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Abstrat { Generalized polylogarithms are de�ned as iterated integrals with

respet to the two di�erential forms !

0

= dz=z and !

1

= dz=(1 � z). We prove

an algorithm whih omputes the monodromy of these speial funtions. This

algorithm, implemented inAxiom, is based on the Lyndon basis. The monodromy

formulae involve speial onstants, alled multiple zeta values. We prove that the

algebra of polylogarithms is isomorphi to a shu�e algebra.

R

�

esum

�

e { Les polylogarithmes g�en�eralis�es sont des fontions obtenues omme

des int�egrales it�er�ees par rapport aux deux formes di��erentielles !

0

= dz=z et

!

1

= dz=(1 � z). On prouve un algorithme de alul de la monodromie de es

fontions sp�eiales. Cet algorithme, implant�e dans le syst�eme de alul formel

Axiom, repose sur la base de Lyndon. Les formules de monodromie omportent

des onstantes partiuli�eres appel�ees dans la litt�erature anglaise multiple zeta

values. Nous d�emontrons que l'alg�ebre des polylogarithmes est isomorphe �a une

alg�ebre de m�elange.

Keywords: polylogarithms, multiple zeta values, monodromy, Lyndon words.

1 Introdution

The Riemann � funtion and the polylogarithms arise in number theory, in physis (di-

agrams of Feynman), in the K{theory and in the knots theory. For eah multi{index

s = (s

1

; s

2

; : : : ; s

k

) of positive integers, one de�nes the generalized polylogarithms

Li

s

(z) =

X

n

1

>n

2

>���>n

k

>0

z

n

1

n

s

1

1

n

s

2

2

� � �n

s

k

k

: (1)
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This series in z 2 C onverges at the interior of the open unit disk. In z = 1, these polyloga-

rithms yield the Multiple Zeta Value (MZV) { see([13℄) :

�(s) = Li

s

(1) =

X

n

1

>n

2

>���>n

k

>0

1

n

s

1

1

n

s

2

2

� � � n

s

k

k

; (2)

whih onverges for s

1

� 2. One gets thereby a generalization of lassial polylogarithms

Li

s

(z) =

P

n>0

z

n

=n

s

and of the Riemann � funtion �(s) =

P

n>0

n

�s

.

One studies the C {algebra LI generated by the onstant funtion equal to 1, the log

funtion and the Li

s

funtions de�ned by (1). These funtions, whih all are analytial over

the real open segment ℄0; 1[, form a ommutative algebra with respet to the usual sum and

produt operations. By analytial prolongation one gets funtions whih are holomorphi

on the simply onneted domain formed by the omplex plane minus the two real half lines

℄�1; 0[ and ℄1;1[. From a more abstrat standpoint, the LI elements are viewed as analytial

funtions on the universal Riemann surfae R above C nf0; 1g.

It is shown in [11℄ how to ompute the monodromy of the lassial polylogarithms Li

k

(z)

around the singularity z = 1 :

M

1

Li

k

(z) = Li

k

(z)� 2i�

log

k�1

(z)

(k � 1)!

; k > 0: (3)

For generalizing this omputation, one de�nes the LI funtions as iterated integrals w.r.t.

the two di�erential forms !

0

= dz=z et !

0

= dz=(1 � z); this furnishes an epimorphism

of C {algebra � : Sh

C

hXi ! LI where X = fx

0

; x

1

g denotes is a two letters alphabet;

Sh

C

hXi denotes the ring of non ommutative polynomials over X (with omplex oeÆients)

endowed with the shu�e produt. By using some ombinatorial properties of Lie exponentials

presented in [10, 6℄, one gets an algorithm (implemented in AXIOM [7℄) to ompute the

monodromy of any funtion belonging to LI. One establishes the relationship with some

ideas initiated by [3℄ (see also [2, 1, 12℄).

The study of the monodromy of the polylogarithms permits to prove that the homomor-

phism � is injetive. With other words, the C {algebra LI is isomorphi to the shu�e algebra

Sh

C

hXi; aording to a theorem due to Radford [8℄, this latter is a free C {algebra generated

by the Lyndon words built over X. A detailed omparison with J. Ealle [4℄ works must still

be made.

2 Realls from non ommutative algebra

Let R � Z be a ring. Consider the alphabet X = fx

0

; x

1

g ; let X

�

be the set of words over X.

Let RhXi and RhhXii be the algebras of non ommutative polynomials resp. power series in

x

0

and x

1

over a ring R. The oeÆient of w 2 X

�

in a series S 2 RhhXii is denoted by (Sjw)

or S

w

. The set of Lie monomials is de�ned by indution: the letters in X are Lie monomials

and the Lie braket [a; b℄ = ab � ba of two Lie monomials a and b is a Lie monomial. A

Lie polynomial (resp. a Lie series) is a �nite (resp. in�nite) R-linear ombination of Lie

monomials. The set Lie

R

hXi � RhXi of Lie polynomials is alled the free Lie algebra.
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1
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1

2

+ x
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1
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0
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℄; [[[x

0

; x

1

℄; x

1
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0
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[[[[[x
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Table 1: Lyndon words, braket forms and dual basis

2.1 The shu�e algebra

We reursively de�ne a shu�e produt

tt

on RhXi as follows:

�

8w 2 X

�

; 1

tt

w = w

tt

1 = w;

8u; v 2 X

�

; xu

tt

yv= x(u

tt

yv) + y(xu

tt

v):

(4)

Here 1 denotes the empty word.

Example { x

0

x

1

tt

x

1

= x

1

x

0

x

1

+ 2x

0

x

2

1

This produt extends to RhXi by linearity. With this produt, RhXi is a ommutative

and assoiative R-algebra, alled the shu�e algebra Sh

R

hXi.

2.2 Lyndon words and Radford's theorem

By de�nition, a Lyndon word is a non empty word l 2 X

�

, whih is inferior to eah of its

strit right fators [10℄ (for the lexiographial ordering) ie. 8u; v 2 X

+

; l = uv; l < v. The

set of Lyndon words is denoted by Lyndon(X).

Example { For X = fx

0

; x

1

g with x

0

< x

1

, the Lyndon words of length 6 6 on X

�

are

the following (in lexiographial inreasing order): see table 1.

Theorem 1 (Radford) The Q{algebra Sh

Q

hXi is the algebra of polynomials generated by

the Lyndon words.

In [7, 5℄ eÆient algorithms are given to rewrite a polynomial in QhXi as a linear ombi-

nation of shu�es of Lyndon words.
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2.3 Braket forms and the dual basis

The braket form P (l) 2 Lie

R

hXi of a Lyndon word l = uv with l; u; v 2 Lyndon(X) (v

being as long as possible) is de�ned reursively by

�

P (l) = [P (u); P (v)℄

P (x) = x for eah letter x 2 X;

(5)

It is lassial that the set B

1

= fP (l); l 2 Lyndon(X)g, ordered lexiographially, is a

basis for the free Lie algebra. Moreover, eah word w 2 X

�

an be expressed uniquely as a

dereasing produt of Lyndon words:

w = l

�

1

1

l

�

2

2

: : : l

�

k

k

; l

1

> l

2

> � � � > l

k

; k � 0: (6)

The Poinar�e{Birkho�{Witt basis B = fP (w); w 2 X

�

g and its dual basis B

�

= fP

�

(w); w 2

X

�

g are obtained from (6) by setting [10℄

8

>

>

>

>

>

<

>

>

>

>

>

:

P (w) = P (l

1

)

�

1

P (l

2

)

�

2

: : : P (l

k

)

�

k

;

P

�

(w) = CP

�

(l

1

)

tt

�

1

tt

: : :

tt

P

�

(l

k

)

tt

�

k

;

where C = (�

1

!�

2

! : : : �

k

!)

�1

P

�

(l) = xP

�

(w); 8l 2 Lyndon(X);

where l = xw; x 2 X; w 2 X

�

:

(7)

In [10℄, it is proved that B and B

�

are dual bases of RhXi : (P (u)jP

�

(v)) = Æ

v

u

, for all words

u; v 2 X

�

with Æ

v

u

= 1 if u = v otherwise 0.

Lemma 1 It holds P

�

(w) 2 x

0

ZhXix

1

for all w 2 x

0

X

�

x

1

.

Proof { The Lyndon words involved in the deomposition (6) of a word w 2 X

�

x

1

(resp. w 2 x

0

X

�

x

1

) all belong to X

�

x

1

(resp. x

0

X

�

x

1

). �

2.4 Lie exponentials

A series S 2 RhhXii is alled a Lie exponential if there exists a Lie series L 2 Lie

R

hhXii

suh that S = e

L

. This is equivalent [9, 10℄ to 8u; v 2 X

�

; (Sju

tt

v) = (Sju)(Sjv) or to

�(S) = S 
 S, where � denotes the usual oprodut � : RhhXii ! RhhXii 
 RhhXii, whih

is de�ned on letters x 2 X by �(x) = x
 1 + 1
 x. The produt of two Lie exponentials is

a Lie exponential.

Let S 2 RhhXii be a Lie exponential. Then S an be fatored as an in�nite produt of

Lie exponentials [10℄

S =

X

w2X

�

(Sjw) w =

Y

l2Lyndon(X)&

e

(SjP

�

(l))P (l)

: (8)

The in�nite produt of the fators S = e

S

x

1

x

1

� � � � � e

S

x

0

x

0

is ordered dereasingly by the

ordering on Lyndon words.
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3 Polylogarithms and Chen series

3.1 The polylogarithm generating series

Any multi{index s = (s

1

; s

2

; : : : ; s

k

) an be enoded by a unique word w 2 X

�

x

1

w = x

s

1

�1

0

x

1

x

s

2

�1

0

x

1

� � � x

s

k

�1

0

x

1

(9)

Now eah funtion Li

s

(z), whih is also denoted by L

w

(z), an be obtained by an iterated

integral as follows [13℄:

L

x

1

(z) =

Z

z

0

dt

1� t

= � log(1� z)

and

8

>

<

>

:

L

x

0

w

(z) =

Z

z

0

L

w

(t)

dt

t

;

L

x

1

w

(z) =

Z

z

0

L

w

(t)

dt

1� t

;

(10)

for any w 2 X

�

x

1

. These integrals are funtions de�ned on the universal Riemann surfae R

above C nf0; 1g. The real number �(s) is also denoted by �

w

= L

w

(1) for all x 2 x

0

X

�

x

1

.

It is useful to extend the above de�nition of L

w

to the ase when w 2 X

�

. For eah n � 0,

we take

L

x

n

0

(z) =

1

n!

log

n

(z); (11)

and we extend the de�nition to w 2 X

�

using (10).

The generating series L of polylogarithms is:

L(z) =

X

w2X

�

L

w

(z)w; 8z 2 R: (12)

Proposition 1 L satis�es the di�erential equation with border ondition

d

dz

L(z) =

�

x

0

z

+

x

1

1� z

�

L(z) (13)

L(") = e

x

0

log "

+O(

p

") where "! 0

+

: (14)

Proof { Observing that L(z) = 1 +

X

u2X

�

L

x

0

u

(z)x

0

u +

X

v2X

�

L

x

1

v

(z)x

1

v, this follows

syntatially from the formulas (10). The exponential term e

(log ")x

0

omes from the de�-

nition (11). The oeÆient of eah other word w in L(") is easily seen to be bounded by

O("

n

log

m

"), where n > 0 is the number of x

1

's in w. �

Theorem 2 L(z) is a Lie exponential for all z 2 R. In partiular, one has the shu�e

relations

L

u

tt

v

(z) = L

u

(z)L

v

(z); 8z 2 R; 8u; v 2 X

�

: (15)
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Proof { Intuitively speaking, the theorem follows from the fats that the limit of L(z)

in 0 is a Lie exponential, beause of (14), and that L(z) is a Lie exponential for eah z, if it

is a Lie exponential for a partiular z. We have to prove that T (z) = �L(z) � L(z) 
 L(z)

vanishes for all z. We laim that T satis�es

(

d

dz

T (z) = (�V (z)) T (z);

lim

"!0

+
T (") = 0;

(16)

where V (z) = (

x

0

z

+

x

1

1�z

). Thus we have a reursive formula for the oeÆients of T (z) by

means of di�erential equations with limit onditions in 0. Sine these limits all vanish in 0,

it follows by indution that the oeÆients of T all vanish globally. �

3.2 Analyti ontinuation of polylogarithms

3.2.1 Chen series

For a di�erentiable path  : [0; 1℄ ! C nf0; 1g between a and b, let S



be the evaluation in

z = b of the solution to the di�erential equation

d

dz

S(z) =

�

x

0

z

+

x

1

1� z

�

S(z) for z 2 ([0; 1℄) (17)

with initial ondition S(a) = 1. This series S



2 C hXi is alled [2℄ the Chen series along

 (and assoiated to the di�erential forms !

0

= dz=z et !

1

= dz=1 � z). It is lassial [2℄

that S



is a Lie exponential, whih only depends on the homotopy lass of . Moreover,

for the onatenation 

1



2

of two paths 

1

and 

2

, one has S



1



2

= S



2

S



1

. In partiular,

S



�1 = S

�1



.

Let z

0

be a point of R, whih we identify with its projetion on C and let z

0

 z be a

di�erentiable path on C nf0; 1g. Then L admits an analyti ontinuation along this path.

The series L(z) and S

z

0

 z

L(z) both satisfy the di�erential equation (14) and take the same

value in z = z

0

. This proves that

L(z) = S

z

0

 z

L(z

0

); (18)

for all paths z

0

 z in C nf0; 1g.

3.2.2 Residues theorem (nonommutative version)

Let R 2℄0; 1[ and let 

0

(R) (resp. 

1

(R)) be the irular path of radius R and turning around

0 (resp. 1) in the positive diretion, starting in z = R (resp. z = 1 � R). By indution on

the length of w one proves the bound

(S



0

(R)

jw) 6

1

jwj!

(2�)

jwj

(2R)

jwj

x

1

; (19)

for the oeÆients of the Chen series along 

0

(R) (for R < 1=2), where jwj denotes the length

of the word w and jwj

x

1

the number of ourrenes of x

1

in w. For " ! 0

+

, this estimate

yields

�

S



0

(")

= e

2i�x

0

+O(");

S



1

(")

= e

�2i�x

1

+O("):

(20)
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0
(t)γ

1

tε

t γ (1-t)11−ε0

Figure 1: Paths of integration

3.3 Asymptoti expansions of the polylogarithms at z = 1

By using the fatorization (8)

L = e

L

x

1

x

1

0

�

Y

l:2fx

0

:x

1

g&

e

L

P

�

(l)

P (l)

1

A

e

L

x

0

x

0

(21)

at the point z = 1� ", we obtain the asymptoti expansion

L(1� ") � e

�x

1

log "

Z where Z =

Y

l:2fx

0

:x

1

g&

e

�

P

�

(l)

P (l)

: (22)

From the lemma 1, P

�

(l) 2 x

0

ZhXix

1

. Thus the quantities �

P

�

(l)

are all �nite.

3.3.1 Intrinsi de�nition of the series Z

Proposition 2 The series Z is the uni Lie exponential verifying the two following proper-

ties :

�

(Z j x

0

) = (Z j x

1

) = 0

8w 2 x

0

X

�

x

1

; (Z j w) = �

w

(23)

4 Monodromy of L

For eah t 2℄0; 1[, let M

0

L(t) (resp. M

1

L(t)), be the analyti ontinuation of L(t) along



0

(t), (resp. 

1

(t)). From (18), we get M

0

L(t) = S



0

(t)

L(t) and M

1

L(t) = S



1

(1�t)

L(t). We

will now show how to ompute two Lie exponentials M

0

;M

1

2 C hhXii, whih do not depend

on t, suh that 8t 2℄0; 1[

M

i

L(t) = L(t)M

i

; where i = 0 or 1: (24)

7



4.1 Monodromy of L around 0 :

Sine a Chen series only depends on the homotopy lass of its underlying path, we dedue

from (18) that { see �gure 1

M

0

L(t) = S

" t

S



0

(")

S

t "

L(t);

= L(t) L

�1

(")S



0

(")

L(");

= L(t) lim

"!0

+

L

�1

(")S



0

(")

L(");

= L(t) lim

"!0

+

e

�x

0

log "

e

2i�x

0

e

x

0

log "

= L(t) e

2i�x

0

:

4.2 Monodromy of L around 1 :

Similarly { see �gure 1

M

1

L(t) = S

1�" t

S



1

(")

S

t 1�"

L(t);

= L(t) L

�1

(1� ")S



1

(")

L(1� ");

= L(t) lim

"!0

+

Z

�1

e

x

1

log "

e

�2i�x

1

e

�x

1

log "

Z

= L(t) Z

�1

e

�2i�x

1

Z:

Theorem 3 The monodromy of the series L(t) for t 2℄0; 1[ around z = 0 and z = 1 is given

by

�

M

0

L(t) = L(t)e

2i�m

0

with m

0

= x

0

;

M

1

L(t) = L(t)e

2i�m

1

;

(25)

where m

1

is a Lie serie given by the formula

m

1

=

Y

l 62fx

0

;x

1

g%

e

��

P

�

(l)

adP (l)

(�x

1

): (26)

The onstants �

P

�

(l)

are �nite, sine P

�

(l) 2 x

0

ZhXix

1

, by lemma 1. Moreover, there exists an

algorithm to omputeM

1

L

w

(t) for eah word w 2 X

�

. The prof follows the omputations of

the fatorization (22) on 4.1 and 4.2, and the lassi properties of the adjoint transformation.

It is also possible to simplify the �(s) involved in the result using the algebrai relations

for generalized zeta funtion given in [5℄.

4.3 Struture of the monodromy group

Corollary 1 The monodromy of the polylogarithms L

w

is given by

8w 2 X

�

; M

0

L

wx

0

= L

wx

0

+ 2i�L

w

+ � � �

M

1

L

wx

1

= L

wx

1

� 2i�L

w

+ � � � ;

where the remaining terms are linear ombinations of polylogarithms oded by words of length

< jwj.

8



Proof { Consequene of (24), by remarking that thm. 3 implies that

�

M

0

= e

2i�m

0

= 1 + 2i�x

0

+words of length > 1

M

1

= e

2i�m

1

= 1� 2i�x

1

+words of length > 1

(27)

See also the results from appendix A. �

Corollary 2 The monodromy group of the funtions L

w

for jwj 6 n is nilpotent at order

n+ 1.

Proof { We have M

0

= e

2i�x

0

and M

1

= e

�2i�x

1

+���

. From e

A

e

B

e

�A

e

�B

= e

[A;B℄+���

, it

follows that the ommutator M

0

M

1

M

�1

0

M

�1

1

does not ontain any Lie brakets of length 1.

Iterating this omputation, the brakets of lengths 2, next 3, et. until n disappear. �

5 Linear independene of the polylogarithms

Theorem 4 The funtions L

w

with w 2 X

�

are C -linearly independent.

The generalizations of this theorem, when taking the rings of polynomials or entire fun-

tions as oeÆients are easy.

Proof { Given n � 0, assume that we have a C -linear relation

X

jwj6n

�

w

L

w

= 0; �

w

2 C (28)

between the L

w

, where w 2 X

�

and jwj denotes the length of w. We prove by indution on

n that �

w

= 0 for all w. This is trivial for n = 0. Assume therefore that we proved our

assertion for all smaller n. Rewrite (28) as

�

1

+

X

juj<n

�

ux

0

L

ux

0

+

X

juj<n

�

ux

1

L

ux

1

= 0: (29)

Applying the operators (M

0

� Id) and (Id�M

1

) on this expression, while using orollary 1

of theorem 3, we obtain two new linear relations

8

>

>

>

<

>

>

>

:

2i�

X

juj=n�1

�

ux

0

L

u

+

X

juj<n�1

�

u

L

u

= 0;

2i�

X

juj=n�1

�

ux

1

L

u

+

X

juj<n�1

�

u

L

u

= 0;

(30)

for ertain oeÆients �

u

and �

u

. By the indution hypothesis, the oeÆients �

ux

0

and �

ux

1

with juj = n� 1 all vanish (as well as the oeÆients �

u

and �

u

). Consequently,

X

jwj6n�1

�

w

L

w

= 0;

whene �

w

= 0 for all w, again by the indution hypothesis. �

9



We dedue that the C -algebra LI generated by the L

w

is isomorphi to Sh

C

hXi. By

Radford's theorem, the polylogarithms oded by Lyndon words therefore form an in�nite

transendene basis, but many other suh bases are known, suh as the dual basis B

�

1

=

fP

�

(l); l 2 Lyndon(X)g de�ned by (7).

Corollary 3 Eah polylogarithm L

w

an be expressed uniquely as a Q-polynomial of polylog-

arithms oded by Lyndon words. The lassial polylogarithms Li

k

whih are oded by Lyndon

words x

k�1

0

x

1

are algebraially independent.

Aknowledgment Thanks to P. Cartier for useful disussions.
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A.1 The series m
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up to order 6
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