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Until now, the area of symbolic computation has mainly focused on the manipulation
of algebraic expressions. It would be interesting to apply a similar spirit of “exact
computations” to the field of mathematical analysis.

One important step for such a project is the ability to compute with computable
complex numbers and computable analytic functions. Such computations include
effective analytic continuation, the exploration of Riemann surfaces and the study
of singularities. This paper aims at providing some first contributions in this direc-
tion, both from a theoretical point of view (such as precise definitions of computable
Riemann surfaces and computable analytic functions) and a practical one (how to
compute bounds and analytic continuations in a reasonably efficient way).

We started to implement some of the algorithms in the Mmxlib library. However,
during the implementation, it became apparent that further study was necessary,
giving rise to the present paper.
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1. Introduction

Although the field of symbolic computation has given rise to several softwares for math-
ematically correct computations with algebraic expressions, similar tools for analytic
computations are still somewhat inexistent.

Of course, a large amount of software for numerical analysis does exist, but the user
generally has to make several error estimates by hand in order to guarantee the applicability
of the method being used. There are also several systems for interval arithmetic, but
the vast majority of them works only for fixed precisions. Finally, several systems have
been developed for certified arbitrary precision computations with polynomial systems.
However, such systems cannot cope with transcendental functions or differential equations.

The first central concept of a systematic theory for certified computational analysis is
the notion of a computable real number . Such a number x∈R is given by an approximation
algorithm which takes ε ∈ Rdig = Z 2Z with ε > 0 on input and which produces an
ε-approximation x̃ ∈Rdig for x with |x̃−x|<ε. One defines computable complex numbers
in a similar way.

The theory of computable real numbers and functions goes back to Turing [Tur36]
and has been developed further from a theoretical point of view [Grz55, Alb80, BB85,
Wei00]. It should be noticed that computable real and complex numbers are a bit tricky to
manipulate: although they easily be added, multiplied, etc., there exists no test for deciding
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whether a computable real number is identically zero. Nevertheless, possibly incomplete
zero-tests do exist for interesting subclasses of the real numbers [Ric97, MP00, vdH01b].
In section 2.5, we will also introduce the concept of semi-computable real numbers, which
may be useful if a zero-test is really needed.

The subject of computable real numbers also raises several practical and complexity
issues. At the ground level, one usually implements a library for the evaluation of basic
operations +, −, ×, etc. and special functions exp , log , sin , etc. Using fast multiplication
methods like the FFT [KO63, CT65, SS71], this raises the question of how to do this in
an asymptotically efficient way [Bre76a, Bre76b, CC90, Kar91, vdH99a, vdH01a, vdH05b].
At an intermediate level, one needs a software interface for certified operations with arbi-
trary precision numbers. Several implementations exist [FHL+05, GPR03, Mül00, vdH99b,
vdH06b], which are mostly based on correct rounding or interval arithmetic [Moo66, AH83,
Neu90, JKDW01, BBH01, Bla02]. At the top level, one may finally provide a data type
for real numbers [MM96, Mül00, Lam06, O’C05, vdH06a, vdH06b]. Given the real number
result of a complex computation, an interesting question is to globally optimize the cost of
determining a given number of digits of the result, by automatically adjusting the precisions
for intermediate computations [vdH06a, vdH06b].

The next major challenge for computational analysis is the efficient resolution of more
complicated problems, like differential or functional equations. In our opinion, it is impor-
tant to consider this problem in the complex domain. There are several reasons for this:

• Most explicitly stated problems admit analytic (or semi-analytic) solutions.

• The locations of the singularities of the solutions in the complex plane give impor-
tant information on the optimal step-size for numerical algorithms.

• The behaviour of the solutions near singularities gives important information on
the nature of these solutions.

• Analytic functions are very rigid in the sense that they are entirely determined by
their power series expansion at a point, using the process of analytic continuation.

This paper aims at providing a basic theoretical framework for computations with com-
putable analytic functions and effective analytic continuation. When possible, our study
is oriented to efficiency and concrete implementability.

The history of analytic continuation of solutions to complex dynamical systems goes
back to the 19-th century [BB56]. Although interval arithmetic and Taylor models have
widely been used for certified numeric integration of dynamical systems [Moo66, Loh88,
MB96, Loh01, MB04], most implementations currently use a fixed precision [Ber98]. Some
early work on effective analytic continuation in the multiple precision context was done
in [CC90, vdH99a, vdH01a, vdH05b]; see also [vdH07] for some applications. Of course,
fast arithmetic on formal power series [BK75, BK78, vdH02b] is an important ingredient
from the practical point of view. Again, the manipulation of computable analytic functions
is very tricky. For instance, even for convergent local solutions to algebraic differential
equations with rational coefficients and initial conditions, there exists no general algorithm
for determining the radius of convergence [DL89]. Of course, one also inherits the zero-test
problem from computable complex numbers.

Let us detail the structure and the main results of this paper. In section 2, we start by
recalling some basic definitions and results from the theory of computable real numbers. In
particular, we recall the concepts of left computable and right computable real numbers,
which correspond to computable lower resp. upper bounds of real numbers.
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In section 3, we introduce the concept of a computable Riemann surface. In a similar
way as computable real numbers are approximated by “digital numbers” in Z 2Z, we will
approximate computable Riemann surfaces by so called “digital Riemann surfaces”, which
are easier to manipulate from an effective point of view. For instance, in section 3.2, we will
see how to identify two branches in a digital Riemann surface. However, from a conceptual
point of view, it is not always convenient to see Riemann surfaces as limits of sequences
of digital approximations. In sections 3.4 and 3.5, we will therefore discuss two equivalent
ways to represent computable Riemann surfaces. Notice that all Riemann surfaces in this
paper are above C.

The next section 4 deals with constructions of several kinds of computable Riemann
surfaces. We start with the definition of computable coverings (which can be thought of as
morphisms of computable Riemann surfaces) and the construction of the limit of a sequence
of coverings. We proceed with the definition of disjoint unions, covering products, quotients
and joins at a point. For instance, if Rf and Rg are the Riemann surfaces of two analytic
functions f resp. g, then f + g and f g are defined on the covering product Rf A Rg of Rf

and Rg. In section 4.4, we consider Riemann surfaces which admit a distinguished point,
the root. This allows for the definition of a smallest “organic” Riemann surface which
contains a prescribed set of “broken line paths”. Universal covering spaces and so called
convolution products of rooted Riemann surfaces are special cases of organic Riemann
surfaces.

In section 5, we come to the main subject of computable analytic functions. In [vdH05a],
a first definition was proposed. Roughly speaking, the idea was to see a computable analytic
function as an instance f of an abstract data type Alcom, with methods for computing

• The coefficients of f .

• A lower bound rf for the radius of convergence of f .

• An upper bound ⌈⌈f ⌉⌉ρ for |f | on any disk of radius ρ<rf.

• The analytic continuation f+δ∈Alcom of f from 0 to δ, with |δ |<rf.

This point of view is very natural from a computational point of view if we want to solve
a differential or more general functional equation, since it is often possible to locally solve
such equations. However, the computed bounds are usually not sharp, so we need some
additional global conditions in order to ensure that analytic continuation can be carried
out effectively at all points where the solutions are defined.

Now the more systematic theory of computable Riemann surfaces of this paper makes
it possible to directly define the concept of a computable analytic function on a given
computable Riemann surface. Although this makes definitions easier, one still has to show
how to construct the Riemann surface of a computable analytic function. Using the results
from section 4, we will do this for many classical operations, like +, −, ×, ∂,

∫

, exp , log ,
◦, algebraic and differential equations, convolution products, etc. Especially in the case
of convolution products, the global knowledge of an underlying Riemann surface is very
important. What is more, we will show that it is possible to construct the Riemann surfaces
incrementally, on explicit demand by the user. Also, whereas all underlying Riemann
surfaces from [vdH05a] were simply connected, the present theory enables us to identify
certain branches where the function takes identical values. Nevertheless, the local approach
from [vdH05a] remains useful, because any “locally computable analytic function” induces
a natural “globally computable analytic function” (see theorem 5.7).
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During the implementation of some of the algorithms from [vdH05a] in our Mmxlib
library, it turned out that bad bounds rf and ⌈⌈f ⌉⌉ρ could lead to extremely inefficient
algorithms. Therefore, it is essential to have algorithms for the efficient computation of
accurate bounds. In section 6, we will study this problem in a systematic way. Our leitmotiv
is to work with truncated power series expansions at an order n with a bound for the
remainder. On the one hand, we will study how such expansions and bounds can be com-
puted efficiently and accurately (sections 6.3 and 6.4). On the other hand, we will show how
to use them for computing the absolute value of the smallest zero of an analytic function
(section 6.1) and for computing extremal values on a compact disk (section 6.2). Several
of the ideas behind our algorithms already occur in the literature about Taylor models
and polynomial root finding. However, the context is a bit different, so our exposition may
have some interest for its own sake.

For the sake of simplicity, we have limited ourselves to the study of univariate analytic
functions. It should be possible to generalize to the multivariate case along the same
lines. The main extra difficulty we foresee is integration, because it requires an automatic
algorithm for the deformation of paths. Nevertheless, in sections 4.8 and 5.5, we study
convolution products, and a similar approach might be used for integration. Some of the
algorithms in this paper have been implemented in the Mmxlib library. However, our
implementation is still quite unstable and work is in progress to include the ideas from the
present paper.

2. Computable real and complex numbers

2.1. Computable functions and relations on effective sets

We assume that the reader is familiar with basic notions of the theory of Turing machines.
We recall that a Turing machine T computes a function fT : N → N ∪ {fail}, where
fT(n) = fail if the Turing machine does not halt on the input n. A function f : N → N

is said to be computable if f = fT for some Turing machine T . A subset A of N is said
to be recursively enumerable, or shortly enumerable, if A =∅ or if there exists a Turing
machine T withA= im fT . We say thatA is computable if bothA andN\A are enumerable.
Denoting by T the set of Turing machines, there exists a bijection χ:N⇀T, whose inverse
encodes each Turing machine by a unique natural number.

More generally, an encoding (or effective representation) of a set A is a partial surjective
function χ= χA:N⇀A, which is not necessarily injective. In that case, we call A (or more
precisely the pair (A, χ)) an effective set. If domχA is computable or enumerable, then we
call A an abstract computable resp. enumerable set. For instance, the set of Turing machines
which halt on all inputs is an effective set, but not an abstract computable set, because
of the halting problem. If A and B are effective sets, then so is A ×B, for the encoding
χA×B(ϕ(i, j))= (χA(i), χB(j)), where ϕ:N2→N; (i, j)� (i+ j)2+ i. By induction, An is
an effective set for each n∈N. Many other classical sets, like finite sequences or trees over
an effective set admit straightforward encodings, which will not be detailed in what follows.

A function f :A→B between two effective sets A and B is said to be computable if there
exists a Turing machine T ∈T such that f(χA(i))= χB(fT(i)) for all i∈dom χA. In that
case, each n with T =χT(n) provides an encoding for f , and we denote by Fcom(A,B) the
effective set of all computable functions from A to B. A partial function f :A⇀B is said
to be computable if there exists a Turing machine T ∈T with f(χA(i))= χB(fT (i)) for all
i∈ χA−1(dom f).
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Sometimes, it is convenient to allow for generalized encodings χE=χA
E:E→A, where E

is another encoded set. Indeed, in that case, the composition χA = χA
E ◦ χE yields an

encoding in the usual sense. For instance, χFcom(A,B)= χT ◦ χT, where χT encodes each
function f ∈ Fcom(A, B) by the Turing machine which computes it. Given a = χA

E(c),
we will write c = ǎ and a = ĉ . To each object a ∈ A, given by its encoding a = χA(n)
with n ∈ N, we may naturally associate its representation ǎ = χE(n) in E. However,
this association does not lead to a mapping ·̌ : A→ E, since we do not necessarily have
χA(m) = χA(n) ⇒ χE(m) = χE(n). In particular, in order to implement a computable
function f :A→B via a computable function f̌ :E→B, using f(a)= f̌ (ǎ), one has to make
sure that f̌ (c1)= f̌ (c2) whenever c1̂= c2̂.

An n-ary relation R ⊆ An on an effective set A is said to be computable, if there
exists a computable subset Ř of N, with χAn

−1(R) = Ř ∩ dom χAn. Equivalently, we may
require the existence of a computable function Ř:An→{0, 1} with R(a)⇔ Ř(a) = 1 for
all a∈An. Similarly, R⊆An is enumerable, if there exists an enumerable subset Ř of N,
with χAn

−1(R)= Ř ∩dom χAn. This is equivalent to the existence of a computable function
Ř: An→ {0, 1}ult with R(a)⇔ Ř(a) = 1 for all a ∈ An. Here {0, 1}ult denotes the set of
increasing computable functions f :N→{0, 1}, divided by the equivalence relation ∼ with
f ∼ g⇔ limn→∞ fn= limn→∞gn. Notice that {0, 1}ult and {0, 1} are equal as sets, but not
as effective sets. A computable function Ř:An→{0, 1}ult will be called an ultimate test .
Notice that the equality relation on an effective set A is not necessarily computable or
enumerable, even if A is an abstract computable set.

Since a subset B ⊆A is also a unary relation on A, the above definition in particular
yields the notions of computable and enumerable subsets of A. We also define B to be
a sequentially enumerable subset of A if B = ∅ or if there exists a computable function
B̌ :N→A with B = im B̌ . Similarly, we say that B is sequentially computable if both B
and A \ B are sequentially enumerable. If B is sequentially enumerable and A admits
a computable equality test, then B is enumerable. If B is enumerable and A is an abstract
enumerable set, then B is sequentially enumerable. If B is sequentially computable, then A
is an abstract enumerable set.

There are several other interesting notions which deserve further study, but which will
not be used in what follows. For instance, we may define a subset B of an effective set A to
be pseudo-computable, if there exists a computable function B̌ :A→Nult with B= {x∈A:
B̌(x) = +∞}, where Nult is defined similarly as {0, 1}ult. For instance, given a Turing
machine T ∈T, the set {x∈N: fT(x)� fail} is a pseudo-computable subset of N.

2.2. Computable real numbers

Let Rdig = Z 2Z be the set of digital or dyadic numbers. Given an ordered ring R, we
denote R> = {x ∈ R: x > 0}, R> = {x ∈ R: x > 0}, etc. Given x ∈ R and ε ∈ Rdig,>, we
say that x′ ∈Rdig is an ε-approximation of x if |x′ − x| < ε. An approximator for x is a
computable function x̌: Fcom(Rdig,>,Rdig) which sends ε ∈Rdig,> to an ε-approximation
of x. If x admits such an approximator, then we call x a computable real number and
encode x by x̌. We denote by Rapp the set of approximators and by Rcom⊆R the effective
set of computable real numbers. Given i, j ∈ N, both the problems of testing whether
χRapp(i)= χRapp(j) resp. χRcom(i)= χRcom(j) are undecidable.

The usual topologies on R and Rn naturally induce topologies on Rcom and (Rcom)n.
Given an open subset Ω of (Rcom)n, an element of Fcom(Ω,Rcom) is called a computable
real function. Notice that such a function admits a natural encoding by an element
f̌ ∈ Fcom(Ω̌, Rapp), where Ω̌ = {x̌ ∈ (Rapp)n: x̌̂ = (x̌̂1, 	 , x̌̂n) ∈ Ω}. Many classical
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functions like +, −, ×, exp , log , max, min are easily seen to be computable. It can
be shown (see [Grz55, Grz57, Wei00] and theorem 2.3 below) that a computable real
function is necessarily continuous. Consequently, the step and stair functions are not
computable. Intuitively speaking, this stems from the fact that the sign function cannot
be computed effectively for computable real numbers.

It is convenient to express part of the semantics of computations with computable real
numbers by providing a signature for the available operations. For instance, the class Rapp

comes with two main functions

approx: Rapp×Rdig,> → Rdig

χ: Rapp → Rcom

Similarly, the class Rcom provides operations

ι: Q → Rcom

+,−,×: Rcom×Rcom → Rcom

/: Rcom×Rcom,� → Rcom

min,max: Rcom×Rcom → Rcom

exp, sin, cos: Rcom → Rcom

log: Rcom,> → Rcom�
However, we take care not to provide functions for comparisons.

2.3. Left and right computable real numbers

There exist many equivalent definitions for computable real numbers and several alter-
native encodings [Wei00, Chapter 4]. A particularly interesting alternative encoding is to
define an approximator (or two-sided approximator) of x∈R to be a computable function
N→ (Rdig)2; k� xk=(xk, xk) with

x16 x26
 6 x6
 6x26x1

and limk→∞xk= limk→∞ xk=x. This definition admits two variants: a left approximator
(resp. right approximator) of x∈R is a computable increasing (resp. decreasing) function
N→Rdig; k� xk, with x= limk→∞xk. A real number is said to be left computable (resp.
right computable) if it admits a left (resp. right) approximator.

Intuitively speaking, a left (resp. right) computable real number corresponds to a com-
putable lower (resp. upper) bound. Indeed, in what follows, it will frequently occur that we
can compute sharper and sharper lower or upper bounds for certain real numbers, without
being able to compute an optimal bound. We denote by Rlapp, Rrapp, Rlcom and Rrcom the
left and right analogues of Rapp and Rcom.

Remark 2.1. The above definitions of left, right and two-sided approximators naturally
extend to the case of sequences in the set Rdig= {−∞}∪Rdig∪{+∞} of extended digital
numbers. This leads to natural counterparts Rapp, Rcom, R lapp, etc.

Remark 2.2. For actual implementations, it is a good idea to let the index k of approxima-
tors k� xk correspond to the estimated cost of the computation of xk (see also [vdH06b]).
We also notice that left, right and two-sided approximators can be implemented by a
common class real with a method approximate, which returns a bounding interval xk∋x
as a function of k. In the case of left (resp. right) approximators, we would have xk=[xk,
+∞] (resp. xk= [−∞, xk]).
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Let Ω be an open subset of Rn or (Rcom)n. A function f : Ω →R is said to be lower
continuous (resp. upper continuous), if for every x∈Ω and every y ′<f(x) (resp. y ′>f(x)),
there exists a neighbourhood V of x, such that y ′< f(x′) (resp. y ′> f(x′)) for all x′∈V .
We have [Grz55, Grz57, Wei00]:

Theorem 2.3. Let Ω be an open subset of (Rcom)n. Then

a) Any f ∈Fcom(Ω,Rcom) is continuous.

b) Any f ∈Fcom(Ω,Rlcom) is lower continuous.

c) Any f ∈Fcom(Ω,Rrcom) is upper continuous.

Proof. We will prove (b); the other two assertions are proved in a similar way. The function
f admits an encoding f̌ ∈Fcom(Ω̌,Rlcom). Let x∈Ω with approximator

x̌: k� xk= ((xk,1, xk,1),	 , (xk,n, xk,n)).
Let y̌ : k� yk be a left approximator for y= f(x). Given y ′< y, there exists a q ∈N with
yq> y ′. Now the computation of y0,	 , yq by f̌ only depends on x0,	 , xp for some finite
p∈N. Increasing p if necessary, we may assume without loss of generality that

V =Rxp= {(v1,	 , vn)∈ (Rcom)n: xp,1<v1<xp,1,	 , xp,n<vn<xp,n}⊆Ω.

Let x′ ∈ V , with approximator x̌ ′: k � xk
′ . For a certain p′ > p, we have Rx

p′
′ ⊆ V . Now

consider the alternative approximator x̌ ′′: k � xk
′′ of x′ with xk

′′ = xk for k 6 p and
xk
′′ = xk+p′−p

′ otherwise. Then, by construction, y̌ ′′ = f̌ (x̌ ′′): k � yk
′′ satisfies y0

′′ = y0, 	 ,
yq
′′= yq. We conclude that f(x′)= limk→∞yk

′′
> yq> y ′. �

The “lower step function” σ, defined by σ(x) = 0 if x < 0 and σ(x) = 1 otherwise, is
lower computable in the sense that σ ∈Fcom(Rcom,Rlcom). Indeed, given x̌: n� (xn, xn),
we may take y̌ = σ̌(x̌): n� σ(xn). Similarly, the function x� ⌊x⌋ is lower computable,
while x� ⌈x⌉ is upper computable. In particular, this shows that Fcom(Rcom, Rlcom) !
Fcom(Rcom,Rcom) Fcom(Rcom,Rrcom). Besides the projections

left: Rcom → Rlcom

right: Rcom → Rrcom

typical lower computable functions on Rlcom are:

+: Rlcom×Rlcom → Rlcom

×: Rlcom,>×Rlcom,> → Rlcom,>

min,max: Rlcom×Rlcom → Rlcom

exp: Rlcom → Rlcom

log: Rlcom,> → Rlcom

σ, ⌊·⌋: Rlcom → Rlcom

Here the dot in ⌊·⌋ indicates the argument of the function x� ⌊x⌋. Left computable num-
bers are turned into right computable numbers and vice versa by the following operations:

−: Rlcom → Rrcom

1/·: Rlcom,> → Rrcom,>
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More generally, increasing computable real functions induce both increasing lower and
upper computable real functions, while decreasing computable real functions turn left
computable real numbers into right computable real numbers and vice versa.

2.4. Computable complex numbers

The complexification Ccom=Rcom[i]=Rcom⊕Rcom i of Rcom provides a natural definition
for the set of computable complex numbers. Typical operations on Ccom include

complex, polar: Rcom×Rcom → Ccom

ℜ,ℑ: Ccom → Rcom

abs: Ccom → Rcom,>

arg: Ccom\Rcom,6 → (−p, p)com

+,−,×: Ccom×Ccom → Ccom

/: Ccom×Ccom,� → Ccom

exp, sin, cos: Ccom → Ccom

log: Ccom\Rcom,6 → Rcom,>+ (−p, p)com i

The complexification Capp=Rapp[i] of Rapp also provides a natural encoding for Ccom and,
setting Cdig=Rdig[i], the approximation function for numbers in Rapp extends to

approx: Capp×Rdig,> → Cdig

Clearly, functions like arg, log , ·
√

, etc. can only be defined on simply connected subsets
of C. On the other hand, Ccom is effectively algebraically closed in the sense that there
exists an algorithm which takes a polynomial P ∈Ccom[z]� of degree d on input and which
returns its set of d roots in Ccom.

2.5. Semi-computable numbers

For many applications, the absence of computable comparisons for computable real or
complex numbers can be a big problem. One solution to this problem is to systematically
consider all possible answers of zero tests or sign computations and to use these answers
as hypotheses during subsequent tests. For instance, if we assume that x> 2, then a sub-
sequent test x2− x> 1 should return true.

The above approach can be formalized as follows. A system of real constraints is a pair
(x, ǫ) = ((x1, 	 , xl), (ǫ1, 	 , ǫl)) with xi ∈Rcom and ǫi ∈ {−1, 0, 1} for i = 1, 	 , l. We say
that (x, ǫ) is satisfied if sign xi= ǫi for i= 1,	 , l. We denote by ΣΣ the set of systems of
real constraints. A semi-computable real number is encoded by a computable function
x̌:Sx̌→Rcom, where Sx̌ is a finite subset of ΣΣ such that at least one element of Sx̌ is satisfied
and x̌(Σ)= x̌(Σ′) whenever both Σ and Σ′ are satisfied. We denote byRscom the set of semi-
computable real numbers. A semi-computable function is a function f :Rcom→Rscom. Such
a function naturally induces a function F :Rscom→Rscom. Indeed, given x∈Rscom, encoded
by x̌: Sx̌ → Rcom, we may take SF̌ (x̌) =

⋃

Σ∈Sx̌
Sf̌ (x̌(Σ)) and F̌ (x̌)(Σ′) = f̌ (x̌(Σ))(Σ′),

whenever Σ′∈Sf̌ (x̌(Σ)).

Example 2.4. The step function f :x� ⌊x⌋ is semi-computable. Indeed, given x∈Rcom,
we first compute an ε-approximation x̃∈Rdig of x with ε≪1 (e.g. ε=2−32) and n=⌊x̃+ε⌋.
If ⌊x̃ − ε⌋=n, then we let

Sf̌ (x)= {Σ}= {((), ())}
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and take f̌ (x):Sf̌ (x)→Rcom; Σ→n. Otherwise, we let

Sf̌ (x)= {Σ−1,Σ0,Σ1}= {((x−n), (−1)), ((x−n), (0)), ((x−n), (1))}

and take f̌ (x):Sf̌ (x)→Rcom with f̌ (x)(Σ−1)=n− 1 and f̌ (x)(Σ0)= f̌ (x)(Σ1)=n.

From a practical point of view, computations with semi-computable numbers can be
implemented using non-deterministic evaluation and we point to the similarity with the
computation with parameterized expressions [vdH97, Chapter 8]. Each branch of the non-
deterministic computation process comes with a system Σ=((x1,	 , xl), (ǫ1,	 , ǫl)) of real
constraints in ΣΣ. A constraint checker is used in order to eliminate branches for which Σ
is contradictory.

In many applications, the numbers x1,	xl belong to a polynomial algebra Q[y1,	 , yn]
and one may use classical algorithms from real algebraic geometry to check the consistency
of Σ [BPR03]. Modulo further progress in automatic proofs of identities [Ric92, Zei90,
vdH02a], we hope that more and more powerful constraint checkers will be constructed for
increasingly general classes of constants (like algebraic exp-log expressions in y1, 	 , yn).
This would allow for the automatic elimination of a large number of inconsistent branches.
Notice also that it is recommended to spend a roughly equivalent time in trying to prove
and disprove constraints. Of course, proving x > 0 is easy, since it suffices to find a non
zero digit of x.

As in the case of computations with parameterized expressions, many algorithms for
computable real numbers naturally generalize to semi-computable real numbers. This is
due to the fact that all numbers involved often belong to a fixed polynomial algebra
Q[y1,	 , yn], in which the Noetherianity of this algebra may be used in termination proofs.
We refer to [vdH97] for examples.

Remark 2.5. In our definition of systems of real constraints, we have considered sign
conditions on computable real numbers. The same construction may be applied to more
general types of constraints, like xi ∈Ωki, for a certain number Ω1,Ω2,	 of fixed subsets
of the real numbers. However, we have not yet found any practical use for such a general-
ization.

3. Computable Riemann surfaces

A classical Riemann surface (above C) is a topological space R, together with a projection
π:R→C, so that every x ∈R admits a neighbourhood V for which π |V is a homeomor-
phism of V on an open ball of C. A Riemann surface R̄=R∐∂R with border ∂ R̄= ∂R
is defined similarly, except that each x ∈ ∂ R̄ now admits a neighbourhood V for which
π|V is a homeomorphism of V on a subset of C which is homeomorphic to {z∈C:ℜz> 0}.
A classical covering is a local homeomorphism ϕ:R→S between two Riemann surfaces,
which commutes with the projections, i.e. πS ◦ ϕ= πR. Throughout this paper, coverings
are not required to be surjective.

3.1. Digital Riemann surfaces

An encoding of a digital Riemann surface is a tuple Ř = (λ, A, π,�), where A is a finite
set of nodes, λ ∈ 2Z a scale, π: A→ Z[i] a projection and � ⊆ A2 a symmetric adjacency
relation, such that

DR1. If a�b, then π(a)−π(b)∈ {1,−1, i,−i}.
DR2. If a�b and a�b′ are such that π(b)=π(b′), then b= b′.
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DR3. Let a0,0, a0,1, a1,0, a1,1 be such that π(aδ,ε)=π(a0,0)+ δ+ ε i for δ, ε∈{0, 1} and
such that three relations among a0,0�a0,1, a0,0�a1,0, a0,1�a1,1 and a1,0�a1,1 hold.
Then the fourth relation holds as well.

The conditions DR2 and DR3 are illustrated in figure 3.1 below. In the case when a, b,
c, d ∈A with pairwise distinct projections π(a), π(b), π(c) and π(d) satisfy a�b�c�d�a,
then we will also write ⊞d

a
c
b. Notice that ⊞d

a
c
b⇔ ⊞b

a
c
d⇔ ⊞c

d
b
a.

Figure 3.1. Illustration of the axioms DR2 (top) and DR3 (bottom) for digital Riemann sur-
faces. When regarding the left hand sides as digital Riemann pastings, the right hand sides also
correspond to their normalizations.

Let us show how to associate a Riemann surface R in the classical sense to an
encoding Ř = (λ, A, π, �) as above. To each z ∈ Z[i], we may associate a compact
square Q̄z,λ by

Q̄z,λ=λ (z+ [0, 1]+ [0, 1] i).

We now consider the topological space

R̆ =
∐

a∈A
Q̆a,

where Q̆a is a copy of Q̄π(a),λ for each a ∈ A. Whenever a�b, the squares Q̄π(a),λ and

Q̄π(b),λ admit a common edge in C. Gluing the corresponding copies Q̆a and Q̆b together

in R̆ according to this edge determines a new topological space

R̄= R̆/∼.
The space R̄ is a Riemann surface with a border, whose projection on C is naturally
determined by the projections of the Q̆a on C. Indeed, DR2 (resp. DR3) implies that
points on the edges (resp. vertices) of the Q̆a/∼ are either in the interior of R̄ or on its
border. The interior R of R̄, endowed with its natural projection on C, is a Riemann
surface in the classical sense; we call it the digital Riemann surface associated to Ř. It will
be convenient to write Q̄a= Q̆a/∼ and denote the interior of Q̄a by Qa. More generally,
if B ⊆A, then we write Q̄B=

⋃

a∈B Q̄a and QB for its interior.

Example 3.1. If the mapping π:A→Z[i] is injective, then the induced projection π:R→C

is a homeomorphism on its image. In that case, we will identify R with the subset π(R)

of C, and call R a digital subset of C. Conversely, any λ∈2Z together with a finite subset
A ⊆ Z[i] determines a natural digital subset R ⊆ C, encoded by Ř = (λ, A, Id, �) with
a�b⇔ a− b∈ {±1,±i}.
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Example 3.2. One of the simplest examples of a digital Riemann surface R for which π
is not injective is shown in figure 3.2. Formally speaking, this surface is encoded by

λ = 1

A = {a1,0, a1,1, a0,1, a−1,1, a−1,0, a−1,−1, a0,−1, a1,−1, b1,0}
π(ax,y) = x+ y i

π(b1,0) = 1

ax,y�ax′,y ′ ⇔ |x′−x|+ |y ′− y |=1∧{ax,y, ax′,y ′}� {a1,0, a1,−1}
ax,y�b1,0 ⇔ ax,y= a1,−1.

a1,−1a0,−1a−1,−1

a−1,0

a−1,1 a0,1 a1,1

b1,0

a1,0

Figure 3.2. Example of a digital Riemann surfaces with non-trivial fibers.

Consider an encoding Ř=(λ,A,π,�) of a digital Riemann surface R at scale λ. This
encoding induces a natural “doubled encoding” Ř⊞ = (λ/2, A⊞, π⊞, �⊞), by associating
four nodes a0,0, a0,1, a1,0, a1,1 ∈A⊞ with π⊞(aδ,ε) = 2 π(a) + δ + ε i to each a. Given aδ,ε,
aδ ′,ε′
′ ∈A⊞ , we set aδ,ε�⊞aδ ′,ε ′

′ if and only if a=a′ and π⊞(aδ ′,ε ′
′ )−π⊞(aδ,ε)∈{±1,±i}, or

a�a′ and π(aδ ′,ε′
′ )− π(aδ,ε) = π(a′)− π(a). The doubled encoding Ř⊞ encodes the same

digital Riemann surface R, but at the smaller scale λ/2. By induction, it is possible to
obtain encodings at any scale λ/2n with n∈N.

Given a digital Riemann surface R, the above argument shows that there exists a max-
imal scale λmax∈2Z, such that R admits an encoding at scale λ=λmax/2

n for every n∈N.
Inversely, the encoding (λ, A, π, �) of R at a given scale λ is essentially unique (up to
bijections A→ A′). Indeed, given a ∈A, the center ca of each Qa (a ∈A) corresponds to
a unique point in R. Furthermore, given a, b∈A with π(a)−π(b)∈{±1,±i}, we have a�b
if and only if the segment [π(ca), π(cb)] lifts to a segment [ca, cb] on R. If the scale λ is
clear from the context, then it will be convenient to denote “the” encoding of R by (λ,AR,
πR,�R). If R is the result of some computation, then we will denote by λR the scale of
the corresponding representation.

Remark 3.3. In practice, it is more efficient to work with a set of scaled nodes Asc instead
of A. Each element of Asc is a pair (a, n) with a ∈ A, n ∈ 2N and π(a) ∈ λ n(Z + Z i).
A scaled node corresponds to n2 nodes (ai,j)06i,j<n in A with π(ai,j)= π(a)+ i+ j i and

⊞ai,j

ai,j+1

ai+1,j

ai+1,j+1 for all 06 i, j <n− 1. For simplicity, we will directly work with nodes in A
in what follows. Nevertheless, with some additional effort, our algorithms can be adapted
to work with scaled nodes.

Let R be a digital Riemann surface, with a fixed encoding Ř=(λ,A, π,�). We write

Rdig= {ζ ∈R:π(ζ)∈Cdig}

Joris van der Hoeven 11



for the set of digital points on R. Such a point ζ ∈Rdig can be encoded by a pair ζ̌ =(a, z)
with a∈A and z=π(ζ) such that ζ ∈ Q̄a∩R. This encoding is unique, except when ζ lies
on the border of two squares. Notice that Rdig is an abstract computable set. Similarly,
we write

Rcom= {ζ ∈R:π(ζ)∈Ccom}

for the set of computable points on R. Such a point ζ ∈ Rcom can be encoded by a pair
ζ̌ = (a, z) with a ∈A and z = π(ζ), such that the distance between ζ and Q̄a is bounded
by λ/2. Hence, we have ζ ∈ Qa, or ζ ∈ Q{a,b} with a�b, or ζ ∈ Q{a,b,c,d} with ⊞c

a
d
b. In

particular, ζ admits a computable open neighbourhood Uζ, such that π|Uζ
is a homeomor-

phism onto a rectangle π(Uζ) with corners in Cdig. Notice that there exists no algorithm
for testing whether ζ ∈Qa for given ζ ∈Rcom and a∈A.

3.2. Digital Riemann pastings

During actual computations with digital Riemann surfaces, the conditions DR2 and DR3
are not always met a priori . In that case, we need an automatic procedure to identify
nodes when necessary. This will be the main objective of this section.

Consider a tuple Ř=(λ,A, π,�) as in the previous section which only satisfies DR1.
Then the construction of the previous section still yields a topological space R with
a projection π:R→C, even though R may now contain points which are not locally home-
omorphic to open subsets of C. We will call R a digital Riemann pasting with encoding Ř.
For instance, taking A = {a, b, c}, π(a) = π(b) = π(c) + i, a�c and b�c, we obtain
the digital Riemann pasting shown at the upper left hand side of figure 3.1.

A quotient structure on Ř is a pair (∼1,�1), where ∼1 is an equivalence relation on A
and �1⊇� an adjacency relation on A, such that

• a∼1 b⇒ π(a)= π(b).

• a�1b∧ a′∼1 a∧ b′∼1 b⇒ a′�1 b
′.

In that case, when setting π1(a/∼1)=π(a) for all a∈A, the tuple Ř/(∼1,�1)= (λ,A/∼1,
π1,�1) again encodes a digital Riemann pasting.

The intersection (∼1∩∼2,�1∩�2) of two quotient structures (∼1,�1) and (∼2,�2) is
again a quotient structure. Moreover, if both Ř/(∼1,�1) and Ř/(∼2,�2) encode digital
Riemann surfaces, then so does Ř/(∼1 ∩ ∼2,�1 ∩ �2). Consequently, (=A, �) generates
a smallest quotient structure (∼∗,�∗) for which Ř∗

=Ř/(∼∗,�∗) encodes a digital Riemann
surface. We call Ř∗ the normalization of Ř and the corresponding digital Riemann surface
R∗ the normalization of R. It can be checked that normalization commutes with the
doubling operator (Ř⊞)∗= (Ř∗

)⊞, so that that this definition indeed does not depend on
the chosen scale. Two examples of normalizations are shown in figure 3.1.

Example 3.4. Let R be a digital Riemann pasting and let ∼ be an equivalence relation
on R with ζ ∼ ξ⇒ π(ζ) = π(ξ). Given an encoding Ř = (λ, A, π, �), we may define an
equivalence relation ∼′ on A by a∼′b⇔∃ζ ∈Q̄a,∃ξ∈Q̄b, ζ∼ ξ. Then (Ř/(∼′,�))∗ encodes
a digital Riemann surface, which we will denote by R/∼.

In order to compute the normalization of a digital Riemann pasting R, it is convenient
to maintain

• The map π−1 which associates to each z ∈ imπ its preimage π−1(z)⊆A.

• The map µ:A×{±1,±i}→P(A) with µ(a, δ)= {b∈A: π(b)= π(a)+ δ ∧ a�b}.
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Given a subset B ⊆A of nodes such that π(B) consists of a singleton z, we may then glue
all nodes in B together using

• µ(a,−δ)6 µ(a,−δ)∪{B} \B for all δ ∈{±1,±i} and a∈ µ(b, δ) for some b∈B.

• µ(B, δ)6 ⋃

b∈B µ(b, δ) for all δ ∈{±1,±i}.
• π−1(z)6 π−1(z)∪{B} \B.

In order to normalize R, we now keep on doing the following operations until both DR2
and DR3 are satisfied:

• If DR2 is not satisfied, then there exist a ∈A and δ ∈ {±1,±i} such that µ(a, δ)
contains more than one element. In that case, we glue all elements in µ(a,δ) together
using the above procedure.

• If DR2 is satisfied, but not DR3, then there exits an a ∈ A and a permutation
{δ1,	 , δ4} of {±1,±i} with µ(µ(µ(a, δ1), δ2), δ3) = {b}, but b � µ(a,−δ4). In that
case, we add b to µ(a,−δ4) and a to µ(b, δ4).

The normalization procedure finishes, because the size of A strictly decreases for the first
operation and the number of (a, b)∈A2 strictly increases for the second operation.

3.3. Digital coverings and computable Riemann surfaces

A digital covering is a covering ϕ: R1 → R2 in the classical sense between two digital
Riemann surfaces. Let ϕ be a digital covering and let Ř1 = (λ, A1, π1, �1) and Ř2 =
(λ,A2, π2,�2) be encodings of R1 and R2 at the same scale λ. Then ϕ induces a mapping
F :A1→A2, which sends a∈A1 to the unique F (a)∈A2 with cF (a)=ϕ(ca), where ca stands
for the center of Qa. This mapping satisfies

π2 ◦F = π1 (3.1)

a�1b ⇒ F (a)�2F (b) (a, b∈A1) (3.2)

Inversely, given a mapping F :A1→A2 which satisfies (3.1) and (3.2), we obtain a covering
in the classical sense by sending ζ ∈ Q̄a ∩ R1 to the unique point ϕ(ζ) ∈ Q̄F (a) with
π2(F (ζ)) = π1(ζ). In other words, the digital covering ϕ may be encoded by the triple
ϕ̌=(Ř1, Ř2, F ). We will denote by Vdig the set of all digital coverings.

Example 3.5. Let R be a digital Riemann surface encoded by Ř=(λ,A,π,�). Consider
the equivalence relation a∼ b⇔π(a)=π(b) on A and the projection P :A→A/∼. Then the
tuple Řpl=(λ,Apl, πpl,�pl) with Apl=A/∼, πpl◦P =π and a�plb⇔π(a)−π(b)∈{±1,±i}
encodes the digital complex subset π(R) of C and π:R→ π(R) is a digital covering.

Example 3.6. The definition of digital coverings naturally extends to digital Riemann
pastings. The normalization R∗ of a digital Riemann pasting comes with a natural digital
covering ·∗: R → R∗; ζ � ζ∗. In particular, given an equivalence relation ∼ on R with
ζ∼ ξ⇒π(ζ)=π(ξ), we obtain a natural covering R→R/∼. This generalizes the previous
example, by taking ζ∼ ξ⇔ π(ζ)=π(ξ). Moreover, any digital covering ϕ:R→S induces
a digital covering ϕ∗:R∗→S∗ which commutes with ·∗.

Given digital Riemann surfaces R0,R1,	 and coverings ϕ0:R0→R1, ϕ1:R1→R2,	 ,
we call

R01ϕ0 R11ϕ1 R21ϕ2 
 (3.3)

a digital covering sequence. Such a sequence admits a natural limit

R= limR01ϕ0 R11ϕ1 
 = (R0∐R1∐
 )/∼, (3.4)
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where ∼ is the smallest equivalence relation with ζ ∼ ϕi(ζ) for each ζ ∈ Ri, and R has
the natural structure of a Riemann surface. We will write ϕi;j for the composed covering
ϕj−1◦
 ◦ϕi:Ri→Rj and ϕi; for the covering which sends ζ ∈Ri to ζ/∼∈R. We say that
the covering sequence (3.3) is computable, if the mapping Ř:N→Sdig×Vdig;n� (Rn, ϕn)
is computable. In that case, we callR a computable Riemann surface. Notice that coverings
are not necessarily injective. This corresponds to the idea that better knowledge of the
Riemann surface of a function may lead to the detection of identical leaves.

Example 3.7. Let R⊆C be an open rectangle with corners in Ccom or an open disk with
center in Ccom and radius in Rcom,>. For each n∈N, let

λn = 2−n

An = {a∈Z[i]: Q̄a,λn ⊆R}.

By example 3.1, λn and An determine a digital subsetRn of C. The limit of the sequence of
embeddingsR0→R1→	 is a computable digital Riemann surface, which is homeomorphic
to R. More generally, the limit of a computable sequence R0→R1→
 of embeddings of
digital subsets of C is called a computable open subset of C.

Example 3.8. The example 3.2 can be adapted to turn infinitely many times around the
hole in the middle. Indeed, consider the “infinite digital Riemann surface” R∞ encoded by:

λ = 1

A = {ax,y;k:x, y ∈{−1, 0, 1}, (x, y)� 0, k ∈Z}
π(ax,y;k) = x+ y i

ax,y;k�ax′,y ′;k ′ ⇔ |x′−x|+ |y ′− y |=1∧
(((x, y)= (1,−1)∧ (x′, y ′)= (1, 0)∧ k ′= k+1)∨
((x′, y ′)= (1,−1)∧ (x, y)= (1, 0)∧ k= k ′+1)∨
({(x, y), (x′, y ′)}� {(1, 0), (1,−1)}∧ k ′= k))

Given n∈N, the restriction Rn of R∞ to those ax,y,k with −n6k6n determines a digital
Riemann surface Rn in the usual sense. The natural inclusions determine a digital covering
sequence R01ϕ0 R11ϕ1 
 whose limit corresponds to R∞. Notice that R∞ is isomorphic
to the universal covering space of π(R∞); see also section 4.7.

Let R be a fixed computable Riemann surface. We denote by

Rdig = {ζ ∈R: π(ζ)∈Cdig}
Rcom = {ζ ∈R: π(ζ)∈Ccom}

the sets of digital and computable points on R. A digital point ζ ∈Rdig (and similarly for
a computable point ζ ∈Rcom) may be encoded by a partial sequence ζ̌ :n>nζ� ζn∈Rn

dig

such that ζn+1= ϕn(ζn) and ζ= ϕn;(ζn) for all n>nζ. We notice that Rdig is an abstract
enumerable set. We have natural computable mappings

π: Rdig → Cdig

π: Rcom → Ccom

As in the case of digital Riemann surfaces, each ζ ∈ Rcom admits a computable open
neighbourhood Uζ, such that π|Uζ

is a homeomorphism onto a rectangle π(Uζ) with corners
in Cdig.
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3.4. Atlas representation of a computable Riemann surface

Instead of using the digital representation of computable Riemann surfaces (i.e. as limits
of digital covering sequences), we may also try to mimic more classical representations of
Riemann surfaces. For instance, a computable atlas representation of a Riemann surface R
with projection π:R→C is a tuple Ř=(A,U , lift,V ,⊓), where

• A is an abstract enumerable set.

• U is a computable map which sends a∈A to a computable open subset Ua of Ccom.

• lift: (A,Ccom)⇀Rcom is a computable partial map such that lift(a, ·):Uacom→Rcom

is an immersion for every a∈A, with π(lift(a, z))= z for all z ∈Uacom. Here

Rcom= {z ∈R:π(z)∈Ccom}.

• V :Rcom→A is a computable function such that z ∈ im lift(Vz, ·) for all z ∈Rcom.

• An enumerable relation ⊓⊆A2 with

a ⊓ b⇔ im lift(a, ·)∩ im lift(b, ·)� ∅.
Proposition 3.9. Any computable Riemann surface admits an atlas representation.

Proof. Let R be the limit of a digital covering sequence R01ϕ0 R11ϕ1 
 of digital
Riemann surfaces Rn and define

A = {(n, {a}):n∈N, a∈ARn}∪
{(n, {a, b}):n∈N, a, b∈ARn, a�b}∪
{(n, {a, b, c, d}):n∈N, a, b, c, d∈ARn, ⊞c

a
d
b}

U : (n,B)∈A� QπRn(B).

Given ζ = ϕn;(ζn) ∈ Rcom, let ζ̌n = (a, z) ∈ ARn × Ccom be an encoding of ζn. We
have already noticed that z ∈ QB for B = {a}, B = {a, b} with a�b or B = {a, b, c, d}
with ⊞c

a
d
b. We may thus take Vζ=(n,B). Conversely, given (n,B)∈A, the composition of

π−1:QπRn(B)→QB and the restriction of ϕn; to QB determines an immersion lift((n,B), ·)
of QπRn(B) into R. Finally, given pairs (i, B), (j , C) ∈ A, we may ultimately check
whether ϕi;(QB) ∩ ϕj;(QC) � ∅: given n ∈ N, we check whether n > max (i, j) and
ϕi;n(QB)∩ ϕj;n(QC)� ∅. �

Proposition 3.10. Any Riemann surface with a computable atlas representation can be
given the structure of a computable Riemann surface.

Proof. Let A= {a0, a1, 	 } be an enumeration of A and {E0, E1, 	 } an enumeration of
all pairs (i, j) with ai ⊓ aj.

Let us first assume that each Uan is a digital subset of C. Consider the disjoint
union Ua0 ∐ 
 ∐ Uan, together with the smallest equivalence relation ∼ for which corre-
sponding squares in Uai and Uaj are equivalent if and only if (i, j)∈ {E0,	 , En}. Setting
Rn = (Ua0 ∐ 
 ∐ Uan)/∼, we obtain a natural computable digital covering sequence
R01ϕ0 R11ϕ1 
 . We claim that R is isomorphic to the limit R̃ of this sequence.

Indeed, the construction implies natural coverings ψn:Rn→R which pass to the limit
ψ: R̃→R. Inversely, im lift(a, ·) naturally immerses into R̃, with inverse ψ. Gluing these
immersions together for all a ∈A, we obtain a covering ξ:R→R̃ with ψ ◦ ξ= IdR (since
every z ∈Rcom is contained in im lift(Vz , ·)), proving that RD R̃.

Joris van der Hoeven 15



In the general case, each Uan is the computable limit of a sequence Rn,0 →Rn,1 →

of immersions. We may now construct another computable atlas representation of R, by
taking Ã={a0,0, a1,0, a0,1, a2,0, a1,1, a0,2,	 }, Ũai,j=Ri,j, etc. We conclude by applying the
above argument to this new computable atlas representation. �

Remark 3.11. From the proofs of the above propositions, it becomes clear that the class
of Riemann surfaces with a computable atlas representation does not change if we require
the computable open sets Ua to be of a prescribed type, like open rectangles with corners
in Cdig or open balls with centers in Ccom and radii in Rcom,>.

3.5. Intrinsic representation of a computable Riemann surface

Let R be a classical Riemann surface above C and denote

Rdig = {ζ ∈R:π(ζ)∈Cdig};
Rcom = {ζ ∈R:π(ζ)∈Ccom}.

Given z ∈C and ρ∈R>∪{+∞}, we denote

Bz,ρ = {z+ δ ∈C: |δ |< ρ} Bρ = B0,ρ

B̄z,ρ = {z+ δ ∈C: |δ |6 ρ} B̄ρ = B̄0,ρ
(3.5)

Given a point ζ ∈ R, let rζ ∈ R> ∪ {+∞} be the largest radius such that there exists
an open disk Bπ(ζ),r ⊆ C for which ζ admits an open neighbourhood V ⊆ R so that the
restriction π|V of π to V is a homeomorphism between V and Bπ(ζ),r. Given δ ∈ C with
|δ | < rδ, we denote by ζ + δ or ζ+δ the unique point in V with π(ζ + δ) = π(ζ) + δ. In
particular, the notations (3.5) naturally generalize to the case of balls Bζ ,ρ and B̄ζ ,ρ in R,
for ρ6 rζ (resp. ρ< rζ).

A computable intrinsic representation of R is a tuple Ř=(χ,dig, πcom, rcom,+com,near)
such that

• χ is an encoding for Rcom.

• πcom:Rcom→Ccom is a computable function with πcom= π|Rcom.

• dig:N→Rcom is a sequential enumeration of the elements of Rdig.

• rcom:Rcom→ R̄lcom,> is a computable function with rcom= r|Rcom.

• +com:Rcom×Ccom⇀Rcom is a computable function with ζ +com δ = ζ + δ for all
ζ ∈Rcom and δ ∈Brζcom.

• near⊆ (Rcom)2 is an enumerable relation with

near(ζ , ξ)⇔ ξ ∈Bζ,rζ.

Simplifying notations πcom→π, rcom→ r and ζ+comδ→ ζ+ δ, we thus have the following
signature:

π: Rcom → Ccom

r: Rcom → R̄lcom,>

+: Rcom×Ccom ⇀ Rcom

Proposition 3.12. Any computable Riemann surface R admits a computable intrinsic
representation.

Proof. Let R be the limit of a digital covering sequence R01ϕ0 R11ϕ1 
 . For Ř, we
take the set of encodings of points ζ ∈Rcom and we already have a computable mapping
π:Rcom→Ccom.
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Let ζ̌ :n>nζ� ζn be the encoding of a point ζ ∈Rcom. The distance rζn of to the border
∂Rn is easily computed for each n> nζ. Since rζn 6 rζn+1 6 
 and limn→∞rζn = rζ, the
sequence i� rζnζ+i encodes rζ∈R̄lcom,>. Similarly, given δ∈Ccomwith |δ |<rζ, it is easy to

compute ζn+ δ in Rn for each sufficiently large n>n0. Then the sequence n>n0� ζn+ δ
encodes ζ + δ.

Finally, Rdig = ϕ0;(R0
dig) ∪ ϕ1;(R1

dig) ∪ 
 yields an enumeration dig of Rdig. Given
ζ , ξ ∈ Rcom with encodings ζ̌ : n> nζ � ζn and ξ̌ : n> nξ� ξn, we may ultimately check
whether near(ζ , ξ) holds: given n∈N, we test whether n>max (nζ , nξ) and ξn∈Bζn,rζn. �

Proposition 3.13. Let R be a Riemann surface with a computable intrinsic representa-
tion. Then R is a computable Riemann surface.

Proof. Let {ζ0, ζ1,	 } be the enumeration of Rdig and {E0, E1,	 } an enumeration of all
pairs (i, j)∈N2 such that near(ζi, ζj) holds.

For each n ∈N, we may compute a square Qn ⊆Bπ(ζn),rζn with corners in Z[i] µn, for
some µn ∈ 2Z such that rζn/8< µn< rζn/2. Now let Rn= (Q0 ∐ 
 ∐ Qn)/∼, where ∼ is
the smallest equivalence relation induced by identifying matching squares in Qi and Qj

for pairs (i, j) ∈ {E0, 	 , En}. We claim that the limit R̃ of the induced digital covering
sequence R01ϕ0 R11ϕ1 
 is isomorphic to R.

Indeed, we have natural coverings ψn: Rn → R for each n, which pass to the limit
ψ: R̃ → R. Inversely, for each n, the set Bζ0,rζ0 ∪ 
 ∪ Bζn,rζn can be immersed in
some Rk(n), where k(n) is large enough such that all pairs (i, j) with ζj∈Bζi,rζi are among
{E0,	 , Ek(n)}. Gluing these immersions together, we this obtain an immersion ι:R→R̃
with ψ ◦ ι= IdR, proving that R̃ D R. �

3.6. Optional features of computable Riemann surfaces

Let R be a computable Riemann surface. In certain cases, we may design an algorithm
r·:Rcom→ R̄com,> to compute the distance of a point ζ ∈Rcom to the border. In that case,
we say that R is a delimited computable Riemann surface.

Remark 3.14. One might prefer to call computable Riemann surfaces in our sense lower
computable Riemann surfaces and delimited computable Riemann surfaces simply com-
putable Riemann surfaces (and similarly for computable open sets). However, in what
follows, we will mainly have to deal with computable Riemann surfaces for which we do
not have a computable distance function r·:Rcom→ R̄com,>. Therefore, we will stick to the
original definition.

Assume that R = lim R01ϕ0 R11ϕ1 
 and consider two points ζ , ζ ′ ∈ Rcom. Even
under the assumption that π(ζ) = π(ζ ′), we notice that there exists no test in order to
decide whether ζ = ζ ′. Indeed, given encodings ζ̌ : n> nζ � ζn and ζ̌

′: n> nζ ′� ζn
′ of ζ

resp. ζ ′, we do not know whether there exists an index n with ζn= ζn
′ . Nevertheless, we

naturally do have such a test in the case when the coverings ϕi are embeddings. In this case,
we say that R has computable branches . Conversely, assume that we have a conditional
equality test

=·: Rcom×Rcom×{true, false} → {true, false}

where ζ=b ζ
′ returns the result of the test ζ= ζ ′, provided that we are given the answer b

to the test π(ζ)=π(ζ ′). Equivalently, one may assume a predicate

near: Rcom×Rcom ⇀ {true, false}
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such that near(ζ , ξ) holds if and only if ξ ∈ Bζ ,rζ, provided that π(ξ)∈ Bπ(ζ),rζ. Then we

may associate a new digital Riemann surface R̃k to each Rk, by identifying all squares Qa

with a∈ARk
whose centers are equal (using the normalization algorithm from section 3.2).

This leads to a new representation k� (R̃k, ϕ̃k) of R, for which the induced coverings ϕ̃k
are embeddings. When using the atlas representation, R has computable branches if and
only if we have a computable test for deciding whether im lift(a, ·)∩ im lift(b, ·)� ∅.
4. Constructions of computable Riemann surfaces

4.1. Computable coverings

Consider two computable Riemann surfaces R and S. A covering ξ:R→S is said to be
computable if its restriction to Rcom is a computable mapping Rcom → Scom. A digital
representation of such a covering is a triple ξ̌ = (Ř , Š , ξseq), such that Ř: n� (Rn, ϕn)

represents R, Š : n� (Sn, ψn) represents S and ξseq: n� ξn is a computable sequence of
digital coverings ξn:Rn→Sn, such that

R0 1ϕ0 R1 1ϕ1 R2 1ϕ2 
#ξ0 #ξ1 #ξ2
S0 1ψ0 S1 1ψ1 S2 1ψ2 
 (4.1)

commutes and ξ(ϕn;(ζ)) = ψn;(ξn(ζ)) for any n ∈N. If each ξi is an immersion, then we
call ξ̌ a computable immersion (of representations). If ξ is also surjective, then we call ξ̌
a computable subdivision (of representations), and Ř is said to be a subdivision of Š .

Lemma 4.1. Let Ř:n� (Rn, ϕn) be the representation of a computable Riemann surface.
Then we may compute a computable subdivision Š :n� (Sn, ψn) of Ř, such that there exist
εn> 0 with rζ>εn for all n∈N and ζ ∈ ψn;(Sn).

Proof. Without loss of generality, we may assume that the Rn are encoded at scales
λR0>λR1>
 . Given a digital Riemann surface T encoded by (λ,A,π,�), let �λT stand
for its restriction to the subset of inner nodes a∈A which admit four distinct neighbours b1,
b2, b3, b4∈A. Taking Sn=�λRn

�λRn
Rn, ψn= ϕn|Sn

and εn=λRn, the inclusion mappings
Sn → Rn determine a computable immersion of the Riemann surface S represented by
Š : n� (Sn, ψn) into R. Since λRn → 0, this immersion is actually a subdivision and we
have rϕn;(ζn)> rζn>εn6 λRn for all ζn∈Sn. �

Lemma 4.2. Let R be the limit of a computable covering sequence R01ϕ0 R11ϕ1 
 and
C ⊆R a digital Riemann surface such that C̄ is compact. Then we may compute an n∈N

and a digital Riemann surface T ⊆Rn with ϕn;(T )⊇ C̄.

Proof. The set {ϕ0;(R0), ϕ1;(R1),	 } forms an open covering of C̄ . Since C̄ is compact, it
follows that there exists an k ∈N with ϕk;(Rk)⊇ C̄ . Since ϕk;(Rk) and C are both digital
Riemann surfaces, we may actually check whether ϕk;(Rk)⊇C̄ , and therefore compute the
first k for which this holds. �

Proposition 4.3. Let ξ: R → S be a computable covering. Let Ř: n � (Rn, ϕn) and
Š :n� (Sn, ψn) be representations for R resp. S. Modulo subdividing Ř and reindexing Š,
the covering ξ admits a computable digital representation of the form ξ̌ =(Ř , Š , ξseq).
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Proof. By lemma 4.1, we may assume without loss of generality that there exist εn > 0
with rζ>εn for all n∈N and ζ ∈ ϕn;(Rn). In particular, Cn= ϕn;(Rn) is a compact subset
of R for all n ∈N. By lemma 4.2, we may compute a digital Riemann surface Tkn ⊆ Skn
with ψkn;(Tn) ⊇ ξ(Cn). We next increase kn further until there exists a digital covering
ξn: Cn→Tkn ⊆ Skn which commutes with ξ ◦ ϕn;= ψkn; ◦ ξn. On the one hand, the digital
coverings ξn: Cn → Tkn, whose incarnations at a suitable scale are finite in number, can
easily be computed. Using the predicate near, we also have an ultimate test for checking
whether ξ ◦ ϕn; = ψkn; ◦ ξn. Trying all values of n in parallel, we know that one of these
tests will ultimately succeed. Increasing kn still further so as to ensure that k0< k1<
 ,
this completes the construction of the digital representation of ξ. �

Remark 4.4. A representation Ř:n� (Rn, ϕn) of a computable Riemann surface is said to
be proper if there exist εn>0 with rζ>εn for all n∈N and ζ ∈ϕn;(Rn). From the proof of
proposition 4.3, it follows that it is not necessary to subdivide Ř, provided that Ř is proper.

A computable covering sequence is a computable sequence

R01ξ0 R11ξ1 R21ξ2 
 (4.2)

where each Rn is a computable Riemann surface and each ξn:Rn→Rn+1 a computable
covering. Let Řn: k � (Rn,k, ϕn,k) be a proper representation of Rn for each n. By
induction over n, and modulo reindexation of Řn, we may construct a digital representation
(Řn, Řn+1, k� ξn,k) for ξn, such that we have the following commutative diagram:

R0,0 1ϕ0,0 R0,1 1ϕ0,1 R0,2 1ϕ0,2 
#ξ0,0 #ξ0,1 #ξ0,2
R1,0 1ϕ1,0 R1,1 1ϕ1,1 R1,2 1ϕ1,2 
#ξ1,0 #ξ1,1 #ξ1,2� � �

In particular, we obtain a new computable Riemann surface

R = limR01ξ0 R11ξ1 
6 limR0,0 1ϕ1,0◦ξ0,0R0,0 1ϕ2,1◦ξ1,1
 .
We call R the limit of the computable covering sequence (4.2). This limit satisfies the
following universal property:

Proposition 4.5. For every Riemann surface S and coverings σn:Rn→S, there exists a
unique covering ρ:R→S with σn= ρ ◦ ξn; for all n. Moreover, if S is computable and the
σn are given by a computable mapping, then ρ is also computable and we may compute it
as a function of S and the σn. �

4.2. Disjoint unions and covering products

Let R and S be two digital Riemann surfaces which are encoded at the same scale λ. We
define their disjoint union R∐S by

λR∐S = λ

AR∐S = AR∐AS

πR∐S(a) =

{

πR(a) if a∈AR
πS(a) if a∈AS

a�R∐S b ⇔ (a, b∈AR∧ a�R b)∨ (a, b∈AS ∧ a�S b)
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It is not hard to verify that this construction does not depend on λ and thatR∐S is indeed
a digital Riemann surface. We have natural inclusions ι1:R→R∐ S and ι2: S →R∐ S.
The disjoint union satisfies the following universal property:

Proposition 4.6. Given any digital Riemann surface T with digital coverings ξ1:R→T and
ξ2:S→T, there exists a unique covering ξ= ξ1∐ ξ2:R∐S→T with ξ1= ξ ◦ ι1 and ξ2= ξ ◦ ι2.
Moreover, ξ is a digital covering which can be computed as a function of T, ξ1 and ξ2. �

Similarly, we define the covering product R A S of R and S by taking

λRA S = λ

ARA S = {(a, b)∈AR×AS: πR(a)= πS(b)}
πRA S(a, b) = πR(a)= πS(b)

(a, b)�RA S (a′, b′) ⇔ a�R a′∧ b�S b′

We have natural digital coverings π1:RA S→R and π2:RA S→S which are not necessarily
surjective. The covering product does satisfy the following universal property:

Proposition 4.7. Given any digital Riemann surface T with digital coverings ξ1: T →R
and ξ2: T → S, then there exists a unique covering ξ = ξ1 A ξ2: T →R A S with ξ1= π1 ◦ ξ
and ξ2 = π2 ◦ ξ. Moreover, ξ is a digital covering which can be computed as a function of
T, ξ1 and ξ2. �

Let R and S be computable Riemann surfaces represented by n� (Rn, ϕn) resp. n�
(Sn, ψn). The disjoint union of R and S is the computable Riemann surface represented
by the sequence n � (Rn ∐ Sn, ϕn ∐ ψn). The sequences n � (ι1: Rn → Rn ∐ Sn) and
n� (ι2:Sn→Rn∐Sn) determine computable immersions R→R∐S and S→R∐S and
the universal properties for Rn∐Sn pass to the limit. Similarly, the covering product RA S
of R and S is the computable Riemann surfaces represented by the sequence n� (RnA Sn,
ϕn A ψn). Again, we have natural computable coverings π1:R A S→R and π2:R A S→S
which satisfy the universal property for products.

Proposition 4.8. Let R and S be computable Riemann surfaces.

a) If R and S are delimited, then so are R∐S and R A S.
b) If R and S have computable branches, then so have R∐S and R A S.

Proof. All properties are easy. For instance, given ζ ∈R A S, we have

rζ=min (rπ1(ζ), rπ2(ζ)). �

4.3. Quotient spaces and gluing at a point

Let R = lim R0 1ϕ0 R1 1ϕ1 
 be a computable Riemann surface and ≖ ⊆ (Rcom)2

a sequentially enumerable relation with ζ≖ ξ⇒π(ζ)=π(ξ). In particular, we may compute
a computable sequence k � Ek, where each Ek is a pair (ζk, ξk) ∈ (Rnk

com)2 such that
(ϕnk;(ζk), ψnk;(ζk)) is the k-th pair in the enumeration of ≖.

For each n ∈ N, let ∼n be the smallest equivalence relation on Rn generated by the
relations ϕnk;n(ζk)∼nψnk;n(ξk) for nk6n and k6n. Setting Sn=Rn/∼n, we have natural
computable coverings πn:Rn→Sn and ψn=(πn+1 ◦ ϕn)/∼n:Sn→Sn+1. Let S =R/≖ be

the limit of S01ψ0 S11ψ1 
 . The mappings πn induce a computable surjective covering
π≖:R→S . For every ζ , ξ ∈R we have ζ ≖ ξ⇒ π≖(ζ)=π≖(ξ). It is not hard to verify the
following universal property of S :
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Proposition 4.9. Given a Riemann surface T and a covering π̃ : R→ T with ζ ≖ ξ ⇒
π̃(ζ)= π̃(ξ), there exists a unique covering ξ:S→T with π̃ = ξ ◦π≖. Moreover, if T and π̃
are computable, then so is ξ and we may compute it as a function of T and π̃. �

Let us now consider two computable Riemann surfaces R and S . Given ζ ∈Rcom and
ξ ∈ Rcom with πR(ζ) = πS(ξ), consider the relation ≖ on R∐ S which is reduced to the
singleton {(ζ , ξ)}. We call R ?ζ ξS =(R∐S)/≖ the join of R and S at (ζ , ξ). If ζ and ξ
are not important, or clear from the context, then we also write R ? S for R ?ζ ξ S. We
will denote the natural coverings R→R ? S and S→R ? S by θ1 resp. θ2.

Proposition 4.10. Assume that R and S are connected. Then θ1(R)∩θ2(S) is connected.
Proof. Assume for contradiction that θ1(R)∩θ2(S) is not connected and letR? S=U ∐V,
where U is the connected component of θ1(ζ)= θ2(ξ). Then we may define an equivalence
relation ∼′ on R ∐ S by ζ ′ ∼′ ξ ′ ⇔ ζ ′ = ξ ′ ∨ θ1(ζ

′) = θ2(ξ
′) ∈ U . The quotient set

T = (R∐ S)/∼′ has a natural structure of a Riemann surface and there exists a natural
covering T →R ? S. By the universal property of R ? S, it follows that T D R ? S, which
is impossible. �

The proposition ensures in particular that we may apply the following classical theorem:

Theorem 4.11. (van Kampen) Let A and B be path-connected topological spaces, such
that A∩B is non-empty and path connected. Denote by ι1 and ι2 the natural inclusions of
A∩B in A resp. B. Then the homotopy group of A∪B is given by

π1(A∪B)= (π1(A)∗π1(B))/H,

where H is the normal subgroup of the free product π1(A)∗π2(B) of π1(A) and π2(B)
generated by elements ι1(α) ι2(α−1) with α∈π1(A∩B).

Corollary 4.12. If R and S are simply connected computable Riemann surfaces, then so
is R ? S.

4.4. Computable rooted Riemann surfaces

A broken line path is a finite sequence δ=(δ1,	 , δl)∈Cl and we write

|δ | = l

‖δ‖ = δ1+
 + δl

Intuitively speaking, δ corresponds to a path 0→ δ1→
 → δ1+
 + δl. We write P for the
set of broken line paths and denote by

Pdig = {(δ1,	 , δl)∈P: δ1,	 , δl∈Cdig}
Pcom = {(δ1,	 , δl)∈P: δ1,	 , δl∈Ccom}

the subsets of digital and computable paths. The empty path is denoted by ǫ. We say that
δ ′ is a truncation of δ and write δ ′P δ if δ ′= (δ1,	 , δi) for some i6 |δ |. Given two paths
δ, δ ′∈P, we write δ+ δ ′= (δ1,	 , δ|δ |, δ1′ ,	 , δ|δ ′|′ ). When no confusion is possible, paths of
length 1 will be identified with numbers. If δ � ǫ, then we will also write δ8 for the path
(δ1,	 , δ|δ |−1).

A Riemann surface R is said to be rooted if it admits a special element • ∈ R called
the root of R. If R is also computable and •∈Rcom, then we call R a computable rooted
Riemann surface. Unless explicitly stated otherwise, we will always assume that rooted
Riemann surfaces are connected. A root-preserving covering between two rooted Riemann
surfaces will be called a rooted covering . We denote by S•

com the class of computable rooted
Riemann surfaces. Given R ∈ S•

com, we have an additional method •: () → Rcom in the
signature of Rcom.
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Let R be a computable rooted Riemann surface. We define the path domain PR of R
to be the set of δ=(δ1,	 , δl)∈P, so that

•+ ǫ = •
•+ (δ1) = (•+ ǫ)+ δ1�

•+ (δ1,	 , δl) = (•+ (δ1,	 , δl−1))+ δl

are all well-defined. We will also write εR = •R + ε. The digital and computable path
domains of R are defined by

PR
dig = PR∩Pdig

PR
com = PR∩Pcom

We notice that PR
dig is an abstract computable set with a computable equality test, whereas

PR
com is only an effective set. A broken line path δ = (δ1, 	 , δl) ∈ PR naturally induces

a continuous path φδ,R: [0, 1]→R by setting

φδ,R((i+ t)/n)= (δ1,	 , δi−1, t δi)R

for i∈ {0,	 , l− 1} and t∈ [0, 1]. This path is rooted in the sense that φδ,R(0)= •R.

Proposition 4.13. Let R and S be computable rooted Riemann surfaces. Then there
exists at most one rooted covering ψ:R→S. Such a covering is necessarily computable and
computable as a function of R and S.

Proof. Assume that there exists a covering ψ:R→S. By continuity, it suffices to show how
to compute ψ(ζ) for all ζ ∈Rdig. Since R is connected, there exists a path δζ ∈PR

dig with

ζ=(δζ)R. Given ζ, we claim that we may compute such a path δζ. Indeed, the set PR
dig is

enumerable and, given δ∈PR
dig, we may ultimately test whether δR= ζ. We perform these

ultimate tests in parallel, for all δ∈PR
dig, until one of them succeeds. Since S is connected,

we have PR⊆PS, so our claim implies ψ(ζ)= ψ((δζ)R)= (δζ)S. �

Proposition 4.14. Let R be a computable rooted Riemann surface and assume that P is
given the natural topology of C0∐C1∐C2∐
 . Then

a) PR
dig, PR

com and PR are open subsets of Pdig, Pcom resp. P.

b) PR
com is a dense subset of PR and PR

dig is a dense subset of both PR and PR
dig.

Proof. Let us prove the proposition by induction over l for each of the subspaces PR
dig∩Cl,

PR
com∩Cl, etc. The assertions are clear for l=0. Assume that Ul=PR∩Cl is open, with

Ul
com=PR

com∩Cl as a dense subset. We have

Ul+1=PR∩Cl+1= {δ ∈Ul×C: |δl+1|< ρ(δ )8 },

where ρ:Ul→R>; δ� rδR. Now the restriction ρ|Ul
com:Ul→Rlcom,> is computable, so ρ is

lower continuous, by theorem 2.3. Assume that δ ∈Ul+1 and let ε= ρ(δ )8 −|δl+1|. Then δ8
admits an open neighbourhood V ⊆Ul with ρ(η)> |δl+1|+ε/2 for all η∈V . Consequently,
V × Bδl+1,ε/2 ⊆ Ul+1 is an open neighbourhood of δ. This proves that Ul+1, Ul+1

com and

Ul+1
dig =PR

dig∩Cl are open subsets of P, Pdig resp. Pcom. In order to show that Ul+1
com is a

dense subset of V , it suffices to prove that any open ball V ⊆ Ul+1 intersects Ul+1
com. Now

V =8 {δ :8 δ ∈V } is an open ball of Ul, which intersects Ul
com, say in δ. Furthermore, {ε∈C:

δ + ε ∈ V } is a disk with radius 0 < ρ < rδR. Taking ε ∈Cdig with |ε|< ρ, we thus have
δ+ ε∈V ∩Ul+1

com. The other density statements are proved similarly. �
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Proposition 4.15. Let R be the limit of a computable covering sequence R01ϕ0 R11ϕ1 
 .

a) If R0,R1,	 are all connected, then so is R.

b) If R0,R1,	 are all simply connected, then so is R.

Proof. Assume that R= U ∐V where U and V are non-empty open sets. Then ϕn;(Rn)

both intersects U and V for sufficiently large n. Consequently, Rn= ϕn;
−1(U)∐ ϕn;

−1(V) is
not connected. This proves (a). As to (b), assume that R0,R1, 	 are simply connected
and consider a loop γ: [0,1]→R with γ(0)= γ(1). Then im γ is compact, so ϕk;(Rk)⊇ im γ
for a sufficiently large k. In a similar way as in lemma 4.2, we may find a n> k such that
the restriction of ϕn; to ϕk;n(Rk) is a homeomorphism. But then ϕn;

−1 ◦ γ is a loop in Rn

which may be contracted to a point. Composing with ϕn;, we obtain a contraction of γ
into a point. �

Proposition 4.16. Given a not necessary connected computable rooted Riemann surface
R, we may compute the connected component R• of the root.

Proof. Let R = lim R01ϕ0 R11ϕ1 
 . Modulo taking a subsequence, we may assume
without loss of generality that R0 contains a point •R0 with •R = ϕ0;(•R0). It is easy
to compute the connected component Rn

• of •Rn = ϕ0;n(•R0) in Rn for each n ∈ N. By
proposition 4.15(a), the limit of the sequence Rn

• yields R•. �

4.5. Organic Riemann surfaces

Assume now that we are given an enumerable set of paths ∆ ⊆ Pdig and a computable
mapping r:∆→ R̄lcom,> such that, given δ ∈∆ and ε∈Cdig, we have δ+ ε∈∆ if and only
if |ε| < rδ. Reordering terms when necessary, we may assume that ∆ is presented as an
enumeration ∆= {δ0, δ1,	 } such that δiP δj⇒ i6 j for all i, j ∈N. Assume that we are
also given a number z0∈Ccom; we call (z0,∆, r) an organic triple.

Let us define a computable rooted covering sequence O0 1ω0 O1 1ω1 
 , such that
δi, δi+ ε ∈POn

dig for all i 6 n and ε ∈Cdig with ε < r(δi)On
. We proceed by induction over

n∈N. Denote by Sn the computable ball with center z0+‖δn‖ and radius rδn. We start with
O0=S0 and •S0= z0. Assume that On has been constructed. Then the path δl8 necessarily
occurs before δl in our enumeration, whence δl=δl+8 (δl)|δl|∈POi

dig, so that ζn=(δl)On∈On
com

and zn= π(ζn)∈Ccom are well-defined. Now we take

On+1=On ?ζn zn Sn+1

with root θ1(•On) and ωn = θ1. By construction, δi + ε ∈ POn+1

dig for all i 6 n + 1 and

ε∈Cdig with ε < rδi. Indeed, if i6 n, then (δi+ ε)On+1= θ1((δi+ ε)On). If i=n+1, then
(δl+ ε)on+1=θ2(zn+ε). This completes the construction of our covering sequence. Its limit
O=Oz0,∆=Oz0,∆,r is called the organic Riemann surface associated to (z0,∆, r). Organic
Riemann surfaces are always simply connected, by corollary 4.12 and proposition 4.15.
They satisfy two universal properties:

Proposition 4.17. Given a rooted Riemann surface T with π(•S)= z0 and PT ⊇∆, there
exists a unique rooted covering ψ:O→T. Moreover, if T is computable, then ψ is computable
and computable as a function of T.

Proof. Let us show by induction over n ∈ N that there exists a unique rooted covering
ψn:On→Tn, where

Tn=
⋃

i6n

B(δi)T ,r(δi)T
⊆T .
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This is clear for n = 0. Assume that the assertion holds for a given n ∈ N. There exists
a covering

σn+1:Sn+1→B(δn+1)T ,r(δn+1)T
⊆Tn+1.

By the universal property of joins, it follows that there exists a rooted covering ψn+1:
On+1→Tn+1 with ψn+1 ◦ θ1= ψn and ψn+1 ◦ θ2= σn+1. We obtain ψ by proposition 4.5
and we conclude by proposition 4.13. �

Proposition 4.18. Let (z0,∆, r) and (z0,∆
′, r ′) be organic triples with ∆⊆∆′. Then there

exists a unique rooted covering ψ:Oz0,∆,r→Oz0,∆′,r ′, which is computable and computable
as a function of (z0,∆, r) and (z0,∆

′, r ′).

Proof. Notice that rδ 6 rδ
′ for all δ ∈∆. Denote the counterparts of On, Sn, etc. in the

construction of Oz0,∆′,r ′ by On
′ , Sn′ , etc. For each n∈N, there exists a computable kn∈N

such that δ0,	 , δn∈{δ0′ ,	 , δkn′ }. By a similar induction as in the proof of proposition 4.17,
one shows that there exists a rooted covering ψn:On→Okn

′ for every n∈N. Passing to the
limit, we obtain ψ. �

Remark 4.19. If we only have a mapping r:∆→ R̄lcom,> such that δ+ ε∈∆ for any δ∈∆
and ε∈Cdig with |ε|<rδ, then we may still define Oz0,∆,r=Oz0,∆′,r, where

∆′= {(δ1,	 , δl)∈∆:∀i, |δi|<r(δ1,	 ,δi−1)}

is an enumerable set, which fulfills the stronger requirement that δ+ ε∈∆′ if and only if
|ε|<rδ.

4.6. Universal computable covering spaces

Let R be a computable rooted Riemann surface. The construction of organic Riemann
surfaces may in particular be applied for ∆=PR

dig, rδ=rδR and z0=π(•R). In that case, we
denote R♯=Oz0,∆,r and it can be proved that PR♯=PR. In the construction of Rn

♯ =On,
each Sn is naturally isomorphic to the ball B(δn)R,r(δn)R

⊆R. By induction over n, each Rn

therefore comes with a natural rooted covering ♭n: Rn
♯ → R. Taking limits, we obtain

a natural rooted covering ♭:R♯→R and it is readily verified that ♭(δR♯)= δR for all δ ∈P.
The universal computable covering space R♯ admits the following universal properties:

Proposition 4.20. Given a rooted covering τ :T →R with PT =PR, there exists a unique
rooted covering ψ:R♯→T and ψ satisfies ♭= τ ◦ψ. If τ is computable, then ψ is computable
and computable as a function of τ.

Proof. With ψn:Rn
♯→Tn as in the proof of proposition 4.17, the universal property of joins

implies that ♭n= τ ◦ψn for all n∈N. Taking limits for n→∞, we conclude that ♭= τ ◦ψ. �

Proposition 4.21. Given a computable rooted covering ψ:R→ S, there exists a unique
rooted covering ψ♯:R♯→S ♯ and we have ψ ◦ ♭R= ♭S ◦ ψ♯. Moreover, ψ♯ is computable and
computable as a function of ψ.

Proof. The existence, uniqueness and computability properties of ψ♯ follow from propo-
sition 4.18. The rooted coverings ψ ◦ ♭R and ♭S ◦ ψ♯ are identical by proposition 4.13. �

Proposition 4.22. Let ϕ: R→ S be a root-preserving computable covering between two
rooted computable Riemann surfaces R and S with PR ⊇PS. Then any path γ: [0, 1]→S
with γ(0)= •S can be lifted uniquely to a path γ̃ : [0, 1]→R with γ̃ (0)= •R.
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Proof. Let ε=min{rγ(t): t∈ [0, 1]}. Since γ is uniformly continuous, we may approximate
γ by a broken line path δ ∈Pdig with

‖γ − φδ,S‖=min {|γ(t)− φδ,S(t)|: t∈ [0, 1]}<ε/2.

Since im φδ,S ⊆ im γ + Bε/2 ⊆ S, we have δ ∈ PS
dig ⊆ PR

dig. Consequently, δ lifts to a
path φδ,R on R. Since PR ⊇ PS, we also have rζ > rϕ(ζ) for all ζ ∈ R. Consequently,
im φδ,R + Bε/2 ⊆ R, so that γ lifts to the path γ̃ (t) = φδ,R♯(t) + (γ(t) − φδ,R(t)): [0,
1]→R. �

Corollary 4.23. R♯ is isomorphic to the universal covering space of R. �

4.7. Digital covering spaces

Let R be a rooted digital Riemann surface, encoded by Ř = (λ, A, π, �). Assume that
•A∈A is such that •R∈ S̄•A. In this section, we will then show that the universal covering
space R♯ can be constructed in a more explicit way.

A digital path is a tuple δ= (δ1,	 , δl) with δ1,	 , δl∈ {±1,±i}. We denote by PA the
set of digital paths δ on A, for which •A, •A+ δ1,	 , •A+ δ= •A+ δ1+
 + δl ∈A. Given
δ∈PA, we write δA=•A+ δ∈A. The set PA comes with a natural projection π:PA→Z[i];
δ� π(δA) and a natural adjacency relation: δ�δ ′ if and only if δ= δ ′+ ε or δ ′= δ+ ε for
some ε∈{±1,±i}.

Let PA,n be the subset of PA of paths of lengths 6n. Then Pn= (λ,PA,n, π,�) is a
Riemann pasting and we denote by Rn

♯ =Pn∗=(λ,An
♯ , π,�) its associated digital Riemann

surface. The root •R can be lifted to a root •Rn
♯ of Rn

♯ for n> 2 and the natural inclusions

in:Pn→Pn+1 induce natural rooted coverings ιn:Rn
♯ →Rn+1

♯ for n> 2.

Proposition 4.24. With the above notations the limit R̃ ♯ of R2
♯1ι2 R3

♯1ι3 
 is isomor-
phic to the universal covering space R♯ of R.

Proof. In view of proposition 4.13, it suffices to prove that there exist rooted coverings
R♯→R̃ ♯ and R̃ ♯→R♯. Since PRn

♯ ⊆PR=PR♯, we have natural rooted coverings Rn
♯→R♯.

This yields a rooted covering R̃ ♯ → R♯ when passing to the limit. Conversely, any path
δ ∈ PR♯ can naturally be approximated by a digital path δ̃ ∈ PA, in the sense that
‖φδ,R−φ(c•A−•R)+λδ̃ ,R‖<3λ/2, after possible reparameterization of φδ,R. Setting n= |δ̃ |,
we then have δ∈PRn+2

♯ ⊆PR̃♯, which shows the existence of a rooted covering R♯→R̃ ♯. �

Proposition 4.25. The mappings ιn are injective.

Proof. The theoretical definition of the normalization of a Riemann pasting also applies
in the case of (λ, PA, π, �) when PA is infinite and one has δ∗ ∼ ε∗ resp. δ∗�∗ε∗ for δ,
ε ∈ PA if and only if these relations hold for a sufficiently large n with δ, ε ∈ PA,n . For
each a∈A♯ there exists a digital path δa of smallest length with (δa)A♯= a and we denote
this length by |a|. Let Bn= {a∈A♯: |a|6n} for each n∈N, so that B0⊆B1⊆
 . For every
a ∈ Bn, the path δa induces an element an = (δa)An

♯ of An
♯ , which shows that the natural

rooted covering Rn
♯ →Bn is surjective. Since Rn

♯ is obtained by gluing a finite number of

squares to Rn−1
♯ , corollary 4.12 implies that Rn

♯ is simply connected, by induction over n.

Consequently, Rn
♯ is isomorphic to Bn for each n, and R0

♯⊆R1
♯⊆
 , as desired. �
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Corollary 4.26. Let R be a rooted digital Riemann surface and let δ, δ ′∈PR
com be such

that ‖δ‖=‖δ ′‖. Then there exists an algorithm to decide whether δR and δR
′ are homotopic.

Proof. Since R♯ has computable branches by proposition 4.25, we have a test for deciding
whether δR♯= δR♯

′ . Now this is the case if and only if δR and δR
′ are homotopic. �

Remark 4.27. Several other algorithms can be developed in order to obtain topological
information about digital Riemann surfaces. For instance, let us sketch an algorithm to
compute generators of the homotopy group π1(R):

1. Let δ= ǫ, ∆= {}, Π6 {}, let I be the restriction of R to •A.

2. Let ∆6 ∆∪ ((δ+ {±1,±i})∩PAR).

3. If ∆=∅ then return Π.

4. Pick an element δ=(δ1,	 , δl)∈∆ of minimal length l and set ∆6 ∆ \ {δ}.

5. If δ ∈PAI, then go to step 3.

6. Let Ĩ be obtained by gluing a new square above π(δA) to Q(δ1,	 ,δl−1)AI
.

7. If there exists a δ ′ ∈PAI with δA
′ = δA, then set Π6 Π ∪ {δ ′+ (−δl,	 ,−δ0)} and

identify δAĨ

′ with δAĨ
inside Ĩ .

8. Replace I by Ĩ and go to step 2.

The above algorithm returns a set of digital paths Π each of which elements corresponds
to a generator in π1(R).

4.8. Convolution products

Let R and S be two computable Riemann surfaces with roots above 0. Organic Riemann
surfaces are also useful for the construction of a new Riemann surface R∗S such that the
convolution product of analytic functions f and g on R resp. S will be defined on R∗S.

A digital folding on R is a computable mapping η: {0,	 , l1} × {0,	 , l2}→Rdig such
that η(j1, j2)∈Bη(i1,i2),rη(i1,i2) for all 06 i16 j16 |η |16 l1 and 06 i26 j26 |η |26 l2 with

j1− i16 1 and j2− i26 1. We denote by FR
dig the enumerable set of digital foldings on R.

We also write FR,•
dig ⊆ FR

dig for the subset of rooted digital foldings η with η(i1, ·) = •R.
Given η ∈F•

dig=F
Cdig,•
dig , we define η!∈F•

dig by

η!(i1, i2)= η(i1, |η |2)− η(i1, |η |2− i2).

We define H to be the set of all foldings η ∈F•
dig with η(0, ·)=0, such that η and η! lift to

rooted foldings on R resp. S. We notice that H is enumerable.

Now any η ∈ H induces a path δ = δη ∈ Pdig by δi = η(i1, l) − η(i1 − 1, l), where

|δ | = l = |η |2. By construction, we have δ ∈ PR
dig and δ! = (δl, 	 , δ1) = δη! ∈ PS

dig. Let
∆ ⊆ Pdig be the enumerable set of all paths which are induced by foldings in H. Given
δ= (δ1,	 , δl)∈∆, we let

rδ=min {rδR, r•S − |δl|, r(δl)S − |δl−1|,	 , r(δl+
+δ2)S − |δ1|, rδS! }∈ R̄lcom,>. (4.3)
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Given ε∈Cdig with |ε|<rδ, we claim that δ+ ε∈∆. Indeed, let η ∈H be such that δ= δη
and define η ′: {0,	 , k+1}× {0,	 , l+1} with k6 |η |1 by

η ′(i1, i2)=















η(i1, i2) if i6 k and i26 l
η(k, i2) if i1= k+1 and i26 l
η(i1, l) if i16 k and i2= l+1
η(k, l)+ ε if i1= k+1 and i2= l+1

By construction, we have η ′∈H and δη ′=δ+ ε. In view of remark 4.19, we may now define
the convolution product of R and S by R∗S =O0,∆,r.

Proposition 4.28. Let η: [0,1]2→C be a continuous function with η(0, ·)= η(·,0)=0, such
that η and its mirror η!: (t1, t2)� η(t1, 1)− η(t1, 1− t2) lift into functions ηR and ηS

! on R
resp. S with ηR(0, 0)= •R and ηS

! (0, 0)= •S. Then the path γ: [0, 1]→C; t� η(t, 1) can be
lifted to a path γR∗S on R∗S. In particular, given f and g on R resp. S, the convolution
product f∗g can be analytically continued along γ:

(f∗g)(γR∗S(t))=
∫

φη(t,·),R

f(ζ) g(ζ !) d ζ ,

where ζ != ηS
! (t, 1− u), whenever ζ = ηR(t, u).

Proof. We first observe that a digital folding η ∈ FR
dig induces a natural continuous

mapping φη,R: [0, 1]2→R by

φη,R((i1+ t1)/l1, (i2+ t2)/l2) =
∑

ǫ1,ǫ2∈{0,1}
cǫ1(t1) cǫ2(t2) η(i1+ ǫ1, i2+ ǫ2)

cǫ(t) =

{

1− t if ǫ=0
t otherwise

Let

ε= min
t∈[0,1]2

min (rφη,R(t), rφ
η!,S

(t)).

Since η is uniformly continuous, we may approximate it by a digital folding η̃ ∈Fdig with

‖η− φη̃ ,C‖= max
t∈[0,1]2

|η(t)− φη̃ ,C(t)|<ε/2.

Moreover, we may take η̃ such that η̃(0, ·)= η̃(·, 0)= 0 and η̃(|η̃ |1, |η̃ |2)= η(1, 1). By our
choice of ε, the foldings η̃ and η̃ ! lift to R resp. S, so that η̃ ∈H. Moreover, the broken line
path δ̃ = δη̃ satisfies |δ̃i|<r(δ̃1,	 , δ̃i−1)

for all i6 |δ̃ |, again by the choice of ε. Consequently,

δ̃ ∈PR∗S
dig and its associated continuous path γ̃C=φδ̃ ,C lifts to a path γ̃R∗S onR∗S with the

same endpoints as γR∗S. Once more by the choice of ε, we have rγ̃R∗S(t)> ε/2 for all t∈ [0,

1] and ‖γ− γ̃C‖<ε/2. Consequently, γ lifts to the path γR∗S: t� γ̃R∗S(t)+(γ̃C(t)− γ(t))
on R∗S. �

The convolution product R∗S comes with natural computable rooted coverings
̟R: R∗S → R and ̟S: R∗S → S, since any η ∈ H in particular induces a path δ ∈
PR

dig ∩ PS
dig with δi = η(i, |η |2) − η(i − 1, |η |2). The following universal property fol-

lows from proposition 4.18:

Proposition 4.29. Let ϕ:R→R′ and ψ:S→S ′ be two computable rooted coverings. Then
there exists a unique rooted covering ϕ∗ψ:R∗S→R′∗S ′. This covering is computable and
can be computed as a function of ϕ and ψ. Moreover, ̟R′◦ (ϕ∗ψ)=̟R and ̟S ′◦ (ϕ∗ψ)=
̟S. �
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5. Computable analytic functions

In [vdH05a], a computable analytic function f was defined locally as a “computable germ”
with a computable method for analytic continuation. In section 5.1, we recall an improved
version of this definition. In section 5.3, we define the new concepts of globally and
incrementally computable analytic functions. These concepts allow for computations with
analytic functions on computable Riemann surfaces as studied in the previous sections.
A locally computable analytic function in the sense of section 5.1 will naturally give rise to
a globally computable analytic function on an organic Riemann surface. However, common
operations on globally analytic functions, as studied in sections 5.4 and 5.5, may give
rise to computable Riemann surfaces which are not necessarily simply connected. Our
new definition therefore has the advantage that identical branches may be detected effec-
tively in many cases.

5.1. Locally computable analytic functions

Let f = f0+ f1 z+
 ∈C[[z]] be a convergent power series at the origin. We will write rf
for its radius of convergence. Given ρ∈R> with ρ< rf , we also define

‖f ‖ρ=max
|z |6ρ

|f(z)|.

Finally, given δ ∈ Brf, we will denote by f+δ the analytic continuation of f along the
straightline segment [0, δ], so that f+δ(z)= f(δ+ z) for small z.

A locally computable analytic function f is an object encoded by a quadruple

f̌ =(series(f), rf, ⌈⌈f ⌉⌉·, f+·),

where

• series(f)∈Ccom[[z]]com is a computable power series.

• rf ∈ R̄lcom,> is a lower bound for rf.

• ⌈⌈f ⌉⌉·:Rcom,>⇀Rrcom is a computable partial function, which yields an upper bound
⌈⌈f ⌉⌉ρ>‖f ‖ρ for every ρ< rf.

• f+·: Ccom ⇀ Alcom is a computable partial function, which yields the analytic
continuation f+δ of f as a function of δ ∈Ccom with |δ |<rf.

We denote by Alcom the set of locally computable analytic functions. Given f ∈Alcom, we
call rf its computable radius of convergence. Usually, rf is smaller than the genuine radius
of convergence of series(f).

Remark 5.1. We notice that the definition of the encoding f̌ is recursive, because of
the method f+· for analytic continuation. Such recursive quadruples can in their turn be
encoded by terms in a suitable λ-calculus, and thereby make the definition fit into the
setting introduced in section 2.1.

Example 5.2. One important example of a locally computable analytic function is the
identity function z centered at a given c ∈ Ccom. We may implement it as a function
Id: c� Idc with

series(Idc) = z+ c

rIdc = +∞
⌈⌈Idc⌉⌉ρ = |c|+ |ρ|
(Idc)+δ = Idc+δ
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The constructor Ccom→Alcom: c� c can be implemented in a similar way.

Example 5.3. Basic operations onAlcom can easily be implemented in a recursive manner.
For instance, the addition of f , g ∈Alcom may be computed by taking

series(f + g) = series(f)+ series(g)

rf+g = min (rf , rg)

⌈⌈f + g⌉⌉ρ = ⌈⌈f ⌉⌉ρ+ ⌈⌈g⌉⌉ρ
(f + g)+δ = f+δ+ g+δ

In sections 3 and 4 of [vdH05a], algorithms were given for several other basic operations and
for the resolution of differential equations. Modulo minor modifications, these algorithms
remain valid. In particular, we have implementations for the following operations:

ι: Ccom → Alcom

z: Alcom

+,−,×: Alcom×Alcom → Alcom

/: Alcom×Alcom ⇀ Alcom

d/dz: Alcom → Alcom

∫

: Alcom×Ccom → Alcom

exp: Alcom → Alcom

log: Alcom×Ccom ⇀ Alcom

(5.1)

In the cases of
∫

and log , the second argument specifies the value of the function at 0.

It is instructive to rethink the definition of Alcom in terms of signatures. First of all,
we have a class of computable power series Ccom[[z]]com with a method for the extraction
of coefficients

··: Ccom[[z]]com×N → Ccom

Then the classAlcom of locally computable analytic functions is determined by the methods

series: Alcom → Ccom[[z]]com

r·: Alcom → R̄lcom,>

⌈⌈·⌉⌉·: Alcom×Rcom,> ⇀ Rrcom,>

·+·: Alcom×Ccom ⇀ Alcom

(5.2)

For the last two methods, we understand that ⌈⌈f ⌉⌉ρ and f+δ are defined if and only if
ρ<rf resp. |δ |<rf.

The recursive definition of Alcom raises the question when two elements f , g ∈ Alcom

should be considered identical. In what follows, we will use the criterion that f = g if and
only if the signature (5.2) does not allow for the distinction of f and g. In other words,
whenever δ1,	 , δl∈Ccom and ρ∈Rcom,> are such that f̃ = f+δ1+
+δl and g̃ = g+δ1+
+δl

are both defined and ρ<r
f̃
, we require that series(f̃ )= series(g̃), r

f̃
=rg̃ and ⌈⌈f̃ ⌉⌉ρ=⌈⌈g̃ ⌉⌉ρ.

We warn that we may have series(f)= series(g) for two different elements f , g ∈Alcom.

Remark 5.4. There are a few changes between the present definition and the definition of
computable analytic functions in [vdH05a]. First of all, we have loosened the requirements
for bound computations by allowing the results of rf and ⌈⌈f ⌉⌉ρ to be only left resp. right
computable. In [vdH05a], we also required a few additional global consistency conditions
in our definition of computable analytic functions. The homotopy condition will no longer
be needed because of theorem 5.7 below, even though its satisfaction may speed up certain
algorithms. The continuity condition also becomes superfluous because of theorem 2.3.
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5.2. Improved bounds and default analytic continuation

Given f ∈ Alcom, we have already noticed that the computable radius of convergence rf
of f does not necessarily coincide with its theoretical radius of convergence rf. This raises
a problem when we want to analytically continue f , because we are not always able to
effectively continue f at all points where f is theoretically defined. By contrast, bad upper
bounds for ⌈⌈f ⌉⌉ρ on compact disks only raise an efficiency problem. Indeed, we will show
now how to improve bad bounds into exact bounds.

Let us first introduce some new concepts. The path domain Pf
com of f is the set of

δ ∈Pcom such that |δi|< rf+δ1+
 +δi−1
for every i ∈ {1,	 , |δ |}. Given δ ∈Pf

com, we denote

f+δ = f+δ1+
+δ|δ| and f(δ) = f+δ(0). The digital path domain of f , which is defined by

Pf
dig=Pf

com∩Pdig, is enumerable. Given f , g ∈Alcom, we say that g improves f , and we
write f ⊑ g, if series(f) = series(g), Pf

com⊆ Pg
com and ⌈⌈g+δ⌉⌉ρ 6 ⌈⌈f+δ⌉⌉ρ for all δ ∈ Pf

com

and ρ< rf+δ
.

Assume now that we are given ρ,ε∈Rcom,> with ρ<rf and let us show how to compute
an ε-approximation for M =‖f ‖ρ. Approximating rf sufficiently far, we first compute an
R∈Rcom with ρ<R<rf . Now let B= ⌈⌈f ⌉⌉R and choose

n=

⌈

log
(R− ρ) ε
2RB

/

log
ρ

R

⌉

(5.3)

sufficiently large such that

|fn ζn+ fn+1 ζ
n+1+
 |6B

(

ρ

R

)n R

R− ρ
6
ε

2
. (5.4)

Using an algorithm which will be specified in section 6.2, we next compute an (ε/2)-approx-
imation M̃ for ‖P ‖ρ, where P = f0+
 + fn−1 ζ

n−1. Then M̃ is the desired ε-approxima-
tion of M . We have proved:

Proposition 5.5. Given f ∈ Alcom, we may compute an improvement f∗ ∈ Alcom of f,
such that ⌈⌈f+δ∗ ⌉⌉ρ=‖f+δ‖ρ for all δ ∈Pf

com and |ρ|<rf+δ
. �

Another situation which frequently occurs is that the radius of convergence can be
improved via the process of analytic continuation and that we want to compute bounds on
larger disks, corresponding to the new radii of convergence. This problem may be reformu-
lated by introducing the class Awlcom of weak locally computable analytic functions. The
signatures ofAwlcom andAlcom are the same except thatAwlcom comes with a second radius
function s·:Awlcom→ R̄com,> with sf 6 rf ; given f ∈Awlcom, we only require computable
bounds ⌈⌈f ⌉⌉ρ for ρ < sf. We have a natural inclusion Alcom→Awlcom and the notions of
path domain and improvement naturally extend to Awlcom.

Assume now that f ∈Awlcom and that we want to compute a bound for ⌈⌈f ⌉⌉ on B̄ρ
for a given ρ< rf . We have an algorithm for computing a tz ∈Rcom,> with tz<sf+z

from
z ∈ B̄ρdig. Consider any computable sequence z0, z1,	 ∈ B̄ρ with

zn+1 � Bz0,tz0∪
 ∪Bzn,tzn.

Since B̄ρ is compact and the function z∈B̄ρdig� tz is continuous (by theorem 2.3), it follows
that there exists an ε> 0 with tz> ε for all z ∈ B̄ρdig. In particular, the balls Bzi,tzi form an
open covering of B̄ρ, whence the sequence z0, z1, 	 is necessarily finite. Let zl be its last
term. Then

⌈⌈f ⌉⌉ρ∗ =max (⌈⌈f+z0⌉⌉tz0,	 , ⌈⌈f+zl⌉⌉tzl)
is a computable upper bound for ‖f ‖ρ. We have proved:
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Proposition 5.6. Given a weak locally computable analytic function f ∈Awlcom, we may
compute an improvement f∗∈Alcom of f. �

The bound (5.4) may also be used in order to provide a default analytic continuation
method of a computable power series f ∈ C[[z]]com inside a given computable radius of
convergence rf ∈Rlcom,>, assuming that we have an algorithm for the computation of upper
bounds ⌈⌈f ⌉⌉ρ, (ρ<rf). Indeed, let δ∈Ccom, k∈N and ε∈Rcom,> be such that |δ |<rf and
assume that we want to compute an ε-approximation of (f+δ)k= f (k)(δ)/k!. Now choose ρ,
ρ′∈Rcom with |δ |< ρ< ρ′<rf and letM ′= ⌈⌈f ⌉⌉ρ′. Then the majoration [vdH05a, vdH03]

f P
M ′

1− z/ρ′
yields the majoration

f (k)

k!
PM ′

(

ρ′

1− z/ρ′

)

k+1

,

so that

‖f (k)‖ρ6M6 M ′
(

(ρ′)2

ρ′− ρ

)

k+1

.

Taking n in a similar way as in (5.3), we thus have
∣

∣

∣

(

k+n
k

)

fn δ
n+
(

k+n+1
k

)

fn+1 δ
n+1+
 ∣∣∣6 ε

2
.

Let u be an (ε/2)-approximation of
(

k
k

)

f0 + 
 +
(

k+n− 1
k

)

fn−1 δ
n−1. Then u is also an

ε-approximation of (f+δ)k.

5.3. Globally and incrementally computable analytic functions

Let us now consider an analytic function f on a computable rooted Riemann surface R.
We say that f is a globally computable analytic function on R, if there exists a computable
function Lf:Rcom→Alcom, which maps ζ ∈Rcom to a locally computable analytic function
Lf(ζ): z� f(ζ + z), such that

rLf(ζ)
= rζ (5.5)

⌈⌈Lf(ζ)⌉⌉ρ = ‖f+ζ‖ρ (5.6)

Lf(ζ)+δ = Lf(ζ + δ) (5.7)

for all ζ ∈Rcom, ρ∈Ccom,>,<rζ and δ∈Brζcom. We denote by AR
com the set of such functions.

We also denote by Acom the set of all computable analytic functions f on some connected
computable (and computable as a function of f) rooted Riemann surface Rf. In other
words, the signature of Acom is given by

R·: Acom → S•
com

Λ: Acom → Alcom

Here the projection Λ is required to satisfy Λ(f)+δ=Lf(δR). The signature for Acom can
also be given in a more intrinsic way:

series: Acom → Ccom[[z]]com

r·: Acom → R̄lcom,>

‖·‖·: Acom×Rcom,> ⇀ Rcom,>

·+·: Acom×Ccom ⇀ Acom

R·: Acom → S•
com

•·: Acom → R·
com
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Notice that the method ⌈⌈·⌉⌉· has been replaced by an exact method ‖·‖· with codomain
Rcom,>, in view of proposition 5.5. For the intrinsic representation, the compatibility
conditions become rf=r•f andRf+δ

=Rf ,+δ, whereRf ,+δ denotes the Riemann surfaceRf

with its root moved by δ.
Using analytic continuation, let us now show how to improve a locally computable

analytic function f ∈Alcom into a globally computable analytic function f ♯∈Acom.

Theorem 5.7. There exists an algorithm which takes f ∈Alcom on input and produces an
improvement f ♯ ∈Acom of f on output. Given any other improvement g ∈Acom of f, we
have f ♯⊑ g.

Proof. For the underlying Riemann surface of f ♯, we take Rf ♯ =O0,Pf ,r, with rδ = rf+δ

for all δ ∈Pf
dig. By the construction of O0,Pf ,r, we may compute a sequence n� Bcn,rn of

open balls Bcn,rn ⊆Rf ♯ with cn=(δn)R
f♯
, δn∈Pf

dig and Rdig,>∋ rn6 rf+δn
, such that

Rf ♯=
⋃

n∈N

Bcn,rn.

Given ζ ∈ Rf ♯
com, we may therefore compute an n with ζ ∈ Bζn,rn (which may depend on

the encoding ζ̌ ) and take

series(Lf ♯(ζ))= series(f+δn+(π(ζ)−‖δn‖)).

Given ζ ∈Rf ♯
com, we may also compute

sL
f♯(ζ)=max

n∈N

{rf+δn
− |ζ − cn|: ζ ∈Bcn,rn}∈Rlcom,>.

Given ρ∈Rcom,> with ρ<sL
f♯(ζ), we may finally compute

⌈⌈Lf ♯(ζ)⌉⌉ρ=min
n∈N

{⌈⌈f+δn⌉⌉ρ+|ζ−cn|: ζ ∈Bcn,rn}∈Rrcom,>.

By propositions 5.6 and 5.5, we may therefore compute ‖Lf ♯(ζ)‖ρ for every ρ∈Rcom,> with

|ρ|<rζ. Since Pf ♯
dig⊇Pf

dig, proposition 4.14 and its adaptation to Pf
dig imply Pf ♯

com⊇Pf
com,

whence f ♯ ⊒ f . The universal property of O0,Pf ,r (proposition 4.17) implies that f ♯⊑ g

for any other improvement g ∈Acom of f . �

In practice, it is not very convenient to compute with global computable analytic
functions f , because we have no control over the regions where we wish to investigate f
first. An alternative formalization relies on the incremental extension of the Riemann
surface on which f is known. Consider the class Aicom with the following signature:

R·: Aicom → S•
com

Λ: Aicom → Alcom

X : Aicom×P·
com → Aicom

Given f ∈ Aicom and δ ∈ Pf
com ∩ PRf

com, where Pf
com = PΛ(f)

com , the method X returns an
extension f̃ =Xδ(f) of f on a Riemann surface Rf̃ with PRf̃

com⊇ δ+BrΛ(f)+δ

com (in particular,

there exists a computable rooted covering ϕ:Rf→Rf̃ ). For simplicity, it will be convenient
to assume that Λ(f̃ ) = Λ(f). For consistency, we also assume that successive calls of X
for paths δ1, 	 , δl and δ1

′ , 	 , δl′′ with {δ1, 	 , δl} ⊆ {δ1′ , 	 , δl′′ } yield extended surfaces
R1 = RXδl

◦
 ◦Xδ1
(f) and R2 = RXδ

l′
′ ◦
 ◦Xδ1

′(f) for which there exists a rooted covering

R1→R2. This ensures the following:
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Proposition 5.8. Consider an enumeration {δ0, δ1, 	 } of Pf
com. Then the limit Rf

♯ of
the computable rooted covering sequence Rf→RXδ0

(f)→RXδ1
◦Xδ0

(f)→
 does not depend

on the particular ordering of the enumeration (up to isomorphism).

Corollary 5.9. There exists an algorithm which takes f ∈Aicom on input and produces
an improvement f ♯ ∈Acom of f on output. Given any other improvement g ∈Acom of f,
we have f ♯⊑ g.

Any locally computable analytic function f ∈Alcom naturally determines an incremen-
tally computable analytic function f inc∈Aicom: starting with Rf =BrΛ(f)

, each successive

call of Xδ(f) joins a ball with radius rΛ(f)+δ
to Rf at the end of δRf, just like in the

construction of organic Riemann surfaces. However, as we will see in the next section, the
method X may also be used to identify identical branches in the Riemann surface of a
function.

5.4. Operations on computable analytic functions

In this section, we improve the implementations of the operations (5.1) so as to identify
branches of the underlying computable Riemann surface of an analytic function f , when-
ever we know that f takes the same values on both branches. We will also consider several
other operations on computable analytic functions.

Constructors. The inclusion ι: Ccom → Aicom and identity z: Aicom are easy to imple-
ment, since it suffices to take C for the Riemann surface and return Xδ(f) = f for all
δ ∈Pcom.

Entire functions. Let us now consider the case of addition f+ g for f , g∈Aicom. We take

Rf+g=Rf A •Rg,

where A • stands for the rooted covering product, i.e. Rf A •Rg is the connected component
of the root of Rf A Rg. This root is computed by applying the universal property of com-
putable covering products to the immersions of a small ball Bπ(•R),ε into neighbourhoods
of the roots of Rf and Rg. As to the method X, we may simply take

Xδ(f + g)=Xδ(f)+Xδ(g).

The consistency condition for successive applications of X is naturally met, because of the
universal property of covering products. The cases of subtraction, multiplication, exponen-
tiation and precomposition with any other computable entire functions in several variables
can be dealt with in a similar way.

Multiplicative inverses. Assume now that we want to compute f−1 for f ∈Aicom with
f(•f)� 0. Clearly, we may take

Rf−1 = Rf
�6 {ζ ∈Rf: f(ζ)� 0}

Xδ(f
−1) = Xδ(f)

−1

It remains to be shown that Rf
� is a computable rooted Riemann surface. It suffices to

show this in the case when Rf is a digital Riemann surface. Indeed,

Rf = limR01ϕ0 R11ϕ1 
 � Rf
�
= limR0

�1ϕ0 R1
�1ϕ1 
 .
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Now for every point ζ ∈ Rf above Cdig, we will show in section 6.1 how to compute a

maximal disk Bζ ,rζ on which f does not vanish. For the n-th approximation Rn
� of Rf

� ,
it suffices to take the union of all Bζ ,rζ with ζ ∈Z[i]/2n (starting with an n for which Rn

�
contains the root of Rf).

Differentiation. Given f ∈Aicom, we may take

Rf ′ = Rf

Xδ(f
′) = Xδ(f)

′.

Integration. Given f ∈Aicom and c∈Ccom, let

g(ξ)= I(f , c)=

∫

•

ζ

f(ξ) dξ.

Let Rf be the limit of a covering sequence R01ϕ0 R11ϕ1 
 of digital Riemann surfaces.
Given n∈N, we have sketched in remark 4.27 how to compute generators γ1,	 , γg for the
homotopy group π1(Rn) of Rn. The relations γiγj= γjγi induce a computable equivalence

relation ∼n on Rn
♯ . Setting Rn

I =Rn
♯/∼n, the covering ϕn gives rise to a natural covering

ϕn
I :Rn

I →Rn+1
I . We take

RI(f ,c) = limR0
I1ϕ0

I

R1
I1ϕ1

I 

Xδ(I(f , c)) = I(Xδ(f), c).

Logarithm. Given f ∈Aicom and c∈Ccom with f(•)= ec, we may take

log (f , c)= I(f ′/f , c).

However, in this particular case, the integrals of f ′/f over the above generators γi are

always multiples of 2p i, so they can be computed exactly. More precisely, let Rf
�
=Rf ′/f

be the limit of R01ϕ0 R11ϕ1 
 . We now replace Rn
I by Rn

log = Rn
♯/∼, where ∼ is the

equivalence relation defined by

ζ∼ ξ⇔ ζ♭= ξ♭∧ |log (f(ζ))− log (f(ξ))|< p.

Given ζ , ξ ∈ Rn
♯ , we may check whether |log (f(ζ)) − log (f(ξ))| < p, by computing

1-approximations ℓ1 and ℓ2 of log (f(ζ)) resp. log (f(ξ)) and testing whether |ℓ1− ℓ2|6 2.

The covering ϕn induces a natural covering ϕn
log:Rn

log→Rn+1
log and we take

Rlog(f ,c) = limR0
log1ϕ0

log

R1
log1ϕ1

log 

Xδ(log (f , c)) = log (Xδ(f), c).

Solving algebraic equations. Let Pd−1, 	 , P0 ∈ Aicom be such that the polynomial
P =F d+Pd−1F

d−1+
 +P0 is square-free. Let

R = RPd−1 A 
 A RP0

= limR01ϕ0 R11ϕ1 
 .
Let Sn be the digital Riemann surface with

λSn = λRn

ASn = {1,	 , d}×ARn

π(i, a) = π(a)
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and with an adjacency relation � defined as follows. Solving the equation P (f) = 0 at
the center ca of a∈ARn yields d solutions fa,1,	 , fa,d which we attach arbitrarily to the
(i, a)∈ASn with i∈{1,	 , d}. We set (i, a)�(j , b) if a�b and if the analytic continuation
of fa,i from π(ca) to π(cb) coincides with fb,j. This can be tested effectively, since there are
no multiple roots, whence all branches are bounded away from each other when computing
with a sufficient precision. By a similar argument, the root •Rn of Rn may be lifted to Sn,
if f(•R) has a prescribed value c ∈Ccom, and the rooted covering ϕn may be lifted to a
rooted covering ψn:Sn→Sn+1. We now take

Rf = limS01ψ0 S11ψ1 
 .
Denoting f = solve(P , c), we also take

Xδ(f)= solve(F d+Xδ(Fd−1)F
d−1+
 +Xδ(F0), f(δ)).

Integral equations. Consider an equation of the form

f(z)= I +

∫

0

z

Φ(f(t)) dt, (5.8)

where f = (f1, 	 , fd) is a vector of indeterminates, Φ a polynomial in f1, 	 , fd and
I ∈ (Ccom)d. Any algebraic differential equation can be rewritten in this form. In section 6.3
below, we will discuss techniques for computing the power series solution to (5.8) at the
origin, as well as bounds rfi and ⌈⌈fi⌉⌉ρ. Given δ ∈Ccom with |δ |<rfi for all i, we have

f+δ(z) = I +

∫

0

δ

Φ(f(t)) dt+

∫

0

z

Φ(f+δ(t)) dt

= f(δ)+

∫

0

z

Φ(f+δ(t)) dt. (5.9)

By what has been said at the end of section 5.2, we may compute f(δ)∈ (Ccom)d. Conse-
quently, the equations (5.8) and (5.9) have the same form, and the analytic continuation
process may be used recursively, so as to yield a solution f ∈ (Alcom)n. Since we do not
have any a priori knowledge about identical branches in the Riemann surfaces of the fi,
we simply solve (5.8) in Aicom by taking f inc= (f1

inc,	 , fdinc)∈ (Aicom)n. Notice that the
decomposition of the integral in (5.9) may be used for more general implicit equations
involving integration, even if they are not given in normal form (5.8).

Composition. Let us first show how to compute g ◦ f ∈Alcom for given f , g∈Alcom with
f(0)= 0. Assuming by induction over |δ | that δ ∈Pg◦f

com⊆Pf
com, we denote

f(δ) = (f(δ1)− f(ǫ),	 , f(δ)− f(δ1,	 , δl−1))

Mρ = ‖f+δ′ ‖ρ (ρ∈Rcom,>, ρ< rf+δ
)

and set

r(g◦f)+δ
= sup {ρ∈Rcom,>: ρ< rΛ(f)+δ

∧Mρ<rg+f(δ)
},

⌈⌈g ◦ f ⌉⌉ρ = ⌈⌈Λ(g)+f(δ)⌉⌉Mρ.

In section 6.2, we will show how to compute Mρ ∈ Rcom, so that r(g◦f)+δ
∈ Rlcom,> and

⌈⌈g ◦ f ⌉⌉ρ∈Rrcom,>.
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Assume now that f , g ∈ Aicom are such that f(•Rf
) = π(•Rg), so that Λ(g ◦ f) =

Λ(g) ◦ Λ(f) ∈ Alcom is well-defined by what precedes. Let RΛ(g◦f)♯ be the canonical
Riemann surface of Λ(g ◦ f), as in theorem 5.7, and let S be the subspace induced by
paths δ ∈ Rf for which Λ(f)(δ) ∈ Rg. A digital folding η on Rg is said to be a digital
homotopy between the paths associated to η(0, ·) and η(|η |1, ·) if η(·,0)=•Rg and η(·, |η |2)
is constant. The set of pairs (δ, δ ′) ∈ PΛ(g◦f)

dig ∩ PS
dig such that Λ(f)(δ), Λ(f)(δ ′) ∈ Pg

dig

determine digitally homotopic paths on Rg is enumerable. We take Rg◦f =S/∼, where ∼
stands for digital homotopy on Rg. We also take

Xδ(g ◦ f)=XΛ(f)(δ)(g) ◦Xδ(f).

Remark 5.10. With a bit more effort, the computation of the Riemann surface of g ◦ f
can be done more efficiently, by directly working with digital approximations and using
corollary 4.26.

Heuristic continuation. Assume that we are given a computable convergent power
series f̃ at the origin. Sometimes, it is interesting to associate a function f ∈Aicom to f̃ by
determining rf+δ

and ⌈⌈f+δ⌉⌉ρ in a heuristic way. For instance, given the first n coefficients
f0, 	 , fn−1 of f , the radius of convergence may be determined heuristically, by looking
at the convex hull of (i, log |fi|+R6) in R2 and considering the edge from (i, α) to (j , β)
with i6 ⌊2n/3⌋< j. Then

log rf ≈−β −α

j − i
.

In order to determine ⌈⌈f ⌉⌉ρ, it suffices to compute f0, f1 ρ, 	 until several successive
values fn ρn are small with respect to max {|f0|, |f1| ρ, 	 , |fn−1| ρn−1} and approximate
f ≈ f0+
 + fn−1z

n−1. A similar approximation may be used for the analytic continuation
to a point δ with |δ | = ρ. Finally, one may determine Rf by heuristically identifying
branches in Rf

♯ where the germs of f above the same point coincide up to a given order
and at a given accuracy.

Remark 5.11. Even if one may not want to crucially depend on heuristic computations, so
as to obtain only certified answers, one may still use them as a complement to theoretically
correct computations, in order to obtain an idea about the quality of a bound or to guide
other computations. For instance, given f ∈Alcom, assume that we want to obtain a lower
bound for rf with “expected relative error” ε. Then we may keep producing better and
better lower bounds rn and heuristic bounds r̃n (at expansion order n), until |rn/r̃n−1|<ε.

5.5. Convolution products

Let f , g ∈Alcom. The convolution product of f and g is locally defined by

(f∗g)(z)=
∫

0

z

f(u) g(z− u) du. (5.10)

If we want to evaluate f∗g up to many digits at a small z ∈ Ccom, then we may simply
compute the Taylor series expansions of f(u) and g(z − u) at u = 0 and evaluate the
primitive of f(u) g(z − u). Assuming that the series expansions of f(u) and g(z − u)
are given, this algorithm requires a time O(n2 log n log log n) for the computation of
a 2−n-approximation of (f∗g)(z). More generally, if δ= (δ1,	 , δl)∈Pf

com is a broken-line
path with δ!=(δl,	 , δ1)∈Pg

com, then

(f∗g)(δ)= (f∗g+δl+
+δ2)(δ1)+ (f+δ1∗g+δl+
+δ3)(δ2)+
 + (f+δ1+
+δl−1
∗g)(δl).
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Modulo the replacement of each δi by δi/ki, 	 , δi/ki for a sufficiently large ki ∈ N� , we
may thus compute a 2−n-approximation of (f∗g)(δ) using the above method, in time
O(n2 logn log logn).

In order to obtain a complete power series expansion of f∗g at 0 or δ, it is convenient
to consider the Borel and Laplace transforms

B: f =
∑

n=1

∞
fn z

n � ∑

n=1

∞
1

(n− 1)!
fn z

n−1

L: f =
∑

n=0

∞
fn z

n � ∑

n=0

∞
n! fn zn+1

Then we have

f∗g = B(L(f)L(g)) (5.11)

(f∗g)i =
∑

j=1

i
[

j
(

i
j

)]−1
fi−1 gi−j. (5.12)

These formula allow for the efficient (and possibly relaxed) computation of the coefficients
(f∗g)i, since the Borel and Laplace transforms can be computed in essentially linear time.

More precisely, let ε = 2−n, k = O(n) and h = f∗g. Assume that |fi| 6 1 and
|gi| 6 1 for all i and that we are given ε-approximations f̃0, 	 , f̃k−1 of f0, 	 , fk−1

and ε-approximations g̃0, 	 , g̃k−1 of g0, 	 , gk−1. Then the naive evaluation of the for-
mula (5.12) using interval arithmetic yields ε-approximations h̃0,	 , h̃k−1 of h0,	 , hk−1. In
order to use (5.11) and fast multiplication methods based on the FFT, one may subdivide
the multiplication of L(f) and L(g) into squares like in relaxed multiplication method
from [vdH02b, Figure 3]. For each square, one may then apply the scaling technique from
[vdH02b, Section 6.2.2], so as to allow for FFT-multiplication without precision loss. This
yields an O(n2 log2 n log log n) algorithm for the computation of ε-approximations for

h̃0,	 , h̃k−1. Notice that this algorithm is relaxed.
If we want the power series expansion of f∗g at a path δ=Pf

com with δ!∈Pg
com, then

consider the formula

(f∗g)(δ+ ε)= (f∗g+ε+δl+
+δ2)(δ1)+
 +(f+δ1+
+δl∗g)(ε) (5.13)

Assuming that the δi and ε are sufficiently small, we also have

(f+δ1+
+δi−1∗g+ε+δl+
+δi+1)(δi) = (f+δ1+
+δi−1∗g+δl+
+δi+1)(δi+ ε)−
(f+δ1+
+δi∗g+δl+
+δi+1)(ε), (5.14)

for all i∈{1,	 , l}. Now if δi is sufficiently small, we may compute the series expansion of
f+δ1+
+δi−1∗g+δl+
+δi+1 at δi as a function of the series expansion of the same function
at the origin, using a variant of [vdH02b, Section 3.4.1]. This yields n-digit expansions for
O(n) coefficients of f∗g at δ in time O(n2 log2n log logn).

Let us now define r(f∗g)+δ
and ⌈⌈(f∗g)+δ⌉⌉ρ by induction over |δ |, in such a way that

δ ∈Pf∗g
com implies δ=Pf

com and δ!∈Pg
com. Assuming that δ=(δ1,	 , δl)∈Pf∗g

com, we take

r(f∗g)+δ
=min {rf+δ

, rg− |δl|, rg+δl
− |δl−1|,	 , rg+δl+
 +δ2

− |δ1|, rg
+δ!

}. (5.15)

Clearly, for ε ∈Ccom with |ε|< r(f∗g)+δ
, we have δ + ε ∈Pf

com and (δ + ε)! ∈Pg
com. Given

ρ<r(f∗g)+δ
, we take

⌈⌈(f∗g)+δ⌉⌉ρ = ⌈⌈f ⌉⌉δ1 ⌈⌈g+δl+
+δ2⌉⌉δ1+ρ |δ1|+
 +

⌈⌈f+δ1+
+δl−1⌉⌉δl ⌈⌈g⌉⌉δl+ρ |δl|+
⌈⌈f+δ⌉⌉ρ ⌈⌈g⌉⌉ρ ρ (5.16)
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This completes the induction and the construction of f∗g ∈Alcom. If f , g ∈Agcom, then
we have R(f∗g)♯ =Rf∗Rg, since (5.15) reduces to (4.3). If f , g ∈Alcom, then we suspect
that R(f∗g)♯=Rf ♯∗Rg♯, but we have not tried to check this in detail.

In practice, if we want to analytically continue f∗g along a path δ ∈ Pcom which is
known to belong to P(f∗g)♯

com , it can be quite expensive to “randomly” compute a part of

P(f∗g)♯
com which contains δ. During the analytic continuation of f∗g along δ, it is therefore

recommended to progressively compute equivalent paths for (δ1), (δ1, δ2), 	 , (δ1, 	 , δ|δ |)
which avoid singularities as well as possible. These paths may then be used for the com-
putation of better bounds and in order to accelerate the computation of a part of P(f∗g)♯

com

which contains δ.
More precisely, let f , g ∈Picom and assume that δ ∈Pf∗g

com is fixed. Let

h(ζ)= f(ζ) g+δ(−ζ).
By construction, we have δ ∈Rh and Rh is the limit of a sequence R01ϕ0 R11ϕ1 
 with
λR0>λR1>
 . Let n∈N be fixed and consider the set P of all paths ε=(ε1,	 , εl)∈PRn

dig

with ε1,	 , εl∈λRnZ[i]. Given ε∈PRn

com, let

ℓε=

∫

φε,Rn

(

1+
1

rζ
2

)

d ζ.

Here rζ denotes the distance between ζ and the border of Rn and we recall that

φε,Rn
: [0, 1]→Rn

stands for the continuous path on Rn associated to ε. Using Dijkstra’s shortest path
algorithm, we may enumerate P = {ε0, ε1,	 } such that ℓε06 ℓε16
 . As soon as we find
an εi with

‖φ
εi,Rn

♯ − φ
δ,Rn

♯ ‖<λRn
,

then we stop (this condition can be checked ultimately by computing a sufficiently precise
digital approximation of Rn

♯ using the techniques from section 4.7). If λRn is small enough,
this yields a path ε= εi+ (‖δ‖− ‖εi‖) which is homotopic to δ on Rn and for which ℓε is
small. The idea is now to replace δ by ε in the right-hand side of (5.15) resp. (5.16), if this
yields a better bound.

The above approach raises several subtle problems. First of all, the computed path
depends on the number n. When computing a k-th approximation for r(f∗g)+δ

, one possi-
bility is to take n=k. A second problem is that the choice of ε depends on Rf and Rg, so
we no longer have Λ(Xδ(f∗g))=Λ(f∗g). Nevertheless, it should be possible to adapt the
theory to the weaker condition that (Xδk ◦
 ◦Xδ1)(f∗g)⊑ (Xεl◦
 ◦Xε1)(f∗g) whenever
{δ1,	 , δk}⊆{ε1,	 , εl}, where we notice that our change can only lead to improved bounds.
Finally, if λRn becomes small, then the shortest path algorithm may become inefficient.
One approach to this problem would be to use the shortest path at a larger scale for an
accelerated computation of the shortest path at a smaller scale. As a first approximation,
one may also try to continuously deform ε as a function of δ. We wish to come back to
these issues in a forthcoming paper.

6. Bound computations

For actual implementations of computable analytic functions it is very important that
bound computations (i.e. lower bounds for convergence radii and upper bounds for the
norm on compact disks) can be carried out both accurately and efficiently.
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A first problem is to find a good balance between efficiency and accuracy: when bounds
are needed during intermediate computations, rough bounds are often sufficient and faster
to obtain. However, bad bounds may lead to pessimistic estimates and the computation
of more terms in power series expansions in order to achieve a given precision for the end-
result. Therefore, it is important that cheap bounds are also reasonably accurate.

Another point is that it is usually a good idea to use different algorithms for rough and
high precision bound computations. Indeed, only when sufficient knowledge is gathered
about the function using rough bound computations, it is usually possible to fulfill the
conditions for applying a high precision method, such as Newton’s method. Furthermore,
such asymptotically fast methods may only be more efficient when large precisions are
required, which requires the study of the trade-off between different methods.

In this section, we will present several techniques for efficient and/or accurate bound
computations. Some of the algorithms have been implemented in Mmxlib. However, the
topic of bound computations deserves a lot of further study.

6.1. Lower bounds for the smallest zero of an analytic function

Let f ∈Alcom with f0 � 0 and r = rf. The problem of computing a lower bound for the
radius of convergence of f−1 reduces to the computation of a ρ such that f has no zeros
on Bρ. We may start with the simpler problem of computing a lower bound for

s=max {s6 ρ: ∀z ∈Bs, f(z)� 0},
where ρ ∈ Rcom,> with ρ < r has been fixed. A natural approach is to approximate the
problem by a root finding problem of complex polynomials.

More precisely, we may approximate real and complex numbers by elements of the sets I
and B of real intervals with endpoints in Rdig resp. complex balls with centers in Cdig and
radii in Rdig,> [vdH06b]. Let M = ⌈⌈f ⌉⌉R for some R ∈Rcom with ρ <R<r. We start by
picking n∈N, and the computation of complex ball approximations f̃0, f̃1,	 , f̃n−1∈B for
f0, f1,	 , fn−1, as well as a bound for the remainder

|fn zn+ fn+1 z
n+1+
 |6 η=

M

1− ρ/R

(

ρ

R

)n
.

The bound η may be integrated into the constant coefficient f̃0 by setting f̃06 f̃0+ B̄η.
Now we compute a lower bound for the norm of the smallest root of the polynomial

P (z)= f̃0+ f̃1 z+
 + f̃n−1 z
n−1∈B[z],

using some classical numerical method and interval/ball arithmetic. The result will then
be presented as an interval s̃ = [s, s ]∈ I and s yields the desired lower bound for s.

We have implemented two experimental versions of the above method for the two
numerical methods from [Car96] and a variant of [Pan96, Appendix A]. The first method
is based on repeated squaring in the ring B[zn]/P (z). However, it is cumbersome to adapt
to the case when there exist almost multiple roots. Also, we observed a lot of precision
loss in our context of certified computations with complex balls. This might be due to the
divisions. The second method is based on Graeffe transforms and rapidly provided us with
rough lower bounds for s of an acceptable quality. Let us quickly explain this method.

First of all, we recall that Graeffe’s transform sends a polynomial P (z)=Pnzn+
 +P0

of degree n with roots α1,	 , αn to another polynomial P©2 with roots α1
2,	 , αn2 . Such a

polynomial can be computed efficiently using FFT-squaring:

P (z) = Podd(z
2) z+Peven(z

2);

P©2 (z) = Podd(z)
2 z −Peven(z)

2.
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Given a monic polynomial P (z)= zn+Pn−1 z
n−1+
 +P0 with max (|Pn−1|,	 , |P0|)=1,

we also observe that the norm of the largest root of P lies in the interval [1/n,2]. Indeed, if
|z |>2, then |(P (z)− zn)/zn|= |Pn−1/z+
 +P0/z

n|<1, whence |P (z)/zn|>0. Similarly,
if P (z) = (z −α1)
 (z −αn) is such that |αi|< 1/n for all i, then |Pn−i|<

(

n
i

)

/ni6 1 for
all i∈{1,	 , n}.

Now let P ∈B[z] be a polynomial of degree n and assume that we want an upper bound
for the largest root of P with a relative accuracy ε > 0. If we rather want a lower bound,
then we replace P (z) =P0+
 +Pn z

n by P (z) =P0 z
n+
 +Pn. We start by making P

monic by setting P6 P/Pn. We next let p∈N be smallest such that |[1/n,2]1/2p−1|<ε/2.
Starting with s6 1 and k6 1, we now repeat the following:

1. Compute λ= [λ, λ ]6 1/max (|Pn−1|, |Pn−2|1/2	 , |P |0
1/n

)∈ I.

2. Scale P (z)6 zn (1+Pn−1 (λ/z)+
 +P0 (λ/z)
n).

3. Replace s6 s/λ1/k.

4. If k=2p, then return s [1/n, 2]1/k [λ/λ , 1]1/k.

5. Set P 6 P©2 and k6 2 k.

Consider the factorizations P ∗=(z−α1
∗)
 (z−αn∗) and P =(z−α1)
 (z−αn), where P ∗

denotes the original. Then we observe that {α1
∗,	 , αn∗ }= {s α1

k,	 , s αnk}, each time when
we arrive at step 4. When the approximations P0,	 , Pn were sufficiently precise, it follows
that we obtain an ε-approximation of the largest root of P ∗ on exit.

Remark 6.1. Notice that we simplified the method from [Pan96, Appendix A], since we
do not need Turan’s proximity test. Instead, we use a variant of bound (B.7) mentioned
in Appendix B, by rescaling at each step. Notice that FFT-multiplication leads to huge
precision loss when applied to polynomials which have not been scaled.

Remark 6.2. If there exists a unique and simple root α1 of maximal modulus, then after
a few steps, we have P ≈ zn− ω zn−1, with |ω |= 1, whence a good approximation of α1

2k

can be read off from P . Now if P©2 (β)≈ 0, then either P (− β
√

)≈ 0 or P ( β
√

)≈ 0. Going
the way back up, we may thus compute a good approximation of α1. At a second stage,
this approximation may be further improved using Newton’s method.

Remark 6.3. The worst case for the above algorithm is when P admits a single root
α of multiplicity n. In that case, each iteration typically gives rise to a precision loss of
log2

(

n
n/2

)

=O(n) binary digits, when using a fast algorithm for multiplication.

Let us now come back to the original problem of computing a lower bound for the radius
rf−1 of convergence of f−1. Given n∈N, we thus have to find an n-th lower approximation

sn∈Rdig,> for rf−1 with s06 s16
 and limn→∞sn= rf−1. We start by computing the n-

th lower approximation rn of r. For ρ, we may now take (sn−1+ rn)/2 if n > 0 and r0/2
otherwise (alternatively, one may choose ρ as a function of a heuristic approximation of the
radius of convergence of f−1; see remark 5.11). Using the above algorithm, we may now
compute a lower bound s for rf−1, using an expansion of f at order n (or an order like n

√

which makes the total computation time more or less proportional to n) and ε=1/(n+1).
We may then take sn=max (sn−1, s) if n> 0 and s0= s otherwise.

6.2. Computing extremal values on compact disks

Let f ∈ Alcom and ρ ∈Rcom,> be such that ρ < rf. By definition, we have a method for
computing an upper bound ⌈⌈f ⌉⌉+ρ forM =‖f ‖ρ. Since this bound may be pessimistic, we
will now show how to compute better approximations for M .

40 On effective analytic continuation



We start by computing an R ∈Rcom with ρ <R < rζ and picking an expansion order
n ∈ N. If we want an ε-approximation of M , then we may take n as in (5.3) and (5.4).
We next compute approximations f̃0, f̃1, 	 , f̃n−1 for the first n coefficients f0, f1 ρ, 	 ,
fn−1 ρ

n−1 of the series f(ρ z) and set P (z) = f̃0+ f̃1 z+
 + f̃n−1 z
n−1. We now have to

approximate

M̃ = max {|P (z)|: |z |=1}.
LetN ∈2N be a power of two larger with 10n6N=O(n) and ω=e2pi/N. We may efficiently
approximate the vector v0=(P (1), P (ω),	 , P (ωN−1)) using the FFT and compute

V = ‖v0‖∞=max {|v0,0|,	 , |v0,N−1|}.
More generally, we may efficiently approximate vk =

1

k!
(P (k)(1), P (k)(ω), 	 , P (k)(ωN−1))

using the FFT for small values of k. Let δ= |epi/N − 1| ∼ p/N . Then

|P (z)−P (ωi)|6 |P ′(ωi)| δ+
 + |P (k−1)(ωi)| δk−1

(k− 1)!
+ ‖P (k)‖1 δ

k

k!
,

for |z −ωi|6 δ, and where ‖Q‖1= |Q0|+
 + |Qn−1| for polynomials Q of degree <n. In
other words,

|M̃ − V |6
∥

∥

∥v1 δ+
 + vk−1
δk−1

(k− 1)!

∥

∥

∥

∞
+ ‖P (k)‖1 δ

k

k!
. (6.1)

We also have

‖vk‖∞ δk

k!
6 ‖v0‖ (δN)k

k!
,

where δN < 1/3. We may thus compute an approximation |M̃ −V |6V /2 using one FFT
of order O(n). More generally, for a fixed ε> 0, and modulo choosing a larger N =O(n),
we may compute an approximation |M̃ −V |6 ε V using one FFT of order O(n).

In practice, the above method is more powerful. Indeed, if P is a truncated power series,
then the right-hand side of (6.1) is usually of the order O(‖v0‖/n) for a small k = O(1).
Also, in the favorable but frequent case when the maximal value of |P (z)| is obtained
near a unit ωi which “clearly dominates the others” (this case typically occurs when we
approach an isolated singularity), one may consider the shifted polynomial P (ωi+ z) and
apply Newton’s method near ωi in order to efficiently find high precision approximations
of M̃ . If the upper bound for ⌈⌈f ⌉⌉ρ was pessimistic, one may also directly recompute the
Taylor expansion of f+ρωi at order n and apply Newton’s method for this series. This allows
us to use a much sharper bound for the tail of the expansion of f+ρωi on B̄ρδ than (5.4).
Alternatively, one may investigate the use of a steepest descent method. Notice that the
method may still be applied in the slightly less favorable case of a small number of units ωi

which dominate the others.

Remark 6.4. One feature of the above method is that it can easily be applied to the
computation of approximations of

Mmin = min {|f(z)|: z ∈ B̄ρ};
M real = max {ℜf(z): z ∈ B̄ρ}.

Indeed, it suffices to replace M̃ and V by the corresponding M̃min, M̃ real and V min, V real.
The efficient computation of Mmin and M real is interesting in order to compute upper
bounds for f−1 resp. exp f on compact disks. In the case of Mmin, one needs to require
that f has no roots on B̄ρ, so that Mmin> 0.

Remark 6.5. The previous remark actually generalizes to extrema of the form

M g = ‖g ◦ f ‖ρ,
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where g is a more general continuous and real-valued function which can be evaluated
efficiently. However, suitable analogues of (6.1) are harder to obtain in that case.

6.3. Relaxed Taylor series and bounds for the remainders

In sections 6.1 and 6.2, an important ingredient of the algorithms is the computation of a
bound ⌈⌈fn;⌉⌉ρ for the tail fn;= fn z

n+ fn+1 z
n+1+
 of the power series expansion of f

on a compact disk B̄ρ. Until now, sharp bounds for the tail were obtained by computing a
rough bound ⌈⌈f ⌉⌉R on a slightly larger disk and using Cauchy’s formula. However, if ⌈⌈f ⌉⌉R
is pessimistic, then we will have to choose n quite large in order to reduce the bound
for |fn;|. This raises the questing of finding more direct ways for bounding |fn;| on B̄ρ. In
this section, we will see how to adapt the strategies of lazy and relaxed computations with
formal power series in order to directly take into account error bounds for the tails.

Notations. Given a power series f ∈C[[z]] and k <n∈N, we will denote:

f;n = f0+
 + fn−1 z
n−1

fn; = fn z
n+ fn+1 z

n+1+

fk;n = fk z

k+
 + fn−1 z
n−1

Assuming algorithms for the computation of bounds ⌈⌈f;n⌉⌉ρ and ⌈⌈fn;⌉⌉ρ for f;n resp. fn;
on B̄ρ, we will also denote by ⌈⌈f;n;⌉⌉ρ= ⌈⌈f;n⌉⌉ρ+ ⌈⌈fn;⌉⌉ρ the resulting bound for |f | on B̄ρ.
Finally, in the case when ρ = 1, then we will abbreviate ⌈⌈f;n⌉⌉1, ⌈⌈fn;⌉⌉1, etc. by ⌈⌈f;n⌉⌉,
⌈⌈fn;⌉⌉ and so on.

Relaxed power series. We recall that the technique of lazy computations with formal
power series relies on the observation that solutions to implicit equations usually can be
put into a form which expresses the n-th coefficient of a solution in terms of the previous
ones. For instance, if g = exp f with f0 = 0, then the formula g =

∫

f ′ g yields a way to
compute the coefficients of g using

gn=
1
n
(f ′ g)n−1=

∑

k=0

n−1
k+1
n

fk+1 gn−1−k.

In the case of relaxed computation [vdH02b], additional tricks are used so as to accelerate
these computations using FFT-multiplication. This enables us to compute n coefficients
in time O(M(n) log n), where M(n) corresponds to the complexity of multiplication of
polynomials of degree n. The lazy and relaxed strategies have the big advantage that the
resolution of a functional equation can be done in approximately the same time as the
evaluation of the defining implicit equation.

One disadvantage of FFT-multiplication is that it increases numerical instability in the
case when the coefficients fn do not have the same orders of magnitude. Using transfor-
mations of the kind f(z)� f(r z), where r is the “numerical” radius of convergence of f ,
it has been shown in [vdH02b, Section 6.2] how to reduce this numerical instability. In our
case, we are rather interested in the computation of ε-approximations of f(z) for z ∈ B̄ρ.
Assume that f is the solution of some implicit equation using the operations +, −, ×, /,
d/dz,

∫

and ◦. Using the rules

(f � g)(ρ z) = f(ρ z)� g(ρ z) (�∈{+,−,×, /})
(f ′)(ρ z) = (f(ρ z))′/ρ

(
∫

f)(ρ z) = ρ
∫

f(ρ z)

(f ◦ g)(ρ z) = f(ρ z) ◦ (g(ρ z)/ρ)
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we may then construct an implicit equation for f(ρz) which can be evaluated as efficiently
as f itself. Without loss of generality, we may thus assume that ρ = 1 and compute
ε′-approximations for the coefficients fk for an ε′< ε which does not depend on k. If we
need n coefficients, ε′≈ ε/n usually suffices. This trick therefore reduces the general case
to fixed point arithmetic and FFT-multiplication of degree n polynomials only accounts
for a precision loss of O(logn) digits.

Bounds for the remainders. Having computed f0, 	 , fn−1, we have seen in the pre-
vious section how to compute a bound ⌈⌈f;n⌉⌉ ∈Rdig,> for ‖f;n‖. The next question is to
compute a bound ⌈⌈fn;⌉⌉ ∈Rdig,> for ‖fn;‖. Clearly, we may take

⌈⌈(f + g)n;⌉⌉ = ⌈⌈fn;⌉⌉+ ⌈⌈gn;⌉⌉ (6.2)

⌈⌈(f g)n;⌉⌉ = ⌈⌈fn;⌉⌉ ⌈⌈g;n;⌉⌉+ ⌈⌈f;n⌉⌉ ⌈⌈gn;⌉⌉+ ⌈⌈(f;n g;n)n;⌉⌉ (6.3)

⌈⌈(
∫

f)n;⌉⌉ =
1

n+1
⌈⌈fn;⌉⌉ (6.4)

where

⌈⌈(f;n g;n)n;⌉⌉6
∑

k=0

n−1

|fk |
(

∑

l=n−k

n−1

|gl|
)

can be computed in time O(n). One may also compute a bound ⌈⌈fn;′ ⌉⌉ for ‖fn;′ ‖ using
automatic differentiation. For especially nice postcompositions, one may take:

⌈⌈(f ◦ (α z))n;⌉⌉ = ⌈⌈fn;⌉⌉ |α|n (|α|6 1); (6.5)

⌈⌈(f ◦ zp)n;⌉⌉ = ⌈⌈f⌈n/p⌉;n⌉⌉+ ⌈⌈fn;⌉⌉ (p∈N>). (6.6)

For more general postcompositions with g, with g0=0, g1� 0 and ‖g‖6α61, one may use

⌈⌈(f ◦ g)n;⌉⌉ = ⌈⌈(f0+
 + fn−1 g
n−1)n;⌉⌉+ ⌈⌈fn;⌉⌉ |α|n.

The case of convolution products will be discussed below.

Implicit equations. Let us now show how to deal with implicit equations. We start with
the case when f = Φ(f) for some expression which involves operations for which we can
compute bounds of the type (6.2–6.6). When making the hypothesis that ⌈⌈fn;⌉⌉ = λ for
some λ∈Rcom,>, we may formally compute the bound ϕ(λ)= ⌈⌈Φ(f)n;⌉⌉. If ϕ(λ)6λ, then
we claim that the hypothesis was correct and that we may indeed take ⌈⌈fn;⌉⌉=λ. Indeed,
since the formulas (6.2–6.6) are positive and real analytic, the function ϕ:λ� ϕ(λ) is real
analytic with a power series expansion which is positive at the origin. Therefore, 0,Φ(0),
Φ(Φ(0)),	 forms a sequence of analytic functions on B̄1 which converges uniformly to f

and such that ‖Φn;
(i)‖6λ for all i. By continuity, it follows that ‖fn;‖6λ.

In order to find the smallest fixed-point λfix of ϕ, we may use the secant method:

λ0 6 0

λ1 6 ϕ(λ0)

λk+2 6 λk+
ϕ(λk)− λk

λk+1− ϕ(λk+1)+ ϕ(λk)− λk
(λk+1−λk)

If λk+1<λk for some k or if k exceeds a given threshold, then the method fails and we set
⌈⌈fn;⌉⌉=+∞. Otherwise, λk converges quadratically to λfix. As soon as |λk+1/λk− 1|<ε,
for some given ε > 0, we check whether ϕ(λ̃fix)6 λ̃fix for λ̃fix= 2 λk+1− λk, in which case
we stop. The resulting λ̃fix is an approximation of λfix with relative accuracy ε> 0.
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The above technique generalizes to systems f =(f1,	 , fd)=Φ(f) of implicit equations.
In this case, the hypothesis λ= ⌈⌈fn;⌉⌉ and the bound ϕ(λ)= ⌈⌈Φ(f)n;⌉⌉ are vectors and the
secant method becomes:

λ0 6 0

λ2k+1 6 ϕ(λ2k)

λ2k+2 6 λ2k+min (µ1,	 , µd) (λ2k+1− λ2k),

where

µi=
ϕi(λ2k)−λ2k,i

λ2k+1,i− ϕi(λ2k+1)+ ϕi(λ2k)− λ2k,i
.

We may also consider systems f = Φ(f) such that Φ is recursively built up using the
standard operations +, −, ×,

∫

, etc., together with extra operations like / and exp which
involve the recursive resolution of other systems of implicit equations. Indeed, theoretically
speaking, such a system may be rewritten as one big system g =Ψ(g) of the above kind.
In practice however, we also want to preserve the lazy computation paradigm, which can
be achieved by storing the hypotheses λi= ⌈⌈(gi)n;⌉⌉ and the corresponding bounds λ(g)i
in a hash table, which is passed as a reference to the bound computation method.

Lower bounds for the radius of convergence. Let ρ ∈Reff,> be arbitrary. Modulo
a transformation of the type f(z)� f(z/ρ), the above algorithms can be used in order to
compute a possibly infinite upper bound ⌈⌈f;n;⌉⌉ρ for ‖f ‖ρ. In particular, when applying
this method for different values of ρ, we obtain an algorithm for computing a lower bound
for rf . Indeed, we keep decreasing or increasing ρ depending on whether ⌈⌈f ⌉⌉ρ=∞ resp.
⌈⌈f ⌉⌉ρ<∞. More precisely, assuming that ρ∈ [ρ0/σ0, ρ0σ0] for a starting approximation ρ0
and σ0 > 1, we keep setting σk+1 = σk

√
and ρk+1 6 ρk σk+1

±1 at each iteration, until we
obtain an adequate precision. When a starting approximation is not beforehand, one may
use a second iteration ρk

′ =2k resp. ρk
′ =2−k in order to obtain a reasonable value for ρ0,

while taking σ0=2.
Let us now consider the dependence of the computation of ⌈⌈fn;⌉⌉ρ for a solution to

f =Φ(f) as a function of ρ (assuming that we perform the necessary scalings for each ρ).
When the implicit equation was constructed using +, −, ×,

∫

and recursive solutions to
implicit equations of the same kind, then it can be checked that

ϕ(λ)=O(ρn)+O(ρ)λ+O(λ2) (6.7)

for ρ → 0. Consequently, the function ϕ indeed does have a fixed point for sufficiently
small ρ, and our algorithm yields a computable lower bound for rf . In particular, our
technique can be used as an alternative for the classical majorant method [vK75, vdH03].
Moreover, it easily adapts to slightly more general functional equations, which involve
composition or other operations: it suffices to check that (6.7) holds for ρ→ 0.

Assuming that lower bounds for radii of convergence are computed as above, we claim
that Rf ♯ coincides with the largest theoretical simply connected Riemann surface R̃ on
which f and Φ(f) are defined. In order to see this, we first observe that the algorithm
for computing ⌈⌈f+δ⌉⌉ρ may theoretically be applied to arbitrary paths δ ∈PR̃ and ρ∈R>

with |ρ|<rδR. Since Φ was constructed using the common operations +, −, ×,
∫

, etc., we
have ⌈⌈f+δ ′⌉⌉ρ= ⌈⌈f+δ⌉⌉ρ whenever δR̃

′ = δR̃ and ⌈⌈f+δ⌉⌉ρ depends continuously on δR̃ and ρ.
Consequently, the supremum

rζ= sup {ρ> 0: ⌈⌈f+δ⌉⌉ρ<∞, ζ = δR̃}> 0

44 On effective analytic continuation



is lower continuous in ζ. Now assume for contradiction that Rf ♯ R̃ and take

ζ ∈ (R̃ ∩ ∂Rf ♯) \Rf ♯.

Setting ε = rζ/2 > 0, there exists a neighbourhood U ⊆ R̃ of ζ with rξ > ε for all ξ ∈ U .
Taking ξ ∈ U ∩Rf ♯

com with |ξ − ζ |< ε, we thus obtain ζ ∈ Bξ,ε ⊆Rf ♯. This contradiction
completes the proof of our claim. Notice the analogy with [vdH05a, Theorem 3].

Composition equations. The case of implicit equations which involve compositions has
to be treated with additional care. For instance, consider an equation of the type

f =Φ(f , f ◦ g1,	 , f ◦ gp). (6.8)

Assuming that the equation admits a solution at the origin, its analytic continuation to ζ
requires the prior analytic continuation of f to gi1 ◦
 ◦ gik(ζ) for any i1,	 , ik ∈{1,	 , p}
and k> 1. Naive implementations may therefore lead to infinite loops.

One solution to this problem is to introduce a “freezing” operator ⊣. Given f ∈Aicom,
the function f⊣ is the restriction of f to its current Riemann surface Rf. In particular,
rf⊣+δ= rδRf

for all δ ∈PRf

com. Then we may replace (6.8) by

f =Φ(f , f⊣ ◦ g1,	 , f⊣ ◦ gp).
This approach avoids infinite loops, by handing over to the user the responsibility of
ensuring that all values f(gi1 ◦
 ◦ gik(ζ)) with k > 1 are already defined. Of course, this
may be automatized by trying brutal continuations in all directions. One may also consider
delayed freezing operators ⊣n, which only freeze f after n postcompositions.

In the very particular case when the gi generate a finite group G for the composition
operator, we notice that (6.8) may be rewritten as a system of card G equations in the
unknowns f ◦ g with g ∈ G. After a local resolution at the origin, these equations do no
longer involve composition. A particularly important special case of this situation is when
k=1 and g1= q z with qn=1.

Convolution equations. The power series expansion of the analytic continuation
(f∗g)+δ of a convolution product may be computed using (5.13) and (5.14). Unfortu-
nately, the translation of a power series by a small δ is not very convenient for relaxed
computations, which naturally occur if f and g are unknowns in a convolution equa-
tion [É85], such as

f =(1− z)−1+ f∗f.

Nevertheless, in the equation (5.14), the functions f+δ1+
+δi−1 and g+δl+
+δi+1 are
known except when i = 1 resp. i = l. Modulo one subdivision of the path, we may also
assume without loss of generality that l>2. This reduces the resolution of the convolution
equation to the problem of determining the coefficients of f∗g at a small δ as a function
of the coefficients of f at δ in a relaxed manner, assuming that the coefficients of g at δ
are already known. Now we may again write

(f∗g)(δ+ ε)= (f+δ∗g)(ε)+ (f∗g+ε)(δ). (6.9)

The coefficients of f+δ∗g may be computed in a relaxed manner by what precedes. The
second member may be expanded in ε using

(f∗g+ε)(δ)= (f∗g)(δ)+ (f∗g ′)(δ) ε+ 1
2
(f∗g ′′)(δ) ε2+
 . (6.10)
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However, the evaluation of each (f∗g(i))(δ)/i! at a precision of n digits still requires a time
O(n2 logn log logn), which is not very convenient if we want to evaluate up to order i6n.
On the other hand, if the power series expansion of (f∗g)(ε) has convergence radius r,
then the translated expansion of (f∗g)(δ+ ε) still has convergence radius r− δ. The idea
is now to use (6.9) and (6.10) for the computation of good bounds ⌈⌈((f∗g)+δ)n;⌉⌉ρ and not
for the expansion of (f∗g)+δ itself, using the formulas

⌈⌈(f∗g)n;⌉⌉ρ = ⌈⌈(f;n∗g;n)n;⌉⌉ρ+
1

n+1
(⌈⌈f;n⌉⌉ρ ⌈⌈gn;⌉⌉ρ+ ⌈⌈fn;⌉⌉ρ ⌈⌈g;n⌉⌉ρ)+

1
2n+1

⌈⌈fn;⌉⌉ρ ⌈⌈gn;⌉⌉ρ

⌈⌈(f∗g+·)(δ)n;⌉⌉ρ =
1
n!

⌈⌈f;n;⌉⌉δ ⌈⌈gn;
(n)⌉⌉δ+ρ

If |δ | is close to r, then ⌈⌈((f∗g)+δ)n;⌉⌉ρ may typically remain finite even for ρ>r−|δ |. In
that case, we have a method to analytically continue f∗g beyond B̄r.

Remark 6.6. With the above method, in order to obtain an order n expansion of the
solution f to a convolution equation at a path δ=(δ1,	 , δl), one generally needs an order
k n expansion of f at the origin, where k is more or less proportional to |δ1|+
 + |δl| (it
also depends on the positions of the singularities of f). It remains an interesting question
whether the order k n can be reduced.

6.4. Improved bounds for remainders of Taylor series

Division. The error bounds computed in section 6.3 are not optimal in the case of division

f =
1

1− ε
=1+ ε f (ε0=0) (6.11)

Indeed, the fixed-point method yields

⌈⌈fn;⌉⌉=







⌈⌈f;n⌉⌉ ⌈⌈εn;⌉⌉+ ⌈⌈(f;n ε;n)n;⌉⌉
1−⌈⌈ε;n;⌉⌉

if ⌈⌈ε;n;⌉⌉< 1

+∞ otherwise

The denominator 1− ⌈⌈ε;n;⌉⌉ is unnecessarily pessimistic: even if ‖ε‖ exceeds 1, the func-
tion ε itself might be bounded away from 1. This is particularly annoying in the case when
ε = eαz − 1 for large values of α. Indeed, when using the fixed-point method in a direct
way on this example, the computable radius of convergence of f would be O(α−1) instead
of +∞.

For this reason, it is good to treat the case of division (6.11) in an ad hoc manner.
When rewriting (6.11) in terms of fn;, we obtain the solution

fn;=
1+ ε f;n− f;n

1− ε
.

Now we may compute a lower boundM for 1−ε=1−ε;n+ B̄⌈⌈εn;⌉⌉ on B̄1 using the technique
from section 6.2. Consequently, we may take

⌈⌈fn;⌉⌉=
⌈⌈(1+ ε f;n− f;n)n;⌉⌉

M
.

Exponentiation. Similarly, when applying the technique from the previous section to
the case of exponentiation

f =eg=
∫

g ′ f , (6.12)
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we obtain a bound

⌈⌈fn;⌉⌉=







⌈⌈f;n⌉⌉ ⌈⌈gn;
′ ⌉⌉+ ⌈⌈(f;n g;n′ )n;⌉⌉

n+1−⌈⌈g;n;
′ ⌉⌉ if ⌈⌈g;n;′ ⌉⌉<n+1

+∞ otherwise

Although this bound is a bit better than in the bound for division (roughly speaking, we
effectively “see” the part of f with |f(z)|6 eO(n2)), we again obtain a better ad hoc bound
by solving (6.12) in terms of fn;:

fn;=eg
∫

(f;n g
′− f;n

′ ) e−g.

Section 6.2 again yields an efficient algorithm for computing order n bounds M> and M<

for |eg | and |e−g | on B̄1. We may then take

⌈⌈fn;⌉⌉=M>M< ⌈⌈(f;n g ′− f;n
′ )n;⌉⌉.

Implicit equations. Let us now return to the case of a general implicit equation f=Φ(f)
and again consider the decomposition f = f;n+ fn;. We may rewrite each subexpression
g=Ψ(f) of Φ(f) as g= g◦+ g∗ fn;, where g◦ and g∗ are new expressions in fn;, such that g∗

corresponds to the “coefficient of fn;” in Ψ(f):

f◦ = f;n f∗ = 1
(g+h)◦ = g◦+ h◦ (g± h)∗ = g∗±h∗

(g h)◦ = g◦h◦+ g∗h∗ fn;
2 (g h)∗ = g∗h◦+ g◦h∗

(
∫

g)◦ =
∫

(g◦+ g∗ fn;) (
∫

g)∗ = 0

Composition is treated in a similar way as integration. Applying the above rules to Φ(f),
we obtain

fn; = Φ(f)− fn;

= (Φ(f)◦− fn;)+Φ(f)∗ fn;
= Ξ0(fn;)+Ξ1(fn;)

∗ fn;.

We now replace the equation f =Φ(f) by

fn;=
Ξ0(fn;)

1−Ξ1(fn;)

and compute bounds ⌈⌈(fn;);n⌉⌉=0 and ⌈⌈(fn;)n;⌉⌉ as in the previous section with the above
improvement for the final division by 1− Ξ1(fn;). In the case of possibly nested systems
of implicit equations f =(f1,	 , fd)=Φ(f), subexpressions g=Ψ(f) are decomposed as

g= g◦+ g∗ · fn;,
where g∗ is a vector and · stands for the vector product.

Example 6.7. Consider the implicit equation

f = z+
∫

z f + f2. (6.13)

For n> 2, we have

Φ(f)◦ = z+
∫

z (f◦+ fn;)+ (f◦)2+ fn;
2

Φ(f)∗ = 2 f◦

and

Φ(f)◦− f◦=P (z)+
∫

z fn;+ fn;
2
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for the polynomial P = z+
∫

z f◦+(f◦)2 with Pn;=0. Then (6.13) is equivalent to

fn;=
P (z)+

∫

z fn;+ fn;
2

1− 2 f◦
.

Dynamical systems. Instead of taking (
∫

g)∗=0 in the above case of implicit equations,
it would be nice to rather extract the linear part of Φ(f) in f . Unfortunately, the resulting
linear equation in fn; is often not so easy to solve. Nevertheless, for implicit equations of
a particular shape, such a resolution may be feasible. For instance, consider the case of an
ordinary differential equation

f =
∫

Φ(f), (6.14)

where Φ(f) is an expression which is also a power series in f . We may then rewrite (6.14) as

fn; = −f◦+
∫

(Φ(f)◦+Φ(f)∗ fn;)

= Ξ0(fn;)+
∫

Ξ1(fn;) fn;. (6.15)

We next set

Ξ0(fn;) = P0(z)+ B̄λ0;
Ξ1(fn;) = P1(z)+ B̄λ1,

for polynomials P0 = 0, P1 of degree <n and numbers λ0 and λ1 which are approximated
at successive stages using the secant method. Then (6.15) admits an explicit solution

fn;=e
∫

P1(z)+B̄λ1
∫

B̄η0 e−
∫

P1(z)+B̄λ1.

Now order n upper bounds for M>=‖e
∫

P1(z)+B̄λ1‖ and M<=‖e−
∫

P1(z)+B̄λ1‖ can be com-
puted using the method from section 6.2. Then we may take

⌈⌈fn;⌉⌉=λ0M>M<.

With some more work, this method can be adapted to the case of systems of ordinary
differential equations (6.14), with f =(f1,	 , fd) and Φ=(Φ1,	 ,Φd). The case when Φ is
polynomial can also be treated with the majorant technique [vdH03, Section 5].

6.5. Approaches for limiting the precision loss

Computing in the jet space. Consider the solution f to some ordinary differential
equation Φ(f , f ′, 	 , f (r)) = 0 with given initial conditions (f(0), 	 , f (r−1)(0)) = (λ0, 	 ,
λr−1) at the origin. Assuming that λ0,	 , λr−1 are given by complex ball representations
B̄λ0∗,ρ0, 	 , B̄λr−1

∗ ,ρr−1
, we may in principle compute coefficients of f using complex ball

arithmetic. However, this may lead to overestimation of the error due to the fact that we
do not keep track of possible cancellations between the errors in λ0, 	 , λr−1 during the
computation.

One approach to this problem is to use Taylor models [MB96, Ber98] in which we
consider λ0 = λ0

∗ + ε0, 	 , λr−1 = λr−1
∗ + εr−1 as formal parameters, with ε0 ∈ B̄ρ0, 	 ,

εr−1∈B̄ρr−1. Instead of computing with coefficients in B, we now compute with coefficients
in the jet space

B[[ε0,	 , εr−1]]d = {x= ∑|i|<d xi ε
i}

|i| = i0+
 + ir−1

εi = ε0
α0
 εr−1

αr−1
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For i and j with |i+ j |> d, we take εi εj= B̄ρi+j. Given x∈B[[ε0,	 , εr−1]]d, the constant
coefficient x0 is stored at a precision which is one or a few words higher than the precision
of the λk.

Taylor models can be used in many variants. For instance, each of the coefficients xi
with |i|� 0 may be taken to be finite precision floating point numbers instead of balls, in
which case rounding errors are incorporated into the error of x0. If d = 2, then one may
also take εi εj= B̄ρi εj+ B̄ρj εi (|i|= |j |=1), which allows for the computations of bounds
for the derivatives in the parameters εi. Iff is continued analytically from 0 to z, then
we also notice that the initial conditions λ0

′ , 	 , λr−1
′ at z may again be taken in the jet

space B[[ε0, 	 , εr−1]]d for the errors ε0, 	 , εr−1 at 0. This is useful for the computation
of return maps and limit cycles. When the constant coefficients of such jets become less
precise than ρ0, 	 , ρr−1, it may sometimes be useful to unjettify λ0

′ , 	 , λr−1
′ and replace

each x=λk
′ by

∑

|i|<d xi B̄ρi. We next rejettify the vector λ′ by replacing each λk
′ = B̄(λk

′ )∗,ρk
′

by λk
′ =(λk

′ )∗+ εk
′ .

Remark 6.8. The jet-space technique can also be used for studying the dependence of the
analytic continuation of f on initial conditions. For instance, return maps for limit cycles
may be computed in such a way.

Remark 6.9. Clearly, the technique of jettification is not limited to differential equations:
it applies to more general functional equations whose local expansions are determined by
the equation in terms of a finite number of initial conditions.

The wrapping effect. A well known problem with certified integration of dynamical
systems using interval methods is the wrapping effect [Moo66, Loh01, MB04]. Consider a
simple equation like

f ′′+ f =0.

Given an initial condition
(

f(t0)
f ′(t0)

)

=Ft0

at t0, integration of the equation from t0 to t1= t0+ p/4 yields Ft1=∆t0→t1Ft0 with

∆t0→t1=







1

2
√ 1

2
√

−1

2
√ 1

2
√







Now if Ft0 is given by an enclosing rectangle, then left multiplication by ∆t0→t1 turns this
rectangle by p/4, so that we lose 1/2 bit of precision when enclosing the result by a new
rectangle.

Now a similar problem is encountered when using complex interval arithmetic in order
to compute the n-th power of 1+i using (1+i)n=(1+i) (1+i)n−1. Therefore, one possible
remedy is to adapt ball arithmetic to matrices and represent transition matrices such
as∆t0→t1 by balls∆t0→t1=M + B̄ε, whereM is an exact matrix and B̄ε denotes the space of
matrices E with norm ‖E‖6ε (i.e. ‖EV ‖6ε ‖V ‖ for all vectors V ). In this representation,
taking the (naive) n-th power of the matrix ∆t0→t1 only gives rise to a precision loss
of O(log n) bits. Although the above idea applies well to matrices whose eigenvalues are
of approximately the same order of magnitude, the error bounds may again be pessimistic
in other cases. In addition, one may therefore adapt the norms in an incremental manner
using numerical preconditioning. Equivalently, one may adapt the coordinate system as
a function of ∆t0→ti [Loh88, MB04].
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We notice that the divide and conquer technique may also be used to the wrapping
effect. Indeed, in the case of linear equations, the transition matrices verify the relation

∆t0→tn=∆tn−1→tn
 ∆t0→t1.

Instead of computing ∆t0→tn in the naive way, using

∆t0→t1=∆tn−1→tn (
 ∆t2→t3 (∆t1→t2 (∆t0→t1))),

one may use binary splitting:

∆ti→tj =∆t⌊(i+j)/2⌋→tj∆ti→t⌊(i+j)/2⌋
.

Even in the case when ordinary interval arithmetic is used in order to represent the matrices
∆ti→tj, the computation of ∆t0→tn using this technique gives rise to a precision loss of only
O(logn) bits. With some more work, this technique also applies to non-linear equations.

Preservation laws. In the case when a dynamical system is subject to preservation laws
or symmetries, then one may project the bounding region for the numerical solution on
the variety of actual solutions, after each numerical integration step. In lucky cases, this
may help to further reduce overestimation and precision loss.

Acknowledgment. The author would like to thank the anonymous referees for their
careful reading an corrections.
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