
On the complexity of polynomial reduction
∗

Joris van der Hoeven

LIX, CNRS
École polytechnique

91128 Palaiseau Cedex
France

Email: vdhoeven@lix.polytechnique.fr
Web: http://lix.polytechnique.fr/~vdhoeven

January 11, 2012

In this paper, we present a new algorithm for reducing a multivariate polynomial with
respect to an autoreduced tuple of other polynomials. In a suitable sparse complexity
model, it is shown that the execution time is essentially the same (up to a logarithmic
factor) as the time needed to verify that the result is correct. This is a first step
towards making advantage of fast sparse polynomial arithmetic for the computation
of Gröbner bases.

Keywords: sparse reduction, complexity, division, Groebner basis, algorithm

A.M.S. subject classification: 68W30, 13P10, 12Y05, 68W40

1. Introduction

Let K[x] = K[x1, 	 , xn] be a polynomial ring over an effective field K with an effective
zero test. Given a polynomial P =

∑

i∈Nn Pi x
i =

∑

i1,	 ,in∈N Pi1,	 ,in x1
i1
 xn

in, we call
suppP = {i∈Nn:Pi� 0} the support of P .

The naive multiplication of two sparse polynomials P , Q ∈ K[x] requires a priori
O(|supp P | |supp Q|) operations in K. This upper bound is sharp if P and Q are very
sparse, but pessimistic if P and Q are dense.

Assuming that K has characteristic zero, a better algorithm was proposed in [4] (see
also [1, 8] for some background). The complexity of this algorithm is expressed in the
size s= |suppPQ| of the output . It is shown that P and Q can be multiplied using only
O(M(s) logs) operations inK, whereM(s)=O(s logs log logs) stands for the complexity of
multiplying two univariate polynomials inK[z] of degrees<s. Unfortunately, the algorithm
in [4] has two drawbacks:

1. The algorithm leads to a big growth for the sizes of the coefficients, thereby com-
promising its bit complexity (which is often worse than the bit complexity of naive
multiplication).

2. It requires supp P Q to be known beforehand. More precisely, whenever a bound
suppPQ⊆S is known, then we really have a multiplication algorithm of complexity
O(M(|S |) log |S |).

In practice, the second drawback is of less importance. Indeed, especially when the coeffi-
cients in K can become large, then the computation of suppP + supp Q is often cheap with
respect to the multiplication PQ itself, even if we compute suppP + suppQ in a naive way.

∗. This work has been supported by the ANR-09-JCJC-0098-01 MaGiX project, the Digiteo 2009-36HD grant

and Région Ile-de-France.

1

http://www.ams.org/mathscinet/search/mscbrowse.html?sk=default&sk=68W30&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=default&sk=13P10&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=default&sk=12Y05&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=default&sk=68W40&submit=Search

Recently, several algorithms were proposed for removing the drawbacks of [4]. First
of all, in [18] we proposed a practical algorithm with essentially the same advantages as
the original algorithm from [4], but with a good bit complexity and a variant which also
works in positive characterisic. However, it still requires a bound for suppPQ and it only
works for special kinds of fields K (which nevertheless cover the most important cases such
as K = Q and finite fields). Even faster algorithms were proposed in [15, 20], but these
algorithms only work for special supports. Yet another algorithm was proposed in [13, 19].
This algorithm has none of the drawbacks of [4], but its complexity is suboptimal (although
better than the complexity of naive multiplication).

At any rate, these recent developments make it possible to rely on fast sparse poly-
nomial multiplication as a building block, both in theory and in practice. This makes it
natural to study other operations on multivariate polynomials with this building block at
our disposal. One of the most important such operations is division.

The multivariate analogue of polynomial division is the reduction of a polynomial
A∈K[x] with respect to an autoreduced tuple B=(B1,	 ,Bb)∈K[x]b of other polynomials.
This leads to a relation

A = Q1B1+
 +QbBb+R, (1)

such that none of the terms occurring in R can be further reduced with respect to B. In
this paper, we are interested in the computation of R as well as Q1, 	 , Qb. We will call
this the problem of extended reduction, in analogy with the notion of an “extended g.c.d.”.

Now in the univariate context, “relaxed power series” provide a convenient technique for
the resolution of implicit equations [12, 13, 14, 16]. One major advantage of this technique
is that it tends to respect most sparsity patterns which are present in the input data and
in the equations. The main technical tool in this paper (see section 3) is to generalize this
technique to the setting of multivariate polynomials, whose terms are ordered according to
a specific admissible ordering on the monomials. This will make it possible to rewrite (1)
as a so called recursive equation (see section 4.2), which can be solved in a relaxed manner.
Roughly speaking, the cost of the extended reduction then reduces to the cost of the relaxed
multiplications Q1B1,	 , QbBb. Up to a logarithmic overhead, we will show (theorem 6)
that this cost is the same as the cost of checking the relation (1).

Our main theorem 6 immediately raises a new question: is it possible to use the new
reduction algorithm for speeding up Gröbner basis computations? Indeed, starting with
Faugère’s F4 algorithm [6], the most efficient implementations for the computation of
Gröbner bases currently rely on linear algebra. This is not surprising, since classical imple-
mentations of Buchberger’s algorithm [2, 3] do not make use of efficient arithmetic on
multivariate polynomials anyway. Hence, rewriting these classical algorithms in terms
of linear algebra should be at least as efficient, while removing a lot of overhead and
potentially taking advantage of fast linear algebra libraries.

Now fast arithmetic for multivariate polynomials potentially changes this picture. In
section 5 we will describe a variant of Buchberger’s algorithm in the particular case of
homogeneous ideals. In this algorithm, we have made all polynomial reductions explicit,
thereby making it clear where we may hope for potential gains, although we have not
performed any detailed complexity analysis yet. It would also be interesting to study
the affine case in detail. One particular interesting question is whether the half g.c.d.
algorithm [10] can also be extended using the techniques from section 3. Unfortunately,
we fear that the sizes of the required transformation matrices (which are 2× 2 matrices in
the half g.c.d.) might become too large for this approach to be efficient.

2 On the complexity of polynomial reduction

In order to simplify the exposition, we will adopt a simplified sparse complexity model
throughout this paper. In particular, our complexity analysis will not take into account
the computation of support bounds for products or results of the extended reduction. Bit
complexity issues will also be left aside in this paper.

2. Notations

Let K be an effective field with an effective zero test and let x1,	 , xn be indeterminates.
We will denote

K[x] = K[x1,	 , xn]

Pi = Pi1,	 ,in

xi = x1
i1
 xn

in

i4 j ⇔ i16 j1∧
 ∧ in6 jn,

for any i, j ∈Nn and P ∈K[x]. In particular, i4 j⇔ xi O xj. For any subset E ⊆Nn we
will denote by Fin(E) = {j ∈Nn: ∃i ∈E, i4 j} the final segment generated by E for the
partial ordering 4.

Let 6 be a total ordering on Nn which is compatible with addition. Two partic-
ular such orderings are the lexicographical ordering 6lex and the reverse lexicographical
ordering 6rlex:

i <lex j ⇔ ∃k, i1= j1∧
 ∧ ik−1= jk−1∧ ik< jk

i <rlex j ⇔ ∃k, ik< jk∧ ik+1= jk+1∧
 ∧ in= jn.

In general, it can be shown [11] that there exist real vectors λ1, 	 , λn ∈Rm with m6 n,
such that

i6 j ⇔ (λ1 · i,	 , λm · i)6lex (λ1 · j ,	 , λm · j). (2)

In what follows, we will assume that λ1,	 , λn ∈Nn and gcd ((λi)1,	 , (λi)n) = 1 for all i.
We will also denote

λ · i = (λ1 · i,	 , λn · i).

For instance, the graded reverse lexicographical ordering 6grlex is obtained by taking λ1=
(1,	 , 1), λ2=(0,	 , 1), λ2=(0,	 , 0, 1, 0), 	 , λn=(0, 1, 0,	 , 0).

Given P ∈K[x], we define its support by

suppP = {i∈Nn:Pi� 0}.

If P � 0, then we also define its leading exponent lP and coefficient cP by

lP = max6 suppP

cP = PlP .

Given a finite set E, we will denote its cardinality by |E |.

Joris van der Hoeven 3

3. Relaxed multiplication

3.1. Relaxed power series

Let us briefly recall the technique of relaxed power series computations, which is
explained in more detail in [13]. In this computational model, a univariate power series
f ∈K[[z]] is regarded as a stream of coefficients f0, f1,	 . When performing an operation
g=Φ(f1,	 , fk) on power series it is required that the coefficient gn of the result is output
as soon as sufficiently many coefficients of the inputs are known, so that the computation
of gn does not depend on the further coefficients. For instance, in the case of a mul-
tiplication h= f g, we require that hn is output as soon as f0,	 , fn and g0,	 , gn are known.
In particular, we may use the naive formula hn=

∑

i=0
n

fi gn−i for the computation of hn.
The additional constraint on the time when coefficients should be output admits the

important advantage that the inputs may depend on the output, provided that we add
a small delay. For instance, the exponential g = exp f of a power series f ∈ z K[[z]] may
be computed in a relaxed way using the formula

g =

∫

f ′ g.

Indeed, when using the naive formula for products, the coefficient gn is given by

gn =
1

n
(f1 gn−1+2 f2 gn−2+
 +n fn g0),

and the right-hand side only depends on the previously computed coefficients g0,	 , gn−1.
More generally, equations of the form g=Φ(g) which have this property are called recursive
equations and we refer to [17] for a mechanism to transform fairly general implicit equations
into recursive equations.

The main drawback of the relaxed approach is that we cannot directly use fast algo-
rithms on polynomials for computations with power series. For instance, assuming that K
has sufficiently many 2p-th roots of unity and that field operations in K can be done in
time O(1), two polynomials of degrees < n can be multiplied in time M(n) =O(n log n),
using FFT multiplication [5]. Given the truncations f;n = f0 +
 + fn−1 zn−1 and
g;n= g0+
 + gn−1 z

n−1 at order n of power series f , g∈K[[z]], we may thus compute the
truncated product (f g);n in time M(n) as well. This is much faster than the naive O(n2)
relaxed multiplication algorithm for the computation of (f g);n. However, the formula for
(f g)0 when using FFT multiplication depends on all input coefficients f0, 	 , fn−1 and
g0, 	 , gn−1, so the fast algorithm is not relaxed (we will say that FFT multiplication is
a zealous algorithm). Fortunately, efficient relaxed multiplication algorithms do exist:

Theorem 1. [12, 13] Let M(n) be the time complexity for the multiplication of polynomials
of degrees < n in K[z]. Then there exists a relaxed multiplication algorithm for series
in K[[z]] at order n of time complexity R(n)=O(M(n) logn).

Remark 2. In fact, the algorithm from theorem 1 generalizes to the case when the
multiplication on K is replaced by an arbitrary bilinear “multiplication” M1 ×M2 →M3,
where M1, M2 and M3 are effective modules over an effective ring A. If M(n) denotes
the time complexity for multiplying two polynomials P ∈M1[z] and Q∈M2[z] of degrees
<n, then we again obtain a relaxed multiplication for series f ∈M1[[z]] and g ∈M2[[z]] at
order n of time complexity O(M(n) logn).

Theorem 3. [16] If K admits a primitive 2p-th root of unity for all p, then there exists

a relaxed multiplication algorithm of time complexity R(n) =O(n log n e2 log2log logn
√

). In
practice, the existence of a 2p+1-th root of unity with 2p>n suffices for multiplication up
to order n.

4 On the complexity of polynomial reduction

3.2. Relaxed Laurent series and polynomials in several variables

Let A be an effective ring. A power series f ∈A[[z]] is said to be computable if there is an
algorithm which takes n∈N on input and produces the coefficient fn on output. We will
denote by A[[z]]com the set of such series. Then A[[z]]com is an effective ring for relaxed
addition, subtraction and multiplication.

A computable Laurent series is a formal product f zk with f ∈ A[[z]]com and k ∈ Z.
The set A((z))com of such series forms an effective ring for the addition, subtraction and
multiplication defined by

f zk+ g zl =
(

f zk−min(k,l)+ g zl−min(k,l)
)

zmin(k,l)

f zk− g zl =
(

f zk−min(k,l)− g zl−min(k,l)
)

zmin(k,l)

(f zk) (g zl) = (f g) zk+l.

If A is an effective field with an effective zero test, then we may also define an effective
division on A((z))com, but this operation will not be needed in what follows.

Assume now that z is replaced by a finite number of variables z=(z1,	 , zn). Then an
element of

A((z))com 6 A((zn))com
 ((z1))com

will also be called a “computable lexicographical Laurent series”. Any non zero f ∈A((z))
has a natural valuation vf = (v1, 	 , vn) ∈ Zn, by setting v1 = valz1 f , v2 = valz2 ([z1

v1] f),
etc. The concept of recursive equations naturally generalizes to the multivariate context.
For instance, for an infinitesimal Laurent series ε ∈ A((z))com (that is, ε = f zk, where
vf >

lex−k), the formula

g = 1+ ε g

allows us to compute g= (1− ε)−1 using a single relaxed multiplication in A((z))com.
Now take A=K[x] and consider a polynomial P ∈ A. Then we define the Laurent

polynomial P̂ ∈K[x z−λ]⊆A((z))com by

P̂ =
∑

i∈Nn

Pix
i z−λ·i.

Conversely, given f ∈K[x z−λ], we define f̌ ∈K[x] by substituting z1=
 = zn= 1 in f .
These transformations provide us with a relaxed mechanism to compute with multivariate
polynomials in K[x], such that the admissible ordering 6 on Nn is respected. For instance,
we may compute the relaxed product of two polynomials P , Q ∈K[x] by computing the
relaxed product P̂ Q̂ and substituting z1=
 = zn=1 in the result.

3.3. Complexity analysis

Assume now that we are given P ,Q∈K[x] and a set R⊆Nn such that supp (PQ)⊆R. We
assume that SM(s) is a function such that the (zealous) product PQ can be computed in
time SM(|R|). We will also assume that SM(s)/s is an increasing function of s. In [4, 9],
it is shown that we may take SM(s)=O(M(s) log s).

Let us now study the complexity of sparse relaxed multiplication of P and Q. We
will use the classical algorithm for fast univariate relaxed multiplication from [12, 13], of
time complexity R(s)=O(M(s) log s). We will also consider semi-relaxed multiplication as

in [14], where one of the arguments P̂ or Q̂ is completely known in advance and only the
other one is computed in a relaxed manner.

Joris van der Hoeven 5

Given X ⊆Nn and i∈{1,	 , n}, we will denote

δi(X) = max {λi · k: k ∈X}+1

δ(X) = δ1(X)
 δn(X).

We now have the following:

Theorem 4. With the above notations, the relaxed product of P and Q can be computed
in time O(SM(|R|) log δ(R)).

Proof. In order to simplify our exposition, we will rather prove the theorem for a semi-
relaxed product of P̂ (relaxed) and Q̂ (known in advance). Our proof will be easy to adapt
to the case of a full relaxed multiplication. We will prove by induction over n that the
relaxed product can be computed using at most 3 SM(|R|) log δ(R) operations in K if R
is sufficiently large. For n=0, we have nothing to do, so assume that n> 0.

Let us first consider the semi-relaxed product of P̂ and Q̂ with respect to z1. Setting
l = ⌈log2 δ1(R)⌉, the computation of this product corresponds (see the right-hand side
of figure 1) to the computation of 62 zealous 2l−1 × 2l−1 products (i.e. 2 products of
polynomials of degrees <2l−1 in z1), 64 zealous 2l−2× 2l−2 products, and so on until 62l

zealous 1× 1 products. We finally need to perform 2l semi-relaxed 1× 1 products of series
in z2,	 , zn only.

More precisely, assume that P̂ and Q̂ have valuations p resp. q in z1 and let P̂i stand
for the coefficient of z1

i in P . We also define

R̂ = {(a1,	 , an, b1,	 , bn)∈Nn×Zn: (a1,	 , an)∈R∧ (∀i, bi=−λi · a)}.

Now consider a block size 2k. For each i, we define

P̂[i] = P̂p+2ki z1
p+2ki+
 + P̂p+2k(i+1)−1 z1

p+2k(i+1)−1

Q̂[i] = Q̂q+2ki z1
q+2ki+
 + Q̂q+2k(i+1)−1 z1

q+2k(i+1)−1

R̂[i] =
{

(a1,	 , an, b1,	 , bn)∈ R̂: 2k i6 a1− p− q6 2k (i+1)− 1
}

,

and notice that the R̂[i] are pairwise disjoint. In the semi-relaxed multiplication, we have

to compute the zealous 2k× 2k products P̂[i] Q̂[1] for all i6 ⌊(δ1(R)+ 1)/2k⌋. Since

supp P̂[i] Q̂[1] ⊆ R̂[i+1]∐R̂[i+2],

we may compute all these products in time

SM
(
∣

∣R̂[1]∐R̂[2]

∣

∣

)

+
 +SM
(
∣

∣R̂[2l−k]∐R̂[2l−k+1]

∣

∣

)

=
(
∣

∣R̂[1]∐R̂[2]

∣

∣

) SM
(
∣

∣R̂[1]∐R̂[2]

∣

∣

)

∣

∣R̂[1]∐R̂[2]

∣

∣

+
 +
(
∣

∣R̂[2l−k]∐R̂[2l−k+1]

∣

∣

) SM

(
∣

∣

∣R̂
[2l−k]

∐R̂
[2l−k+1]

∣

∣

∣

)

∣

∣

∣R̂
[2l−k]

∐R̂
[2l−k+1]

∣

∣

∣

6
(∣

∣R̂[1]∐R̂[2]

∣

∣+
 +
∣

∣R̂[2l−k]∐R̂[2l−k+1]

∣

∣

) SM
(
∣

∣R̂
∣

∣

)

∣

∣R̂
∣

∣

= 2 SM
(
∣

∣R̂
∣

∣

)

= 2 SM(|R|).

The total time spent in performing all zealous 2k× 2k block multiplications with 2k< 2l is
therefore bounded by 2 SM(|R|) log δ1(R).

Let us next consider the remaining 1 × 1 semi-relaxed products. If n = 1, then these
are really scalar products, whence the remaining work can clearly be performed in time
SM(|R|) log δ1(R) if R is sufficiently large. If n> 1, then for each i, we have

supp P̂[i] Q̂[0] ⊆ R̂[i].

6 On the complexity of polynomial reduction

By the induction hypothesis, we may therefore perform this semi-relaxed product in time
3 SM

(∣

∣R̂[i]

∣

∣

)

(log δ(R) − log δ1(R)). A similar argument as above now yields the bound
3 SM(|R|) (log δ(R)− log δ1(R)) for performing all 1× 1 semi-relaxed block products. The
total execution time (which also takes into account the final additions) is therefore bounded
by 3 SM(|R|) log δ(R). This completes the induction. �

Q̂q+2

�
Q̂q+1

Q̂q
P̂p+2P̂p+1P̂p P̂p P̂p+1 P̂p+2
Q̂q

Q̂q+1

Q̂q+2

�
Figure 1. Illustration of a fast relaxed product and a fast semi-relaxed product.

4. Polynomial reduction

4.1. Naive extended reduction

Consider a tuple B= (B1,	 , Bb)∈K[x]b. We say that B is autoreduced if Bi� 0 for all i
and lBi

� lBj
and lBj

� lBi
for all i� j. Given such a tuple B and an arbitrary polynomial

A∈K[x], we say that A is reduced with respect to B if lBi
� k for all i and k∈ suppA. An

extended reduction of A with respect to B is a tuple (Q1,	 , Qb, R) with

A = Q1B1+
 +QbBb+R, (3)

such that R is reduced with respect to B. The naive algorithm extended-reduce below
computes an extended reduction of A.

Algorithm extended-reduce

Input: A∈K[x] and an autoreduced tuple B ∈K[x]b

Output: an extended reduction of A with respect to B

Start with Q6 (0,	 , 0) and R6 A

While R is not reduced with respect to B do
Let i be minimal and such that lBi

4 k for some k ∈ suppR
Let k ∈ suppR be maximal with lBi

4 k

Set Qi6 Qi+ (Rk/cBi
)xk−lBi and R6 R− (Rk/cBi

)xk−lBiBi

Return (Q1,	 , Qb, R)

Remark 5. Although an extended reduction is usually not unique, the one computed by
extended-reduce is uniquely determined by the fact that, in our main loop, we take iminimal
with lBi

4 k for some k ∈ suppR. This particular extended reduction is also characterized
by the fact that

suppQi+ lBi
⊆ Fin({lBi

}) \Fin({lB1,	 , lBi−1})

Joris van der Hoeven 7

for each i.

In order to compute Q1,	 , Qb and R in a relaxed manner, upper bounds

suppQi ⊆ Qi

suppQiBi ⊆ Qi+ suppBi

suppR ⊆ R

need to be known beforehand. These upper bounds are easily computed as a function of
A= suppA,B1= suppB1,	 ,Bb= suppBb by the variant supp-extended-reduce of extended-
reduce below. We recall from the end of the introduction that we do not take into account
the cost of this computation in our complexity analysis. In reality, the execution time
of supp-extended-reduce is similar to the one of extended-reduce, except that potentially
expensive operations in K are replaced by boolean operations of unit cost. We also recall
that support bounds can often be obtained by other means for specific problems.

Algorithm supp-extended-reduce

Input: subsets A and B1,	 ,Bb of Nn as above
Output: subsets Q1,	 ,Qb and R of Nn as above

Start with Q6 (∅,	 ,∅) and R6 A
While R∩Fin({maxB1,	 ,maxBb})� ∅ do

Let i be minimal and such that lmaxBi
4 k for some k ∈R

Let k ∈R be maximal with lmaxBi
4 k

Set Qi6 Qi∪{k−maxBi} and R6 R∪ (Bi+(k−maxBi)) \ {k}
Return (Q1,	 ,Qb,R)

4.2. Relaxed extended reduction

Using the relaxed multiplication from section 3, we are now in a position to replace the
algorithm extended-reduce by a new algorithm, which directly computes Q1,	 , Qb,R using
the equation (3). In order to do this, we still have to put it in a recursive form which is
suitable for relaxed resolution.

Denoting by ei the i-th canonical basis vector of K[x]b+1, we first define an operator
Φ: x1

N
 xn
N→K[x]b+1 by

Φ(xk) =

{

cBi

−1x
k−lBi ei if k ∈Fin({lBi

,	 , lBb
}) and i is minimal with lBi

4 k

eb+1 x
k otherwise

By linearity, this operator extends to K[x]

Φ(P) =
∑

i∈suppP

PiΦ(Pi).

In particular, Φ(cA xlA) yields the “leading term” of the extended reduction (Q1,	 , Qb,R).

We also denote by Φ̂ the corresponding operator from K[x z−λ] to K[x z−λ]b+1 which

sends P̂ to Φ(P).
Now let Bi

∗=Bi− cBi
x
lBi for each i. Then

(QiBi)k = (QiBi
∗)k+(Qi)k−lBi

cBi

for each i∈{1,	 , b} and k ∈Nn. The equation

(Q1B1+
 +QbBb+R)k = Ak

8 On the complexity of polynomial reduction

can thus be rewritten as

(Q1)k−lB1
cB1+
 +(Qi)k−lBb

cBb
= (A−Q1B1

∗−
 −QbBb
∗)k

Using the operator Φ this equation can be rewritten in a more compact form as

(Q1,	 , Qb, R) = Φ(A−Q1B1
∗−
 −QbBb

∗).

The corresponding equation
(

Q̂1,	 , Q̂b, R̂
)

= Φ̂
(

Â − Q̂1 B̂1
∗
−
 − Q̂b B̂b

∗)

is recursive, whence the extended reduction can be computed using b multivariate relaxed
multiplications Q̂1 B̂1

∗
, 	 , Q̂b B̂b

∗
. With A, Bi, Qi and R as in the previous section,

theorem 4 therefore implies:

Theorem 6. We may compute the extended reduction of A with respect to B in time

O(SM(|B1+Q1|) log δ(B1+Q1)+
 + SM(|Bb+Qb|) log δ(Bb+Qb)+ |R|).

Remark 7. Following remark 2, we also notice that A, the Qi and R may be replaced by
vectors of polynomials in K[x]m (regarded as polynomials with coefficients in Km), in the
case that several polynomials need to be reduced simultaneously.

5. Application to Gröbner basis computations

It is natural to examine whether we can use our relaxed extended reduction algorithm in
order to speed up Gröbner basis computations. We will restrict ourself to homogeneous
ideals. In this case we may reformulate Buchberger’s algorithm in an incremental way which
will simplify the discussion and illustrate more clearly the interest of the new algorithms.

In what follows, we will assume that (λ1)i>0 for all i. A polynomial P ∈K[x] will said
to be homogeneous, if λ1 · i is constant for all i∈ suppP , and we will denote by degP that
constant (if P � 0). Given a set E of homogeneous polynomials in K[x] and d∈N, we will
also write E〈d〉 (resp. E〈6d〉) for the subset of polynomials of degree d (resp. 6d). Given
two polynomials P ,Q∈K[x], we will write SP ,Q= cQ P xlQ− cPQ xlP for the S-polynomial
of P and Q.

Assume now that we are given a set S ⊆K[x] of homogeneous polynomials and let B be
the reduced Gröbner basis for S. For each degree d∈N, we observe that B〈6d〉 can be com-
puted as a function of S〈6d〉 only. Indeed, the reduction of a homogeneous polynomial of
degree d′>d with respect to B〈6d〉 is again of degree d′. Similarly, a non zero S-polynomial
of two homogeneous polynomials of degrees d′>d and d′′>d is of degree >max (d′, d′′)>d.

We may thus compute B〈6d〉 as a function of S〈6d〉 by induction over d. Given B〈6d−1〉
and S〈d〉, all elements of B〈d〉 are obtained as reductions of elements in S〈d〉 or reductions
of S-polynomials of degree d of elements in B〈6d−1〉. These reductions are either done with
respect to B〈6d−1〉 (and we will use our relaxed algorithm for this step) or with respect to
other elements of degree d (in which case we are really doing linear algebra in K[x]〈d〉).

Apart from unnecessary reductions to zero of S-polynomials, the above incremental
scheme for the computation of B contains no redundant operations. As in optimized
versions of Buchberger algorithm, we will therefore assume that a predicate reject-cri-

terion has been implemented for rejecting such critical pairs. More precisely, whenever
reject-criterion(P , Q) holds, then we are sure that SP ,Q will reduce to zero. We may
for instance use the classical Buchberger criteria [3], or more sophisticated criteria, as
used in F5 [7].

Joris van der Hoeven 9

The algorithm Gröbner-basis below makes the above informal discussion more precise.
We have used the notation reduce(P , B) for the reduction of a polynomial P ∈K[x] with
respect to an autoreduced set B ⊆K[x]. Here we notice that we may associate a unique
autoreduced tuple B=(B1,	 ,Bb) to an autoreduced set B={B1,	 ,Bb} by requiring that
lB1<
 < lBb

. Then reduce(P ,B) just stands for the last entry of extended-reduce(P ,B).

Algorithm Gröbner-basis

Input: a set S of homogeneous polynomials in K[x]
Output: the reduced Gröbner basis B for S

B6 ∅, d6 0
While S � ∅ do

Let R6 {reduce(P ,B):P ∈S〈d〉}
Let S6 S \S〈d〉
Autoreduce R
Let B6 B∪R
For all pairs P ∈B and Q∈R with lP < lQ do

If ¬reject-criterion(P , Q) and SP ,Q� 0 then
S6 S ∪{SP ,Q}

Set d6 d+1
Return B

Remark 8. According to remark 7, the reduction of the elements P ∈ S〈d〉 with respect
to B can optionally be performed vectorwise.

Remark 9. If the criterion reject-criterion for rejection is sufficiently powerful, then the
cardinality of R after autoreduction is exactly equal to the cardinality of S〈d〉 at the start
of the loop. In that case, the execution time of the algorithm is therefore the same as the
time needed to verify the reduction steps, up to a logarithmic overhead.

Bibliography

[1] M. Ben-Or and P. Tiwari. A deterministic algorithm for sparse multivariate polynomial interpolation.
In STOC ’88: Proceedings of the twentieth annual ACM symposium on Theory of computing , pages
301–309, New York, NY, USA, 1988. ACM.

[2] B. Buchberger. Ein Algorithmus zum auffinden der Basiselemente des Restklassenringes nach einem

null-dimensionalen Polynomideal . PhD thesis, University of Innsbruck, 1965.

[3] B. Buchberger. Multidimensional Systems Theory , chapter Gröbner bases: an algorithmic method
in polynomial ideal theory, pages 184–232. Reidel, 1985. Chapter 6.

[4] J. Canny, E. Kaltofen, and Y. Lakshman. Solving systems of non-linear polynomial equations faster.
In Proc. ISSAC ’89 , pages 121–128, Portland, Oregon, A.C.M., New York, 1989. ACM Press.

[5] J.W. Cooley and J.W. Tukey. An algorithm for the machine calculation of complex Fourier series.
Math. Computat., 19:297–301, 1965.

[6] J.-C. Faugère. A new efficient algorithm for computing Gröbner bases (F4). Journal of Pure and
Applied Algebra , 139(1–3):61–88, 1999.

[7] J.-C. Faugère. A new efficient algorithm for computing gröbner bases without reduction to zero (f5).
In T. Mora, editor, Proc. ISSAC ’02 , pages 75–83, Lille, France, July 2002.

[8] D. Y. Grigoriev and M. Karpinski. The matching problem for bipartite graphs with polynomially
bounded permanents is in NC. In Proceedings of the 28th IEEE Symposium on the Foundations of

Computer Science , pages 166–172, 1987.

[9] E. Kaltofen and Y. N. Lakshman. Improved sparse multivariate polynomial interpolation algorithms.
In ISSAC ’88: Proceedings of the international symposium on Symbolic and algebraic computation ,
pages 467–474. Springer Verlag, 1988.

10 On the complexity of polynomial reduction

[10] R. Moenck. Fast computation of gcds. In Proc. of the 5th ACM Annual Symposium on Theory of
Computing , pages 142–171, New York, 1973. ACM Press.

[11] Lorenzo Robbiano. Term orderings on the polynominal ring. In European Conference on Computer
Algebra (2), pages 513–517, 1985.

[12] J. van der Hoeven. Lazy multiplication of formal power series. In W. W. Küchlin, editor, Proc.
ISSAC ’97 , pages 17–20, Maui, Hawaii, July 1997.

[13] J. van der Hoeven. Relax, but don’t be too lazy. JSC , 34:479–542, 2002.

[14] J. van der Hoeven. Relaxed multiplication using the middle product. In Manuel Bronstein, editor,
Proc. ISSAC ’03 , pages 143–147, Philadelphia, USA, August 2003.

[15] J. van der Hoeven. The truncated Fourier transform and applications. In J. Gutierrez, editor, Proc.
ISSAC 2004 , pages 290–296, Univ. of Cantabria, Santander, Spain, July 4–7 2004.

[16] J. van der Hoeven. New algorithms for relaxed multiplication. JSC , 42(8):792–802, 2007.

[17] J. van der Hoeven. From implicit to recursive equations. Technical report, HAL, 2011.
http://hal.archives-ouvertes.fr/hal-00583125/fr/.

[18] J. van der Hoeven and G. Lecerf. On the bit-complexity of sparse polynomial multiplication. Tech-
nical report, HAL, 2010. http://hal.archives-ouvertes.fr/hal-00476223/fr/.

[19] J. van der Hoeven and G. Lecerf. On the complexity of blockwise polynomial multiplication. Sub-
mitted to ISSAC, 2012.

[20] J. van der Hoeven and É. Schost. Multi-point evaluation in higher dimensions. Technical report,
HAL, 2010. http://hal.archives-ouvertes.fr/hal-00477658/fr/.

Joris van der Hoeven 11

