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Abstract

In our PhD. we have given an algorithm for the algebraic resolution of algebraic dif-
ferential equations with real transseries coefficients. Unfortunately, not all equations
do admit solutions in this strongly monotonic setting, even though we recently proved
an intermediate value theorem.

In this paper we show that the algorithm from our PhD. generalizes to the setting
of weakly oscillatory or complex transseries. Modulo a finite number of case separa-
tions, we show how to determine the solutions of an arbitrary algebraic differential
equation over the complex transseries. We will show that such equations always
admit complex transseries solutions. However, the field of complex transseries is not
differentially algebraically closed.

1 Introduction

In [vdH97], we have studied the asymptotic behaviour of solutions to algebraic differential
equations in the setting of strongly monotonic or real transseries. We have given a theoret-
ical algorithm to find all such solutions, which is actually effective for suitable subclasses
of transseries. More recently, we have proved the following “differential intermediate value
theorem”.

Theorem 1. [vdH00a] Let T be the real field of grid-based transseries in x and let P be
a differential polynomial with coefficients in T. Then, given transseries f < g ∈ T with
P (f)< 0 and P (g)> 0, there exists a h∈T with f <h< g and P (h) = 0.

This theorem implies in particular that any algebraic differential equation of odd
degree, such as

f7 + ee
x
f3 f ′′′+ Γ(log x+ 1) f ′′+ log (ex+Γ(Γ(x)) = 0,

has at least one real transseries solution. This theorem is striking in the sense that it
suggests the existence of theories of ordered and/or valuated differential algebra.

However, a main drawback of the setting of real transseries, is that not every algebraic
differential equation can be solved; actually, even an equation like f2 + 1 = 0 has no
solutions. In order to get a better understanding of the asymptotic behaviour of solutions
to algebraic differential equations, it is therefore necessary to search for a complex analogue
of the theory of real transseries. This paper is a first contribution in this direction.

The first problem is to actually define complex transseries. The difficulty is that it is
not clear a priori whether an expression like ez

i
should be seen as an infinitely large or

an infinitely small transmonomial. Several approaches can be followed. A first approach,
based on pointwise algebras, was already described in chapter 6 of [vdH97]. However, this
approach has the drawback that it is not easy to compute with complex transseries.
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A second more computational approach is described in section 3. Roughly speaking,
it is based on the observation that all computations with complex transseries can be done
in a similar way as in the real setting, except for testing whether a monomial like ez

i
is

infinitely large or small. Now whenever we have to make such a choice, we will actually
consider both cases, by applying the automatic case separation strategy (see [vdH97]). We
implicitly reject the case when ez

i
is bounded, which is “degenerate”, but which deserves

to be studied later.
The last approach, which is described in section 2, is more structural and really allows

us to define a complex transseries in a not too difficult way. The underlying idea is ana-
logue to the concept of a maximal ideal. Intuitively speaking, we assume the existence of
some “god”, who has decided a priori for us which monomials like ez

i
are infinitely large

and which ones are infinitely small. It turns out that all possible choices lead to isomorphic
fields of transseries. However, the geometric significance of these fields is hard to grasp.

In section 4, we introduce parameterized complex transseries, which are necessary
to express generic solutions to differential equations. Indeed, such solutions may involve
integration constants. As usual, our approach is based on the automatic case separa-
tion strategy.

The remaining sections deal with the resolution of asymptotic algebraic differential
equations with complex transseries coefficients. Our approach is similar to the one fol-
lowed in [vdH97], but we have made a few simplifications and we corrected an error (see
section 9.4). Our main results are stated in sections 9.1 and 9.2. We show that there
exists a theoretical algorithm to express the generic solution to an algebraic differential
equation by means of parameterized complex transseries and we give a bound for the
logarithmic depth of the generic solution. We also show that an algebraic differential
equation of degree d admits at least d complex transseries solutions when counting with
multiplicities. As a consequence, each linear differential equation admits a full system of
solutions. However, our fields of complex transseries are not differentially algebraically
closed and several interesting problems still need to be solved (see section 9.5).

The reader should be aware of a few changes in notations w.r.t. [vdH97], which are
summarized in the following table:

old �  ≍ ∼ � ! D
new ≺ 4 ≍ ∼ �  D C

2 Complex transseries

2.1 Real trigonometric fields

In all what follows, let R be a real trigonometric field and C=R+ iR its complexification.
This means that R has the structure of a totally ordered field and functions exp, sin:R→R,
which are compatible with this ordering.

More precisely, we assume that exp admits an inverse function log with domain R∗
+

and that the function tan restricted to ]−π/2, π/2[ admits a totally defined inverse. Here
tan(x) = sin(x)/cos(x), where cos(x)= sin(x+ π/2) and π=4 arctan 1. Furthermore,

exp(x+ y) = expx exp y;

sin(x+ y) = sinx cos y+ sin y cosx,

2 Section 2



for all x, y ∈R. Finally, for each n∈N resp. n∈N∗ and x∈R, we require that

expx > 1 +x+
1

2
x2 +� +

1

(2n− 1)!
x2n−1;

cosx > 1−
1

2
x2 +� +

1

(4n− 4)!
x4n−4−

1

(4n− 2)!
x4n−2.

Proposition 2. The real numbers R form a real trigonometric field.

Proof. The functional equations are classical. The inequality for exp x was first proved
in [?]. As to the inequality for cosx, we have

cosx−
∑

k=0

2n−1
(−1)k

(2 k)!
x2k =

∑

k>n

x4k

(4 k)!

(

1−
x2

(4 k+1) (4 k+2)

)

> 0,

if |x|6 4n. Otherwise,

∑

k=0

2n−1
(−1)k

(2 k)!
x2k=

(

1−
x2

2

)

+
∑

k=1

n−1
x4k

(4 k)!

(

1−
x2

(4 k+ 1) (4 k+ 2)

)

6− 1 6 cosx,

since n> 1. �

Remark 3. Analogue inequalities can be proved for sin x and for expansions at order
4n− 3 instead of 4n− 1.

Remark 4. Most of the most classical computations on complex numbers can be carried
out in the context of real trigonometric fields. For instance, we the functions exp and sin
may naturally be extended to C, numbers in C may naturally be written in polar form, etc.

Remark 5. We also have a natural partial analogue of real trigonometric fields; in this
case, the functions exp and sin are no longer required to be total and the functional
equations resp. inequalities are only required to hold, whenever they make sense. For
instance, if x, y ∈ dom exp, then we require that x + y ∈ dom exp and exp(x + y) =
expx exp y.

2.2 Series with complex coefficients and monomials

Let M be a totally ordered monomial group (or set) with R-powers. Then we recall that
the field R[[M]] of grid-based power series is naturally totally ordered by f > 0⇔ cf > 0,
for all f � 0. This ordering is compatible with the multiplication: f > 0∧ g> 0⇒ f g> 0.
More generally, if M is only partially ordered, then we define an ordering on R[[M]] to
be compatible with the asymptotic ordering on M, if

f ≺ g ∧ g> 0 ⇒ f + g> 0 (1)

for all f , g ∈R[[M]].
In what follows, we are rather interested in the complexification C[[M]] of R[[M]].

Obviously, this C-algebra can not be given an ordering which is compatible with the
multiplication. Nevertheless, it is interesting to consider orderings on C[[M]] which are
only compatible with the R-algebra structure of C[[M]]. Such an ordering is again said
to be compatible with the asymptotic ordering on M, if (1) holds for all f , g ∈R[[M]].

Assuming that such orderings on M and C[[M]] are total, the condition (1) implies
that τf = τg⇔ sign f = sign g for all non zero f , g ∈C[[M]]. Consequently, the ordering
on C[[M]] is totally determined by the sets

Pm= {c∈C |cm> 0},
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where m runs over M. Each Pm is actually the set of strictly positive elements of a total
ordering on C, which is compatible with the R-module structure of C. Therefore, each Pm

is characterized by an angle θm∈ [−π, π) and a direction ǫm∈{−1, 1}, via

Pm= {c∈C |(Re (c e−iθm)> 0)∨ (Re (c e−iθm)= 0∧ Im(ǫmc e
−iθm)> 0)}.

This situation is illustrated in figure 1.
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Figure 1. Shape of the region Pm for ǫm = 1 resp. ǫm =−1.

In is also possible to consider complex powers of monomials: a complex monomial
group is a monomial group M with C-powers, with an asymptotic ordering < which is
compatible with the expo-linear R-vector space structure of M. For instance the formal
group (log z)CzC is a monomial group with C-powers for the ordering (log z)α zβ≻ 1�
(Re β > 0) ∨ (Re β = 0 ∧ Re α > 0). This group is not totally ordered, since zi and 1 are

incomparable. We may make the ordering total by deciding that zR∗
+
i≻ (log z)R∗

+
i≻ 1.

2.3 Pre-fields of complex transseries

Now consider a totally ordered grid-based algebra of the form T = C[[M]], where M is
a totally ordered complex monomial group, and where the ordering on T is assumed to
be compatible with the asymptotic ordering on M. Assume that we also have a partial
logarithmic function log on T, such that

L1. log coincides with the usual logarithm on R∗
+;

L2. If x, y ∈dom log, then y/x∈dom log and log y= log (y/x) + log x.

We say that T is a pre-field of complex transseries if the following conditions are satisfied:

T1. dom log= {f ∈T∗|cf ∈R∗
+};

T2. logm∈T↑, for all m∈M;

T3. For all ε∈T↓, we have log (1 + ε) = l ◦ ε, where l=
∑

k=1
∞ (−1)k+1

k
∈C[[z]],

as well as the following conditions for the logarithm:

L3. logmλ=λ logm for all m∈M and λ∈C;

L4. m≺ n⇔ logm< log n for all m, n∈M;

L5. logm� m for all m∈M\{1}.

In L5, we write f � g, if and only if log df ≺ log dg for all f , g ∈T∗. In view of L3, this
means that f � g⇔ fλ� gµ for all λ, µ∈C∗.
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Remark 6. The conditions L1 until L5 replace the requirement that log should be a
logarithmic function in the definition of real fields of transseries. It can indeed be checked
that our conditions are equivalent to the usual conditions on log in this case.

Remark 7. The domain of the logarithm on T may be further extended, by setting
log f = log cf + log (f/cf) for all f ∈T∗, where log cf is defined using the arctan function
on C. Of course, such an extension of the logarithm to T involves a choice of a principal
determination. Furthermore, such an extension cannot satisfy both the properties L1
and L2.

On the other hand, the partial inverse exp of log may be extended canonically in such
a way that the equation exp f = g admits a solution for each g ∈T∗. Indeed, it suffices to
extend exp via exp (f + c)4 exp(f) exp(c) for all f ∈domexp and c∈C. In what follows,
we will always assume that the partial inverse exp of log has been extended in this way.

2.4 Logarithmic complex transseries in z

Consider the formal C-vector space log L = C log z ⊕ C log log z ⊕ � generated by
the formal symbols log z, log log z, � . Given angles θlog z, θlog log z, � ∈ [ − π, π) and
directions θlog z , θlog log z, � ∈ {−1, 1}, we define a total ordering on log L as explained
in section 2.2. Then the formal exponential L = zC (log z)C � of log L is a complex
monomial group for the asymptotic ordering < defined by m < n ⇔ logm > log n, where
log(zα0 (log z)α1 � ) = α0 log z + α1 log log z + � . In order to avoid confusion, we will
sometimes write Lθ,ǫ instead of L.

Assume from now on that θ and ǫ were chosen such that R∗
+ logz>R∗

+ log logz>� >0.
Given a non-zero grid-based series f ∈L=C[[L]] with cf ∈R∗

+, we define its logarithm by

log f = log cf + log df + l ◦ (1 + δf).

We may extend the total ordering on logL⊆L to L in a similar way as in section 2.2, by
extending the angle and direction families θ resp. ǫ into larger families θ̂ resp. ǫ̂ . It is
easily verified that the field Lθ̂ ,ǫ̂4 Lwith this ordering is a pre-field of complex transseries.

Actually, the structure of Lθ̂ ,ε̂ does not really depend on the choices of θ, ǫ, θ̂ and
ǫ̂ , modulo rotations and conjugations. Indeed, assume that ξ and ς are a second family
of angles and directions with indices in {log z, log log z,� }. Then we define an increasing
isomorphism ϕ between logLθ,ǫ and logLξ,ς by

ϕ:
∑

m∈{log z, log log z,� }
fmm	 ∑

m∈{log z, log log z,� }
eiξm ιǫm ςm

(

fme
−iθm

)

m,

where

ι1(z) = z;

ι−1(z) = z̄ ,

for all z ∈C. We infer that ϕ́:Lθ,ǫ→Lξ,ς; exp f� expϕ(f) is an isomorphism of complex

monomial groups. Now if ξ̂ and ς̂ are families of angles resp. directions with indices in
L, and which extend ξ and ς, then we define an increasing isomorphism ϕ̂ between L

θ̂ ,ǫ̂

and L
ξ̂ , ς̂

by

ϕ̂:
∑

m∈Lθ ,ǫ

fmm	 ∑

m∈Lθ ,ǫ

eiξm ιǫm ςm
(

fme
−iθm

)

ϕ́(m). (2)

We notice that ϕ̂ extends ϕ if and only if ϕ́= Id, which is again equivalent to the condition
that for each m∈{log z, log log z,� } we have

ξm= θm ∨ ςm ξm= ǫmθm.

Complex transseries 5



In this case, we say that (ξ, ς) and (θ , ǫ) are strongly compatible. We say that (ξ, ς) and
(θ , ǫ) are compatible if the relation holds for all m = logl z with sufficiently large l∈N.

2.5 Complex transseries in z

Assume now that we are given a complex field of transseries T = C[[M]], which is not
stable under exponentiation (modulo the extension of the exponentiation as described in
remark 7). Let θ and ǫ be the associated families of angles and directions. Now consider
the formal complex monomial group

Mexp= expT↑,

whose asymptotic ordering is given by exp f < exp g ⇔ f > g, for all f , g ∈ T↑. Given
extensions θexp and ǫexp of θ and ǫ to families indexed by monomials in Mexp, we may
totally order Texp = C[[Mexp]] as explained in section 2.2. It is easily verified that Texp

is a pre-field of complex transseries, which we call the exponential extension of T, relative
to θ and ǫ. In cases of confusion, we will write Texp,θexp,ǫexp instead of T. Notice that the
exponential of any series in T is defined in Texp.

Again, the structure of Texp,θexp,ǫexp does not really depend on the choice of (θexp,ǫexp).
Indeed, if (θ̂ , ǫ̂) and (θ̃ , ǫ̃) are two different such choices, then

ϕexp:
∑

m∈Mexp

fmm	 ∑

m∈Mexp

eiξm ιǫm ςm
(

fme
−iθm

)

m (3)

is an increasing isomorphism between T
exp,θ̂ ,ǫ̂ and T

exp,θ̃ ,ǫ̃.

Starting with L from the previous section, we may now consider the iterated exponen-
tial extensions T0=C[[M0]]=L, T1=C[[M1]]=Lexp, T2=C[[M2]]=Lexp,exp of L. The
union

T=C[[[z]]]=T0∪T1∪T2∪� =C[[M0∪M1∪M2∪� ]]
of these fields is called a field of complex transseries in z. Of course, the construction of T
depends on the successive choices of angles θi and directions ǫi for Ti, with indices in Mi.
The angles θ and directions ǫ for T coincide with these choices on each Mi. We will write
Tθ,ǫ instead of T whenever confusion may arise.

We claim that Tθ,ǫ and Tξ,ς are isomorphic as soon as the restrictions of (ξ, ς) and
(θ , ǫ) to {log z, log log z, � } are compatible. We have already shown (see formulas (2)
and (3)) that there exist isomorphisms

ϕi:Tθi,ǫi
i →Tξi,ςi

i

for each i. Now let l0 be such that ξlogl z = θlogl z for each l > l0. Then we observe that
ϕj(logl z)= ϕi(logl z) for all l∈N and j> i> l0− l. By induction over i> l0, it then follows
that for ϕj(m)= ϕi(m) for all m∈Mi−l0 and j> i. Given m∈M, this shows that the value
of ϕi(m) does not depend on the choice of i, for sufficiently large i. In other words, the ϕi

can be glued together into an isomorphism between Tθ,ǫ and Tξ,ς.

Remark 8. It is possible to slightly generalize the construction of pre-fields of complex
transseries in z, when starting with log L = C logl+1 z ⊕ C logl+2 z ⊕ � instead of
log L = C log z ⊕ log2 z ⊕ � . Notice that z is not necessarily a monomial when adopting
this generalization.
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2.6 Fields of complex transseries

Actually, in our construction of pre-fields of complex transseries in z, it is reasonable to
require that require that θlogl x = 0 for all sufficiently large l ∈N, thereby eliminating all
ambiguity (up to isomorphism) in the construction of T. More generally, a pre-field of
complex transseries T is a field of complex transseries, if it satisfies the following axiom:

T4. For each m∈M, there exists an i0∈N, such that for all i> i0 we have

• d(logi+1 m) = log d(logim).

• θd(logim) =0.

Then up to isomorphism, we have constructed the field of grid-based complex transseries
in z. Actually, the same procedure of exponential extensions and direct limits can be used
to close any field of complex transseries under exponentiation. Again, this closure is unique
up to isomorphism.

Remark 9. In this paper we restrict our attention to grid-based complex transseries.
Nevertheless, the results of this sections can easily be generalized to the case of Noetherian
complex transseries. In this case, we recommend to replace the axiom T4 by the following
more complicated but better axiom:

T4. Let (mi)i∈N be a sequence of monomials in M, such that mi+1∈ supp logmi. Then
there exists an i0∈N, such that for all i> i0 we have

• n <mi+1 for all n∈ log suppmi.

• θmi=0.

This axiom allows the resolution of certain functional equations like

f(z) = e z
√

+f(log z),

which admits natural solutions of the form

f = e z
√

+e log z
√

+e�
,

which are called nested transseries .

2.7 Extra structure on the field of transseries in z

Consider a tuple B=(b1,� ,bn) of non zero complex transseries in z with 1≺b1≺� ≺bn.
We call B a complex transbasis if the following conditions are satisfied:

TB1. b1 = logl z for some l∈Z, which is called the level of B.

TB2. log bi∈C[[b1;� ; bi−1]] for each i > 1.

TB3. b1� � � bn (i.e. dlogb2≺� ≺ dlogbn).

Such a transbasis generates a complex asymptotic scale BC. We say that f ∈C[[[z]]] can
be expanded w.r.t. B if f ∈C[[BC]]. If l=1, then we say that B (and any f ∈C[[BC]])
is purely exponential . The following incomplete transbasis theorem is proved in a similar
way as in the case of real transseries:

Theorem 10. Let B be a transbasis and f ∈C[[[z]]] a complex transseries. Then f can
be expanded w.r.t. a super-transbasis B̂⊇B of B.

Complex transseries 7



We define a strong derivation w.r.t. z on T=C[[[z]]] in the usual way: we take

(zα0� (logl z)αl)′=

(

α0

z
+� +

αl
z log z� logl−1 z

)

zα0� (logl z)αl

for all monomials zα0� (logl z)αl ∈M0. This yields a derivation on T0 through extension
by strong linearity. Given a derivation on Ti, we define

(exp f)′= f ′ exp f ,

for all monomials exp f ∈exp (Ti)↑=Mi+1. This again yields a derivation on Ti+1 through
extension by strong linearity. By induction over i, we thus obtain a derivation on T.

We recall that a derivation on T is said to be strictly valuated resp. strictly positive if
the following conditions are satisfied:

VD f ≺ g⇒ f ′≺ g ′, for all f , g ∈T with g� 1;

PD f ≻ 1⇒ (f > 0⇒ f ′> 0), for all f ∈T.

Contrary to the case of real transseries, our derivation on T cannot be strictly positive.
Indeed, either eiz ≻ 1 or e−iz ≻ 1, say eiz ≻ 1. Then we have (eiz)′′ = − eiz, so either
sign (eiz)′ � sign eiz or sign (eiz)′′ � sign (eiz)′. On the other hand, the following may be
proved in the usual way:

Theorem 11. The derivation on C[[[z]]] is strictly valuated.

Actually, the proof involves upward shiftings of transseries: given f ∈ C[[[z]]], its
upward (resp. downward) shifting is defined by f ↑= f ◦ exp (resp. f ↓= f ◦ log). Contrary
to the case of real transseries, this transseries does not necessarily live in the same field
of transseries as f : if f ∈C[[[z]]]θ,ǫ, then we have f ↑∈C[[[z]]]θ↑,ǫ↑, where θ↑m↑= θm and
ǫ↑m↑= ǫm for all transmonomials m∈M. In the case of downward shiftings, one may have
to consider the generalized fields of complex transseries in z from remark 8.

It is more difficult to extend functional composition from the real to the complex setting
due to possible incompatibility between the angles and directions. For instance, if θz=0,
then the transseries e−z+ e−2z+� can not be composed on the right with −z. In general,
right composition with a given transseries is only defined on a certain subfield of C[[[z]]].
Contrary to the case of real transseries, certain functional equations like

f(z) = eiz+ f(αz),

with α ∈ C seem to fall outside the scope of the theory of complex transseries, unless
someone comes up with some really new ideas to incorporate the solutions to such equations
inside this theory.

2.8 Further generalizations

One of the main ideas behind the construction of fields of complex transseries is that
we do not longer require the ordering on the constant field to be compatible with the
multiplication. Indeed, we just need the compatibility with the addition (or multiplication
with reals), in order to obtain ordered monomial groups via exponentiation.

The above idea may be used to generalize the results from this section to other circum-
stances. Consider for instance the set C=Cp of p-adic complex numbers, where p>2. Then
it is classical that there exists a partial logarithm on C, which is defined for all z ∈C with
valp z = 0. By Zorn’s lemma, there exists a total ordering on the Q-vector space C. The
theory of this section may now be adapted in order to construct the field Tp of complex
p-adic transseries.
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A first change concerns the condition T1, which should now become

dom log= {f ∈T∗|valp cf =0}= {f ∈T∗|cf ∈dom logC}.

Furthermore, it is not as easy as before to characterize the total orderings on C, which are
compatible with the Q-vector space structure. Consequently, there is no natural analogue
to the condition T4 and we have to satisfy ourselves with the construction of pre-fields of
complex transseries. Also, the exponentiation on Tp is not total.

Notice that it seems to be possible to take p itself for the indeterminate z in the
construction of Tp. This would yield a field of transseries which contains Cp and such that
the logarithm is defined for all non zero elements.

3 Generic complex transseries

In practical computations with complex transseries the angles θ and directions ǫ are not
known in advance and we have to choose them (or more precisely, to put constraints on
them) as the computation progresses. This can be done by introducing a closed interval
Θm∈R/(2πZ) for each transmonomial m, which corresponds to the constraint

∀α∈Θm: |α− θm|<π/2 (4)

on θm. Given such sets Θm, we will work with generic complex transseries which are in
the “intersection” of all C[[[z]]]θ,ǫ such that θ and ǫ satisfy the above constraints. Actually,
it is convenient to always work w.r.t. generic complex transbases, which we will introduce
now.

3.1 Generic complex transbases

Let B=(b1,� ,bn) be an n-tuple of symbols. Assume that each bi comes with closed interval
Θi⊆R/2 π i modulo 2 π, such that Θi∩ (Θi+ π) = ∅. Then we may order the monomial
group BC = b1

C � bn
C by

b1
α1� bi

αi≻ 1 � argαi∈Θi,

for each non zero monomial b1
α1� bi

αi with αi� 0. We call B a generic complex asymptotic
basis of the scale BC. Such a basis is called a generic complex transbasis, if

TB1. b1 = logl z for some l∈Z, which is called the level of B, and 0∈Θ1.

TB2. log bi is a regular, infinitely large transseries in C[[b1;� ; bi−1]] for each i > 1.

TB3. dlogb2≺� ≺ dlogbn.

An important question is whether the asymptotic constraints on the bi determine a non
empty region of the complex transplane (see chapter 6 of [vdH97]). This question will be
addressed in a forthcoming paper.

Example 12. The triple (z, ez, e−e
z/(1−z−1)) is a transbasis, for the constraints 1 ≺ z ≺

ez≺ e−e
z/(1−z−1). Computations with respect to this transbasis are valid in regions of C,

where |e−e
z/(1−z−1)| ≻ |ez | ≻ |z | ≻ 1. This is for instance the case for z= x+ i y, such that

x→+∞ in a region where k+
1

4
+ ε6

y

2π
6 k+

3

4
− ε for some small ε∈ (0,

1

4
) and k ∈Z.
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A generic complex transseries is an element of C[[b1;� ; bn]] for some complex trans-
basis (b1,� , bn). It can be shown that two transbases which have a non empty region of
definition in common can be merged together. In the remainder of the paper we will follow
an easier approach, which consists of working with respect to a current transbasis , which
may be enlarged and on which we may impose additional asymptotic constraints during
computations with complex transseries.

3.2 Case separations and the field operations

By construction, all ring operations can already be carried out in an algebra of the form
C[[b1;� ;bn]]. In order to invert a complex transseries, we first have to be able to compute
its dominant monomial. In principle, both 1 or eiz might be “the” dominant monomial of a
transseries like 1 + eiz. Nevertheless, given a transseries f ∈C[[b1;� ; bn]] with dominant
monomials d1,� , dr, then we may always separate r cases















d1≻ d2∧ d1≻ d3∧� ∧ d1≻ dr
d2≻ d1∧ d2≻ d3∧� ∧ d2≻ dr

dr≻ d1∧ dr≻ d2∧� ∧ dr≻ d1

,

in each of which f has only one dominant monomial. This case separation technique is
explained in detail in [vdH97]. In the present context, the imposition of a constraint

b1
α1� bi

αi≻ 1

with αi� 0 reduces to the insertion of arg αi in the interval Θbi. If the length of the new
interval exceeds π, then (4) can not be satisfied, so that the corresponding case does not
need to be considered.

Remark 13. In order to be really complete, we should also consider the cases when several
dominant monomials are asymptotic. For instance, in the case of the series 1 + eiz, we
should consider the cases 1≺eiz and 1≻eiz, but also 1≍eiz. However, in the present paper,
we argue that the situation when 1≍ eiz is “degenerate” in the sense that it corresponds to
a single “direction” arg z≡ 0 [π] among a continuous number if possibilities.

As a consequence, we notice that the process of “regularization” of a complex transseries
is much easier than in the case of multivariate transseries studied in [vdH97]. Indeed, in
the case when one has to consider the possibility that 1≍ eiz, one also has to consider the
possibility of cancellation 1 + eiz = 0 or 1 + eiz≺ 1. This would necessitate refinements of
the coordinates and rewriting of the series in C[[b1;� ; bn]].

Example 14. Modulo cases separations, we may thus carry out all field operations. For
instance, the inverse of 1 + eiz is either given by

1

1 + eiz
=1− eiz+ e2iz+� , if eiz≺ 1,

or
1

1 + eiz
= e−iz− e2iz+ e3iz+� , if eiz≻ 1,

3.3 Logarithms of complex transseries

Consider a non zero complex transseries f ∈C[[b1;� ; bn]]. Modulo case separations, we
may assume that f is regular, so that we can write

f = c b1
α1� bn

αn (1 + ε),
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with c, α1,� , αn∈C and ε≺ 1. Consequently,

log f =αn log bn+� +α1 log b1 + c+ log(1 + ε).

If α1 = 0, then this series is already in C[[b1; � ; bn]]. Otherwise, it still is, modulo the
insertion of a new element b0 = log b1 = logl+1 z in front of the transbasis, subject to the
constraint 1≺ b0. Since b0 is a new symbol, this constraint is non contradictory with the
existing expo-linear constraints on the bi. The relation b0≺dlogb2 is automatically verified,
since 1≺ dlogb2∈ z1

C.

3.4 Exponentials of complex transseries

Consider a complex transseries f ∈C[[b1;� ;bn]]. Modulo case separations, we may assume
that f is regular. In order to compute the exponential of f , we distinguish three cases:

Case 1: f is bounded. We may write f = c+ ε, with c ∈C and ε≺ 1. Hence, ef = ec eε,
with c∈C and eε∈C[[b1;� ; bn]].

Case 2: log bi≺ df ≺ log bi+1 for some 0 6 i6n (where we understand that the left resp.
right hand side relation is verified if i=0 resp. i=n). We decompose f = f+ + f−, where
f+ =[bi+1

0 � bn
0 ]f ∈C[[b1;� ;bi]] and f−≺ 1. Inserting ef

+
into B by B4 (b1,� , bi, ef+

,

bi+1,� , bn), we then have ef = ef
+
ef

−
∈C[[b1;� ; bi; e

f+
; bi+1;� ; bn]].

Case 3: df≍ logbi for some i. We may write f =λ logbi+ g, with λ∈C∗ and g≺ f . Then
ef = bi

λ eg and we compute eg using the same algorithm. The computation of eg cannot
give rise to infinite loops, since the transbasis B would remain invariant in such a loop,
while the index i would strictly decrease.

3.5 A worked example

Consider the complex “exp-log function”

f = log
(

ee
z+iz+ eie

z)

and let us show how to expand it generically with respect to a generic complex transbasis.
We start with B4 (z) and recursively expand all subexpressions of f .

Expansion of ez. In order to expand ez, we fall into the second case of the exponentiation
algorithm, since log z≺ z and z≻ 1. Consequently, we insert ez into B using B4 (z, ez),
so that ez expands as ez.

Expansions of i z and ez + i z. Since C[[BC]] is a ring, we immediately have z,
ez+ iz∈C[[z;ez]]. Since the expansions of sums and products do not present any problems,
we will omit them in what follows.

Expansion of eez+iz. In order to expand ee
z+iz, we first have to determine the dominant

of ez+ iz. Two cases need to be distinguished for this, namely Θez={0}, which corresponds
to ez ≻ 1, and Θez = {π}, which corresponds to ez ≺ 1. In the first case, ez ≻ i z ≍ log ez,
so that ee

z+iz needs to be inserted into B. In the second case, ez ≺ i z, so we rewrite
ee
z+iz= eiz ee

z
= eiz+ eiz+z+

1

2
eiz+2z+� ∈C[[z; ez]].

Expansion of eiez

. In the case when Θez = {0}, we have i ez≍ log ee
z+iz, so we rewrite

eie
z
=(ee

z+iz)i ez ∈C[[z; ez; ee
z+iz]]. In the other case, when Θez= {π}, the argument i ez

is bounded, so that eie
z
=1 + i ez−

1

2
e2z+� ∈C[[z; ez]].
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Expansion of f . We first have to determine the dominant monomial of ee
z+iz + eie

z
.

If Θez = {0}, then we separate the cases Θee
z+iz = { −

π

4
} in which ee

z+iz ≻ eie
z
, and

Θee
z+iz= {

3π

4
} in which ee

z+iz≺ eie
z
. In the first case, we obtain

f = ez+ i z+ log (1 + e(i−1)ez−iz)

= ez+ i z+ e(i−1)ez−iz+
1

2
e2(i−1)ez−2iz+� ∈C[[z; ez; ee

z+iz]].

In the second case, we get

f = i ez+ log (1 + e(1−i)e
z+iz)

= i ez+ e(1−i)e
z+iz+

1

2
e2(1−i)ez+2iz+� ∈C[[z; ez; ee

z+iz]].

If Θez = {π}, then ee
z+iz + eie

z
= eiz + 1 + e(i+1)z + i ez + � , so we separate the cases

Θez= [
π

2
, π] in which eiz≻ 1, and Θez= [π,

3π

2
] in which eiz≺ 1. If Θez= [

π

2
, π], then

f = i z+ log (1 + (ee
z
− 1)+ e−iz eie

z
)

= i z+ ez+ e−iz+(i− 1) e(1−i)z− 1

2
e−2iz+� ∈C[[z; ez]].

Otherwise, we obtain

f = log (1 + (eie
z
− 1)+ eiz ee

z
)

= i ez− eiz+(1 + i) e(1+i)z−
1

2
e2iz+� ∈C[[z; ez]].

Figure 2. A plot of the function f = log
(

ee
z+iz + eie

z
)

, which illustrates the four possible
asymptotic behaviours of f on non degenerate regions. The “rows” of singularities correspond to
the borders between regions of different types.

4 Parameterized complex transseries

In order to deal with integration constants when solving differential equations, we need to
consider parameterized transseries. As in the case of generic transseries, if will often be
necessary to distinguish several cases as a function of the values of the parameters. Again,
this can be done by putting constraints on the parameters.
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4.1 Definition of parameterized complex transseries

Let λ=(λ1,� , λℓ) be a ℓ-tuple of complex parameters. We call a subset Λ of C ℓ a region,
if Λ is the set of solutions of a system of polynomial equations or inequations

c(λ) = 0;

c(λ) � 0,

where c∈C[λ1,� , λℓ], and “rational function inequalities on the real parts”

Re
c1(λ)

c2(λ)
> 0,

where c1, c2 ∈ C(λ1, � , λℓ) and c2 does not vanish on Λ. Notice that Λ may be seen as a
special kind of semi-algebraic set, under the isomorphism C ℓ@R2ℓ. The polynomial algebra
P =C[λ1,� , λℓ] will also be called the coefficient or parameter algebra.

Given a non empty region Λ⊆C ℓ, let B=(b1,� ,bn) be an n-tuple of symbols. Assume
that each bi comes with a finite set ∆i= ∆bi= {δ1,1,� , δi,di}⊆P of directions, such that
δi,j does not vanish on Λ for all 1 6 i6 r, 1 6 j6 di, and such that

{

λ∈C p

∣

∣

∣

∣

Re
δi,j(λ)

δi,j ′(λ)
> 0

}

⊆Λ, (5)

for all 1 6 i6 r and 1 6 j , j ′ 6 di with j ′ � j. In the case when ℓ= 0, the directions δi,j
correspond to the extremal angles in the intervals Θi from the previous section.

For each 1 6 i6 r, there exists a natural partial ordering 6i on the R-vector space P ,
which is generated by the relations δi,j >i 0 for all j. Indeed, the constraints (5) in an
arbitrary point λ∈Λ guarantee the absence of relations

α1 δi,1 +� +αdi δdi= 0,

with (α1, � , αdi) ∈ (R+)di\(0, � , 0). Consequently, we may define a natural neglection
relation ≻ on the asymptotic scale BP = b1

P � bp
P by

b1
α1� bi

αi≻ 1 � αi>i 0,

for each non zero monomial b1
α1 � bi

αi with αi � 0. We say that B is a parameterized
transbasis , if

TB1. b1 = logl z for some l∈Z, which is called the level of B, and 1∈∆1.

TB2. log bi is a regular, infinitely large transseries in P[[b1;� ; bi−1]] for each i > 1.

TB3. dlogb2≺� ≺ dlogbn.

A parameterized transseries is an element of P[[b1;� ;bn]] for some transbasis (b1,� ,bn).
4.2 Uniform regularization

A regular parameterized transseries f ∈ P[[B]] is said to be uniformly regular , if either
f=0, or fdf(λ)� 0 for all λ∈Λ. In this section we prove that any parameterized transseries
f ∈ P[[B]] can be uniformly regularized modulo case separations. We notice that a
uniformly regular parameterized transseries on a region Λ remains uniformly regular on
any subregion of Λ.

Parameterized complex transseries 13



Lemma 15. Let m ∈ b1
P � bn

P be a monomial. Then, modulo case separations, we may
assume that either m≺ 1, m =1 or m≻ 1.

Proof. Write m= b1
α1� bn

αn, with α1,� , αn∈P and separate the following 2n+1 cases :

cases A For some 1 6 i6n, we have αi<i 0, αi+1 =0,� , αn=0;

cases B For some 1 6 i6n, we have αi>i 0, αi+1 =0,� , αn=0;

case C. α1 =� =αn= 0.

In the n cases A, we have m≺1. In the n cases B we have m≻1. In case C, we have m=1.
Notice that the imposition of the constraints of the form αi=0 or αi>i 0 may involve

a reduction of the region Λ and/or the insertion of new directions into ∆i. Indeed, αi= 0
is an additional algebraic constraint on Λ. In order to impose αi>i 0, we first impose the
constraints αi� 0 and Re αi

δi,j
> 0 on Λ, for all 1 6 j 6 di. Next we insert αi into ∆i. �

Lemma 16. Let m1,� ,mk+1 be infinitesimal monomials in an arbitrary monomial group
M with Q-powers, such that mk+1 =m1

α1� mk
αk, for certain α1,� , αk∈Z. Then there exist

infinitesimal monomials n1,� , nk∈M, such that mi∈{n1,� , nk}⋆ for all 1 6 i6 k+ 1.

Proof. Since mk+1 ≺ 1, we may assume without loss of generality that αk> 0, modulo a
permutation of indices. We will prove the lemma by induction over k. For k=1 the lemma
is trivial. So assume that k>1 and let w=m1

α1� mk−1
αk−1. Then we have either w≺1, w=1

or w≻ 1.
If w ≺ 1, then there exist v1,� , vk−1 ∈M, such that m1,� ,mk−1,w ∈ {v1, � , vk−1}

⋆,
by the induction hypothesis. Consequently, m1, � , mk+1 ∈ {v1, � , vk−1, mk}

⋆. If w = 1,
then mk+1 = mk

αk, whence a fortiori m1, � , mk+1 ∈ {m1, � , mk}
⋆. If w ≻ 1, then there

exist v1, � , vk−1 ∈ M, such that m1
1/αk, � , mk−1

1/αk, w−1/αk ∈ {v1, � , vk−1}
⋆, by the

induction hypothesis. Hence m1,� ,mk+1∈{v1,� ,vk−1,mkw1/αk}⋆. The lemma follows by
induction. �

Theorem 17. Any f ∈P[[B]] can be uniformly regularized modulo case separations.

Proof. Let m1 ≺ 1, � , mp ≺ 1, n1, � , nq ∈ b1
P � bn

P be such that supp f ⊆
{m1, � , mp}

⋆ {n1, � , nq}. By lemma 15, we may assume without loss of generality
that either ni ≺ 1, ni = 1 or ni ≻ 1 for each i, modulo some case separations. Without
loss of generality, we may therefore assume that f admits a Cartesian representation
in m1, � , mp, i.e. supp f ⊆ {m1, � , mp}

⋆ m1
α1 � mp

αp for certain α1, � , αp ∈ Z. Choosing
p minimal, we will prove the theorem by induction over p. If p = 0, then f = 0, and
we have nothing to prove. So assume that p> 0.

We will first show how to regularize f modulo case separations. So let d1, � , dd be
the set of dominant monomials of f . By repeated application of lemma 15, and modulo
reordering, we may assume that d14� 4dd. If all these inequalities are strict, then we are
done, since dd will be the only dominant monomial. Otherwise, we have di= dj for certain
i< j, which yields a non trivial relation m1

α1� mq
αq=1 for certain α1,� ,αq∈Z. Then lemma

16 implies that we may find a Cartesian representation for f in p− 1 variables only, and
we are done again, by the induction hypothesis.

In order to make f uniformly regular modulo case separations, we use the following
algorithm:

Step 1 Regularize f modulo case separations and let d be its dominant monomial (if f � 0).
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Step 2 If f =0, or fd(λ)� 0 for all λ∈Λ, then we are done.

Step 3 Separate the cases when fd=0 and fd� 0 and go back to step 1.

We have to show that this algorithm terminates. Assume the contrary and let d1, d2, �
be the successive dominant monomials of f in step 1 on smaller and smaller subregions
Λ1 ! Λ2 !� of Λ. Ultimately, for each i, there exists a λi∈Λi with fdi(λi) = 0 in step 2,
and the next region is given by Λi+1 = {λ∈Λi|fdi(λ) = 0} in step 3. Now the numerators
of all coefficients fd1, fd2, � belong to the Noetherian polynomial ring P = C[λ1, � , λℓ].
Consequently, the increasing chain of ideals (fd1) ⊆ (fd1, fd2) ⊆ � is stationary and so is
the decreasing chain Λ1 ! Λ2 !� of subregions of Λ: contradiction. �

4.3 Computations with parameterized complex transseries

Using the tool of uniform regularization, we may compute with parameterized complex
transseries in a similar way as explained in sections 3.2, 3.3 and 3.4. Of course, it may
happen that we need to exponentiate or to take logarithms of parameterized constants
in P . Nevertheless, this can only happen a finite number of times, so that we may see
these exponentials resp. logarithms as new parameters. Furthermore, we will show that it
is never necessary to exponentiate or take logarithms of parameterized constants during
the resolution of algebraic differential equations.

Example 18. Consider the expansion of the function

f = log (ee
z+λz+ eµe

z
).

Case ez
≺ 1. We insert − 1 into ∆ez and get

ee
z+λz+ eµe

z
= eλz+ e(λ+1)z+� + 1+ µ ez+� .

We thus have to determine whether eλz≺ 1 and eλz≻ 1, which leads to the following cases
and expansions for f :

f = log 2 +
(

1

2
+

µ

2

)

ez+
(

−
1

8
+

µ

4
−

µ2

8

)

e2z+� (λ=0,∆ez= {−1});

f = eλz+� + µ ez+� (λ� 0,∆ez= {−1,−λ});

f =λ z+ ez+� + e−λz+� (λ� 0,∆ez= {−1, λ}).

Case ez
≻1. We insert 1 into ∆ez and next need to determine whether ee

z+λz≺ eµe
z+λµz

or ee
z+λz≻ eµe

z+λµz. This leads to the following cases and expansions for f :

f = ez+λ z+ e−λµz e(µ−1)(ez+λz) +� (µ� 1,∆ez= {1},∆ee
z+λz= {1− µ});

f = µ ez+ eλµz e(1−µ)(ez+λz) +� (λ� 0,∆ez= {1},∆ee
z+λz= {µ− 1}).

In the last exceptional case when µ=1, we get

f = log (ee
z+λz (1 + e−λz)),

so that we need to determine whether 1 ≺ e−λz or 1 ≻ e−λz. This leads to the following
final cases and expansions for f :

f = ez+λ z+ log 2 (λ= 0, µ=1,∆ez= {1});

f = ez+ eλz−
1

2
e2λz+� (λ� 0, µ=1,∆ez= {1,−λ});

f = ez+λ z+ e−λz+� (λ� 0, µ=1,∆ez= {1, λ}).
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5 The differential Newton polygon method

In the remainder of this paper, we will be concerned with the resolution of asymptotic
algebraic differential equations like

P (f)= 0 (f ≺ v), (6)

where P ∈ T[f , f ′, � , f (r)] is a differential polynomial with transseries coefficients and
v∈M a transmonomial.

In this section, we describe the differential Newton polygon method, which enables us
to compute the successive terms of solutions one by one. In the next sections, we will be
concerned with the transformation of this transfinite process into a finite algorithm. In
sections 5, 6 and 7 the transseries in T are assumed to be as in section 2. In section 8, we
will consider parameterized transseries solutions.

5.1 Notations

5.1.1 Asymptotic relations

Except for the usual asymptotic relations ≺ ,4 ,∼ ,≍ ,� , ,C and D , we will also need
the flattened relations ≺h ,4h ,≍h and there variants ≺h

∗ ,4h
∗ ,≍h

∗ , where h is an infinitely
large or small transseries. These relations are defined by

f ≺h g � ∀ϕ� h: fϕ≺ g;

f 4h g � ∃ϕ� h: fϕ4 g;

f ≍h g � f 4h g ∧ g4h f ;

f ≺h
∗ g � ∀ϕ log h: fϕ≺ g;

f 4h
∗ g � ∃ϕ log h: fϕ4 g;

f ≍h
∗ g � f 4h

∗ g ∧ g4h
∗ f.

Notice that f ≺h
∗ g⇒ f ≺h g, f 4h

∗ g⇒ f 4h g and f ≍h
∗ g⇒ f ≍h g.

5.1.2 Natural decomposition of P

The differential polynomial P is most naturally decomposed as

P (f) =
∑

i

Pif
i (7)

Here we use vector notation for tuples i= (i0,� , ir) and j =(j0,� , jr) of integers:

|i| = r;

‖i‖ = i0 +� + ir;

i6 j ⇔ i0 6 j0∧� ∧ ir6 jr;

f i = f i0 (f ′)i1� (f (r))ir;
(

j

i

)

=
(

j0
i0

)� (jr
ir

)

.

The i-th homogeneous part of P is defined by

Pi=
∑

‖i‖=i

Pif
i,

so that

P =
∑

i=0

degP

Pi.
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5.1.3 Decomposition of P along orders

Another very useful decomposition of P is its decomposition along orders :

P (f) =
∑

ω

P[ω] f
[ω] (8)

In this notation, ω runs through tuples ω = (ω1, � , ωl) of integers in {0, � , r} of length
l 6 deg P , and P[ω] = P[ωσ(1),� ,ωσ(l)] for all permutations of integers. We again use vector
notation for such tuples

|ω | = l;

‖ω‖ = ω1 + � +ω|ω|;

ω 6 τ ⇔ |ω |= |τ | ∧ω1 6 τ1∧� ∧ω|ω|6 τ|τ |;

f [ω] = f (ω1)� f
(ω|ω |);

(

τ

ω

)

=
(

τ1
ω1

)� ( τ|τ |
ω|ω|

)

.

We call ‖ω|| the weight of ω and

‖P ‖= max
ω|P[ω ]� 0

‖ω‖

the weight of P .

5.1.4 Logarithmic decomposition of P

It is convenient to denote the successive logarithmic derivatives of f by

f † = f ′/f ;

f 〈i〉 = f †� † (i times).

Then each f (i) can be rewritten as a polynomial in f , f †,� , f 〈i〉:

f = f ;

f ′ = f † f ;

f ′′ = ((f †)2 + f †† f †) f ;

f ′′′ = ((f †)3 +3 f †† (f †)2 + (f ††)2 f †+ f ††† f †† f †) f ;

We define the logarithmic decomposition of P by

P (f) =
∑

i=(i0,� ,ir) P〈i〉 f
〈i〉, (9)

where

f 〈i〉= f i0 (f †)i1� (f 〈r〉)ir.

Now consider the lexicographical ordering 6lex on Nr+1, defined by

i<lex j � (i0< j0)∨

(i0 = j0∧ i1< j0)∨

(i0 = j0∧� ∧ ir−1 = jr−1∧ ir< jr).

This ordering is total, so there exists a maximal i for 6lex with P〈i〉 � 0, assuming that
P � 0. For this i, we have

P (f)∼P〈i〉 f
〈i〉 (10)
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for all f , whose dominant monomial is sufficiently large.

5.1.5 Additive and multiplicative conjugations and upward shifting.

Given a differential polynomial P and a transseries h it is useful to define the additive and
multiplicative conjugates P+h and P×h of P w.r.t. h and the upward shifting P ↑ of P as
being the unique differential polynomials, such that for all f , we have

P+h(f) = P (h+ f);

P×h(f) = P (hf);

P ↑(f ↑) = P (f)↑.

The coefficients of P+h are explicitly given by

P+h,i=
∑

j>i

(

j

i

)

hj−iPj. (11)

The coefficients of P×h are more easily expressed using decompositions along orders:

P×h,[ω] =
∑

τ>ω

(

τ

ω

)

h[τ−ω]P[τ]. (12)

The coefficients of the upward shifting (or compositional conjugation by ez) are given by

(P ↑)[ω] =
∑

τ>ω

sτ ,ωe
−‖τ‖z (P[τ]↑), (13)

where the sτ ,ω are generalized Stirling numbers of the first kind:

sτ ,ω = sτ1,ω1� sτ|τ |,ω|ω|;

(f(log z))(j) =
∑

i=0

j

sj ,ix
−j f (i)(log z).

5.2 Differential Newton polynomials

Given a differential polynomial P with transseries coefficients, its dominant monomial dP
is defined by

dP =max
i,4

dPi
. (14)

and its dominant part (or coefficient) DP ∈C[c, c′,� , c(r)] by
DP =

∑

i

Pi,dP c
i. (15)

The following theorem shows how DP looks like after sufficiently many upward shiftings:

Proposition 19. Let P be a differential polynomial with purely exponential coefficients.
Then there exists a polynomial Q ∈ C[c] and an integer ν, such that for all i > ‖P ‖, we
have DP ↑i=Q (c′)ν.

Proof. Let ν be minimal, such that there exists an ω with ‖ω‖ = ν and (DP ↑)[ω] � 0.
Then we have d(DP ↑) = e−νz and

DP ↑(c) =
∑

‖ω‖=µ

(

∑

τ>ω

sτ ,ωDP ,[τ]

)

c[ω], (16)
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by formula (13). Since DP ↑ � 0, we must have ν 6 ‖DP ‖. Consequently, ‖DP ‖ > ν =
‖DP ↑‖>‖DP ↑↑‖>� . Hence, for some i6‖P ‖, we have ‖DP ↑i+1‖=‖DP ↑i‖. But then (16)
applied on P ↑i instead of P yields DP ↑i+1 =DP ↑i. This shows that DP ↑i is independent
of i, for i> ‖P ‖.

In order to prove the proposition, it now suffices to show that DP ↑=DP implies DP ↑=
Q (c′)ν for some polynomial Q ∈ C[c]. For all differential polynomials R of homogeneous
weight ν, let

R∗=
∑

j

([cj (c′)ν]R) cj (c′)ν. (17)

Since DP ↑
∗ =DP

∗ , it suffices to show that P =0 if and only if DP
∗ =0. Now DP

∗ =0 implies
that DP(z)= 0. Furthermore, (13) yields

DP ↑= e−νzDP . (18)

Consequently, we also have DP(ez) = eνz (DP ↑)(e
z) = eνz (DP(z))↑ = 0. By induction, it

follows that DP(expiz)=0 for any iterated exponential of z. We conclude that DP =P =0,
by (10). �

Given an arbitrary differential polynomial P , the above proposition implies that there
exists a polynomial Q∈C[c] and an integer ν, such that DP ↑i=Q (c′)ν for all sufficiently
large i. We call

NP =Q (c′)ν

the differential Newton polynomial of P . More generally, given a monomial m, we call
NP×m

the differential Newton polynomial of P associated to m.

5.3 Potential dominant monomials and terms

Returning to the asymptotic differential equation (6), we call m≺ v a potential dominant

monomial , if NP×m
admits a non trivial root c∈ (Calg)∗, where Calg stands for the algebraic

closure of C . If c ∈ C ∗, then the corresponding term c m is called a potential dominant
term. The multiplicity of c (and of cm) is the differential valuation of NPm,+c, i.e. the least
i such that NPm,+c,i� 0. The Newton degree of (6) is the largest possible degree of NP×m

for monomials m≺ v.

Proposition 20. Assume that f is a regular, non-zero transseries solution to (6). Then
τf is a potential dominant term. �

A potential dominant monomial m is said to be algebraic if NP×m
is non homogeneous,

and differential if NP×m
� C[c]. A potential dominant monomial, which is both algebraic

and differential, is said to be mixed . Notice that (12) implies

d(P×m) ≍m
∗ m d(P ),

if the coefficients of P and m are purely exponential.

5.3.1 Algebraic potential dominant monomials

The algebraic potential dominant monomials correspond to the slopes of the Newton
polygon in a non differential setting. However, they can not be determined directly as
a function of the dominant monomials of the Pi, because there may be some cancellation
of terms in the different homogeneous parts during multiplicative conjugations. Instead,
the algebraic potential dominant monomials are determined by successive approximation:
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Proposition 21. Let i < j be such that Pi� 0 and Pj � 0.

a) If P is purely exponential, then there exists a unique purely exponential monomial
m, such that d(Pi,×m) = d(Pj,×m).

b) Denoting by mP ,i,j the monomial m in (a), there exists an integer k 6 ‖P ‖, such
that for all l> k we have mP ↑l,i,j =mP ↑k,i,j↑l−k.

c) There exists a unique monomial m, such that N(Pi+Pj)×m
is non homogeneous.

Proof. In (a), let B = (b1, � , bn) be a purely exponential transbasis for the coefficients
of P . We prove the existence of m by induction over the least possible k, such that we may
write d(Pi)/d(Pj) = b1

α1� bk
αk. If k= 0, then we have m = 1. Otherwise, let Q=P×n with

n = bk
αk/(j−i). Then

d(Qi)≍bk d(Pi) ni≍bk d(Pj) nj≍bk d(Qj),

so that d(Qi)/d(Qj)=b1
β1� bl

βl for some l <k and β1,� , βl. By the induction hypothesis,
there exists a purely exponential monomial w, such that d(Qi,×w) = d(Qj ,w). Hence we
may take m=nw. As to the uniqueness of m, assume that n=mb1

α1� bk
αk with αk� 0. Then

d(Pi,×n)≍bk d(Pi,×m) bk
iαk�bk d(Pj,m) bk

jαk≍bk d(Pj ,×n).

This proves (a).
With the notations from proposition 19, we have already shown that ‖DPi↑‖ 6 ‖DPi‖

and that equality occurs if and only if DPi = c
i−‖DPi‖ (c′)‖DPi‖. Because of (12), we also

notice that ‖DPi,×eαz‖= ‖DPi‖ for all α. It follows that

‖DPi,×mP ,i,j‖> ‖DPi↑,×mP ↑,i,j‖>�
and similarly for Pj instead of Pi, since we necessarily have mPi↑,i,j=mPi,i,j↑e

αz for some α.
We finally notice that ‖DPi,×mP ,i,j‖= ‖DPi↑,×mP ↑,i,j‖ and ‖DPj ,×mP ,i,j‖= ‖DPj↑,×mP ↑,i,j‖

imply that mP ↑,i,j=mP ,i,j↑, since ‖D(cα(c′)β)×eγx
‖=0� β=‖Dcα(c′)β‖ whenever β� 0 and

γ� 0. Consequently, ‖DPi↑l,×mP ↑l,i,j
‖ and ‖DPj↑l,×mP ↑l,i,j

‖ stabilize for l>k with k6‖P ‖.

For this k, we have (b).
With the notations from (b), mP ↑k,i,j↓k is actually the unique monomial m such that

D(Pi+Pj)×m↑l=DPi,×m↑k+DPj,×m↑k

is non homogeneous for all sufficiently large l. Now N(Pi+Pj)×m
= D(Pi+Pj)×m↑l for suffi-

ciently large l. This proves (c) for purely exponential differential polynomials P , and also
for general differential polynomials, after sufficiently many upward shiftings. �

The unique monomial m from part (c) of the above proposition is called an equalizer
or the (i, j)-equalizer for P . An algebraic potential dominant monomial is necessarily an
equalizer. Consequently, there are only a finite number of algebraic potential dominant
monomials and they can be found as described in the proof of proposition 21. Notice that,
given a transbasis B = (b1, � , bn) for the coefficients of P , all equalizers for P belong to
(log‖P ‖

C b1)� (logC b1) BC.

5.3.2 Differential potential dominant monomials

In order to find the differential potential dominant monomials, it suffices to consider the
homogeneous parts Pi of P , since NP×m,i = NPi,×m

, if c′|NP×m
and NP×m,i � 0. Now we

may rewrite Pi as f i times a differential polynomial RP ,i of order r6 1 in f †. We call RP ,i
the i-th Ricatti equation associated to P . Since solving Pi(f) = 0 is equivalent to solving
RP ,i(f

†) = 0, we are entitled to expect that finding the potential dominant monomials of
f w.r.t. P (f)= 0 is equivalent to solving RP ,i(f †) = 0 “up to a certain extent”.
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Proposition 22. The monomial m≺ v is a potential dominant monomial of f w.r.t.

Pi(f)= 0 (19)

if and only if the equation

RP ,i,+m†(f †) = 0
(

f †≺ 1

z log z log log z � ) (20)

has strictly positive Newton degree.

Proof. We first notice that RP ↑,i = (RP ,i↑)×e−z for all P and i. We claim that the
equivalence of the proposition holds for P and m if and only if it holds for P ↑ and m↑.
Indeed, m is potential dominant monomial w.r.t. (19), if and only if m is a potential
dominant monomial w.r.t.

Pi↑(f ↑) = 0 (21)

and (20) has strictly positive Newton degree if and only if

RP ,i,+m†↑(f †↑) = 0
(

f †↑≺ 1

ez z log z � ) (22)

has strictly positive Newton degree. Now the latter is the case if and only if

(RP ,i,+m†↑)×e−z(f ↑
†) = 0

(

f ↑†≺ 1

z log z log log z � )
has strictly positive Newton degree. But

(RP ,i,+m†↑)×e−z=(RP ,i↑)+m†↑,×e−z=(RP ,i↑)×e−z,+m↑† =RP ↑,i,+m↑†.

This proves our claim.
Now assume that m is a potential dominant monomial w.r.t. (19). In view of our claim,

we may assume without loss of generality that P and m are purely exponential and that
NPi,×m

=DPi,×m
. Since Pi is homogeneous, we have DPi,×m

=α (c′)i for some α∈C ∗ and

DR
P ,i,+m † =αci.

Since RP ,i,+m† is purely exponential, it follows that NR
P ,i,+m †,×z−2

has degree i, so that the

Newton degree of (20) is at least i. Similarly, if m is not a potential dominant monomial
w.r.t. (19), then DPi,×m

=α ci and

DR
P ,i,+m † =α

for some α∈C ∗. Consequently, NR
P ,i,+m †,×n

=α for any infinitesimal monomial n, and the

Newton degree of (20) vanishes. �

5.4 Refinements

Now we know how to determine potential dominant terms of solutions to (6), let us show
how to obtain more terms. A refinement is a change of variables together with an asymp-
totic constraint

f = ϕ+ f̃ (f̃ ≺ ṽ), (23)

where ṽ≺ ϕ. Such a refinement transforms (6) into

P+ϕ(f̃ ) = 0 (f̃ ≺ ṽ). (24)
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We call the refinement admissible, if (24) has strictly positive Newton degree.

Proposition 23. Let c m be the dominant term of ϕ and assume that ṽ = m. Then the

Newton degree of (24) is equal to the multiplicity d̃ of c as a root of NP×m
.

Proof. Let us first show that degNP+ϕ,×n
6 d̃ for any monomial n≺m. Modulo replacing

P by P×mwe may assume without loss of generality that m=1. Modulo a sufficient number
of upward shiftings, we may also assume that NP =DP , that NP+ϕ,×n

=DP+ϕ,×n
, and that

P , n and ϕ are purely exponential. The differential valuation of NP ,+c=DP ,+ϕ being d̃,
we have in particular d(P+ϕ,d̃) = d(P+ϕ). Hence,

d(P+ϕ,×n,i)≍nd(P+ϕ,×n,i) ni≺nd(P+ϕ,×n) nd̃≍nd(P+ϕ,×n,d̃)

for all i > d̃. We infer that degNP+ϕ,×n
6 d̃.

At a second stage, we have to show that degNP+ϕ,×n
> d̃. Without loss of generality,

we may again assume that m=1, that NP =DP , and that P and ϕ are purely exponential.
The differential valuation of NP ,+c = DP ,+ϕ being d̃, we have d(P+ϕ,i) ≺ d(P+ϕ) for all
i < d̃. Taking n = z−1, we thus get

d(P+ϕ,×n,i)≍ez d(P+ϕ,i)≺ez d(P+ϕ) = d(P+ϕ,d̃)≍ez d(P+ϕ,×n,d̃)

for all i < d̃. We conclude that degNP+ϕ,×n
> d̃. �

5.5 A worked example

Consider the algebraic differential equation

P (f) = f + f f ′′− (f ′)2 =0. (25)

Let us start by computing the potential dominant monomials of f . We first have to find
the (1, 2)-equalizer relative to (25). Since DP2∈ c

N (c′)N, we cannot have NP2 =P2, so we
have to compute

P ↑= f + e−2z (− f f ′+ f f ′′− (f ′)2).

In order to “equalize” P ↑1 and P ↑2, we have to conjugate P multiplicatively with e2z:

P ↑×e2z= e2z (f − 2 f2− f f ′+ f f ′′− (f ′)2).

At this point, we observe that DP ↑×e2z↑ = c − 2 c2 ∈ C[c], so we have found the (1, 2)-

equalizer, which is e=e2z↓=z2. SinceNP×e
=c−2c2, the corresponding algebraic potential

dominant term of f is τalg=
1

2
z2. As to the differential potential dominant monomials, we

have

RP ,1 = 1;

RP ,2 = f †′.

Clearly, RP ,1 has no roots and RP ,2(f †)=0 has all constants λ∈C as its solutions modulo
1/(z log z log log z � ). Consequently, eλz is a potential dominant monomial of f for all
λ ∈ C, such that eλz ≻ 1. The corresponding differential potential dominant terms are of
the form τλ,µ= µ eλz, with µ� 0 and eλz≻ 1.

In order to find more terms of the solution to (25), we have to refine the equation. First
of all, consider the refinement

f = τalg+ f̃ (f̃ ≺ τalg),
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which transforms (25) into

2 f̃ − 2 z f̃
′
+

1

2
z2 f̃

′′
+ f̃ f̃

′′
− (f̃

′
)2 =0 (f̃ ≺ z2). (26)

Since P0=0, we first observe that f =
1

2
z2 is actually a solution to (25). On the other hand,

since τalg is a potential dominant term of multiplicity 1 of f , the Newton degree of (26)
is one. The only potential dominant monomials of f̃ therefore necessarily correspond to
solutions modulo 1/(z log z log log z � ) of the Ricatti equation

2− 2 z f̃ †+
1

2
z2 ((f̃ †)2 + f †′) = 0.

These solutions are of the form f̃ † =
1

z
+� and f̃ † =

4

z
+� , which leads to the potential

dominant monomials z and z4, from which we remove z4, since z4 ⊀ z2. Expanding one
term further, we see that the generic solution to (26) is

f̃ =λ z+
λ2

2
,

with λ∈C and where the case λ= 0 recovers the previous solution. In other words,

f =
1

2
z2 +λ z+

λ2

2

is the first type of generic solution to (25).
As to the second case, we consider the refinement

f = τλ,µ+ f̃ (f̃ ≺ τλ,µ),

which transforms (25) into

µ eλz+ (λ2 f − 2λ f ′+ f ′′) µ eλz+ f + f̃ f̃
′′
− (f̃

′
)2 = 0 (f̃ ≺ eλz). (27)

Again, this equation has Newton degree one. On the one hand, we observe that the linear
part of this equation only admits solutions with dominant monomial eλz or z eλz. Conse-
quently, (27) admits at most one solution. On the other hand, we will show in the next
section that quasi-linear equations (i.e. of Newton degree one) always admit at least one
solution. In our case, this leads to the following second type of generic solution to (25):

f = µ eλz−
1

λ2 +
1

4 µλ4 e
−λz.

For the present example, we actually even found exact solutions. Of course, the expansions
are infinite in general.

6 Distinguished solutions

6.1 Distinguished left inverses of linear differential operators

Let B=(b1,� , bn) be a purely exponential transbasis. A linear operator on

S=C[z][[b1;� ; bn]]⊆C[[z; b1;� ; bn]]

is said to be grid-based if its operator support

supp∗L=
⋃

m

suppLm

m
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is grid-based. For all transseries f ∈S we have

suppLf ⊆ (supp∗L) (supp f).

In particular, the differentiation ∂ on S is grid-based with

supp∗ ∂ ⊆{z−1}∪ supp b1
†∪� ∪ supp bn

†
.

Consequently, any linear differential operator L=L0 +L1 ∂ +� +Lr ∂
r with coefficients

in C[[b1;� ; bn]] is also grid-based, since

supp∗L⊆ suppL0∪ (suppL1) (supp∗ ∂)∪� ∪ (suppLr) (supp∗ ∂)r.

We will now show that L also admits a so called distinguished left inverse L−1, which is
linear and grid-based. Here a distinguished solution to the equation

Lf = g

is a solution f , such that for all other solutions f̂ , we have fd
f̂−f = 0. Distinguished

solutions are clearly unique. We say that L−1 is a distinguished left inverse of L, if L−1 g

is a distinguished solution to Lf = g for each g.
In what follows, we will often consider linear differential operators L as linear differen-

tial polynomials. In this case, you should keep in mind that Li denotes the coefficient of f (i)

in L and not the i-th homogeneous part. We will also denote suppL= suppL0∪� ∪ suppLr
for any linear differential operator L as above.

Theorem 24. Let L=L0 +L1 ∂ +� +Lr ∂
r be a linear differential operator with coeffi-

cients in C[[b1;� ; bn]] and Lr� 0. Then L admits a distinguished linear left inverse L−1

on C[z][[b1;� ; bn]]. This left inverse is grid-based and

supp∗L−1⊆VW∗,

where

V = zr−N

{

m

d(L×m)

∣

∣

∣

∣

m∈BC

}

;

W = z−N∪ zr−N

(

⋃

m∈BC

suppL×m

d(L×m)

∖

{1}

)

.

Proof. Let M= zNBC and H = {dh|h∈S, Lh=0}. There exists a unique strongly linear
operator ∆:C[[M\H]]→C [[M]], such that

∆m = τLm

for all m∈M\H. The operator ∆ admits a natural left inverse ∆−1:C[[M]]→C[[M\H]],
which is constructed as follows. Let zin∈M, where n is purely exponential. By proposition
21(a), there exists a purely exponential monomial m with d(L×m) = n. Let d and D

respectively denote the dominant monomial and dominant part of L×m. Let

τ =
cf i!

DL×m,j (i+ j)!
zi+j ,

where j is minimal with Dj � 0. Then we observe that

L×mτ ∼ (DL×m
τ ) dL×m

∼ zi n,

so that ∆τ = zin. Consequently, we may take ∆−1 (zin)= τ and extend ∆−1 to the whole
of C[[M]] by strong linearity.
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Let R = L − ∆. By construction, the operator R ∆−1 is strictly extensive, and the
operator (Id+R∆−1) ∆ coincides with L on C[[M\H]]. Now consider the functional

Φ(f , g) = g−R∆−1 f.

By the implicit function theorem from [vdH00b], there exists a linear operator

Ψ= (Id+R∆−1)−1 = Id−R∆−1 + (R∆−1)2 +� ,
such that Φ(Ψ(g), g) =Ψ(g) for all g ∈C[[M]]. Consequently,

L−1 = ∆−1 (Id+R∆−1)−1:C[[M]]→C[[M\H]]

is a strongly linear left inverse for L.
In order to prove that L−1 is actually a grid-based operator, we first notice that, by

construction,

supp∗∆−1 ⊆ V;

supp∗ (R∆−1) ⊆ W.

Since

supp∗∆−1 (Id+R∆−1)−1⊆ (supp∗∆−1) (supp∗ (R∆−1))∗,

it therefore suffices to prove that V and W are grid-based. But this follows from theorem 17
when considering m−1 L×m as a generic transseries in λ1, � , λn, for m = b1

λ1 � bn
λn.

Indeed, there exist a finite number of regions, each on which m−1L×m is uniformly regular.
Consequently, m/d(L×m) can only take a finite number of values and

⋃

m∈BC

suppL×m

dL×m

is contained in the union of the supports of the generic transseries m−1L×m on each of the
regions. �

Remark 25. Each h∈H induces a canonical solution h=h+L−1Lh∈C[[M]] to Lh=0.
This canonical solution satisfies hh=1 and hi=0 for all i∈H\{h}. Actually, the canonical
solutions h are polynomials of degree <r in z with coefficients in C[[b1;� ; bn]]. In order
to see this, let

D = {zi m∈ zNBC |i6Card {i∈H|h≻ i <ezm}∧ zim≺ h};

I = (d ◦L)(D).

Then we observe that L maps C[[D]] into C[[I]] and that L−1 maps C[[I]] into C[[D]].

6.2 Distinguished solutions of quasi-linear equations

Let M be a subset of a monomial group. The notion of operator support can be extended
to strongly k-linear operators M :C[[M]]k→C[[M]] by

supp∗M =
⋃

(m1,�mk)∈Mk

suppM(m1,� ,mk)

m1� mk
.

More generally, if Φ:C[[M]]→C[[M]] is a Noetherian operator, then we define its operator
support by

supp∗Φ=
⋃

i∈N

supp∗Φi,
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where Φi stands for the i-th homogeneous part of Φ. We have

suppΦ(f)⊆ (supp∗Φ)(supp f)∗

for all f ∈C[[M]]. We say that Φ is grid-based , if supp∗Φ is grid-based.
Let B=(b1,� , bn) be a purely exponential transbasis and P a differential polynomial

with coefficients in C[[b1; � ; bn]]. Notice that we may naturally consider P as a grid-
based operator on C[[b1;� ; bn]]. The equation (6) is said to be quasi-linear if its Newton
degree is one. A solution f to such an equation is again said to be distinguished if we have
fd(f̃ −f) = 0 for all other solutions f̃ to (6).

Theorem 26. Assume that the equation (6) is quasi-linear. Then it admits a distinguished
transseries solution.

Proof. Without loss of generality, we may assume that dP = 1 and v = 1. We prove the
proposition by induction over n. If n = 0, then we must have P0 = 0, so that 0 is the
distinguished solution to (6). So assume that n� 0 and let

D=
∑

i,m≍bn1

Pi,mm f i

be the dominant part of P w.r.t. bn. By the induction hypothesis, there exists a distin-
guished solution to the quasi-linear equation

D(ϕ)= 0 (ϕ≺ 1). (28)

We first proceed with the refinement

f = ϕ+ f̃ (f̃ ≺ ϕ),

so that D+ϕ,0 = 0, and a sufficient number of upward shiftings, so that P+ϕ is purely
exponential. We next decompose P+ϕ as

P+ϕ=∆ +R− g̃ ,

where

∆ = D+ϕ,1;

g̃ = −P+ϕ,0;

R = P+ϕ−P+ϕ,0−D+ϕ,1.

Let I = {m∈ zNBC |m≺bn 1}. Since C[z][[b1;� ; bn−1]] bn
α is stable under ∆ and ∆−1 for

each α∈C, the operator R∆−1 is strictly extensive on C[[I]]. Consequently, the implicit
function theorem from [vdH00b] implies that the operator Id+R∆−1 can be inverted, like
in the proof of theorem 24:

(Id+R∆−1)−1 = Id−R∆−1 + (R∆−1)2 +� .
In particular,

f̃ =∆−1 (Id+R∆−1)−1 g̃

is a solution to P+ϕ(f̃ ) = 0. Furthermore, we have

supp∗ (Id+R∆−1)−1⊆ (supp∗R∆−1)∗,

so that

supp f̃ ⊆ (supp∗R∆−1)∗ (supp g)∗.
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We claim that f=ϕ+ f̃ is the distinguished solution. Indeed, let f̂ � f be another solution
and let d= d

f̂ −f . If d≍bn 1, then

ϕ̂=
∑

m≍bn1

f̂mm

is a solution to (28), so that fd= ϕd= 0. If d≺bn 1, then let

δ=
∑

m≍bnd

(f̂ − f)mm.

Since P (f̂ ) − P (f) = 0, we have ∆δ = 0, so that d = dδ is the dominant monomial of a
solution to the homogeneous equation ∆h=0. Consequently, fd=0, since f̃ ∈ Im∆−1. �

Remark 27. By induction over n, it also follows that we need at most n upward shiftings
in order to express the distinguished solutions. In other words, if P has coefficients in
C[[b1; � ; bn]], where B is purely exponential, then f ∈ C[[logn−1 z; � ; z; b1; � ; bn]].
Actually, if r is the order of P , then the number of upward shiftings we need is also bounded
by r.

Indeed, denoting J = {m ∈ BC |m ≺bn 1} and using a similar argument as in remark
25, we first observe that ∆ is bijective on C[[J]] if ∆h=0 admits no solutions in C[[I]].
Moreover, if ∆h=0 admits such a solution, then P+f ,1 has a root with the same dominant
part w.r.t. bn. The same observations recursively hold for all ∆ involved in the resolution
of (28). Now if f is the distinguished solution of (6), then the linear equation P+f ,1h=0
admits at most r solutions. Hence, there are at most r transbasis elements bi for which we
need to make an upward shifting.

6.3 A worked example

Consider the linear differential equation

Lf = f ′′− eλz f ′+ e(λ+µ)z f =1, (29)

under the assumptions z≻ 1 and eλz≻ eµz≻ 1. Then L has coefficients in C[[eCz]] and

L×eαz= eαz (f ′′+ 2α f ′+α2 f − eλz f ′−α eλz f + e(λ+µ)z f)

for each α∈C, so that

d(L×eαz) = e(α+λ+µ)z ;

suppL×eαz ⊆ e(α+λ+µ)z {1, e−µz, e−(λ+µ)z}.

Hence, theorem 24 implies that (29) has a distinguished solution in C[z][[eCz]] with

supp fdis⊆ z2−Ne−(λ+µ)z {e−µz , e−(λ+µ)z}∗. Actually, it is easily seen that

supp fdis⊆ e−(λ+µ)z {e−µz, e−(λ+µ)z}∗

and the first terms of f are given by

fdis= e−(λ+µ)z+(λ+ µ) e−(λ+2µ)z+(λ+ µ) (λ+2 µ) e−(λ+3µ)z− (λ+ µ)2 e−(2λ+2µ)z+� .
In order to find all solutions to (29), we have to solve the Ricatti equation associated to
the linear part of (29):

g2 + g ′− eλz g+ e(λ+µ)z= 0. (30)
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This equation has two potential dominant terms eλz and eµz of multiplicities one. Con-
sequently, we get quasi-linear equations when refining g = eλz + g̃ (g̃ ≺ eλz) or g =

eµz + g̃ (g̃ ≺ eµz). When setting g̃ = eµz h1 resp. g̃ = e(2µ−λ)z h2, these equations are
conveniently rewritten as

e−(λ−µ)zh1
2 + h1− e−λzh1

′ − µ e−λzh1 + 1 +λ e−µz=0 (h1≺ e(λ−µ)z) (31)

and

e−2(λ−µ)z h2
2 − h2 + 2 e−(λ−µ)z h2 + e−λz h2

′ + (2 µ−λ) eλz h2 + 1 + µ e−µz = 0 (h2 ≺

e(λ−µ)z). (32)

By theorem 26, these equations admit distinguished solutions

h1 = − 1− e−(λ−µ)z−λ e−µz+� ;

h2 = 1 +2 e−(λ−µ)z+ µ e−µz+� .
More precisely, in the proof of theorem 26, and for (31), we would have ∆ = h1, g = − 1

and R= e−(λ−µ)z h1
2− e−λz h1

′ − µ e−λz h1 + λ e−µz. It follows that supp∗R∆−1⊆{e−µz,
e−(λ−µ)z}∗, so that h1∈C[[e−µz , e−(λ−µ)z]]. Similarly, h2∈C[[e−µz, e−(λ−µ)z]]. Returning
to (30), we obtain the following solutions:

g1 = eλz− eµz− e(2µ−λ)z−λ e−2µz+� ;

g2 = eµz+ e(2µ−λ)z+2 e(3µ−2λ)z+ µ e(µ−λ)z+� ,
which yield a basis

ϕ1 = e
1

λ
eλz− 1

µ
eµz− 1

2µ−λ e
(2µ−λ)z+

λ

2µ
e−2µz+�

;

ϕ2 = e
1

µ
eµz+

1

2µ−λe
(2µ−λ)z+

2

3µ−2λ
e(3µ−2λ)z+

µ

µ−λe
(µ−λ)z+�

.

of solutions to Lϕ= 0.
It is interesting to study the solutions f = fdis+α1ϕ1+α2ϕ2 to (29) from an analytical

point of view. Indeed, the asymptotic conditions ϕ1 ≺ 1 or ϕ1 ≻ 1 and ϕ2 ≺ 1 or ϕ2 ≻ 1
divide complex space into four non degenerate regions. However, each of these regions
has infinitely many “bounded connected components”. When moving from one connected
component to another one, a “generalized Stokes phenomenon” occurs. Consequently, a
specific formal solution to (29) only makes sense on a bounded connected component from
the analytical point of view.

Nevertheless, it is possible to give an asymptotic meaning to the generic formal solution
to (29) on each region, by associating a “generalized Stokes matrix” to each connected
component of the region. This issue will be detailed in a forthcoming paper. An interesting
remaining question is the asymptotic behaviour of the Stokes matrices. Actually, the gener-
alized Stokes phenomenon might be qualified asmulti-Stokes phenomenon, since the Stokes
phenomena occur with respect to several generalized sectors of different types. Equa-
tion (29) is one of the simplest examples which exhibits this multi-Stokes phenomenon.

7 Unravellings

7.1 Total unravellings

Theorem 26 together with propositions 21, 22 and 23 suggest that the solutions to an
arbitrary asymptotic algebraic equation (6) can be expressed using the field operations,
exponentiation, logarithm and distinguished solutions of quasi-linear equations. This is
indeed so, if the Newton degree decreases at each refinement in proposition 23.
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The remaining case, when the Newton degree repeatedly does not decrease in propo-
sition 23, occurs when there are “almost multiple solutions”. In order to “unravel” these
solutions, we have to find their greatest common part. More precisely, consider an asymp-
totic algebraic differential equation (6) of Newton degree d. Then an unravelling (or total
unravelling) is a refinement

f = ϕ+ f̃ (f̃ ≺ ṽ),

such that

U1. The Newton degree of P+ϕ(f̃ ) = 0 (f̃ ≺ ṽ) equals d.

U2. For any ϕ̃≺ ṽ, the Newton degree of Pϕ+ϕ̃(f̃
˜
) =0 (f̃

˜
≺ d(ϕ̃)) is <d.

Clearly, the series ϕ, which is also called an unraveller , may be replaced by any other series
of the form ϕ+ ψ with ψ≺ ṽ.

From a theoretical point of view it is possible to prove a certain number of facts about
unravellings. First of all, any unraveller admits a truncation ϕ<, which is a canonical
unraveller , in the sense that

f = ϕ<+ f̃ (f̃ ≺ ṽ<)

is an unravelling for all ṽ< with supp ϕ< ≻ ṽ< ≻ ṽ, and that a similar property does not
hold for any proper truncation of ϕ<.

Secondly, it is possible to construct the so called canonical algebraic unraveller ϕ by
transfinite induction: having constructed the first α terms of ϕ, say of sum ψ, one looks
at the equation P+ψ(f̃ ) = 0 (f̃ ≺ v) of Newton degree d. If this equation has an algebraic
potential dominant term τ of multiplicity d, then this term is unique, and we take it to be
the next term of ϕ.

However, in what follows, we are interested in more constructive ways to obtain unrav-
ellings. For this purpose, we recall that in the more classical context of algebraic equations,
multiple roots are usually found by solving the derivative (or a higher derivative) of the
equation with respect to the indeterminate. In the next sections, we will describe a similar
strategy in order to find the almost multiple solutions to asymptotic algebraic differential
equations. The price to be paid is that we will need a sequence of so called partial unrav-
ellings (and adjusted partial unravellings) in order to construct a total unravelling.

7.2 Partial unravellings

Consider an asymptotic algebraic differential equation (6) of Newton degree d. Given a
monomial m≺ v such that NP×m

admits a root of multiplicity d, we define Q by

• If NPd,×m
=α(c− β)d−k (c′)k with k<d, then Q=(∂d−1P×m/∂f d−1−k∂(f ′)k)×m−1;

• If NPd,×m
=α (c′)d, then Q= (∂d−1P×m/∂ (f ′)d−1)×m−1.

Now let ṽ 4 ϕ4 m, P̃ =P+ϕ and Q̃ =Q+ϕ be such that

PU1. Q(ϕ) = 0.

PU2. The Newton degree of P̃ (f̃ ) = 0 (f̃ ≺ ṽ) is d.

PU3. For any ϕ̃≺ ṽ with Q̃(ϕ̃)=0, the Newton degree of P̃+ϕ̃(f̃
˜
)=0 (f̃

˜
≺ ϕ̃) is <d.

Then the refinement

f = ϕ+ f̃ (f̃ ≺ ṽ), (33)
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is said to be a partial unravelling with m as its associated monomial . Notice that the
equations Q(ϕ) = 0 (ϕ4 m) and Q̃(ϕ̃) = 0 (ϕ̃ ≺ ṽ) are quasi-linear. Partial unravellings
are constructed as follows.

Proposition 28. Let m and Q be as above. Then there exists a ϕ4m which satisfies the
conditions PU1, PU2 and PU3.

Proof. We construct sequences ϕ[1], ϕ[2], � and ṽ[1] ≻ ṽ[2] ≻ � of approximations of ϕ
and ṽ, such that all ϕ[i] and ṽ[i] satisfy the conditions PU1 and PU2. We let ϕ[1] be
the distinguished solution to the equation Q(ϕ[1]) = 0 (ϕ[1] 4 m) and ṽ[1] = d(ϕ[1]). As

long as ϕ[i] and ṽ[i] do not satisfy the condition PU3, there exists a ψ[i] ≺ v[i] with
Q+ϕ[i](ψ[i])=0, such that the Newton degree of P

ϕ[i]+ψ[i](f̃ ) (f̃ ≺ ψ[i]) is d. Hence we may

take ϕ[i+1] = ϕ[i] + ψ[i] and ṽ[i+1] = d(ψ[i]).

We claim that the sequences ϕ[1], ϕ[2],� and ṽ[1], ṽ[2],� are of length at most r+ 1,
so that we may take their last elements for ϕ and ṽ. Indeed, for each i, the series ϕ[j]−ϕ[i]

with j < i are solutions to the quasi-linear equation Q+ϕ[i](~) = 0 (~ 4 m). Consequently,
the dominant monomials of these series, which are pairwise distinct, are all dominant
monomials of solutions to the homogeneous linear differential equation Q+ϕ[i],1(h)=0. But
there are at most r linearly independent solutions to this equation. �

Proposition 29. Consider a partial unravelling (33) as above, followed by a refinement

f̃ = ϕ̃+ f̃
˜

(f̃
˜
≺ ṽ̃),

such that the Newton degree of

P̃̃ (f̃
˜
)= P̃+ϕ̃(f̃

˜
) =0 (f̃

˜
≺ ṽ̃) (34)

is equal to d. Then, for m̃= d(ϕ̃), we have

m̃

ṽ̃
 log

m

m̃
.

Proof. Without loss of generality, we may assume that P̃ , Q̃, ϕ̃, ṽ and ṽ̃ are purely
exponential, that m=1 and that d(P̃ )= d(Q̃)= 1. From PU3 it follows that m̃ is neither
a potential dominant monomial for Q̃(ψ) = 0 (ψ ≺ ṽ), nor for Q̃1(ψ) = 0 (ψ ≺ ṽ).
Proposition 22, applied to Q̃×m̃,1 and the “non potential dominant monomial” 1, therefore
yields

d(RQ̃×m̃,1,0
)= d(RQ̃×m̃,1

).

Consequently,

Q̃(ϕ̃)≍RQ̃×m̃,1

(

ϕ̃

m̃

)

≍ d(RQ̃×m̃,1
)≍ d(Q̃×m̃).

On the other hand, we have
d(Q̃×m̃)

d(Q̃) m̃
 m̃†D log m̃,

so that
Q̃(ϕ̃)

m̃
 log m̃.

Now recall that Q̃(ϕ̃) is the coefficient of f d−1−k (f ′)k in P̃˜(f) for some k. It follows that

P̃̃d−1 <m̃
∗ m̃,

30 Section 7



Now assume that n is a monomial with n ≺m̃
∗ m̃ (so that n ≺n

∗ m̃). Then we have

d(P̃̃×n,d−1) ≍n
∗ d(P̃̃d−1) nd−1 ≻n

∗ nd ≍n
∗ d(P̃̃×n,d).

We conclude that the degree of N
P̃̃×n

can not exceed d − 1. If ṽ̃ is chosen such that (34)

has Newton degree d, it thus follows that

ṽ̃ <m̃
∗ m̃,

which completes the proof. �

7.3 Adjusted partial unravellings

Proposition 29 shows that by taking sequences of partial unravellings, we rapidly approach
a total unraveling. The only problem which still remains to be solved is the appearance
of highly iterated logarithms. We will first solve this problem in the particular case when
the Newton degree of P coincides with its normal degree. In the next subsection, we will
show that the general case can be reduced to this case.

In the sequel, we assume that (6) is an asymptotic differential equation of degree and
Newton degree d, such that the following additional conditions are satisfied for a certain
purely exponential transbasis B= (b1,� , bn):

E1. Pd has coefficients in C[[b1;� ; bn]].

E2. P0,� , Pd−1 have coefficients in C[z][[b1;� ; bn]].

E3. Pd(f)= 0 (f ≺ v) admits only potential dominant monomials in BC.

The two first conditions can clearly be met after a sufficient number of upward shiftings.
In section 9, we will show that this is also the case for the last condition.

Proposition 30. Let τ be a potential dominant term of multiplicity d for ( 6). Then

a) Modulo the insertion of new elements into B, we have τ = c zµm∈CzNBC.

b) There exists a unique ϕ∈ zC[z] m, such that either

i. f = ϕ+ f̃ (f̃ ≺ ṽ) is a total unravelling and ṽ is 4 -minimal in supp ϕ.

ii. The Newton degree of f = ϕ+ f̃ (f̃ ≺ zm) is d.

Proof. Let us first prove (a). If τ is differential, then E3 implies that τ is purely exponen-
tial, so τ ∈C BC after a suitable extension of B. If τ is algebraic, then d(τ) is the (i, d)-
equalizer for each i < d, since τ has multiplicity d. Proposition 21(a) implies that there
exists a unique purely exponential monomial n= eµz (m↑)∈ eCz (B↑)C with τ ↑≍ez n, such
that d(Pi↑×n)=d(Pd↑×n) for all i<d. More precisely, in the algorithm in proposition 21(a),
m is chosen such that d(Pd↑×m↑) ≍b1↑ d(Pi↑×m↑), whence d(Pd↑×m↑) = d(Pi↑×m↑) eνiz for
some νi∈N, and µ satisfies (d− i) µ=νi. In particular, for i=d− 1, this yields µ∈N. We
claim that τ ≍ n↓.

If µ=0, then we have d(Pd,×n↓)=d(Pi,×n↓) and d(Pd↑×n)=d(Pi↑×n) for all i<d. Since
P0↑×n=P0,×n↓↑, this can only happen if NP ↑×n

=DP ↑×n
. Hence n↓ is the (i, d)-equalizer

w.r.t. P for all i<d and τ≍n↓. If µ>0, then E3 implies that n is not a potential dominant
monomial for Pd↑. Consequently, the coefficients of c0 and cd in DP ↑×n

both do not vanish.
It follows that n↓ is the (0, d)-equalizer w.r.t. P and again τ ≍ n↓.

We prove the existence of ϕ in (b) by induction over µ; the uniqueness of ϕ follows
from E3. If µ=0, then ϕ= 0 clearly satisfies assumption ii . If µ> 0, then we refine

f = τ + f̃ (f̃ ≺ τ ),
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and remark that P+τ satisfies the hypothesis E1, E2 and E3, due to part (a). Now consider
the equation

P+τ(f̃ )= 0 (f̃ ≺ τ ) (35)

of Newton degree d. If this equation admits a potential dominant term τ̃ of multiplicity d
with m ≺ τ̃ ≺ τ , then the induction hypothesis implies that there exists a ϕ̃ ∈ z C[z] m,
which satisfies the assumption i or ii , and we may take ϕ= τ + ϕ̃. If there does not exist
such a potential dominant term τ̃ , then there either do not exist potential dominant terms
of multiplicity d at all for (35), so that i holds for ϕ= τ , or such potential dominant terms
do exist, and we have ii for ϕ= τ . �

Given a potential dominant term τ = c zµ m of multiplicity d, let ϕ be as in proposi-
tion 30(b). In case i , we say by convention that f = ϕ+ f̃ (f̃ ≺ ṽ) is an adjusted partial
unravelling . In case ii , let

f̃ = ϕ̃+ f̃
˜

(f̃
˜
≺ ṽ̃) (36)

be a partial unraveling relative to the equation

P+ϕ(f̃ ) = 0 (f̃ ≺ ṽ),

and with m as its associated monomial. Then we say that

f = ϕ+ ϕ̃+ f̃
˜

(f̃
˜
≺ ṽ̃)

is an adjusted partial unravelling . Notice that a partial unravelling like (36) always exists,
by propositions 28 and 30(a).

Notice also that we necessarily have ϕ̃ ∈C[z][[b1;� ; bn]]. Indeed, consider the differ-
ential polynomial Q with Q(ϕ̃) = 0 in PU1. Since degP = d, this differential polynomial
is actually linear. Furthermore, since m∈BC, the coefficients of Q0 are in C[z][[b1;� ;bn]]
and the coefficients of Q1 in C[[b1; � ; bn]]. We conclude that all solutions to Q(ψ) = 0,
and in particular ψ= ϕ̃, are in C[z][[b1;� ; bn]]. A consequence of our observation is that
Pϕ+ ϕ̃ again satisfies the hypotheses E1, E2 and E3, so that we may consider sequences
of adjusted partial unravellings.

Proposition 31. Any sequence of adjusted partial unravellings

f = f [0] = ϕ[1] + f [1] (f [1]≺ v[0]);

f [1] = ϕ[2] + f [2] (f [2]≺ v[1]);

is finite, say of length l, and its composition

f = ϕ[1] +� + ϕ[l] + f [l] (f [l]≺ v[l−1])

is a total unravelling.

Proof. Let l∈N∪{∞} denote the length of the sequence of adjusted partial unravellings.

For each 1 6 i6 l, let m[i] = zk
[i]

n[i] = d(ϕ[i])∈ zNBC. For each 1 6 i6 l− 1, let χ[i] denote
the exponentiality of m[i]/m[i+1]. Given 2 6 i6 l− 1, proposition 29 implies that

m[i]

v[i+1]
 log

n[i−1]

m[i]
,
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Since n[i−1] 4m[i−1] and v[i+1] 4m[i+1], this yields

m[i]

m[i+1]
 log

m[i−1]

m[i]
,

By induction, it follows that χ1 > � > χl−1 > 0. We conclude that l 6 χ1 + 1. The
composition of the sequence of adjusted partial unravellings is clearly a total unraveling. �

7.4 Construction of total unravellings

Let us now return to the case of a general asymptotic differential equation (6) of Newton
degree d. Assume that (33) is a partial unravelling with m = dϕ and that τ̃ is a potential
dominant monomial of multiplicity d for

P̃ (f̃ ) =P+ϕ(f̃ ) = 0 (f̃ ≺ ṽ). (37)

Modulo a sufficient number of upward shiftings, we may assume that ϕ, ṽ, τ̃ and the
coefficients of P can be expanded w.r.t. a purely exponential transbasis B = (b1, � , bn).
Let bk be the transbasis element such that ϕ/τ̃ D bk, and consider the dominant part Π of
P̃×τ̃ with respect to bk:

Π =
∑

n≍bk
d(P̃×τ̃ )

P̃×τ̃ ,nn

On the one hand, since degNP̃×d(ϕ)
=degNP×d(ϕ)

= d, we have

d(P̃+ϕ,×τ̃ ,i) ≍bk d(P̃×d(ϕ),i)
(

τ̃

d(ϕ)

)i
≺bk d(P̃×d(ϕ),d)

(

τ̃

d(ϕ)

)d
≍bk d(P̃×τ̃ ,d),

for all i>d, so that degΠ=d. Consequently, Π satisfies the conditions E1 and E2 from the
previous section; we will see in section 9 that it also satisfies E3, modulo some additional
upward shiftings. On the other hand, the following proposition reduces the problem of
determining the unravellings for (6) to a similar problem for Π. In view of the previous
section, this completes the effective construction of unravellings.

Proposition 32. With the above notations, a refinement

f̃ = ϕ̃+ f̃
˜

(f̃
˜
≺ ṽ̃) (38)

with ϕ̃∼ τ̃ is a total unravelling w.r.t. (37) if and only if

g=
ϕ̃

τ̃
+ g̃

(

g̃ ≺
ṽ̃

τ̃

)

(39)

is a total unravelling w.r.t. the equation

Π(g) = 0

(

g≺
ṽ̃

τ̃

)

. (40)

Proof. Modulo a multiplicative conjugation, we may assume without loss of generality
that τ̃ =1. Now if (38) is an unravelling, then proposition 29 implies that

1

ṽ̃
 logm≍ log bk,
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so that ṽ̃≍bk 1. Actually, in the proof of proposition 29 we showed that

P̃+ ϕ̃ ,d−1 <bk
∗ 1,

so that Π+ϕ̃ ,d−1� 0. We infer that degNΠ+ϕ̃,×n
6d− 1 for all n≺ 1 with n$ bk. In other

words, for (39) to be an unravelling, it is again necessary that ṽ̃≍bk 1.
The above argument shows that it suffices to prove the equivalence under the assump-

tion that ṽ̃ ≍bk 1. Now we notice that for each transseries ψ 4bk 1 and each monomial
n≍bk 1, the dominant parts of P̃+ψ,×n and Π+ψ,×n w.r.t. bk coincide. Consequently,

NP̃+ψ,×n
=NΠ+ψ,×n

for such n and ψ. In particular, we have

NP̃+ϕ̃,×n
=NΠ+ϕ̃,×n

for all n≺ ṽ̃ sufficiently close to ṽ̃, so that the Newton degrees of

P̃+ϕ̃(f̃
˜
) = 0 (f̃

˜
≺ ṽ̃)

and

Π+ϕ̃(g̃) = 0 (g̃ ≺ ṽ̃)

coincide. Hence U1 holds for (38) if and only if it holds for (39). Similarly, for all ψ≺ ṽ̃,
such that ψ≍bk 1, the Newton degrees of

P̃+ψ(f̃
˜
)= 0 (f̃

˜
≺ dψ) (41)

and

Π+ψ(g̃) = 0 (g̃ ≺ dψ) (42)

coincide. Furthermore, for a similar reason as above, the Newton degrees of (41) and (42)
are both bounded by d− 1 if ψ ≺bk 1. In other words, U2 holds for (38) if and only if it
holds for (39). We conclude that (38) is a total unravelling w.r.t. (37) if and only if (39)
is a total unravelling w.r.t. (37). �

7.5 Worked examples

One of the easiest examples which illustrates the importance of unravellings is

P (f)= f 2−
2

1− z−1
f +

(

1

1− z−1

)2

= e−z , (43)

where 1 ≺ z ≺ ez. This equation admits 1 as it’s unique potential dominant term of
multiplicity 2. However, the refinement

f = 1 + f̃ (f̃ ≺ 1)

leads to the equation

f̃
2−

2 z−1

1− z−1
f̃ +

(

z−1

1− z−1

)2

= e−z (f̃ ≺ 1),

which again admits a unique potential dominant term z−1 of multiplicity 2. Continuing

like this leads to an infinite sequence f = 1 + f̃ (f̃ ≺ 1), f̃ = z−1 + f̃
˜

(f̃
˜
≺ z−1), � of

refinements, and we do not succeed in separating the two solutions.
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Therefore, we rather construct a total unravelling. In order to do so, we first compute
the distinguished solution ϕ=(1− z−1)−1 to the quasi-linear differential equation

Q(ϕ) =
∂P

∂f
(ϕ) = 2 ϕ−

2

1− z−1
ϕ=0

and then refine

f = ϕ+ f̃ (f̃ ≺ 1).

This refinement (and partial unravelling with associated monomial 1) is actually already
the total unravelling we were looking for and the equation (43) transforms into

f̃
2 = e−z (f̃ ≺ 1).

This time, the new equation admits two potential dominant terms e−z/2 and − e−z/2 of
multiplicities < 2, which allows us to compute the solutions to (43) by recursion.

In general, total unravellings can only be achieved via successions of partial unravel-
lings. An important example which illustrates this phenomenon is the following:

f 2 + 2 f ′+
1

z2
+

1

z2 log2 z
+� +

1

z2 log2 z � logl−1
2 z

=0 (44)

This equation becomes purely exponential after l upward shiftings:

f 2 +
2

ez ee
z� expl z

f ′+
1

expl
2 z

+
1

expl−1
2 z expl

2 z
+� +

1

e2z e2e
z� expl

2 z
=0. (45)

This new equation admits a unique potential dominant monomial expl
−1z of multiplicity 2.

Indeed, this is easily seen when substituting (expl
−1 z) g for f :

1

expl
2 z

(

g2 +
2

ez� expl−1 z
g ′− 2 g+ 1 +

1

expl−1
2 z

+� +
1

e2z� expl−1
2 z

)

=0. (46)

Now g=1+ g̃ (g̃ ≺1) is a partial unravelling w.r.t. (46) and f =expl
−1z+ f̃ (f̃ ≺expl

−1z)
a partial unravelling w.r.t. (45). However, the partial unravelling transforms (46) into an
equation of the same form as (45), but with l decreased by 1. Consequently, we need a
succession of l unravellings

f =
1

expl z
+ f1

(

f1≺
1

expl z

)

;

f1 =
1

expl−1 z expl z
+ f2

(

f2≺
1

expl−1 z expl z

)

;

fl−1 =

1

ez � expl z
+ fl

(

fl≺
1

ez� expl z

)

.

in order to attain the total unravelling

f =
1

expl z
+

1
expl−1 z expl z

+� +
1

ez� expl z
+ f̃

(

fl≺
1

ez� expl z

)

.

Notice that the ratios explz,� , ez of the successive potential dominant terms indeed satisfy
proposition 29.

An open question is whether there exist examples which essentially need the technique
of adjusted partial unravellings in order to limit the appearance of iterated logarithms.
If not, this would allow some major simplifications in the algorithm solve in the next
section. Actually, the whole computation process of total unravellings needs to be better
understood in order to generalize it to other fields of transseries (see section 9.5).
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8 Computation of parameterized solutions

8.1 About the algorithms in this section

In this section, we give algorithms to solve an asymptotic differential equation (6), where
the coefficients of P and v can be expanded with respect to a parameterized transbasis B=
(b1,� , bn). Actually, we show how to solve such an equation modulo a transmonomial w.
Here a solution modulo w to (6) is a transseries ϕ ≺ v, such that the Newton degree
of P+ϕ(f̃ ) = 0 (f̃ ≺ w) is strictly positive. In our algorithms, we will use the following
conventions without further mention.

Automatic case separations. Our algorithms are non deterministic in the sense that we
allow automatic case separations, in a similar way as sections 3 and 4. The algorithms are
constructed in such a way that each solution modulo w to (6) occurs in precisely one case.
In other words, for each specialization of the initial parameters and, for each specialization
of the directions (which corresponds to a choice of a field of transseries T as in section 2,
which satisfies the constraints on the θm) and for each solution ϕ inT, there exists precisely
one case and precisely one specialization of the newly introduced parameters, which yields
ϕ as a solution.

The termination of our non deterministic algorithm follows from the termination of
each of its branches by a similar Noetherianity argument as in the proof of theorem 17.
For more details about the automatic case separation strategy, see chapter 8 in [vdH97].

Automatic upward shiftings. We assume throughout our algorithms that all computa-
tions are done w.r.t. a purely exponential parameterized transbasis B=(b1,� ,bn). In order
to do this, we are allowed to insert new elements into B and to “shift the whole computation
upwards” whenever necessary. Upward shifting can for instance be implemented via an
exception, which starts over the whole non deterministic computation, after shifting the
input upwards. A better strategy, which consists of associating an “exponential level” to
each transseries, is explained in more detail on page 276 of [vdH97].

Non standard monomials. It is useful to allow a few non standard transmonomials
in our algorithms, like the formal infinitely large and small monomials ∞M resp. ∞M

−1, as
well as monomials of the form (expl z expl−1 z� z log z� )−1.

Effective computations with transseries. Of course, our algorithms are not really
effective, as long as we do not provide algorithms to compute the expansions of parame-
terized transseries and to test them for being zero. In this paper, we assume that we have
oracles for deciding such questions. Similarly, in our algorithms for computing distin-
guished solutions in the next section, we will merely give infinite formulas for the results.
Nevertheless, we notice that for certain classes of transseries, the oracles may be replaced
by real algorithms, in a similar way as described in chapter 12 of [vdH97].

8.2 Distinguished solutions

In order to get a parameterized version of theorem 24, we have to make sure that the
operator L−1 = ∆−1 (Id+R∆−1)−1 is well defined. This can be done as follows:

Algorithm linear(L, g)
Input A linear differential operator L and transseries g
Output The distinguished solution f to Lf = g

Step 1 [Introduce generic monomial]
Let B= (b1,� , bn) denote the current purely exponential transbasis
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Let λ1,� , λn be n temporary new parameters in C and set m4 b1
λ1� bn

λn

Step 2 [Compute the distinguished solution]
Uniformly regularize m−1L×m

Let f4 ∆−1 (Id+R∆−1)−1 g, with the notations from the proof of theorem 24

Step 3 [Clean up]
Destroy the parameters λ1,� , λn by projection of the regions
Return f

In the algorithm, the uniform regularization of a differential operator or polynomial
means that we uniformly regularize all its coefficients and that we make the corresponding
dominant monomials pairwise comparable for 4 using theorem 17 and lemma 15.

In the parameterized context, the equation (6) has a Newton degree d, if each special-
ization of the directions and parameters leads to an equation of Newton degree d. We will
show below how to compute the Newton degree modulo case separations. The distinguished
solution to a quasi-linear equation (i.e. of Newton degree 1) is computed inductively as in
the proof of theorem 26. The dominant part of P w.r.t. bn, bn−1, � is computed by the
usual formula after the uniform regularization of P .

Algorithm quasi_linear(P , v, k4 n)
Input

An integer k ∈ {0, � , n} (with n as default value), a differential polynomial P with
coefficients in C[[b1;� ; bk]] and a monomial v∈ b1

C � bk
C, such that (6) is quasi-linear

Output The distinguished solution to (6)

Step 1 [Normalize]
If v� 1, then return v times quasi_linear(P×v, 1, k)
Uniformly regularize P
If d(P )� 1 then return quasi_linear(d(P )−1P , 1, k)

Step 2 [Recurse]
Compute the dominant part D of P w.r.t. bk
Let ϕ4 quasi_linear(D, 1, k− 1)

Step 3 [Return]
Return ∆−1 (Id+R∆−1)−1 g̃ , with the notations from the proof of theorem 26

8.3 Determining the Newton polygon

The (i, j)-equalizer of a differential polynomial P is computed similarly as in the proof of
proposition 21, by uniformly regularizing Pi and Pj at each recursion.

Algorithm equalizer(P , i, j)
Input A differential polynomial P and integers 0 6 i < j6degP
Output The (i, j)-equalizer for P

Step 1 [regularize]
Uniformly regularize Pi and Pj

Step 2 [equalize]

Let m4 d(Pi)/d(Pj)
j − i√

If m� 1 then return m equalizer(P×m, i, j)

Step 3 [shift upwards]
If d(Pi)= d(Pj)) and DPi+Pj ∈C[c] (c′)N, then return 1
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Shift upwards and return to step 2

The analogue of the Newton polygon associated to an algebraic differential equation
in the differential case is the determination of (i, j)-equalizers, which occur as potential
dominant monomials, and which are extremal in the sense that j − i is maximal. These
equalizers correspond to the slopes of the Newton polygon and the i and j to the first
coordinates.

Algorithm Newton_polygon(P )
Input A differential polynomial P
Output

Indices valP = i0<� <ik=degP and potential dominant monomials m1≺� ≺mk for
P (f) = 0, such that mj is the (ij−1, ij)-equalizer for P for each j

Step 1 [Initialize]
j4 valP
k4 0

Step 2 [Insert vertex]
ik4 j

If j =degP then return i0,� , ik and m1,� ,mk−1

k4 k+1
Step 3 [Search edge]

Compute ej,j ′ = equalizer(P , j, j ′)
j ′− j√ for all j ′> j with Pj ′� 0

Let mk4 min4 {ej ,j ′} and let j ′ be minimal with mk= ej,j ′.
Set j4 j ′ and go to step 2

The Newton degree of (6) can easily be read from the Newton polygon:

Algorithm Newton_degree(P , v)
Input A differential polynomial P and a monomial v

Output The Newton degree of P (f) = 0 (f ≺ v)

Compute i0,� , ik and m1,� ,mk by Newton_polynomial(P )
Let j ∈{0,� , k} be maximal, such that mj≺ v

Return ij

8.4 Computing potential dominant terms

Given the Newton polygon associated to P , let us now show how to determine the potential
dominant terms of solutions to (6) and their multiplicities. We separate a case for each
edge and each vertex of the Newton polygon, and determine the corresponding algebraic or
mixed resp. differential potential dominant monomials and terms. In order to determine the
differential potential dominant monomials, we recursively have to solve Ricatti equations
modulo (x log x� )−1. The algorithm solve which does this will be specified in the next
section.

Algorithm pdt(P , v) [non deterministic]
Input A differential polynomial P and a monomial v

Output A potential dominant term τ for (6)

Step 1 [Determine Newton degree]

Compute i0,� , ik and m1,� ,mk by Newton_polygon(P )
Choose a j ∈{0,� , k}, such that j=0 or mj≺ v, and set d4 ij
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If j =0 then go to step 3
Separate two cases and go to step 2 resp. 3

Step 2 [Algebraic and mixed potential dominant terms]
Let m4 mj

Let c be a new parameter in C
Impose the constraint DP×m

(c) = 0 (as an algebraic constraint, since c′=0)
Return cm

Step 3 [Differential but non mixed potential dominant terms]
Let g4 solve(RP ,d,∞M, (x log x log log x� )−1)

Let m4 exp
∫

g, where the integral is computed using linear

If j < k then impose the constraint m≺mj+1

Otherwise impose the constraint m≺ v

If j > 0 then impose the constraint m≻mj

Let c be a new parameter in C and impose the constraint c� 0
Return cm

Algorithm multiplicity(P , τ)
Input A differential polynomial P and a term τ

Output The multiplicity of c(τ ) as a root of NP×d(τ)

Repeat
Uniformly regularize P×d(τ)

If DP×d(τ)
� C[c] (c′)N then shift upwards

Until DP×d(τ)
∈C[c] (c′)N

Return the multiplicity of cτ as a root of DP×d(τ)

8.5 Solving the differential equation

We can now state the main resolution algorithm for solving asymptotic algebraic differen-
tial equations (6) modulo monomials w.

Algorithm solve(P , v,w)
Input A differential polynomial P and monomials v and w

Output A solution to P (f) (f ≺ v) modulo w

Step M1 [Initialize]
ϕ4 0
mode4 normal

Step M2 [Are we done?]
If Newton_degree(P+ϕ,w)> 0, then separate two cases and respectively

1. Return ϕ
2. Proceed with step M3

Step M3 [Compute potential dominant term]
Let d4 Newton_degree(P+ϕ, v)
Let τ 4 pdt(P+ϕ, v)
If τ ≺w then kill this process

Step M4 [Does τ have multiplicity <d?]
If multiplicity(P , τ )<d then

ϕ4 ϕ+ τ

v4 d(τ )
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mode4 normal
Go to step M2

Step M5 [Dispatch on mode]
If mode = normal then go to step H1
If mode = unravel then go to step H3
If mode = adjust then go to step U4

Step H1 [Prepare first step unravelling loop]
Π4 P

m4 d(τ )
mode4 unravel
serial4 head

Step H2 [Prepare partial unravelling loop]
While DΠ+ϕ,×m

� C[c] (c′)N shift upwards
If DΠ+ϕ,×m

∈C[c] (c′)k with k <d then Q4 (∂d−1 Π+ϕ,×m/∂f d−1−k ∂ (f ′)k)×m−1,−ϕ
Otherwise Q4 (∂d−1 Π+ϕ,×m/∂ (f ′)d−1)×m−1,−ϕ

Step H3 [Partial unravelling]
If multiplicity(Q+ϕ, τ )= 1 then

ψ4 quasi_linear(Q+ϕ+τ , τ)
ϕ4 ϕ+ τ + ψ

v4 d(τ )
Go to step M2

Step H4 [Dispatch on serial ]
If serial = head then go to step T1
If serial = tail then go to step T2

Step T1 [Prepare other steps unravelling loop]
Let k be such that bkD m/d(τ )
Uniformly regularize P+ϕ,×d(τ)

Compute the dominant part Π of P+ϕ,×d(τ ) w.r.t. bk and set Π4 Π/d(τ),−ϕ
ζ4 z

serial4 tail

Step T2 [Prepare next step unravelling loop]
If there is no purely exponential monomial m in ζ with d(τ )∈ ζ {0,� r}m, then set ζ4 z

Let m be a purely exponential monomial in ζ, such that d(τ)∈ ζ {0,� ,r}m

mode4 adjust

Step T3 [Adjust partial unravelling]

If τ ∈ ζ {1,� r}m then
ϕ4 ϕ+ τ

v4 d(τ )
Go to step M2

If τ ≻m then m4 d(τ )
mode4 unravel
Go to step H3

The algorithm solve gradually constructs a solution ϕmodulo w to (6) via a succession
of refinements. Each time we get back to the main entry M2 of the loop, we actually
have to solve the equation P+ϕ(f)=0 (f ≺v). Given a potential dominant term τ for this
equation, the next refinement (and value of ϕ) depends on the mode variable.
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The core of the algorithm consists of steps M1-M5 in which case mode =normal . As
long as we do not hit a potential dominant term τ of maximal multiplicity d, the algorithm
only executes steps M1-M5. Given a potential dominant term τ of multiplicity < d, we
can simply take ϕ=τ+ ϕ̃ (ϕ̃≺τ) for our refinement, which corresponds to the assignments
ϕ4 ϕ+ τ and v4 d(τ ) in step M4.

The steps H1-H4 correspond to the first partial unravelling when we hit a potential
dominant term τ of maximal multiplicity d. As long as we do not enter T1-T3, we will
have Π = P , mode = unravel and serial = head . We start by computing the differential
polynomial Q from section 7.2 (modulo an additive conjugation by ϕ). We then keep
refining ϕ4 τ + ψ+ ϕ̃ (ϕ̃≺ τ ) as far as possible in step H3, where ψ is the distinguished
solution to the quasi-linear equation Qϕ+τ(ψ) (ψ≺ τ).

If the steps H1-H4 do not lead to a complete unravelling, we apply the theory from
sections 7.3 and 7.4 in steps T1-T3. We start by computing once and for all the differential
polynomial Π in T1, with this change that we apply a multiplicative and additive conju-
gation to it in order to make it “compatible” with P . The transseries ζ, which is initialized
with z, may become an iterated exponential expl z as a result of upward shiftings. As long
as the current potential dominant term τ has not yet the required form in order to start
a partial unravelling, we have mode = adjust , and we keep on adjusting in step T3.

The termination of solve is guaranteed by propositions 23 and 31, modulo the hypoth-
esis that the resolution process requires only a finite number U of upward shiftings. An
upper bound for U will be given in the next section.

9 Main theorems and final remarks

9.1 Complex transseries solutions to algebraic differential equa-
tions

The following main theorem describes the general form of solutions to asymptotic algebraic
differential equations (6) with parameterized complex transseries coefficients.

Theorem 33. Consider an asymptotic algebraic differential equation (6) with transseries
coefficients. Then, modulo case separations, there exist a finite number of parameterized
transseries solutions f1,� , fs to (6), with the following properties:

a) The logarithmic depths of f1, � , fs do not exceed the logarithmic depths of the
coefficients of P by more than a fixed constant Ud,r,w6d (4w)r, which only depends
on the Newton degree d, the order r and the weight w= ‖P ‖ of (6).

b) For each specialization of the parameters occurring in the coefficients of P, for each
specialization of the directions, and for each solution f to (6) after these special-
izations, there exists exactly one fi and exactly one specialization of the remaining
parameters on which depends fi, for which fi specializes to f.

Proof. In view of the algorithm from the previous section, we only have to prove (a). We
prove the bounds for Ud,r,w by a double induction over r and d. For r= 0, we necessarily
have w=0, and clearly Ud,0,0=0. So assume that r>0. If d=0, then (6) has no solutions,
so that U0,r,w= 0. Assume therefore that d> 0.

We first observe that the number of upward shiftings needed to compute a potential
dominant term is bounded by

Td,r,w6max {w,Uw,r−1,w}
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by propositions 21(b), 22 and the induction hypothesis. We have to estimate the maximal
number of upward shiftings which may occur in the main loop of solve, before we reach
a lower Newton degree. Now the first partial unravelling requires at most Td,r,w + r

upward shiftings, in view of remark 27. By the induction hypothesis and proposition 30, the
second loop of adjusted partial unravellings requires at most Td,r,w+Uw,r−1,w+1 upward
shiftings. Finally, the decisive refinement, which decreases the Newton degree, again needs
at most Td,r,w upward shiftings. Altogether, we obtain

Ud,r,w6Ud−1,r,w+3Td,r,w+Uw,r−1,w+ r+ 1.

Consequently,

Ud,r,w6 d (3Td,r,w+Uw,r−1,w+ r+ 1)

In particular, for r=1, we obtain

Ud,1,w6Ud,1,d6 d (3 d+ 2).

For r > 1, we obtain

Ud,r,w6 d (4Uw,r−1,w+ r+1).

By induction, we finally notice that

Uw,r,w6 (4w)r (w+ 1),

which implies our bound. �

Remark 34. Of course, it is possible to improve the bound for Ud,r,w for particular values
of d,r and w. First of all, in the case when r=1, it is easily checked that 1 upward shifting
is sufficient in proposition 21(b), so that

Td,1,w6 1.

This observation implies the sharper bounds

Ud,1,w 6 5 d;

Ud,r,w 6 8 d (4w)r−1

for Ud,r,w. A careful analysis of the differential Newton polygon method will probably lead
to even sharper bounds for small values of r. Similarly, it is possible to improve the bounds
for small values of d, by using the fact that the weight of Pi is bounded by ir for i6 d.

Although the above theorem describes the general form of solutions to (6), it does not
claim the actual existence of such solutions. We say that ϕ is a solution of multiplicity ν
of (6), if the differential valuation of P+ϕ equals ν. The following theorem stipulates the
existence of solutions to (6) of a very special form.

Theorem 35. Consider an asymptotic algebraic differential equation (6) of Newton degree
d and whose coefficients can be expanded w.r.t. a transbasis (b1, � , bn). Then there exist
at least d solutions to (6) when counting with multiplicities. Moreover, these solutions can
be expanded w.r.t. (logl b1,� , log b1, b1,� , bn) for some l.

Proof. Without loss of generality, we may assume that b1 = ez. Let us prove the theorem
by induction over d. For d=0 we have nothing to prove. For d=1, the equation is quasi-
linear and the distinguished solution can be expanded w.r.t. (logrz,� , z,b1,� ,bn). Assume
therefore that d> 1.
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If there exists only one algebraic potential dominant term with multiplicity d, then
consider the unravelling f = ϕ+ f̃ (f̃ ≺ ṽ) we obtain by executing solve, but where we
always choose the unique algebraic potential dominant term in pdt. Since this branch only
involves the computation of equalizers and solutions of quasi-linear equations, ϕ can be
expanded w.r.t. a transbasis of the form (logl z, � , z, b1, � , bn). Modulo replacing P by
P+ϕ, we may thus assume without loss of generality that (6) admits no algebraic potential
dominant terms of multiplicity d.

If there exists a mixed potential dominant monomial m, then cm is a potential dominant
term of multiplicity <d for each c� 0, and the coefficients of P+cm can be expanded w.r.t.
(log‖P ‖ z, � , z , b1, � , bn). By the induction hypothesis each equation P+cm(f̃ ) (f̃ ≺ m)

admits at least one solution which can be expanded w.r.t. (loglz,� , z,b1,� ,bn) for some l.
Hence, there exists an infinity of solutions with the required properties. In what follows,
we therefore assume that all potential dominant monomials are algebraic, but not mixed.

Now let val P 6 i0 < � < is 6 d and m1 ≺ � ≺ ms be such that mj is the (ij−1, ij)-
equalizer for each j ∈ {1,� , s}. For each j ∈{1,� , s} the Newton polynomial NP×mj

is a

polynomial with valuation ij−1 and degree ij, which has ij − ij−1 roots (when counting
with multiplicities). These root induce at least d − i0 potential dominant terms, which
can be expanded w.r.t. (log‖P ‖ z, � , z, b1, � , bn), and whose multiplicities are < d. By
proposition 23 and the induction hypothesis, this leads to at least d − i0 solutions of the
required form, when counting with multiplicities. The theorem now follows from the fact
that 0 is a solution of multiplicity i0. �

9.2 Linear differential equations

We recall that a differential field F is said to be differentially algebraically closed , if for any
pair (P , Q) of differential polynomials over F , such that the order of P is strictly larger
than the order of Q, there exists a root of P in F , which is not a root of Q.

Let T be a field of complex transseries as in section 2. Unfortunately, theorem 35 is
not sufficient for T to be differentially algebraically closed. Indeed, the only transseries
solutions for the elliptic equation

f3 + (f ′)2 + f = 0

are f = 0, f = i and f = − i. Consequently, there are no transseries solutions to this
equation, which are not solutions of the equation of lower order

f3 + f =0.

Nevertheless, theorem 35 is sufficient for the following application.

Theorem 36. Let L be a linear differential operator of order r with coefficients in T. Then

a) L can be completely factored over T.

b) There exist r linearly independent solutions to Lh= 0 in T.

Proof. By theorem 35 the Ricatti equation associated to L has at least one solution ϕ∈T.
Consequently, we may factor

L= L̃ (∂ − ϕ),

for some linear differential operator L̃ of lower order r− 1 and coefficients in T. Part (a)
now follows by induction over r.

Now consider a factorization

L=(∂ − ϕr)� (∂ − ϕ1), (47)
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with ϕ1,� , ϕr∈T and let

h1 = e
∫

ϕ1;

h2 = (∂ − ϕ1)
−1 e

∫

ϕ2;

hr = [(∂ − ϕr−1)� (∂ − ϕ1)]

−1 e
∫

ϕr,

where
∫

stands for distinguished integration. Then Lh1 = � = Lhr = 0. Moreover, by
the distinguished properties of the left inverses (∂ − ϕ1)

−1,� , [(∂ − ϕr−1)� (∂ − ϕ1)]
−1,

we have

hi,d(hj) = 0

for all i> j. This guarantees the linear independence of h1,� ,hr. Indeed assume that there
exists a relation

λihi+� +λrhr= 0

with λi � 0. Then 0 = (λi hi + λi+1 hi+1 + � + λr hr)d(hi) = (λi hi)d(hi) = λi � 0. This
contradiction completes the proof of (b). �

Remark 37. When choosing the factorization 47 in such a way that h1≺� ≺hr, we even
obtain the canonical basis of solutions of Lh=0 in the proof of theorem 36.

Remark 38. In the case of real transseries, it can be shown that each linear differential
operator may be factored as the product of a transseries and operators of the form

∂

∂z
+ a

or
∂2

∂z2
+

(

2a−
b′

b

)

∂

∂z
+

(

a2 + b2 + a′−
a b′

b

)

=

(

∂

∂z
+ a− b i+

b′

b

)(

∂

∂z
+ a+ b i

)

.

9.3 Bounding the number of integration constants

Although the algorithm solve provides us with the generic solution to (6), it is not clear
a priori that the number of new parameters on which the solution depends does not
exceed r. In this section we sketch a proof of the fact that the number of such integration
constants is indeed bounded by r.

We first notice that the only place where we introduce (continuous) integration con-
stants is in step 3 of pdt. Each integration constant c can therefore be “attached” to a

solution of a Ricatti equation of the form c e
∫

ϕ. Given an arbitrary moment during the
algorithm solve, we actually search solutions of the form

f =λ1 e
∫

ϕ1+λ2e
� ∫ ϕl+ f̃

,

where λ1,� , λs are the “active integration constants”. The idea is now to set

F1 =λ1 e
∫

ϕ1+λ2e
� ∫ ϕl+ f̃

, F2 =λ2 e
∫

ϕ2+λ3e
� ∫ ϕl+f̃

,� , Fl=λl e
∫

ϕl+ f̃

and to consider P as a differential polynomial of order r − l in f̃ , with coefficients in
C[[b1;� ; bn, F1,� , Fl]]. In other words, we consider F1,� , Fl as new monomials and we
give b1

C� bn
CF1

C� FlC the natural “pointwise” quasi-ordering 4 (see chapter 6 of [vdH97]).
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The only obstruction for the computation with coefficients in C[[b1;� ; bn, F1,� , Fl]]
instead of coefficients in C[[b1;� ;bn]] is when the uniform regularization of a transseries in
C[[b1;� ;bn,F1,� ,Fl]] is not possible. Now this obstruction corresponds to the imposition
of an algebraic constraint on an active integration constant λi, when performing the same
computation in C[[b1;� ;bn]]. In order to solve this problem, an “error handler” is installed
each time that we introduce a new continuous integration constant λi. Whenever we impose
an algebraic constraint on λi, we go back to the error handler and reperform the same
computations while assuming that λi either did or did not (non determinism) satisfy the
algebraic constraint right from the start.

In all branches of the new resolution process, the order of the asymptotic differential
equation, when rewritten as an equation in f̃ , does not exceed r − l. Consequently, l6 r

at the end of each branch of the process.

9.4 Comparison with previous work and errata

The reader may have noticed a certain number of changes with respect to the treatment
of algebraic different equations in [vdH97]. Although the results of this paper were stated
in the context of grid-based transseries, they may easily be adapted to the well-ordered
context from [vdH97], except for the results about parameterized transseries, which become
more complicated. The algorithm solve may still be applied in the well-ordered context,
except that the introduction of new parameters should then be interpreted as a new source
of (continuous) case separations.

During a careful reexamination of our previous work, we noticed that proposition 5.7(c)
in [vdH97] does not hold for all j. Consequently, our previous treatment of almost double
solutions in section 5.5.1 does not work. The present, more complicated, treatment using
unravellings corrects this error. When calling a refinement occurring in our construction of
a total unravelling a privileged refinement , the proof of theorem 5.2 in [vdH00a] remains
correct (except for the bound for the maximal length l of a chain of privileged refinements,
which may have to be replaced by a larger bound).

Some other changes with respect our previous work are the following:

• In view of theorem 3.3 in [vdH00a] it is no longer necessary to develop the theory
from section 5 in the purely exponential setting first (as we did in [vdH97]).

• We simplified and improved the construction of distinguished solutions to linear
and quasi-linear equations, through a new application of the generalized implicit
function theorem from [vdH00b].

• In comparison with the effective asymptotic resolution of algebraic differential
equations in chapter 12 from [vdH97], we noticed that we actually never need to
impose exponential constraints on the parameters. After correcting the error related
to privileged refinements, we therefore no longer need to assume the existence of an
oracle to determine the consistency of first order systems of exp-log constraints in
theorem 12.4.

• In the corrected version, we also consider the case when NPd,×m
=α (c− β)d−k (c′)k

with 0<k<d. We forgot that case in the original version.

9.5 Conclusion and perspectives

In this paper, we have generalized the transseries technique for solving algebraic differential
equation as far as reasonably possible. Three main problems remain to be solved.
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Analytic counterpart. First of all, one has to show that the complex transseries solu-
tions to algebraic equations have a genuine analytic meaning. This problem, which will be
treated in a forthcoming paper, can actually be subdivided in two parts:

• We have to show that a consistent system of asymptotic constraints on the directions
corresponds to a non empty asymptotic region of the complex plane. In general,
this region does not need to be connected.

• We have to give an analytic meaning to our transseries solutions on regions as above.
This analytic meaning should be compatible with the asymptotic relations, which
have in particular to be formalized on disconnected regions.

Differentially algebraic closure. We have already remarked that our fields of complex
transseries are not differentially algebraically closed. In other words, we still miss most
of the solutions to algebraic differential equations in our formalism. In order to get a full
understanding of the asymptotic behaviour of solutions to algebraic differential equations,
two approaches may be followed:

• In order to solve an equation like

f3 +(f ′)2 + f =0

one may start with studying the solutions f in the neighbourhoods of singularities
other than ∞. This can be done by performing a change of variable z = c + z̃−1,
which transforms the equation into an equation which does admit a solution space
of dimension 1.

More generally, for a general asymptotic algebraic differential equation (6), the
above trick leads to transseries solutions in C[[[z1]]]� [[[zk]]], where z = z1 is the
original variable, and

z1 = ϕ1 + τ1 z2
−1;


zk−1 = ϕk−1 + τk−1 zk
−1.

It is not yet clear to us how to alternate usual refinements with substitutions of the
form z= c+ z̃−1.

• Assuming for simplicity that P has constant coefficients, one may also start with
studying the singularities of the dynamical system associated to the algebraic dif-
ferential equation. For instance, one may use the theory from chapter 10 in [vdH97]
to desingularize P as a polynomial in f , f ′, � , f (r). This leads to a better under-
standing of the behaviour of the dynamical system for different subregions of “the
(f , f ′,� , f (r))-space”. We next apply the asymptotic tools from this paper to obtain
full solutions on these regions. Finally, one has to study how the solutions globally
glue together.

In any case, a purely local treatment seems not to be possible in order to describe all
solutions to an algebraic differential equation. A good combination of a more global theory
with our local results might lead to the resolution of interesting questions, such as

Is it possible for an analytic solution to an algebraic differential equation with
coefficients in C to admit a natural boundary somewhere on its Riemann
surface?

For Liouvillian functions and, in view of the theorem 36, for functions which are obtained
via the repeated resolution of linear differential equations, the answer seems to be negative.
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Unravellings. In relation to a joint project with Aschenbrenner and Van den Dries, which
aims to describe the model theory of “real differential fields” and “valuated differential
fields”, it seems important to better understand our technique of unravellings in cases where
the transseries in T do not necessarily admit finite logarithmic depths. A typical example
of an equation which is “hard to unravel” is

f 2 +2 f ′+
1
x2 +

1
x2 log2x

+
1

x2 log2x log2 log x
+� =0.

A good question is whether there are essentially different examples of equations which are
hard to unravel. Another question is whether we may avoid the adjusted partial unravel-
lings from section 7.3.
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