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Fast evaluation of holonomi funtions

near and in regular singularities

Joris van der Hoeven

(Reeived 25 November 2000)

A holonomi funtion is an analyti funtion, whih satis�es a linear di�erential

equation Lf = 0 with polynomial oeÆients. In partiular, the elementary funtions

exp; log; sin, et. and many speial funtions like erf;Si, Bessel funtions, et. are holo-

nomi funtions.

In a previous paper, we have given an asymptotially fast algorithm to evaluate a

holonomi funtion f at a non-singular point z

0

on the Riemann surfae of f , up to any

number of deimal digits while estimating the error. However, this algorithm beomes

ineÆient, when z

0

approahes a singularity of f .

In this paper, we obtain eÆient algorithms for the evaluation of holonomi funtions

near and in singular points where the di�erential operator L is regular (or, slightly more

generally, where L is quasi-regular | a onept to be introdued below).

1. Introdution

Let K be a sub�eld of C . A holonomi funtion (over K ) is an analyti funtion f ,

whih satis�es a linear di�erential equation

P

r

(z)f

(r)

+ � � �+ P

0

(z)f = 0; (1.1)

where P

0

; � � � ; P

r

are polynomials in K [z℄ with P

r

6= 0. The elementary funtions exp,

log, sin; : : : and many speial funtions like erf; Si; : : : , Bessel funtions, hypergeomet-

ri funtions, et. are holonomi. The lass of holonomi funtions also admits several

interesting algebrai properties and has reently been the objet of intensive study in

omputer algebra and mathematis (Stanley, 1980; Lipshitz, 1989; Zeilberger, 1990).

In (van der Hoeven, 1999), we have studied holonomi funtions from the exat numeri-

al point of view: requiring that all omplex numbers z we ompute with are e�etive (i.e.

for any rational " > 0 we an ompute a \Gaussian rational" ~z 2 Q[i℄ with j~z � zj 6 "),

we were interested in algorithms to evaluate holonomi funtions. Of ourse, we need be

areful here, sine f is atually de�ned on a Riemann surfae R above C n
, for some

�nite set 
 (sine any element in 
 must be a zero of P

r

).

More preisely, we selet a base point � on R, whih projets on an e�etive z 2 C n
,
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and we give ourselves e�etive initial onditions

y

in �:

I(�) =

0

B

�

f(�)

.

.

.

1

(r�1)!

f

(r�1)

(�)

1

C

A

:

Next, we onsider a non-singular path �  �

0

on R, whih is represented by a suitable

e�etive broken line path z  z

0

in C n
, and the problem is to ompute f in �

0

.

More generally, we may ask for the values of the �rst r � 1 derivatives of f in �

0

, i.e.

to ompute I(�

0

) in terms of I(�). This linear relationship an be written

I(�

0

) = �

� �

0

I(�); (1.2)

where �

� �

0

is a matrix whih only depends on the homotopy lass of the projetion of

z  z

0

of �  �

0

in C n
. We will all �

z z

0

= �

� �

0

the transition matrix along z  z

0

or �  �

0

. These matries satisfy the transitivity relation

�

z z

0

 z

00

= �

z

0

 z

00

�

z z

0

(1.3)

for the omposition of paths. When z  z

0

= z 	 z is atually a loop around one of the

singularities, then �

z	z

redues to a monodromy matrix.

In setion 2 we reall results from (Chudnovsky and Chudnovsky, 1990) and (van der

Hoeven, 1999) about the eÆient omputation of transition matries and the applia-

tion to the evaluation of f . However, the algorithms we presented there have two main

disadvantages:

� They su�er from numerial instability problems when �

0

approahes a singularity:

the oeÆients of the transition matrix �

z z

0

grow as fast as the most violent

solutions to (1.1) near the singularity.

� The algorithms do not allow us to ompute the limit of f in a singularity, if suh a

limit exists.

In this paper, we will study both problems. Our approah is to generalize transition

matries in order to aommodate paths with endpoints in singularities or whih pass

through singularities. The main steps, whih will be detailed below, are as follows: solve

the equation (1.1) formally in the singularity; give analytial meanings to the solutions;

use these solutions to prolongate I into the singularity.

Formal solutions. In setion 3, we reall and re�ne some lassial results about the

formal resolution of (1.1) in singularities in terms of transseries . These are generalized

series whih reursively involve exponentials and logarithms. In this artile, we assume

the singularity at z = 0, and then it suÆes to onsider transseries whih are obtained

from the �eld of Laurent series in z

�1

, from log z, from monomials z

�

and exponentials

of polynomials in z

�1

, by the ring operations and substitutions z 7!

p

p

z.

Analytial meaning of transseries. Sometimes (and atually even rather often), the

formal transseries solutions to (1.1) are all onvergent and bounds for their oeÆients

y

We note a small di�erene with (van der Hoeven, 1999), where we did not divide eah oeÆient

f

(i)

(�) by i!. This di�erene is motivated by ompatibility reasons with (van der Hoeven, 1997) in view

of remark 3.2.
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an be omputed. We will mainly be onerned with this onvergent ase in this paper;

in setion 3.3.2 we will introdue the orresponding notion of quasi-regular di�erential

operators. The divergent ase requires

�

Ealle's aelero-summation theory (

�

Ealle, 1992;

�

Ealle, 1993; Braaksma, 1991; Balser, 1994; Ramis, 1978; Ramis, 1980) and will be treated

in a forthoming paper.

Prolongation of I into singularities. In setion 3.3.1, we expliitly introdue a spe-

ial basis of r transseries solutions f

[0℄

; : : : ; f

[r�1℄

to (1.1) | the basis of anonial solu-

tions . Having �xed analytial meanings of f

[0℄

; : : : ; f

[r�1℄

, eah atual analyti solution

f to (1.1) an be expressed as a linear ombination

f = �

0

f

[0℄

+ � � �+ �

r�1

f

[r�1℄

:

The olumn vetor with entries �

0

; : : : ; �

r�1

will now be onsidered as the prolongation

of the initial onditions I into the singularity; we say that it is a generalized value of I .

We notie that this prolongation depends on the way we assoiated an analytial meaning

to f

[0℄

; : : : ; f

[r�1℄

; this is partiularly important in the divergent ase.

Singular transition matries. In setion 4, we introdue singular transition matries

whih desribe the linear dependenies between the generalized or ordinary values of I

in singular or ordinary points, just as the usual transition matries desribed the linear

dependenies between the values of I in ordinary points.

In the onvergent ase, we show how to approximate singular transition matries up to

any desired preision; this enables us in partiular to approximate the limit of a solution f

to (1.1) in the singularity, if it exists. Modulo an interesting heuristi stated in setion 5.1,

we also obtain uniform omplexity bounds for (singular) transition matries along paths

lose to a given singularity, and whose entries are represented by oating point numbers.

As to the relation of our work with respet to previous work, the idea to \pass through"

singularities in order to perform analyti ontinuations near singularities has been around

for some time among the speialists of resummation theory. However, we think that it has

never been made as expliit as in our paper. More generally, we feel a need of detailed

papers about e�etive analyti ontinuation near singularities, with atual algorithms

and results about the omputational omplexity. This paper is intended as a �rst step in

this diretion.

In remark 2.4, we will also point out that our algorithms are exponentially faster

than lassial numerial algorithms, suh as the Runge-Kutta method. This is a general

phenomenon; in a forthoming paper, we plan to generalize our results to (regular) non

linear di�erential equations. We also reall that our algorithms provide a totally e�etive

error ontrol.

As to the inorporation of numerial algorithms for omputations with holonomi

funtions in omputer algebra systems, it is important to have a zero-test for holonomi

onstants. In the last setion, we propose suh a test, whih is based on a new heuristi.

We also prove a uniform omplexity result based on this heuristi for the evaluation of

ertain polynomial expressions involving holonomi funtions near singularities.

2. Survey of the non-singular ase

In (van der Hoeven, 1999), we studied the following questions (using the notations

from the introdution):



4 Joris van der Hoeven

Q1. How to guarantee the exatness of evaluation algorithms?

Q2. What is the asymptoti omplexity of omputing n digits of f(�

0

)?

Q3. How does the hoie of the path z  z

0

inuene the omplexity of e�etive analyti

ontinuation? In partiular, what happens if the path approahes a singularity?

We will briey reall our results in what follows.

Remark 2.1. During the refereeing of this paper, the author has been made aware of

the paper (Chudnovsky and Chudnovsky, 1990), in whih the questions Q2 and Q3 were

studied before in a similar way as in (van der Hoeven, 1999).

Remark 2.2. We stress that questionsQ1 andQ2 should really be seen as independent.

The �rst question amounts to the omputation of ertain bounds as a funtion of the

path z  z

0

. These bound omputations are independent from the required preision n

in the seond question.

In Q2 and Q3, we are onerned with asymptotially fast algorithms (i.e. fast algo-

rithms for large n). The tehniques we will use there are very di�erent from the bound

omputation tehniques and from more lassial tehniques (suh as the Runge-Kutta

method).

2.1. Effetive bounds

If z  z

0

= z ! z

0

is a straightline path with z

0

lose to z, then f(�

0

) an be

approximated by evaluating suÆiently many terms of the power series expansion

f(�

0

) = f

0

+ f

1

(z

0

� z) + f

2

(z

0

� z)

2

+ � � � (2.1)

of f in �. In order to obtain an exat numerial algorithm, we should therefore be able

to estimate the ommitted error.

Now (1.1) implies that the oeÆients f

k

satisfy a linear reurrene relation with

oeÆients in K (k). This relation an be written in matrix form

F

k+1

= A

k

F

k

;

for a ertain q by q matrix with oeÆients in K (k) and where the F

k

are olumn vetors

with entries f

k

; : : : ; f

k+q�1

. Atually, the matries A

k

tend to a onstant matrix for

k ! 1, i.e. A

k

2 K [[k

�1

℄℄. Let � be the largest eigenvalue of the limit matrix A

1

.

Estimating the produt A

k

� � �A

0

for k ! 1, we proved the following in setion 2.2

of (van der Hoeven, 1999):

Theorem 2.1. There exists an algorithm, whih given � > � omputes a onstant B

suh that jf

k

j 6 B�

k

for all k. 2

In partiular, this bound yields error estimations for the tails of the Taylor series

expansion (2.1), sine

jf(�

0

)� f

0

� � � � � f

k�1

(z

0

� z)

k�1

j 6

B�

k

1� �

;

for � = jz

0

� zj=� < 1.
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Remark 2.3. In (van der Hoeven, 1999), we applied the theorem to the ase when z is

non-singular for (1.1), i.e. P

r

(z) 6= 0. In that ase, all solutions to (1.1) have onvergene

radius at least �

�1

. More preisely, �

�1

oinides with the onvergene radius of 1=P

r

in z.

2.2. Fast evaluation of trunated power series expansions

Assuming that K is an algebrai number �eld and z; z

0

2 K , we will show now how to

ompute f

0

+ f

1

(z

0

� z) + � � � + f

k

(z

0

� z)

k

in an asymptotially eÆient way. We �rst

introdue the vetors

�

k

= F

k

z

k

;

�

k;l

= F

k

z

k

+ F

k+1

z

k+1

+ � � �+ F

k+l�1

z

k+l�1

;

for k 2 N; l > 1. We laim that for all k and l > 1, there exist matries M

k;l

and N

k;l

,

suh that

�

k;l

= M

k;l

�

k

;

�

k+l

= N

k;l

�

k

:

This is learly so for l = 1, by taking M

k;1

= Id and N

k;1

= zA

k

. Assume l > 0 and

deompose l = l

1

+ l

2

with l

1

= b

l

2

. Then we take

M

k;l

= M

k;l

1

+M

k+l

1

;l

2

N

k;l

1

;

N

k;l

= N

k+l

1

;l

2

N

k;l

1

:

These reursion formula yield an eÆient divide and onquer algorithm to omputeM

0;k

for large k (if suh a matrix has frational entries, then we put all its entries on ommon

denominator and no gd omputations are performed in order to simplify this denomina-

tor). Denoting byM(n) the time required to multiply two n-digit numbers, we proved the

following omplexity bound for this algorithm in setion 3.2 of (van der Hoeven, 1999).

Theorem 2.2. Assume that K is an algebrai number �eld. Then the matrix M

0;k

an

be omputed in time O(M(k log

2

k)). 2

Using the bounds from the previous setion, this yields an eÆient algorithm to eval-

uate f(�

0

) up to any desired preision. The iterated derivatives f

0

; f

00

; : : : of f an also

be evaluated eÆiently in �

0

, beause these derivatives are also holonomi.

2.3. General transition matries

The approximation problem for transition matries between two lose points z and z

0

learly redues to the evaluation problem of p linearly independent solutions to (1.1) and

its �rst r � 1 iterated derivatives in z

0

. Using the bounds from setion 2.1, we an do

this up till any desired preision. If K is an algebrai number �eld, and z; z

0

2 K , we an

even use the asymptotially eÆient algorithm from above.

To ompute the transition matries along general paths, we approximate the path by a

broken line path and use the transitivity relation (1.3). In order to hoose the broken line

path in an optimal way, it is important to estimate the omplexity of the omputation of

transition matries as a funtion of the path. Denote by D(�; �) the ompat disk with
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enter � and radius � and by �(z) the distane of z to the losest singularity. Assuming

that K is an algebrai number �eld, we also denote by size(z) the memory spae needed

to store a number z 2 K . In setion 4.1 of (van der Hoeven, 1999), we proved the following

for straightline paths z ! z

0

with z; z

0

above K :

Theorem 2.3. Assume that

(a) U is an open domain on whih jf j is bounded.

(b) K is an algebrai number �eld.

() z ! z

0

is the straightline path between two points z; z

0

2 K .

(d) We have D(z; jz

0

� zj) � U .

Denote s = size(z)+size(z

0

) and � =

�(z)

jz

0

�zj

. Then f(z

0

) an be evaluated up to preision

2

�n

in time

O(M(n(s + logn) logn log

�1

�));

uniformly in z and z

0

, provided that log log � = O(n).

We have also shown that an arbitrary broken line path z  z

0

an be suitably ap-

proximated by a broken line path with verties in K (but whih depends on the required

preision), in order to obtain an eÆient approximation algorithm for �

z z

0

:

Theorem 2.4. Assume that K is an algebrai number �eld. Then n digits of �

z z

0

(resp. f(z

0

)) an be omputed in time O(M(n log

2

n log logn)). 2

Remark 2.4. We stress that the above omplexity is far better than the omplexities

ahieved by lassial numerial methods. For instane, the Runge-Kutta method needs

a time O(n) to get a result with a preision of O(n

�4

). But a preision of O(n

�4

)

means that we only obtain O(log n) orret digits! In other words, in order to obtain n

orret binary digits, Runge-Kutta's algorithm needs a time O(2

n=4

). Therefore, Runge-

Kutta's algorithm has an exponential omplexity from our point of view. Nevertheless,

this method remains superior for small preisions.

2.4. An alternative algorithm for bound omputations

One of the referees observed that I ould have used Cauhy-Kovalevskaya's majorant

method in order to obtain the bound from theorem 2.1 in (van der Hoeven, 1999). Indeed,

I was not aware of this method at the time, but I redisovered it sine, and was atually

planning to use it for a forthoming paper on analyti ontinuation of solutions to non

linear di�erential equations. For the sake of ompleteness, we apply it in this setion to

the ase of linear di�erential equations in non-singular points. It would be interesting to

know whether the tehnique an be generalized to the regular singular ase whih will

be studied in the remainder of this paper.

So assume that P

r

(z) 6= 0 and let �

�1

be the radius of onvergene of 1=P

r

in z. Given

� > �, we will show how to ompute a B, suh that jf

k

j 6 B�

k

for all k. Now observe

that (1.1) is equivalent to

f

(r)

(z) = �

P

r�1

(z)

P

r

(z)

f

(r�1)

� � � � �

P

0

(z)

P

r

(z)

f: (2.2)
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We �rst ompute bounds for the oeÆients of the rational frations �P

i

=P

r

, of the form

�

�

�

�

�

�

P

i

(z)

P

r

(z)

�

k

�

�

�

�

6M

i

�

k

;

where � < � < � (say � = (�+ �)=2). Then let

N =

�

1

�

max

i2f0;::: ;r�1g

r�i

p

rM

i

�

;

so that

�

�

�

�

�

�

P

i

(z)

P

r

(z)

�

k

�

�

�

�

6

�

M

i

1� �z

�

k

6

(N�)

r�i

r

�

1

1� �z

�

k

6

(N + r � 1) � � � (N + i)

r

"

�

�

1� �z

�

r�i

#

k

for all i 2 f0; : : : ; r � 1g and k. In other words, the equation

g

(r)

(z) =

N + r � 1

r

�

�

1� �z

�

1

g

(r�1)

+ � � �+

(N + r � 1) � � �N

r

�

�

1� �z

�

r

g

(2.3)

is a \majorant" of the original equation (2.2). Furthermore,

g = A

�

1

1� �z

�

N

(2.4)

is a simple solution to (2.3) for eah A. Take

A = max

i2f0;::: ;r�1g

jf

i

j

�

�

1

1��z

�

N

�

i

= max

i2f0;::: ;r�1g

jf

i

j

�

i

�

N+i

i

�
:

Using the majorant tehnique, we now observe that

jf

k

j 6 g

k

= A

�

N + k

k

�

�

k

(2.5)

for all k, sine (2.3) is a majorant of (2.2) and (2.5) holds for all k < r. Now g

k

=�

k

is

maximal for k � N�=(�� �), whene

B = A

�

l

�

���

N

m

N

��

�

�

�

b

�

���

N



has the required property that jf

k

j 6 B�

k

for all k.

Remark 2.5. It is possible to hoose the bounds in a slightly sharper way in the above

method. However, this leads to more ompliated formulas and we do not expet the

gain to be worth it in general. Therefore, we have preferred the above omputationally

\simple" method, whih should be easier to implement and is expeted to su�er less from

overhead.
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3. Formal solutions in a singularity

Consider the linear di�erential operator

L = L

r

Æ

r

+ � � �+ L

0

;

where L

0

; : : : ; L

r

2 K [z℄ are polynomials in z and Æ denotes the derivation z

�

�z

. The

interest of using Æ instead of

�

�z

is that Æ preserves the valuation (when the valuation is

non zero). We will study the singular behaviour of the solutions to

Lf = 0; (3.1)

near z = 0; learly, the study near other singularities is similar, modulo a translation.

Throughout this setion, we assume that at least one of the L

i

is not divisible by z.

In general, the homogeneous di�erential equation (3.1) does not neessarily have r

linearly independent power series solutions. But it is a well known fat [(Fabry, 1885;

Poinar�e, 1886; Birkho�, 1909; Birkho�, 1913; Ine, 1926; Turrittin, 1963; Wasow, 1967)℄

that a omplete basis of transseries solutions (i.e. generalized series whih involve log-

arithms and exponentials in a reursive way) an always be found and omputed [(van

Hoeij, 1997; van Hoeij, 1996; Della Dora et al., 1982)℄. More preisely, for some �nite

algebrai extension

^

K of K , there exists a basis of ardinal r of formal solutions f of the

form

f 2

^

K [log z℄

t

[[

p

p

z℄℄z

�

e

P (1=

p

p

z)

: (3.2)

Here � 2

^

K , P is a polynomial with oeÆients in

^

K and no onstant term, and

^

K [log z℄

t

stands for the set of polynomials in log z over

^

K of degrees stritly less than t. We all

e

P (1=

p

p

z)

the purely exponential part of f .

There are several algorithms to ompute all triples (p; �; P ) for whih solutions of

the form (3.2), with f � (log z)

i

z

�

e

P (1=

p

p

z)

(for some i), exist (Della Dora et al., 1982;

van Hoeij, 1997; van Hoeij, 1996; van der Hoeven, 1997). Let us all suh a triple (p; �; P )

admissible

y

, if there are no other suh triples of the form (pq; � �

�

pq

; P Æ z

q

) with

q; � 2 N

�

. In order to �nd all solutions to (3.1), it then suÆes to solve this equation in

^

K [log z℄[[

p

p

z℄℄z

�

e

P (1=

p

p

z)

for all admissible triples (p; �; P ).

In this setion we shall onentrate on how to �nd these solutions for a �xed admissible

triple (p; �; P ). In setion 3.1 we �rst show that it suÆes to onsider the ase when

p = 1; � = 0 and P = 0. This redues the general problem to �nding all solutions of the

form

f = f

0

+ � � �+

1

(t� 1)!

f

t�1

log

t�1

z; (3.3)

to (3.1), where f

0

; : : : ; f

t�1

are power series in z. In setion 3.2, we establish reurrene

relations for the oeÆients of these power series. We onlude in setion 3.3.

y

The de�nition of admissible triples may seem a bit tehnial. It is motivated by the observations

that

^

K [log z℄

t

[[

p

p

z℄℄z

���

e

P (1=

p

p

z)

�

^

K [log z℄

t

[[

p

p

z℄℄z

�

e

P (1=

p

p

z)

and

^

K [log z℄

t

[[

pq

p

z℄℄z

�

e

P (1=

pq

p

z)

�

^

K [log z℄

t

[[

p

p

z℄℄z

�

e

P (1=

p

p

z)

for all �; q 2 N

�

.
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3.1. Redution to the ase p = 1; � = 0 and P = 0

Consider the problem of �nding the solutions (3.2) to Lf = 0, for �xed p; � and P . We

will �rst redue this problem to the ase when p = 1. Given a linear di�erential operator

L = L

r

Æ

r

+ � � � + L

0

with oeÆients in K (z), there exists a unique linear di�erential

operator L

Æz

p

suh that

L

Æz

p

(f Æ z

p

) = (Lf) Æ z

p

;

for all series f 2

^

K [log z℄[[

p

p

z℄℄. The oeÆients of L

Æz

p

are given expliitly by

L

Æz

p

;i

=

L

i

Æ z

p

p

i

;

whene they belong to K(z

p

). Now solving the equation Lf = 0 with

f 2

^

K [log z℄[[

p

p

z℄℄z

�

e

P (1=

p

p

z)

is equivalent to solving the equation L

Æz

p

(f Æ z

p

) = 0 with

f Æ z

p

2

^

K [log z℄[[z℄℄z

p�

e

P (1=z)

:

This redues the general problem to the ase when p = 1.

In a similar fashion, the general ase with p = 1 redues to the ase p = 1; � = 0 and

P = 0: given a linear di�erential operator L = L

r

Æ

r

+ � � �+L

0

and a transseries ' (below,

we will atually take ' = z

�

e

P (z

�1

)

), there exists a unique linear di�erential operator

L

�'

= L

�';r

Æ

r

+ � � �+ L

�';0

, suh that

L

�'

f = L('f)

for all f . We all L

�'

a multipliative onjugate of L. Its oeÆients are given expliitly

by

L

�';i

=

r

X

j=i

�

j

i

�

L

j

Æ

j�i

':

Now letting ' = z

�

e

P (z

�1

)

, we observe that the oeÆients of L

�'

are rational funtions

in

^

K (z) multiplied by '. Sine solving Lf = 0 for f 2

^

K [log z℄[[z℄℄z

�

e

P (z

�1

)

is equivalent

to solving L

�'

(h=') = 0 for f=' 2

^

K [log z℄[[z℄℄, we redued our initial problem to the

ase when p = 1; � = 0 and P = 0.

3.2. Reurrene relations

In this setion, we will give reurrene relations for the oeÆients of the f

i

from (3.3).

Given a linear di�erential operator L, we will denote by �

L

the polynomial

�

L

(k) = L

r;0

k

r

+ � � �+ L

0;0

;

in k, where L

i;0

stands for the onstant term of L

i

. We also denote by L

0

the \derivative"

of L:

L

0

= rL

r

Æ

r�1

+ � � �+ 2L

2

Æ + L

1

:

Notie that �

L

0

= (�

L

)

0

.
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3.2.1. Extration of oeffiients

The ation of L on f = f

0

+ � � � +

1

(t�1)!

f

t�1

log

t�1

z is expressed onveniently using

the suessive \derivatives" of L:

Lf = Lf

0

+ � � �+

1

(t� 1)!

(Lf

t�1

) log

t�1

z

.

.

.

+

1

i!

�

L

(i)

f

i

+ � � �+

1

(t� 1� i)!

(L

(i)

f

t�1

) log

t�1�i

z

�

.

.

.

+

1

(t� 1)!

L

(t�1)

f

t�1

:

Hene, the equation Lf = 0 yields the equations

Lf

t�1

= 0;

Lf

t�2

+ L

0

f

t�1

= 0;

.

.

.

Lf

0

+ L

0

f

1

+

1

2

L

00

f

2

+ � � �+

1

(t�1)!

L

(t�1)

f

t�1

= 0

(3.4)

for the f

i

.

Let us now extrat the k-th Taylor oeÆients of these relations using the rules

(Æg)

k

= kg

k

; (3.5)

(zg)

k

= g

k�1

: (3.6)

These rules imply

(Lg)

k

= Q

0

(k)g

k

+ � � �+Q

q

(k)g

k�q

;

(L

0

g)

k

= Q

0

0

(k)g

k

+ � � �+Q

0

q

(k)g

k�q

;

.

.

.

(L

(t�1)

g)

k

= Q

(t�1)

0

(k)g

k

+ � � �+Q

(t�1)

q

(k)g

k�q

;

(3.7)

for ertain polynomials Q

0

; : : : ; Q

q

2 K [k℄ with Q

0

= �

L

. Of ourse, we understand that

the k-th oeÆient of a power series vanishes, whenever k 6= N.

3.2.2. The generi ase

Combination of (3.4) and (3.7) yields

q

X

l=0

t�1

X

j=i

Q

(j�i)

l

(k)

(j � i)!

f

j;k�l

= 0; (3.8)

for 0 6 i 6 t� 1. For \generi" k, we have Q

0

(k) = �

L

(k) 6= 0. Then the relations (3.8)

beome

f

i;k

=

�1

Q

0

(k)

0

�

t�1

X

j=i+1

Q

(j�i)

0

(k)

(j � i)!

f

j;k

+

q

X

l=1

t�1

X

j=i

Q

(j�i)

l

(k)

(j � i)!

f

j;k�l

1

A

: (3.9)
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Taking suessive values t� 1; : : : ; 0 for i, we an interpret (3.9) as reurrene relations

for f

t�1;k

; : : : ; f

0;k

in terms of previous oeÆients f

j;k�l

with l > 0. Denoting by F

k

the

olumn vetor with tq entries

f

0;k

; : : : ; f

0;k�q+1

; : : : ; f

t�1;k

; : : : ; f

t�1;k�q+1

;

these relations an also be written as a matrix relation

F

k

= A

k

F

k�1

; (3.10)

where the entries of A

k

are rational funtions in K (k).

3.2.3. The degenerate ase

Assume now that we are in the degenerate ase where k is a zero of �

L

of multipliity

�

k

> 0. Then the system of equations (3.8) beomes overdetermined and does not ne-

essarily admit a solution. The degenerate ase orresponds to the situation when higher

powers of log z are needed in order to express the solutions to Lf = 0.

Nevertheless, we will now show that, if f

i;k�l

= 0 for all i > t � �

k

and l > 0, then

the system of equations (3.8) again admits a natural solution F

k

of the form (3.10). The

ondition that f

i;k�l

= 0 for all i > t� �

k

and l > 0 orresponds to assuming that t was

taken suÆiently large; indeed, in setion 3.3.1, we will show how to hoose suh a t, so

that all solutions in

^

K [log z℄[[z℄℄ to Lf = 0 are atually in K [log z℄

t

[[z℄℄.

So assume that k is a zero of �

L

of multipliity �

k

> 0 and assume that f

i;k�l

= 0

for all i > t � �

k

and l > 0. Then the equations (3.8) trivially hold for t � �

k

6 i < t,

independently of the values of f

t�1;k

; : : : ; f

t��

k

;k

. For 0 6 i < t � �

k

, we obtain the

relations

f

i+�

k

;k

=

�(�

k

!)

Q

(�

k

)

0

(k)

0

�

t�1

X

j=i+�

k

+1

Q

(j�i)

0

(k)

(j � i)!

f

j;k

+

q

X

l=1

t�1

X

j=i

Q

(j�i)

l

(k)

(j � i)!

f

j;k�l

1

A

:

(3.11)

Taking suessive values t��

k

�1; : : : ; 0 for i, we an again interpret (3.11) as reurrene

relations for f

t�1;k

; : : : ; f

�

k

;k

in terms of previous oeÆients f

j;k�l

with l > 0.

Finally, sine the equations (3.8) do not involve f

�

k

�1;k

; : : : ; f

0;k

, these oeÆients an

be hosen arbitrarily. For our purpose in setion 3.3.1 of �nding \anonial" solutions

to Lf = 0, it is onvenient to take f

�

k

�1;k

= � � � = f

0;k

= 0. Then the reurrene

relations (3.11) an again be rewritten as a matrix relation

F

k

= A

k

F

k�1

; (3.12)

where the entries of A

k

are rational funtions in K (k), and where the rows whih orre-

spond to the entries f

�

k

�1;k

; : : : ; f

0;k

of F

k

are taken to be zero.

Remark 3.1. Of ourse, all solutions to Lf = 0 of the form (3.3) do not neessarily

satisfy the reurrene relation (3.12), but the \anonial" solutions that we will onstrut

now do satisfy it (for all but one k, whih orresponds to the initial ondition).
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3.3. Solving Lf = 0 in the ring of logarithmi power series

3.3.1. A anonial basis of solutions

Assume that (f

d;n

log

d

z+ � � �+ f

0;n

)z

n

+ o(z

n

) is a solution to Lf = 0 in

^

K [log z℄[[z℄℄,

with f

d;n

6= 0. In setion 3.2.2 we have shown that the f

i;k

are linear ombinations of the

entries of F

k�1

for non-singular k. Therefore, the dominant exponent n of f in z must

be a zero of �

L

. Let �

n

be the multipliity of this zero. In setion 3.2.3 we have shown

that the f

i;n

are linear ombinations of the entries of F

k�1

for i > �

n

. Therefore, we also

must have d < �

n

.

Conversely, let us show how to onstrut a solution f = f

[n;d℄

to Lf = 0 of the form

f

[n;d℄

= (log z)

d

z

n

+

X

k>n

t�1

X

i=0

f

i;k

i!

(log z)

i

z

k

;

for eah ouple (n; d) with d < �

n

. Let

t = d+ 1 + �

n+1

+ �

n+2

+ � � � 6 r (3.13)

and take F

n

to be the olumn vetor, whose only non zero entry orresponds to f

d;n

= d!.

We take F

k

= 0 for all k < n and F

k

= A

k

F

k�1

for k > n, with the notations from

setions 3.2.2 and 3.2.3.

We have to show that our hoie of t is indeed suÆiently large, suh that the ondition

from setion 3.2.3, that f

i;k�l

= 0 for all i > t � �

k

and l > 0, holds for all k. Atually,

by indution over k, we observe that f

i;k�l

= 0 for all i > t� �

k

� �

k+1

� � � � and l > 0.

Notie also that, by onstrution, the oeÆients of all F

k

are atually in K .

We laim that the f

[n;d℄

with d < �

n

form a basis for the spae of solutions to (3.1) in

^

K [log z℄[[z℄℄. Let f be suh a solution to (3.1) and onsider it as a generalized series in

z and (log z)

�1

. If f = 0 then we have nothing to prove. Otherwise, we may write f =



1

(log z)

d

1

z

n

1

+ o((log z)

d

1

z

n

1

) and we already observed that 0 6 d

1

< �

d

1

. Hene,

~

f =

f � 

1

f

[n

1

;d

1

℄

is again a solution to (3.1), whih is either zero, or it has an asymptotially

smaller dominant term. Repeating the argument, we �nd an expression for f as a �nite

linear ombination of the f

[n;d℄

, sine there are only a �nite number of f

[n;d℄

. We have

proved:

Theorem 3.1. The equation Lf = 0 for f in

^

K [log z℄[[z℄℄ has a basis of solutions in

K [log z℄

t

[[z℄℄, with t as in (3.13). In partiular, the f

[n;d℄

with d < �

n

form suh a basis.

We will all the basis formed by the f

[n;d℄

the anonial basis of solutions to Lf = 0

in

^

K [log z℄[[z℄℄. More generally, for eah admissible triple (p; �; P ), we onstrut a basis

of anonial solutions f

[n;d℄

(p;�;P )

of the form (3.2) to (3.1): we �rst redue to the ase

when p = 1; � = 0 and P = 0 as desribed in setion 3.1, we next take the anonial

solutions to the obtained equation, whih �nally yield the desired anonial solutions

when translating bak. The olletion of all these anonial solutions for the di�erent

admissible triples forms a basis of r formal solutions to (3.2) | the basis of anonial

solutions.

Remark 3.2. The basis of anonial solutions oinides with the basis onstruted in
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setions 4.5 and 4.8.3 of (van der Hoeven, 1997). The �rst expliit onstrutions of funda-

mental systems of solutions our in (Frobenius, 1873; Ine, 1926). Computationally sim-

pler fundamental systems of solutions were �rst given in (van Hoeij, 1997) and (van der

Hoeven, 1997). In all ases, the dominant monomials of the basis elements are pair-

wise distint, so that they di�er only by triangular linear transformations. However, our

\anonial bases" are the most intrinsi ones from the asymptoti point of view. Indeed,

in (van der Hoeven, 1997) we prove some harateristi properties of suh bases, whih

justify our terminology.

3.3.2. Convergene and fast evaluation of the anonial solutions

Let f = f

[n;d℄

be one of the anonial solutions and adopt the notations from se-

tion 3.2. We have shown that the reurrene relation satis�ed by the oeÆients of f an

be expressed by matrix relations

F

k

= A

k

F

k�1

;

with an initial ondition at k = n. Now looking at the reurrene relations (3.8), we

observe that A

k

tends to a �nite limit when k ! 1, if and only if degQ

0

> degQ

i

, for

all i. This is again equivalent to the ondition that the onstant term L

r;0

of L

r

does not

vanish. If this is the ase, the operator L is said to be regular . The following generalization

of theorem 2.1 is the e�etive version of a well-known theorem in (Frobenius, 1873).

Theorem 3.2. Assume that L is regular. Then there exists an algorithm whih omputes

B; � > 0, suh that eah entry of F

k

is bounded by B�

k

for all k.

Proof. For all but a �nite number of \singular" k, the oeÆients of A

k

are given by

rational funtions in K (k). Furthermore, A

k

tends to a �nite limit A

1

for k !1, sine

L is regular. Therefore, the algorithm from setion 2.1 (i.e. the algorithm B from setion

2.2 in (van der Hoeven, 1999)) is easily adapted to our slightly more general situation:

with the notations from (van der Hoeven, 1999) (where N

k

plays the role of A

k

), it

suÆes to require k

0

to be larger than any singular value of k. 2

Remark 3.3. With the notations from (van der Hoeven, 1999), it may be neessary to

take k

0

quite large. In pratie, it is therefore preferable not to estimate the produt

N

k

0

�1

� � �N

0

by mere evaluation. Instead, we reommend to treat apart those N

k

(with

0 6 k < k

0

) for whih the estimation jjE

k

jj 6 " already holds, and the remaining ones

(for whih j�

L

(k)j is small or zero).

The binary splitting method from setion 2.2 an also again be used to evaluate

F

0

+ F

1

z + � � �+ F

k

z

k

= (Id+ (A

1

z) + � � �+ (A

k

z) � � � (A

1

z))F

0

;

for suÆiently small values of z in K . The bitwise omplexity of this algorithm is the same

as before, again due to the fat that the entries of A

k

are rational funtions in k with

exeptional values in the �nite number of poles. In partiular, analogues of theorems 2.2

and 2.3 hold. Combined with theorem 3.2, this yields

Theorem 3.3. Assume that L is regular and let � be as in theorem 3.2. Assume that

K is an algebrai number �eld and let z 2 K be suh that jzj 6 �=�, for �xed � < 1.
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Then there exists an algorithm whih simultaneously omputes f

0

(z); : : : ; f

t�1

(z) up to

n deimal digits in time O(M(n logn(logn+ size(z)))), uniformly in z. 2

More generally, for eah admissible triple (p; �; P ) redution to the ase p = 1; � = 0

and P = 0 yields an equation

(L

(p;�;P )

r

Æ

r

+ � � �+ L

(p;�;P )

0

)f = 0;

whih has to be solved in

^

K [log z℄[[z℄℄. If L

(p;�;P )

r;0

6= 0 for all admissible triples (p; �; P ),

then we will say that L is quasi-regular .

Proposition 3.1. L is quasi-regular, if and only if the anonial solutions to Lf = 0

all have the same purely exponential part.

Proof. The operator L is regular if and only if �

L

admits r zeros in C , when ounted

with multipliities. Furthermore, suh a zero � has multipliity �, if and only if there

exist exatly � anonial basis elements with dominant terms of the form z

�

log

j

z, namely

z

�

; : : : ; z

�

log

��1

z (indeed, this follows from theorem 3.1 for a multipliative onjugation

L

�z

�

of L, for whih (1; 0; 0) is an admissible triple; notie that �

L

(�) = �

L

�z

�

(���)).

Hene, L is regular if and only if there exist r anonial basis elements with purely

exponential part 1.

Now assume that L is general and let f be a anonial basis element with purely expo-

nential part e

P (1=

p

p

z)

. After a multipliative onjugation with e

P (1=

p

p

z)

and a substitution

z 7! z

p

, we obtain an operator

~

L, whih is regular, if and only if L is quasi-regular. Now

eah anonial solution to Lf = 0 with purely exponential part e

P (1=

p

p

z)

orresponds

to a unique anonial solution to

~

L

~

f = 0 with purely exponential part 1. Hene, L is

quasi-regular, if and only if there exist r anonial basis elements with purely exponential

part e

P (1=

p

p

z)

. 2

3.4. A worked example

Consider the equation

z

3

Æ

3

g + (3z

2

� 2z

3

)Æ

2

g + (3z � 7z

2

)Æg + (1� 5z + 3z

2

� z

4

)g = 0:

(3.14)

It an be shown that (1; 0;

1

z

) is the only admissible triple assoiated to this equation.

Hene, there exists a fundamental system of solutions to (3.14) in Q[[z℄℄[log z℄e

1=z

. The

multipliative onjugation

g = fe

1=z

;

transforms the equation (3.14) into

Æ

3

f � 2Æ

2

f � zf = 0: (3.15)

In a �rst stage, let us searh for power series solutions of this equation. Using the rules

(3.5) and (3.6), we obtain the following reurrene relation for the oeÆients of f :

f

n

=

1

n

2

(n� 2)

f

n�1

: (3.16)
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Taking f

0

= f

1

= 0 and f

2

= 1, this reurrene relation enables us to ompute f

3

; f

4

; : : : .

However, if f

1

6= 0, then the reurrene relation will not be valid for n = 2, and we will

need to introdue logarithms into the solution.

In general, we therefore have to seek for solutions of the form

f = f

0

+ f

1

log z +

1

2

f

2

log

2

z;

with f

0

; f

1

; f

2

2 C[[z℄℄. For n 2 Nnf0; 2g, the reurrene relation (3.10), whih re-

plaes (3.16), beomes

0

B

�

f

0;n

f

1;n

f

2;n

1

C

A

=

0

B

�

1

n

2

(n�2)

�3n+4

n

3

(n�2)

2

6n

2

�16n+12

n

4

(n�2)

3

0

1

n

2

(n�2)

�3n+4

n

3

(n�2)

2

0 0

1

n

2

(n�2)

1

C

A

0

B

�

f

0;n�1

f

1;n�1

f

2;n�1

1

C

A

:

(3.17)

In the degenerate ase when n = 2, the equation (3.12) beomes

0

B

�

f

0;n

f

1;n

f

2;n

1

C

A

=

0

B

�

0 0 0

1

3n

2

�4n

3�2n

(3n

3

�4n)

2

0

0

1

3n

2

�4n

0

1

C

A

0

B

�

f

0;n�1

f

1;n�1

f

2;n�1

1

C

A

; (3.18)

where we assume that f

2;n�1

= 0. Now the anonial basis of solutions is given by

f

[0;1℄

= log z + (� log z � 1)z + (�

1

4

log

2

z �

3

16

log z)z

2

+

(�

1

36

log

2

z +

11

432

log z �

1

48

)z

3

+ � � �

f

[0;0℄

= 1� z �

1

4

z

2

log z + (�

1

36

log z +

5

108

)z

3

+ � � �

f

[2;0℄

= z

2

+

1

9

z

3

+

1

288

z

4

+

1

21600

z

5

+ � � � :

The orresponding initial onditions are (f

0;0

; f

1;0

; f

2;0

) = (0; 1; 0), (f

0;0

; f

1;0

; f

2;0

) =

(1; 0; 0), resp. (f

0;2

; f

1;2

; f

2;2

) = (1; 0; 0). The basis elements f

[0;1℄

, f

[0;0℄

and f

[2;0℄

may

be evaluated fast up till any preision using the dihotomi algorithm from setion 2.2.

4. Singular transition matries

4.1. Extended Riemann surfaes

In what follows, we would like to onsider initial onditions in singularities. Therefore,

it is onvenient to extend the Riemann surfae of f with points above the singularities. In

this setion, we give an abstrat onstrution of this extension in the ase of a \Riemann

surfae with only isolated singularities".

In the sequel, a Riemann surfae above C is a non empty onneted separated topo-

logial spae R, together with a ontinuous projetion � : R ! C , suh that for eah

point � 2 R, there exists a neighbourhood U of �, suh that � restrited to U is a home-

omorphism and maps U onto an open disk in C . A broken line path on R is a ontinuous

mapping ' : [0; 1℄! R, suh that � Æ' is a broken line path in C . The endpoint '(1) is

uniquely determined by '(0) and � Æ'. Therefore, given a base point � 2 R, other points

�

0

2 R are onveniently represented by broken line paths �(�) = z

0

! � � � ! z

n

= �(�

0

)

on C .

Fix a base point � on R, where all broken line paths start. An open-ended broken line

path on R is a ontinuous mapping ' : [0; 1[! R, suh that � Æ ' is the restrition to

[0; 1[ of a broken line path  on C . We say that R has a singularity at \the end of '",

if  annot be lifted bak into a path on R starting at �. We say that R has an isolated
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singularity at \the end of '", if there exists an open disk D � C with enter  (1), suh

that for all suÆiently small " > 0 and any broken line path � in Dnf (1)g starting at

 (1� "), the path t 7!  (t(1� ")) omposed with � an be lifted bak to R. We say that

R has only isolated singularities , if this is the ase for all open-ended broken line paths

on R.

Assume that R has only isolated singularities and let � be a base point for R. Consider

the set P of open-ended line paths ' on R, suh that �('(1� t)) = a+ t for all t 2℄0; "℄

and some a 2 C and " > 0. Two paths ';  in P are said to be equivalent, if there exists

an " > 0, suh that '(1 � t) =  (1 � t) for all 0 < t < ". Then the set

^

R = P= � of

paths in P modulo equivalene is alled the singular extension of R. The non-singular

open-ended line paths ' an be extended into broken line paths '̂ and orrespond to

the usual points '̂(1) in R (onversely, eah point on R an be represented by a broken

line path '; without loss of generality, we may hoose ' 2 P , by deforming it in the

neighbourhood of  (1)). The singular open-ended line paths ' 2 P orrespond to new,

singular, points in

^

RnR. We have a natural projetion �̂ :

^

R ! C , whih extends �: if '

is a broken line path in P , suh that � Æ ' is the restrition of  to [0; 1[, then we take

�̂(') =  (1), where ' denotes the equivalene lass of '.

Let

^

� be a point on

^

R, whih is represented by ' : [0; 1[!R. For all " > 0 suÆiently

small, we have �('(1 � ")) = �̂(

^

�) + ". For suh ", we set

^

� + " = '(1� "). Sine R has

only isolated singularities, for all suÆiently small " > 0 and � 2 R, the path in C , whih

starts at �̂(

^

�) + " and whih turns ounterlokwise around �(

^

�) by an angle �, an be

lifted bak into a path '

";�

on R, whih starts at

^

�+". We de�ne

^

�+"e

i�

= '

";�

(1). Let

n 2 N

�

[ f1g be smallest, suh that

^

� + "e

i(�+2n�)

=

^

� + "e

i�

for all suÆiently small

" > 0 and � 2 R. If n = 1, then we say that

^

� is a removable singularity . If 1 < n <1,

then

^

� is an algebrai singularity , if n =1,

^

� is said to be a logarithmi singularity .

4.2. Singular transition matries

Throughout this setion, we denote by f

[0℄

; : : : ; f

[r�1℄

the r linearly independent anon-

ial formal solutions to (3.1) in the neighbourhood of 0. We have shown in the previous

setion that we may write

f

[i℄

(z) = [f

[i℄

0

(

p

i

p

z) + � � �+

1

(t

i

� 1)!

f

[i℄

t

i

�1

(

p

i

p

z) log

t

i

�1

z℄z

�

i

e

P

i

(1=

p

i

p

z)

;

(4.1)

for ertain p

i

; �

i

; P

i

; t

i

and power series f

[i℄

0

; : : : ; f

[i℄

t

i

�1

2

^

K [[

p

i

p

z℄℄.

4.2.1. Singular transition matries in the onvergent ase

Let R denote the Riemann surfae

y

of the solutions to (3.1). We assume that we have

�xed a determination of log(z � !) on R for eah ! 2 
. Sine the only singularities of

solutions to the equation (3.1) are above the zeros of P

r

(reall that P

r

is the leading

oeÆient in (1.1), whih is obtained from (3.1) by rewriting L as a linear di�erential

operator in

�

�z

), R has only isolated singularities. Therefore, we may extend the Riemann

y

This surfae is obtained by onsidering the universal overing surfae U above Cn
. The solutions

to (3.1) are learly de�ned on U . We de�ne �

1

; �

2

2 U to be equivalent, if their projetions on C oinide

and if all solutions to (3.1) take the same values in �

1

and �

2

(i.e. the monodromy matrix between �

1

and �

2

is the identity). Now we take R = U= �.
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surfae R into

^

R, as desribed in the previous setion. Now assume that we have a

singular point ! on

^

R above 0 and assume that we are in the onvergent ase, i.e. L is

quasi-regular in 0. Then the series f

[i℄

j

atually onverge on a small neighbourhood

B

�

(!) = f! + "e

i�

j0 < " < �; � 2 Rg � R

of !, whene the expansions (4.1) yield genuine funtions on B

�

(!), whih an be ex-

tended to R by analyti ontinuation.

Now eah formal solution f = a

0

f

[0℄

+ � � � + a

r�1

f

[r�1℄

to (3.1) an be represented

by a olumn vetor V with entries a

0

; : : : ; a

r�1

. If W is the olumn vetor with entries

f(�); : : : ;

1

(r�1)!

f

(r�1)

(�) for � = ! + "e

i�

2 B

�

(!), then W depends linearly on V . We

wish to see this dependeny as a generalization of (1.2). For this purpose, we enode the

projetion of the straightline path ! ! � by 0

�

! z. Writing I(!) and I(�) for V resp.

W , the matrix �

!!�

= �

0

�

!z

suh that

I(�) = �

!!�

I(!);

is alled the singular transition matrix along the path ! ! � or 0

�

! z.

4.2.2. Singular transition matries versus transition matries

Singular transition matries generalize usual transition matries: if 0 was atually a

non-singular point, then the anonial solutions f

[0℄

; : : : ; f

[r�1℄

are preisely the unique

power series solutions whose asymptoti expansions are given by f

[i℄

(z) = z

i

+O(z

r

), and

the entries a

0

; : : : ; a

r�1

indeed oinide with f(�); : : : ;

1

(r�1)!

f

(r�1)

(�). The transitivity

relation for usual transition matries generalizes to

�

0

�

!z z

0

= �

z z

0

�

0

�

!z

(4.2)

for onatenations of straightline paths 0

�

! z on

^

R with arbitrary paths z  z

0

on R,

suh that 0

�

! z  z

0

is homotopi to 0

�

! z

0

for some �. Atually, this relation yields

a way to extend the de�nition of �

0

�

!z

to more general paths 0

�

! z  z

0

on

^

R.

The funtions assoiated to the formal solutions being linearly independent, the ma-

tries �

0

�

 z

are neessarily invertible. It follows that (4.2) also yields a new way to

ompute transition matries between points near the singularity:

�

z 

�

0

�

 z

0

= �

0

�

 z

0

�

inv

0

�

 z

;

where 0

�

 z is the inverse path of z  

�

0 and the path z  

�

0

�

 z

0

is homotopi

to a path whih does not pas through the singularity. It turns out that this way of

omputing transition matries an be more eÆient than the way desribed in (van der

Hoeven, 1999), when we are lose to a singularity.

4.2.3. Singular transition matries in the divergent ase

Of ourse, it may also happen that one of the f

[i℄

j

diverges: for instane, the diver-

gent series

P

k

(�1)

k

k!z

k

is formally holonomi. Using the proess of resummation and,

more generally, multisummation, it is nevertheless generally possible to assoiate genuine

funtions to the f

[i℄

, whih are �rst de�ned on a ertain setor of L

�

and then ontinued

analytially. This means that we an again de�ne singular transition matries, whih

now depend on the multisummation proess used. The atual numerial approximation

of suh matries up to any preision will be treated in a forthoming paper.
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4.2.4. Boundary value problems and renormalization

Singular transition matries are not only useful for omputing limits of solutions

to (1.1) in singularities. Atually, the knowledge of the singular transition matrix between

two possibly singular points an be used to solve more general boundary value problems.

As an example, assume that f is a solution of a seond order equation like (1.1) with

the boundary onditions f(a) = A and f(b) = B for given A and B, where a and b

are potentially singular and L is quasi-regular in a and b. Then f

0

(a) and f

0

(b) an be

omputed diretly from the transition matrix between a and b, in general.

The singular transition matries an also be used to renormalize logarithmially diver-

gent integrals of di�erential equations. For example, assume that all solutions to (3.1)

near the origin are in K [log z℄

r

[[z℄℄. Then the mapping

� : K [log z℄

r

[[z℄℄ �! K ;

X

i<r;j

f

i;j

(log z)

i

z

j

7�! f

0;0

is a ring homomorphism, alled the renormalization mapping . Convergent power series

are mapped to their values in 0 by this mapping. But � also assoiates values to funtions

with logarithmi singularities in an additively and multipliatively oherent way. The

singular transition matries may be used to ompute the renormalizations of holonomi

funtions near regular singular points.

4.2.5. Monodromy using singular transition matries

Another interesting appliation of singular transition matries is in the omputation

of the monodromy of the di�erential equation around the singularity in 0. Indeed, let

" 	 " be the path starting at a small " and turning ounterlokwise around 0. Then

�

"	"

= �

"!

0

0

2�

!"

= �

0

0

!"

�

0

0

!

2�

0

�

"!

0

0

:

Here the matrix �

0

0

!

2�

0

is obtained formally as follows. When substituting

log z �! log z + 2�i;

z



�! e

2�i

z



(8);

in the formal anonial solutions to Lf = 0 in 0, we obtain a new basis of formal

solutions. In partiular, these solutions an be written as linear ombinations of the

anonial solutions; this linear relationship is expressed by the matrix �

0

0

!

2�

0

.

4.2.6. Approximation of singular transition matries

Assume that K is an algebrai number �eld and that L is quasi-regular. In setion 3.3.2,

we have shown how to eÆiently evaluate the f

[i℄

j

up to any desired preision, given a

�xed, suÆiently small z. Substituting log z and the e

P

i

(1=

p

i

p

z)

by their values in (4.1),

this also yields an eÆient method to evaluate the f

[i℄

(z) up to any desired preision.

We laim the method from setion 3.3.2 an also be used to evaluate the derivatives

of the f

[i℄

(z) eÆiently and up to any desired preision. In order to see this, we �rst

notie that it suÆes to be able to evaluate the derivatives of the f

[i℄

j

as is seen by
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di�erentiating (4.1). Now the oeÆients F

k

of the series

I(z) = F

0

+ F

1

z + F

2

z

2

+ � � �

from setion 3.3.2 are related by matrix relations

F

k

= A

k

F

k�1

;

where the oeÆients of A

k

are rational funtions in k for all but a �nite number of k.

The same holds for the oeÆients (k + 1)F

k+1

of the series

I

0

(z) = F

1

+ 2F

2

z + 3F

3

z

2

+ � � � ;

whih are related by

(k + 1)F

k+1

=

k + 1

k

A

k+1

(kF

k

);

as well as for the oeÆients of the higher derivatives of I . Hene the same method an

be used to evaluate these series, whih proves our laim. It follows

Theorem 4.1. Let K be an algebrai number �eld and assume that L is quasi-regular.

a. There exists an algorithm whih omputes a radius �, suh that the expansions (4.1)

onverge for jzj 6 �.

b. Let z 2 K and � be given with jzj suÆiently small. Then there exists an algorithm

to approximate �

0

�

 z

up till n deimal digits in time O(M(n log

2

n)). 2

4.3. An appliation to the Riemann zeta funtion

4.3.1. Generalized polylogarithms and the zeta funtion

Let r > 1 be an integer. The polylogarithm

Li

r

(z) =

1

X

k=1

z

k

k

r

is a holonomi funtion with a singularity in 1. Nevertheless, for r > 1, the limit of Li

r

in 1 exists and

�(r) = Li

r

(1);

where � is the Riemann zeta funtion.

More generally, one may onsider generalized polylogarithms L

w

, where w is a word

on the alphabet f0; 1g: we de�ne

L

0

r

(z) =

1

r!

log

r

z; (4.3)

L

0w

(z) =

Z

z

0

L

w

(t)

dt

t

; (4.4)

L

1w

(z) =

Z

z

0

L

w

(t)

dt

1� t

; (4.5)

where (4.3) hold for all r 2 N, where (4.4) holds for all words w that ontain at least

one 1, and where (4.5) holds for all words w. The existene of the integrals is ensured
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by the fat that L

w

= O(

p

z), for all words that ontain at least one 1. The L

w

indeed

generalize the Li, sine Li

r

= L

0

r�1

1

. The limit �(w) � L

w

(1) of L

w

in 1 exists for words

of the form w = 0v1.

4.3.2. Convergene of the polylogarithms at z = 0

Consider the two di�erential operators




0

= Æ; 


1

=

1� z

z

Æ:

For eah word w = w

1

� � �w

r

of length r, we de�ne the di�erential operator of order r+1

by




w

1

���w

r

= z

jwj

1

Æ


w

r

� � �


w

1

:

Here jwj

1

denotes the number of ones in w. Sine Æ(z

�1

Æ) = z

�1

(Æ

2

� Æ), the onstant

fator z

jwj

1

in the above de�nition ensures that the operators 


w

all have their oeÆients

in Q[z℄. The purpose of this setion is to show that 


w

is regular (whene a fortiori quasi-

regular) for all w.

We must show that the onstant oeÆient 


w;r+1;0

of 


w;r+1

does not vanish for eah

word w of length r. This is lear for the empty word. Assume now that the assertion

holds for a given word w. Then




0w

= 


w

Æ;

whene 


0w;r+2

= 


w;r+1

6= 0, whih proves our laim for the word 0w. As to the word

1w, we have




1w

= z


w

�

1� z

z

Æ

�

:

Again, we get 


1w;r+2

= 


w;r+1

6= 0, as desired.

4.3.3. Convergene of the polylogarithms at z = 1

In order to study the polylogarithms at z = 1, we introdue operators

^




w

, whih

oinide with the 


w

up to a onstant fator, by setting

^

Æ = (1� z)d=dz,

^




0

=

z

1� z

^

Æ;

^




1

=

^

Æ

and

^




w

1

���w

r

= (1� z)

jwj

0

^

Æ

^




w

r

� � �

^




w

1

:

In a similar way as above, one proves that

^




w

is regular at z = 1 for eah w.

4.3.4. Fast omputation of the �(w)

From the previous two setions, we onlude that the 


w

are regular in both 0 and 1

for all w. Therefore, the \doubly singular" transition matries �

w;0

0

!

1

2

!

��

1

assoiated

to the equations 


w

f = 0 an be approximated eÆiently by theorem 4.1. In partiular,

we infer:
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Theorem 4.2. For eah word w 2 f0; 1g

�

there exists an algorithm to approximate �(w)

up till n deimal digits in time O(M(n log

2

n)). 2

Remark 4.1. In the partiular ase of polylogarithms, it is possible to get a more ex-

pliit formula for the �(w), by using Chen series (Chen, 1971; Minh and Petitot, 1998;

Minh et al., 1998) and exploiting the symmetry of the problem with respet to the trans-

formation z $ 1� z. We will just state the result. Denote L(z) =

P

w

L

w

(z)w,

^

L(z) =

X

w

1

���w

r

L

(1�w

r

)���(1�w

1

)

w

and Z =

P

w

�

w

w. Then

Z =

^

L(

1

2

)L(

1

2

):

The advantage of this formula is that it improves the dependene of the onstant fator

of the approximation algorithm on w.

5. Pratial omputations with holonomi funtions

In (van der Hoeven, 1999) and this paper, we have shown how to evaluate holonomi

funtions eÆiently, even near and in singularities, in the ase of quasi-regular operators.

However, from the omputer algebra point of view, several questions were not answered:

how to test whether a holonomi onstant is zero and, more generally, how to ompute

a oating point approximation of a holonomi onstant in an eÆient way? Indeed, the

seond problem is more general, sine the omputation of the exponent of a oating point

approximation of a onstant inludes a zero test.

In their full generality, these problems are extremely hard. Nevertheless, in setion 5.1,

we propose a heuristi whih enables us to give solutions to these problems, whih we

expet to be satisfatory in pratie. In setion 5.2, we go more deeply into the problem of

omputing oating point approximations of holonomi onstants, by studying polynomial

expressions involving holonomi funtions near singularities. We will state a uniform

omplexity result, whih is again based on our heuristi.

5.1. The holonomi onstants problem

5.1.1. Exp-log onstants

Atually, the problem of giving an e�etive zero test for holonomi onstants is already

very hard in the ase of so alled exp-log onstants , whih are onstruted from the

rationals using the �eld operations, exponentiation and the logarithm. The best atual

result is an e�etive zero test for exp-log onstants under the hypothesis that a diÆult

number theoretial onjeture (namely Shanuel's onjeture) holds (Rihardson, 1997).

Nevertheless, no information at all is provided about the eÆieny of suh a zero test.

Nevertheless, from a pratial point of view, it is often a good idea to evaluate the

exp-log onstant  we want to test for zero up till a ertain number of digits, whih

depends on the size of the exp-log onstant, and hek whether the result vanishes. The

only known straightforward ounterexamples in whih this strategy fails are onstruted

by exploiting large anellations like

e

10

�10

10

� 1 � 0:
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Nevertheless, this problem an be avoided by restriting the argument x of any subex-

pression of the form expx of  to be bounded by 1=N 6 jxj 6 N for some given onstant

N . Denoting by E

N

the set of suh exp-log expressions, we onjetured in our PhD

(van der Hoeven, 1997) that an exp-log onstant  2 E

N

is either zero, or an be proven

to be non zero by evaluating e

O(size())

digits, where size() denotes the size of  as an

expression

y

. Whether this onjeture holds or not, it does provide a reliable heuristi

zero-test for exp-log onstants and the heuristi remains even reliable when we replae

the exponential bound on the number of digits by a smaller one.

5.1.2. Holonomi onstants

We will now propose a generalization of the above to the ase of holonomi onstants.

Let K denote the �eld of algebrai numbers and let F be the lass of holonomi funtions

f over K , with initial onditions in K at a non-singular point z in K . We onsider f as

being de�ned on an open disk with enter z. We enode funtions f 2 F by the equations

they satisfy and their initial onditions; hoosing dense representations, f again has a

natural size size(f). Now onsider the lass H of onstant expressions formed from K

by using the �eld operations, and applying holonomi funtions in F.

In order to state our heuristi, we assoiate to eah onstant in H its size as an ex-

pression in a non onventional way. The size of an integer is the number of its binary

digits and the size of

p

�1 is 1. If ; 

0

2 H and � is a �eld operation, then we take

size( � 

0

) = size() + size(

0

) + 1. Given a holonomi funtion f 2 F with its initial

onditions in z and a onstant  2 H, we �nally de�ne

size(f()) = size(f) + size() + max

 

0;

&

log sup

ju�zj6j�zj

jf(u)j

'!

:

Notie that all onstants in K indeed have a size, sine the algebrai funtions over Q

are holonomi.

An easy strutural indution on general expressions  2 H shows that

jj 6 e

size()

;

for all  2 H. Our heuristi states that we also have some similar lower bound for jj, if

 6= 0:

H. For eah  2 H, we have either  = 0 or e

�H(size())

6 jj 6 e

size()

.

The hoie of the funtion H , whih is assumed to be positive and non dereasing, is left

open for the moment. We onjeture that the heuristi holds for suÆiently large H , suh

as H(n) = e

n

and probably even H(n) = n

2

. In pratie, it will be most onvenient to

takeH(n) = C orH(n) = Cn, although the heuristi is false as a mathematial statement

for H(n) = O(n). Nevertheless, H(n) = n will rarely fail on pratial examples. From a

omplexity point of view it is also interesting to study the ase H(n) = n log

C

n.

y

One has to be areful at this point, sine the size funtion is de�ned for expressions and not for

numbers. For instane, 1 + 1 is equal to 2 as a number, but not as an expression.
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5.1.3. Properties of the size funtion

It is interesting to study some of the properties of the way we assoiate sizes to holo-

nomi onstants. We �rst notie that for x 2 H \ R, we have

size(e

x

) = size(exp) + size(x) + djxje:

In order to obtain the size for arbitrary z 2 H, we may rewrite the imaginary part

=z = 2�n+ r with n 2 Z and jrj 6 �. Then size(n) = O(log(j=zj+ 1)) and size(r) =

O(size(z)), sine log(j=zj+ 1) = O(size(z)). Writing e

z

= e

<z+r

p

�1

, we infer

size(e

z

) 6 j<zj+O(size(z)): (5.1)

This formula establishes the link with setion 5.1.1: for real x, the smallest exp-log

expression in E

N

whih represents e

x

also has size O(jxj). As to logarithms, any z 2 H

�

an be rewritten as a produt z = 2

n

e

m�

p

�1=16

z

0

for integers n and 0 6 m < 32, where

size(n) = O(j log jzjj) = O(size(z)) and jz

0

�1j 6

1

2

with size(z

0

) = O(size(z)). Using

log z = n log 2 +m�

p

�1=16 + log z

0

, it follows that

size(log z) = O(size(z)): (5.2)

We plan to ome bak on more properties of the size funtion in a forthoming paper.

5.2. Floating point approximations

5.2.1. Introdution

Consider a holonomi funtion f(z) in the neighbourhood of one of its singularities,

say 0. Sine the behaviour of f may beome exponential, it is not a good idea to approx-

imate f(z) by numbers in Q[i℄ for small values of z. For instane, if f(z) = e

1=z

, then

the mere representation of e

1=10

�n

up to preision < 1 already neessitates a spae of the

order 10

n

, while the number z = 10

�n

has size O(n).

In order to store good approximations to numbers like e

1=10

�n

in O(n) spae we are

therefore lead to the onsideration of oating point representations. For us, a real oating

point number will onsist of a mantissa between 1 and 10 in Q (whose size depends on

the required preision) and an exponent, whih is an integer. The size of suh a number is

the sum of the sizes of the mantissa and the exponent. Also, the number 0 is represented

by a speial symbol of size one. Complex oating point numbers are represented via their

real and imaginary parts.

By \omputing a oating point approximation of preision n" of a real number x 6=

0, we shall mean the omputation of a oating point number y = M10

E

, suh that

jx� yj 6 10

E�n

. Although oating point representation allow us to work eÆiently with

muh larger numbers, a problem with the omputation of oating point approximation

is zero testing, beause of its speial representation. More generally, in order to ompute

a oating point approximation eÆiently , one needs an eÆient algorithm to �nd the

approximate exponent; this may be very hard when subtrating two almost idential

quantities, whih leads to massive anellations. In the ase of holonomi onstants, we

will use the heuristi H from the previous setion to treat this problem.

In the remainder of this setion, we will be interested in the following problem: given

a polynomial expression ' in holonomi funtions f

1

; : : : ; f

n

admitting a quasi-regular
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singularity at 0, how to evaluate P eÆiently near 0? Now after a hange of variable

z 7! z

p

, eah of the f

i

an be written

f

i

(z) = (f

i;0

+ � � �+ f

i;t

i

�1

log

t

i

�1

)z

�

i

e

P

i

(z

�1

)

;

where the f

i;j

are onvergent series in z, the �

i

in

^

K and the P

i

polynomials in z

�1

.

Substitution of these expressions in ' and expansion then shows that we may assume

without loss of generality that ' is a linear ombination of the f

i

.

Now the funtions f

i;j

and z

�

i

have only a polynomial growth near 0, whene they an

be approximated in a lassial way. Our problem therefore redues to the question how

to eÆiently ompute a oating point approximation of a linear ombination of large

exponentials with small oeÆients. We will now give suh an algorithm, based in our

heuristi H.

5.2.2. A fast heuristi approximation algorithm

In this setion, we show how to evaluate sums of the form

u = 

0

e

z

0

+ � � �+ 

r�1

e

z

r�1

(5.3)

in an eÆient way, where the 

i

and the z

i

are small (but not \too small") holonomi

onstants. The idea of the algorithm is as follows. We �rst reorder the terms in (5.3),

suh that

<z

0

> <z

1

> � � � > <z

r�1

:

Usually, <z

0

> <z

1

and e

z

0

is \huge w.r.t." e

z

1

. If 

0

6= 0, the heuristi H implies that 

0

is \reasonably large", while the numbers 

1

; : : : ; 

r

are \reasonably small". Consequently,

u is \almost equal" to 

0

e

z

0

, of whih a oating point approximation is easily obtained. If



0

= 0, the term 

0

e

z

0

vanishes and we reursively evaluate the sum 

1

e

z

1

+� � �+

r�1

e

z

r�1

.

In general,<z

0

and <z

1

may be \almost equal", and the rôle of 

0

is replaed by onstants

of the form



0

+ � � �+ 

i�1

e

z

i�1

�z

0

;

in this ase <z

0

; : : : ;<z

i�1

are \almost equal", while <z

i

is \quite smaller" than <z

0

.

The notions of \almost equal" and \quite smaller" in the above disussion depend on

the sizes of the 

i

and the z

i

, as well as the heuristi H. In order to make them more

preise, we need some more notations. Let E > 0 be a onstant suh that for all z,

size(e

z

) 6 j<zj+Esize(z);

the existene of E follows from (5.1). We reursively de�ne funtions H

0

; H

1

; : : : by

H

0

= 0 and

H

i

(N) = H(H

i�1

(N) + � � �+H

0

(N) + (N + 2)(i+E)) +N + log(2r):

For some partiular hoies of H we have the following asymptoti bounds:

� H

r

(N) = O(N), if H(N) = O(N).

� H

r

(N) = O(N log

�r

N), if H(N) = O(N log

�

N).

� H

r

(N) = O(N

�r

), if H(N) = O(N

�

).

� H

r

(N) = exp

r times

� � � expO(N), if H(N) = O(expN).
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Now onsider the following algorithm to evaluate sums of the form (5.3).

Algorithm F. The algorithm omputes a oating point approximation up till n deimal

digits of

u = 

0

e

z

0

+ � � �+ 

r�1

e

z

r�1

;

where the 

i

and z

i

are onstants in C , whose sizes are bounded by N .

F0. [Trivial ase℄ If r = 0, then return 0.

F1. [Reorder℄ Reorder indies suh that <z

0

> � � � > <z

r�1

.

F2. [Determine gap℄ Let i be the minimal index suh that

<(z

0

� z

i

) > H

i

(N):

Take i = r if suh an index does not exist.

F3. [Zero test℄ Test whether the onstant

� = 

0

+ � � �+ 

i�1

e

z

i�1

�z

0

vanishes. If so, apply the algorithm reursively on the sum



i

e

z

i

+ � � �+ 

r�1

e

z

r�1

;

otherwise, proeed with the next step.

F4. [Return approximation℄ Compute an approximation of

�

0

= 

0

+ 

1

e

z

1

�z

0

+ � � �+ 

r�1

e

z

r�1

�z

0

in Q[i℄ with error < e

�H

i

(N)

10

�n�2

and onvert it to oating point format; this

yields a oating point approximation of �

0

up till n+1 deimal digits. Also ompute

a oating point approximation of e

z

0

up till n+1 deimal digits. Return the produt

with the previous one.

5.2.3. Corretness proof and omplexity analysis

Theorem 5.1. Assume the heuristi H. Then the algorithm F is orret and its exeu-

tion time is bounded by O(M((n +H

r

(N)) log

2

(n+H

r

(N)))).

Proof. The algorithm learly terminates. It suÆes to prove the orretness in the ase

when 

0

+ � � �+ 

i�1

e

z

i�1

�z

0

does not vanish. By the minimality of the index i, we have

<(z

0

� z

j

) 6 H

i

(N); for all 0 < j < i:

In partiular, it follows that the size of 

0

+ � � � + 

i�1

e

z

i�1

�z

0

, when onsidered as a

onstant in H is bounded by

size(�) 6 H

i�1

(N) + � � �+H

0

(N) + (N + 2)(i+E):

Therefore, H implies

j�j > e

< z

0

�H(H

i�1

(N)+���+H

0

(N)+(N+2)(i+E))

: (5.4)

On the other hand, we have

j

i

e

z

i

+ � � �+ 

r�1

e

z

r�1

j 6 re

< z

i

+N

:
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Sine <(z

0

� z

i

) > H

i

(N), it follows by our de�nition of H

i

(N) that

j

i

e

z

i

+ � � �+ 

r�1

e

z

r�1

j 6

1

2

j

0

e

z

0

+ � � �+ 

i�1

e

z

i�1

j:

In partiular, we get upper and lower bounds for u

1

2

j�je

<z

0

6 juj 6

3

2

j�je

<z

0

and similarly for �

0

1

2

j�j 6 j�

0

j 6

3

2

j�j:

Beause of the lower bound (5.4) for j�j, it follows that an evaluation of �

0

up to preision

< e

�H

i

(N)

10

�n�2

yields n+ 1 deimal digits of its oating point representation. Finally

the multipliation of two oating point numbers with preisions of n+ 1 deimal digits

indeed yields a oating point number with a preision of n deimal digits.

As to the time omplexity bound: the zero test of 

0

+ � � �+ 

i�1

e

z

i�1

�z

0

takes a time

O(M(H

i

(N) log

2

H

i

(n))), while the evaluation of �

0

up to preision < e

�H

i

(N)

10

�n�2

takes a time O(M((n +H

i

(N)) log

2

(n+H

i

(N)))). This ompletes the proof. 2

Returning to our problem of the approximation of ', we observe that N = O(n) for

small z. Therefore theorem 5.1 yields

Theorem 5.2. Assume that K is an algebrai number �eld, assume the heuristi H and

assume that ' is a polynomial expression of holonomi funtions f

1

; : : : ; f

n

over K with

quasi-regular singularities in 0. Then there exists a omputable onstant � > 0, suh that

for all z = "e

i�

above K with " < �, the value of '(z) an be omputed up till n deimal

digits in time O(M(H

r

(s) log

2

H

r

(s))), where s = n + size(z). This bound is uniform

in z. 2
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