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ABSTRACT — Generalized polylogarithms are defined as iterated integrals with
respect to the two differential forms wy = dz/z and w; = dz/(1 — z). We prove
an algorithm which computes the monodromy of these special functions. This
algorithm, implemented in AX10M, is based on the Lyndon basis. The monodromy
formulae involve special constants, called multiple zeta values. We prove that the
algebra of polylogarithms is isomorphic to a shuffle algebra.

REsUME — Les polylogarithmes généralisés sont des fonctions obtenues comme
des intégrales itérées par rapport aux deux formes différentielles wy = dz/z et
w1 = dz/(1 — z). On prouve un algorithme de calcul de la monodromie de ces
fonctions spéciales. Cet algorithme, implanté dans le systeme de calcul formel
AXI0M, repose sur la base de Lyndon. Les formules de monodromie comportent
des constantes particulieres appelées dans la littérature anglaise multiple zeta
values. Nous démontrons que 'algebre des polylogarithmes est isomorphe & une
algebre de mélange.
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1 Introduction

The Riemann ¢ function and the polylogarithms arise in number theory, in physics (di-
agrams of Feynman), in the K-theory and in the knots theory. For each multi-index
s =(81,82,--..,8k) of positive integers, one defines the generalized polylogarithms

ni

z
Li = —- 1
is(2) > ning ot (1)

ny>ng>->ngp >0



This series in z € C converges at the interior of the open unit disk. In z = 1, these polyloga-
rithms yield the Multiple Zeta Value (MZV) — see([13]) :

() =L = Y @)

"1 n
ni>ng>->ng >0 772 k

which converges for s; > 2. One gets thereby a generalization of classical polylogarithms
Lis(z) = > 0,50 2"/n® and of the Riemann ¢ function ((s) = >, on"°.

One studies the C-algebra LI generated by the constant function equal to 1, the log
function and the Lis functions defined by (1). These functions, which all are analytical over
the real open segment |0, 1[, form a commutative algebra with respect to the usual sum and
product operations. By analytical prolongation one gets functions which are holomorphic
on the simply connected domain formed by the complex plane minus the two real half lines
]—00,0[ and ]1, co[. From a more abstract standpoint, the LI elements are viewed as analytical
functions on the universal Riemann surface R above C\{0, 1}.

It is shown in [11] how to compute the monodromy of the classical polylogarithms Liy(2)
around the singularity z =1 :

log"~! (2)

M Lig(2) = Lig(2) — QWW’

k> 0. (3)
For generalizing this computation, one defines the LI functions as iterated integrals w.r.t.
the two differential forms wy = dz/z et wy = dz/(1 — z); this furnishes an epimorphism
of C-algebra « : Shc(X) — LI where X = {zg,z;} denotes is a two letters alphabet;
Shc(X) denotes the ring of non commutative polynomials over X (with complex coefficients)
endowed with the shuffle product. By using some combinatorial properties of Lie exponentials
presented in [10, 6], one gets an algorithm (implemented in AXIOM [7]) to compute the
monodromy of any function belonging to LI. One establishes the relationship with some
ideas initiated by [3] (see also [2, 1, 12]).

The study of the monodromy of the polylogarithms permits to prove that the homomor-
phism « is injective. With other words, the C-algebra LI is isomorphic to the shuffle algebra
Shc(X); according to a theorem due to Radford [8], this latter is a free C-algebra generated
by the Lyndon words built over X. A detailed comparison with J. Ecalle [4] works must still
be made.

2 Recalls from non commutative algebra

Let R O Z be a ring. Consider the alphabet X = {z¢,z1} ; let X* be the set of words over X.
Let R(X) and R({{X)) be the algebras of non commutative polynomials resp. power series in
zo and z; over a ring R. The coefficient of w € X* in a series S € R({(X)) is denoted by (S|w)
or Sy,. The set of Lie monomials is defined by induction: the letters in X are Lie monomials
and the Lie bracket [a,b] = ab — ba of two Lie monomials a and b is a Lie monomial. A
Lie polynomial (resp. a Lie series) is a finite (resp. infinite) R-linear combination of Lie
monomials. The set Lier(X) C R(X) of Lie polynomials is called the free Lie algebra.



l P(l) P*(l)
Zo Zo Zo
x1 x1 1
ToT1 [z0, 71] ToT1
zo%x1 [zo, [zo, z1]] zo*z1
zoz1? [[zo, 1], z1] zow1?
zo3z1 [zo, [zo, [z0, 21]] zo®z1
zo*z1? [zo, [0, [[[z0, 1], z1], z1]]] | wo®z1?
LE02.’L‘1.’L‘0I12 [.’L‘O, [[Io, Il], [[.’L‘[), .’L‘l], .’El]” 3£E03.’E13 +.’E02LE1.’L‘0.’L‘12
3202.’1;'12320.’171 [[320, [[.’L’o, .’1;'1], 321]], [l‘o, 321” 63)03.’13'13 + 33)02.’1;'1.’13'03212 +$02.’L'12$0.’L'1
zo?wy [zo, [[[[zo, #1), #1], @1, z1]] | mo?ar?
rorizor1® | [[z0, 1], [[[T0, 1], 1], 21]] | 420221* + TOT1TOT 13
Toz1° [[[zo, 1], 1], 1], 1], 21] | woz1®

Table 1: Lyndon words, bracket forms and dual basis

2.1 The shuffle algebra

We recursively define a shuffle product w on R(X) as follows:

Yw € X*, lww =wwl =w,
Vu,v € X*, zuw yv= z(uw yv) + y(zuw v).

Here 1 denotes the empty word.
EXAMPLE — zpZ1w 21 = £1ZoZT1 + 2:150:15%

This product extends to R(X) by linearity. With this product, R(X) is a commutative
and associative R-algebra, called the shuffle algebra Shr(X).

2.2 Lyndon words and Radford’s theorem

By definition, a Lyndon word is a non empty word [ € X*, which is inferior to each of its
strict right factors [10] (for the lexicographical ordering) ie. Yu,v € X, [ = uv, [ < v. The
set of Lyndon words is denoted by Lyndon(X).

EXAMPLE — For X = {z¢, 21} with zy < z1, the Lyndon words of length < 6 on X* are
the following (in lexicographical increasing order): see table 1.

Theorem 1 (Radford) The Q-algebra Sho(X) is the algebra of polynomials generated by
the Lyndon words.

In [7, 5] efficient algorithms are given to rewrite a polynomial in Q(X) as a linear combi-
nation of shuffles of Lyndon words.



2.3 Bracket forms and the dual basis

The bracket form P(l) € Lier(X) of a Lyndon word | = wv with [,u,v € Lyndon(X) (v
being as long as possible) is defined recursively by

{ P() [P(u), P(v)] (5)
P(z) = x for each letter x € X,

It is classical that the set By = {P(l); | € Lyndon(X)}, ordered lexicographically, is a
basis for the free Lie algebra. Moreover, each word w € X* can be expressed uniquely as a
decreasing product of Lyndon words:

w:l?llSQ...l,?k, li >le>--->1l, k>0. (6)

The Poincaré-Birkhoff-Witt basis B = { P(w); w € X*} and its dual basis B* = {P*(w); w €
X*} are obtained from (6) by setting [10]

P(w) = P(1)*P(l2)* ... P(lx)*,

P*(w) = CP*(l1)™* w...w P*([)~ %,
KD (7)

P*(l) = zP*(w), Ve Lyndon(X),

where | = zw, x € X, w € X*.

where C' = (a1lag!. .. ag!

In [10], it is proved that B and B* are dual bases of R(X) : (P(u)|P*(v)) = 0y, for all words
u,v € X* with 0;, = 1 if u = v otherwise 0.

Lemma 1 It holds P*(w) € xoZ(X)x1 for all w € xoX*x1.

PROOF — The Lyndon words involved in the decomposition (6) of a word w € X*z;
(resp. w € xoX*z1) all belong to X*xz1 (resp. xoX*z1). O

2.4 Lie exponentials

A series S € R((X)) is called a Lie ezponential if there exists a Lie series L € Lieg((X))
such that S = el. This is equivalent [9, 10] to Yu,v € X*, (S|luwv) = (S|u)(S|v) or to
A(S) = S® S, where A denotes the usual coproduct A : R{(X)) = R{(X)) ® R(X)), which
is defined on letters z € X by A(z) =2 ® 1 + 1 ® z. The product of two Lie exponentials is
a Lie exponential.

Let S € R{(X)) be a Lie exponential. Then S can be factored as an infinite product of
Lie exponentials [10]

S = Z (S|w) w = H e(SIP*(1)P() (8)

weX* leLyndon(X)\,

The infinite product of the factors S = e%21%1 x ... x €520%0 is ordered decreasingly by the
ordering on Lyndon words.



3 Polylogarithms and Chen series

3.1 The polylogarithm generating series

Any multi-index s = (s1, 82, ..., ;) can be encoded by a unique word w € X*x;
w = $81_1$1$82_1$1 e mgrlxl 9)

Now each function Lis(z), which is also denoted by L, (z), can be obtained by an iterated

integral as follows [13]:
Z o dt
Ly (2) = STt —log(1 — z)
and
z dt
L@ = [ Lo
Lonul?) = /OZL O "
ziw\? = . w 1—¢
for any w € X™*z;. These integrals are functions defined on the universal Riemann surface R
above C\{0, 1}. The real number ((s) is also denoted by (,, = L (1) for all z € zoX*z;.

It is useful to extend the above definition of L., to the case when w € X*. For each n > 0,
we take

1
Ly (2) = - log"(2), (1)
and we extend the definition to w € X* using (10).

The generating series L of polylogarithms is:

L(z)= Y Lu(x)w, Vz€R. (12)
weX*

Proposition 1 L satisfies the differential equation with border condition

d x x
TL() = (70 +1 _1Z> L(2) (13)
L(e) = €% 1 0(/e) wheree — 0F. (14)

PROOF — Observing that L(z) = 1 + Z Lyou(2)zou + Z Ly, (2)z1v, this follows
ueX* veX*
syntactically from the formulas (10). The exponential term e(°8%)%0 comes from the defi-
nition (11). The coefficient of each other word w in L(e) is easily seen to be bounded by
O(e"log™ ¢), where n > 0 is the number of z;’s in w. O

Theorem 2 L(z) is a Lie exponential for all z € R. In particular, one has the shuffle
relations

Ly, v(2) = Ly(2)Ly(2), Vz €R,VYu,v € X", (15)



PROOF — Intuitively speaking, the theorem follows from the facts that the limit of L(z)
in 0 is a Lie exponential, because of (14), and that L(z) is a Lie exponential for each z, if it
is a Lie exponential for a particular z. We have to prove that T'(z) = AL(z) — L(z) ® L(2)
vanishes for all z. We claim that T satisfies

d
{ Loy — (@VE) 76 (16
lim,_,o+ T(e) = O,

where V(z) = (% + 12;). Thus we have a recursive formula for the coefficients of T'(z) by

means of differential equations with limit conditions in 0. Since these limits all vanish in 0,
it follows by induction that the coeflicients of 1" all vanish globally. [

3.2 Analytic continuation of polylogarithms
3.2.1 Chen series

For a differentiable path «y : [0,1] — C\{0,1} between a and b, let S, be the evaluation in
z = b of the solution to the differential equation

-iﬂ@=<ﬂu-$1>ﬂ@ for z € 7([0,1]) (17)

dz z 1—=2

with initial condition S(a) = 1. This series S, € C(X) is called [2] the Chen series along
v (and associated to the differential forms wy = dz/z et w; = dz/1 — z). It is classical [2]
that S, is a Lie exponential, which only depends on the homotopy class of . Moreover,
for the concatenation 17y, of two paths v; and 2, one has S,,,, = S,,5,,. In particular,

S,rl = S,Y_l.

Let zyp be a point of R, which we identify with its projection on C and let zg~z be a
differentiable path on C\{0,1}. Then L admits an analytic continuation along this path.
The series L(z) and S,,..,L(z) both satisfy the differential equation (14) and take the same
value in z = zy. This proves that

L(z) = Sz L(20), (18)
for all paths zp~>z in C\{0, 1}.

3.2.2 Residues theorem (noncommutative version)

Let R €]0, 1] and let yo(R) (resp. 71(R)) be the circular path of radius R and turning around
0 (resp. 1) in the positive direction, starting in z = R (resp. z = 1 — R). By induction on
the length of w one proves the bound

1
(Syom)|w) < w(%)'w‘(?R)'w‘”, (19)
for the coefficients of the Chen series along v (R) (for R < 1/2), where |w| denotes the length
of the word w and |w|,, the number of occurrences of z1 in w. For e — 0T, this estimate
yields

{&W>:‘WW+O@’ (20)

e~ 4 O(e).
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Figure 1: Paths of integration

3.3 Asymptotic expansions of the polylogarithms at 2 =1

By using the factorization (8)

e I R o
I~e{zo.z1}\

at the point z = 1 — ¢, we obtain the asymptotic expansion
L(l—¢)~e ™67 where Z= [[ erwf®. (22)
lﬁe{xo.xl}\‘

From the lemma 1, P*(l) € zoZ(X)z;. Thus the quantities (p«(; are all finite.

3.3.1 Intrinsic definition of the series 7

Proposition 2 The series Z is the unic Lie exponential verifying the two following proper-
ties :

(Z | 20)

(Z|21) =0
VYw € 2o X*z1, (Z | w)

Cw

(23)

4 Monodromy of L

For each t €]0,1[, let MoL(t) (resp. M;L(t)), be the analytic continuation of L(t) along
Yo(t), (resp. 71(t)). From (18), we get MoL(t) = S,y L(t) and M1 L(t) = S, 1y L(t). We
will now show how to compute two Lie exponentials My, My € C{(X)), which do not depend

on t, such that V¢ €]0, 1]

M;L(t) = L(t)M;, wherei=0 or 1. (24)



4.1 Monodromy of L around O :

Since a Chen series only depends on the homotopy class of its underlying path, we deduce
from (18) that — see figure 1

MoL(t) = SewstSyy(e)Stme L(2),
= L(t) L7H(e) S0 L(e);
= L(t) lim L7'(£)S,()L(e),

e—0t

— L(t) lim e—%o logeeQchoea:o loge
e—0t

= L(t) ¥,

4.2 Monodromy of L around 1 :

Similarly — see figure 1
MIL(t) = Sl*EWtS"/l(E)Stwlf{:‘L(t)’
= L(t) L7'(1 — €)S,, () L(1 —¢),

= L(t) lim 7 1et1loge ,—2imay ,—w1loge 7
e—07t

= L(t) z7te 201 7,

Theorem 3 The monodromy of the series L(t) for t €]0,1] around z =0 and z = 1 is given
by

MoL(t) = L(t)e?™0  with mg = x, (25)
MyL(t) = L(t)e* ™,
where my s a Lie serie given by the formula
m= J] e rodPO(_g). (26)

1Z{xo,x1}

The constants (p-(;y are finite, since P*(I) € z9Z(X)r1, by lemma 1. Moreover, there exists an
algorithm to compute Mj Ly (t) for each word w € X*. The prof follows the computations of
the factorization (22) on 4.1 and 4.2, and the classic properties of the adjoint transformation.

It is also possible to simplify the ((s) involved in the result using the algebraic relations
for generalized zeta function given in [5].

4.3 Structure of the monodromy group

Corollary 1 The monodromy of the polylogarithms L., is given by
Vwe X*, MoLygy, = Ly, +2imLy +---
Mlezl = mel — 20w Lyy + - - )

where the remaining terms are linear combinations of polylogarithms coded by words of length
< |w).



PROOF — Consequence of (24), by remarking that thm. 3 implies that

My, =e¥™0 =14 2inzy + words of length > 1
M, =e?™ =1 — 2z, + words of length > 1

See also the results from appendix A. O

Corollary 2 The monodromy group of the functions Ly, for |w| < n is nilpotent at order
n+ 1.

PROOF — We have My = €220 and M; = e~ 2%+ From edePede B = elABlH it
follows that the commutator MoM; M IMI_ ! does not contain any Lie brackets of length 1.
Iterating this computation, the brackets of lengths 2, next 3, etc. until n disappear. O

5 Linear independence of the polylogarithms
Theorem 4 The functions L,, with w € X* are C-linearly independent.

The generalizations of this theorem, when taking the rings of polynomials or entire func-
tions as coefficients are easy.

PROOF — Given n > 0, assume that we have a C-linear relation

> AwLy =0, M €C (28)

lwl<n

between the L,,, where w € X* and |w| denotes the length of w. We prove by induction on
n that A, = 0 for all w. This is trivial for n = 0. Assume therefore that we proved our
assertion for all smaller n. Rewrite (28) as

A+ D> AuwgLusg + Y Auey Luay = 0. (29)

lu|<n lu|<n

Applying the operators (Mo — Id) and (Id — M) on this expression, while using corollary 1
of theorem 3, we obtain two new linear relations

297 Z AuxoLu‘*‘ Z puln, = 0,

|lu|=n—1 |lu|l<n—1 (30)
2ir > e Lut Y Ly = 0,
|lu|=n—1 |lul<n—1

for certain coefficients p,, and v,,. By the induction hypothesis, the coeflicients A, and Ay,
with |u| =n — 1 all vanish (as well as the coefficients p,, and 1,,). Consequently,

> Awlw =0,

jw|<n—1

whence A\, = 0 for all w, again by the induction hypothesis. [



We deduce that the C-algebra LI generated by the L, is isomorphic to Shc(X). By
Radford’s theorem, the polylogarithms coded by Lyndon words therefore form an infinite

transcendence basis, but many other such bases are known, such as the dual basis B} =
{P*(1);1 € Lyndon(X)} defined by (7).

Corollary 3 FEach polylogarithm L., can be expressed uniquely as a Q-polynomial of polylog-
arithms coded by Lyndon words. The classical polylogarithms Liy which are coded by Lyndon
words mg_lxl are algebraically independent.

Acknowledgment Thanks to P. Cartier for useful discussions.

A Experimental results

A.1 The series m; up to order 6

1

m = %in log M,

= —[z1] + Coorr [T071°] + Cug2ar [20%21%] + Cagry? [071°] + Capoey [w07217%]

1

— Caoday [m02$1$0x1] + Crp2a,2 [m02$13] + (CI02I12 — 5@(@12) [$0$1$0$12]
Copw3 [m0x14] + Crotay [$04$12] — 2Cp040, [m03$1x0$1]
C311‘03I12 [$03x13] + (3C$03:1:12 + Cﬂvozﬂvlﬂvoﬂb‘l) [$02x1$0$12]
(3Cwo3w12 + Coor1 Cag2ay T 2C€L’02$15L’0$1) [$02x12$0x1]
C313025613 [$02x14] + (4Cx02a:13 + C$0$1x0x12) [xoxlxoxlg] + Cﬂ?om“ [m0$15]

+ o+ 4+ o+

A.2 Monodromy around z =1

We abbreviated 2im by p.

Mleo = on

MlLIl = L:IJ1 - D
Mleowl = LCL‘():El - pLazo
1 2
Mlegwl = Lazgzl - EpoIJO
1
Mleow% = Lazow% — pLygz, + §p2LrL‘o + PCaoay
1 3
Mle%xl = La:gxl - EpLazo
1
Mle%x% = Lx%x% _pLx%xl + szLa:oz +pgx0x1on +p§x%x1
1 1 1
Mleox? = onx:f _ponx% + Eszd?od?l - Engxo +p€x0x% - §p2Cx0x1
1 4
M1L13$1 = Lazéwl — ﬂpon

10



1 1
Mle%w% = L:I:3z2 _pLazgazl + Ep2L$o3 + _pCCL’OCL’ILCL‘o2 +pCmgzleo +pC$8$1

Mlezwlwowl = LCBZIIIOII + 3pL$g$1 —prOszwl pCCL’OCUILCL’OQ — 2pC$%$1L$O — 3p<mgwl
1 1
MlL;né:E? = La:é:v? _pLa:é:L‘f + §p2L$é z1 12 3L;1:02 (pca;oq;f - §p2C$0$1>L:DO
1

2
+ pca:%a:f - ip Ca:%arl

1 1
Mleoxlxox% = onx1x0x2 + 2pLa:(2)a:% _p2Lx3x1 - iponx12 + <§p2on +pCa:0a:1>Lx0x1
1
+ ( 3p<$0$2 + p C:Eo:l,j) ngzéa:f +p2Ca:éa:1 - EPCI()mQ
1 14 1y 1, 14
Mleow = L prowz. + p L gp Lzozl + ﬂp Lwo +pc$0$§ - ip Ca:ga:f + gp CCBOCBI
1
MiLys dr T La:gxl - mpoBo
1 1 1
Mleﬁx% = L pLa: oz 48p2Lx3 + gPCa:omLxg + ipga:%mLa:% +p§x8x1L$0 +p§x3x1
1
Mle3x1x0x1 = Lx3x1x0x1 + 4pLa:éa:1 _ponLx3x1 - gpgxolexo?’ _pCa;%a:leoz
- 3p<x8x1 To _4pr3x1
1 2 1 3 3 1 1 2 2
MiLgzpr = Laget = pLager + 5P Lugay = 557 Lay” + { 5PCeoa? = 3P Caorr | Lo

1 2 1 2

3 2 1 2
Mlezwlwow = LCL‘ZCEl:E():El prowlwowl - ip Lw%azl + <§p LIO +pC$0$1>L$3:1:1
1 2 2 1 2
pCzowl p CIOII Lwo + _zpCz 2 +p Czoml EpCa:oazl Lwo
3

2
+ ip Ca;gxl +prga:1x0x1

MiLp2200e, = La2e2ege, T PLa2eyagry +30Lg3e2 — PLag L2y = 20Caom Lz,
+ (%p@}omg + ZP2CWI> Ly® + gpga:oa:12La:0 ~ 39Cu302 + Plagar Cazy — Plazarwom
MiLyzs = Ly2es —pLygs + %szx%xf - %P%% + %P‘lf?woz
+ | PCogad — 1p Cooz2 T+ p Cxoan)on +PCa208 — 1p Cagaz T+ 1p Cadon
MiLygoragst = Logwioaat — PLagsrags; = P*Lugaz + 30" Lugey + 70 Laga,”
+ (——p Lyg + Plyye? — %p%om)Lzm ( 4PCs + D7 o2 — ép3C$0$1>Lwo
+ P p *Cozor + Plogmraon? T ip2C:1:o:1:12
MiLyys = Lygys —pLygs + ;p Lygs — %p?’onx% + i Lo,
—~ 1—;0175%0 + Pzt — %pZCxox:f + %p?’CW% - 214 Caomy

11
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