sequence m1,m2,� ∈M admits a subsequence mi1 <mi2 <� .

e) Any extension of the ordering on M to a total ordering on M yields a well-
ordering. �

The most elementary examples of Noetherian orderings are well-orderings, and orderings
on finite sets. Proposition 3 allows us to construct more complicated Noetherian orderings
from simpler ones:

Proposition 4. Assume that M and N are Noetherian monomial sets. Then

a) Any subset of M with the induced ordering is Noetherian.

b) Let M → V be an increasing mapping into a monomial set V. Then Im ϕ is
Noetherian.

c) Any extension of the ordering < on M is Noetherian.

d) M∐N is Noetherian.

e) M×N is Noetherian. �
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The following theorem is due to Higman [Hig52]. We will recall a proof due to Nash-
Williams [NW63], because a similar proof technique will be used in section 6.1.

Theorem 5. Let M be a Noetherian monomial set. Then M⋆ is Noetherian.

Proof. We say that n1, n2, � is a bad sequence in M⋆, if there do not exist i < j with
ni <M⋆ nj. An ordering is Noetherian if and only if there are no bad sequences. Now assume
for contradiction that n1, n2, � is a bad sequence in M⋆. Without loss of generality, we
may assume that each ni is chosen in M⋆\(n1,� , ni−1) such that it has minimal length as
a word. We say that n1, n2,� is a minimal bad sequence.

Now for all i, we must have ni� ε, so we can factorize ni = mi vi, where mi is the first
letter of ni. By proposition 3(d), we can extract a sequence mi1 <M mi2 <M � from m1,

m2,� . Now consider the sequence n1,� ,ni1−1,vi1,vi2,� . By the minimality of n1,n2,� , this
sequence is good. Hence, there exist j <i1 and k with nj <M⋆ vik, or j <k with vij <M⋆ vik.
But then, nj <M⋆ vik <M⋆ mik vik =nik resp. nij

=mij
vij

<M⋆ mik vik =nik. This contradicts
the badness of n1, n2,� . �

3 Noetherian series

3.1 Noetherian series and infinite summation

Let C be a commutative additive group of coefficients and M a set of monomials. The
support of a mapping f : M→C is defined by

supp f = {m∈M|f(m)� 0}.
If supp f is Noetherian for the induced ordering, then we call f a generalized power series
or a Noetherian series . We denote the set of all Noetherian series with coefficients in C and
monomials in M by C[[M]]. We also write fm= f(m) for the coefficient of m∈M in such
a series and

∑

m∈M
fmm for f . Each fmm with m∈ supp f is called a term occurring in f .

Given two Noetherian series f , g ∈M, we define their sum by

f + g=
∑

m∈supp f∪supp g

(fm+ gm) m.

This gives C[[M]] the structure of a commutative group. More generally, consider a family
(fi)i∈I of series in C[[M]]. We say that (fi)i∈I is a Noetherian family , if

⋃

i∈I
supp fi

is Noetherian and for each m ∈ M there exist only a finite number of i ∈ I such that
m∈ supp fi. In that case, we define its sum by

∑

i∈I

fi =
∑

m∈M

(

∑

i∈I

fi,m

)

m. (2)

This sum is again a Noetherian series. In particular, given a series f ∈C[[M]], the family
(fmm)m∈supp f is Noetherian and we have f =

∑

m∈supp f
fmm in the sense of (2).

It is useful to see C [[M]] as a strong commutative group, i.e. a commutative group
with an additional “infinite summation structure” on it. In our case, this structure is
reflected through the infinite summation of Noetherian families; it satisfies the following
fundamental properties:

Proposition 6.

a) Any zero family (0)i∈I is Noetherian, and
∑

i
0= 0.
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b) For any f1∈ [[M]], the family (fi)i∈{1} is Noetherian, and
∑

i∈{1}
fi = f1.

c) If (fi)i∈I ∈ C[[M]]I and (fi)i∈J ∈ C[[M]]J are Noetherian and I ∩ J = ∅, then
(fi)i∈I∐J is Noetherian and

∑

i∈I∐J
fi =

∑

i∈I
fi +

∑

i∈J
fi.

d) If (fi)i∈I ∈C[[M]]I is a Noetherian family, then for any bijective mapping ϕ:J→ I,
the family (fϕ(j))j∈J is Noetherian, and

∑

j∈J
fϕ(j) =

∑

i∈I
fi.

e) If (fi)i∈I ∈ C[[M]]I is a Noetherian family and I =
∐

j∈J
Ij a decomposition of I

into pairwise disjoint subsets, then (fi)i∈Ij
is a Noetherian family for each j ∈ J,

(
∑

i∈Ij
fi)j∈J is a Noetherian family, and

∑

j∈J

∑

i∈Ij
fi =

∑

i∈I
fi.

Proof. All properties are straightforward to prove. For illustration, we will prove (e). Let
(fi)i∈I ∈ C[[M]]I be a Noetherian family and let I =

∐

j∈J
Ij a partition of I. For each

m∈M and j ∈J , let I;m= {i∈ I |fi,m� 0} and Ij;m= Ij ∩ I;m, so that

I;m=
∐

j∈J

Ij;m. (3)

Now (fi)i∈Ij
is a Noetherian family for all j ∈ J , since ⋃

i∈Ij
supp fi ⊆

⋃

i∈I
supp fi and

Ij;m⊆I;m is finite for all m∈M. Furthermore,
⋃

j∈J
supp

∑

i∈Ij
fi⊆

⋃

j∈J

⋃

i∈Ij
supp fi=

⋃

i∈I
supp fi and for all m∈M, the set {j∈J |

(

∑

i∈Ij
fj

)

m

� 0}⊆{j∈J |Ij;m� ∅} is finite,

because of (3). Hence, the family
(

∑

i∈Ij
fi

)

j∈J
is Noetherian and for all m∈M, we have

(

∑

j∈J

∑

i∈Ij

fi

)

m

=
∑

j∈J

∑

i∈Ij;m

fi,m=
∑

i∈I;m

fi,m=

(

∑

i∈I

fi

)

m

.

This proves (e). �

Remark 7. Given two monomial sets M and N, it is often convenient to identify C[[M]]×
C[[N]] =C[[M]]⊕C[[N]] with C[[M∐N]] via the natural isomorphism

C[[M∐N]] → C[[M]]×C[[N]]

f � (
∑

m∈M
fmm,

∑

n∈N
fnn).

In particular multivariate operators Φ: C[[M1]] × � × C[[Mm]] → C[[N1]] × � × C[[Nn]]
may actually be regarded as a univariate operators Φ:C[[M1 ∐� ∐Mm]]→C[[N1∐� ∐
Nm]]. Similarly, given a monomial set M, the Noetherian families (fi)i∈I ∈ C[[M]]I may
be identified with series in C [[I × M]], where I × M is strictly ordered by (i, m) ≺ (j,
n) ⇔ m ≺ n. We may thus view an operator Φ: C[[I × M]] → C[[N]] as an operator “in
infinitely many variables”, which assigns to each Noetherian family (fi)i∈I∈C[[M]]I a series
in C[[N]].

3.2 Algebras of Noetherian series

Assume now that C is a (not necessarily commutative) ring, and M a (not necessarily
commutative) monomial monoid. Then we may naturally see C and M as subsets of C[[M]]
via c� c · 1 resp. m� 1 ·m. Given f and g in C[[M]], we define their product by

f g=
∑

(m,n)∈supp f×supp g

fmgnmn.
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The right hand side is well defined by propositions 4(e) and 4(b). Higman [Hig52] first
observed that C[[M]] is a ring for this product. Actually, it is even a strong ring , because
the product is compatible with the infinite summation structure on C[[M]] in the following
way:

Proposition 8. For all Noetherian families (fi)i∈I ∈C[[M]]I and (gj)j∈J ∈C[[M]]J, the
family (fi gj)(i,j)∈I×J is also Noetherian, and

∑

(i,j)∈I×J

fi gj =

(

∑

i∈I

fi

)(

∑

j∈J

gj

)

.

Proof. First of all,

⋃

(i,j)∈I×J

supp fi gj ⊆
⋃

(i,j)∈I×J

(supp fi) (supp gj) =

(

⋃

i∈I

supp fi

)
(

⋃

j∈J

supp gj

)

is Noetherian. Given m∈M, the set of couples (v,w)∈
(
⋃

i∈I
supp fi

)

×
(

⋃

j∈J
supp gj

)

with vw=m forms a finite anti-chain; let (v1,w1),� , (vn,wn) denote those couples. Then

{(i, j)∈ I × J |(fi gj)m� 0}⊆
⋃

k=1

n

{(i, j)∈ I ×J |fi,vk
� 0∧ gj ,wk

� 0}

is finite, whence (fi gj)(i,j)∈I×J is a Noetherian family. Given m∈M, we also have
(

∑

(i,j)∈I×J

fi gj

)

m

=
∑

(i,j)∈I×J

∑

k=1

n

fi,vk
gj ,wk

=
∑

k=1

n (

∑

i∈I

fi

)

vk

(

∑

j∈J

gj

)

wk

=





(

∑

i∈I

fi

)(

∑

j∈J

gj

)





m

,

with (v1,w1),� , (vn,wn) as above. �

Remark 9. Also, if (fi)i∈I ∈C[[M]]I is a Noetherian family, then so is (λi fi)i∈I, for each
family (λi)i∈I ∈CI of scalars.

3.3 Extension by strong linearity

Let C be a ring and let M, N be monomial sets. In all what follows, we understand that
C operates on the left on C-modules and C-algebras. A linear mapping L:C[[M]]→C[[N]]

is said to be strongly additive, if for all Noetherian families (fi)i∈I ∈ C[[M]]I, the family
(L(fi))i∈I ∈C[[N]]I is also Noetherian and

L

(

∑

i∈I

fi

)

=
∑

i∈I

L(fi).

Notice that this condition implies that L is strongly linear , i.e. L
(
∑

i∈I
λi fi

)

=
∑

i∈I
λi L(fi), for every Noetherian family (fi)i∈I ∈ C[[M]]I and every family (λi)i∈I ∈

CI of scalars. Notice also that the composition of two strongly linear mappings is again
strongly linear.
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Amapping ϕ:M→C[[N]] is said to be Noetherian, if (ϕ(m))m∈S is a Noetherian family
for every Noetherian subset S of M.

Proposition 10. Let C[[M]] and C[[N]] be C-modules of Noetherian series. Then any
Noetherian mapping ϕ: M → C[[N]] extends to a unique strongly linear mapping ϕ̂:
C[[M]]→C[[N]].

Proof. Let f ∈ C[[M]]. By definition, (ϕ(m))m∈supp f is a Noetherian family, and so is
(fmϕ(m))m∈supp f. We will prove that

ϕ̂:C[[M]] � C[[N]]

f 	 ∑

m∈supp f

fmϕ(m)

is the unique strongly linear mapping which coincides with ϕ on M.
Given λ∈C and f ∈C[[M]] we clearly have ϕ̂(λf)=λ ϕ̂(f). Now let (fi)i∈I ∈C [[M]]I

be a Noetherian family and denote S=
⋃

i∈I
supp fi. We claim that (fi,mϕ(m))(i,m)∈I×S

is a Noetherian family. First of all,
⋃

(i,m)∈I×S

supp fi,mϕ(m)⊆
⋃

m∈S

supp ϕ(m)

is Noetherian. Secondly, given n∈N, the set {m∈S|ϕ(m)n� 0} is finite, since (ϕ(m))m∈S is
a Noetherian family. Finally, for each m∈S with ϕ(m)n� 0, the set {i∈ I |fi,m� 0} is also
finite, since (fi)i∈I is a Noetherian family. Hence, the set {(i,m)∈ I ×S|fi,mϕ(m)n� 0} is
finite, which proves our claim. Now our claim, together with proposition 6(d) proves that
(ϕ̂(fi))i∈I

=
(
∑

m∈S
fi,mϕ(m)

)

i∈I
is a Noetherian family and

∑

i∈I

ϕ̂(fi)=
∑

i∈I

∑

m∈S

fi,mϕ(m)=
∑

(i,m)∈I×S

fi,mϕ(m)=
∑

m∈S

(

∑

i∈I

fi,m

)

ϕ(m)= ϕ̂

(

∑

i∈I

fi

)

.

This establishes the strong linearity of ϕ̂.
In order to see that ϕ̂ is unique with the desired properties, it suffices to observe

that for each f ∈ C [[M]], we must have ϕ̂(fm m) = fm ϕ(m) by linearity and ϕ̂(f) =
∑

m∈supp f
fmϕ(m) by strong linearity. �

Actually, the above proposition generalizes to the “strongly multilinear” case. If M1,� ,
Mn and N are monomial sets, then we call a multilinear mapping

M :C[[M1]]×� ×C[[Mn]]→C[[N]]

strongly multilinear (or strongly multi-additive), if for all Noetherian families (f1,i1)i1∈I1∈
C[[M1]]

I1,� , (fn,in)in∈In
∈C[[Mn]]

In, the family (M(f1,i1,� , fn,in))(i1,� ,in)∈I1×�×In
is also

Noetherian and

M

(

∑

i1∈I1

f1,i1,� , ∑
in∈In

fn,in

)

=
∑

(i1,� ,in)∈I1×�×In

M(f1,i1,� , fn,in).

In particular, if M is a monomial monoid, then the multiplication on C[[M]] is strongly
bilinear, by proposition 8. Also, compositions

N ◦
∏

i=1

m

Mi:
∏

i=1

m
∏

j=1

ni

C[[Mi,j]] � C[[V]];

((fi,j)16j6nm
)16i6m 	 N (M1(f1,1,� , f1,n1),� ,Mm(fm,1,� , fm,nm

))

Noetherian series 7



of strongly multilinear mappings N : C[[N1]] × � × C[[Nm]] → C[[V]] and Mi:
C[[Mi,1]]×� ×C[[Mi,ni

]]→C[[Ni]] for i∈{1,� ,m} are strongly multilinear.
Recall that a mapping ϕ: M1 × � × Mn → C[[N]] is Noetherian, if (ϕ(m1, � ,

mn))(m1,� ,mn)∈S is a Noetherian family for every Noetherian subset S of M1 × � ×
Mn. The following proposition is proved in a similar way as proposition 10:

Proposition 11. Let C[[M1]],� , C[[Mn]] and C[[N]] be C-modules of Noetherian series.
Then any Noetherian mapping ϕ: M1 × � × Mn → C[[N]] extends to a unique strongly
multilinear mapping ϕ̂:C[[M1]]×� ×C[[Mn]]→C[[N]]. �

Remark 12. In a similar way as we identified C[[M ∐ N]] with C[[M]] × C[[N]] in
remark 7, we may see C[[M × N]] as the strong tensor product of C[[M]] and C[[N]].
We have a natural strongly bilinear mapping P : C[[M]] × C[[N]] → C[[M × N]]; (f ,
g)�∑

(m,n)∈supp f×supp g
fm gn (m, n). Furthermore, for any strongly bilinear mapping B:

C[[M]]×C[[N]]→C[[V]], there exists a unique strongly linear mapping L:C[[M×N]]→
C[[V]], such that B=L ◦P .

3.4 Applications of strong linearity

Corollary 13. Let M and N be monomial monoids and let ϕ:M→C [[N]] be a Noetherian
mapping which preserves multiplication. Then ϕ̂ preserves multiplication.

Proof. The mappings (f , g)� ϕ̂(f g) and (f , g)� ϕ̂(f) ϕ̂(g) are both strongly bilinear
mappings from C[[M]]×C[[M]] into C[[N]], which coincide on M2. The result now follows
from the uniqueness of strongly bilinear extensions in proposition 11. �

Corollary 14. Let M be a monomial monoid and ϕ:M→C[[M]] a Noetherian mapping,
such that ϕ(m n) = ϕ(m) n + m ϕ(n) for all m, n∈M. Then ϕ̂ is a (strong) derivation on
C[[M]].

Proof. The mappings (f , g)� ϕ(f g) and (f , g)� ϕ(f) g + f ϕ(g) are both strongly
bilinear mappings from C[[M]] × C[[M]] into C[[M]], which coincide on M2. The result
again follows from the uniqueness of strongly bilinear extensions in proposition 11. �

Corollary 15. Let ϕ:M→C[[N]] and ψ: N→C [[V]] be two Noetherian mappings. Then

ψ̂ ◦ ϕ = ψ̂ ◦ ϕ̂.

Proof. This still follows from the uniqueness of extensions by strong linearity, since ψ̂ ◦ ϕ
and ψ̂ ◦ ϕ̂ coincide on M. �

Assume that M is a monomial monoid. We call a series f ∈ C[[M]] infinitesimal , if
m ≺ 1 for all m ∈ supp f . Then extension by strong linearity may in particular be used
to define the composition g ◦ (f1,� , fk) of a multivariate power series g ∈C[[z1,� , zk]] =

C[[z1
N� zkN]] with infinitesimal series f1,� , fk∈C[[M]]. Indeed, if ϕ:z1

N� zkN→C[[M]] is the
multiplicative mapping which sends each z1

n1� zk
nk to f1

n1� fk
nk, then we define g ◦ (f1,� ,

fk)= ϕ̂(g). Then corollaries 13 and 15 yield the following result:

Corollary 16. Let f1,� , fk be infinitesimal Noetherian series in C[[M]]. Then

a) (g h) ◦ (f1,� , fk) = g ◦ (f1,� , fk)h ◦ (f1,� , fk), for g, h∈C[[z1,� , zk]].
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b) (h◦ (g1,� , gl))◦ (f1,� , fk)=h◦ (g1◦ (f1,� , fk),� , gl◦ (f1,� , fk)), for h∈C[[z1,� ,
zl]] and infinitesimal g1,� , gl ∈C[[z1,� , zk]]. �

4 The topological implicit function theorem

4.1 Truncation of Noetherian series

Let M be a monomial set and f ∈C[[M]]. Given a subset S⊆M, we define the restriction
f|S∈C[[S]]⊆C[[M]] of f to S by

f|S=
∑

m∈S∩supp f

fmm.

Given two series f , g ∈C[[M]], we say that f is a truncation of g (and we write f P g), if
there exists an initial segment I of supp g, such that f = g|I. Thus P is an ordering on
C[[M]].

Let (fi)i∈I ∈ C[[M]]I be a non-empty family of series. A common truncation of the
fi is a series g, such that g P fi for all i ∈ I. A greatest common truncation of the fi is a
common truncation, which is greatest for P . Such a greatest truncation actually always
exists and we denote it by

a
i∈I

fi:

Proposition 17. Any non-empty family (fi)i∈I ∈ C[[M]] admits a greatest common
truncation.

Proof. Fix some j ∈ I and consider the set I of initial segments I of supp fj, such that
fj |IP fi for all i∈I. We observe that arbitrary unions of initial segments of a given ordering
are again initial segments. Hence Imax =

⋃

I∈I I is an initial segment of each supp fi.
Furthermore, for each i ∈ I and m ∈ Imax, there exists an I ∈ I with fj |I,m= fj ,m = fi,m.
Hence fj |Imax

= fi|Imax
P fi for all i∈ I. This proves that f|Imax

is a common truncation of
the fi. It is also greatest for P , since any common truncation is of the form fj |I for some
initial segment I∈I of Imax with fj |IP fj |Imax

. �

Let (fi)i∈I∈C[[M]]I again be a family of series. A common extension of the fi is a series
g, such that fiP g for all i∈ I. A least common extension of the fi is a common extension,
which is least for P . If such a least common extension exists, then we denote it by

`
i∈I

fi.
Now consider a directed index set I . In other words, we have an ordering on I, such

that for any i, j ∈ I , there exist a k ∈ I with i6k and j6k. Let (fi)i∈I be a P -increasing
family of series in C[[M]], i.e. fiP fj whenever i6 j. If M is Noetherian or totally ordered,
then there exists a least common extension of the fi:

Proposition 18. Assume that M is Noetherian or totally ordered. Then any directed
P -increasing family (fi)i∈I of series in C[[M]] admits a unique least common extension`

i∈I
fi and supp

`
i∈I

fi =
⋃

i∈I
supp fi.

Proof. Let S =
⋃

i∈I
supp fi. We claim that S is Noetherian. This is clear if M is

Noetherian. Assume that M is totally ordered and that m14m24� is an infinite sequence
of monomials in S. Since I is directed and supp fi ⊆ supp fj whenever i6 j, there exist
i1 6 i2 6� with mk∈ supp fik for each k. But we also have fi1 P fik for each k, so that m1,

m2,� ∈ supp fi1. Since supp fi1 is Noetherian, the sequence m1,m2,� therefore stabilizes.

The topological implicit function theorem 9



Given m ∈ S, we claim that the coefficient gm = fi,m is independent of the choice of
i∈ I, under the condition that m∈ supp fi. Indeed, let i, j ∈ I be such that m∈ supp fi and
m∈ supp fj, then there exists a k ∈ I with i6 k and j 6 k. Hence, fi P fk and fj P fk, so
that fi,m= fk,m= fj,m. Now the series g=

∑

m∈S
gmm is the least common extension of

the fi. �

4.2 Stationary limits

Let I be a directed index set and (fi)i∈I ∈C [[M]]I a family of series. We call g ∈C[[M]]
a pseudo-limit of the fi, if for each final segment F of M and for all i∈ I , we have

(∀j > i: supp (fj − fi)⊆F) ⇒ (supp (g− fi)⊆F).

Equivalently, we may require that for each inital segment I of M and for each i∈I , we have

(∀j> i: fj |I= fi|I) ⇒ (g|I= fi|I).

Assume from now on that M is either Noetherian or totally ordered. Below, we will show
that the stationary limit of the fi, which is defined by

stat lim
i∈I

fi =
h

i∈I

i

j>i

fj

is in particular a pseudo-limit. We first prove some useful properties of
`

and
a

.

Proposition 19. Let (fi)i∈I ∈C[[M]]I be a family of series and let I be an initial segment
of M.

a) If I � ∅, then
i

i∈I

fi|I =

( i

i∈I

fi

)

|I

.

b) If (fi)i∈I is directed and P -increasing, then

h

i∈I

fi|I =

( h

i∈I

fi

)

|I

.

Proof. We first observe that for all f , g ∈C[[M]] we have f P g⇒ f|IP g|I. In particular,
this ensures that

`
i∈I

fi|I exists in (b).
Now assume that I � ∅ and let g=

a
i∈I

fi. Then gP fi, whence g|IP fi|I, for all i∈ I.
This shows that g|I is a common truncation of the fi|I. Inversily, assume that h∈C[[I]] is
such that hP fi|I for all i∈I. Then also hP fi for all i∈I , so that hP g. Hence h=h|IP g|I.
This shows that g|I is the greatest common truncation of the fi|I.

Assume now that (fi)i∈I is directed and P -increasing and let g =
`

i∈I
fi. Then

fi P g, whence fi|IP g|I, for all i∈ I . Consequently, g|I is a common extension of the fi|I.
Furthermore, its support supp g|I=(supp g)∩I=(

⋃

i∈I
supp fi)∩I=

⋃

i∈I
supp fi∩I=

⋃

i∈I
supp fi|I is the same as the support of the least common extension of the fi|I. Hence

g|I =
`

i∈I
fi|I. �

Proposition 20. Let (fi)i∈I ∈C[[M]]I be a directed family and i∈ I. Then
h

j∈I

i

k>j

fk =
h

j>i

i

k>j

fk.
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Proof. Since I ⊇ {j ∈ I |j > i}, we have
`

j∈I

a
k>j

fk Q
`

j>i

a
k>j

fk. On the other

hand, given m∈ supp
`

j∈I

a
k>j

fk, we have m∈ a
k>j

fk for some j ∈ I. Choosing l∈ I
with l> i and l> j, we then have m∈ a

k>l
fk Q

a
k>j

fk and m∈⋃
m>i

supp
a

k>m
fk =

supp
`

m>i

a
k>m

fk. �

Proposition 21. For any directed family (fi)i∈I∈C[[M]]I, its stationary limit is a pseudo-
limit.

Proof. Let I be an initial segment of M and let i∈ I be such that fj |I= fi|I for all j> i.
Then proposition 19 implies that

( h

j>i

i

k>j

fk

)

|I

=
h

j>i

i

k>j

fk |I=
h

j>i

i

k>j

fi|I= fi|I. (4)

Hence (stat limj∈I fj)|I= fi|I, by proposition 20. �

Given f and g in C[[M]], we will write f � g, if for all m ∈ supp f , there exists an
n∈ supp g with m≺ n. The following properties of � will be used frequently in the next
section:

Proposition 22. Let f , g, h∈C[[M]]. Then

a) f � f if and only if f =0.

b) f � g ∧ g � h⇒ f � h.
c) f � h∧ g � h⇒ f + g � h.
d) If (fi)i∈I ∈C[[M]]I now stands for a directed family, then

(∀i∈ I: fi − g � h) ⇒ ((stat lim
i∈I

fi)− g � h).

Proof. The first three properties are trivial. Consider the final segment

F= {m∈M|d≻m, for some 4 -maximal element d in supph}.

Then our hypothesis means that supp (fi− g)⊆F for all i. Now supp ((stat limi∈I fi)− g)⊆
F, by proposition 21. But this means that (stat limi∈I fi)− g � h. �

4.3 The implicit function theorem

A final segment F of a monomial set M is said to be attractive, if for each m ∈ M there
exists an n∈F with m < n. If M is totally ordered, then all non-empty final segments are
attractive. The intersection of two attractive final segments is again an attractive final
segment and arbitrary non-empty unions of attractive final segments are again attractive
final segments. In other words, the attractive final subsets F of M together with the empty
set are the open sets of a topology on M.

Now let C be a commutative additive group. The attractive open subsets of C[[M]]
are the subsets of the form f +C[[F]], where f ∈C[[M]] and where F is an attractive final
segment of M. These sets form a basis for the open subsets of the natural or attractive
topology on C[[M]]. We notice that the attractive topology makes C[[M]] an additive topo-
logical group. Given another monomial set N, we also notice that the attractive topology
on C[[M]] × C[[N]] @ C[[M ∐ N]] (remember remark 7) coincides with the usual product
topology on C[[M]]×C[[N]] (if C[[M]] and C[[N]] are given the attractive topologies).
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Consider a mapping Φ: C[[M]] → C[[M]], where M � ∅. We call Φ contracting,
if for all f , g ∈ C[[M]], we have Φ(g) − Φ(f) � g − f . A contracting mapping is in
particular continuous at each point f ∈C[[M]], since for any attractive open neighbourhood
Φ(f) + C[[F]] of Φ(f), the set f + C[[F]] is an open neighbourhood of f with Φ(f +
C[[F]])⊆Φ(f) +C[[F]].

Theorem 23. Assume that M � ∅ is Noetherian or totally ordered and let Φ: C[[M]]×
C[[N]] → C[[M]] be a continuous mapping, such that the mapping Φg: C[[M]] → C[[M]];
f � Φ(f , g) is contracting for each g ∈ C[[N]]. Then there exists a unique mapping Ψ:
C[[N]]→C[[M]] with Ψ(g) =Φ(Ψ(g), g) for each g ∈C[[N]], and Ψ is continuous.

Proof. Given g ∈C[[N]], consider the transfinite sequence (fα)α defined as follows:

f0 ∈ C[[M]] (any choice of f0 will do);

fα+1 = Φg(fα);

fλ = stat lim
α<λ

fα, for limit ordinals λ.

We will show that (fα)α converges to a solution of the equation f =Φg(f).

The sequence fα+1− fα decreases for � . Let us prove by (weak) transfinite induction
over α that fα+1− fα� fβ+1− fβ for all ordinals β <α. This is clear for α= 0. Assume
that α= β+1 is a successor ordinal. Since Φg is contracting, the induction hypothesis then
implies that fα+1− fα� fβ+1− fβ � fγ+1− fγ for all γ6 β <α.

If α is a limit ordinal and β < α, then let us prove by a second (weak) transfinite
induction over γ that fγ − fβ+1� fβ+1− fβ for all β+ 1< γ <α. This is indeed true for
γ= β+2, by the first induction hypothesis. Assuming that fγ − fβ+1� fβ+1− fβ, we also
have

fγ+1− fβ+1 = (fγ+1− fγ) + (fγ − fβ+1)� fβ+1− fβ ,

again by the first induction hypothesis and proposition 22(c). If γ is a limit ordinal, then
the second induction hypothesis implies that fδ− fβ+1� fβ+1− fβ for all β<δ<γ. Hence,

fγ − fβ+1 =(stat lim
δ<γ

fδ)− fβ+1 = (stat lim
β<δ<γ

fδ)− fβ+1� fβ+1− fβ ,

by proposition 22(d).
At this point, we have proved that fγ − fβ+1 � fβ+1 − fβ for all β + 1< γ <α. Now

proposition 22(d) implies that

fα − fβ+1 = (stat lim
γ<α

fγ)− fβ+1 =( stat lim
β+1<γ<α

fγ)− fβ+1� fβ+1− fβ.

In a similar way, one proves that fα − fβ+2 � fβ+1 − fβ. Since Φg is contracting,
fα − fβ+1 � fβ+1 − fβ also implies that fα+1 − fβ+2 � fβ+1 − fβ. Consequently,
fα+1− fα=(fα+1− fβ+2)+(fβ+2− fβ+1)+(fβ+1− fα)� fβ+1− fβ, by proposition 22(c).

Existence and uniqueness. Having shown that the sequence fα+1− fα is decreasing for� , we now claim that we must have fα+1− fα=0 for some sufficiently large α. Otherwise,
each of the sets d(fα+1− fα) of 4 -maximal monomials of fα+1− fα would be non empty,
so that d(fβ+1− fβ)∩ d(fα+1− fα)� ∅ for some β <α. Indeed, this will happen as soon
as the monomials in M get exhausted, i.e. for some β <α such that the cardinality of α is
the one larger than the cardinality of M. Now let m∈ d(fβ+1− fβ)∩ d(fα+1− fα). Since
fα+1− fα� fβ+1− fβ, there exists an n∈ supp (fβ+1− fβ) with n≻m. But this contradicts
the 4 -maximality of m in supp fβ+1− fβ. This shows our claim and we conclude that the
Ψ(g)≡ fα with fα+1− fα = 0 satisfies Ψ(g) =Φg(Ψ(g)).
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Assume now that two Noetherian series f and f ′ both satisfy f = Φg(f) and f ′ =
Φg(f

′). Then f ′− f = Φg(f
′)−Φg(f) � f ′− f , since Φg is contracting. But we can only

have f ′ − f � f ′ − f if f ′ = f . This establishes the existence and the uniqueness of the
mapping Ψ.

Continuity. In order to prove that Ψ is continuous in any given g0 ∈ C[[N]], let W =
Ψ(g0)+C[[H]] be an attractive open neighbourhood of Ψ(g0). Then there exists an attrac-
tive open subset of C[[M]]×C[[N]] of the form U × V = (Ψ(g0) +C[[F]])× (g0 +C[[G]]),
such that Φ(U ×V )⊆W . We claim that Ψ(V )⊆W . Indeed, let g∈V . Taking f0=Ψ(g0) in
our sequence above, it suffices to prove that fα∈W for all α. We prove this by transfinite
induction.

For α=0 and α=1, we are already done. If α=β+1>γ>0, then fα− fβ� fγ+1− fγ∈
C[[H]] implies that fα − fβ ∈C[[H]], whence fα∈W . If α is a limit ordinal, then we have
seen above that fα − fβ+1 � fβ+1 − fβ for all β < α. Taking any such β, we also have
fβ+1 − fβ ∈ C[[H]] by the induction hypothesis, whence again fα − fβ+1 ∈ C[[H]] and
fα∈W . This completes the induction and the proof of the theorem. �

Remark 24. The theorem still holds for monomial sets M without “infinite
combs” [PCR93]. Our proof also generalizes to this setting, because it can be shown in
this case that the stationary limit of a sequence (fα)α<β ∈ C[[M]]β exists, whenever
fα+1− fα is strictly decreasing for � .

Remark 25. Although the above topological implicit function theorem may be very useful
to solve certain parameterized functional equations over Noetherian series, one of its major
drawbacks is that we needed the very strong Noetherianity assumption on M in the partial
context. Even the slightly weaker condition about the absence of infinite combs is usually
not satisfied. The functional equation

f(z1, z2) = 1 + (z1 + z2) f
(

z1
√

, z2
√ )

with M = {z1α1 z2
α2|α1, α2 ∈ Q>0 ∧ α1 + α2 < 2} is an example which shows that there is

not much hope for a stronger implicit function theorem in the same spirit. Indeed, the
natural “solution” to this equation, which is obtained by recursively replacing the left hand
side by the right hand side in the equation, does not have a Noetherian support.

Remark 26. Another drawback of theorem 23, is that it does not provide us with any
additional information about the solutions. The solutions may even be quite pathological:
consider the monomial group xR with xα < xβ ⇔ α > β. Given f ∈ R[[xR]], we denote
f ↑=

∑

α>0 fxαxα. We define a linear (but not strongly linear) operator L:R[[xR]]→R[[xR]]

by

L(f(x)) = f ↑( x
√

)+ f ↑(1/ x
√

), if supp f is finite;

L(f(x)) = f ↑( x
√

), otherwise.

Then it is easily verified that L is contracting (whence continuous) on R[[xR]]. The equa-
tion

f(x) = x+L(f(x))

will therefore admit a unique solution, which happens to be f(x) = x+ x
√

+ x
√√

+� .
However, we do not have f(x) = x+L(x) +L(L(x)) +� .
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5 Noetherian operators and combinatorial representa-
tions

5.1 Noetherian operators

Let M and N be sets of monomials. A Noetherian operator is a mapping Φ: C[[M]] →
C[[N]], such that there exists a family (Mi)i∈I of strongly multilinear mappings Mi:

C[[M]]|i|→C[[N]] with

Φ

(

∑

k∈K

fk

)

=
∑

i∈I

k1,� ,k|i|∈K

Mi(fk1,� , fk|i|
), (5)

for all Noetherian families (fk)k∈K∈C[[M]]K. In particular, this assumes that the family of
summandsMi(fk1,� , fk|i|

) is Noetherian. We will call (Mi)i∈I a multilinear decomposition

of Φ. The number |i| ∈N is the arity of Mi.
By regrouping the Mi of the same arity, it actually suffices to consider the case when

I = N and there is exactly one Mi for each arity i ∈ N. In this case, we may write
Φ = Φ0 + Φ1 + � , with Φi(f) = Mi(f , � , f) for all f and i. In section 5.4, we will see
that this representation is unique, under the assumption that C ⊇ Q and that the Mi

are symmetric (we may always take the Mi to be symmetric if C ⊇Q). However, for the
purpose of combinatorial representations in the next section, it is natural to consider more
general multilinear decompositions. Notice also that the space of Noetherian operators
from C[[M]]→C[[N]] has a natural strong group structure.

Remark 27. The formula (5) should hold in particular for families that consist of only
one element. In other words, we should have

Φ(f) =
∑

i∈I

Mi(f ,� , f),

for all f ∈C[[M]]. However, the more complicated assumption (5) is essential, as you will
notice in example 31 below.

Remark 28. In view of remark 7 the present definition of Noetherian operators also
provides a definition of multivariate Noetherian operators.

Example 29.

• Each constant mapping Φ:C[[M]]→C[[N]]; f� c is a Noetherian operator.

• Any strongly linear or strongly multilinear operator L resp. M is a Noetherian
operator.

• Addition + :C[[M]]2→C[[M]]; (f , g)� f + g is a Noetherian operator.

• If M is a monomial monoid, then multiplication on C[[M]] is a Noetherian operator.

Example 30. Let Φ,Ψ:C[[M]]→C[[N]] be Noetherian operators.

• Φ+ Ψ: f � Φ(f) +Ψ(f) is a Noetherian operator.

• If N is a monomial monoid, then ΦΨ: f � Φ(f) Ψ(f) is a Noetherian operator.

14 Section 5



Example 31. Let Φ:C [[M]]→C[[N]] and Ψ:C[[N]]→C[[V]] be two Noetherian operators.
Then we claim that Ψ◦Φ is also a Noetherian operator. Indeed, let (Mi)i∈I resp. (Nj)j∈J

be multilinear decompositions of Φ and Ψ. Then for each Noetherian family (fk)k∈K ∈
C[[M]]K we have

Ψ ◦Φ

(

∑

k∈K

fk

)

= Ψ







∑

i∈I

k1,� ,k|i|∈K

Mi(fk1,� , fk|i|
)







=
∑

j∈J

i1,� ,i|j |∈I

k1,1,� ,k1,|i1|
∈K


k|j |,1,� ,k
|j |,

∣

∣

∣
i|j |

∣

∣

∣

∈K

Nj(Mi1(fk1,1, � , fk1,|i1|
), � , Mi|j|(fk|j|,1

, � ,
fk

|j|,
∣

∣

∣
i|j |

∣

∣

∣

)).

This establishes our claim, since the operators Nj ◦ ∏
l=1
|j |

Mil are strongly multilinear.
Notice that example 30 may be looked at as a combination of the present example and the
last two cases in example 29.

One obtains interesting subclasses of Noetherian operators by restricting the strongly
multilinear mappings involved in the multilinear decompositions to be of a certain type.
More precisely, let M be a monomial monoid and let M be a set of strongly multilinear
mappings M :C[[M]]|M |→C[[M]]. We say that M is a multilinear type if

MT1. The constant mapping {0}� f is in M for each f ∈C[[M]].

MT2. The i-th projection mapping πi:C[[M]]|M |→C[[M]] is in M for i=1,� , |M |.
MT3. The multiplication mapping from C[[M]]2 into C[[M]] is in M.

MT4. If M,N1,� , N|M |∈M, then M ◦∏
i=1
|M |

Ni∈M.

Given subsets V1,� ,Vv,W1,� ,Ww of M, we say that a strongly multilinear mapping

M :C[[V1]]×� ×C[[Vv]]→C[[W1]]×� ×C[[Ww]]

is of typeM, if for i=1,� ,w, there exists a mapping Ni:C[[M]]v→C [[M]] inM, such that
πi◦M coincides with the restriction of the domain and image of Ni to C[[V1]]×� ×C [[Vv]]
resp. C [[Wi]]. We say that a Noetherian operator

Φ:C[[V1]]×� ×C[[Vv]]→C[[W1]]×� ×C[[Ww]]

is of type M, if it admits a multilinear decomposition consisting of strongly multilinear
mappings of type M only. In examples 30 and 31, we may then replace “Noetherian
operator” by “Noetherian operator of type M”.

Example 32. For any set S of strongly linear mappings C[[M]]→C[[M]], there exists a
smallest multilinear type M = 〈S 〉 which contains S . Taking T = C[[M]] to be the field
of transseries whose logarithmic and exponential depths are bounded by ω, interesting
special cases are obtained when taking S = {∂} or S = {

∫

}. Noetherian operators of
type 〈{∂}〉 resp. 〈{

∫

}〉 may then simply be called differential resp. integral Noetherian
operators . Given a finite subset g1, � , gn of positive infinitely large transseries in T,
another interesting case is obtained by taking S ={◦g1 ,� ,◦gn

}, where ◦gi
stands for right

composition with gi.
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5.2 Combinatorial representations of Noetherian operators

Let Φ:C[[M]]→C [[N]] be a Noetherian operator with a multilinear decomposition (Mi)i∈I.
Then Φ is uniquely determined by the action of theMi on monomials in M. For the deeper
theory of Noetherian operators, it is convenient to represent this action in a combinatorial
way.

Abstractly speaking, a set of M-labeled structures is a set Σ, together with a map that
assigns to each σ ∈Σ a labeling σ[ · ]: {1,� , |σ |}→M; p� σ[p], where |σ | ∈N stands for
the size or arity of σ; for simplicity, we denote such a set of M labeled structures also by
Σ. For each subset S of M, we denote the subset of S-labeled structures in Σ by

ΣS= {σ ∈Σ|imσ[ · ]⊆S}.

We strictly order couples in Σ×M by (σ,m)≻ (σ ′,m′)⇔m≻m′. A mapping θ:Σ→P(N)
is called a choice operator . We say that θ is Noetherian, if for any Noetherian subset S of
M, the subset

{(σ, n)|σ ∈ΣS∧ n∈ θ(σ)}
of Σ×N is Noetherian.

Example 33. Let f : Mm→M be a strictly increasing m-ary operation and let Σ=Mm,
with (x1,� , xm)[p] = xp for all x1,� , xm∈M and 1 6 p6m. Then θ: Σ→P(M); (x1,� ,
xm)� {f(x1,� , xm)} is a Noetherian choice operator.e�2exe3xe�2exe2xe�2exex e�2exe4x

�
e�ex e�ex

Z

Figure 1. Graphical representation of the action of θM on the structure σ ∈ ΣM with input
(e−ex

, e−ex

), for the strongly bilinear operator M : (f , g) � ∫

f g. Notice that
∫

e−2ex

=

e−2ex

(−
1

2 ex
+

1

4 e2x
−

1

4 e3x
+

3

8 e4x
+� ).

Returning to our Noetherian operator Φ, we may see each tuple σ= (i,m1,� ,m|i|) as
an M-labeled combinatorial structure with |σ |= |i| and σ[p] = mp for all 1 6 p6 |σ |. Let
Σ = ΣΦ denote the set of such structures. We get a natural Noetherian choice operator
θ= θΦ:Σ→P(N) by taking θ(σ)= suppMi(m1,� ,m|i|). Graphically speaking (see figure
1), we may represent the action of θ on σ by a box with (a tuple of) “inputs” in M and (a
set of) “outputs” in N.

Inversely, given a Noetherian choice operator θ: Σ → P(N) and an operator Θ: Σ →
C[[N]] with suppΘ(σ)⊆ θ(σ) for all σ ∈Σ, we define a Noetherian operator by

Φ(f) =
∑

σ∈Σ





∏

p=1

|σ |

fσ[p]



Θ(σ). (6)
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As to its multilinear decomposition, we associate anMσ:C[[M]]|σ |→C[[N]] to each σ∈Σ by

Mσ(f1,� , f|σ |) =





∏

p=1

|σ |

fp,σ[p]



Θ(σ).

For Noetherian families (fi)i∈I ∈C[[M]]I, we indeed have

Φ

(

∑

i∈I

fi

)

=
∑

σ∈Σ





∏

p=1

|σ |
∑

i∈I

fi,σ[p]



Θ(σ)

=
∑

σ∈Σ
i1,� ,i|σ|∈I





∏

p=1

|σ |

fip,σ[p]



Θ(σ)

=
∑

σ∈Σ
i1,� ,i|σ|∈I

Mσ(fi1,� , fip
),

since for each σ ∈ Σ, there are only finitely many tuples (i1, � , i|σ |) ∈ I |σ |, such that
∏

p=1
|σ |

fip,σ[p]� 0.

5.3 Composition of choice operators

In example 31, we have shown that the composition of two Noetherian operators Φ:
C[[M]]→C[[N]] and Ψ:C[[N]]→C[[V]] is again Noetherian. Let us now show how to inter-
pret the composition Ψ ◦ Φ in a combinatorial way. Denote the natural choice operators
associated to Φ and Ψ by θ: Σ → P(N) resp. ξ: T → P(V). We first define the com-
position ξ ◦θ:Υ→P(V) of the choice operators ξ and θ. Then Φ, Ψ and Ψ◦Φ will be given
by (6) and similar formulas, for certain mappings Θ: Σ→C[[N]], Ξ: T→C[[V]] resp. Ξ ◦
Θ:Υ→C[[V]]. Here we may assume that Θ and Ξ are given and we have to construct Ξ◦Θ.

Let τ ∈T be given together with a tuple σ= (σ1,� , σ|τ |)∈Σ|τ |, such that τ [q]∈ θ(σq)

for each 1 6 q 6 |τ |. Then these data determine a unique M-labeled structure υ = τ [σ],

with |υ |=∑
q=1
|τ | |σq | and υ[p+

∑

r=1
q−1 |σr |] =σq[p], for all 16 q6 |τ | and 16 p6 |σq |. We

define Υ to be the set of all such combinatorial structures (see figure 2). Then we claim
that the choice operator ξ ◦ θ: Υ→P(V); τ [σ]� ξ(τ) is Noetherian.

So let S be a Noetherian subset of M. We will prove that for any sequence x1=(τ1[σ1],
v1), x2 =(τ2[σ2], v2),� of elements in the set

{(τ [σ], v)| τ [σ]∈ΥS∧ v∈ ξ(τ)},

there exist i < j with (τi[σi], vi) < (τj[σj], vj). Since θ is Noetherian, T =
⋃

σ∈Σ θ(σ) is
a Noetherian subset of N, and we observe that τ ∈ TT for each τ [σ] ∈ ΥS. Since ξ is
Noetherian, we may therefore assume that (τi, vi) < (τj , vj), modulo the extraction of a
subsequence. If vi ≻ vj for some i < j, then we have (τi[σi], vi) ≻ (τj[σj], vj) and we are
done. Hence, we may assume that (τ1, v1) = (τ2, v2) =� . We conclude by the observation
that given τ ∈T there exist only a finite number of (σ1,� , σ|τ |)∈Σ|τ |, such that τ [σ]∈ΥS.
Indeed, for each q, there are only a finite number of σq ∈ ΣS with τ [q] ∈ θ(σq), since θ is
Noetherian.
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Now consider the operator Ξ◦Θ:Υ→C[[V]]; τ [σ]� ( ∏
q=1
|τ | Θ(σq)τ [q]

)

Ξ(τ). Clearly,

supp (Ξ ◦Θ)(υ)⊆ (ξ ◦ θ)(υ) for all υ ∈Υ. We claim that

(Ψ ◦Φ)(f) =
∑

υ∈Σξ◦θ





∏

r=1

|υ |

fυ[r]



(Ξ ◦Θ)(υ), (7)

for all f ∈C[[M]]. Indeed,

(Ψ ◦Φ)(f) =
∑

τ∈T





∏

q=1

|τ |

Φ(f)τ [q]



Ξ(τ)

=
∑

τ∈T









∏

q=1

|τ |
∑

σq∈Σσ

τ [q]∈θ(σq)





∏

p=1

|σq|

fσq[p]



Θ(σq)τ [q]









Ξ(τ)

=
∑

τ [σ]∈Υ





∏

q=1

|τ |




∏

p=1

|σq |

fσq[p]



Θ(σq)τ [q]



Ξ(τ )

=
∑

υ∈Υ





∏

r=1

|υ |

fυ[r]



(Ξ ◦Θ)(υ).

This yields the desired combinatorial description of the composition Ψ ◦Φ.

�1 �2 �3
� � [�1; �2; �3℄

Figure 2. Illustration of the action of ξ ◦ θ on a structure τ [σ1, σ2, σ3] in Υ. For each σi that we
attach to τ , we require the “output” of σi to coincide with the “input” of τ .

5.4 Canonical multilinear decompositions

We already noticed that each Noetherian operator Φ: C[[M]] → C[[N]] has a multilinear
decomposition of the form (Mi)i∈N, such that Mi has arity i for each i ∈ N. Setting
Φi =Mi(f ,� , f) for all f and i, we then have

Φ= Φ0 +Φ1 +Φ2 +� (8)
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Now assume that C ⊇Q (so that C is in particular torsion-free). Then, modulo replacing
each Φi by the operator Φ̃i with

Φ̃i(f1,� , fi) =
1
i!

∑

σ∈Si

Φi(fσ(1),� , fσ(i)),

we may assume without loss of generality that the Φi are symmetric. Under this additional
symmetry assumption, the decomposition (8) is actually unique, and we call Φi the homo-
geneous part of Φ of degree i.

Proposition 34. Let Φ: C[[M]]i → C[[N]] be a Noetherian operator with a multilinear
decomposition (Mi)i∈N, such that Mi is symmetric and of arity i for each i ∈N. If C is
torsion-free and Φ=0, then Mi = 0 for each i∈N.

Proof. We observe that it suffices to prove that Φi = 0 for each i ∈ N, since the Mi

are symmetric and C is torsion-free. Assume the contrary and let f ∈ C[[M]] be such
that Φi(f) � 0 for some i. Choose m ∈ S =

⋃

i∈I
supp Φi(f) � ∅ is Noetherian. The

Noetherianity of (Φi(f))i∈N implies that there exist only a finite number of indices i, such
that m∈ suppΦi(f). Let i1<� <in be those indices.

Let ck =Φik(f)m for all k∈{1,� , n}. For any l∈{1,� , n}, we have Φik(l f)m= lik ck, by
multilinearity. On the other hand, Φ(l f)m=Φi1(l f)m+� +Φin(l f)m=0 for each l, so that





1 � 1
 

ni1 � nin









c1

cn



= 0.

The matrix on the left hand side admits an inverse with rational coefficients (indeed, by
the sign rule of Descartes, a real polynomial α1 x

i1 + � + αn x
in cannot have n distinct

positive zeros unless α1 =� =αn =0). Consequently, an integer multiple of the vector on
the right hand side vanishes. We infer that c1 = � = cn = 0, since C is torsion-free. This
contradiction completes the proof. �

6 The algebraic implicit function theorem

Let M and N be monomial sets and let Φ: C[[M]] × C[[N]] → C[[M]], (f , g) � Φ(f , g)
be a Noetherian operator. We call Φ strictly extensive in f if there exists a multilinear
decomposition (Mi)i∈I of Φ, such that for all i, (v1, � , v|i|) ∈ (M ∐ N)|i|, 1 6 j 6 |i| and
m ∈ suppMi(v1,� , v|i|), we have vj ∈ M⇒m≺ vj. In particular, such a Φ is contracting
in f . The main objective of this section will be to prove the following theorem:

Theorem 35. Let Φ:C [[M]]×C[[N]]→C[[M]], (f , g)� Φ(f , g) be a Noetherian operator,
which is strictly extensive in f. Then for each g ∈C [[N]] the operator Φ( · , g) on C[[M]]
has a unique fixed point Ψ(g), and the operator Ψ:C[[N]]→C[[M]] is Noetherian.

6.1 Iteration of choice operators with parameters

Let Φ:C[[M]]×C[[N]]→C[[M]] be as in theorem 35 and let θ:Σ→P(M) be the natural
Noetherian choice operator associated to Φ. The fact that Φ is strictly extensive in f

implies that θ may be assumed to be strictly extensive on M, i.e.

∀σ ∈Σ, ∀m∈ (imσ[ · ]∩M), ∀n∈ θ(σ), n≺m.

Also, let ι:∆N→P(N) be the natural Noetherian choice operator associated to the identity
mapping IdN:C[[N]]→C[[N]]. Actually, we take ∆N= {δn|n∈N}, with |δn|= 1, δn[1] = n

and ι(δn) = {n} for all n∈N.
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Now consider the sets T=∐h∈NTh of (M∐N)-labeled combinatorial structures, where
the Td are defined by

T0 = ΣN;

Td+1 = (Σ\ΣN) ◦ (Td∐∆N).

For each τ ∈T, the minimal d∈N with τ ∈Td is called the depth of τ . We have a natural
choice operator ξ: T→P(M), which is defined componentwise by

ξ|T0
= θ|ΣN

;

ξ|Td+1
= θ|Σ\ΣN

◦ (ξ|Td
∐ ι|∆N

).

Here ξ|Td
∐ ι|∆N

:Td∐∆N→P(M∐N) stands for the choice operator which coincides with
ξ on Td and with ι on ∆N. Similarly, the componentwise definition of ξ means that we
take ξ=

∐

d∈N
ξ|Td

. In figure 3 one finds an illustration of the action of ξ on a structure
in T. We will also call θ∗,N the iteration of θ with parameters in N.

Figure 3. Illustration of the action of the iterated choice operator ξ = θ∗,N on a structure in
T=Σ∗,N. The connected “inputs” and “outputs” should match in a similar way as in figure 2. The
white and black dots correspond to monomials in M resp. N.

Theorem 36. Let Σ be a set of (M∐N)-labeled structures and θ:Σ→P(M) a Noetherian
choice operator which is extensive on M. Then θ∗,N is Noetherian.

Proof. Let A be a Noetherian subset of N. Assume that there exists a bad sequence

(υ1,m1), (υ2,m2),� , (9)

with υi ∈ TA and mi ∈ ξ(τi) for each i. We may assume that we have chosen this bad
sequence minimally in the sense that the depth of each υi is minimal in the set of all bad
sequences with fixed (υ1,m1),� , (υi−1,mi−1). Writing υi = σi[τi,1,� , τi,|σi|] for each i, we
claim that the induced ordering on B̌ = {(τi,j ,wi,j)|i ∈N∧ 1 6 j 6 |τi| ∧wi,j ∈ ξ(τi,j)} is
Noetherian.

Indeed, suppose for contradiction that the claim is false, and let

(τi1,j1,wi1,j1), (τi2,j2,wi2,j2),�
be a bad sequence. Notice that (τik,jk

, wik,jk
) ≺ (υik, mik) for all k, since θ is strictly

extensive on M. Hence, taking k such that ik is minimal, the sequence

(υ1,m1),� , (υik−1,mik−1), (τik,jk
,wik,jk

), (τik+1,jk+1,wik+1,jk+1),�
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is also bad. This contradicts the minimality of (9).
At this point we have proved that B̌ is Noetherian. In particular, B= {w|(υ,w)∈ B̌}

is Noetherian. Hence, there exist i1 > i2 > � with (σi1, mi1) < (σi2, mi2) < � , since σ1,

σ2,� ∈Σ|B∐A. If mim ≻min for some m>n, then (υim,mim)≻ (υin,min) and we are done.
Otherwise, (σi1,mi1) = (σi2,mi2) = � . Now for every 1 6 p6 |σi1|, the (τ ,w) ∈ B̌ ∐ {(δn,
n)|n∈A} with w=σi1[p] are finite in number, since they form an antichain. Consequently,
υi1, υi2, � can only take a finite number of values and there exist m < n with (υim,

mim) = (υin,min). This contradicts the badness of (9). �

6.2 Proof of the implicit function theorem

With the notations from the previous section, let Θ: Σ→C[[M]] be a mapping, such that
suppΘ(σ)⊆ θ(σ) for all σ ∈Σ, and such that (6) holds for all f ∈C[[M]]× [[N]]. We now
define Ξ: T→C[[M]] componentwise as follows:

Ξ|T0
= Θ|ΣN

;

Ξ|Td+1
= Θ|Σ\ΣN

◦ (Ξ|Td
∐ I|∆N

),

where I|∆N
: ∆N→ C[[N]]; δn� n. Theorem 36 implies that we may define a function Ψ:

C[[N]]→C[[M]] by the formula

Ψ(g) =
∑

τ∈T





∏

p=1

|τ |

gτ [p]



Ξ(τ). (10)

We can now prove the following more explicit version of the implicit function theorem.

Theorem 37. Let Φ:C [[M]]×C[[N]]→C[[M]], (f , g)� Φ(f , g) be a Noetherian operator,
which is strictly extensive in f. Then the Noetherian operator Ψ:C[[N]]→C[[M]] defined
by (10) is unique with the property that Ψ(g)= Φ(Ψ(g), g) for all g ∈C[[N]].

Proof. Identifying C[[M]]×C[[N]] and C[[M∐N]] via the natural isomorphism, we have

(Ψ(g), g)= Ψ(g) + g=
∑

τ∈T∐∆N





∏

q=1

|τ |

gτ [q]



(Ξ∐ I)(τ),

for all g ∈C[[N]]. Similarly, for all (f , g)∈C[[M]]×C[[N]], we have

Φrest(f , g) =Φ(f , g)−Φ(0, g) =
∑

σ∈Σ\ΣN





∏

p=1

|σ |

(f + g)σ[p]



(Θ|Σ\ΣN
)(σ).

Applying (7), we conclude that

Ψ(g) =
∑

τ∈T0





∏

q=1

|τ |

gτ [q]



Ξ(τ) +
∑

τ∈T\T0





∏

q=1

|τ |

gτ [q]



Ξ(τ)

=
∑

τ∈T0





∏

q=1

|τ |

gτ [q]



Ξ(τ)+
∑

υ∈(Σ\ΣN)◦(T∐∆N)





∏

r=1

|υ |

gυ[r]



(Θ|Σ\ΣN
◦ (Ξ|T∐ I|∆N

))(υ)

= Φ(0, g) +Φrest(Ψ(g), g)

= Φ(Ψ(g), g),
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for all g ∈C[[N]]. The uniqueness of Ψ follows in the same way as in the proof of theorem
23, since Φ is contracting in f . �

Corollary 38. Let M be a multilinear type. If Φ is of type M in theorem 35, then so is
Ψ. �

6.3 Applications

Example 39. Let us first show that the classical implicit function theorem for bivariate
power series follows from theorem 23. So let f =

∑

i,j
fi,j v

i uj ∈ C[[v, u]] be a bivariate
power series with f0,0 = 0 and f1,0� 0. Then we have to prove that there exists a unique
power series g ∈uC[[u]] with

f(g(u), u) = 0.

Modulo division of f by f1 =
∑

j
f1,j u

j and passing f1 to the other side of the equation,
the problem can be reduced to solving the equation

g(u)= f(g(u), u) (11)

for f ∈C[[v, u]] with f0,0 = f1,0 =0. Under these assumptions, the series f corresponds to
an operator Φ: u C[[u]]× {0}→ u C[[u]]; (g, 0)� f(g, u) =

∑

i,j
fi,j g(u)i uj. Theorem 23

then provides us with a unique mapping Ψ: {0}→ vC[[v]] with Ψ(0)=Φ(Ψ(0), 0). Taking
g= Ψ(0), we thus find the unique solution to (11).

Moreover, theorem 37 actually tells us that the “natural solution” to (11), which is
obtained by recursively plugging in the left hand side of the equation in the right hand
side, is indeed a solution. We also notice that by applying theorem 37 to the operator

Φ:uC[fi][[u]]×{0} � uC[fi][[u]];

(g, 0) 	 f(g, u)=
∑

i

fi g(u)
i

instead of the previous Φ, we actually get a solution g(u) in terms of the coefficients of f .

Example 40. The above example naturally generalizes to the multivariate case. What is
more, we may consider non commutative power series in several variables. Given symbols
u1,� , un, we order the free monomial monoid {u1,� , un}⋆ in u1,� , un by the ordering <

from example 1.4. Then the ring of non commutative power series in u1, � , un over C is
given by C 〈〈u1,� , un〉〉=C[[{u1,� , un}⋆]]. Now consider the equation

g(u1,� , un) = f(g(u1,� , un), u1,� , un), (12)

for f ∈C[[v, u1,� , un]] with f1 = fv =0. Then it may be proved in a similar way as in the
previous example that this equation admits a unique infinitesimal solution. Again, this
solution is equal to the natural expression which is obtained when repreatedly plugging in
the left hand side of (12) into the right hand side. Again, the solution may be expressed
naturally in terms of the coefficients of the equation.

Example 41. Let T = C[[M]] be the field of transseries in x, whose logarithmic and
exponential depths are bounded by some integer d ∈ N [vdH97]. The transseries e−x2

+

e−ex
+ e−ex/x + � is an example of an element in T if d = 2. Now consider the integral

equation

f = g+
∫

f2, (13)

22 Section 6



for f , g ∈ T and where f , g ≺ e−x. Taking N = {m ∈ M|m ≺ e−x} we may consider the
operator Φ: C[[N]] × C[[N]] → C[[N]]; (f , g)� g +

∫

f2. Theorem 23 then implies that
there exists a unique function Ψ:C[[N]]→C[[N]], such that f =Ψ(g) satisfies (13) for all
g ∈C[[N]]. Theorem 37 and its corollary imply that Ψ is actually an integral Noetherian
operator. Modulo regrouping terms, this means that the series

f = g+
∫

g2 +2
∫

g
∫

g2 +4
∫

g
∫

g
∫

g2 +
∫

(
∫

g2)2 +�
is indeed a solution to (13) for all g ∈C[[N]].

Example 42. Let T=C[[M]] now be the field of transseries in x, whose exponential and
logarithmic depths are bounded by ω. Consider the functional equation

f(x) = g(x) + h(x) f(x2) + f ′(elog
2 x). (14)

for f , g, h ∈ T and f , g, h ≺ e−x. Taking N = {m ∈ M|m ≺ e−x}, theorem 37 yields a
Noetherian operator Ψ:C[[N]]×C[[N]]→C[[N]]; (g, h)� Ψ(g, h), such that f(x) = Ψ(g,
h) is a solution to (14). Moreover, Ψ is what one could call a “differential compositional
Noetherian operator”.

Example 43. For independent infinitely large variables x, y ≻ 1 consider the monomial
group

M= xR yRexReyRexex+y
R

and its subset

N= xR yRexReyRe−xex+y
R∗

+

.

Then the equation

f = e−xex+y

+
∂f

∂x

∂f

∂y
+ e−x−3y ∂

3f

∂x3

∂2f

∂x ∂y
(15)

admits a unique solution f ∈R[[N]], which can be expressed as a “partial differential series”.
Theorem 23 can not be directly applied in this case.
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