
Generic asymptotic expansions

by Joris van der Hoeven

LIX

�

Ecole Polytechnique

F-91128, Palaiseau cedex

France

Email: vdhoeven@lix.polytechnique.fr

Web : http://lix.polytechnique.fr/~vdhoeven

November 20, 1997

Abstract

We give an expansion algorithm for germs of exp-log functions at in�nity

which is correct modulo Schanuel's conjecture. We also show how the algorithm

can be made generic. More precisely, we reduce the expansion algorithm for

exp-log functions depending on parameters to the problem of deciding whether

a given system of exp-log equations and inequalities in several variables admits

a solution.

Key words: Asymptotic expansion, exp-log function, algorithm, genericity.

1 Introduction

An exp-log function is a function built up from x and the rational numbers Q by the

�eld operations, exponentiation and logarithm. In this paper, we shall only consider

exp-log functions which are de�ned in a neigbourhood of in�nity. Hardy has shown

that, ultimately, such functions are either negative, zero or positive [11, 12]. In other

words, the germs of exp-log functions at in�nity form a totally ordered �eld. But

how to decide whether a given exp-log function is asymptotically superior to another

one in a neighbourhood of in�nity? More generally, is it possible to compute an

asymptotic expansion of a given exp-log function in a natural asymptotic scale? The

main problem one encounters here is the problem of inde�nite cancelation: consider

a function like

(1) f(x) =

1

1 � x

�1

�

1

1 � x

�1

� e

�x

:

The naive algorithm to compute the expansion of f enters in an in�nite loop, due to

the cancelations 1� 1 = 0; x

�1

� x

�1

= 0, etc.

The �rst attempt to solve these problems was made by Geddes and Gonnet

[8]. Shackell is the �rst to give an algorithm in [29] for computing the sign of an

exp-log function at in�nity, under the assumption that an oracle is given to decide

1

Generic asymptotic expansions 2

whether an exp-log function vanishes in a neighbourhood of in�nity. His technique

is based on so called nested expansions, by which one can �nd the order of growth of

exp-log functions at in�nity, but which do not allow to derive complete asymptotic

expansions. This drawback is removed in [30], where Shackell gives a complete

and natural asymptotic expansion algorithm. A weaker version of this algorithm,

which only computes limits of exp-log functions was discovered independently in

[10], and is currently incorporated in MAPLE V.3. The author generalized this limit

computation algorithm and obtained variants of Shackell's algorithm in [14, 13]. An

elegant synthesis of these algorithms appeared in [25].

However, several related problems were overlooked up till now. First, can we

reduce the problem of deciding whether an exp-log function is zero at in�nity to the

corresponding problem for exp-log constants? Although several algorithms exist for

deciding whether a given exp-log function f is locally zero in the neighbourhood of a

point of analyticity [26, 6, 28, 20], no one considered the problem of deciding whether

the germ of f at in�nity is zero. Indeed, these problems are not equivalent: consider

the function

f =

p

x

2

� x:

In computer algebra, f is usually represented by y� x in the ring Q[x; y]=(y

2

� x

2

),

whence f 6= 0. Performing a local zero test for f in a point x < 0, we also �nd that

f 6= 0. However, f vanishes in a neighbourhood of in�nity.

The second problem concerns the improvement of the dramatic complexity of the

algorithm from [25]. Although this algorithm detects inde�nite cancelations in (1),

it does not detect the �rst N cancelations in the asymptotic expansion of

(2)

1

1� x

�1

�

1

1� x

�1

� x

�N

:

Hence, taking N = exp � � � exp 1 very large, we observe that the complexity of the al-

gorithm is worse than any iterated exponential, even on simple examples. Moreover,

the algorithm can not be generalized to the case of parameterized exp-log functions

(see also below), because it would not terminate on an example like (2), if N is a

formal parameter.

In this article, we propose a new algorithm in order to deal with these problems

and a generalization to the case of parameterized exp-log functions. In section 2, we

�rst recall the basic expansion algorithm from [25], using the terminology from our

thesis [16].

In section 3, we introduce the important concept of Cartesian representations in

automatic asymptotics: we show that, given the germ at in�nity of an exp-log function

f , their exist in�nitesimal elements z

1

; � � � ; z

k

of a suitable asymptotic scale, such that

f can be represented by a Laurent series in z

1

; � � � ; z

k

(its Cartesian representation).

This reduces the problem of computing with generalized power series (see (3) and (4)

in section 2.1) to the analogue, more classical, problem for Laurent or power series

in several variables. This point of view is bene�cial for many reasons:

Generic asymptotic expansions 3

� We can e�ciently detect cancelations of large numbers of terms like in (2), and

obtain an improvement of the algorithm from section 2.

� We can reduce the problem of asymptotic zero tests for exp-log functions to

the problem of zero tests for certain Laurent series in several variables (see

section 4).

� Using a heuristic zero test for these Laurent series, we obtain a fast and reliable

heuristic asymptotic zero test for exp-log functions.

� Several e�cient algorithms can be used for the manipulation of Laurent series

in several variables [18, 1, 2, 17].

� Cartesian representations are essentially needed for a further development of

automatic asymptotics: see section 5 and [16].

Although we did not perform a detailed complexity analysis of our expansion al-

gorithm which uses Cartesian representations, we have implemented a prototype

of it in C++. This program takes a few seconds to compute several terms of the

asymptotic expansion of a typical exp-log function, and, we presently do not have

examples (like (2) for the previous algorithm) on which our implementation fails.

In section 4, we show how to decide whether an exp-log function is asymptotic-

ally zero, modulo an oracle for determining the signs of exp-log constants. In [24],

Richardson has given a partial algorithm to decide whether an exp-log constant is

zero: whenever the algorithm produces an answer, then this answer is correct, but

termination is only guaranteed modulo Schanuel's conjecture. Moreover, if we can

prove that the algorithm does not terminate on a given input, then we can construct

a counterexample to Schanuel's conjecture from this input. In principle, Richard-

son's algorithm also yields a method to compute the sign of an exp-log constant: it

su�ces to perform a oating point evaluation at a su�cient precision. In practice,

this method is intractable and a more e�cient algorithm for sign computations was

proposed in [15]. For completeness, we state Schanuel's conjecture:

Conjecture 1. (Schanuel) If �

1

; � � � ; �

n

are Q-linearly independent complex

numbers, then the transcendence degree of Q[�

1

; � � � ; �

n

; e

�

1

; � � � ; e

�

n

] over Q is at

least n.

In section 5, we show how to generalize our expansion algorithm to the case of

germs of exp-log functions depending on parameters �

1

; � � � ; �

k

, using the technique

of dynamic evaluation [5, 9]. This means that we consider exp-log functions built up

from �

1

; � � � ; �

k

, x and Q, by �eld operations, exponentiation and logarithm, where

x tend to in�nity. Letting x tend to in�nity, one can see �

1

; � � � ; �

k

as parameters.

Our algorithm uses an oracle to test whether a given system of exp-log equations and

inequalities admits a solution. We show that, given an exp-log function depending

Generic asymptotic expansions 4

on parameters, a �nite number of cases can be distinguished, each for which we have

a general solution to the expansion problem.

2 The basic algorithm

Let T denote the �eld of germs at in�nity of exp-log functions and C the sub�eld

of exp-log constants. Elements of T can be represented by exp-log expressions |

i.e. �nite trees whose internal nodes are labeled by +;�; �; =; exp or log, and whose

leafs are labeled by x or rational numbers. The set of exp-log expressions which can

be evaluated in a neighbourhood of in�nity is denoted by T

expr

. We have a natural

projection f 7! f from T

expr

onto T. In sections 2 and 3, we make the assumption

that we have an oracle which decides whether a given exp-log expression in T

expr

is

zero in a neighbourhood of in�nity.

In this section we recall the classical asymptotic expansion algorithm for exp-

log functions at in�nity from [25] (see also [30, 13]). We use the terminology from

[VdH 97a], which is better suited for generalizations of the algorithm to the mul-

tivariate case [16]. For a detailed example of the algorithm at work, we refer to

[25].

2.1 Grid-based series

Let us �rst recall some basic concepts. An e�ective asymptotic basis is an ordered

�nite set fb

1

; � � � ; b

n

g of positive in�nitesimal exp-log expressions in T

expr

, such that

log b

i

= o(log b

i+1

) for 1 6 i 6 n�1. For instance, the set B = flog

�1

x; x

�1

; e

�x

2

g is

an e�ective asymptotic basis. An e�ective asymptotic basis B generates an e�ective

asymptotic scale, namely the set S

B

of all products b

�

1

1

� � � b

�

n

n

of powers of the b

i

,

with the �

i

in C. Elements of S

B

are also called monomials.

Given an e�ective asymptotic basis B, let G

expr

B

denote the set of expressions

which are built up from C; S

B

;+;�; �; = and the operations " 7! exp " resp. " 7!

log(1+ ") for in�nitesimal ". We observe that each exp-log expression f 2 G

expr

B

has

a series expansion of the form

(3) f =

X

(�

1

;��� ;�

n

)2C

n

f

�

1

;��� ;�

n

b

�

1

1

� � � b

�

n

n

:

Alternatively, we can expand f as a series in b

n

with coe�cients in G

expr

fb

1

;��� ;b

n�1

g

.

These coe�cients can recursively be expanded in b

n�1

; � � � ; b

1

:

(4)

f =

P

�

n

2C

f

�

n

b

�

n

n

.

.

.

f

�

n

;��� ;�

2

=

P

�

1

2C

f

�

n

;��� ;�

1

b

�

1

1

:

The exp-log expressions of the form f

�

n

;��� ;�

i

are called iterated coe�cients of f . In

particular, the iterated coe�cients of the form f

�

n

;��� ;�

1

are exp-log constants.

Generic asymptotic expansions 5

The above expansions of f have an important property [16]: the support of f as

a series in b

n

(resp. b

1

; � � � ; b

n

) is included in a set of the form �

1

N+ � � �+ �

p

N + �

| we say that f is a grid-based series. Here the �

i

and � are constants in C (resp.

vectors in C

n

). From this property, it follows that the support of f is well-ordered (in

the case of vector supports, C

n

is ordered lexicographically; see also the ordering 6

B

on S

B

in section 3.3). In particular, if f is non-zero, then the expansion of f admits

a �rst term, which we call the dominant term of f . The corresponding monomial in

S

B

and its coe�cient are called the dominant monomial and dominant coe�cient of

f respectively.

Another important property of the expansion of f in b

n

and the expansions of its

iterated coe�cients is that they can be computed automatically. By this we mean

that for each integer i, we can compute the �rst i terms of the expansion of f and so

can we for its iterated coe�cients. In particular, we can compute the sign of f , test

whether f is in�nitesimal, test whether f � 1 (i.e. f = O(1) and 1 = O(f)), etc.

For the computation of the expansions of f in b

n

, we use the usual Taylor series

formulas. In the case of division 1=f , we compute the �rst term f

�

b

�

n

of f and

then use the formula 1=f = (1=f

�

)b

��

n

(1=(1 + ")), where " = (f=f

�

b

�

n

)� 1. The only

problem when applying these formulas is that we have to avoid inde�nite cancelation.

Now we note that inde�nite cancelation only occurs if after having computed the �rst

i terms of the expansion, f is actually equal to the sum of these terms. But this can

be tested using the oracle, and we stop the expansion in this case.

2.2 Automatic expansions of exp-log expressions

The asymptotic expansion algorithm takes an exp-log expression f 2 T

expr

on input,

computes a suitable e�ective asymptotic basis B and rewrites f into an element of

G

expr

B

. The main idea of the algorithm lies in the idea to impose some suitable

conditions on B: we say that a linearly ordered set B = fb

1

; � � � ; b

n

g is an e�ective

normal basis if

NB1. B is an e�ective asymptotic basis.

NB2. b

1

= log

�1

l

x for some l 2 N, where log

l

x

def

= log

l times

� � � log x.

NB3. For all i > 1 there exists an i

�

< i with log b

i

2 G

expr

fb

1

;��� ;b

i

�g

and

log log b

�1

i

� log b

i

�

.

Such a basis is constructed gradually during the algorithm | i.e. B is a global

variable in which we insert new elements during the execution of the algorithm,

while maintaining the property that B is an e�ective normal basis. We also say that

B is a dynamic e�ective normal basis. We initializeB with B := fx

�1

g. Let us now

explicitly give the algorithm, using a PASCAL-like notation:

Generic asymptotic expansions 6

Algorithm expand(f).

Input: An exp-log expression f 2 T

expr

.

Output:A grid-based series ' in G

expr

B

with ' = f .

case f 2 Q: return f

case f = x: return (x

�1

)

�1

case f = g>h; >2f+;�; �; =g:

if > = = and h = 0 then error \division by zero"

return expand(g)>expand(h)

case f = log g:

g := expand(g)

� Denote B = fb

1

= log

�1

l

x; b

2

; � � � ; b

n

g.

if g 6 0 then error \invalid logarithm"

� Rewrite g = cb

�

1

1

� � � b

�

n

n

(1 + "), with in�nitesimal " in G

expr

B

.

if �

1

6= 0 then B := B [flog

�1

l+1

xg

return log c+ �

1

log b

1

+ � � �+ �

n

log b

n

+ log(1 + ")

case f = e

g

:

g := expand(g)

� Denote B = fb

1

; � � � ; b

n

g.

if g = O(1) then return e

c

e

g�c

, where c := g

0;

n times

��� ;0

if 91<i6n g � log b

i

then

� := lim(g= log b

i

)

return b

�

i

expand(e

g�� log b

i

)

� Let i

�

be such that log jgj � log b

i

�

.

g

+

:= g

0;

n�i

�

times

��� ;0

g

�

:= g � g

+

B := B [fe

�jg

+

j

g

return (e

�jg

+

j

)

�sign g

+

e

g

�

Let us comment the algorithm. The �rst three cases do not need explanation.

In the case f = log g, the fact that B is an e�ective normal basis is used at the

end: �

1

log b

1

+ � � � + �

n

log b

n

is indeed an expression in G

expr

B

. The expansion of

the exponential of a bounded series g is done by a straightforward Taylor series

expansion. If g is unbounded, then we test whether g is asymptotic to the logarithm

of an element in B | i.e. we test whether � := lim(g= log b

i

) is a non-zero �nite

number for some i. If this is so, then f = b

�

i

e

g�� log b

i

and e

g�� log b

i

is expanded

recursively. We remark that no in�nite loops can arise from this, because successive

values of g in such a loop would be asymptotic to the logarithms of smaller and

smaller elements of B, while B remains unchanged. Finally, if g is not asymptotic to

the logarithm of an element in B, then B has to be extended with an element having

Generic asymptotic expansions 7

the order of growth of f . The decomposition g = g

+

+ g

�

is computed in order to

ensure that B remains an e�ective normal basis.

3 Cartesian representations

In practice it is not always e�cient to perform the expansions of elements in G

B

by

applying the classical formulas for Taylor series expansions in a direct way. Consider

for example the expression

f(x) =

1

1 � x

�1

�

1

1 � x

�1

+ x

�N

;

or, alternatively,

f(x) =

1

1� x

�1

�

1

1� x

�1

� x

�N

;

where N is very large (say N = 10

10

100

) and x tends to in�nity. Determining the �rst

term of this series using a straightforward expansion would need a time proportional

to N . The point here is that, in order to detect the cancelation 1=(1�x

�1

)� 1=(1�

x

�1

) = 0, we need to represent f as a Laurent series in two variables, namely x

�1

and x

�N

. This is possible by the fact that f is a grid-based series in x

�1

. In this

section we show that any exp-log expression f can be represented in such a way and

how to exploit this in order to improve the algorithm expand from section 2.

3.1 Cartesian representations

A Laurent series u in several variables z

1

; � � � ; z

k

is a series in z

1

; � � � ; z

k

whose

support is included in (N + p

1

)� � � � � (N + p

k

) for certain p

1

; � � � ; p

k

2 Z. We say

that u is in�nitesimal if its support is included in N

k

n(0; � � � ; 0). The �-th coe�cient

of u in z

i

is denoted by [z

�

i

]u. We abbreviate [z

�

1

i

1

] � � � [z

�

j

i

j

]u by [z

�

1

i

1

� � � z

�

j

i

j

]u. We

notice that z

1

; � � � ; z

k

should be interpreted as variables which tend to zero.

1

Let B be an e�ective asymptotic basis and let Z = fz

1

; � � � ; z

k

g be a �nite set of

in�nitesimal monomials in S

B

. We denote by L

expr

L

the set of expressions built up

from C; z

1

; z

�1

1

; � � � ; z

k

and z

�1

k

by +;�; � and the operations " 7! e

"

; " 7! log(1 + ")

and " 7! 1=(1 + ") for in�nitesimal ". Given such a Laurent series u 2 L

expr

Z

, its

expansion

u =

1

X

�=p

i

([z

�

i

]u) z

�

i

in any of the z

i

can be computed automatically. Moreover, the coe�cients [z

�

i

]u

of such an expansion are also expressions in L

expr

Z

, so that they can recursively be

1

The fact that x tends to in�nity and z

1

; � � � ; z

k

to zero might confuse the reader. This apparently

illogical choice stems from the potentially di�erent asymptotic behaviours of an exp-log function

f(x), if x tends to zero from below or from above.

Generic asymptotic expansions 8

expanded | we say that u is an automatic Laurent series. In what follows, we will

only consider automatic Laurent series which are in L

expr

Z

for some Z.

Remark. We notice that many e�cient expansion algorithms for formal Laurent

series in L

expr

Z

can be used, such as Karatsuba's or FFT multiplication [18] and Brent

and Kung's or the author's algorithms for exponentiation and logarithm [1, 2, 17].

We also remark that we systematically store all coe�cients of all expansions we

compute, in order to perform these computations only once (i.e. we use a MAPLE-

like remember option).

We denote by u the germ at in�nity of the exp-log function represented by a

Laurent series u in L

expr

Z

. We call u a Cartesian representation of u. Let an expres-

sion f 2 G

expr

B

be given. The aim of the rest of this section is to compute a Cartesian

representation u 2 L

expr

Z

of f for some suitable subset Z of S

B

. Furthermore, we will

show how to compute the expansion of f from the knowledge of u only. Clearly, this

will enable us to replace all computations with elements in G

expr

B

by computations

with Cartesian representations in expand.

Warning. One should carefully distinguish Cartesian representations from the

germs at in�nity they represent. For instance, if B = fx

�1

; e

�x

g, z

1

= x

�1

and

z

2

= e

�x

, then z

�1

1

z

2

is in�nitesimal, while z

�1

1

z

2

is not. In cases where confu-

sion might arise, we therefore distinguish u from u by means of the upper bar.

Moreover, we will use the pre�x \C-" to emphasize that we are referring to properties

of Cartesian representations. For instance, in�nitesimal Cartesian representations

will be called C-in�nitesimal.

3.2 Restrictions of Cartesian representations

Let Z = fz

1

; � � � ; z

k

g and let S

Z

= fz

�

1

1

� � � z

�

k

k

j�

1

; � � � ; �

k

2 Zg be the set of

monomials in z

1

; � � � ; z

k

. We have a natural partial ordering on S

Z

:

z

�

1

1

� � � z

�

k

k

6

Z

z

�

1

1

� � � z

�

k

k

, �

1

6 �

1

^ � � � ^ �

k

6 �

k

:

Let u be a Laurent series in z

1

; � � � ; z

k

and let � be a subset of S

Z

. We denote by

[uj�] =

X

z

�

1

1

���z

�

k

k

2�

([z

�

1

1

� � � z

�

k

k

]u) z

�

1

1

� � � z

�

k

k

the restriction of u w.r.t. �. For singletons � = f'g we also write [uj'] = [ujf'g].

We �nally de�ne (�) = f 2 S

Z

j9'2� ' 6

Z

 g to be the �nal segment generated

by �. Here we recall that a �nal segment of S

Z

is a subset F � S

Z

such that

' 2 F ^ ' 6

Z

) 2 F for all '; 2 S

Z

.

Proposition 1. Let u be a Laurent series in L

expr

Z

. There exists an algorithm to

compute the restriction [uj(�)] of u w.r.t. any �nal segment (�) for �nite �.

Generic asymptotic expansions 9

z

1

z

2

Figure 1: Dominant monomials for u =

1

z

1

(1�z

1

�z

2

)

� z

�1

1

� 1 � z

1

� 3z

2

� z

�1

1

z

2

.

Proof. Let �

�

denote the subset of � of monomials whose exponents in z

k

are

inferior or equal to � and let � be the smallest integer with � = �

�

. Let 	

�

denote

the set of monomials in z

1

; � � � ; z

k�1

, such that z

�

k

is in �

�

, for some � 6 �. Now

expand u up to order � in z

k

, say u = u

p

k

z

p

k

k

+ � � �+ u

��1

z

��1

k

+ ~u. Then we have

[uj�] =

��1

X

i=p

k

[u

j

j(

�

)] z

�

k

+ [~uj(z

�

k

	

�

)]:

The right hand side of this equation is evaluated by expanding each of the terms in

z

k�1

; � � � ; z

1

using the same method. �

3.3 Intermediate dominant monomials

Let u 2 L

expr

Z

be a Cartesian representation. A set of intermediate dominant

monomials of u is a �nite subset G of S

Z

, such that u = [uj(G)], and such that

the dominant monomial of f is equal to ', for each minimal monomial ' in G for

6

Z

. Most of the time, but not always, G is unique and we say that G is the set of

intermediate dominant monomials.

In �gure 1, we have represented the dominant monomials of u = z

�1

1

(1 � z

1

�

z

2

)

�1

� z

�1

1

� 1� z

1

� 3z

2

� z

�1

1

z

2

. If z

1

6= z

2

and z

2

1

6= z

2

, then fz

�1

1

z

2

2

; z

2

; z

2

1

g is also

the set of intermediate dominant monomials of u. If z

1

= z

2

, then fz

�1

1

z

3

2

; z

2

2

; z

1

z

2

; z

2

1

g

is the set of intermediate dominant monomials of u, because of the cancelation

z

�1

1

z

2

2

� z

2

= 0. Similarly, if z

2

1

= z

2

, then fz

�1

1

z

2

2

; z

1

z

2

; z

3

1

g is the set of interme-

diate dominant monomials of u.

In order to compute intermediate dominant monomials, we �rst need to introduce

some more orderings. First, we have a total ordering 6

B

on S

B

, which is analogous

Generic asymptotic expansions 10

to 6

Z

on S

Z

:

b

�

1

1

� � � b

�

n

n

6

B

b

�

1

1

� � � b

�

n

n

, b

�

1

1

� � � b

�

n

n

= O(b

�

1

1

� � � b

�

n

n

):

Via the natural (not necessarily injective) mapping � : S

Z

! S

B

, the ordering 6

B

induces a quasi-ordering 4

B

on S

Z

: ' 4

B

 , �(') 6

B

�() for all '; 2 S

Z

. The

reader should not confuse this quasi-ordering with 6

Z

, nor with the usual asymptotic

ordering on germs of exp-log functions (which is actually opposite to 4

B

on S

Z

).

Now consider the following algorithm:

Algorithm idm(u).

Input: A Cartesian representation u 2 L

expr

Z

with u 6= 0.

Output:A set of intermediate dominant monomials for u.

� Let z

p

i

i

be the dominant monomial of u in z

i

, for 1 6 i 6 k.

G := fz

p

1

1

� � � z

p

k

k

g

while true

M := f' 2 Gj8 2G ' 4

B

 g

if

P

'2M

u

'

6= 0 then return G

� Denote GnM = f'

1

; � � � ; '

q

g, with '

1

4

B

� � � 4

B

'

q

.

if 906 i6q u� [uj('

i

; � � � ; '

q

)] = 0

then G := f'

i

; � � � ; '

q

g (with i chosen minimal)

else G := (GnM) [Mfz

1

; � � � ; z

k

g

� Eliminate non minimal elements from G.

Remark. We recall the existence of an oracle to decide whether a given exp-log

expression in T

expr

is zero in a neighbourhood of in�nity. Hence, the test 906 i6

q u� [uj('

i

; � � � ; '

q

)] = 0 is indeed e�ective, by proposition 1.

Proposition 2. The algorithm idm is correct and terminates.

Proof. Let G

1

; G

2

; � � � be the successive values of G at the beginning of the main

loop. By induction, we observe that u = [uj(G

j

)] for all j. This proves the correctness

of idm. Suppose that the algorithm does not terminate. Let F =

T

j>1

(G

j

). We have

u = u

F

. By Dickson's lemma, F is �nitely generated, say by �. There are only

a �nite number of monomials ' >

Z

z

p

1

1

� � � z

p

k

k

with ' <

Z

 for some 2 �. For

su�ciently large j, none of these monomials belongs to G

j

. We have � � G

j

, since

� � (G

j

). There do not exist ' 2 G

j

n� and 2 �, with <

B

': indeed, such

a ' would belong to G

j

0

for all j

0

> j, although ' =2 F = (�). We deduce that

� = f'

i

; � � � ; '

q

g at the j-th iteration of the main loop for some q. But this means

that G

j+1

= � and � 6� (G

j+2

). This contradiction proves the termination of idm. �

Remark. We observe that the dominant term �

f

of f is given by �

f

=

P

'2M

u

'

'

at the end of the algorithm. More terms of the expansion of f can be obtained by

rerunning the algorithm recursively on u� �

f

.

Generic asymptotic expansions 11

Example 1. Let us apply idm to u = (1 � z

1

� z

2

)

�1

� (1 � z

1

)

�1

� z

2

� 2z

1

z

2

,

with z

1

= x

�1

and z

2

= x

�2

. We start with G = f1g and �nd that [z

0

1

z

0

2

]u = 0.

Since u� 0 6= 0, we set G := fz

1

; z

2

g and iterate. We now obtain M = fz

1

g and

again [z

1

1

z

0

2

]u = 0. This time, the test u� [uj(z

2

)] = 0 is positive, whence z

1

is

eliminated from G and we iterate again. Since [z

0

1

z

1

2

]u = 0 and u� 0 6= 0, we next

set G := fz

1

z

2

; z

2

2

g and iterate. This yields M = fz

1

z

2

g and [z

1

1

z

1

2

]u = 0, so one

more iteration with G := fz

2

1

z

2

; z

2

2

g is needed in order to �nd the �nal intermediate

set of dominant monomials fz

2

1

z

2

; z

2

2

g.

3.4 On the computation of Cartesian representations

Lemma 1. There exists an algorithm, which given a Cartesian representation

u 2 L

expr

Z

of an in�nitesimal germ u at in�nity computes Z

0

= fz

0

1

; � � � ; z

0

k

0

g and a

C-in�nitesimal Cartesian representation u

0

2 L

expr

Z

0

for u.

Proof. We �rst compute a set of intermediate dominant monomials G =

f'

1

; � � � ; '

m

g for u. If all monomials in G are strictly superior to 1, then we can

take Z

0

= Z and u

0

= [uj(1)]. More generally, we can write u = v

1

+ � � �+ v

m

, with

v

i

= [uj('

1

; � � � ; '

i

)]� [uj('

1

; � � � ; '

i�1

)], for 1 6 i 6 m. Putting v

i

= '

i

h

i

, each h

i

belongs to L

expr

Z

and its support is included in N

k

. Now u

0

= '

1

h

1

+ � � �+ '

m

h

m

2

L

expr

Z

0

, with Z

0

= fz

1

; � � � ; z

k

; '

1

; � � � ; '

m

g satis�es the requirements of the lemma. �

Remark. Actually, we can take k

0

6 k, as will easily follow from lemma 3 below.

Example 2. Assume that u

0

is the Laurent series from �gure 1. We can take

'

1

= z

�1

1

z

2

2

; '

2

= z

2

and '

3

= z

2

1

. Then we get v

1

= z

�1

1

z

2

2

(1=(1 � z

2

)), v

2

=

z

2

((1 + z

1

)=(1� z

2

)) and v

3

= z

2

1

(1=(1� z

1

� z

2

)). We observe that u is in�nitesimal

if z

�1

1

z

2

2

is. In that case, an expression like e

u

can be expanded in z

1

; z

2

and z

�1

1

z

2

2

,

by using the identity e

u

= exp(v

1

+ v

2

+ v

3

).

Theorem 1. Let B be an e�ective normal basis. Then there exists an algorithm

which given an expression f in G

expr

B

computes a �nite set Z of in�nitesimals in S

B

,

and a Cartesian representation u 2 L

expr

Z

for f .

Proof. Constants are by de�nition Cartesian representations of themselves. If

f 2 S

B

nf1g, then either f 2 L

expr

ffg

or f 2 L

expr

f1=fg

. Now assume that u

0

and u

00

are Laurent series in L

expr

Z

0

and L

expr

Z

00

respectively, with Z

0

= fz

0

1

; � � � ; z

0

k

0

g and Z

00

=

fz

00

1

; � � � ; z

00

k

00

g. Then u

0

+u

00

, u

0

�u

00

and u

0

u

00

are Cartesian representations for u

0

+u

00

,

u

0

� u

00

resp. u

0

u

00

in L

expr

Z

0

[Z

00

. If u

0

is in�nitesimal, then we may assume without loss

of generality that u

0

is C-in�nitesimal by lemma 1. Hence, we have straightforward

Cartesian representations for 1=(1 + u

0

); log(1 + u

0

) and expu

0

in L

expr

Z

0

. �

Generic asymptotic expansions 12

3.5 Asymptotic expansions via Cartesian representations

Having computed a Cartesian representation u for f by theorem 1, we would like to

take advantage of u to compute the asymptotic expansion of f .

Lemma 2. There exists an algorithm, which given a Laurent series u in L

expr

Z

with

u 6= 0 computes Z

0

= fz

0

1

; � � � ; z

0

k

0

g and u

0

2 L

expr

Z

0

with u

0

= u, such that u

0

has only

one dominant monomial.

Proof. Let f'

1

; � � � ; '

m

g be a set of intermediate dominant monomials for u. Let

c = u

'

1

+� � �+u

'

m

and " = (u�u

'

1

'

1

�� � ��u

'

m

'

m

)='

1

. By lemma 1 we can compute

a C-in�nitesimal Cartesian representation "

0

2 L

expr

Z

0

for ", where Z

0

= fz

0

1

; � � � ; z

0

k

0

g.

Now we take u

0

= (c+ "

0

)'

1

. �

Modulo this lemma, we may assume without loss of generality, that u has a

unique dominant monomial. The following proposition gives us the �rst term of the

expansion of f w.r.t. b

n

:

Proposition 3. Let f 2 G

expr

B

and let u 2 L

expr

Z

be a Cartesian representation of

f with a unique dominant monomial z

�

1

1

� � � z

�

k

k

and Z � S

B

. Let z

1

; � � � ; z

l

those

elements among z

1

; � � � ; z

k

which depend on b

n

, say z

i

= z

0

i

b

�

i

n

for 1 6 i 6 l, with z

0

i

free from b

n

and �

i

> 0. Then the dominant exponent of f w.r.t. b

n

equals

�

f

= �

1

�

1

+ � � �+ �

l

�

l

and

([z

�

1

1

� � � z

�

l

l

]u)z

0

1

�

1

� � � z

0

l

�

l

is a Cartesian representation for [b

�

f

n

]f . �

Clearly, this proposition enables us to extract the �rst term of the expansion

of f w.r.t. b

n

. More terms can (for instance) be obtained by subtracting the �rst

term from f and iterating the process. Similarly, we can iterate the process on the

coe�cients of this expansion in order to obtain the iterated coe�cients of f . In

particular, this yields an algorithm to compute the iterated coe�cients g

0;

n�i

�

times

��� ;0

of g involved in the exponential case f = e

g

in expand.

4 An asymptotic zero test for exp-log functions

In this section we no longer assume that we have an oracle for deciding whether an

exp-log function is zero in a neighbourhood of in�nity. Instead, we assume that we

dispose of an oracle which can decide whether an exp-log constant is zero. Such an

oracle is in fact an algorithm under the assumption that Schanuel's conjecture holds

(see the introduction). Now a zero test for Laurent series in L

expr

Z

, which depends

on the oracle, is given in [20] (see also [22, 21, 16]).

Generic asymptotic expansions 13

4.1 Elimination of Cartesian coordinates

Given a Cartesian representation u 2 L

expr

Z

of a germ f 2 T, we have f = 0 as

soon as u = 0. Usually, we also have f = 0) u = 0, and in this case the zero

test in L

expr

Z

can be used as an asymptotic zero test for exp-log functions. However,

in exceptional cases such as u = z

3

1

� z

2

2

with z

1

= x

�2

and z

2

= x

�3

, this does

not hold. Nevertheless, we may eliminate one of the Cartesian coordinates z

1

and z

2

here, by setting z

0

1

= x

�1

, whence z

1

= z

0

1

2

and z

2

= z

0

1

3

. Rewriting u w.r.t. z

0

1

yields

a Cartesian representation which is identical to zero. In this section, we prove that

something similar holds in general.

Lemma 3. Let B be an e�ective normal basis and let z

1

; � � � ; z

k+1

be in�nitesimals

in S

B

. Assume that z

k+1

= z

�

1

1

� � � z

�

k

k

with �

1

; � � � ; �

k

2 Z. There is an algorithm

which computes z

0

1

; � � � ; z

0

k

2 S

B

and a matrix M = (�

i;j

) with i 2 f1; � � � ; k + 1g,

j 2 f1; � � � ; kg and coe�cients in N, such that

z

i

= z

0

1

�

i;1

� � � z

0

k

�

i;k

for all 1 6 i 6 k + 1.

Proof. Let us describe a recursive method to compute such z

0

j

and �

i;j

. Since one

of the �

i

must be strictly positive, we may assume without loss of generality that

�

k

> 0 by permuting variables. Now z

�

1

1

� � � z

�

k�1

k�1

| as an element of S

B

| is either

in�nitesimal, equal to 1, or in�nitely large.

In the �rst case, we recursively compute z

0

1

; � � � ; z

0

k�1

2 S

B

and

i;j

2 N for

i 2 f1; � � � ; kg and j 2 f1; � � � ; kg, such that

z

i

= z

0

1

i;1

� � � z

0

k�1

i;k�1

for all 1 6 i 6 k � 1 and

z

�

1

1

� � � z

�

k�1

k�1

= z

0

1

k;1

� � � z

0

k�1

k;k�1

:

Now we can take z

0

k

= z

k

and

M =

0

B

B

B

B

B

B

B

@

1;1

� � �

1;k�1

0

.

.

.

.

.

.

.

.

.

k�1;1

� � �

k�1;k�1

0

0 � � � 0 1

k;1

� � �

k;k�1

�

k

1

C

C

C

C

C

C

C

A

:

The second case is trivial, since z

k+1

= z

�

k

k

.

Generic asymptotic expansions 14

In the last case, we recursively compute z

0

1

; � � � ; z

0

k�1

2 S

B

and

i;j

2 N for

i 2 f1; � � � ; kg and j 2 f1; � � � ; kg, such that

z

i

= z

0

1

�

k

i;1

� � � z

0

k�1

�

k

i;k�1

for all 1 6 i 6 k � 1 and

z

�

1

1

� � � z

�

k�1

k�1

= z

0

1

��

k

k;1

� � � z

0

k�1

��

k

k;k�1

:

Now take z

0

k

= z

k

z

0

1

�

1

� � � z

0

k�1

�

k�1

and

M =

0

B

B

B

B

B

B

B

@

�

n

1;1

� � � �

n

1;k�1

0

.

.

.

.

.

.

.

.

.

�

n

k�1;1

� � � �

n

k�1;k�1

0

k;1

� � �

k;k�1

1

0 � � � 0 �

k

1

C

C

C

C

C

C

C

A

:

�

The following is an easy consequence of the lemma:

Lemma 4. Let B be an e�ective normal basis and let z

1

; � � � ; z

k+1

be in�nitesimals

in S

B

. Assume that z

�

1

1

� � � z

�

k

k

= 1, for �

1

; � � � ; �

k

2 Znot all zero. There is an

algorithm which computes z

0

1

; � � � ; z

0

k�1

2 S

B

and a matrix M = (�

i;j

) with i 2

f1; � � � ; kg, j 2 f1; � � � ; k � 1g and coe�cients in N, such that

z

i

= z

0

1

�

i;1

� � � z

0

k�1

�

i;k�1

for all 1 6 i 6 k. �

4.2 The algorithm

Theorem 2. Assuming Schanuel's conjecture, there exists an algorithm which

given an exp-log expression f 2 T

expr

(a) computes an e�ective normal basis B for f .

(b) computes an asymptotic expansion for f w.r.t. B at any order.

(c) determines the sign of f .

(d) determines whether f is in�nitesimal.

Proof. In view of what precedes, we only have to show how to decide whether u = 0

for a given u 2 L

expr

Z

, with the notations from the previous section. To do this, we

slightly modify idm:

Generic asymptotic expansions 15

Algorithm zero test(u).

Input: A Cartesian representation u 2 L

expr

Z

for some Z.

Output: Result of the test u = 0.

if u = 0 then return true

� Let z

p

i

i

be the dominant monomial of u in z

i

, for 1 6 i 6 k.

G := fz

p

1

1

� � � z

p

k

k

g

while true

M := f' 2 Gj8 2G ' 4

B

 g

if jM j > 1 then return zero test(simplify(u;M))

if

P

'2M

u

'

6= 0 then return false

� Denote GnM = f'

1

; � � � ; '

q

g, with '

1

4

B

� � � 4

B

'

q

.

if 906 i6q u� [uj('

i

; � � � ; '

q

)] = 0 then G := f'

i

; � � � ; '

q

g

else G := (GnM) [Mfz

1

; � � � ; z

k

g

� Eliminate non minimal elements from G.

Let us comment this algorithm. All zero tests we perform are zero tests for

Laurent series. If the cardinal jM j of M never exceeds 1, then the usual termination

proof of idm remains valid and we are done. In the other case, the function simplify

is invoked, which undertakes the following action:

Step 1. Determine a non trivial relation of the form z

�

1

1

� � � z

�

k

k

= 1 in S

B

, with

�

1

; � � � ; �

k

2Z.

Step 2. Apply lemma 4 to �nd in�nitesimals z

0

1

; � � � ; z

0

k�1

2 S

B

and positive in-

tegers �

i;j

with z

i

= z

0

1

�

i;1

� � � z

0

k�1

�

i;k�1

for each i.

Step 3. Return u after having replaced each z

i

by z

0

1

�

i;1

� � � z

0

k�1

�

i;k�1

.

The recursive call of zero test terminates, since Z

0

= fz

0

1

; � � � ; z

0

k�1

g has one ele-

ment less than Z. �

Remark. A heuristic zero test for Laurent series u in L

expr

Z

often su�ces for practical

purposes: we perform a oating point evaluation of u in a random point (�

1

; � � � ; �

k

)

with reasonably small �

i

. Instead of rewriting u in the above algorithm, whenever we

�nd a dependency z

i

1

1

� � � z

i

k

k

= 1, we use these dependencies to impose a posteriori

additional conditions on the �

i

.

5 Generic expansions

Often, one is lead to expand functions which depend on a �nite number of real

parameters. For instance, consider the problem of expanding e

e

�x

: if � < 0, then

e

e

�x

= 1+ e

�x

+ e

2�x

=2+ � � � . If � > 0, then e

e

�x

forms its own expansion. The same

situation is encountered when solving di�erential equations, due to the presence of

initial conditions. In this section we show that the expansion algorithm for exp-log

functions can be made generic, by using a technique called dynamic evaluation [5, 9].

This technique is the computer algebra version of constraint logical programming.

Of course, the resolution techniques used here can not be the same as in logical

programming.

Generic asymptotic expansions 16

5.1 Notations and terminology

Let C be a subset of R and � a set of formal parameters. We denote by Ch�i the

set of exp-log expressions over C in � | i.e. those expressions built up from C;�

by +;�; �; =; exp and log. The domain of such an exp-log expression f is the subset

dom f of R

�

, consisting of those substitutions ' : �! R, such that '(f) is naturally

de�ned. Let us now consider systems � = (�

e

;�

i

) of exp-log equalities �

e

� Ch�i

and inequalities �

i

� Ch�i. We will refer to such systems as exp-log systems over C

in �. The domain of such a system � is de�ned by dom � =

T

f2�

e

[�

i

dom f . We

say that a substitution ' : �! R in dom � is a solution to �, if '(f) = 0, for each

f 2 �

e

, and '(f) > 0, for each f 2 �

i

.

Let R be a subset or region of R

�

. An exp-log expression f over C in x; �

1

; � � � ; �

p

is said to be de�ned at in�nity relative to R, if for each P 2 R

�

, the substitutions

�

1

7! P (�

1

); � � � ; �

p

7! P (�

p

) in f determine a germ of an exp-log function at in�n-

ity. In a similar way, we de�ne e�ective asymptotic scales, asymptotic expansions,

e�ective normal bases, etc. relative to R. Assume that we are given a partition

(5) R

�

= R

1

q � � � q R

r

of R

�

and an exp-log expression f over C in x; �

1

; � � � ; �

p

, which is either de�ned or

unde�ned at in�nity relative to R

i

, for each 1 6 i 6 r. Then by generic asymptotic

expansion of f relative to the partition (5), we mean a set of asymptotic expansions

of f relative to each region where f is de�ned at in�nity. In a similar way, we de�ne

generic e�ective asymptotic scales, normal bases, etc. relative to (5).

5.2 The generic expansion theorems

In this section, we show how to compute generic asymptotic expansions of para-

meterized exp-log functions. We �rst give an algorithm which may yield virtual

asymptotic expansions, i.e. expansions which are valid on empty regions R

i

in the

partition (5). Modulo an algorithm to test the consistency of exp-log systems over

the rationals, such empty regions may be eliminated.

Theorem 3. (Generic expansion theorem, weak form) Let � = f�

1

; � � � ; �

p

g

be a �nite set of parameters. There exists an algorithm which takes an exp-log

expression in x; �

1

; � � � ; �

p

over Q on input and computes

(a) A partition R

�

= R

1

q � � � q R

r

of R

�

, which we denote by P ;

(b) A generic e�ective normal basis B relative to P ;

(c) An algorithm which computes the generic asymptotic expansion of f w.r.t. B

relative to P at any order.

Each (possibly empty) region R

i

is represented as the solution set to a system �

i

of

exp-log equalities and inequalities.

Generic asymptotic expansions 17

Proof. We use the strategy of dynamic evaluation. If we want the algorithms

from sections 2 and 3 to work without any modi�cations, when we allow the exp-

log expressions to depend on parameters �

1

; � � � ; �

p

, then we need to implement the

exp-log �eld operations and the equality and inequality tests in Qh�i. The exp-

log operations can be implemented in a straightforward way, since Qh�i consists of

expressions. Actually, we represent these expressions as polynomials in a dynamic

polynomial ring Q[�

1

; � � � ; �

q

], where q > p may increase during the algorithm.

Each time we need the exponential, the logarithm, or the inverse of an element, we

represent it by a new formal parameter �

i

.

In order to describe the equality and inequality tests, we adopt a parallel compu-

tational model , which proves to be more convenient than the usual sequential model.

We introduce a new global variable �, which is initialized by (;; ;) and represents the

system of exp-log equalities and inequalities which are assumed to be veri�ed at each

moment during the execution. These exp-log equalities and inequalities are actually

polynomial equalities and inequalities in Q[�

1

; � � � ; �

q

]. Now suppose that we want

to compute the sign of f 2 Q[�

1

; � � � ; �

q

] � Qh�i in a given environment. Then

we divide the current process up into three subprocesses, in which we respectively

assign � := (�

e

[ffg;�

i

), � := (�

e

;�

i

[ffg) and � := (�

e

;�

i

[f�fg). A process

is eliminated, whenever the new system � is algebraically inconsistent; this can be

tested for instance by using cylindrical decompositions [3]. Each process leads to an

e�ective normal basis B and an expansion algorithm for f w.r.t. B relative to the

solution set of �. Processes in which an error occurs correspond to regions relative

to which f is unde�ned at in�nity.

We notice that the parallel computation process can be represented by a ternary

tree, which is called the computation tree: each internal node of this tree is labeled by

an exp-log expression c 2 Qh�i and its outgoing edges by the constraints c < 0; c = 0

and c > 0. Each leaf of the tree is labeled by an e�ective normal basis B and

an expansion algorithm for f w.r.t. B relative to the common solution set to the

constraints on the path from the root to the leaf. In order to prove the termination

of our algorithm, we have to show that the computation tree is �nite. Because of

K�onigs lemma [19], it su�ces to prove that the computation tree admits no in�nite

branches.

Suppose on the contrary that there exists a non terminating process. Careful

observation shows that the non termination comes from the loop in the algorithm

idm or zero test. Now u is a Laurent series with coe�cients in Q[�

1

; � � � ; �

q

] in

these algorithms, for �xed q. Let c

1

; c

2

; � � � denote the successive values of �

'2M

u

'

during the loop. SinceQ[�

1

; � � � ; �

q

] is Noetherian, the chain of ideals (c

1

); (c

1

; c

2

); � � �

is stationary. In particular, c

i

= 0 follows from �, for su�ciently large i, and the

usual termination argument is used to obtain a contradiction. �

Remark. In order to apply the algorithms from section 4, we still have to verify

that the zero test for Laurent series remains valid if we allow them to depend on a

Generic asymptotic expansions 18

�nite number of parameters. This is not hard to show and we refer to [16] for details.

We remark that some new but �nite branching may occur during the execution of

such a generic zero test.

Remark. By default, we take (;; ;) for the initial value of �. Clearly, we can make

additional hypotheses on the parameters, by taking other initial values.

Remark. It is in place to comment the parallel computational model we use. To

our knowledge, no computer algebra systems support parallel constructs yet. Never-

theless, parallelism can be simulated, by replacing the arguments to functions (and

the return values) by lists in which each item corresponds to a parallel environment

plus the corresponding values of the arguments. Another way to simulate parallelism

is to rerun the program several times, by choosing each time another branch of the

computation tree. This strategy has the advantage that no code has to be rewritten;

the price to be paid is that the same computations are often performed several times.

If the constraints in � can be tested for their exp-log consistency, then we may

eliminate the empty regions R

i

in the partition (5):

Theorem 4. (Generic expansion theorem, strong form) Let � = f�

1

; � � � ; �

p

g

be a �nite set of parameters. Assume that we have an oracle which decides whether

a given system of exp-log equalities and inequalities over Q in any �nite set of

parameters admits a solution. Then there exists an algorithm which takes an exp-log

expression in x; �

1

; � � � ; �

p

over Q on input and computes

(a) A partition R

�

= R

1

q � � � q R

r

of R

�

, which we denote by P ;

(b) A generic e�ective normal basis B relative to P ;

(c) An algorithm which computes the generic asymptotic expansion of f w.r.t. B

relative to P at any order.

Each (non empty) region R

i

is represented as the solution set to a system �

i

of

exp-log equalities and inequalities. �

Example 3. Let us consider the expansion of the exp-log function

f(x) = e

1=x+e

�x

� e

1=x

;

depending on one formal parameter �. The expansions of 1=x and �x are straight-

forward. For the expansion of e

�x

, one needs to compute the sign of �x and thus of

�. This leads to a branching into three processes, corresponding to the cases � < 0,

� = 0 and � > 0. The �rst case leads to the expansion

f = b

2

+ b

1

b

2

+

1

2

b

2

1

b

2

+ � � � +

1

2

b

2

2

+

1

2

b

1

b

2

2

+ � � � ;

Generic asymptotic expansions 19

with e�ective normal basis B = fb

1

= x

�1

; b

2

= e

�x

g. The second case leads to the

expansion

f = (e� 1) + (e� 1)b

1

+

e� 1

2

b

2

1

+ � � � ;

where B = fb

1

= x

�1

g. Finally, the case � > 0 leads to the expansion

f = b

3

+ b

1

b

3

+

1

2

b

2

1

b

3

+ � � � � 1� b

1

� � � � ;

with B = fb

1

= x

�1

; b

2

= e

��x

; b

3

= e

�e

�x

g.

6 References

References

[1] R.P. Brent and H.T. Kung. o((n log n)

3=2

) algorithms for composition and rever-

sion of power series. In J.F. Traub, editor, Analytic Computational Complexity,

1975. Proc. of a symposium on analytic computational complexity held by

Carnegie-Mellon University.

[2] R.P. Brent and H.T. Kung. Fast algorithms for manipulating formal power

series. Journal of the ACM, 25:581{595, 1978.

[3] G.E. Collins. Quanti�er elimination for real closed �elds by cylindrical algebraic

decomposition. In Proc. 2-nd conf. on automata theory and formal languages,

volume 33 of Lect. Notes in Comp. Science, pages 134{183. Springer, 1975.

[4] B.I. Dahn and P. G�oring. Notes on exponential-logarithmic terms. Fundamenta

Mathematicae, 127:45{50, 1986.

[5] J. Della Dora, C. Dicrescenzo, and D. Duval. A new method for computing in

algebraic number �elds. In G. Goos and J. Hartmanis, editors, Eurocal'85 (2),

volume 174 of Lect. Notes in Comp. Science, pages 321{326. Springer, 1985.

[6] J. Denef and L. Lipshitz. Decision problems for di�erential equations. The

Journ. of Symb. Logic, 55(3):941{950, 1989.

[7] J.

�

Ecalle. Introduction aux fonctions analysables et preuve constructive de la

conjecture de Dulac. Hermann, collection: Actualit�es math�ematiques, 1992.

[8] K.O. Geddes and G.H. Gonnet. A new algorithm for computing symbolic limits

using hierarchical series. In Proc. ISSAC '88, volume 358 of Lect. Notes in

Comp. Science, pages 490{495. Springer, 1988.

Generic asymptotic expansions 20

[9] T. Gomez-Diaz. Quelques applications de l'�evaluation dynamique. PhD thesis,

Univ. of Limoges, France, 1994.

[10] G.H. Gonnet and D. Gruntz. Limit computation in computer algebra. Technical

Report 187, ETH, Z�urich, 1992.

[11] G.H. Hardy. Orders of in�nity. Cambridge Univ. Press, 1910.

[12] G.H. Hardy. Properties of logarithmico-exponential functions. Proceedings of

the London Mathematical Society, 10(2):54{90, 1911.

[13] J. van der Hoeven. General algorithms in asymptotics I: Gonnet and Gruntz'

algorithm. Technical Report LIX/RR/94/10, LIX,

�

Ecole polytechnique, France,

1994.

[14] J. van der Hoeven. Outils e�ectifs en asymptotique et applications. Technical

Report LIX/RR/94/09, LIX,

�

Ecole polytechnique, France, 1994.

[15] J. van der Hoeven. Automatic numerical expansions. In J.-C. Bajard,

D. Michelucci, J.-M. Moreau, and J.-M. M�uller, editors, Proc. of the con,ference

"Real numbers and computers", Saint-

�

Etienne, France, pages 261{274, 1995.

[16] J. van der Hoeven. Automatic asymptotics. PhD thesis,

�

Ecole polytechnique,

France, 1997.

[17] J. van der Hoeven. Lazy multiplication of formal power series. In W. W.

K�uchlin, editor, Proc. ISSAC '97, pages 17{20, Maui, Hawaii, July 1997.

[18] D.E. Knuth. The art of computer programming, volume 2: Seminumerical al-

gorithms. Addison-Wesley, 2-nd edition, 1981.

[19] D. K�onig. Theorie der endlichen und unendlichen Graphen. Chelsea publ.

Comp., New York, 1950.

[20] A. P�eladan-Germa. Testing identities of series de�ned by algebraic partial dif-

ferential equations. In G. Cohen, M. Giusti, and T. Mora, editors, Proc. of

AAECC-11, volume 948 of Lect. Notes in Comp. Science, pages 393{407, Paris,

1995. Springer.

[21] A. P�eladan-Germa. Tests e�ectifs de nullit�e dans des extensions d'anneaux

di��erentiels. PhD thesis, Gage,

�

Ecole Polytechnique, Palaiseau, France, 1997.

[22] A. P�eladan-Germa and J. van der Hoeven. A local buchberger algorithm. Ac-

cepted for publication in the CRAS, 1996.

[23] D. Richardson. The elementary constant problem. In Proc. ISSAC '92, pages

108{116, 1992.

Generic asymptotic expansions 21

[24] D. Richardson. A simpli�ed method for recognizing zero among elementary

constants. In Proc. ISSAC '95, pages 104{109, 1995. See also "How to recognize

zero", accepted for publication in JSC.

[25] D. Richardson, B. Salvy, J. Shackell, and J. van der Hoeven. Expansions of

exp-log functions. In Y.N. Lakhsman, editor, Proc. ISSAC '96, pages 309{313,

Z�urich, Switzerland, July 1996.

[26] R.H. Risch. Algebraic properties of elementary functions in analysis. Amer.

Journ. of Math., 4(101):743{759, 1975.

[27] B. Salvy. Asymptotique automatique et fonctions g�en�eratrices. PhD thesis,

�

Ecole Polytechnique, France, 1991.

[28] J. Shackell. A di�erential-equations approach to functional equivalence. In Proc.

ISSAC '89, pages 7{10, Portland, Oregon, A.C.M., New York, 1989.

[29] J. Shackell. Growth estimates for exp-log functions. Journal of symbolic com-

putation, 10:611{632, 1990.

[30] J. Shackell. Limits of Liouvillian functions. Proc. of the London Math. Soc.,

72:124{156, 1996. Appeared in 1991 as a technical report at the Univ. of Kent,

Canterbury.

