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tions

near and in regular singularities

Joris van der Hoeven

(Re
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A holonomi
 fun
tion is an analyti
 fun
tion, whi
h satis�es a linear di�erential

equation Lf = 0 with polynomial 
oeÆ
ients. In parti
ular, the elementary fun
tions

exp; log; sin, et
. and many spe
ial fun
tions like erf;Si, Bessel fun
tions, et
. are holo-

nomi
 fun
tions.

In a previous paper, we have given an asymptoti
ally fast algorithm to evaluate a

holonomi
 fun
tion f at a non-singular point z

0

on the Riemann surfa
e of f , up to any

number of de
imal digits while estimating the error. However, this algorithm be
omes

ineÆ
ient, when z

0

approa
hes a singularity of f .

In this paper, we obtain eÆ
ient algorithms for the evaluation of holonomi
 fun
tions

near and in singular points where the di�erential operator L is regular (or, slightly more

generally, where L is quasi-regular | a 
on
ept to be introdu
ed below).

1. Introdu
tion

Let K be a sub�eld of C . A holonomi
 fun
tion (over K ) is an analyti
 fun
tion f ,

whi
h satis�es a linear di�erential equation

P

r

(z)f

(r)

+ � � �+ P

0

(z)f = 0; (1.1)

where P

0

; � � � ; P

r

are polynomials in K [z℄ with P

r

6= 0. The elementary fun
tions exp,

log, sin; : : : and many spe
ial fun
tions like erf; Si; : : : , Bessel fun
tions, hypergeomet-

ri
 fun
tions, et
. are holonomi
. The 
lass of holonomi
 fun
tions also admits several

interesting algebrai
 properties and has re
ently been the obje
t of intensive study in


omputer algebra and mathemati
s (Stanley, 1980; Lipshitz, 1989; Zeilberger, 1990).

In (van der Hoeven, 1999), we have studied holonomi
 fun
tions from the exa
t numeri-


al point of view: requiring that all 
omplex numbers z we 
ompute with are e�e
tive (i.e.

for any rational " > 0 we 
an 
ompute a \Gaussian rational" ~z 2 Q[i℄ with j~z � zj 6 "),

we were interested in algorithms to evaluate holonomi
 fun
tions. Of 
ourse, we need be


areful here, sin
e f is a
tually de�ned on a Riemann surfa
e R above C n
, for some

�nite set 
 (sin
e any element in 
 must be a zero of P

r

).

More pre
isely, we sele
t a base point � on R, whi
h proje
ts on an e�e
tive z 2 C n
,
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and we give ourselves e�e
tive initial 
onditions

y

in �:

I(�) =

0

B

�

f(�)

.

.

.

1

(r�1)!

f

(r�1)

(�)

1

C

A

:

Next, we 
onsider a non-singular path �  �

0

on R, whi
h is represented by a suitable

e�e
tive broken line path z  z

0

in C n
, and the problem is to 
ompute f in �

0

.

More generally, we may ask for the values of the �rst r � 1 derivatives of f in �

0

, i.e.

to 
ompute I(�

0

) in terms of I(�). This linear relationship 
an be written

I(�

0

) = �

� �

0

I(�); (1.2)

where �

� �

0

is a matrix whi
h only depends on the homotopy 
lass of the proje
tion of

z  z

0

of �  �

0

in C n
. We will 
all �

z z

0

= �

� �

0

the transition matrix along z  z

0

or �  �

0

. These matri
es satisfy the transitivity relation

�

z z

0

 z

00

= �

z

0

 z

00

�

z z

0

(1.3)

for the 
omposition of paths. When z  z

0

= z 	 z is a
tually a loop around one of the

singularities, then �

z	z

redu
es to a monodromy matrix.

In se
tion 2 we re
all results from (Chudnovsky and Chudnovsky, 1990) and (van der

Hoeven, 1999) about the eÆ
ient 
omputation of transition matri
es and the appli
a-

tion to the evaluation of f . However, the algorithms we presented there have two main

disadvantages:

� They su�er from numeri
al instability problems when �

0

approa
hes a singularity:

the 
oeÆ
ients of the transition matrix �

z z

0

grow as fast as the most violent

solutions to (1.1) near the singularity.

� The algorithms do not allow us to 
ompute the limit of f in a singularity, if su
h a

limit exists.

In this paper, we will study both problems. Our approa
h is to generalize transition

matri
es in order to a

ommodate paths with endpoints in singularities or whi
h pass

through singularities. The main steps, whi
h will be detailed below, are as follows: solve

the equation (1.1) formally in the singularity; give analyti
al meanings to the solutions;

use these solutions to prolongate I into the singularity.

Formal solutions. In se
tion 3, we re
all and re�ne some 
lassi
al results about the

formal resolution of (1.1) in singularities in terms of transseries . These are generalized

series whi
h re
ursively involve exponentials and logarithms. In this arti
le, we assume

the singularity at z = 0, and then it suÆ
es to 
onsider transseries whi
h are obtained

from the �eld of Laurent series in z

�1

, from log z, from monomials z

�

and exponentials

of polynomials in z

�1

, by the ring operations and substitutions z 7!

p

p

z.

Analyti
al meaning of transseries. Sometimes (and a
tually even rather often), the

formal transseries solutions to (1.1) are all 
onvergent and bounds for their 
oeÆ
ients

y

We note a small di�eren
e with (van der Hoeven, 1999), where we did not divide ea
h 
oeÆ
ient

f

(i)

(�) by i!. This di�eren
e is motivated by 
ompatibility reasons with (van der Hoeven, 1997) in view

of remark 3.2.
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an be 
omputed. We will mainly be 
on
erned with this 
onvergent 
ase in this paper;

in se
tion 3.3.2 we will introdu
e the 
orresponding notion of quasi-regular di�erential

operators. The divergent 
ase requires

�

E
alle's a

elero-summation theory (

�

E
alle, 1992;

�

E
alle, 1993; Braaksma, 1991; Balser, 1994; Ramis, 1978; Ramis, 1980) and will be treated

in a forth
oming paper.

Prolongation of I into singularities. In se
tion 3.3.1, we expli
itly introdu
e a spe-


ial basis of r transseries solutions f

[0℄

; : : : ; f

[r�1℄

to (1.1) | the basis of 
anoni
al solu-

tions . Having �xed analyti
al meanings of f

[0℄

; : : : ; f

[r�1℄

, ea
h a
tual analyti
 solution

f to (1.1) 
an be expressed as a linear 
ombination

f = �

0

f

[0℄

+ � � �+ �

r�1

f

[r�1℄

:

The 
olumn ve
tor with entries �

0

; : : : ; �

r�1

will now be 
onsidered as the prolongation

of the initial 
onditions I into the singularity; we say that it is a generalized value of I .

We noti
e that this prolongation depends on the way we asso
iated an analyti
al meaning

to f

[0℄

; : : : ; f

[r�1℄

; this is parti
ularly important in the divergent 
ase.

Singular transition matri
es. In se
tion 4, we introdu
e singular transition matri
es

whi
h des
ribe the linear dependen
ies between the generalized or ordinary values of I

in singular or ordinary points, just as the usual transition matri
es des
ribed the linear

dependen
ies between the values of I in ordinary points.

In the 
onvergent 
ase, we show how to approximate singular transition matri
es up to

any desired pre
ision; this enables us in parti
ular to approximate the limit of a solution f

to (1.1) in the singularity, if it exists. Modulo an interesting heuristi
 stated in se
tion 5.1,

we also obtain uniform 
omplexity bounds for (singular) transition matri
es along paths


lose to a given singularity, and whose entries are represented by 
oating point numbers.

As to the relation of our work with respe
t to previous work, the idea to \pass through"

singularities in order to perform analyti
 
ontinuations near singularities has been around

for some time among the spe
ialists of resummation theory. However, we think that it has

never been made as expli
it as in our paper. More generally, we feel a need of detailed

papers about e�e
tive analyti
 
ontinuation near singularities, with a
tual algorithms

and results about the 
omputational 
omplexity. This paper is intended as a �rst step in

this dire
tion.

In remark 2.4, we will also point out that our algorithms are exponentially faster

than 
lassi
al numeri
al algorithms, su
h as the Runge-Kutta method. This is a general

phenomenon; in a forth
oming paper, we plan to generalize our results to (regular) non

linear di�erential equations. We also re
all that our algorithms provide a totally e�e
tive

error 
ontrol.

As to the in
orporation of numeri
al algorithms for 
omputations with holonomi


fun
tions in 
omputer algebra systems, it is important to have a zero-test for holonomi



onstants. In the last se
tion, we propose su
h a test, whi
h is based on a new heuristi
.

We also prove a uniform 
omplexity result based on this heuristi
 for the evaluation of


ertain polynomial expressions involving holonomi
 fun
tions near singularities.

2. Survey of the non-singular 
ase

In (van der Hoeven, 1999), we studied the following questions (using the notations

from the introdu
tion):
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Q1. How to guarantee the exa
tness of evaluation algorithms?

Q2. What is the asymptoti
 
omplexity of 
omputing n digits of f(�

0

)?

Q3. How does the 
hoi
e of the path z  z

0

in
uen
e the 
omplexity of e�e
tive analyti



ontinuation? In parti
ular, what happens if the path approa
hes a singularity?

We will brie
y re
all our results in what follows.

Remark 2.1. During the refereeing of this paper, the author has been made aware of

the paper (Chudnovsky and Chudnovsky, 1990), in whi
h the questions Q2 and Q3 were

studied before in a similar way as in (van der Hoeven, 1999).

Remark 2.2. We stress that questionsQ1 andQ2 should really be seen as independent.

The �rst question amounts to the 
omputation of 
ertain bounds as a fun
tion of the

path z  z

0

. These bound 
omputations are independent from the required pre
ision n

in the se
ond question.

In Q2 and Q3, we are 
on
erned with asymptoti
ally fast algorithms (i.e. fast algo-

rithms for large n). The te
hniques we will use there are very di�erent from the bound


omputation te
hniques and from more 
lassi
al te
hniques (su
h as the Runge-Kutta

method).

2.1. Effe
tive bounds

If z  z

0

= z ! z

0

is a straightline path with z

0


lose to z, then f(�

0

) 
an be

approximated by evaluating suÆ
iently many terms of the power series expansion

f(�

0

) = f

0

+ f

1

(z

0

� z) + f

2

(z

0

� z)

2

+ � � � (2.1)

of f in �. In order to obtain an exa
t numeri
al algorithm, we should therefore be able

to estimate the 
ommitted error.

Now (1.1) implies that the 
oeÆ
ients f

k

satisfy a linear re
urren
e relation with


oeÆ
ients in K (k). This relation 
an be written in matrix form

F

k+1

= A

k

F

k

;

for a 
ertain q by q matrix with 
oeÆ
ients in K (k) and where the F

k

are 
olumn ve
tors

with entries f

k

; : : : ; f

k+q�1

. A
tually, the matri
es A

k

tend to a 
onstant matrix for

k ! 1, i.e. A

k

2 K [[k

�1

℄℄. Let � be the largest eigenvalue of the limit matrix A

1

.

Estimating the produ
t A

k

� � �A

0

for k ! 1, we proved the following in se
tion 2.2

of (van der Hoeven, 1999):

Theorem 2.1. There exists an algorithm, whi
h given � > � 
omputes a 
onstant B

su
h that jf

k

j 6 B�

k

for all k. 2

In parti
ular, this bound yields error estimations for the tails of the Taylor series

expansion (2.1), sin
e

jf(�

0

)� f

0

� � � � � f

k�1

(z

0

� z)

k�1

j 6

B�

k

1� �

;

for � = jz

0

� zj=� < 1.
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Remark 2.3. In (van der Hoeven, 1999), we applied the theorem to the 
ase when z is

non-singular for (1.1), i.e. P

r

(z) 6= 0. In that 
ase, all solutions to (1.1) have 
onvergen
e

radius at least �

�1

. More pre
isely, �

�1


oin
ides with the 
onvergen
e radius of 1=P

r

in z.

2.2. Fast evaluation of trun
ated power series expansions

Assuming that K is an algebrai
 number �eld and z; z

0

2 K , we will show now how to


ompute f

0

+ f

1

(z

0

� z) + � � � + f

k

(z

0

� z)

k

in an asymptoti
ally eÆ
ient way. We �rst

introdu
e the ve
tors

�

k

= F

k

z

k

;

�

k;l

= F

k

z

k

+ F

k+1

z

k+1

+ � � �+ F

k+l�1

z

k+l�1

;

for k 2 N; l > 1. We 
laim that for all k and l > 1, there exist matri
es M

k;l

and N

k;l

,

su
h that

�

k;l

= M

k;l

�

k

;

�

k+l

= N

k;l

�

k

:

This is 
learly so for l = 1, by taking M

k;1

= Id and N

k;1

= zA

k

. Assume l > 0 and

de
ompose l = l

1

+ l

2

with l

1

= b

l

2


. Then we take

M

k;l

= M

k;l

1

+M

k+l

1

;l

2

N

k;l

1

;

N

k;l

= N

k+l

1

;l

2

N

k;l

1

:

These re
ursion formula yield an eÆ
ient divide and 
onquer algorithm to 
omputeM

0;k

for large k (if su
h a matrix has fra
tional entries, then we put all its entries on 
ommon

denominator and no g
d 
omputations are performed in order to simplify this denomina-

tor). Denoting byM(n) the time required to multiply two n-digit numbers, we proved the

following 
omplexity bound for this algorithm in se
tion 3.2 of (van der Hoeven, 1999).

Theorem 2.2. Assume that K is an algebrai
 number �eld. Then the matrix M

0;k


an

be 
omputed in time O(M(k log

2

k)). 2

Using the bounds from the previous se
tion, this yields an eÆ
ient algorithm to eval-

uate f(�

0

) up to any desired pre
ision. The iterated derivatives f

0

; f

00

; : : : of f 
an also

be evaluated eÆ
iently in �

0

, be
ause these derivatives are also holonomi
.

2.3. General transition matri
es

The approximation problem for transition matri
es between two 
lose points z and z

0


learly redu
es to the evaluation problem of p linearly independent solutions to (1.1) and

its �rst r � 1 iterated derivatives in z

0

. Using the bounds from se
tion 2.1, we 
an do

this up till any desired pre
ision. If K is an algebrai
 number �eld, and z; z

0

2 K , we 
an

even use the asymptoti
ally eÆ
ient algorithm from above.

To 
ompute the transition matri
es along general paths, we approximate the path by a

broken line path and use the transitivity relation (1.3). In order to 
hoose the broken line

path in an optimal way, it is important to estimate the 
omplexity of the 
omputation of

transition matri
es as a fun
tion of the path. Denote by D(�; �) the 
ompa
t disk with
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enter � and radius � and by �(z) the distan
e of z to the 
losest singularity. Assuming

that K is an algebrai
 number �eld, we also denote by size(z) the memory spa
e needed

to store a number z 2 K . In se
tion 4.1 of (van der Hoeven, 1999), we proved the following

for straightline paths z ! z

0

with z; z

0

above K :

Theorem 2.3. Assume that

(a) U is an open domain on whi
h jf j is bounded.

(b) K is an algebrai
 number �eld.

(
) z ! z

0

is the straightline path between two points z; z

0

2 K .

(d) We have D(z; jz

0

� zj) � U .

Denote s = size(z)+size(z

0

) and � =

�(z)

jz

0

�zj

. Then f(z

0

) 
an be evaluated up to pre
ision

2

�n

in time

O(M(n(s + logn) logn log

�1

�));

uniformly in z and z

0

, provided that log log � = O(n).

We have also shown that an arbitrary broken line path z  z

0


an be suitably ap-

proximated by a broken line path with verti
es in K (but whi
h depends on the required

pre
ision), in order to obtain an eÆ
ient approximation algorithm for �

z z

0

:

Theorem 2.4. Assume that K is an algebrai
 number �eld. Then n digits of �

z z

0

(resp. f(z

0

)) 
an be 
omputed in time O(M(n log

2

n log logn)). 2

Remark 2.4. We stress that the above 
omplexity is far better than the 
omplexities

a
hieved by 
lassi
al numeri
al methods. For instan
e, the Runge-Kutta method needs

a time O(n) to get a result with a pre
ision of O(n

�4

). But a pre
ision of O(n

�4

)

means that we only obtain O(log n) 
orre
t digits! In other words, in order to obtain n


orre
t binary digits, Runge-Kutta's algorithm needs a time O(2

n=4

). Therefore, Runge-

Kutta's algorithm has an exponential 
omplexity from our point of view. Nevertheless,

this method remains superior for small pre
isions.

2.4. An alternative algorithm for bound 
omputations

One of the referees observed that I 
ould have used Cau
hy-Kovalevskaya's majorant

method in order to obtain the bound from theorem 2.1 in (van der Hoeven, 1999). Indeed,

I was not aware of this method at the time, but I redis
overed it sin
e, and was a
tually

planning to use it for a forth
oming paper on analyti
 
ontinuation of solutions to non

linear di�erential equations. For the sake of 
ompleteness, we apply it in this se
tion to

the 
ase of linear di�erential equations in non-singular points. It would be interesting to

know whether the te
hnique 
an be generalized to the regular singular 
ase whi
h will

be studied in the remainder of this paper.

So assume that P

r

(z) 6= 0 and let �

�1

be the radius of 
onvergen
e of 1=P

r

in z. Given

� > �, we will show how to 
ompute a B, su
h that jf

k

j 6 B�

k

for all k. Now observe

that (1.1) is equivalent to

f

(r)

(z) = �

P

r�1

(z)

P

r

(z)

f

(r�1)

� � � � �

P

0

(z)

P

r

(z)

f: (2.2)
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We �rst 
ompute bounds for the 
oeÆ
ients of the rational fra
tions �P

i

=P

r

, of the form

�

�

�

�

�

�

P

i

(z)

P

r

(z)

�

k

�

�

�

�

6M

i

�

k

;

where � < � < � (say � = (�+ �)=2). Then let

N =

�

1

�

max

i2f0;::: ;r�1g

r�i

p

rM

i

�

;

so that

�

�

�

�

�

�

P

i

(z)

P

r

(z)

�

k

�

�

�

�

6

�

M

i

1� �z

�

k

6

(N�)

r�i

r

�

1

1� �z

�

k

6

(N + r � 1) � � � (N + i)

r

"

�

�

1� �z

�

r�i

#

k

for all i 2 f0; : : : ; r � 1g and k. In other words, the equation

g

(r)

(z) =

N + r � 1

r

�

�

1� �z

�

1

g

(r�1)

+ � � �+

(N + r � 1) � � �N

r

�

�

1� �z

�

r

g

(2.3)

is a \majorant" of the original equation (2.2). Furthermore,

g = A

�

1

1� �z

�

N

(2.4)

is a simple solution to (2.3) for ea
h A. Take

A = max

i2f0;::: ;r�1g

jf

i

j

�

�

1

1��z

�

N

�

i

= max

i2f0;::: ;r�1g

jf

i

j

�

i

�

N+i

i

�
:

Using the majorant te
hnique, we now observe that

jf

k

j 6 g

k

= A

�

N + k

k

�

�

k

(2.5)

for all k, sin
e (2.3) is a majorant of (2.2) and (2.5) holds for all k < r. Now g

k

=�

k

is

maximal for k � N�=(�� �), when
e

B = A

�

l

�

���

N

m

N

��

�

�

�

b

�

���

N




has the required property that jf

k

j 6 B�

k

for all k.

Remark 2.5. It is possible to 
hoose the bounds in a slightly sharper way in the above

method. However, this leads to more 
ompli
ated formulas and we do not expe
t the

gain to be worth it in general. Therefore, we have preferred the above 
omputationally

\simple" method, whi
h should be easier to implement and is expe
ted to su�er less from

overhead.
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3. Formal solutions in a singularity

Consider the linear di�erential operator

L = L

r

Æ

r

+ � � �+ L

0

;

where L

0

; : : : ; L

r

2 K [z℄ are polynomials in z and Æ denotes the derivation z

�

�z

. The

interest of using Æ instead of

�

�z

is that Æ preserves the valuation (when the valuation is

non zero). We will study the singular behaviour of the solutions to

Lf = 0; (3.1)

near z = 0; 
learly, the study near other singularities is similar, modulo a translation.

Throughout this se
tion, we assume that at least one of the L

i

is not divisible by z.

In general, the homogeneous di�erential equation (3.1) does not ne
essarily have r

linearly independent power series solutions. But it is a well known fa
t [(Fabry, 1885;

Poin
ar�e, 1886; Birkho�, 1909; Birkho�, 1913; In
e, 1926; Turrittin, 1963; Wasow, 1967)℄

that a 
omplete basis of transseries solutions (i.e. generalized series whi
h involve log-

arithms and exponentials in a re
ursive way) 
an always be found and 
omputed [(van

Hoeij, 1997; van Hoeij, 1996; Della Dora et al., 1982)℄. More pre
isely, for some �nite

algebrai
 extension

^

K of K , there exists a basis of 
ardinal r of formal solutions f of the

form

f 2

^

K [log z℄

t

[[

p

p

z℄℄z

�

e

P (1=

p

p

z)

: (3.2)

Here � 2

^

K , P is a polynomial with 
oeÆ
ients in

^

K and no 
onstant term, and

^

K [log z℄

t

stands for the set of polynomials in log z over

^

K of degrees stri
tly less than t. We 
all

e

P (1=

p

p

z)

the purely exponential part of f .

There are several algorithms to 
ompute all triples (p; �; P ) for whi
h solutions of

the form (3.2), with f � (log z)

i

z

�

e

P (1=

p

p

z)

(for some i), exist (Della Dora et al., 1982;

van Hoeij, 1997; van Hoeij, 1996; van der Hoeven, 1997). Let us 
all su
h a triple (p; �; P )

admissible

y

, if there are no other su
h triples of the form (pq; � �

�

pq

; P Æ z

q

) with

q; � 2 N

�

. In order to �nd all solutions to (3.1), it then suÆ
es to solve this equation in

^

K [log z℄[[

p

p

z℄℄z

�

e

P (1=

p

p

z)

for all admissible triples (p; �; P ).

In this se
tion we shall 
on
entrate on how to �nd these solutions for a �xed admissible

triple (p; �; P ). In se
tion 3.1 we �rst show that it suÆ
es to 
onsider the 
ase when

p = 1; � = 0 and P = 0. This redu
es the general problem to �nding all solutions of the

form

f = f

0

+ � � �+

1

(t� 1)!

f

t�1

log

t�1

z; (3.3)

to (3.1), where f

0

; : : : ; f

t�1

are power series in z. In se
tion 3.2, we establish re
urren
e

relations for the 
oeÆ
ients of these power series. We 
on
lude in se
tion 3.3.

y

The de�nition of admissible triples may seem a bit te
hni
al. It is motivated by the observations

that

^

K [log z℄

t

[[

p

p

z℄℄z

���

e

P (1=

p

p

z)

�

^

K [log z℄

t

[[

p

p

z℄℄z

�

e

P (1=

p

p

z)

and

^

K [log z℄

t

[[

pq

p

z℄℄z

�

e

P (1=

pq

p

z)

�

^

K [log z℄

t

[[

p

p

z℄℄z

�

e

P (1=

p

p

z)

for all �; q 2 N

�

.



Fast evaluation of holonomi
 fun
tions near and in regular singularities 9

3.1. Redu
tion to the 
ase p = 1; � = 0 and P = 0

Consider the problem of �nding the solutions (3.2) to Lf = 0, for �xed p; � and P . We

will �rst redu
e this problem to the 
ase when p = 1. Given a linear di�erential operator

L = L

r

Æ

r

+ � � � + L

0

with 
oeÆ
ients in K (z), there exists a unique linear di�erential

operator L

Æz

p

su
h that

L

Æz

p

(f Æ z

p

) = (Lf) Æ z

p

;

for all series f 2

^

K [log z℄[[

p

p

z℄℄. The 
oeÆ
ients of L

Æz

p

are given expli
itly by

L

Æz

p

;i

=

L

i

Æ z

p

p

i

;

when
e they belong to K(z

p

). Now solving the equation Lf = 0 with

f 2

^

K [log z℄[[

p

p

z℄℄z

�

e

P (1=

p

p

z)

is equivalent to solving the equation L

Æz

p

(f Æ z

p

) = 0 with

f Æ z

p

2

^

K [log z℄[[z℄℄z

p�

e

P (1=z)

:

This redu
es the general problem to the 
ase when p = 1.

In a similar fashion, the general 
ase with p = 1 redu
es to the 
ase p = 1; � = 0 and

P = 0: given a linear di�erential operator L = L

r

Æ

r

+ � � �+L

0

and a transseries ' (below,

we will a
tually take ' = z

�

e

P (z

�1

)

), there exists a unique linear di�erential operator

L

�'

= L

�';r

Æ

r

+ � � �+ L

�';0

, su
h that

L

�'

f = L('f)

for all f . We 
all L

�'

a multipli
ative 
onjugate of L. Its 
oeÆ
ients are given expli
itly

by

L

�';i

=

r

X

j=i

�

j

i

�

L

j

Æ

j�i

':

Now letting ' = z

�

e

P (z

�1

)

, we observe that the 
oeÆ
ients of L

�'

are rational fun
tions

in

^

K (z) multiplied by '. Sin
e solving Lf = 0 for f 2

^

K [log z℄[[z℄℄z

�

e

P (z

�1

)

is equivalent

to solving L

�'

(h=') = 0 for f=' 2

^

K [log z℄[[z℄℄, we redu
ed our initial problem to the


ase when p = 1; � = 0 and P = 0.

3.2. Re
urren
e relations

In this se
tion, we will give re
urren
e relations for the 
oeÆ
ients of the f

i

from (3.3).

Given a linear di�erential operator L, we will denote by �

L

the polynomial

�

L

(k) = L

r;0

k

r

+ � � �+ L

0;0

;

in k, where L

i;0

stands for the 
onstant term of L

i

. We also denote by L

0

the \derivative"

of L:

L

0

= rL

r

Æ

r�1

+ � � �+ 2L

2

Æ + L

1

:

Noti
e that �

L

0

= (�

L

)

0

.
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3.2.1. Extra
tion of 
oeffi
ients

The a
tion of L on f = f

0

+ � � � +

1

(t�1)!

f

t�1

log

t�1

z is expressed 
onveniently using

the su

essive \derivatives" of L:

Lf = Lf

0

+ � � �+

1

(t� 1)!

(Lf

t�1

) log

t�1

z

.

.

.

+

1

i!

�

L

(i)

f

i

+ � � �+

1

(t� 1� i)!

(L

(i)

f

t�1

) log

t�1�i

z

�

.

.

.

+

1

(t� 1)!

L

(t�1)

f

t�1

:

Hen
e, the equation Lf = 0 yields the equations

Lf

t�1

= 0;

Lf

t�2

+ L

0

f

t�1

= 0;

.

.

.

Lf

0

+ L

0

f

1

+

1

2

L

00

f

2

+ � � �+

1

(t�1)!

L

(t�1)

f

t�1

= 0

(3.4)

for the f

i

.

Let us now extra
t the k-th Taylor 
oeÆ
ients of these relations using the rules

(Æg)

k

= kg

k

; (3.5)

(zg)

k

= g

k�1

: (3.6)

These rules imply

(Lg)

k

= Q

0

(k)g

k

+ � � �+Q

q

(k)g

k�q

;

(L

0

g)

k

= Q

0

0

(k)g

k

+ � � �+Q

0

q

(k)g

k�q

;

.

.

.

(L

(t�1)

g)

k

= Q

(t�1)

0

(k)g

k

+ � � �+Q

(t�1)

q

(k)g

k�q

;

(3.7)

for 
ertain polynomials Q

0

; : : : ; Q

q

2 K [k℄ with Q

0

= �

L

. Of 
ourse, we understand that

the k-th 
oeÆ
ient of a power series vanishes, whenever k 6= N.

3.2.2. The generi
 
ase

Combination of (3.4) and (3.7) yields

q

X

l=0

t�1

X

j=i

Q

(j�i)

l

(k)

(j � i)!

f

j;k�l

= 0; (3.8)

for 0 6 i 6 t� 1. For \generi
" k, we have Q

0

(k) = �

L

(k) 6= 0. Then the relations (3.8)

be
ome

f

i;k

=

�1

Q

0

(k)

0

�

t�1

X

j=i+1

Q

(j�i)

0

(k)

(j � i)!

f

j;k

+

q

X

l=1

t�1

X

j=i

Q

(j�i)

l

(k)

(j � i)!

f

j;k�l

1

A

: (3.9)
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Taking su

essive values t� 1; : : : ; 0 for i, we 
an interpret (3.9) as re
urren
e relations

for f

t�1;k

; : : : ; f

0;k

in terms of previous 
oeÆ
ients f

j;k�l

with l > 0. Denoting by F

k

the


olumn ve
tor with tq entries

f

0;k

; : : : ; f

0;k�q+1

; : : : ; f

t�1;k

; : : : ; f

t�1;k�q+1

;

these relations 
an also be written as a matrix relation

F

k

= A

k

F

k�1

; (3.10)

where the entries of A

k

are rational fun
tions in K (k).

3.2.3. The degenerate 
ase

Assume now that we are in the degenerate 
ase where k is a zero of �

L

of multipli
ity

�

k

> 0. Then the system of equations (3.8) be
omes overdetermined and does not ne
-

essarily admit a solution. The degenerate 
ase 
orresponds to the situation when higher

powers of log z are needed in order to express the solutions to Lf = 0.

Nevertheless, we will now show that, if f

i;k�l

= 0 for all i > t � �

k

and l > 0, then

the system of equations (3.8) again admits a natural solution F

k

of the form (3.10). The


ondition that f

i;k�l

= 0 for all i > t� �

k

and l > 0 
orresponds to assuming that t was

taken suÆ
iently large; indeed, in se
tion 3.3.1, we will show how to 
hoose su
h a t, so

that all solutions in

^

K [log z℄[[z℄℄ to Lf = 0 are a
tually in K [log z℄

t

[[z℄℄.

So assume that k is a zero of �

L

of multipli
ity �

k

> 0 and assume that f

i;k�l

= 0

for all i > t � �

k

and l > 0. Then the equations (3.8) trivially hold for t � �

k

6 i < t,

independently of the values of f

t�1;k

; : : : ; f

t��

k

;k

. For 0 6 i < t � �

k

, we obtain the

relations

f

i+�

k

;k

=

�(�

k

!)

Q

(�

k

)

0

(k)

0

�

t�1

X

j=i+�

k

+1

Q

(j�i)

0

(k)

(j � i)!

f

j;k

+

q

X

l=1

t�1

X

j=i

Q

(j�i)

l

(k)

(j � i)!

f

j;k�l

1

A

:

(3.11)

Taking su

essive values t��

k

�1; : : : ; 0 for i, we 
an again interpret (3.11) as re
urren
e

relations for f

t�1;k

; : : : ; f

�

k

;k

in terms of previous 
oeÆ
ients f

j;k�l

with l > 0.

Finally, sin
e the equations (3.8) do not involve f

�

k

�1;k

; : : : ; f

0;k

, these 
oeÆ
ients 
an

be 
hosen arbitrarily. For our purpose in se
tion 3.3.1 of �nding \
anoni
al" solutions

to Lf = 0, it is 
onvenient to take f

�

k

�1;k

= � � � = f

0;k

= 0. Then the re
urren
e

relations (3.11) 
an again be rewritten as a matrix relation

F

k

= A

k

F

k�1

; (3.12)

where the entries of A

k

are rational fun
tions in K (k), and where the rows whi
h 
orre-

spond to the entries f

�

k

�1;k

; : : : ; f

0;k

of F

k

are taken to be zero.

Remark 3.1. Of 
ourse, all solutions to Lf = 0 of the form (3.3) do not ne
essarily

satisfy the re
urren
e relation (3.12), but the \
anoni
al" solutions that we will 
onstru
t

now do satisfy it (for all but one k, whi
h 
orresponds to the initial 
ondition).
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3.3. Solving Lf = 0 in the ring of logarithmi
 power series

3.3.1. A 
anoni
al basis of solutions

Assume that (f

d;n

log

d

z+ � � �+ f

0;n

)z

n

+ o(z

n

) is a solution to Lf = 0 in

^

K [log z℄[[z℄℄,

with f

d;n

6= 0. In se
tion 3.2.2 we have shown that the f

i;k

are linear 
ombinations of the

entries of F

k�1

for non-singular k. Therefore, the dominant exponent n of f in z must

be a zero of �

L

. Let �

n

be the multipli
ity of this zero. In se
tion 3.2.3 we have shown

that the f

i;n

are linear 
ombinations of the entries of F

k�1

for i > �

n

. Therefore, we also

must have d < �

n

.

Conversely, let us show how to 
onstru
t a solution f = f

[n;d℄

to Lf = 0 of the form

f

[n;d℄

= (log z)

d

z

n

+

X

k>n

t�1

X

i=0

f

i;k

i!

(log z)

i

z

k

;

for ea
h 
ouple (n; d) with d < �

n

. Let

t = d+ 1 + �

n+1

+ �

n+2

+ � � � 6 r (3.13)

and take F

n

to be the 
olumn ve
tor, whose only non zero entry 
orresponds to f

d;n

= d!.

We take F

k

= 0 for all k < n and F

k

= A

k

F

k�1

for k > n, with the notations from

se
tions 3.2.2 and 3.2.3.

We have to show that our 
hoi
e of t is indeed suÆ
iently large, su
h that the 
ondition

from se
tion 3.2.3, that f

i;k�l

= 0 for all i > t � �

k

and l > 0, holds for all k. A
tually,

by indu
tion over k, we observe that f

i;k�l

= 0 for all i > t� �

k

� �

k+1

� � � � and l > 0.

Noti
e also that, by 
onstru
tion, the 
oeÆ
ients of all F

k

are a
tually in K .

We 
laim that the f

[n;d℄

with d < �

n

form a basis for the spa
e of solutions to (3.1) in

^

K [log z℄[[z℄℄. Let f be su
h a solution to (3.1) and 
onsider it as a generalized series in

z and (log z)

�1

. If f = 0 then we have nothing to prove. Otherwise, we may write f =




1

(log z)

d

1

z

n

1

+ o((log z)

d

1

z

n

1

) and we already observed that 0 6 d

1

< �

d

1

. Hen
e,

~

f =

f � 


1

f

[n

1

;d

1

℄

is again a solution to (3.1), whi
h is either zero, or it has an asymptoti
ally

smaller dominant term. Repeating the argument, we �nd an expression for f as a �nite

linear 
ombination of the f

[n;d℄

, sin
e there are only a �nite number of f

[n;d℄

. We have

proved:

Theorem 3.1. The equation Lf = 0 for f in

^

K [log z℄[[z℄℄ has a basis of solutions in

K [log z℄

t

[[z℄℄, with t as in (3.13). In parti
ular, the f

[n;d℄

with d < �

n

form su
h a basis.

We will 
all the basis formed by the f

[n;d℄

the 
anoni
al basis of solutions to Lf = 0

in

^

K [log z℄[[z℄℄. More generally, for ea
h admissible triple (p; �; P ), we 
onstru
t a basis

of 
anoni
al solutions f

[n;d℄

(p;�;P )

of the form (3.2) to (3.1): we �rst redu
e to the 
ase

when p = 1; � = 0 and P = 0 as des
ribed in se
tion 3.1, we next take the 
anoni
al

solutions to the obtained equation, whi
h �nally yield the desired 
anoni
al solutions

when translating ba
k. The 
olle
tion of all these 
anoni
al solutions for the di�erent

admissible triples forms a basis of r formal solutions to (3.2) | the basis of 
anoni
al

solutions.

Remark 3.2. The basis of 
anoni
al solutions 
oin
ides with the basis 
onstru
ted in
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se
tions 4.5 and 4.8.3 of (van der Hoeven, 1997). The �rst expli
it 
onstru
tions of funda-

mental systems of solutions o

ur in (Frobenius, 1873; In
e, 1926). Computationally sim-

pler fundamental systems of solutions were �rst given in (van Hoeij, 1997) and (van der

Hoeven, 1997). In all 
ases, the dominant monomials of the basis elements are pair-

wise distin
t, so that they di�er only by triangular linear transformations. However, our

\
anoni
al bases" are the most intrinsi
 ones from the asymptoti
 point of view. Indeed,

in (van der Hoeven, 1997) we prove some 
hara
teristi
 properties of su
h bases, whi
h

justify our terminology.

3.3.2. Convergen
e and fast evaluation of the 
anoni
al solutions

Let f = f

[n;d℄

be one of the 
anoni
al solutions and adopt the notations from se
-

tion 3.2. We have shown that the re
urren
e relation satis�ed by the 
oeÆ
ients of f 
an

be expressed by matrix relations

F

k

= A

k

F

k�1

;

with an initial 
ondition at k = n. Now looking at the re
urren
e relations (3.8), we

observe that A

k

tends to a �nite limit when k ! 1, if and only if degQ

0

> degQ

i

, for

all i. This is again equivalent to the 
ondition that the 
onstant term L

r;0

of L

r

does not

vanish. If this is the 
ase, the operator L is said to be regular . The following generalization

of theorem 2.1 is the e�e
tive version of a well-known theorem in (Frobenius, 1873).

Theorem 3.2. Assume that L is regular. Then there exists an algorithm whi
h 
omputes

B; � > 0, su
h that ea
h entry of F

k

is bounded by B�

k

for all k.

Proof. For all but a �nite number of \singular" k, the 
oeÆ
ients of A

k

are given by

rational fun
tions in K (k). Furthermore, A

k

tends to a �nite limit A

1

for k !1, sin
e

L is regular. Therefore, the algorithm from se
tion 2.1 (i.e. the algorithm B from se
tion

2.2 in (van der Hoeven, 1999)) is easily adapted to our slightly more general situation:

with the notations from (van der Hoeven, 1999) (where N

k

plays the role of A

k

), it

suÆ
es to require k

0

to be larger than any singular value of k. 2

Remark 3.3. With the notations from (van der Hoeven, 1999), it may be ne
essary to

take k

0

quite large. In pra
ti
e, it is therefore preferable not to estimate the produ
t

N

k

0

�1

� � �N

0

by mere evaluation. Instead, we re
ommend to treat apart those N

k

(with

0 6 k < k

0

) for whi
h the estimation jjE

k

jj 6 " already holds, and the remaining ones

(for whi
h j�

L

(k)j is small or zero).

The binary splitting method from se
tion 2.2 
an also again be used to evaluate

F

0

+ F

1

z + � � �+ F

k

z

k

= (Id+ (A

1

z) + � � �+ (A

k

z) � � � (A

1

z))F

0

;

for suÆ
iently small values of z in K . The bitwise 
omplexity of this algorithm is the same

as before, again due to the fa
t that the entries of A

k

are rational fun
tions in k with

ex
eptional values in the �nite number of poles. In parti
ular, analogues of theorems 2.2

and 2.3 hold. Combined with theorem 3.2, this yields

Theorem 3.3. Assume that L is regular and let � be as in theorem 3.2. Assume that

K is an algebrai
 number �eld and let z 2 K be su
h that jzj 6 �=�, for �xed � < 1.
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Then there exists an algorithm whi
h simultaneously 
omputes f

0

(z); : : : ; f

t�1

(z) up to

n de
imal digits in time O(M(n logn(logn+ size(z)))), uniformly in z. 2

More generally, for ea
h admissible triple (p; �; P ) redu
tion to the 
ase p = 1; � = 0

and P = 0 yields an equation

(L

(p;�;P )

r

Æ

r

+ � � �+ L

(p;�;P )

0

)f = 0;

whi
h has to be solved in

^

K [log z℄[[z℄℄. If L

(p;�;P )

r;0

6= 0 for all admissible triples (p; �; P ),

then we will say that L is quasi-regular .

Proposition 3.1. L is quasi-regular, if and only if the 
anoni
al solutions to Lf = 0

all have the same purely exponential part.

Proof. The operator L is regular if and only if �

L

admits r zeros in C , when 
ounted

with multipli
ities. Furthermore, su
h a zero � has multipli
ity �, if and only if there

exist exa
tly � 
anoni
al basis elements with dominant terms of the form z

�

log

j

z, namely

z

�

; : : : ; z

�

log

��1

z (indeed, this follows from theorem 3.1 for a multipli
ative 
onjugation

L

�z

�

of L, for whi
h (1; 0; 0) is an admissible triple; noti
e that �

L

(�) = �

L

�z

�

(���)).

Hen
e, L is regular if and only if there exist r 
anoni
al basis elements with purely

exponential part 1.

Now assume that L is general and let f be a 
anoni
al basis element with purely expo-

nential part e

P (1=

p

p

z)

. After a multipli
ative 
onjugation with e

P (1=

p

p

z)

and a substitution

z 7! z

p

, we obtain an operator

~

L, whi
h is regular, if and only if L is quasi-regular. Now

ea
h 
anoni
al solution to Lf = 0 with purely exponential part e

P (1=

p

p

z)


orresponds

to a unique 
anoni
al solution to

~

L

~

f = 0 with purely exponential part 1. Hen
e, L is

quasi-regular, if and only if there exist r 
anoni
al basis elements with purely exponential

part e

P (1=

p

p

z)

. 2

3.4. A worked example

Consider the equation

z

3

Æ

3

g + (3z

2

� 2z

3

)Æ

2

g + (3z � 7z

2

)Æg + (1� 5z + 3z

2

� z

4

)g = 0:

(3.14)

It 
an be shown that (1; 0;

1

z

) is the only admissible triple asso
iated to this equation.

Hen
e, there exists a fundamental system of solutions to (3.14) in Q[[z℄℄[log z℄e

1=z

. The

multipli
ative 
onjugation

g = fe

1=z

;

transforms the equation (3.14) into

Æ

3

f � 2Æ

2

f � zf = 0: (3.15)

In a �rst stage, let us sear
h for power series solutions of this equation. Using the rules

(3.5) and (3.6), we obtain the following re
urren
e relation for the 
oeÆ
ients of f :

f

n

=

1

n

2

(n� 2)

f

n�1

: (3.16)
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Taking f

0

= f

1

= 0 and f

2

= 1, this re
urren
e relation enables us to 
ompute f

3

; f

4

; : : : .

However, if f

1

6= 0, then the re
urren
e relation will not be valid for n = 2, and we will

need to introdu
e logarithms into the solution.

In general, we therefore have to seek for solutions of the form

f = f

0

+ f

1

log z +

1

2

f

2

log

2

z;

with f

0

; f

1

; f

2

2 C[[z℄℄. For n 2 Nnf0; 2g, the re
urren
e relation (3.10), whi
h re-

pla
es (3.16), be
omes

0

B

�

f

0;n

f

1;n

f

2;n

1

C

A

=

0

B

�

1

n

2

(n�2)

�3n+4

n

3

(n�2)

2

6n

2

�16n+12

n

4

(n�2)

3

0

1

n

2

(n�2)

�3n+4

n

3

(n�2)

2

0 0

1

n

2

(n�2)

1

C

A

0

B

�

f

0;n�1

f

1;n�1

f

2;n�1

1

C

A

:

(3.17)

In the degenerate 
ase when n = 2, the equation (3.12) be
omes

0

B

�

f

0;n

f

1;n

f

2;n

1

C

A

=

0

B

�

0 0 0

1

3n

2

�4n

3�2n

(3n

3

�4n)

2

0

0

1

3n

2

�4n

0

1

C

A

0

B

�

f

0;n�1

f

1;n�1

f

2;n�1

1

C

A

; (3.18)

where we assume that f

2;n�1

= 0. Now the 
anoni
al basis of solutions is given by

f

[0;1℄

= log z + (� log z � 1)z + (�

1

4

log

2

z �

3

16

log z)z

2

+

(�

1

36

log

2

z +

11

432

log z �

1

48

)z

3

+ � � �

f

[0;0℄

= 1� z �

1

4

z

2

log z + (�

1

36

log z +

5

108

)z

3

+ � � �

f

[2;0℄

= z

2

+

1

9

z

3

+

1

288

z

4

+

1

21600

z

5

+ � � � :

The 
orresponding initial 
onditions are (f

0;0

; f

1;0

; f

2;0

) = (0; 1; 0), (f

0;0

; f

1;0

; f

2;0

) =

(1; 0; 0), resp. (f

0;2

; f

1;2

; f

2;2

) = (1; 0; 0). The basis elements f

[0;1℄

, f

[0;0℄

and f

[2;0℄

may

be evaluated fast up till any pre
ision using the di
hotomi
 algorithm from se
tion 2.2.

4. Singular transition matri
es

4.1. Extended Riemann surfa
es

In what follows, we would like to 
onsider initial 
onditions in singularities. Therefore,

it is 
onvenient to extend the Riemann surfa
e of f with points above the singularities. In

this se
tion, we give an abstra
t 
onstru
tion of this extension in the 
ase of a \Riemann

surfa
e with only isolated singularities".

In the sequel, a Riemann surfa
e above C is a non empty 
onne
ted separated topo-

logi
al spa
e R, together with a 
ontinuous proje
tion � : R ! C , su
h that for ea
h

point � 2 R, there exists a neighbourhood U of �, su
h that � restri
ted to U is a home-

omorphism and maps U onto an open disk in C . A broken line path on R is a 
ontinuous

mapping ' : [0; 1℄! R, su
h that � Æ' is a broken line path in C . The endpoint '(1) is

uniquely determined by '(0) and � Æ'. Therefore, given a base point � 2 R, other points

�

0

2 R are 
onveniently represented by broken line paths �(�) = z

0

! � � � ! z

n

= �(�

0

)

on C .

Fix a base point � on R, where all broken line paths start. An open-ended broken line

path on R is a 
ontinuous mapping ' : [0; 1[! R, su
h that � Æ ' is the restri
tion to

[0; 1[ of a broken line path  on C . We say that R has a singularity at \the end of '",

if  
annot be lifted ba
k into a path on R starting at �. We say that R has an isolated
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singularity at \the end of '", if there exists an open disk D � C with 
enter  (1), su
h

that for all suÆ
iently small " > 0 and any broken line path � in Dnf (1)g starting at

 (1� "), the path t 7!  (t(1� ")) 
omposed with � 
an be lifted ba
k to R. We say that

R has only isolated singularities , if this is the 
ase for all open-ended broken line paths

on R.

Assume that R has only isolated singularities and let � be a base point for R. Consider

the set P of open-ended line paths ' on R, su
h that �('(1� t)) = a+ t for all t 2℄0; "℄

and some a 2 C and " > 0. Two paths ';  in P are said to be equivalent, if there exists

an " > 0, su
h that '(1 � t) =  (1 � t) for all 0 < t < ". Then the set

^

R = P= � of

paths in P modulo equivalen
e is 
alled the singular extension of R. The non-singular

open-ended line paths ' 
an be extended into broken line paths '̂ and 
orrespond to

the usual points '̂(1) in R (
onversely, ea
h point on R 
an be represented by a broken

line path '; without loss of generality, we may 
hoose ' 2 P , by deforming it in the

neighbourhood of  (1)). The singular open-ended line paths ' 2 P 
orrespond to new,

singular, points in

^

RnR. We have a natural proje
tion �̂ :

^

R ! C , whi
h extends �: if '

is a broken line path in P , su
h that � Æ ' is the restri
tion of  to [0; 1[, then we take

�̂(') =  (1), where ' denotes the equivalen
e 
lass of '.

Let

^

� be a point on

^

R, whi
h is represented by ' : [0; 1[!R. For all " > 0 suÆ
iently

small, we have �('(1 � ")) = �̂(

^

�) + ". For su
h ", we set

^

� + " = '(1� "). Sin
e R has

only isolated singularities, for all suÆ
iently small " > 0 and � 2 R, the path in C , whi
h

starts at �̂(

^

�) + " and whi
h turns 
ounter
lo
kwise around �(

^

�) by an angle �, 
an be

lifted ba
k into a path '

";�

on R, whi
h starts at

^

�+". We de�ne

^

�+"e

i�

= '

";�

(1). Let

n 2 N

�

[ f1g be smallest, su
h that

^

� + "e

i(�+2n�)

=

^

� + "e

i�

for all suÆ
iently small

" > 0 and � 2 R. If n = 1, then we say that

^

� is a removable singularity . If 1 < n <1,

then

^

� is an algebrai
 singularity , if n =1,

^

� is said to be a logarithmi
 singularity .

4.2. Singular transition matri
es

Throughout this se
tion, we denote by f

[0℄

; : : : ; f

[r�1℄

the r linearly independent 
anon-

i
al formal solutions to (3.1) in the neighbourhood of 0. We have shown in the previous

se
tion that we may write

f

[i℄

(z) = [f

[i℄

0

(

p

i

p

z) + � � �+

1

(t

i

� 1)!

f

[i℄

t

i

�1

(

p

i

p

z) log

t

i

�1

z℄z

�

i

e

P

i

(1=

p

i

p

z)

;

(4.1)

for 
ertain p

i

; �

i

; P

i

; t

i

and power series f

[i℄

0

; : : : ; f

[i℄

t

i

�1

2

^

K [[

p

i

p

z℄℄.

4.2.1. Singular transition matri
es in the 
onvergent 
ase

Let R denote the Riemann surfa
e

y

of the solutions to (3.1). We assume that we have

�xed a determination of log(z � !) on R for ea
h ! 2 
. Sin
e the only singularities of

solutions to the equation (3.1) are above the zeros of P

r

(re
all that P

r

is the leading


oeÆ
ient in (1.1), whi
h is obtained from (3.1) by rewriting L as a linear di�erential

operator in

�

�z

), R has only isolated singularities. Therefore, we may extend the Riemann

y

This surfa
e is obtained by 
onsidering the universal 
overing surfa
e U above Cn
. The solutions

to (3.1) are 
learly de�ned on U . We de�ne �

1

; �

2

2 U to be equivalent, if their proje
tions on C 
oin
ide

and if all solutions to (3.1) take the same values in �

1

and �

2

(i.e. the monodromy matrix between �

1

and �

2

is the identity). Now we take R = U= �.
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surfa
e R into

^

R, as des
ribed in the previous se
tion. Now assume that we have a

singular point ! on

^

R above 0 and assume that we are in the 
onvergent 
ase, i.e. L is

quasi-regular in 0. Then the series f

[i℄

j

a
tually 
onverge on a small neighbourhood

B

�

(!) = f! + "e

i�

j0 < " < �; � 2 Rg � R

of !, when
e the expansions (4.1) yield genuine fun
tions on B

�

(!), whi
h 
an be ex-

tended to R by analyti
 
ontinuation.

Now ea
h formal solution f = a

0

f

[0℄

+ � � � + a

r�1

f

[r�1℄

to (3.1) 
an be represented

by a 
olumn ve
tor V with entries a

0

; : : : ; a

r�1

. If W is the 
olumn ve
tor with entries

f(�); : : : ;

1

(r�1)!

f

(r�1)

(�) for � = ! + "e

i�

2 B

�

(!), then W depends linearly on V . We

wish to see this dependen
y as a generalization of (1.2). For this purpose, we en
ode the

proje
tion of the straightline path ! ! � by 0

�

! z. Writing I(!) and I(�) for V resp.

W , the matrix �

!!�

= �

0

�

!z

su
h that

I(�) = �

!!�

I(!);

is 
alled the singular transition matrix along the path ! ! � or 0

�

! z.

4.2.2. Singular transition matri
es versus transition matri
es

Singular transition matri
es generalize usual transition matri
es: if 0 was a
tually a

non-singular point, then the 
anoni
al solutions f

[0℄

; : : : ; f

[r�1℄

are pre
isely the unique

power series solutions whose asymptoti
 expansions are given by f

[i℄

(z) = z

i

+O(z

r

), and

the entries a

0

; : : : ; a

r�1

indeed 
oin
ide with f(�); : : : ;

1

(r�1)!

f

(r�1)

(�). The transitivity

relation for usual transition matri
es generalizes to

�

0

�

!z z

0

= �

z z

0

�

0

�

!z

(4.2)

for 
on
atenations of straightline paths 0

�

! z on

^

R with arbitrary paths z  z

0

on R,

su
h that 0

�

! z  z

0

is homotopi
 to 0

�

! z

0

for some �. A
tually, this relation yields

a way to extend the de�nition of �

0

�

!z

to more general paths 0

�

! z  z

0

on

^

R.

The fun
tions asso
iated to the formal solutions being linearly independent, the ma-

tri
es �

0

�

 z

are ne
essarily invertible. It follows that (4.2) also yields a new way to


ompute transition matri
es between points near the singularity:

�

z 

�

0

�

 z

0

= �

0

�

 z

0

�

inv

0

�

 z

;

where 0

�

 z is the inverse path of z  

�

0 and the path z  

�

0

�

 z

0

is homotopi


to a path whi
h does not pas through the singularity. It turns out that this way of


omputing transition matri
es 
an be more eÆ
ient than the way des
ribed in (van der

Hoeven, 1999), when we are 
lose to a singularity.

4.2.3. Singular transition matri
es in the divergent 
ase

Of 
ourse, it may also happen that one of the f

[i℄

j

diverges: for instan
e, the diver-

gent series

P

k

(�1)

k

k!z

k

is formally holonomi
. Using the pro
ess of resummation and,

more generally, multisummation, it is nevertheless generally possible to asso
iate genuine

fun
tions to the f

[i℄

, whi
h are �rst de�ned on a 
ertain se
tor of L

�

and then 
ontinued

analyti
ally. This means that we 
an again de�ne singular transition matri
es, whi
h

now depend on the multisummation pro
ess used. The a
tual numeri
al approximation

of su
h matri
es up to any pre
ision will be treated in a forth
oming paper.
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4.2.4. Boundary value problems and renormalization

Singular transition matri
es are not only useful for 
omputing limits of solutions

to (1.1) in singularities. A
tually, the knowledge of the singular transition matrix between

two possibly singular points 
an be used to solve more general boundary value problems.

As an example, assume that f is a solution of a se
ond order equation like (1.1) with

the boundary 
onditions f(a) = A and f(b) = B for given A and B, where a and b

are potentially singular and L is quasi-regular in a and b. Then f

0

(a) and f

0

(b) 
an be


omputed dire
tly from the transition matrix between a and b, in general.

The singular transition matri
es 
an also be used to renormalize logarithmi
ally diver-

gent integrals of di�erential equations. For example, assume that all solutions to (3.1)

near the origin are in K [log z℄

r

[[z℄℄. Then the mapping

� : K [log z℄

r

[[z℄℄ �! K ;

X

i<r;j

f

i;j

(log z)

i

z

j

7�! f

0;0

is a ring homomorphism, 
alled the renormalization mapping . Convergent power series

are mapped to their values in 0 by this mapping. But � also asso
iates values to fun
tions

with logarithmi
 singularities in an additively and multipli
atively 
oherent way. The

singular transition matri
es may be used to 
ompute the renormalizations of holonomi


fun
tions near regular singular points.

4.2.5. Monodromy using singular transition matri
es

Another interesting appli
ation of singular transition matri
es is in the 
omputation

of the monodromy of the di�erential equation around the singularity in 0. Indeed, let

" 	 " be the path starting at a small " and turning 
ounter
lo
kwise around 0. Then

�

"	"

= �

"!

0

0

2�

!"

= �

0

0

!"

�

0

0

!

2�

0

�

"!

0

0

:

Here the matrix �

0

0

!

2�

0

is obtained formally as follows. When substituting

log z �! log z + 2�i;

z




�! e

2�i


z




(8
);

in the formal 
anoni
al solutions to Lf = 0 in 0, we obtain a new basis of formal

solutions. In parti
ular, these solutions 
an be written as linear 
ombinations of the


anoni
al solutions; this linear relationship is expressed by the matrix �

0

0

!

2�

0

.

4.2.6. Approximation of singular transition matri
es

Assume that K is an algebrai
 number �eld and that L is quasi-regular. In se
tion 3.3.2,

we have shown how to eÆ
iently evaluate the f

[i℄

j

up to any desired pre
ision, given a

�xed, suÆ
iently small z. Substituting log z and the e

P

i

(1=

p

i

p

z)

by their values in (4.1),

this also yields an eÆ
ient method to evaluate the f

[i℄

(z) up to any desired pre
ision.

We 
laim the method from se
tion 3.3.2 
an also be used to evaluate the derivatives

of the f

[i℄

(z) eÆ
iently and up to any desired pre
ision. In order to see this, we �rst

noti
e that it suÆ
es to be able to evaluate the derivatives of the f

[i℄

j

as is seen by
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di�erentiating (4.1). Now the 
oeÆ
ients F

k

of the series

I(z) = F

0

+ F

1

z + F

2

z

2

+ � � �

from se
tion 3.3.2 are related by matrix relations

F

k

= A

k

F

k�1

;

where the 
oeÆ
ients of A

k

are rational fun
tions in k for all but a �nite number of k.

The same holds for the 
oeÆ
ients (k + 1)F

k+1

of the series

I

0

(z) = F

1

+ 2F

2

z + 3F

3

z

2

+ � � � ;

whi
h are related by

(k + 1)F

k+1

=

k + 1

k

A

k+1

(kF

k

);

as well as for the 
oeÆ
ients of the higher derivatives of I . Hen
e the same method 
an

be used to evaluate these series, whi
h proves our 
laim. It follows

Theorem 4.1. Let K be an algebrai
 number �eld and assume that L is quasi-regular.

a. There exists an algorithm whi
h 
omputes a radius �, su
h that the expansions (4.1)


onverge for jzj 6 �.

b. Let z 2 K and � be given with jzj suÆ
iently small. Then there exists an algorithm

to approximate �

0

�

 z

up till n de
imal digits in time O(M(n log

2

n)). 2

4.3. An appli
ation to the Riemann zeta fun
tion

4.3.1. Generalized polylogarithms and the zeta fun
tion

Let r > 1 be an integer. The polylogarithm

Li

r

(z) =

1

X

k=1

z

k

k

r

is a holonomi
 fun
tion with a singularity in 1. Nevertheless, for r > 1, the limit of Li

r

in 1 exists and

�(r) = Li

r

(1);

where � is the Riemann zeta fun
tion.

More generally, one may 
onsider generalized polylogarithms L

w

, where w is a word

on the alphabet f0; 1g: we de�ne

L

0

r

(z) =

1

r!

log

r

z; (4.3)

L

0w

(z) =

Z

z

0

L

w

(t)

dt

t

; (4.4)

L

1w

(z) =

Z

z

0

L

w

(t)

dt

1� t

; (4.5)

where (4.3) hold for all r 2 N, where (4.4) holds for all words w that 
ontain at least

one 1, and where (4.5) holds for all words w. The existen
e of the integrals is ensured
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by the fa
t that L

w

= O(

p

z), for all words that 
ontain at least one 1. The L

w

indeed

generalize the Li, sin
e Li

r

= L

0

r�1

1

. The limit �(w) � L

w

(1) of L

w

in 1 exists for words

of the form w = 0v1.

4.3.2. Convergen
e of the polylogarithms at z = 0

Consider the two di�erential operators




0

= Æ; 


1

=

1� z

z

Æ:

For ea
h word w = w

1

� � �w

r

of length r, we de�ne the di�erential operator of order r+1

by




w

1

���w

r

= z

jwj

1

Æ


w

r

� � �


w

1

:

Here jwj

1

denotes the number of ones in w. Sin
e Æ(z

�1

Æ) = z

�1

(Æ

2

� Æ), the 
onstant

fa
tor z

jwj

1

in the above de�nition ensures that the operators 


w

all have their 
oeÆ
ients

in Q[z℄. The purpose of this se
tion is to show that 


w

is regular (when
e a fortiori quasi-

regular) for all w.

We must show that the 
onstant 
oeÆ
ient 


w;r+1;0

of 


w;r+1

does not vanish for ea
h

word w of length r. This is 
lear for the empty word. Assume now that the assertion

holds for a given word w. Then




0w

= 


w

Æ;

when
e 


0w;r+2

= 


w;r+1

6= 0, whi
h proves our 
laim for the word 0w. As to the word

1w, we have




1w

= z


w

�

1� z

z

Æ

�

:

Again, we get 


1w;r+2

= 


w;r+1

6= 0, as desired.

4.3.3. Convergen
e of the polylogarithms at z = 1

In order to study the polylogarithms at z = 1, we introdu
e operators

^




w

, whi
h


oin
ide with the 


w

up to a 
onstant fa
tor, by setting

^

Æ = (1� z)d=dz,

^




0

=

z

1� z

^

Æ;

^




1

=

^

Æ

and

^




w

1

���w

r

= (1� z)

jwj

0

^

Æ

^




w

r

� � �

^




w

1

:

In a similar way as above, one proves that

^




w

is regular at z = 1 for ea
h w.

4.3.4. Fast 
omputation of the �(w)

From the previous two se
tions, we 
on
lude that the 


w

are regular in both 0 and 1

for all w. Therefore, the \doubly singular" transition matri
es �

w;0

0

!

1

2

!

��

1

asso
iated

to the equations 


w

f = 0 
an be approximated eÆ
iently by theorem 4.1. In parti
ular,

we infer:
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Theorem 4.2. For ea
h word w 2 f0; 1g

�

there exists an algorithm to approximate �(w)

up till n de
imal digits in time O(M(n log

2

n)). 2

Remark 4.1. In the parti
ular 
ase of polylogarithms, it is possible to get a more ex-

pli
it formula for the �(w), by using Chen series (Chen, 1971; Minh and Petitot, 1998;

Minh et al., 1998) and exploiting the symmetry of the problem with respe
t to the trans-

formation z $ 1� z. We will just state the result. Denote L(z) =

P

w

L

w

(z)w,

^

L(z) =

X

w

1

���w

r

L

(1�w

r

)���(1�w

1

)

w

and Z =

P

w

�

w

w. Then

Z =

^

L(

1

2

)L(

1

2

):

The advantage of this formula is that it improves the dependen
e of the 
onstant fa
tor

of the approximation algorithm on w.

5. Pra
ti
al 
omputations with holonomi
 fun
tions

In (van der Hoeven, 1999) and this paper, we have shown how to evaluate holonomi


fun
tions eÆ
iently, even near and in singularities, in the 
ase of quasi-regular operators.

However, from the 
omputer algebra point of view, several questions were not answered:

how to test whether a holonomi
 
onstant is zero and, more generally, how to 
ompute

a 
oating point approximation of a holonomi
 
onstant in an eÆ
ient way? Indeed, the

se
ond problem is more general, sin
e the 
omputation of the exponent of a 
oating point

approximation of a 
onstant in
ludes a zero test.

In their full generality, these problems are extremely hard. Nevertheless, in se
tion 5.1,

we propose a heuristi
 whi
h enables us to give solutions to these problems, whi
h we

expe
t to be satisfa
tory in pra
ti
e. In se
tion 5.2, we go more deeply into the problem of


omputing 
oating point approximations of holonomi
 
onstants, by studying polynomial

expressions involving holonomi
 fun
tions near singularities. We will state a uniform


omplexity result, whi
h is again based on our heuristi
.

5.1. The holonomi
 
onstants problem

5.1.1. Exp-log 
onstants

A
tually, the problem of giving an e�e
tive zero test for holonomi
 
onstants is already

very hard in the 
ase of so 
alled exp-log 
onstants , whi
h are 
onstru
ted from the

rationals using the �eld operations, exponentiation and the logarithm. The best a
tual

result is an e�e
tive zero test for exp-log 
onstants under the hypothesis that a diÆ
ult

number theoreti
al 
onje
ture (namely S
hanuel's 
onje
ture) holds (Ri
hardson, 1997).

Nevertheless, no information at all is provided about the eÆ
ien
y of su
h a zero test.

Nevertheless, from a pra
ti
al point of view, it is often a good idea to evaluate the

exp-log 
onstant 
 we want to test for zero up till a 
ertain number of digits, whi
h

depends on the size of the exp-log 
onstant, and 
he
k whether the result vanishes. The

only known straightforward 
ounterexamples in whi
h this strategy fails are 
onstru
ted

by exploiting large 
an
ellations like

e

10

�10

10

� 1 � 0:
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Nevertheless, this problem 
an be avoided by restri
ting the argument x of any subex-

pression of the form expx of 
 to be bounded by 1=N 6 jxj 6 N for some given 
onstant

N . Denoting by E

N

the set of su
h exp-log expressions, we 
onje
tured in our PhD

(van der Hoeven, 1997) that an exp-log 
onstant 
 2 E

N

is either zero, or 
an be proven

to be non zero by evaluating e

O(size(
))

digits, where size(
) denotes the size of 
 as an

expression

y

. Whether this 
onje
ture holds or not, it does provide a reliable heuristi


zero-test for exp-log 
onstants and the heuristi
 remains even reliable when we repla
e

the exponential bound on the number of digits by a smaller one.

5.1.2. Holonomi
 
onstants

We will now propose a generalization of the above to the 
ase of holonomi
 
onstants.

Let K denote the �eld of algebrai
 numbers and let F be the 
lass of holonomi
 fun
tions

f over K , with initial 
onditions in K at a non-singular point z in K . We 
onsider f as

being de�ned on an open disk with 
enter z. We en
ode fun
tions f 2 F by the equations

they satisfy and their initial 
onditions; 
hoosing dense representations, f again has a

natural size size(f). Now 
onsider the 
lass H of 
onstant expressions formed from K

by using the �eld operations, and applying holonomi
 fun
tions in F.

In order to state our heuristi
, we asso
iate to ea
h 
onstant in H its size as an ex-

pression in a non 
onventional way. The size of an integer is the number of its binary

digits and the size of

p

�1 is 1. If 
; 


0

2 H and � is a �eld operation, then we take

size(
 � 


0

) = size(
) + size(


0

) + 1. Given a holonomi
 fun
tion f 2 F with its initial


onditions in z and a 
onstant 
 2 H, we �nally de�ne

size(f(
)) = size(f) + size(
) + max

 

0;

&

log sup

ju�zj6j
�zj

jf(u)j

'!

:

Noti
e that all 
onstants in K indeed have a size, sin
e the algebrai
 fun
tions over Q

are holonomi
.

An easy stru
tural indu
tion on general expressions 
 2 H shows that

j
j 6 e

size(
)

;

for all 
 2 H. Our heuristi
 states that we also have some similar lower bound for j
j, if


 6= 0:

H. For ea
h 
 2 H, we have either 
 = 0 or e

�H(size(
))

6 j
j 6 e

size(
)

.

The 
hoi
e of the fun
tion H , whi
h is assumed to be positive and non de
reasing, is left

open for the moment. We 
onje
ture that the heuristi
 holds for suÆ
iently large H , su
h

as H(n) = e

n

and probably even H(n) = n

2

. In pra
ti
e, it will be most 
onvenient to

takeH(n) = C orH(n) = Cn, although the heuristi
 is false as a mathemati
al statement

for H(n) = O(n). Nevertheless, H(n) = n will rarely fail on pra
ti
al examples. From a


omplexity point of view it is also interesting to study the 
ase H(n) = n log

C

n.

y

One has to be 
areful at this point, sin
e the size fun
tion is de�ned for expressions and not for

numbers. For instan
e, 1 + 1 is equal to 2 as a number, but not as an expression.
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5.1.3. Properties of the size fun
tion

It is interesting to study some of the properties of the way we asso
iate sizes to holo-

nomi
 
onstants. We �rst noti
e that for x 2 H \ R, we have

size(e

x

) = size(exp) + size(x) + djxje:

In order to obtain the size for arbitrary z 2 H, we may rewrite the imaginary part

=z = 2�n+ r with n 2 Z and jrj 6 �. Then size(n) = O(log(j=zj+ 1)) and size(r) =

O(size(z)), sin
e log(j=zj+ 1) = O(size(z)). Writing e

z

= e

<z+r

p

�1

, we infer

size(e

z

) 6 j<zj+O(size(z)): (5.1)

This formula establishes the link with se
tion 5.1.1: for real x, the smallest exp-log

expression in E

N

whi
h represents e

x

also has size O(jxj). As to logarithms, any z 2 H

�


an be rewritten as a produ
t z = 2

n

e

m�

p

�1=16

z

0

for integers n and 0 6 m < 32, where

size(n) = O(j log jzjj) = O(size(z)) and jz

0

�1j 6

1

2

with size(z

0

) = O(size(z)). Using

log z = n log 2 +m�

p

�1=16 + log z

0

, it follows that

size(log z) = O(size(z)): (5.2)

We plan to 
ome ba
k on more properties of the size fun
tion in a forth
oming paper.

5.2. Floating point approximations

5.2.1. Introdu
tion

Consider a holonomi
 fun
tion f(z) in the neighbourhood of one of its singularities,

say 0. Sin
e the behaviour of f may be
ome exponential, it is not a good idea to approx-

imate f(z) by numbers in Q[i℄ for small values of z. For instan
e, if f(z) = e

1=z

, then

the mere representation of e

1=10

�n

up to pre
ision < 1 already ne
essitates a spa
e of the

order 10

n

, while the number z = 10

�n

has size O(n).

In order to store good approximations to numbers like e

1=10

�n

in O(n) spa
e we are

therefore lead to the 
onsideration of 
oating point representations. For us, a real 
oating

point number will 
onsist of a mantissa between 1 and 10 in Q (whose size depends on

the required pre
ision) and an exponent, whi
h is an integer. The size of su
h a number is

the sum of the sizes of the mantissa and the exponent. Also, the number 0 is represented

by a spe
ial symbol of size one. Complex 
oating point numbers are represented via their

real and imaginary parts.

By \
omputing a 
oating point approximation of pre
ision n" of a real number x 6=

0, we shall mean the 
omputation of a 
oating point number y = M10

E

, su
h that

jx� yj 6 10

E�n

. Although 
oating point representation allow us to work eÆ
iently with

mu
h larger numbers, a problem with the 
omputation of 
oating point approximation

is zero testing, be
ause of its spe
ial representation. More generally, in order to 
ompute

a 
oating point approximation eÆ
iently , one needs an eÆ
ient algorithm to �nd the

approximate exponent; this may be very hard when subtra
ting two almost identi
al

quantities, whi
h leads to massive 
an
ellations. In the 
ase of holonomi
 
onstants, we

will use the heuristi
 H from the previous se
tion to treat this problem.

In the remainder of this se
tion, we will be interested in the following problem: given

a polynomial expression ' in holonomi
 fun
tions f

1

; : : : ; f

n

admitting a quasi-regular
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singularity at 0, how to evaluate P eÆ
iently near 0? Now after a 
hange of variable

z 7! z

p

, ea
h of the f

i


an be written

f

i

(z) = (f

i;0

+ � � �+ f

i;t

i

�1

log

t

i

�1

)z

�

i

e

P

i

(z

�1

)

;

where the f

i;j

are 
onvergent series in z, the �

i

in

^

K and the P

i

polynomials in z

�1

.

Substitution of these expressions in ' and expansion then shows that we may assume

without loss of generality that ' is a linear 
ombination of the f

i

.

Now the fun
tions f

i;j

and z

�

i

have only a polynomial growth near 0, when
e they 
an

be approximated in a 
lassi
al way. Our problem therefore redu
es to the question how

to eÆ
iently 
ompute a 
oating point approximation of a linear 
ombination of large

exponentials with small 
oeÆ
ients. We will now give su
h an algorithm, based in our

heuristi
 H.

5.2.2. A fast heuristi
 approximation algorithm

In this se
tion, we show how to evaluate sums of the form

u = 


0

e

z

0

+ � � �+ 


r�1

e

z

r�1

(5.3)

in an eÆ
ient way, where the 


i

and the z

i

are small (but not \too small") holonomi



onstants. The idea of the algorithm is as follows. We �rst reorder the terms in (5.3),

su
h that

<z

0

> <z

1

> � � � > <z

r�1

:

Usually, <z

0

> <z

1

and e

z

0

is \huge w.r.t." e

z

1

. If 


0

6= 0, the heuristi
 H implies that 


0

is \reasonably large", while the numbers 


1

; : : : ; 


r

are \reasonably small". Consequently,

u is \almost equal" to 


0

e

z

0

, of whi
h a 
oating point approximation is easily obtained. If




0

= 0, the term 


0

e

z

0

vanishes and we re
ursively evaluate the sum 


1

e

z

1

+� � �+


r�1

e

z

r�1

.

In general,<z

0

and <z

1

may be \almost equal", and the rôle of 


0

is repla
ed by 
onstants

of the form




0

+ � � �+ 


i�1

e

z

i�1

�z

0

;

in this 
ase <z

0

; : : : ;<z

i�1

are \almost equal", while <z

i

is \quite smaller" than <z

0

.

The notions of \almost equal" and \quite smaller" in the above dis
ussion depend on

the sizes of the 


i

and the z

i

, as well as the heuristi
 H. In order to make them more

pre
ise, we need some more notations. Let E > 0 be a 
onstant su
h that for all z,

size(e

z

) 6 j<zj+Esize(z);

the existen
e of E follows from (5.1). We re
ursively de�ne fun
tions H

0

; H

1

; : : : by

H

0

= 0 and

H

i

(N) = H(H

i�1

(N) + � � �+H

0

(N) + (N + 2)(i+E)) +N + log(2r):

For some parti
ular 
hoi
es of H we have the following asymptoti
 bounds:

� H

r

(N) = O(N), if H(N) = O(N).

� H

r

(N) = O(N log

�r

N), if H(N) = O(N log

�

N).

� H

r

(N) = O(N

�r

), if H(N) = O(N

�

).

� H

r

(N) = exp

r times

� � � expO(N), if H(N) = O(expN).
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Now 
onsider the following algorithm to evaluate sums of the form (5.3).

Algorithm F. The algorithm 
omputes a 
oating point approximation up till n de
imal

digits of

u = 


0

e

z

0

+ � � �+ 


r�1

e

z

r�1

;

where the 


i

and z

i

are 
onstants in C , whose sizes are bounded by N .

F0. [Trivial 
ase℄ If r = 0, then return 0.

F1. [Reorder℄ Reorder indi
es su
h that <z

0

> � � � > <z

r�1

.

F2. [Determine gap℄ Let i be the minimal index su
h that

<(z

0

� z

i

) > H

i

(N):

Take i = r if su
h an index does not exist.

F3. [Zero test℄ Test whether the 
onstant

� = 


0

+ � � �+ 


i�1

e

z

i�1

�z

0

vanishes. If so, apply the algorithm re
ursively on the sum




i

e

z

i

+ � � �+ 


r�1

e

z

r�1

;

otherwise, pro
eed with the next step.

F4. [Return approximation℄ Compute an approximation of

�

0

= 


0

+ 


1

e

z

1

�z

0

+ � � �+ 


r�1

e

z

r�1

�z

0

in Q[i℄ with error < e

�H

i

(N)

10

�n�2

and 
onvert it to 
oating point format; this

yields a 
oating point approximation of �

0

up till n+1 de
imal digits. Also 
ompute

a 
oating point approximation of e

z

0

up till n+1 de
imal digits. Return the produ
t

with the previous one.

5.2.3. Corre
tness proof and 
omplexity analysis

Theorem 5.1. Assume the heuristi
 H. Then the algorithm F is 
orre
t and its exe
u-

tion time is bounded by O(M((n +H

r

(N)) log

2

(n+H

r

(N)))).

Proof. The algorithm 
learly terminates. It suÆ
es to prove the 
orre
tness in the 
ase

when 


0

+ � � �+ 


i�1

e

z

i�1

�z

0

does not vanish. By the minimality of the index i, we have

<(z

0

� z

j

) 6 H

i

(N); for all 0 < j < i:

In parti
ular, it follows that the size of 


0

+ � � � + 


i�1

e

z

i�1

�z

0

, when 
onsidered as a


onstant in H is bounded by

size(�) 6 H

i�1

(N) + � � �+H

0

(N) + (N + 2)(i+E):

Therefore, H implies

j�j > e

< z

0

�H(H

i�1

(N)+���+H

0

(N)+(N+2)(i+E))

: (5.4)

On the other hand, we have

j


i

e

z

i

+ � � �+ 


r�1

e

z

r�1

j 6 re

< z

i

+N

:
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Sin
e <(z

0

� z

i

) > H

i

(N), it follows by our de�nition of H

i

(N) that

j


i

e

z

i

+ � � �+ 


r�1

e

z

r�1

j 6

1

2

j


0

e

z

0

+ � � �+ 


i�1

e

z

i�1

j:

In parti
ular, we get upper and lower bounds for u

1

2

j�je

<z

0

6 juj 6

3

2

j�je

<z

0

and similarly for �

0

1

2

j�j 6 j�

0

j 6

3

2

j�j:

Be
ause of the lower bound (5.4) for j�j, it follows that an evaluation of �

0

up to pre
ision

< e

�H

i

(N)

10

�n�2

yields n+ 1 de
imal digits of its 
oating point representation. Finally

the multipli
ation of two 
oating point numbers with pre
isions of n+ 1 de
imal digits

indeed yields a 
oating point number with a pre
ision of n de
imal digits.

As to the time 
omplexity bound: the zero test of 


0

+ � � �+ 


i�1

e

z

i�1

�z

0

takes a time

O(M(H

i

(N) log

2

H

i

(n))), while the evaluation of �

0

up to pre
ision < e

�H

i

(N)

10

�n�2

takes a time O(M((n +H

i

(N)) log

2

(n+H

i

(N)))). This 
ompletes the proof. 2

Returning to our problem of the approximation of ', we observe that N = O(n) for

small z. Therefore theorem 5.1 yields

Theorem 5.2. Assume that K is an algebrai
 number �eld, assume the heuristi
 H and

assume that ' is a polynomial expression of holonomi
 fun
tions f

1

; : : : ; f

n

over K with

quasi-regular singularities in 0. Then there exists a 
omputable 
onstant � > 0, su
h that

for all z = "e

i�

above K with " < �, the value of '(z) 
an be 
omputed up till n de
imal

digits in time O(M(H

r

(s) log

2

H

r

(s))), where s = n + size(z). This bound is uniform

in z. 2
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