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Given d complex numbers z1, ..., zq4, it is classical that linear dependencies Ay z1 +--- +
Aazg=0 with Ay, ..., A\g €Z can be guessed using the LLL-algorithm. Similarly, given

d formal power series fi, ..., fa € C[[#]], algorithms for computing Padé-Hermite
forms provide a way to guess relations Py f1 + - + Py fq =0 with Py, ..., P; € Clz].
Assuming that fi, ..., fqg have a radius of convergence r >0 and given a real number

R >r, we will describe a new algorithm for guessing linear dependencies of the form
g1 f1+ -+ ga fa= h, where g, ..., ga, h € C[[z]] have a radius of convergence >R.
We will also present two alternative algorithms for the special cases of algebraic and
Fuchsian dependencies.
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1. INTRODUCTION

1.1. General background and results

Consider an infinite sequence fy, f1, ... of complex numbers. If fo, fi, ... are the coeffi-
cients of a formal power series f € C[[z]], then it is well-known [P6137, Wil94, FS96| that
the asymptotic behaviour of the sequence f, is closely related to the behaviour of the
generating function f(z) near its dominant singularity. Now, if f is the solution to some
complicated equation, then it can be hard to compute the asymptotic behaviour using
formal methods. On the other hand, the coefficients fy, f1, ... of such a solution f can often
be computed numerically up to a high order. With this numerical evidence at hand, it is
natural to raise the following questions:

1. Can we guess the asymptotic behaviour of fo, f1,...7
2. Can we guess the behaviour of f(z) near its dominant singularity?

These questions can be regarded as part of the construction of a more general toolbox
for the “experimental mathematician” [BBKWO06, BD09|. More specifically, we advocate
the systematic integration of “guessing tools” into symbolic computation packages. Indeed,
current systems can be quite good at all kinds of formal manipulations. However, in
the daily practice of scientific discovery, it would be helpful if these systems could also
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detect hidden properties, which may not be directly apparent or expected. Furthermore,
the guessing tool is allowed to be heuristic, so that it only suggests hidden properties; at
a second stage, one may then search for full proofs using other techniques.

One well-known tool in this direction is the LLL-algorithm [LLL82]. Given d numbers
21, .-, 24 € C, it can be used in order to guess relations of the form

Azi+ -+ Agza=0 (Ay..ry \dEZ). (1)

Given d formal power series fi, ..., fq € C[[z]], algorithms for the computation of Padé-
Hermite forms [BL94, Der94] can be used in order to guess linear relations

P1f1++Pdfd:0 (Pl,,Pde(D[Z]) (2)

A well-known implementation is provided by the GFUN package [SZ94]. Given a finite
number of coefficients of a formal power series f € C][z]], the GFUN package is able to
guess a closed form formula for f or a linear differential equation with coefficients in C|[z]
satisfied by f. Indeed, it suffices to take fi=f, fo=f, ..., fa= f@ Y in (2) in order search
for small linear differential equations satisfied by f.

Unfortunately, many interesting formal power series f do not admit closed form for-
mulas and do not satisfy linear differential equations with polynomial coefficients. In that
case, we can still use asymptotic extrapolation [Hoe09] in order to guess the asymptotic
behaviour of the coefficients. However, this only provides us some rough idea about the
behaviour of f at its dominant singularity. In practice, it often happens that f locally
satisfies an algebraic or differential equation with analytic coefficients, even though these
coefficients fail to be polynomials. For instance, combinatorics [Pol37, FS96] is full with
examples of generating functions which are not algebraic, but whose dominant singularities
are algebraic.

In this paper, we will describe two approaches to detect analytic dependencies on a com-
pact disk: the first one assumes that we have an algorithm for the analytic continuation
of f and relies on the monodromy of f at its singularities. The second approach is purely
numerical and makes no special assumptions on f. On our way, we will encounter various
interesting related problems, such as the determination of the radius of convergence or
the singularities of f. We will also propose heuristic solutions to these problems, thereby
extending the basic toolbox for experimenting with analytic functions.

1.2. Overview of the paper

Since all algorithms in this paper are directly or indirectly based on heuristics, it is
important to investigate how much confidence we can attach to the computed results.
In section 2, we will present a survey of different kinds of heuristic algorithms which
are used in symbolic computation. Some of these heuristics are relatively benign when
compared to others, so it will be useful to have some general insights on the reliability
of different types of heuristic algorithms.

The remainder of the paper is divided into two main parts. In the first part (sections 3, 4
and 5), we will develop some basic tools for later use. In the second part, we turn to
the main topic of this paper: the disclosure of local analytic relations between analytic
functions. Two main types of analytic input functions f will be considered:

AN1. Functions for which we can merely compute a large number of the Taylor coefficients
fo, f1, fo, ... at the origin.

AN2. Functions for which we have a reasonably efficient algorithm for their analytic
continuation, so that we can also compute the Taylor coefficients of f at other points
besides the origin.
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The second situation typically arises when f is the solution of a differential or more general
functional equation; see section 4.1 for a further discussion on analytic continuation.

One of the most basic problems concerning an analytic function f which is only known
by its Taylor coefficients, is to determine its radius of convergence. In section 3, we
will present two methods. The first one is related Cauchy-Hadamard’s formula and pro-
vides rough approximations under mild assumptions on f. The second method provides
much better approximations, but only works if f admits a single dominant singularity
of a simple type.

Building on the algorithm for approximating the radius of convergence of f, we next
turn our attention to the problem of locating its singularities. In section 4.2, we first
restrict ourselves to the dominant singularities of f (i.e. the singularities of minimal norm).
Assuming AN2, we next present algorithms for the exploration of the Riemann surface
of f beyond its dominant singularities.

In the special case when f is meromorphic on a compact disk D, := {z € C: |z]| <7},
section 5 contains a special purpose algorithm for the determination of a polynomial P such
that Pf is analytic on D,. This algorithm works under the hypothesis AN1 and induces
better algorithms for the problems in sections 3 and 4 in this special case.

In the second part of this paper, we turn to the detection of dependencies between
analytic functions on a compact disk D,.. More precisely, assume that fi, ..., fq€ C[[2]] are
fixed convergent power series. We are interested in the determination of linear dependencies
of the form

afit-tgafa=h  (g1,..., 94, h € C[[2]]), (3)

where g1, ..., gq, b are analytic on D,. Modulo a scaling f(z) — f(r z), we may assume
without loss of generality that r=1.

In section 6, we assume ANZ2 and first consider the two special cases of algebraic
and Fuchsian dependencies. In the case of algebraic dependencies, we take f; = ¢'~! for
a fixed function ¢, and also require that h = 0. In the case of Fuchsian dependencies, we
take f;= go(ifl) for a fixed function ¢, and again require that h=0. The second algorithm
only succeeds in the case when all singularities of f on the disk are of Fuchsian type
(see sections 3.2 and 6.2 for detailed definitions). The main idea behind the method is to
compute the set of of functions generated by ¢ and its analytic continuation around its
singularities in D,. If there exists an algebraic dependency, then this set is finite and we
may use it to find the dependency. If there exists a Fuchsian dependency, then the set is
contained in finite dimensional vector space, and we may construct the dependency from
a basis of this vector space.

In section 7, we only assume AN1 and consider the general problem of determining
dependencies of the form (3). We will describe a purely numerical algorithm based on
Gram-Schmidt orthogonalization for finding such relations. The idea is to simply truncate
the power series expansions and then apply the numerical method. We will prove that an
asymptotic convergence theorem which shows that this approach is at least correct “at the
limit”.

In the last section 8, we will present some numerical experiments with the algorithm
from section 7. In section 8.1, we first consider some examples of relations which were
recognized by the algorithm. In section 8.2, we will also examine the behaviour of the
algorithm in the case when f1, ..., fq are analytically independent. In fact, the algorithm
from section 7 still requires some human cooperation for deciding whether we really found
a relation. Based on the numerical experiments, we conclude with some perspectives for
the design of a fully automatic algorithm.
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2. ON THE USE OF HEURISTIC ALGORITHMS

As soon as we enter the area of heuristic and non mathematically proven algorithms, it is
natural to ask how much confidence can be attached to the output. In fact, there is a large
spectrum of situations which can occur, depending on the precise nature of the heuristics.
There may also be a trade-off between computational complexity and correctness: is it
better to rely on a slow deterministic algorithm for polynomial factorisation over a finite
field, or on a fast probabilistic algorithm?

Without striving for exhaustion, section 2.1 a catalogue of different kinds of heuristic
algorithms which occur in the area of symbolic computation. Each of the heuristic algo-
rithms considered in this paper will fit into one of these categories. We will also describe
some standard strategies in order to increase the level of confidence and examine typical
examples for which heuristic algorithms may fail.

2.1. Various kinds of heuristic algorithms

Correct modulo conjectures. A high confidence can typically be attached to algo-
rithms which are correct modulo conjectures. One important example of this situation in
computer algebra is zero testing of transcendental functions or constants.

For example, consider the class of exp-log constants, built up from the rationals @ using
the operations +, exp and log. The following conjecture [Lan71| is a major open problem
in number theory:

CONJECTURE 1. (SCHANUEL) Let oy, ..., a be complex numbers which are linearly inde-
pendent over the rational numbers Q). Then the transcendence degree of

Q(aq, ..., ag, exp (ay), ...,exp (ag)): Q

1s at least k.

From the computer algebra point of view, the conjecture implies [CP78| that all numerical
relations between exp-log constants can be deduced from the usual rules exp (z + y) =
exp x exp y and log (z y) =log x + log y. Based on this fact, Richardson has given a zero
test for exp-log constants [Ric97, Ric07] with the following properties: (1) if the algorithm
terminates on a given input, then the result is correct; (2) if the conjecture holds, then
the algorithm always terminates; (3) if the algorithm does not terminate on a given input,
then a counterexample to the conjecture can be constructed from this input.

Similar situations occur in algorithmic number theory, depending on the correctness
of Riemann’s hypothesis [Belll]. In this paper, the algorithms in sections 4.3 and 6 rely
on zero tests for analytic functions. If we know that our analytic functions lie in special
classes (such as the class of exp-log functions, or the class of differentially algebraic func-
tions), then these zero tests might be reduced to suitable conjectures [HoeO1].

Reduction to other heuristic algorithms. Another frequent situation is that an algo-
rithm relies on one of more other heuristic subalgorithms, with the property that, for
a given input, we obtain the right output whenever all calls of the subalgorithm(s) return
the correct results. From a theoretical point of view, this corresponds to correctness modulo
one or more oracles.
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For instance, in section 3, we will give heuristic algorithms for the computation of the
radius of convergence of an analytic function. This will be a basic building block for many
of the other algorithms in this paper. Nevertheless, the correctness of several of these other
algorithms reduces to the correctness of this basic building block.

If, for input functions in a more restricted class, we may determine their convergence
radii with larger accuracy, then this will immediately make all the other algorithms more
reliable. For instance, if we consider a class (e.g. rational or algebraic functions) for which
convergence radii can be computed exactly, then the algorithms in section 4.2 are no longer
heuristic.

Correctness with probability one. In computer algebra, there are plenty of algo-
rithms which are correct unless some degeneracy occurs. For instance, solving a system of
polynomial equations using numerical homotopy methods [Ver96, SW05] is correct unless
the chosen paths accidentally hit a singularity. Moreover, if paths are chosen at random,
then such accidents occur with probability zero. Similarly, in order to test whether a real
analytic function f is zero, it suffices to pick a random number x and test whether f(z)
vanishes.

Correctness with high probability. In practice, there is no such thing as a random
real number, since we can only represent numbers with finite precision. The above exam-
ples of heuristic algorithms which are correct “with probability 1” are really correct with
probability 1 — O(27P), where p is the working precision. There are many other examples
of heuristic algorithms which are correct with high probability. For instance, in order
to show that two polynomials P, @) in Z[z]| have no common divisors, it suffices to pick
a “sufficiently random” prime p and show that the reductions of P and @ in IF),[z] have no
common divisors.

We also recall that there are two classical types of probabilistic algorithms. The exam-
ples mentioned above are only correct with high probability and fall into the class of so-
called Monte Carlo algorithms. The second kind of Las Vegas algorithms are always correct,
but only fast with high probability. For instance, all known fast algorithms for factoring
polynomials over a finite field IF}, are probabilistic Las Vegas type algorithms [GG02].

Asymmetric correctness. We also would like to underline another aspect of heuristic
tests, such as zero tests: it frequently occurs that only one direction of the test is difficult
and based on heuristics, whereas the other direction is “easy”. For instance, assume that
we want to test whether an exp-log constant is zero. If the constant is non zero, then it
is easy to prove this by evaluating the constant using interval arithmetic [Moo66] using
a sufficiently high precision and verify that zero is not in the interval enclosure of our
constant. The difficult case, for which Richardson’s algorithm [Ric07] relies on Schanuel’s
conjecture, is when the exp-log constant is zero and we want to prove this.

Numerical algorithms. Essentially all numerical algorithms are heuristic in the sense
that they only compute approximate answers. Numerical analysts therefore have a lot of
experience in dealing with heuristics and intentionally vague arguments. The very aim of
numerical algorithms is often not to compute a mathematically sound result, but rather
to design a method which “works” for solving a practical problem.

This does not withstand that experts in this area have a great sense of how accurate
and trustworthy various methods are. Ideally speaking, any numerical algorithm comes
with a detailed error analysis. Most textbooks on numerical analysis start with a section on
the various sources of error and how to take into account the machine accuracy [PTVF07,
section 1.1]. For more statistical algorithms, there is also a tradition of trying to quantify
the level of trust that can be attached to the computed results. Finally, for many algo-
rithms, it is possible to automate the error analysis by using interval arithmetic [Moo66].
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Ultimate correctness. Classical numerical algorithms operate at a fixed precision p.
From a theoretical point of view [Wei00, Hoell], it can be investigated whether a given
numerical algorithm is at least “ultimately correct” in the sense that the computed output
tends to the mathematically correct result if p tends to infinity. If the numerical algorithm
comes with a rigourous error analysis, then we have a means for controlling the distance ¢,
between our approximations at a given precision p and the ultimate limit. In particular,
for any ¢ >0, we may then select a precision p with ¢, <J.

However, there are many situation in which we have no means for controlling the
distance €,, even though our algorithm is ultimately correct. For instance, the computation
of the radius of convergence p of a differentially algebraic function is undecidable [DL89],
even though there exists an algorithm [Hoe05, Hoe07] for the computation of a sequence
p1< p2 < -+ with limy,_, o0 pr, = p. Similarly, for a large class of functions, the formula (4)
below gives an approximation for the radius of convergence of a series (when computing
with a precision of p=mn bits), but the formula is only ultimately correct (5).

2.2. Further considerations

Increasing the trustworthiness. Since the outcome of a heuristic algorithm cannot
entirely be trusted, it is natural to search for ways to at least increase the trustworthiness
of the result. Depending on the kind of heuristics that were used, this can either be done
by rerunning the same algorithm for different parameters, or by combining the algorithm
with other algorithms.

For instance, in numerical analysis, a frequent trick is to rerun the same algorithm for
different working precisions and compare the results. Similarly, probabilistic algorithms of
Monte Carlo type can be rerun several times in order to increase our confidence that we
obtained the correct result.

We also mentioned the fact that equality testing of exp-log constants is quite asym-
metric in the sense that proving equalities is usually much harder than proving inequalities.
This suggests the use of a mixed strategy for this problem, which combines a heuristic
equality test with a deterministic, interval arithmetic based, inequality prover. In case of
equality, we may optionally run Richardson’s more expensive algorithm and try to prove
the equality.

In applications, we notice that heuristic algorithms are often used in a similar way:
to speed up the main algorithm, which can be perfectly deterministic. A nice example
is the computation of a Grdbner basis over the rationals using modular arithmetic. In
Faugére’s software, modular arithmetic is used in order to get a precise idea about those
S-polynomials that reduce to zero, thereby avoiding many unnecessary reductions when
performing the actual computations over the rationals [Fau94].

In the particular case of a heuristic algorithm whose purpose is to guess dependencies,
we finally notice that we may always build in the trivial safeguard to check all proposed
relations a posteriori; see also remark 10 in section 6.1.

Attacks. It is a good practice to attack heuristic algorithms and try to construct sys-
tematic examples on which the heuristics fail. Successful attacks usually indicate that
the algorithm was either wrong, or that the heuristics only make sense under certain
additional assumptions. Failed attacks generally increase the confidence in the algorithm
and sometimes lead into theoretical insight on why precisely the heuristics work well.

One particular angle of attack concerns the computational complexity or the numerical
stability. This means that we search for examples for which the heuristic algorithm is
very slow or numerically unstable. This line of thought underlies much of the numerical
experiments which are presented in section 8.
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Instead of attacking the heuristic algorithms, it is also possible to look for interesting
classes of examples on which the heuristic provably works (or works better). In this paper,
some interesting special classes of analytic functions are meromorphic, algebraic and so-
called Fuchsian functions on a compact disk (see section 6.2). Typical classes which have to
be considered for counterexamples are lacunary series, functions with a natural boundary,
or holonomic functions that are not Fuchsian.

3. COMPUTING THE RADIUS OF CONVERGENCE

Let f be an analytic function which is given by its power series fo+ fi1 2 + fo 22+ - at
the origin. A natural problem is to compute the radius of convergence p = py of f. For
sufficiently large classes of analytic functions, such as solutions to algebraic differential
equations over the rationals, this problem is generally undecidable [DL89, Hoe07], although
efficient and high quality algorithms for the computation of lower bounds for p do exist in
this case [Hoe07]. In this section, we will consider heuristic algorithms, and only assume
that a large number of coefficients fo, fi, ..., fn—1 of f are known numerically.

3.1. Rough approximation using the Newton polygon

The first idea which comes into our mind is to apply Cauchy-Hadamard’s formula for the

radius of convergence p:
p~t=limsup /] fi].

i—> 00
Given n > 2 coefficients fo, ..., fn—1 of f, we may for instance use the approximation
-1 )
/A~ max il 4
prom max | fil (4)

For most convergent power series f, this formula is ultimately exact in the sense that

p~'=lim max \/|fi. (5)
n—oon/2<i<n
This is in particular the case when log | f;| is ultimately convex or ultimately concave (this
follows from the fact that the sequence | f;|/| fi+1| converges in an ultimately monotone way
to p, in this case). The set of f for which (5) holds is also stable under the transformation
f(2) = f(2¥) for any k€ N> ={n € N:n >0}. Of course, we may replace n/2 by an in (5)
for any a € (0,1). Notice however that the lacunary power series > 23" does not satisfy (5).
The formula (4) has the disadvantage that it has not been scaled appropriately: when
replacing f by ¢ f, where ¢ € C7 is such that |c|# 1, we obtain different approximations for
pes and py. This drawback can be removed by replacing f; by fi/ fi for some appropriate
coefficient index 0 < k <n with f;#0. In fact, one can even do better, and compute p using
the formula p = | fi/ fx|"/*~Y for appropriate indices 0 < k <1 <n with fz#0 and f; #0.
Let us now show how to read off such indices from the numerical Newton diagram of f.
Let P;= (i,log] fi|), where we understand that log0 = —oco. Then the Newton diagram
of f is the convex hull of the half lines

Pi+{0} xRS = {(i,log|fi| +y): y<O}.
For a fixed 0 < a < 1, say @ = 1/2, let a = |a n], and consider the Newton diagram of
F=f,2%+ -+ fn_12" "L There exists a minimal subset {P;,, ..., P, } C{Ps, ..., Pn_1}
with a =141 < --- <ig=n — 1, such that the Newton diagram is also the convex hull of the

half lines P;, + {0} x RS for 1< j <k. Graphically speaking, the P; ; are the vertices of the
Newton diagram (see figure 1).
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For a fixed 3 € (o, 1), say §=3/4, we may now determine the unique edge P; P;,  , of
the Newton diagram such that i; < fn <i;11, and replace the formula (4) by

1

1y (6)

p_l ~ fij‘+1

i
For a large class of convergent power series f, the formula (6) is again ultimately exact.
The indices i1 < --- < i can be computed from the coefficients f,, ..., f,_1 using a linear
traversal in time O(n). This yields an efficient algorithm for the approximation of p which
turns out to be more accurate than (4) in practice. The formula (6) has been implemented
in the MATHEMAGIX system [HLM+02]. For n~ 64, the computed radius is usually correct
up to one decimal digit in the relative error.

10g|fn|

Figure 1. Illustration of the numerical Newton diagram for f = (1 — 2)~2log (1 — 2z)~! and
truncated at order n=20. Taking 8=3/4, we get i;=15, i;4,1 =16 and p~ '~ | fi5/ f15| ~ 1.08875.
The red line is the unique line which extends the edge Pi5Pig, of slope log | fi6/ f15] =~ 0.085.

3.2. Asymptotic extrapolation

The formula (6) usually yields a reasonable estimate for p, even in very degenerate cases
when there are several singularities at distance p or close to p. However, if f admits a single
isolated singularity o at distance p of the origin, with no other singularities at distance
close to p, then it is often possible to read off much more information about this singularity
from the coefficients fy, f1,..., fn—1.

For instance, it frequently (always?) occurs that the quotients f,_1/ fn—2 simply tend
to o ~! for n— co. Moreover, as we will show below, if the singularity at o has a known type,
then the approximation o~ ! ~ frn—1/ fn—2 can be further improved. If nothing is known
about the singularity at o, then we may still try and see what happens if we apply such
specialized algorithms for various frequent types of singularities: with a bit of luck, we will
both obtain useful information about the type of singularity and the numerical value of o.

We say that f is algebraic at o, if f satisfies a polynomial equation

Pyfit-+Py=0,
where Py, ..., P; are analytic functions at o with Py;# 0. In that case, we have
fnﬁafnnk/p (ao—i-aln*l/p—i-azn*z/p—i- ),

with k € Z and ramification index p € N, whence

10gfn%(IOgJ)n+%logn+logao+%n—1/l’+...‘ (7)
0
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Using the E-algorithm [Wen01, BZ91|, we may now compute simultaneous approximations

for the first coefficients —log o, k/p, logag, a1/aop, etc. of the expansion (7). It turns out that

this strategy greatly improves the accuracy of the approximation of o (see also [Hoe09)]).
Similarly, we say that f is Fuchsian at o, if f satisfies a linear differential equation

La6?f+-+Lo f=0,

where d = (2 —0) 0/0z and Ly, ..., L4 are analytic functions at o with Lg(o) # 0. In that
case, the Taylor coefficients f, satisfy the asymptotic expansion

fn o™ n* (co(logn) + c1(logn) n-l/p 4 ca(logn) n=2/P 4 ),

where X € C, p€ N~ and the ¢; are polynomials in logn of degrees < d [Fab85, Poi86, Birl3,
Was67|. Again, the E-algorithm or more general algorithms for asymptotic extrapola-
tion [Hoe09] can be used to compute o with a high accuracy. Notice that these algorithms
also provide estimates for the accuracies of the computed approximations.

In cases where nothing particular is known about the behaviour of f at its dominant
singularity, the strategy of asymptotic extrapolation [Hoe09| still may work and both
provide useful information about the nature of the singularity and the numerical value of o.

4. LOCATING SINGULARITIES OF ANALYTIC FUNCTIONS

4.1. Analytic continuation

In order to explore the analytic function f(z) = fo+ f1 2 + fo 22+ --- determined by the
coefficients fo, f1, fo,... more closely, and in particular determine its singularities in a given
region, it is useful to have a means for performing the analytic continuation of f.

The way f is given sometimes provides us with such a means. For instance, if f is the
solution to an initial value problem

f(’"( ) = Pz, f(2), ... f77V(2))
(£(0),..., f=(0) = 1,

then the continuation fi,(z)= f(u+z) of f at any sufficiently small u is again the solution
of an initial value problem

F@) = Pz fra(2) o 1570
(F+a(0)s ooy F70(0)) = (F(u), ey F7 V().

In [Hoe05, Hoe07] it is shown in detail how to turn this into an algorithm for the analytic
continuation of f. Notice also that the power series solutions to an initial value problem
can be computed efficiently using the algorithms from [BK78, Hoe02].

In general, it is always possible to compute the continuation f, numerically. However,

this kind of “poor man’s” analytic continuation induces a big loss of accuracy. Let us
illustrate this on the fundamental example

f = 1

1—2

In order to compute ( fy,); with a precision of p bits using the formula

(fru)i = i (Zj:‘]) fivju,

Jj=0
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we need to truncate this expansion at an order j for which

(i~ (i) 27 = oo

Putting j = ¢ and using Stirling’s formula, this yields
(I+a)log(1+a)—aloga+alogu+log(l—u) ~ —glogQ. (8)
For instance, in order to expand f;/; at order n with precision p=n, we get

(I+a)log(l4+a)—aloga—(1+a)log2 ~ —log2
a ~ 3.4034979,

and we need an expansion of f at the origin at order (o + 1) n. In general, for every
analytic continuation step, we need to multiply the expansion order by a constant factor
which depends on the desired precision and the ratio between the step size and the radius
of convergence.

An experimentally better strategy for poor man’s analytic continuation is to postcom-
pose f with a suitable analytic function ¢(z) = ¢1 2+ ¢2 22 + - instead of ¢(2) =z + u.
If f admits a dominant singularity at o, then ¢ should be chosen in such a way that fo ¢
has ¢~!(o) as its only singularity in the unit disk, and such that |¢~!(c)| is as small as
possible. One may typically take ¢ to be a composition of rational functions of the form
az/(b+ cz). Yet another strategy would be to consider a Padé-Hermite approximation
f~P/Q of f and then to expand P/Q (instead of f) at w.

4.2. Locating dominant singularities

Assuming that we have a means for analytic continuation (whether this means is efficient
and accurate or only a “poor man’s” solution), a natural question is to gather information
about the singularities of f. First of all, we may want to locate the dominant singularity
(or singularities) of f with a good precision.

Let us first assume that f admits a unique dominant singularity at ¢ and no other
singularities of norm <|o| + §. Section 3 provides us with heuristic algorithms for the
computation of |o|. More generally, for any v € C with |u| < d, the point o — u is also
the dominant singularity of fi,, so we may compute |0 — u| using the same heuristic
algorithms. Computing |0 — u| and |0 —iu| for two such points, the singularity o is now
uniquely determined by its distances |o|, | —u| and |0 —iu| to 0, v and iu (see figure 2).

Even if we do not know § beforehand, then we apply the above method for u with
|u| =€ |o|, for some € < 1. In order to check the correctness of the computed value of o
a posteriori, we also compute the radius of convergence p of f,, /5. Then o is a dominant
singularity of f if and only if p=0/2. If this check fails, then we simply divide € by two
and repeat the same procedure until the right value of ¢ is found.

In practice, the convergence radii can only be approximated, so all equality tests have
to be replaced by approximate equality tests, for which the tolerance in relative precision
is slightly larger than the estimated relative precision with which the convergence radii
are computed. In particular, the above method computes o with approximately the same
accuracy as the radius of convergence |o|.

Furthermore, if our procedure for analytic continuation is accurate enough, then we
may “zoom in” on a singularity, and determine its location with higher precision. More
precisely, assume that we have a rough approximation ¢ of the dominant singularity o.
For some small € > 0, we then compute an approximation 7 of the dominant singularity of
f+ro with A=1—¢e. This yields the improved approximation Ad + 7 of o.
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Assume now that f admits more than one dominant singularity (or other singularities of
norms close to |o|), but still a finite number of them. On the one hand, by computing the
radii of convergence of f, for a sufficiently large number of points u with u < ||, we may
determine all dominant singularities. On the other hand, for any two adjacent dominant
singularities o and ¢’ with |0’ — o | <1, we may check the absence of other singularities in
between by looking at the radii of convergence of fy(s+207)/3 and fyx(20+07)/3 for some
0 < A< 1. This yields a criterion for deciding whether we took a “sufficiently large number
of points u”.

From the numerical point of view, rough initial rough approximations can be further
improved by zooming in. In figure 3 we have shown an example where we zoomed in on
one among eight singularities. After zooming in, we see that all other singularities are far
away, so they do not pollute the computation of the radius of convergence.

The generalized algorithm is particularly useful in the special case when there are two
dominant singularities which are complex conjugates. This annoying situation prevents
us from using the technique of asymptotic extrapolation in a direct way. Nevertheless, we
may use it after zooming in on one of the two singularities.

Figure 2. Determination of o from Figure 3. Zooming in on one among eight
its distances to 0, u and iw. dominant singularities.

4.3. Exploring the Riemann surface

In the case when our method for analytic continuation allows us to turn around singu-
larities, it is natural to ask whether we can explore the Riemann surface of f beyond the
dominant singularities. In general, it is always possible to approximate the Riemann surface
of f by an organically growing sequence of more and more precise Riemann surfaces of
a special form; we refer to [Hoe07| for details. In this section, we will restrict ourselves
to a more particular situation: given the closed disk D, of center 0 and radius 7, we will
assume that there exist a finite number of points o1, ...,05 € D, in its interior such that f
is defined above U :=D, \ {01, ...,05}. Our task is to find the points o1, ..., 0.

One complication is that some of the singularities o; may not directly be visible from
the origin by following a straight line, but only after turning around one or more other
singularities. In principle, more and more singularities might therefore be disclosed by
making successive turns around the singularities which were already found. In order to
ensure our algorithm to terminate, we will make the additional assumption

H. There exists a finite dimensional vector space of analytic functions above U, which
contains f and all its analytic continuations.
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This is in particular the case if
A. The Riemann surface of f admits a finite number of sheets above U.

In sections 6.1 and 6.2, we will encounter two natural situations in which the assumptions
A resp. H are satisfied.

Consider a finite number of points z1, ..., z, €U together with a graph G which admits
V(G)=A{z1,..., 2n} as its vertices. We will say that G is admissible if G is connected and
for every edge (zi, zj) € E(G), the straightline segment between z; and z; lies in /. Assume
that f is known at one of the points z;. For each z; € V(G), we may then define Vj to be
the vector space spanned by all analytic continuations of f by following edges of G. We
may compute the collection V1, ..., V}, of these vector spaces using the following algorithm:

Algorithm continue( fy,,, z;, G)
INPUT: an analytic function f at z; and an admissible graph G with V(G) ={z1,...,2n}
OuTtpuT: for each z; € V(G), a basis Bj of Vj

Step 1. [Initialize]
Set Bi:={f4.,} and Bj=0 for all j#1

Step 2. [Saturate]
For any z; € V(G), g € Bj and (2j, z;) € E(G) do
If g1 (22, ¢ span(Bg), then
Set By := BiU {9+(Zk—zj)} and repeat step 2

Step 3. [Terminate]
Return (By, ..., By)

Remark 2. The test g, (;, . ¢ span(By) requires an equality test for analytic functions.
From the heuristic point of view, we may simply fix two numbers k, p € N and test whether
the first & Taylor coefficients coincide up to a relative error 277,

Assume now that t singularities in {01, ...,05} are known, say o1, ...,04. We need a test
in order to check whether ¢t = s, as well as a way to find at least one of the remaining
singularities in {oy41,...,05} if t<s.

Let € >0 be such that € <|o; —0;|/8 for all i < j <t and |o;| <r —8 . We now consider
a graph G in the form of a hexagonal honeycomb, which fills up the disk D, and such
that each edge (z;, zj) € E(G) has length |z; — z;| = ¢ (see also figure 4 below). Picking G
sufficiently at random, the graph G is also admissible, so we may apply the algorithm
continue. For each vertex z; € V(G), we also compute the minimum p; of the convergence
radii of the elements in B;. We claim that ¢t = s if and only if

pi = min |2 — 0] (9)
for all ¢. Indeed, if t = s, then the equality clearly holds. Assume for contradiction that
the equality holds for all 7, even though ¢ < s. For each of the outermost vertices z; € V(Q)
of the honeycomb with |z;| > r — &, we have |z; — o441 = p; = 6 . This implies that
|oey1| <7 —5e, whence o441 lies in the interior of one of the cells of the honeycomb. Let o
with j <t be such that |0 — oy1] is minimal. Now consider a vertex z; € V(G) of the cell
of the honeycomb which contains o1 such that Re (z; — ;) /(2 — 0¢41) > 1 (see figure 4).
Then |z — 0| > |zi — 0¢41]. Now |23 — 0| < |23 — 0q1| + |0 — 0¢41| <4 € also implies that
|zi — 0] = pi. Consequently, p; > |2z; — or41| = p;. This contradiction completes the proof
of our claim.

Whenever (9) does not hold for some i, then this indicates the presence of a singularity
in {0441, ..., 05} near z. It thus suffices to determine the dominant singularities of the
elements in B; in order to find at least one of these missing singularities.



JORIS VAN DER HOEVEN 13

Remark 3. In practice, we only have heuristic algorithms for approximating the radii p;.
Therefore, and as in the previous subsection, the test (9) should really be replaced by an
approximate equality test.

Remark 4. We picked a graph in the form of a honeycomb in order to simplify the proof
of our claim. In practice, it is more efficient to construct graphs with small edges near
the singularities and larger edges elsewhere, such as Voronoi diagrams. Following [CC90,
Hoe99], it can also be shown that the optimal shape of a polygon for turning around a
singularity contains 17 edges and not 6 (at least in the case when f is the solution to a
differentially algebraic equation).

Figure 4. Illustration of the proof of our claim that ¢t = s if and only if (9) holds for all i. The
colored region corresponds to the set of all points z with Re (z —0;)/(z — oy4+1) > 1.

5. MEROMORPHIC FUNCTIONS

5.1. Computing the denominator on a compact disk

In the case when f is meromorphic on the compact disk D, of radius r, then there exists
an alternative for the algorithms from section 4: we may directly search for a polynomial P
such that the radius of convergence of P f is strictly larger than r. If such a polyno-
mial A y= P exists, then we may select P to be monic and of minimal degree; this particular
polynomial P will be called the denominator of f on D,. If f is not meromorphic on D,
then we define Ay = 1. Given D € N, we also define the guarded denominator A p by
Arp=Llif Ay=1 ordegAy>N and Ay y=Ay otherwise. Guarded denominators may
be computed using simple linear algebra, as follows:

Algorithm denom(f,r, N, D)
INPUT: the first N >2 D coefficients of f, a radius r and a degree bound D
OUTPUT: an approximation of a monic polynomial P with pps > r,
chosen of minimal degree deg P < D, or L (failed)

Step 1. [Initialize]

d:=0
Step 2. [Determine P

Solve the linear system

fN=2d+1  fN-d Py IN-2d
: : : + : =0 (10)
IN—a N Py fN—da—1
Set Pi=20+4+ Py 12471 +... 4Py
Step 3. |[Terminate or loop]
Heuristically determine p:= ppy, based on the first N coefficients of P f
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If p>r then return P
If d=D then return L
Set d:=d+ 1 and go to step 2

In order to study the reliability of this algorithm, let us first introduce some more
notations. First of all, given integers d >0 and N >2d — 1, we will denote

IN-2d+1 ~ fN-d
Hinag = : :
In—a o fN-1
The approximate correctness of the algorithm relies on the following technical lemma which
will be proved in the next section.

LEMMA 5. If f admits exactly d roots in the closed unit disk, when counted with multiplic-
ities, then the matriz norm of H;}v,d satisfies HHJ?}V,dH =NOW for N — 0.

THEOREM 6. Let Q=Ay p and assume that the test ppy > in the algorithm always returns
true if and only if Q# L and d>deg Q. Then P= L1 if and only if Q = L. Moreover, if
P+ 1, then

for N — 00 and any p < pgy.

Proof. Modulo a scaling z = r z/, we may assume without loss of generality that » = 1.
Furthermore, the proof is clear if d=0, so we will assume that d >0 and py<1. The test
pps> 1 returns false as long as d <deg @ (or if @ =_1). Assume now that d reaches deg Q
in the algorithm. Then the computed P satisfies

fN7.2d+1 fN.fd Pdfl_.Qdfl (Qf.)Nfd
fN‘—d fN'—l PO; Qo (Qf.)N—l ’
since
IN—2d+1 - fN-a Qa1 fN—24 (Qf)N—a
s : A = s
In—a - fN-1 Qo fN—d—1 (Qf)N=1
Now let p < pgs. Given p’ € (p, pgy), we have (Q f)n = O((p")~¥). Using lemma 5, it
follows that P — Q =O(||Hy ly 4ll (p") ™) =O(N°W (p")=N) = 0(p~Y). O

Remark 7. The algorithm uses a very simple d-step search for finding a polynomial of
minimal degree d with ppy > r. Using a binary search (doubling d at each step at a first
stage, and using a dichotomic search at a second stage), the number of steps can be reduced
to O(logd).

5.2. Proof of lemma 5

Proof. Let us first consider the case when f = P/Q is a rational function with deg P <
d:=deg Q, ged (P, Q) =1, and such that @ only admits roots in the closed unit disk. We

denote ¥ = {o € C: Q(0) =0} and vy = min;ex Q¥ (0) # 0 for each o € . Using partial
fraction decomposition, there exist numbers ¢, ; with ¢ <1, such that

fN = Z CUJ‘NZ'U*N.

oENI<V,



JORIS VAN DER HOEVEN 15

In particular, we may factor

Hyna = MyAn,
where My is a matrix with entries in C[N] and Ay is a diagonal matrix with entries o=
(and such that each o € ¥ occurs v, times). The functions N? o~ with i < v, being linearly

independent, the matrix My is invertible in C(N), whence
IHr hall = AN My = NOO.

This completes the proof of the lemma in the special case.
In general, we may write f =g+ o, with g= P/Q as above and where g is an analytic
function on the closed unit disk. Then

—1 —
|Hy vall = [(Hgna+Hpn,a) ™!
_1 _
= |[(Hyna(l+H, N gHona) ™!
< A+ Hy yaHona) U NHy val

(1+0(1)) NOW
= NOO),
since
1Hy NaHonall = NOWr=N = o(1)
for some r > 1. This completes the proof in the general case. O

6. DETECTING DEPENDENCIES VIA ANALYTIC CONTINUATION

Keeping the same spirit as in section 5, we will now turn our attention to two larger classes
of algebraic and Fuchsian analytic functions on the compact disk D, of radius r. Given
a function f in one of these classes, we will show how to find the defining equation for f,
under the assumption that we have a high accuracy algorithm for its analytic continuation.
As in remark 2, we will also assume the existence of a heuristic equality test for analytic
functions.

6.1. Algebraic dependencies on a compact disk

Let f be an analytic function which is given by its power series fo+ f1 2+ fo 22+ - at the
origin. Assume that f can be continued analytically on a Riemann surface R above the
closed disk D, of radius r minus a finite set of points o1, ..., 0. Let A be the set of analytic
functions on D,. We say that f is algebraic on D, if there exists a polynomial relation

Pyfi4 -+ Py=0, (11)

with P € A[F]. In that case, we may normalize the relation such that P has minimal degree
and such that P; is a monic polynomial of minimal degree. In particular, all roots of Py
are inside the disk D,.

Given a function f which is algebraic on D,., this function clearly satisfies the assump-
tion A in section 4.3, whence we may compute the singularities oy, ...,0, using the algorithm
described there. Conversely, the example

1 1

f:ezfo'l + +eZ—Us

shows that there are functions which satisfy the assumption A, but which are not algebraic
on the disk D,.
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Assume that f is algebraic on D,. For each singularity o;, consider a path ¢; from the
origin to a point near o; which avoids the other singularities, and let C; be the operator
which performs an analytic continuation along ;, one turn around o;, followed by an
analytic continuation along ¢; ! With these operators, we may use the following algorithm
for the detection of algebraic dependencies:

Algorithm alg_dep(f,r,(o1,...,05),N,D,B)
INPUT: an analytic function f above D, \ {o1,...,05} and bounds N, D and B
OUTPUT: a normalized algebraic dependency (11) with d < B and deg P;< D, or L (failed)

Step 1. [Initialize]
Set ®:={f}

Step 2. [Saturate]
If card(®) > B then return L
If C;® C @ for all ¢, then go to step 3
¢:=0UC;PU---UC; D
Repeat step 2

Step 3. [Terminate]
Denote ®:={p1,..., ok }
Compute Q= (F — 1) -+ (F — ¢r) = F*+ Q-1 F¥ 7'+ + Qo
For each i €{0,..., k}, compute D;:=denom(Q;, 7, N, D)
If D;= 1 for some ¢, then return L
P:=lem(Dy,...,Di) Q
If deg Py > D then return L
Return P

THEOREM 8. Modulo oracles for equality testing of analytic functions and the computation
of guarded denominators and least common multiples, the algorithm alg_dep is correct.

Proof. Assume that f satisfies a normalized relation (11), with d = deg P < B and
deg Py < D. Since ¢ only contains distinct roots of P, we have [] g (F — ¢) | P in
C((z))[F] throughout the algorithm. In particular card(®) < d, and we ultimately obtain
stabilization C1 ®U---UC, ® C &.

At this point, analytic continuation around any of the points o; leaves the polynomial @)
invariant, so the coefficients of @ are analytic and single-valued on D, \ {071, ..., 05}. On
the other hand, given a singularity o;, each solution ¢ € @ is also given by a convergent
Puiseux series near o;, whence so are the coefficients of ). Since the only Puiseux series
without monodromy around o; are Laurent series, it follows that the coefficients of () are
meromorphic on D,.

By the minimality assumption on deg P, it follows that deg Q =deg P and P = P; Q.
Since each coefficient Q; = P;/ Py is meromorphic on D,, we may use the algorithm denom
from the previous section in order to compute a polynomial D; of minimal degree deg D; <
deg P; < D such that @Q; D; € A. The monic least common multiple lem(Dy, ..., Dy) is
nothing but the monic polynomial P; of minimal degree such that P;Q € A[F]. O

Remark 9. In a world without oracles, the algorithm remains correct in the following
sense: if the tests C; ® C ® and D; = 1 always return the right answer, then we will
reach the line P :=lecm(Dy, ..., D) Q whenever the desired relation exists. For the final
normalization step, we need a numerical algorithm for the computation of least common
multiples which allows for small errors in the input coefficients. This is similar to the
computation of approximate g.c.d.s for which there exists an extensive literature; see for
example [CGTW95, KL96|, or [Zen04| and references therein.
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Remark 10. As an additional safeguard, we may heuristically compute the radii of con-
vergence of Py, ..., P; and check whether they are indeed superior to r.

6.2. Fuchsian dependencies on a compact disk

We say that f is Fuchsian on D,, if f satisfies a linear differential equation
Laf@D4 . 4Ly f=0, (12)

where L € A[J], and L is Fuchsian at each point in D,. Again, we may normalize (12) such
that L has minimal order d and such that L4 is a monic polynomial of minimal degree.

Given a function f which is Fuchsian on D,, the function now satisfies the assumption H
in section 4.3, so we may again compute the singularities o1, ..., o5 using the algorithm
described there. With C1, ..., Cs as in the previous section, we may detect Fuchsian
dependencies as follows:

Algorithm fuch_dep(f,r,(o1,...,05),N,D,B)
INPUT: an analytic function f above D, \ {o1,...,05} and bounds N, D and B
OuTPUT: a normalized Fuchsian dependency (12) with d < B and deg Ly < D, or L (failed)

Step 1. [Initialize]
Set &:={f}

Step 2. [Saturate]
If card(®) > B then return L
Let Vect X denote the vector space generated by a finite set of vectors X
If Vect(C; @) C Vect(P) for all 4, then go to step 3
O:=dU{C; ¢} for i and ¢ € ® with C; ¢ ¢ Vect (D)
Repeat step 2

Step 3. [Terminate]
Denote ®:={p1,..., o }
Compute K :=lem(0 — cpir, ey O — go;g) =Kp0F+- + Ky
in the skew polynomial ring C((2))[d], where o' denotes ¢’/
For each i €{0,..., k}, compute D;:=denom(K;,r, N,D)
If D;= 1 for some ¢, then return L
L:=lem(Dy,...,Di) K
If deg Ly > D then return L
Return L

THEOREM 11. Modulo oracles for equality testing of analytic functions and the computation
of guarded denominators and least common multiples, the algorithm fuch_dep is correct.

Proof. Assume that f satisfies a normalized Fuchsian relation (12), with d < B and
deg L; < D. Throughout the algorithm, the set ® only contains linearly independent
solutions to Ly =0. Therefore, the smallest operator lemyeq(0 — @) which vanishes on ®
divides L in C((2))[0] on the right. In particular card(®) < d, and we ultimately obtain
stabilization C1 ¢ + --- + Cs ® C P.

Consider one of the singularities ¢;. Since f is Fuchsian at o;, the equation L f =0
admits a fundamental system of solutions of the form

p(0i+u) = (a1(u!/?) log u) =1 4+ + @o(ul/?) ) u?,
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where A € C and ¢y, ..., pq—1 are convergent power series. The coefficients of K lie in the
field K generated by all generalized power series of this form. Again, the only elements
of IK with a trivial monodromy around o; are convergent Laurent series at o;. Since analytic
continuation around o; leaves the operator K unchanged, it follows that the coefficients
of K are meromorphic on D,. We conclude in a similar way as in the proof of theorem 8. [J

Remark 12. The hypothesis that f admits at worse a Fuchsian singularity at o; is essential
for the algorithm to work. For instance, in the case of the function
1 1
f=e7+4e =7,

the monodromy around o is trivial, whence applying the algorithm for r > || would simply
result in having ® = {f} at step 3. Even though f has no monodromy around ¢, this
function is no longer a Laurent series. In fact, the desired vanishing operator has second
order in this case, but it cannot be read off directly from ®.

7. DETECTING DEPENDENCIES VIA ORTHOGONALIZATION

In the case when we have no algorithm or no efficient algorithm for the analytic contin-
uation of f, the algorithms of section 6 can no longer be used. In this section, we will
describe a purely numerical approach for the detection of analytic relations on a closed
disk of radius R. Modulo the change of variables z — R z, it suffices to consider the case
when R=1.

Given an order n € N, we will denote by C[[z]].,, the set of power series f € C[[z]] with
fi=0 for all i >n. When truncating the usual multiplication on C[[z]] at order n, we give
C[[z]].n a ring structure, which is isomorphic to C[z]/(z"). We will denote by C[[2]].c the
Hilbert space of all power series f € C[[z]] with finite £ norm

1= V1 folP+ [fi]?+ .

Notice that any power series that converges on the closed unit disk has finite norm, but
a power series with finite norm is only guaranteed to converge on the open unit disk. More

generally, the norm of a vector f=(fi,..., fa) € @[[z]];doo is given by
1l = VAP A 4D fall.

The spaces C[[z]].0 € C[[2]];1 C -+ can be considered as an increasing sequence of Hilbert
spaces, for the restrictions of the norm on CJ[[z]].c to the CJ[[z]].p.

Let 0 <r <1 and assume that fi,..., fg€ C[[2]] are power series with radii of convergence
at least r (notice that we do not assume the f; to be of finite norm). We want to solve the
equation

g1 fi+-+gafa=h (9154 9a, b € C[[2]];00)- (13)

We will denote the vector space of all such relations (@1, ..., ¢4+1) = (g1, .-, gd, h) € @[[z]]dggl

by ®... Since the equation (13) involves an infinite number of coefficients, we need to

consider its truncated version at a finite order n € N. Replacing fi, ..., fq by their
truncations in C][z]].n, we will search for non-trivial solutions of the equation

91 f1++gdfd:h (9177gd7h€®[[2]],n) (14)
In a way which will be made more precise below, we will require the norms of g=(gi, ..., ga)

and h to remain of the same orders of magnitude as the vector (g1,0,..., 94,0). We will denote

by ®.,, the vector space of all (¢1, ..., ¢a+1) = (91, .-, ga, h) € (D[[z]]fln which satisfy (14). If
the norms of the solutions to the truncated problems tend to a limit for n — oo, then we
will prove that these solutions tend to a solution of the original problem (13).
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Let us reformulate the truncated problem in terms of linear algebra. The series f1, ..., f4
give rise to an nd X (n 4+ nd) matrix

fl.,O 1
f(;,o .. 1
f1.,1 fl‘,O 1 .
M= fc;,l fc%,o . I
fl,;l fl,riLQ f1.,0 .. 1 .
fd,;z—l fd,;—Q f(;,o .. 1
The unknown series g1, ..., gq give rise to a row vector
G=(g1,n71 “ Gdn—1 v gl gd,o)-

Setting h= g1 f1+ -+ + g4 f4, we then have
GM=(hy-1 - ho G).

Putting the first n entries on the right hand side and grouping by packets of n entries, it
follows that ® =G M encodes the relation (1, ..., a+1) = (91, -+, gd, ). This reduces the
problem to finding those vectors G for which |G M || is of the same order of magnitude as
the vector (g1,0,..-, 9d,0)-

We start with the computation of a thin LQ decomposition of M. This can for instance
be done using the Gram-Schmidt process: starting with the first row, we orthogonally
project each row on the vector space spanned by the previous rows. This results in a decom-
position

M=LQ,

where L is a lower triangular n d x n d matrix with ones on the diagonal and (@ is an
nd X (n+ nd) matrix, whose rows are mutually orthogonal (i.e. Q @*=1d). Now consider
the matrix A formed by the d last rows of L~!. Then each row G = A; gives rise to a
relation (14), encoded by ® = A; M. Moreover, this relation is normal or i-normal, in
the sense that g; 0 = 1 and gj o = 0 for all 7 > 4. Since A; M is the shortest vector in
(A; + Vect(Ao, ..., Aj—1)) M, the relation is also minimal in norm, among all i-normal
relations. Choosing the row A; for which [|A; M || is minimal, our algorithm simply returns
the corresponding relation. Then our algorithm has the following fundamental property:

PROPOSITION 13. The algorithm returns a normal relation g for which |G M || is minimal.

Let us now return to the case when fi, ..., fq € C[[z]] are no longer truncated, but all
have a radius of convergence >r. A relation (13) is again said to be normal or i-normal
if gio=1 and g;,0=0 for all j > 4. Under the limit n — 0o, we claim that our algorithm
finds a minimal normal relation, if there exists a relation of the form (13):

THEOREM 14.

a) Assume that ®.oc#0. Then ®.o contains a minimal normal relation. For each i,
®. ., contains at most one minimal i-normal relation.
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b) Assume that ¢ € ®.o is a minimal i-normal relation. For each n € N, let f.,, be
the truncation of f at order n and consider the corresponding minimal i-normal

relation @., € ®.,,. Then the relations p., converge to ¢ in @[[z]]d;gl

c) If ®..c={0}, then the norms || ¢.||, with ¢., as in (b), are unbounded for n— oco.

Proof. A non trivial relation ¢ = (g, h) is easily normalized: we first divide g by z”, where
v =min {val g1, ..., val g4}. We next divide by g; o, where i is largest with g; o # 0. Now
the set of all 4-normal relations is a closed affine subspace of C[[2]]%,. The orthogonal
projection of 0 on this subspace yields a unique i-normal relation of minimal norm. This
proves (a).

Assume that there exists an i-normal relation (13), and let ¢ € ®.,, be the minimal such
relation. Given an order n € N, consider the minimal ¢-normal relation ¢., at this order.
Truncation of this relation at a smaller order m < n yields an i-normal relation ¢.y.,, at

order m with ¢..m L (¢.n — ©in:m), Whence

||‘P;nH2:||‘P;mmu2+ ||‘P;n*30;n;mn2- (15)

Moreover, since ¢.,, is the projection of 0 on the affine space of ¢-normal relations at
order m, we have ¢.;, L (@.n:m — ©:m) and

”‘P;n;mHQZ ”‘P;n;m - Sp;m”2 + ”SO;mHQ- (16)

Similarly, truncation of the relation ¢ at finite order n yields an i-normal relation ¢...,
which satisfies

H‘PHZ = ||30;oomH2 + [l — ‘P;nHZ-
In particular, [[¢;m|| < || @mm [l < lonll <l¢ll, so that

[0l < ll@all < <llell

For n>m — oo, it follows that ||¢., || — ||¢;m || — 0, whence

H‘P;n - So;n;mH2 + ||S0;n;m - SD;MHQZ HSO;nHZ - ||90;m”2% 0,
and
H‘P;n - Sp;m” < ”‘P;n - Sp;n;m” + HSO;n;m - ‘P;mH — 0.

In other words, ., is a Cauchy sequence, which converges to a limit ¢ € C[[2]]%, with

|¢ |l <|l¢ll. Now for each n, we may write ¢., = (g:n.1, .-+, gin.d> I:n) and denote by .,

the truncation of the vector ¢ = (fi, ..., fa, —1) at order n. By assumption, the inner

products ¢ - ¢ and ¢,y - 1., vanish. Since ||9; — (¢.,);|| = 0 for all i and n — oo, we also

have [|¢.p, - ¥ || — 0 for n — oo, whence ¢ - 1) =0. Consequently, ¢ is an i-normal relation

in ®... By the minimality hypothesis on ¢, we conclude that ¢ = ¢, which proves (b).
In general, the existence of a bound B with

ool <llgall<--<B

still ensures ¢., to be a Cauchy sequence, and its limit yields an i-normal relation (13).
This proves the last assertion (c). O

Remark 15. For some very specific types of singularities, we would like to mention the
existence of an alternative strategy for the determination of linear dependencies. This
strategy relies on asymptotic extrapolation [Hoe09] and does not involve analytic contin-
uations around singularities, as in section 6. Let us illustrate the method on the example
of a function f with an isolated smallest singularity at 1 of the form

F(z)=a(z) + (=) og .
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where a and b are analytic at 1. Then the asymptotic extrapolation of f= fo+ fiz+ -
yields an asymptotic expansion of the form

Using singularity analysis [F'S96], we may then recover the function b from the coefficients
1, Ca, .... However, this technique only works in special cases, since the first w terms of the
asymptotic expansion may hide other terms, which need to be taken into account when
searching for exact dependencies.

8. NUMERICAL EXPERIMENTS

A first implementation of the guessing algorithm from section 7 has been made in the
MATHEMAGIX system [HLM-+02]. It is instructive to test the algorithm on examples for
which the existence or absence of linear dependencies is known. In particular, in order
to turn theorem 14 into an algorithm which requires no manual tweaking, we need more
precise information about the corresponding rates of convergence and divergence of the
norms ..

8.1. Examples of recognized relations

We have tested the orthogonalization algorithm on three examples of increasing difficulty,
for which linear dependencies are known to exist. In order to avoid problems due to
numerical instability, we have used a large working precision, of 1024 or 2048 bits.

Single poles. The easiest example on which we can run the algorithm is

1
f1 = 12 ()\>1).

Here follow the values for g.,, at different orders and A =2:

g1 = 1.0000— 1.6000 z — 0.60000 22 — 0.20000 23

gi161 = 1.0000—1.6180 z — 0.61803 2% — --- — 5.8340 10~ 214 — 1.9447 106 217
gia1 = 1.0000—1.6180z —0.61803 22 — - —5.0484 10726 262 —1,6828 1026 ;63
gi2s6.1 = 1.0000—1.6180 2 —0.61803 22— ... —2.8307 107106 2254 _ 9 4357 10107 ;255

The g.p1 clearly converge to a limit g; with radius of convergence >1. It should be noticed
that we do not have g1 =1 — A z. In other words, the “best” numeric relation (from the
point of view of Lo-norms) does not coincide with the “best” algebraic relation (as found
by using Padé-Hermite approximation). A closer examination of the result shows that

1-Xz
l—-az

g1 =

1 2
= = A+ 1
a+t— +5 (<)
In particular, o decreases if A increases.
Logarithmic singularity. Our second example concerns a logarithmic singularity:
f1 = cos(z)log(1—22)
fo = fi
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We obtain:
gis21 = 0.070136 +0.66832 2 — 1.1491 22 — --- — 0.010473 229 4 0.0033638 23°
gi6an = 0.013789+0.88839z — 1.337522— - —0.0083494 261 +0.0012131 262
gi12s.1 = 0.000138+0.99781 2 — 1.6176 22— -~ —2.3908-10~4 21254 1.6114 1075 2126

gias6a = 4.7-107941.00000 z — 1.6204 22 — 0.24832 23 — 0.75949 2% — 0.31293 2° — -..
—9.8386- 105 2128 — 9.5406 - 10" 2122 — 9.3630 - 10~ 2130 — 9.3108 - 105 2131 — ...
—2.3728- 1076 2251 42,7475 - 1077 222 — 1.9342 - 108 2253 4 6.2727 - 10~ 10 5254

g.32.2 = 1.0000 —1.6886 z — 0.35145 22 — --- — 0.0071095 23° + 0.0033638 23!
g.6a2 = 1.0000—1.6782 2 —0.42492 22 — .- —0.0071362 252 +0.0012131 253
g.1282 = 1.0000 — 1.6326 2 —0.54349 2% — -+ —2.2297-10742126 + 1.6114-1075 2127

g.256,2 = 1.0000 — 1.6204 2 — 0.58164 2% — 0.21949 23 — 0.25182 24 — 0.016358 2° — ---
—1.0928-10"% 2128 _9.8597-107° 2129 — 8.6828 - 1052130 —7.3899 . 105 2131 — ...
2.1091-1076 2252+ 2 5583. 107 2253 — 1.8714 - 108 2254 1 6.2727 - 1010 ;255

The convergence only becomes apparent at higher orders. Contrary to the previous
example, it seems that the series in the computed relation all have a radius of conver-
gence 1. The norms of the computed results are given by ||¢.32| = 3.5577, ||p.64| =
3.5955, [|¢.128] = 3.6739 and ||, 256| = 3.6862.

Number of alcohols. A more interesting example from combinatorics is the enumeration
of the number of alcohols of the form CyHa,4+10 H [Po6l37|. Its generating series satisfies
the functional equation
5(2)3+25(2?)

3 .

The asymptotic behaviour of the coefficients s,, is determined by the asymptotic behaviour
of s(z) at its singularity of smallest norm. Since s, > 0 for all n, this so-called dominant
singularity necessarily lies on the positive real axis, and coincides with the radius of con-
vergence r of s. Using asymptotic extrapolation [Hoe09], we find that r ~0.304218409. In
order to investigate s(z) for z close to 7, we apply our algorithm to

s(z)=1+z2

fi = s(0.15(2+0.25))
fo = fi

The translation z +— z + 0.25 is done using power series evaluation until stabilization at the
working precision. Although this was most straightforward to implement for this particular
example, there exist better strategies for zooming in, as mentioned at the end of section 4.1.
At different orders, we obtain:

G321 = 1.6836 —0.2908 2z +0.0013 22 — --- 4+ 0.022645 230 — 0.0029284 23!
g6a1 = 1.7104—0.3645 2 +0.2378 22 — -+ +1.6968-1074262—1.0104- 1075 2%3
G961 = 1.7105—0.3623 2 +0.237222— - +9.4113-1077 2% - 3.6428 - 1078 2%°
g.1281 = 1.7105—0.3622 2 +0.2370 2% — 0.052535 23 + 0.033518 24 — ---
+6.3727-107° 296 —3.4222-107° 297 — 1.2120- 104298 — 1.5462 - 104 299 — ...
+7.2542-1077 2124 — 7.4945 - 1078 2125 + 4.6860 - 109 2126 — 1.3437- 1010 2127
g.:32.2 = 1.0000 — 2.4006 z — 0.8867 22 — --- + 0.0061880 23" — 9.9191 - 10~ 23!
gi6a2 = 1.0000 —2.3257 2 — 1.2027 2% — .- +5.2359-107° 262 — 3.4225.1076 263
G062 = 1.0000—2.3236 2 —1.21352%2 — .- +3.0034-1077 2% —1.2339- 1078 2%
g.128.2 = 1.0000 —2.3235 2 — 1.2138 22 — 0.0067226 2> — 0.080434 z* + -
—2.6028- 1075296 —3.4490- 1075297 — 2.9260 - 1075298 — 1.1090 - 1072 299 + ...
+2.1258-1077 2124 —2.3161 - 1073 2"2° +1.5192 - 1079 2126 — 45516 - 10~ 11 2127
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The corresponding norms are given by | .32 = 4.3276, ||¢,64|| = 4.3845, ||¢.06|| = 4.3863
and ||¢,128]| = 4.3863. Again, the convergence is rather slow, and the computed series all
seem to have radius of convergence 1. Since 1> (r —0.25)/0.15, this means that we indeed
guessed an analytic relation between f; and fs on the unit disk.

Remark 16. The last two examples show that our algorithm usually returns a relation
whose series all have radius of convergence 1, if such a relation indeed exists. Larger radii
of convergence R can be obtained simply by running the algorithm on f(R z) and scaling
back the result.

8.2. Rate of divergence in case of independence

It is also instructive to run the algorithm on examples where the f; are known to be
analytically independent. In that case, it is important to examine the behaviour of the
norms ||¢.,|| for n— co and find more precise criteria which will enable us to discard the
existence of a nice dependency with a reasonable degree of certainty.

Logarithmic singularity. Let us return to the case of a simple logarithmic singularity
flleg(l_)‘Z)7

where A > 1. Running our algorithm directly on this function yields the following results
for A=2:

G321 = 1.0000 — 4.2642 z +4.3396 2% — --- 4+ 1.3621 2% — 0.68197 23°

g:641 = 1.0000— 8.1566 2z +23.8822% — -+ +4.1515 261 — 0.67813 252
gi12s1 = 1.0000 —16.1832z+112.022%— -+ +9.2483 2125 — 0.65589 2126
g:2561 = 1.0000—32.213 2+480.892% — -+ +19.957 2253 — 0.66367 224

The results indeed do not converge and the corresponding sequence of norms | ¢.32| =
12.324, ||¢.64]] = 77.306, || 12s]| = 3383.9 and ||p.256]| = 6.4461 - 10° diverges at moderate
exponential speed.

Various singularities. In the above example, it is interesting to study the rate of diver-

gence of the sequence of norms for other values of A. More generally, we can consider
various types of singularities, such as

P1a = log(1—A\z)
va)\ = \/1—)\2’

Az
Pga = el

g = random(A z).

The series random(z) = pg + p1 z + p2 22 + -+ is a series whose coefficients are chosen
according to a random uniform distribution on [0, 1]. The results are shown in table 1
below. For 11y, ¥2 ) and 13 y, it seems that the norm does not much depend on the precise
type of singularity, but only on A and the truncation order n. For the last series 14 », the
dependencies on A and n approximately seem to follow the law

n
log || @;nl| ~ 5 log A. (17)

This idealized law needs to be adjusted for functions 11 x, 12 x, 13,x» With more common
types of singularities. Although (17) remains asymptotically valid for large values of log A,
the factor log A needs to be replaced by a smaller number for moderate values. For
V2 < X\ < 4, this factor rather seems to be of the form « (log A\)2, where the con-
stant o depends on the nature of the singularity. Also, the linear dependency of log || .||
on n is only reached for large values of n.
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32 64 128 256
V1,3 | 2.5897 4.2958 1.1107-10% | 7.5308 - 10!
Y12 |1.2324-101 |7.7306- 101 |3.3839-10% |6.4461-10°
Y14 [2.7074-10% |3.1503-10° |5.0806-10'2|1.3215-10%°
Y1s [5.7101-10° | 1.6078- 1013 |1.2829-10% | 8.6064 - 105
Y116 | 6.0964-1010 | 1.7814-10% | 1.5612- 102 | 1.2279 - 108
132 | 1.1152-101% | 9.1674 - 10%° | 4.9020 - 10°? | 1.6662 - 10119
o, /3 | 2.2960 3.7208 9.7394 6.5890 - 10*
Y22 |9.3539 6.1551-10! |2.6678-10% |5.0111-10°
o4 [1.7232-10% |2.1500-10° |3.4149-10'?|8.7128-10%
tog [3.5980-106 | 1.0031-103|7.9396-10% | 5.2284 - 105*
V3,3 | 6.2155 1.3295- 101 [4.1722-10" |4.2679- 102
P30 [4.0164-10" |3.9310-102 |1.4047-10* |1.1091-107
P34 6927210 |6.8304-10° |4.7564- 10| 5.1308 - 10%°
P3s |3.6660-10° |9.4896 - 10! [ 4.2745-10%! | 1.1809 - 103
Yy [8.0487-10% |3.5565-10° [2.1354-10%9|4.8792-1038
Ya4 [5.0774-10° | 1.1548-1019[2.9916-10% | 1.2335- 1077
s |3.2564-101%|4.3151-10%8 | 5.1348 - 10°7 | 2.9654 - 10115

Table 1. Computed values of |[¢,,]|| for various types of singular behaviour v; ) and orders n.

Various singularities and d > 1. We have also applied our algorithm jointly to sev-
eral 1;  as above and studied the dependency of ||¢.,| on d. The results are shown in

table 2 below. In the bottom rows, ¥j y, V1%, ...

series random(\ z). In that case, the relation (17) generalizes to

n
log [|¢.n|| = mk’g A

stand for distinct uncorrelated random

(18)

It also seems that the law can be adapted to functions with more common types of singular-
ities, along similar lines as before. It would be interesting to have a theoretical explanation
for the empirical laws (17) and (18). The division by d 41 in (18) is probably due to the
fact that there are d 4+ 1 unknowns in the equation (13).

Of course, in the case that we are considering functions f1, ..., fg with several singu-
larities o1, ..., 07 on our disk of interest, only the singularities o; for which |o;| is smallest
are “numerically visible” (except when there exist relations which not involve these domi-
nant singularities o;).

32 64 128
V1.8 5.7101-10° |1.6078-10'3|1.2829-10%
V1.8, a8 4.8124-10% [4.1720-107 |2.0911-10%
V1.8, V2.8, 1 8(—2) 1.4867-10% |3.8890-10° |1.5664-10'3
V1.8, 2.8, U1 8(—2), P2,8(—2) | 7.9704-10% |1.4235-106 |4.9236 - 10'2
Ya s 3.2564-10'[4.3151-10%% | 5.1348 - 10°7
V4,8, Vi s 2.3631-10° |2.8202-10'®|1.9011-1038
Va8, Yh 8, Vi 5.4571-10°% |5.2439-10%3(4.0431-10%
Va8, Vis, Vi, VI 2.4329-10° |2.4748 - 101 | 2.4206 - 10*2

Table 2. Computed values of ||¢,,]| for different input vectors of increasing dimensions d.
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8.3. Towards criteria for an automatic final decision

In order to design a blackbox algorithm for the detection of dependencies (13), we need to
make a final decision on whether we declare the input functions to be dependent or not. In
view of the empirical law (18), and whatever decision criterion we implement, the outcome
can only be trusted if the following two conditions are satisfied:

1. The number d should not be too large.

2. There exists a large constant A > 1 for which all singularities of f are concentrated
inside the disk of radius A~! or outside the disk of radius .

As usual, if we are interested in dependencies near an isolated singularity, then the second
condition can often be achieved by zooming in on the singularity.

Our empirical observations in the previous section suggest that we should base the
final decision on the empirical law (18). First of all, in the case of independence, we should
observe a more or less geometric increase of the norm ||¢.,|| when running the algorithm
for different orders n. If f only admits an isolated singularity in D;, then we may also
compute its norm 7 = A~! and compare the computed values of ||¢.,|| with the expected
values, as given by the law (18), or a suitable adaptation of this law when log A\ becomes
small. This method is most effective when A is large, so it is usually recommended to zoom
in on the singularity before doing this comparison. In fact, if the law (18) is satisfied for
different zooming factors, then this may further increase our confidence that the input
functions are independent.

For any numerical checks based on the law (18) or a refinement of it, we also recommend
to precondition the input series fi, ..., f4. In particular, we recommend to multiply each f;
by a suitable constant, ensuring that

maX|fi,j|7“j: L,
<n

whenever we apply our algorithm at order n. Here r is computed using one of the algorithms
from section 3.

In fact, there is a trade-off between zooming in on the dominant singularity (thereby
ensuring a large value of \) and using the original input coefficients (which are given with
a higher accuracy and order). In order to get more insight in how far we should zoom in,
we need to analyze the cost of the algorithm from section 7.

The current working precision p should in general be taken larger than n logs A in order
to keep the method numerically stable. Denoting by M(p) the cost for multiplying two p-bit
numbers, a naive implementation of the Gram-Schmidt orthogonalization procedure yields
a total cost of O(d® n® M(p)). Denoting by MM(k, p) the cost of multiplying two k x k
matrices with p bit entries, and using a blockwise Gram-Schmidt procedure (similar to
the procedure for matrix inversion in [Str69]), we obtain the better bound O(MM(d n, p)).
However, the matrix M from section 7 has a very special form. With more work, it might
therefore be possible to save an additional factor O(n), but we have not actively tried to
do so yet.

Taking into account the effect of a possible zoom, we may next evaluate the computa-
tional cost in terms of the desired “output quality”. As a definition of the output quality,
we may take the expected value ¢~ # log A of log||¢.n]|| in the case when fi, ..., fq are

independent. In order to obtain accurate results, we need to compute with a bit precision
larger than gd. In terms of g, the time complexity thus becomes

qd2 A qw+1d2w+1 A q4d7
O(“”“”(log_qu))‘o( Gz )~ O\ Togae )
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where w < 2.373 <3 is the exponent of matrix multiplication [Str69, Pan84, CW87, Vas12].
The complexity bound makes it clear that we should put a lot of effort into keeping
log A\ large. If f satisfies a differential equation, then zooming in can be done with low
computational cost (see section 4.1). Otherwise, the required expansion order grows quickly
with the inverse of the distance to the singularity. Indeed, for u — 1, the formula (8)

becomes

loga =~ —%log?—log(l—u)
~ —%logQ—log)\,

where we recall that, in order to apply the orthogonalization process after zooming in, we
need to expand f at an order which is « times larger than before.
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