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The class of reduction-based algorithms was introduced recently as a new approach towards
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1. INTRODUCTION

Let 𝕂 be an effective field of characteristic zero and let 𝜙∈𝕂[x] be a non-zero polynomial.
Consider the system of linear differential equations

𝜙y′ = Ay, (1.1)

where A∈𝕂[x]r×r is an r×r matrix with entries in𝕂[x] and y is a column vector of r unknown
functions. Notice that any system of linear differential equations y′=By with B∈𝕂(x) can be
rewritten in this form by taking 𝜙 to be a multiple of all denominators.

Let y be a formal solution of (1.1) and consider the 𝕂[x, 𝜙−1]-module 𝕄 of linear combi-
nations 𝜆y=𝜆1y1+ ⋅ ⋅ ⋅ +𝜆r yr where 𝜆∈𝕂[x,𝜙−1]1×r is a row vector. Then 𝕄 has the natural
structure of a D-module for the derivation ∂=∂𝕄:𝕄→𝕄; f ↦ f ′ defined by

(𝜆y)′=(𝜆′+𝜙−1𝜆A)y.

A 𝕂-linear mapping [⋅]:𝕄→𝕄 is said to be a reduction for (1.1) if f − [ f ]∈Im∂ for all f ∈𝕄.
Such a reduction is said to be confined if its image is a finite dimensional subspace of𝕄 over𝕂
and normal if [ f ′] = 0 for all f ∈𝕄. In this paper, we propose a solution to the following
problem:

PROBLEM 1.1. Design an algorithm that takes the equation (1.1) as input and that returns a (possibly
normal) confined reduction [⋅]:𝕄→𝕄 for (1.1), in the form of an algorithm for the evaluation of [⋅].

Confined reductions are interesting for their application to creative telescoping. After its
introduction by Zeilberger in [23], the theory of creative telescoping has known a rapid devel-
opment. For a brief history of the topic and further references, we point the reader to [12]. In
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section 2 we recall how confined reductions can be used for the computation of so-called tele-
scopers; see also [7, 14]. It is worth to notice that Problem 1.1 concerns univariate differential
equations, whereas creative telescoping is a priori a multivariate problem.

Reduction-based algorithms have appeared recently as a particularly promising approach
in order to make creative telescoping more efficient and to understand its complexity. The
simplest kind of reduction is Hermite reduction [22, 16, 2, 7], in which case A=0 and r=1.
More precisely [14, Proposition 21], given a,b∈𝕂[x] with gcd(a,b)=1, and writing b∗ for the
square-free part of b, there exist unique q, r∈𝕂[x] with deg r<deg b∗ such that

a
b =

r
b∗+((((((((((qb∗

b ))))))))))′.
Then the Hermite reduction of f = a/b∈𝕂(x) is defined by [ f ]= r/b∗. Confined reduc-
tions have been constructed in increasingly general cases: hyperexponential functions [3] (see
also [15]), hypergeometric terms [9, 20], mixed hypergeometric-hyperexponential terms [5],
algebraic functions [11], multivariate rational functions [6], and Fuchsian differential equa-
tions [8].

The existence of a reduction-based algorithm for general differential equations was raised
as open Problem 2.2 in [10]. Problem 1.1 is essentially a more precise form of this problem,
by specifying the space 𝕄 on which the reduction acts. From a cohomological point of view,
reductions can be regarded as an explicit way to exhibit elements in cokernels. An abstract
proof of the fact that the cokernel of the derivation on 𝕄 is finite-dimensional was given
in [21]. Our solution to Problem 1.1 in particular yields a new constructive proof of this fact.

After section 2, we will leave applications to the theory of creative telescoping aside and
focus on the construction of confined reductions. This construction proceeds in two stages.
In section 3, we first consider the 𝕂[x]-submodule 𝕄♯ of 𝕄 of linear combinations 𝜆 y with
𝜆∈𝕂[x]1×r. We will construct a 𝕂-linear head reduction ⌈⋅⌉:𝕄♯→𝕄♯ such that ⌈ f ⌉− f ∈Im ∂
and deg ⌈ f ⌉ is bounded from above for all f ∈𝕄♯. Here we understand that deg(𝜆y)≔deg𝜆≔
max(deg 𝜆1, . . . ,deg 𝜆r) for all 𝜆∈𝕂[x]1×r. The head reduction procedure relies on the com-
putation of a head chopper using an algorithm that will be detailed in section 5. We also need
a variant of row echelon forms that will be described in section 4.

The head reduction may also be regarded as a way to reduce the valuation of f in x−1, at the
point at infinity. In section 6 we turn to tail reductions, with the aim to reduce the valuation
of f at all other points in 𝕂 and its algebraic closure �̂�. This is essentially similar to head
reduction via a change of variables, while allowing ourselves to work in algebraic extensions
of𝕂. In the last section 7, we show how to combine the head reduction and the tail reductions
at each of the roots of 𝜙 into a global confined reduction on 𝕄. Using straightforward linear
algebra and suitable valuation bounds, one can further turn this reduction into a normal one,
as will be shown in section 7.3.

Our solution to Problem 1.1 is made precise in Theorems 5.9, 3.3, and 7.1. As far as we
aware of, these results are new, and provide a positive answer to [10, Problem 2.2]. The appli-
cation to creative telescoping is well known; see for instance [14, section 1.2.1]. Some of the
techniques that we use are similar to existing ones. First of all, the construction of head chop-
pers bears some similarities with Abramov's EG-eliminations [1]. Our procedure for head
reduction is reminiscent of Euclidean division and classical algorithms for computing formal
power series solutions to differential equations: first find the leading term and then continue
with the remaining terms. In [11, section 5], a similar “polynomial reduction” procedure has
been described in the particular case when deg 𝜙⩾deg A−1. Finally, the idea to glue “local
reductions” together into a global one is also common in this area [3, 5, 8].
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Subsequently to the publication of a preprint version of this paper [18], the results have
been further sharpened and generalized. In [4], an analogue algorithm was proposed for the
case of higher order linear differential equations instead of first order matrix equations. This
paper is mostly based on similar techniques, but also introduced a new tool: the Lagrange iden-
tity. In the terminology of the present paper, this makes it possible to avoid introducing the
formal parameter 𝜔, after which the operator Ξ from section 5 simply becomes multiplication
with x. Such simplifications make it easier to extend the theory beyond the setting of differen-
tial equations (1.1): see [19] for generalizations to difference equations. The original preprint
version of this paper [18] also contained degree and valuation bounds for head and tail chop-
pers; one of our motivations was to use these to derive polynomial complexity bounds for
creative telescoping. Using the Lagrange identity technique from [4], it is possible to prove
even sharper bounds. We refer to the follow-up paper [19] for more information on degree
and valuation bounds and how to exploit them for proving polynomial complexity bounds.

2. CREATIVE TELESCOPING

2.1. Holonomic functions
Let 𝕜 be a subfield of ℂ. An analytic function f on some non-empty open subset of ℂ is said
to be holonomic (or D-finite) over 𝕜 if it satisfies a linear differential equation

Lr f (r)+ ⋅ ⋅ ⋅ +L0 f = 0, (2.1)

where L0,...,Lr∈𝕜(u) are rational functions and Lr≠0. Modulo multiplication by the common
denominator, we may assume without loss of generality that L0, . . . , Lr∈𝕜[u] are actually
polynomials. Many, if not most, special functions are holonomic. Examples include exp, log,
sin, erf, Bessel functions, hypergeometric functions, polylogarithms, etc.

Instead of higher order scalar equations such as (2.1), it is also possible to consider first
order linear differential systems

𝜙y′ = Ay, (2.2)

where 𝜙∈𝕜[u] is a non-zero polynomial and A∈𝕜[x]r×r an r × r matrix with polynomial
coefficients. Given a column vector y=(y1, . . . ,yr) of analytic solutions to (2.2) on some non-
empty open subset of ℂ, it is well-known that each component yi is a holonomic function.
Conversely, taking 𝜙=Lr and

A =

(((((((((((((((((
(((((((((((((((((
((((
(
( 0 Lr 0

⋅⋅⋅ ⋅⋅ ⋅
0 0 Lr

−L0 −L1 ⋅ ⋅ ⋅ −Lr−1 ))))))))))))))))
)))))))))))))))))
)))))
)
)
,

any solution f to (2.1) corresponds to a unique solution y=( f , f ′, . . . , f (r−1)) of (2.1).
The concept of holonomy extends to multivariate functions. There are again two equiva-

lent formalizations that are respectively based on higher order scalar equations and first order
systems. Let us focus on the bivariate case and let ∂x=∂/∂x and ∂u=∂/∂u denote the partial
derivatives with respect to x and u. Consider a system of linear differential equations

{{{{{{{{{{{{{{{{{{{{{{{{ 𝜙∂x y = Ay
𝜙∂u y = By, (2.3)

where 𝜙∈𝕜[x,u] is non-zero and A,B∈𝕜[x,u]r×r are such that

∂x(𝜙−1B)+𝜙−2AB = ∂u(𝜙−1A)+𝜙−2BA. (2.4)
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A holonomic function in two variables is defined to be a component of a solution to such
a system. The compatibility relation (2.4) corresponds to the requirement ∂x ∂u y=∂u ∂x y,
under the assumption that y satisfies (2.3).

Example 2.1. The vector function

y = ((((((((((((((((((
( y1

y2 ))))))))))))))))))
) = (((((((((((((((((

((
(
( sin(xu)e−x2

cos(xu)e−x2 )))))))))))))))))
))
)
)

satisfies the system (2.3) for 𝜙=1 and

A = (((((((((((( −2x u
−u −2x )))))))))))), B = (((((((((((( 0 x

−x 0 )))))))))))).

2.2. Creative telescoping
Assume that 𝕜 is an effective subfield ofℂ and let y be a complex analytic solution of (2.3). By
Cauchy-Kowalevski's theorem such solutions exist and can be continued analytically above
ℂ∖{z∈ℂ:𝜙(z)=0}. With 𝕂=𝕜(u), let 𝕄 be the 𝕂[x,𝜙−1]-module generated by the entries
of y. Notice that 𝕄 is stable under both ∂x and ∂u. For any f =𝜆y∈𝕄 with 𝜆∈𝕂[x, 𝜙−1]1×r

and any non-singular contour C in ℂ between two points 𝛼,𝛽∈𝕜∪{∞}, we may consider the
integral

F(u) = �
C

f (x,u)dx, (2.5)

which defines a function in the single variable u. It is natural to ask under which conditions F
is a holonomic function and how to compute a differential operator L∈𝕂[∂u] with LF=0.

The idea of creative telescoping is to compute a differential operator K∈𝕂[∂u] (called the
telescoper), an element 𝜒∈𝕄 (called the certificate), and 𝜉 =∂x 𝜒, such that

Kf (x,u) = 𝜉(x,u). (2.6)

Integrating over C , we then obtain

KF(u) = �
C

∂𝜒
∂x(x,u)dx = 𝜒(𝛽,u)−𝜒(𝛼,u).

If the contour C has the property that 𝜒(𝛽)=𝜒(𝛼) for all 𝜒∈𝕄 (where the equality is allowed
to hold at the limit if necessary), then L=K yields the desired annihilator with LF= 0. In
general, we need to multiply K on the left with an annihilator of 𝜒(𝛽,u)−𝜒(𝛼,u), as operators
in the skew ring 𝕂[∂u].

Example 2.2. With y as in Example 2.1, we have 𝕄=𝕂[x] y1⊕𝕂[x] y2. The contour C that
follows the real axis from −∞ to +∞ is non-singular and any function in 𝕄 vanishes at the
limits of this contour (for fixed u). In particular, taking f =y1, the integral

F(u) ≔ �
C

f (x,u)dx = �
−∞

∞
sin(xu)e−x2dx

is well defined for all u. It can be checked that

∂u f + 1
2 u f = −12 ∂x y2, (2.7)

whence we may take K=∂u+ /1 2u∈𝕂[∂u] as our telescoper and 𝜒=− /1 2y2∈𝕄 as our certifi-
cate. Integrating over C , it follows that

∂u F+ 1
2 uF = �−12 y2�

x=−∞

+∞
= 0.
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This equation admits a simple closed form solution

F = c1e
−1
4u2,

for some integration constant c1. In general, the computation of such integration constants is
a difficult problem that is well beyond the scope of this paper. For our particular example,
we have

c1 = F(0) = �
−∞

∞
sin(0)e−x2dx = 0,

whence F= 0. We could have seen this more directly by observing that the integrand
sin(x u) e−x2 is an odd function in x for all u. On the other hand, a similar computation
for g=y2 and

G(u) ≔ �
C

g(x,u)dx = �
−∞

∞
cos(xu)e−x2dx

leads to

∂u g+ 1
2 ug = 1

2 ∂x y1, (2.8)

and

G = c2e
−1
4u2, c2 = �

−∞

∞
e−x2dx = π√ .

2.3. Reduction-based creative telescoping
We have shown how relations of the form (2.6) can be used for the computation of parametric
integrals (2.5). This leaves us with the question how to find such relations. Many different
approaches have been proposed for this task and we refer to [12] for a historical overview.
From now on we will focus on the reduction-based approach, which is fairly recent and has
shown to be particularly efficient for various subclasses of holonomic functions.

Notice that the first equation 𝜙∂x y=Ay of the system (2.3) is of the form (1.1), where we
recall that 𝕂=𝕜(u). Now assume that we have a computable confined reduction [⋅]:𝕄→𝕄.
Then the functions in the sequence [ f ],[∂u f ],[∂u

2 f ],... can all be computed and they belong to
a finite dimensional 𝕂-vector space V. Using linear algebra, this means that we can compute
a relation

K0 [ f ]+ ⋅ ⋅ ⋅ +Ks [∂u
s f ]=[K0 f + ⋅ ⋅ ⋅ +Ks∂u

s f ]=0 (2.9)

with K0, . . . ,Ks∈𝕂 and Ks≠0. Taking

K = K0+ ⋅ ⋅ ⋅ +Ks∂u
s

𝜉 = (Kf )− [Kf ] ∈ ∂x 𝕄,

we thus obtain (2.6). If the relation (2.9) has minimal order s and the reduction [⋅] is normal,
then it can be shown [14, Proposition 16] that there exist no relations of the form (2.6) of order
lower than s.

One important property of reduction-based telescoping is that it allows us to compute
telescopers without necessarily computing the corresponding certificates. In practice, it turns
out that certificates are often much larger than telescopers; this often explains the efficiency
of the reduction-based approach. Notice that the above approach can easily be adapted to
compute certificates as well, when really needed: it suffices to require that the reduction pro-
cedure f ↦[ f ] also produces a 𝜒∈𝕄with f −[ f ]=∂x 𝜒. Given a relation (2.9) and 𝜒∈𝕄with
𝜉 =Kf − [Kf ]=∂x 𝜒, we indeed have Kf =∂x 𝜒.
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Example 2.3. Continuing Examples 2.1 and 2.2, let us show how to compute a confined reduc-
tion [⋅]:𝕄→𝕄. Given f =P y1+Qy2∈𝕄=𝕂[x]y1⊕𝕂[x]y2, our algorithm to compute [ f ]
proceeds by induction on d=max(degx P, degx Q). If d⩽0, then we take [ f ]= f . Otherwise,
we may write P=Pd xd+O(xd−1) and Q=Qdxd+O(xd−1). Setting

h = −12Pd xd−1y1− 1
2Qd xd−1y2,

we have

∂x h = ((((((((((Pdxd+ 1
2 uQdxd−1− d−1

2 Pdxd−2))))))))))y1+((((((((((Qd xd − 1
2 uPdxd−1− d−1

2 Qd xd−2))))))))))y2,

whence
f̃ ≔ f −∂x h (2.10)

is of the form f̃ = P̃y1+Q̃y2 withmax(degx P̃,degx Q̃)⩽d−1. By the induction hypothesis, we
know how to compute [ f̃ ], so we can simply take [ f ]≔[ f̃ ]. It is easily verified that im [⋅]=
𝕂y1⊕𝕂y2, again by induction on d, so the reduction is confined.

Applying our reduction to the functions f =y1 and g=y2 from Example 2.2, we find that

[ f ] = f [g] = g
[∂u f ] = − 1

2 u f [∂u g] = − 1
2 ug

�∂u f + 1
2 uf � = 0 �∂u g+ 1

2 ug� = 0
and

∂u f + 1
2 u f −�∂u f + 1

2 u f � = − 1
2 ∂x g, ∂u g+ 1

2 ug−�∂u g+ 1
2 ug� = 1

2 ∂x f .

This leads to the desired relations (2.7) and (2.8).

Remark 2.4. In order to simplify the exposition, we have restricted our attention to the bivariate
case. Nevertheless, the reduction-based approach extends to the case when u is replaced by
a finite number of coordinates u1, . . . ,up and y satisfies an equation 𝜙∂ui y=Bi y with respect
to each coordinate ui (with suitable compatibility constraints). Indeed, for each i∈{1, . . . ,p},
it suffices to compute the sequence [ f ], [∂ui f ], [∂ui

2 f ], . . . until we find a relation [Ki,0 f + ⋅ ⋅ ⋅ +
Ki,si∂u

si f ]=0 with Ki,0, . . . ,Ki,si∈𝕂≔𝕜(u1, . . .,up). For each i∈{1, . . .,p}, this yields a non-trivial
operator Ki∈𝕂[∂ui] with Ki f ∈∂x 𝕄.

3. HEAD REDUCTION

3.1. Head choppers
Let T∈𝜙𝕂(𝜔)[x,x−1]r×r, where 𝜔 and x are indeterminates. We view 𝜔 as a parameter that
takes integer values. We may regard T as a Laurent polynomial with matrix coefficients
Tk∈𝕂(𝜔)r×r:

T = �
k∈ℤ

Tk xk. (3.1)

If T≠0, then we denote deg T=max{k∈ℤ:Tk≠0}. Setting

U = Υ(T) ≔ 𝜙−1TA+T ′+𝜔x−1T, (3.2)

the equation (1.1) implies

(Cx𝜔Ty)′ = Cx𝜔Uy, (3.3)

for any constant matrix C∈𝕂(𝜔)r×r. The matrix U can also be regarded as a Laurent polyno-
mial with matrix coefficients Uk∈𝕂(𝜔)r×r. We say that T is a head chopper for (1.1) if UdegU is
an invertible matrix.
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Example 3.1. With 𝜙 and A as in Example 2.1, the identity matrix T=Id2 is a head chopper.
Indeed, for this choice of T, we obtain

U = A+𝜔x−1 Id2 = (((((((((((( −2 0
0 −2 ))))))))))))x+(((((((((((( 0 u

−u 0 ))))))))))))+(((((((((((( 𝜔 0
0 𝜔 )))))))))))) 1x , (3.4)

so degU=1 and U1=−2 Id2 is invertible. The matrix T=Id2x is also a head chopper, with

U = (((((((((((( −2 0
0 −2 ))))))))))))x2+(((((((((((( 0 u

−u 0 ))))))))))))x+(((((((((((( 𝜔+1 0
0 𝜔+1 )))))))))))). (3.5)

Example 3.2. Consider the equation (1.1) for 𝜙=1 and

A = (((((((((((((((((
(((((((
(
( x 𝜌 0

x+1 2 1
2 2−𝜌 1 )))))))))))))))))

)))))))
)
)
,

for some formal parameter 𝜌. Then we claim that

T =
(((((((((((((((((
(((((((((((((((((
((
(
( x 0 0

−x2−x x2 0
x3+ 𝜔+5

𝜌−2 x2+ (3−𝜌)𝜔−2𝜌+9
𝜌−2 x −x3− 𝜔+𝜌+3

𝜌−2 x2 x3 )))))))))))))))))
)))))))))))))))))
))
)
)

(3.6)

is a head chopper. Indeed, a straightforward computation yields

U =

(((((((((((((((((
(((((((((((((((((
(((((((
(
( x2+𝜔+1 𝜌x 0

(−𝜔−2)x−𝜔−1 (2−𝜌)x2+(𝜔−𝜌+2)x x2

(𝜔2+7𝜔+10)x+(3−𝜌)𝜔2+(12−3𝜌)𝜔−2𝜌+9
𝜌−2 − (𝜔2+(𝜌2−2𝜌+5)𝜔+2𝜌2−7𝜌+6)x

𝜌−2
((𝜌−3)𝜔+2𝜌−9)x2

𝜌−2 )))))))))))))))))
)))))))))))))))))
)))))))
)
)

=
((((((((((((((((((
((((((((((((((((
(
( 1 0 0
0 2−𝜌 1
0 0 (𝜌−3)𝜔+2𝜌−9

𝜌−2 ))))))))))))))))))
))))))))))))))))
)
)

x2+O(x), (3.7)

which shows that the leading coefficient of U as a polynomial in x is (formally) invertible.

3.2. Head reduction
Before studying the computation of head choppers, let us first show how they can be used
for the construction of so-called “head reductions”, by generalizing the inductive construc-
tion from Example 2.3. Let T be a head chopper for (1.1) and assume in addition that
T ∈𝜙𝕂(𝜔)[x]r×r and U =Υ(T) ∈𝕂(𝜔)[x]r×r. Given 𝕂-subvector spaces 𝕍1 and 𝕍2 of 𝕄,
we say that a 𝕂-linear map 𝜋:𝕍1→𝕍2 is a partial reduction for (1.1) if f −𝜋( f )∈ im ∂𝕄 for
all f ∈𝕍1.

Let 𝜏=deg U. Writing T=N/D with N∈𝜙𝕂[𝜔][x]r×r and D∈𝕂[𝜔], we say that i∈ℤ
is an exceptional index if D(i)=0 or (detU𝜏)(i)=0. Here we understand that D(i) stands for
the evaluation of D at 𝜔= i and similarly for (detU𝜏)(i)=0. We write ℐ for the finite set of
exceptional indices. If i∈ℐ , then we notice that the matrix U𝜏(i)∈𝕂r×r is invertible.

Any 𝜆∈𝕂[x]1×r can be regarded as a polynomial ∑i∈ℕ 𝜆ixi∈𝕂1×r[x] in x. Given d∈ℤ, let

Λd = {𝜆∈𝕂[x]1×r :∀e>d, e−𝜏∉ℐ⇒𝜆e=0}.

If d⩾𝜏 and i≔ d −𝜏 ∉ℐ , then recall that the matrix U𝜏(i)∈𝕂r×r is invertible. We may thus
define the 𝕂-linear mapping 𝜋d:Λd→Λd−1 by

𝜋d(𝜆) = 𝜆−𝜆dU𝜏
−1(i)xi U(i).

We indeed have 𝜋d(𝜆)∈Λd−1, since

𝜆d U𝜏
−1(i)xi U(i)=𝜆dxd+O(xd−1).
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The mapping 𝜋d also induces a mapping Λd y→Λd−1y; 𝜆 y↦𝜋d(𝜆) y that we will still denote
by 𝜋d. Setting c=𝜆dU𝜏

−1(i), the relation (3.3) yields

(𝜆−𝜋d(𝜆))y= cxi U(i)y=(cxi T(i)y)′.

This shows that the mapping 𝜋d is a partial reduction. If d⩾𝜏 and i≔d−𝜏∈ℐ , then we have
Λd=Λd−1 and the identity map 𝜋d:Λd y→Λd−1y is clearly a partial reduction as well.

Now we observe that compositions of partial reductions are again partial reductions. For
each d⩾𝜏, we thus have a partial reduction

𝜋𝜏 ∘ ⋅ ⋅ ⋅ ∘𝜋d:Λdy→Λ𝜏−1y.

Now let ⌈⋅⌉:𝕂[x]1×r y→𝕂[x]1×r y be the unique mapping with ⌈𝜆y⌉=(𝜋𝜏 ∘ ⋅ ⋅ ⋅ ∘𝜋d)(𝜆y) for all
d⩾𝜏 and 𝜆∈Λd. Then ⌈⋅⌉ is clearly a partial reduction as well and it admits a finite dimen-
sional image im ⌈⋅⌉ ⊆Λ𝜏−1. For any 𝜆∈𝕂[x]1×r, we call ⌈𝜆 y⌉ the head reduction of 𝜆 y. The
following straightforward algorithm allows us to compute head reductions:

Algorithm HeadReduce(λ)
Input: 𝜆∈𝕂[x]1×r

Output: the head-reduction ⌈𝜆⌉∈𝕂[x]1×r of 𝜆
repeat

if 𝜆i+𝜏=0 for all i∈ℕ∖ℐ then return 𝜆
Let i∈ℕ∖ℐ be maximal with 𝜆i+𝜏≠0
c≔𝜆i+𝜏U𝜏

−1(i)
𝜆≔𝜆− cxi U(i)

THEOREM 3.3. The routine HeadReduce terminates and is correct. −−

− −

Example 3.4. Let 𝜙 and A be as in Examples 2.1, 2.2, 2.3 and 3.1. Taking the head chopper
T=Id2x with U as in (3.5), we get

𝜋d(𝜆) = 𝜆−𝜆d U𝜏
−1(i)xi U(i)

= � P Q �−� Pd Qd �(((((((((((( −2 0
0 −2 ))))))))))))

−1
xd−2(((((((((((((((((((((((( −2 0

0 −2 ))))))))))))x2+(((((((((((( 0 u
−u 0 ))))))))))))x+(((((((((((( d−1 0

0 d−1 ))))))))))))))))))))))))
= � P Q �−� Pdxd+ 1

2 Qd xd−1− d −1
2 Pd xd−2 Qd xd − 1

2 Pd xd−1− d −1
2 Qdxd−2 �

for all 𝜆= � P Q � and d⩾𝜏 =2. In other words, 𝜋d(𝜆) y coincides with f̃ from (2.10), so the
head reduction procedure coincides with the reduction procedure from Example 2.3, except
that we directly reduce any 𝜆y∈𝕂[x]1×2y with deg 𝜆<𝜏=degU=2 to itself (we have ℐ =∅
and im ⌈⋅⌉=𝕂 f ⊕𝕂g⊕(𝕂 f )x⊕(𝕂g)x). The fact that we may actually reduce elements 𝜆y
with deg 𝜆=1 somewhat further is due to the fact that the coefficient of x−1 in (3.4) vanishes
for 𝜔=0. Indeed, this means that the matrix U from (3.4) actually evaluates to a polynomial
in x at 𝜔=0, so we may use it instead of the matrix from (3.5) as a head chopper.

Example 3.5. Let 𝜙 and A be as in Example 3.2, with 𝜌=0. Taking T and U as in (3.6) and (3.7),
we obtain 𝜏=2, ℐ={−3}, and

T =
((((((((((((((((((
((((((((((((((((
(
( x 0 0

−x2−x x2 0
x3− 𝜔+5

2 x2− 3𝜔+9
2 x −x3+ 𝜔+3

2 x2 x3 ))))))))))))))))))
))))))))))))))))
)
)

U =
(((((((((((((((((
((((((((((((((
(
( 1 0 0
0 2 1
0 0 3𝜔+9

2 )))))))))))))))))
))))))))))))))
)
)

x2+
((((((((((((((((((
((((((((((((((((
(
( 0 0 0

−𝜔−2 𝜔+2 0

−𝜔2+7𝜔+10
2

𝜔2+5𝜔+6
2 0 ))))))))))))))))))

))))))))))))))))
)
)

x+
((((((((((((((((((
((((((((((((((((
(
( 𝜔+1 0 0

−𝜔−1 0 0
3𝜔2+12𝜔+9

−2 0 0 ))))))))))))))))))
))))))))))))))))
)
)
.
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For d⩾1, we note that

Λd = 𝕂1×3⊕𝕂1×3x⊕ ⋅ ⋅ ⋅⊕𝕂1×3xd.

Let us show how T and U can be used to compute the head-chopper of 𝜆, where

𝜆 = � 1 30 30 �x4.

Applying HeadReduce to 𝜆, we find that i=2 is maximal with 𝜆i+𝜏=𝜆4≠0, so we set

c ≔ 𝜆4U2
−1(2) = � 1 30 30 �

(((((((((((((((((
(((((((((((((((((
(((((((
(
( 1 0 0
0 1

2 − 1
15

0 0 2
15 ))))))))))))))
)))))))))))))))))
))))))))))
)
)
= � 1 15 2 �.

𝜆 ≔ 𝜆− cx2U(2) = � 88 −80 0 �x3+� 87 0 0 �x2.

We repeat the loop for the new value of 𝜆, which yields

i ≔ 1

c ≔ 𝜆3U2
−1(1) = � 88 −80 0 �

(((((((((((((((((
(((((((((((((((((
(((((((
(
( 1 0 0
0 1

2 − 1
12

0 0 1
6 )))))))))))))))))
)))))))))))))))))
)))))))
)
)
= � 88 −40 20

3 �

𝜆 ≔ 𝜆− cxU(1) = � 27 80 0 �x2+� −176 0 0 �x.

Repeating the loop once more, we obtain

i ≔ 0

c ≔ 𝜆2U2
−1(0) = � 27 80 0 �

((((((((((((((((((
(((((((((((((((((
((((((
(
( 1 0 0
0 1

2 −1
9

0 0 2
9 ))))))))))))))
)))))))))))))))))
))))))))))
)
)
= � 27 40 −80

9 �

𝜆 ≔ 𝜆− cU(0) = � −1264
9 − 160

3 0 �x+� −27 0 0 �.

At this point, we have deg 𝜆=1<𝜏=2, so we have obtained the head reduction of the orig-
inal 𝜆.

Example 3.6. Let 𝜙, A, T, and U be as in Example 3.2 and n∈ℕ. Taking

𝜌= 3n+9
n+2 , n= 9−2𝜌

𝜌−3 ,

we observe that ℐ ={n}, whence any element of 𝕂1×3xn is head-reduced. Even for equations
of bounded degree and order, this means that head reduced elements 𝜆∈𝕂[x]1×r can have
arbitrarily large degree.

Remark 3.7. It is straightforward to adapt HeadReduce so that it also returns the certificate
𝜅∈𝜙𝕂[x]1×r with 𝜆 y − (𝜅 y)′∈Λ𝜏−1 y. Indeed, it suffices to start with 𝜅≔0 and accumulate
𝜅≔𝜅+ cxi T(i) at the end of the main loop.

Remark 3.8. In the algorithm HeadReduce we never used the assumption that 𝜆 has one row.
In fact, the same algorithm works for matrices 𝜆∈𝕂[x]n×r with an arbitrary number of rows n.
This allows for the simultaneous head reduction of several elements in 𝕂[x]1×r y, something
that might be interesting for the application to creative telescoping.
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4. ROW SWEPT FORMS

The computation of head choppers essentially boils down to linear algebra. We will rely on
the concept of “row swept forms”. This notion is very similar to the more traditional row
echelon forms, but there are a few differences that are illustrated in Example 4.1 below.

Let U∈𝕂r×s be a matrix and denote the i-th row of U by Ui,⋅. Assuming that Ui,⋅≠0, its
leading index ℓi is the smallest index j with Ui, j≠0. We say that U is in row swept form if there
exists a k∈{0,...,r} such that U1,⋅≠0,...,Uk,⋅≠0,Uk+1,⋅=⋅⋅⋅=Ur,⋅=0 and Ui′,ℓi=0 for all i< i′⩽k.
Notice that U has rank k in this case.

An invertible matrix S∈𝕂r×r such that SU is in row swept form will be called a row sweeper
for U. We may compute such a matrix S using the routine RowSweeper below, which is
really a variant of Gaussian elimination. Whenever we apply this routine to a matrix U such
that the truncated matrix Ũ with rows U1,⋅, . . . ,Uk,⋅ is in row swept form, we notice that these
first k rows are left invariant by the row sweeping process. In other words, the returned row
sweeper S is of the form S= (((((((((((( Idk 0

∗ ∗ )))))))))))). If, in addition, the matrix U has rank k, then S is of the
form S= (((((((((((( Idk 0

∗ Idr−k )))))))))))).
Algorithm RowSweeper(U)
Input: a matrix U∈𝕂r×s

Output: a row sweeper S∈𝕂r×r for U
S≔Idr, R≔U
for i from 1 to r do

if Ri′, j=0 for all i′⩾ i and j then return S
Let i′⩾ i be minimal such that Ri′, j≠0 for some j
Swap the i-th and i′-th rows of S and R
v≔Ri,ℓi

−1

for i′ from i+1 to r do
Si′,⋅≔Si′,⋅−vRi′,ℓi Si,⋅, Ri′,⋅≔Ri′,⋅−vRi′,ℓi Ri,⋅

return S

Example 4.1. Given the matrix

U =

(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
((

(

( 0 2 0 2 3
1 0 3 2 2
1 4 3 6 8
0 4 0 4 7
1 2 4 5 6 )))))))))))))))))

)))))))))))))))))
)))))))))))))))))
))

)

)
,

the algorithm RowSweeper produces the row sweeper

S =

(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
((

(

( 1 0 0 0 0
0 1 0 0 0

−2 0 0 1 0
1 −1 0 −1 1

−2 −1 1 0 0 )))))))))))))))))
)))))))))))))))))
)))))))))))))))))
))

)

)
.

Since the two first rows of U were already in row swept form, this matrix is indeed of the form
S= (((((((((((( Id2 0

∗ ∗ )))))))))))). The resulting row swept form SU for U is

SU =

(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
((

(

( 0 2 0 2 3
1 0 3 2 2
0 0 0 0 1
0 0 1 1 0
0 0 0 0 0 )))))))))))))))))

)))))))))))))))))
)))))))))))))))))
))

)

)
.
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The more traditional row echelon and reduced row echelon forms insist on moving the rows Ui,⋅
for which ℓi is minimal to the top, so the first two rows are not left invariant. The different
“normal” forms that we obtain for our example matrix U are shown below:

Original matrix U Row swept form Row echelon form Reduced row echelon form

(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
((

(

( 0 2 0 2 3
1 0 3 2 2
1 4 3 6 8
0 4 0 4 7
1 2 4 5 6 )))))))))))))))))

)))))))))))))))))
)))))))))))))))))
))

)

)

(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
((

(

( 0 2 0 2 3
1 0 3 2 2
0 0 0 0 1
0 0 1 1 0
0 0 0 0 0 )))))))))))))))))

)))))))))))))))))
)))))))))))))))))
))

)

)

(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
((

(

( 1 0 3 2 2
0 2 0 2 3
0 0 1 1 1
0 0 0 0 1
0 0 0 0 0 )))))))))))))))))

)))))))))))))))))
)))))))))))))))))
))

)

)

(((((((((((((((((
(((((((((((((((((
(((((((((((((((((
((

(

( 1 0 0 −1 0
0 1 0 1 0
0 0 1 1 0
0 0 0 0 1
0 0 0 0 0 )))))))))))))))))

)))))))))))))))))
)))))))))))))))))
))

)

)

5. COMPUTING HEAD CHOPPERS

5.1. Transforming head choppers
In Example 3.1 we already pointed out that head choppers are generally not unique. Let us
now study some transformations that allow us to produce new head choppers from known
ones; this will provide us with useful insights for the general construction of head choppers.
For any 𝛿∈ℤ, we define the operator Ξ𝛿 on 𝜙𝕂(𝜔)[x,x−1]r×r by

(Ξ𝛿 T)(x,𝜔) = x𝛿T(x,𝜔+𝛿).

PROPOSITION 5.1. For all 𝛿∈ℤ, we have

Υ(Ξ𝛿 T) = Ξ𝛿Υ(T).

Proof. Setting U=Υ(T), T̃=Ξ𝛿 T and Ũ=Υ(T̃), we have

Ũ(x,𝜔) = 𝜙−1x𝛿T(x,𝜔+𝛿)A+x𝛿T ′(x,𝜔+𝛿)+𝛿x𝛿−1T(x,𝜔+𝛿)+𝜔x𝛿−1T(x,𝜔+𝛿)
= x𝛿 (𝜙−1T(x,𝜔+𝛿)A+T ′(x,𝜔+𝛿)+(𝜔+𝛿)x−1T(x,𝜔+𝛿))
= x𝛿U(x,𝜔+𝛿).

In other words, Ũ=Ξ𝛿 U. −−

− −

PROPOSITION 5.2. Assume that 𝛿∈ℤ and that P∈𝕂(𝜔)r×r is invertible. Then

a) T is a head chopper for (1.1) if and only if Ξ𝛿T is a head chopper for (1.1).

b) T is a head chopper for (1.1) if and only if PT is a head chopper for (1.1).

Proof. Assume that T is a head chopper for (1.1). Setting T̃ =Ξ𝛿 T and Ũ=Υ(T̃), we have
Ũ=Ξ𝛿 U and Ũdeg Ũ(𝜔)=UdegU(𝜔+𝛿) is invertible. Similarly, setting T̂=P T and Û=Υ(T̂),
we have Û= P U, whence Ûdeg Û = P UdegU is invertible. The opposite directions follow by
taking −𝛿 and P−1 in the roles of 𝛿 and P. −−

− −

Given a head chopper T∈𝜙𝕂(𝜔)[x,x−1]r×r for (1.1) and U=Υ(T), let k∈ℤ be minimal such
that Tk≠0 or Uk≠0. Then k is also maximal with the property that T̃≔Ξ−k(T)∈𝜙𝕂(𝜔)[x]r×r

and Ũ=Υ(T̃)=Ξ−k(U)∈𝕂(𝜔)[x]r×r. From Proposition 5.2(a) it follows that T̃ is again a head
chopper for (1.1). Without loss of generality, this allows us to make the additional assump-
tion that T,U∈𝜙𝕂(𝜔)[x]r×r at the beginning of subsection 3.2.
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5.2. Head annihilators
In order to compute head choppers by induction, it will be convenient to introduce a partial
variant of this concept. First of all, we notice that the equations (3.1–3.3) and Proposition 5.1
generalize to the case when T∈𝜙𝕂(𝜔)[x,x−1]n×r, where n is arbitrary. Notice also that degU⩽
deg T+𝜎, where 𝜎≔max(degA−deg 𝜙,−1). Given d∈ℤ and e∈ℕ, let

Md = {T∈𝜙𝕂(𝜔)[x,x−1]1×r : deg T⩽d}
Md,e = {T∈Md :deg Υ(T)⩽d+𝜎 − e}.

It is easy to see that both Md and Md,e are 𝕂(𝜔)[Ξ−1]-modules.
Now consider a matrix T ∈𝜙𝕂(𝜔)[x, x−1]r×r with rows T1,⋅, . . . , Tr,⋅∈Md,e ordered by

increasing degree
deg T1,⋅⩽ ⋅ ⋅ ⋅ ⩽deg Tr,⋅.

Let U=Υ(T), let N=Ν(T) be the matrix with rows Ξ−degT1,⋅ T1,⋅, . . . , Ξ−degTr,⋅Tr,⋅, and let k be
maximal such that degTk,⋅<d. We say that T is a (d,e)-head annihilator for (1.1) if the following
conditions are satisfied:

HA1. The rows of T form a basis for the 𝕂(𝜔)[Ξ−1]-module Md,e;

HA2. The matrix N0 is invertible;

HA3. The first k rows of Ud+𝜎−e are 𝕂(𝜔)-linearly independent.

The matrix 𝜙xd−deg𝜙 Idr is obviously a (d,0)-head annihilator with k=0. If k=r, then we notice
that HA3 implies that T is a head chopper for (1.1). We also have the following variant of
Proposition 5.2(a):

PROPOSITION 5.3. For any 𝛿∈ℤ, we have

Md+𝛿 = Ξ𝛿Md

Md+𝛿,e = Ξ𝛿Md,e.

Moreover, T is a (d, e)-head annihilator if and only if Ξ𝛿 T is a (d+𝛿, e)-head annihilator. −−

− −

Using a constant linear transforation as in Proposition 5.2(b), we may now achieve the
following:

PROPOSITION 5.4. Let T be a (d,e)-head annihilator for (1.1). Let U=Υ(T) and k be as in HA1–HA3
and denote k∗=rank(Ud+𝜎−e). Then there exists an invertible matrix J∈𝕂(𝜔)r×r of the form

J=(((((((((((( Idk 0
∗ ∗ ))))))))))))

such that the last r− k∗ rows of JUd+𝜎−e vanish and such that JT is a (d, e)-head annihilator for (1.1).

Proof. Let

J=(((((((((((( Idk 0
V W ))))))))))))

be the row sweeper for Ud+𝜎−e as computed by the algorithm RowSweeper from section 4. By
construction, deg (J T)j,⋅=deg Tj,⋅ for all j⩽ k, and the last r − k∗ rows of J Ud+𝜎−e vanish. We
claim that deg (JT)j,⋅=deg Tj,⋅=d for all j>k. Indeed, if deg (JT)j,⋅<d, then this would imply
that (J N0)j,⋅=0, which contradicts HA2. From our claim, it follows that deg (J T)1,⋅⩽ ⋅ ⋅ ⋅ ⩽
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deg (JT)n,⋅ and k is maximal with the property that deg (JT)k,⋅<d. Since the first k rows of U
and J U=Υ(J T) coincide, the first k rows of (J U)d+𝜎−e are 𝕂(𝜔)-linearly independent. This
shows that HA3 is satisfied for JT. As to HA2, let J̃∈𝕂(𝜔)r×r be the invertible matrix with

J̃(𝜔)= J(𝜔−d)=(((((((((((( Idk 0
V(𝜔−d) W(𝜔−d) )))))))))))).

Then we notice that Ν(JT)= J̃Ν(T), whence Ν(JT)0= J̃N0 is invertible. The rows of JT clearly
form a basis for Md,e, since J is invertible. −−

− −

As long as UdegU is not invertible, we finally use the following simple but non-constant
linear transformation in order to improve the rank of UdegU:

PROPOSITION 5.5. Let T be a (d, e)-head annihilator for (1.1). Let U=Υ(T), let k∗=rank(Ud+𝜎−e),
and assume that the last r− k∗ rows of Ud+𝜎−e vanish. Let T∗ be the matrix with rows

(Ξ−1 T)1,⋅, . . . , (Ξ−1 T)k∗,⋅,Tk∗+1,⋅, . . . ,Tr,⋅.

Then T∗ is a (d, e+1)-head annihilator for (1.1).

Proof. We have deg Tj,⋅
∗ =deg Tj,⋅−1<d for all j⩽ k∗ and deg Tj,⋅

∗ =deg Tj,⋅=d for all j> k∗. In
particular, we have degT1,⋅∗ ⩽⋅⋅⋅⩽degTn,⋅

∗ and k∗ is maximal with the property that degTk∗,⋅
∗ <d.

Setting U∗=Υ(T∗), we also observe that Uj,⋅
∗ =Ξ−1(Uj,⋅) for all j⩽ k∗. Since rank(Ud+𝜎−e)= k∗

and the last r − k∗ rows of Ud+𝜎−e vanish, the first k∗ rows of both Ud+𝜎−e and Ud+𝜎−e−1
∗ are

𝕂(𝜔)-linearly independent. In other words, HA3 is satisfied for T∗. As to HA2, we observe
that Ν(T∗)=Ν(T), whence Ν(T∗)0=N0 is invertible.

Let us finally show that T∗ forms a basis for the 𝕂(𝜔)[Ξ−1]-module Md,e+1. So let R∈
Md,e+1. Then R∈Md,e, so R=Λ(T) for some row matrix Λ=Λ0+Λ1Ξ−1+ ⋅ ⋅ ⋅ ∈𝕂(𝜔)[Ξ−1]1×r.
Setting S=Υ(Λ(T)), we have degS⩽d+𝜎−e−1, whence Sd+𝜎−e=Λ0Ud+𝜎−e=0. Since the first
k∗ rows of Ud+𝜎−e are 𝕂(𝜔)-linearly independent and the last r−k∗ rows of Ud+𝜎−e vanish, we
get (Λ0)1, j=0 for all j⩽k∗. Let Λ̃ be the row vector with Λ̃1, j=Λ1, jΞ for j⩽k∗ and Λ̃1, j=Λ1, j for
j>k∗. By what precedes, we have Λ̃∈𝕂(𝜔)[Ξ−1]1×r and R=Λ1,1(T1,⋅)+⋅⋅⋅+Λ1,r(Tr,⋅). Now we
have Λ1, j(Tj,⋅)=Λ1, j(Ξ−1(Tj,⋅

∗))= Λ̃1, j(Tj,⋅
∗) for j⩽ k∗ and Λ1, j(Tj,⋅)= Λ̃1, j(Tj,⋅

∗) for j>k∗. In other
words, R=Λ̃(T∗), as desired. −−

− −

5.3. Computing head choppers
Propositions 5.4 and 5.5 allow us to compute (d, e)-head annihilators for (1.1) with arbitrarily
large e. Assuming that we have k= r in HA3 for sufficiently large e, this yields the following
algorithm for the computation of a head chopper for (1.1):

Algorithm HeadChopper(ϕ, A)
Input: 𝜙∈𝕂[x] and A∈𝕂[x]r×r

Ouput: a head chopper T∈𝜙𝕂(𝜔)[x,x−1]r×r for (1.1)
T≔𝜙Idr,U≔Υ(T)
repeat

if UdegU is invertible then return T
J≔RowSweeper(UdegU)
(T,U)≔(JT, JU)
k∗≔rank(UdegU), Δ≔(((((((((((((( Idk∗Ξ−1 0

0 Idr−k∗ ))))))))))))))
(T,U)≔(ΔT,ΔU)
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Example 5.6. Before we prove the correctness of HeadChopper, let us show how it works for𝜙
and A as in Example 3.2. We enter the loop with

T=(((((((((((((((((
(((((((
(
( 1 0 0
0 1 0
0 0 1 )))))))))))))))))

)))))))
)
)
, U=

(((((((((((((((((
(((((((((((((((((
((
(
( 𝜔

x +x 𝜌 0
x+1 𝜔

x +2 1
2 2−𝜌 𝜔

x +1 )))))))))))))))))
)))))))))))))))))
))
)
)
,

so that T is a (0,0)-head annihilator for (1.1). During the first iteration of the loop, we set

UdegU=(((((((((((((((((
(((((((
(
( 1 0 0
1 0 0
0 0 0 )))))))))))))))))

)))))))
)
)
, J≔(((((((((((((((((

(((((((
(
( 1 0 0

−1 1 0
0 0 1 )))))))))))))))))

)))))))
)
)
, T≔(((((((((((((((((

(((((((
(
( 1 0 0

−1 1 0
0 0 1 )))))))))))))))))

)))))))
)
)
, U≔

(((((((((((((((((
(((((((((((((((((
((((
(
( 𝜔−1

x +x 𝜌 0
1− 𝜔

x
𝜔
x −𝜌+2 1

2 2−𝜌 𝜔
x +1 )))))))))))))))))

)))))))))))))))))
))))
)
)

and then

k∗≔1, Δ≔((((((((((((((((((
(((((((((
(
( Ξ−1 0 0

0 1 0
0 0 1 ))))))))))))))))))

)))))))))
)
)
, T≔

(((((((((((((((((
((((((((((((((
(
( 1

x 0 0
−1 1 0
0 0 1 )))))))))))))))))

))))))))))))))
)
)
, U≔

(((((((((((((((((
(((((((((((((((((
(((((((
(
( 𝜔−1

x2 +1 𝜌
x 0

1− 𝜔
x

𝜔
x −𝜌+2 1

2 2−𝜌 𝜔
x +1 )))))))))))))))))

)))))))))))))))))
)))))))
)
)
.

Propositions 5.4 and 5.5 imply that the new matrix T is a (0,1)-head annihilator for (1.1). The
second iteration of the main loop yields

UdegU=(((((((((((((((((
(((((((
(
( 1 0 0
1 2−𝜌 1
2 2−𝜌 1 )))))))))))))))))

)))))))
)
)
, J≔(((((((((((((((((

(((((((
(
( 1 0 0

−1 1 0
−1 −1 1 )))))))))))))))))

)))))))
)
)
,

T≔

(((((((((((((((((
(((((((((((((((((
((((((((((((((((

(

( 1
x2 0 0

−1
x − 1

x2
1
x 0

1− 1
x −1 1 )))))))))))))))))

)))))))))))))))))
))))))))))))))))

)

)
, U≔

(((((((((((((((((
(((((((((((((((((
(((((((((((

(

( 1+ 𝜔−2
x2

𝜌
x 0

1−𝜔
x + 2−𝜔

x2 2−𝜌+ 𝜔−𝜌−1
x 1

𝜔
x +

1−𝜔
x2

−𝜌−𝜔
x

𝜔
x )))))))))))))))
)))))))))))))))))
)))))))))))))

)

)
,

after which we set k∗≔2,

Δ≔(((((((((((((((((
((((((((((((
(
( Ξ−1 0 0

0 Ξ−1 0
0 0 1 )))))))))))))))))

))))))))))))
)
)
, T≔

(((((((((((((((((
(((((((((((((((((
((((((((((((((((

(

( 1
x2 0 0

−1
x − 1

x2
1
x 0

1− 1
x −1 1 )))))))))))))))))

)))))))))))))))))
))))))))))))))))

)

)
, U≔

(((((((((((((((((
(((((((((((((((((
(((((((((((

(

( 1
x +

𝜔−2
x3

𝜌
x2 0

1−𝜔
x2 + 2−𝜔

x3
2−𝜌

x + 𝜔−𝜌−1
x2

1
x

𝜔
x +

1−𝜔
x2

−𝜌−𝜔
x

𝜔
x )))))))))))))))
)))))))))))))))))
)))))))))))))

)

)
.

At this point, T is a (0,2)-head annihilator for (1.1). The third iteration of the main loop yields

UdegU=(((((((((((((((((
(((((((
(
( 1 0 0
0 2−𝜌 1
𝜔 −𝜌−𝜔 𝜔 )))))))))))))))))

)))))))
)
)
, J≔

(((((((((((((((((
((((((((((((((
(
( 1 0 0

0 1 0
−𝜔 𝜌+𝜔

2−𝜌 1 )))))))))))))))))
))))))))))))))
)
)
,

T≔

(((((((((((((((((
(((((((((((((((((
((((((((((((((

(

( 1
x2 0 0

− 1
x2 − 1

x
1
x 0

1+ 𝜔+2
(𝜌−2)x +

𝜔+2
(𝜌−2)x2 −1− 𝜔+𝜌

(𝜌−2)x 1 )))))))))))))))))
)))))))))))))))))
))))))))))))))

)

)
, U≔

(((((((((((((((((
((((((((((((((
(
( 1 0 0
0 2−𝜌 1
0 0 (𝜌−3)𝜔−𝜌

𝜌−2 )))))))))))))))))
))))))))))))))
)
) 1

x +O((((((( 1x2)))))))
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and then k∗=3, Δ≔Ξ−1 Id3,

T≔

(((((((((((((((((
(((((((((((((((((
((((((((((((((

(

( 1
x3 0 0

− 1
x3 − 1

x2
1
x2 0

1
x +

𝜔+1
(𝜌−2)x2 +

𝜔+1
(𝜌−2)x3

−1
x − 𝜔+𝜌−1

(𝜌−2)x2
1
x )))))))))))))))))
)))))))))))))))))
))))))))))))))

)

)
, U≔

(((((((((((((((((
((((((((((((((
(
( 1 0 0
0 2−𝜌 1
0 0 (𝜌−3)𝜔−2𝜌+3

𝜌−2 )))))))))))))))))
))))))))))))))
)
) 1

x2
+O((((((( 1x3))))))).

Applying Ξ4 to both T and U, we find the head chopper from Example 3.2.

5.4. Correctness and termination

PROPOSITION 5.7. Let d=deg 𝜙. Consider the value of T at the beginning of the loop and after e
iterations. Then T is a (d, e)-head annihilator.

Proof. We first observe that U=Υ(T) throughout the algorithm. Let us now prove the proposi-
tion by induction over e. The proposition clearly holds for e=0. Assuming that the proposition
holds for a given e, let us show that it again holds at the next iteration. Consider the values of T
and U at the beginning of the loop and after e iterations. Let k be maximal such that deg Tk,⋅<d.
From the induction hypothesis, it follows that the first k rows of UdegU are𝕂(𝜔)-linearly inde-
pendent, whence the matrix J is of the form

J=(((((((((((( Idk 0
∗ ∗ )))))))))))).

Now Proposition 5.4 implies that J T is still a (d, e)-head annihilator. Since the last r − k∗
rows of (J U)deg(JU) vanish, Proposition 5.5 also implies that Δ(J T) is a (d, e+1)-head anni-
hilator. This completes the induction. Notice also that k∗⩾ k is maximal with the property
that deg (Δ(JT))k∗,⋅<d. −−

− −

PROPOSITION 5.8. Assume (for contradiction in Theorem 5.9 below) that the algorithm Head-
Chopper does not terminate for some given input (𝜙,A). Then there exists a non-zero row matrix
R∈𝜙𝕂(𝜔)[[x−1]]1×r with Υ(R)=0. In particular, (Ry)′=0.

Proof. Assume that HeadChopper does not terminate. Let Te be the value of T at the begin-
ning of the main loop after e iterations. Also let Je and Δe be the values of J and Δ as computed
during the (e+1)-th iteration.

Let ke be maximal such that deg Tke,⋅<d≔deg 𝜙. Using the observation made at the end of
the above proof, we have k0⩽k1⩽⋅ ⋅ ⋅, so there exist an index e0∈ℕ and k∞<r with ke=k∞ for
all e⩾ e0. Furthermore,

Je=(((((((((((( Idke 0
∗ ∗ )))))))))))), Δe=(((((((((((((( Idke+1Ξ−1 0

0 Idr−ke+1 )))))))))))))),and

Te+1 = Δe(Je Te).

Moreover, for e⩾ e0, the row sweeper Je is even of the form

Je = (((((((((((( Idk∞ 0
∗ Idr−k∞ )))))))))))).

By induction on e ∈ℕ, we observe that Te ∈ 𝜙𝕂(𝜔)[x−1]r×r. For e ⩾ e0, we also have
deg (𝜙−1Te)j,⋅⩽ e0− e for all j⩽k∞, again by induction. Consequently, deg (𝜙−1Te+1−𝜙−1Te)⩽
e0− e for all e⩾ e0, which means that the sequence 𝜙−1Te formally converges to a limit 𝜙−1T∞
in 𝕂(𝜔)[[x−1]]r×r. By construction, the first k∞ rows of T∞ are zero, its last r − k∞ rows have
rank r− k∞, and Υ(T∞)=0. We conclude by taking R to be the last row of T∞. −−

− −
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THEOREM 5.9. The algorithm HeadChopper terminates and returns a head chopper for (1.1).

Proof. We already observed that U=Υ(T) throughout the algorithm. If the algorithm ter-
minates, then it follows that T is indeed a head chopper for (1.1). Assume for contradiction
that the algorithm does not terminate and let R∈𝜙𝕂(𝜔)[[x−1]]1×r be such that Υ(R)=0. Let
y∈𝕃r×r be a fundamental system of solutions to the equation (1.1), where 𝕃 is some differ-
ential field extension of 𝕂(𝜔)((x−1)) with constant field 𝕂(𝜔). From Υ(R) = 0 we deduce
that (R y)′=0, whence Ry∈𝕂(𝜔)r. More generally, Υ(Ξ−j R)=0 whence ((Ξ−j R)y)′=0 and
(Ξ−j R) y∈𝕂(𝜔)r for all j∈ℕ. Since the space 𝕂(𝜔)r has dimension r over 𝕂(𝜔), it follows
that there exists a polynomial Λ∈𝕂(𝜔)[Ξ−1] of degree at most r in Ξ−1 such that Λ(R)y=0
andΛ(R)≠0. Since y is a fundamental system of solutions, we have det y≠0. This contradicts
the existence of an element Λ(R)∈𝕃r∖{0} with Λ(R)y=0. −−

− −

Remark 5.10. In [18, section 6], we proved a polynomial degree bound for the computed head
chopper. Sharper bounds have been proven in [4, 19] and the complexity of reduction-based
creative telescoping has been further investigated in [19].

Note that one should not confuse the existence of polynomial degree bounds for head
choppers with the absence of such bounds for exceptional indices. Indeed, Example 3.6 shows
how to obtain arbitrarily high exceptional indices n for equations of bounded degree and
order. Yet, the degrees of the corresponding head choppers are also bounded, as shown in
Example 3.2.

Remark 5.11. As stated in the introduction, the construction of head choppers bears some
similarities with Abramov's EG-eliminations [1]. Let n be an indeterminate and let S: n↦
n+1 be the shift operator. Then EG-eliminations can be used to compute normal forms for
linear difference operators in 𝕂r×r(n)[S]. The rank of the leading (or trailing coefficient) of
the normal form is equal to the rank of the original operator. Abramov achieves such normal
form computations by transforming the problem into a big linear algebra problem over 𝕂(n).
Our algorithm for the computation of head choppers is different in two ways: the operatorΞ−1

is not a shift operator and we work directly over 𝕂(𝜔)[Ξ−1].

6. TAIL REDUCTION

Head reduction essentially allows us to reduce the valuation in x−1 of elements in 𝕄 via the
subtraction of elements in ∂𝕄. Tail reduction aims at reducing the valuation in x−𝛼 in a sim-
ilar way for any 𝛼 in the algebraic closure �̂� of𝕂. It is well known that holonomy is preserved
under compositions with rational functions. Modulo suitable changes of variables, this allows
us to compute tail reductions using the same algorithms as in the case of head reduction. For
completeness, we will detail in this section how this works.

6.1. Tail choppers
More precisely, let 𝜔∈𝕂, 𝛼∈�̂� and T∈𝜙�̂�(𝜔)[x, (x−𝛼)−1]r×r. We may regard T as a Laurent
polynomial in x−𝛼 with matrix coefficients Tk∈�̂�(𝜔)r×r:

T = �
k∈ℤ

Tk (x−𝛼)k. (6.1)

If T≠0, then we denote its valuation in x−𝛼 by val𝛼 T=min{k∈ℤ:Tk≠0}. Setting

U = Υ𝛼(T) ≔ 𝜙−1TA+T ′+𝜔(x−𝛼)−1T, (6.2)
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the equation (1.1) implies

(C(x−𝛼)𝜔Ty)′ = C (x−𝛼)𝜔Uy, (6.3)

for any matrix C∈�̂�(𝜔)r×r. The matrix U can also be regarded as a Laurent polynomial with
matrix coefficients Uk∈�̂�(𝜔)r×r. We say that T is a tail chopper at 𝛼 for (1.1) if Uval𝛼U is an
invertible matrix. In fact, it suffices to consider tail choppers at the origin:

LEMMA 6.1. Let T ∈𝜙�̂�(𝜔)[x, (x − 𝛼)−1]r×r, where 𝛼∈�̂�. Define T̃(x, 𝜔)=T(x+𝛼,𝜔), �̃�(x)=
𝜙(x+𝛼) and Ã(x)=A(x+𝛼). Then T is a tail chopper at 𝛼 for (1.1) if and only if T̃ is a tail chopper
at 0 for �̃� ỹ′= Ã ỹ.

Proof. Setting Ũ=Υ0(T̃), we have Ũ(x)=U(x+𝛼). Consequently, val𝛼 Ũ=val0U and Ũval𝛼Ũ=
Uval0U. −−

− −

There is also a direct link between head choppers and tail choppers at 0 via the change of
variables x↭x−1.

LEMMA 6.2. Let T∈𝜙�̂�(𝜔)[x, x−1]r×r. Setting x̃= x−1, we define �̃�(x̃)=−x2𝜙(x), Ã(x̃)=A(x)
and T̃(x̃, 𝜔) =T(x,−𝜔). Then T is a tail chopper at 0 for (1.1) if and only if T̃ is a head chopper
for �̃� ỹ′= Ã ỹ.

Proof. Setting Ũ=Υ(T̃), we have

Ũ(x̃,−𝜔) = �̃�(x̃)−1 T̃(x̃,−𝜔) Ã(x̃)+ ∂ T̃
∂ x̃ (x̃,−𝜔)−𝜔 x̃−1 T̃(x̃,−𝜔)

= −x2𝜙(x)−1T(x,𝜔)A(x)−x2T ′(x,𝜔)−𝜔xT(x,𝜔)
= −x2 (𝜙(x)−1T(x,𝜔)A(x)+T ′(x,𝜔)+𝜔x−1T(x,𝜔))
= −x2U(x,𝜔).

Consequently, deg Ũ=val0 U+2 and Ũdeg Ũ(−𝜔)=Uval0U(𝜔). −−

− −

Finally, the matrix 𝜙Idr is a tail chopper at almost all points 𝛼:

LEMMA 6.3. Let 𝛼∈�̂� be such that 𝜙(�̃�)≠0. Then 𝜙Idr is a tail chopper for (1.1) at 𝛼.

Proof. If 𝜙(�̃�)≠0 and T=𝜙Idr, then (6.2) becomes U=𝜔(x−𝛼)−1𝜙Idr+O((x−𝛼)0) for x→𝛼.
In particular, val𝛼 U=−1 and Uval𝛼(U)=𝜔𝜙(𝛼) Idr is invertible in �̂�(𝜔)r×r. −−

− −

6.2. Computing tail choppers
Now consider a monic square-free polynomial 𝜓∈𝕂[x] and assume that we wish to compute
a tail chopper for (1.1) at a root 𝛼 of 𝜓 in �̂�. First of all, we have to decide how to conduct
computations in �̂�. If 𝜓 is irreducible, then we may simply work in the field 𝕃=𝕂[x]/(𝜓)
instead of �̂� and take 𝛼 to be the residue class of x, so that 𝛼 becomes a generic formal root of𝜓.
In general, factoring 𝜓 over 𝕂 may be hard, so we cannot assume 𝜓 to be irreducible. Instead,
we rely on the well known technique of dynamic evaluation [13].

For convenience of the reader, let us recall that dynamic evaluation amounts to performing
all computations as if 𝜓 were irreducible and 𝕃=𝕂[x]/(𝜓) were a field with an algorithm for
division. Whenever we wish to divide by a non-zero element amod𝜓 (with a∈𝕂[x]) that is
not invertible, then gcd(a,𝜓) provides us with a non-trivial factor of 𝜓. In that case, we launch
an exception and redo all computations with gcd(a,𝜓) or 𝜓/gcd(a,𝜓) in the role of 𝜓.
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So let 𝛼∈𝕃 be a formal root of 𝜓 and define x̃=(x−𝛼)−1, ỹ(x̃)=y(x), �̃�(x̃)=−(x−𝛼)2𝜙(x)
and Ã(x̃)=A(x). Let T̃(x̃,𝜔) be a head chopper for the equation �̃� ỹ′= Ã ỹ, as computed using
the algorithm from section 5.3. Then T(x,𝜔)= T̃(x̃,−𝜔) is a tail chopper at 𝛼 by Lemmas 6.1
and 6.2.

6.3. Tail reduction
Let T be a tail chopper for (1.1) at 𝛼∈ �̂�. Let x̃=(x − 𝛼)−1, ỹ(x̃)= y(x), �̃�(x̃)=−(x − 𝛼)2𝜙(x)
and Ã(x̃)=A(x) be as above, so that T̃(x̃, 𝜔)=T(x,−𝜔), is a head chopper for the equation
�̃� ỹ′ = Ã ỹ. In particular, rewriting linear combinations 𝜆 y with 𝜆∈�̂�[(x − 𝛼)−1]1×r as linear
combinations �̃� ỹ with �̃�∈�̂�[x̃]1×r, we may head reduce �̃� ỹ as described in section 3.2. Let �̃�∈
�̂�[x̃]1×r be such that �̃� ỹ=⌈�̃� ỹ⌉. Then we may rewrite �̃� ỹ as an element 𝜇y of �̂�[(x−𝛼)−1]1×ry.
We call 𝜇y the tail reduction of 𝜆y at 𝛼 and write 𝜇y=⌊𝜆y⌋𝛼.

Let ℐ̃ be the finite set of exceptional indices for the above head reduction and ℐ=−ℐ̃ . Set-
ting U=Υ𝛼(T) and 𝜏=val𝛼 U, it can be checked that the following algorithm computes the tail
reduction at 𝛼:

Algorithm TailReduce(λ, α)
Input: 𝜆∈�̂�[(x−𝛼)−1]1×r

Output: the tail reduction ⌊𝜆⌋𝛼∈�̂�[(x−𝛼)−1]1×r of 𝜆 at 𝛼
repeat

if 𝜆i+𝜏=0 for all i∈(−ℕ)∖ℐ then return 𝜆
Let i∈(−ℕ)∖ℐ be minimal with 𝜆i+𝜏≠0
c≔𝜆i+𝜏U𝜏

−1(i)
𝜆≔𝜆− c (x−𝛼)i U(i)

7. GLOBAL REDUCTION

7.1. Gluing together the head and tail reductions
Let us now study how head and tail reductions can be glued together into a global confined
reduction on𝕄=𝕂[x,𝜙−1]1×ry. More generally, we consider the case when𝕄=𝕂[x,𝜓−1]1×ry,
where 𝜓∈𝕂[x] is a monic square-free polynomial such that 𝜙 divides 𝜓t for some t∈ℕ.

We assume that we have computed a head chopper for (1.1) and tail choppers T𝛼i for (1.1)
at each the roots 𝛼1, . . . , 𝛼ℓ of 𝜓 in �̂�. In particular, we may compute the corresponding head
and tail reductions

⌈⋅⌉ : �̂�[x]1×ry → �̂�[x]1×r y
⌊⋅⌋𝛼i : �̂�[(x−𝛼i)−1]1×ry → �̂�[(x−𝛼i)−1]1×r y, (i=1, . . . , ℓ).

Given an element 𝜎 of the Galois group of �̂� over 𝕂, we may also assume without loss of
generality that the tail choppers were chosen such that T𝜎(𝛼i)=𝜎(T𝛼i) for all i (note that this is
automatically the case when using the technique of dynamic evaluation from section 6.2).

Partial fraction decomposition yields �̂�-linear mappings

𝜌𝛼i: �̂�[x,𝜓−1]1×r→(x−𝛼i)−1�̂�[(x−𝛼i)−1]1×r

and
𝜌∞: �̂�[x,𝜓−1]1×r→�̂�[x]1×r

with

𝜆 = 𝜌∞(𝜆)+𝜌𝛼1(𝜆)+ ⋅ ⋅ ⋅ +𝜌𝛼ℓ(𝜆),
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for all 𝜆∈�̂�[x,𝜓−1]1×r. This allows us to define a global reduction [𝜆y] of 𝜆y by

[𝜆y] = ⌈𝜌∞(𝜆)y⌉+⌊𝜌𝛼1(𝜆)y⌋𝛼1+ ⋅ ⋅ ⋅ +⌊𝜌𝛼ℓ(𝜆)y⌋𝛼ℓ. (7.1)

THEOREM 7.1. The formula (7.1) defines a confined reduction on 𝕄.

Proof. Let 𝜎 be an automorphism of �̂� over 𝕂. Then 𝜎 naturally extends to �̂�[x,𝜓−1]1×r y by
setting 𝜎(𝜆y)=𝜎(𝜆)y for all 𝜆∈�̂�[x,𝜓−1]1×r. Given 𝜆∈𝕂[x,𝜓−1]1×r and i∈{1, . . . , ℓ}, we have
𝜌𝜎(𝛼i)(𝜆)=𝜎(𝜌𝛼i(𝜆)). By our assumption that T𝜎(𝛼i)=𝜎(T𝛼i), it follows that

⌊𝜌𝜎(𝛼i)(𝜆)y⌋𝜎(𝛼i) = 𝜎(⌊𝜌𝛼i(𝜆)y⌋𝛼i).

Summing over all i, we get [𝜆y]=𝜎([𝜆y]). Since this equality holds for all automorphisms 𝜎,
we conclude that [𝜆y]∈𝕂[x, 𝜓−1]1×r y. Similarly, given 𝜉 ∈�̂�[x, 𝜓−1]1×r y with y − [𝜆y]=∂𝜉 ,
we have 𝜎(𝜉)=𝜎(y− [𝜆y])=y− [𝜆y]=𝜉 for all automorphisms 𝜎, whence 𝜉 ∈𝕄. This shows
that (7.1) defines a reduction on 𝕄. For any 𝜇y in the image of the restriction of [⋅] to 𝕄, we
finally observe that val𝛼1 𝜇, . . . , val𝛼ℓ 𝜇, and deg 𝜇 are uniformly bounded, by construction. In
other words, the reduction [⋅] is confined. −−

− −

7.2. Machine computations
For actual implementations, one may perform the computations in extension fields
𝕃=𝕂[x]/(𝜒), where 𝜒 is an irreducible factor of 𝜓 (or simply a square-free factor, while
relying on dynamic evaluation as in section 6.2). Let 𝛽1,...,𝛽s be the roots of such an irreducible
factor 𝜒 and assume that we wish to compute ⌊𝜌𝛽1(𝜆)y⌋𝛽1+⋅⋅⋅+⌊𝜌𝛽s(𝜆)y⌋𝛽s for 𝜆∈𝕂[x,𝜓−1]1×r.
Instead of computing each ⌊𝜌𝛽j(𝜆)y⌋𝛽j separately, one may use the formula

⌊𝜌𝛽1(𝜆)y⌋𝛽1+ ⋅ ⋅ ⋅ +⌊𝜌𝛽s(𝜆)y⌋𝛽s = Tr𝕃/𝕂(⌊𝜌𝛽𝕃(𝜆)y⌋𝛽𝕃),

where 𝛽𝕃≔ x mod 𝜒 is the canonical root of 𝜒 in 𝕃 and Tr𝕃/𝕂(𝜇 y)= Tr𝕃/𝕂(𝜇) y for all
𝜇∈𝕃[x,𝜓−1]1×r.

Example 7.2. Let 𝛾 be a fixed parameter. Consider the function

y = (x2+u)𝛾,

which satisfies the differential equation

y′ = 2x𝛾
x2+u

y.

This equation admits two singularities at x=±𝛼, where 𝛼2+u=0. Any non-zero element of
�̂�(𝜔)[x, (x−𝛼)−1] is a tail chopper at 𝛼. Taking T=x+𝛼 as our tail chopper, we have

(c (x+𝛼)(x−𝛼)𝜔y)′ = c (x−𝛼)𝜔−1(2(𝛾+𝜔)𝛼+(2𝛾+1+𝜔)(x−𝛼))y

for all c∈�̂�[(x−𝛼)−1] and 𝜔∈ℤ. Given

𝜆 = 𝜆s
(x−𝛼)s +

𝜆s−1
(x−𝛼)s−1+ ⋅ ⋅ ⋅ +𝜆0,

its tail reduction at x=𝛼 is therefore recursively defined by

⌊𝜆⌋𝛼 = {{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{ 𝜆 if s=0
�𝜆− 𝜆s

(x −𝛼)s − 2𝛾+2− s
2(𝛾+1−s)𝛼

𝜆s

(x −𝛼)s−1�𝛼 if s>0.

Now assume that we wish to compute the tail reduction

⌊𝜌𝛼(𝜆)y⌋𝛼+⌊𝜌−𝛼(𝜆)y⌋−𝛼
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of
𝜆 = 1

(x2+u)2 = 1
4𝛼2

1
(x−𝛼)2 − 1

4𝛼3
1

x−𝛼 +
1
4𝛼2

1
(x+𝛼)2+

1
4𝛼3

1
x+𝛼

with respect to both roots 𝛼 and −𝛼 of x2+u. We have

⌊𝜌𝛼(𝜆)y⌋𝛼 = ⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊ 1
4𝛼2

1
(x−𝛼)2

− 1
4𝛼3

1
x−𝛼⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋𝛼

= ⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊− 1
4𝛼2

2𝛾+2−2
2(𝛾+1−2)𝛼

1
x−𝛼 − 1

4𝛼3
1

x−𝛼⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋𝛼 = ⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊ 1−2𝛾
4𝛼3(𝛾−1)

1
x−𝛼⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋𝛼

= ⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊ 2𝛾−1
4𝛼3(𝛾−1)

2𝛾+2−1
2(𝛾+1−1)𝛼⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋𝛼 = ⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊

4𝛾 2−1
8𝛼4 (𝛾 2−𝛾)⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋𝛼

= 4𝛾 2−1
8𝛼4 (𝛾 2−𝛾)

= 4𝛾 2−1
8u2(𝛾 2−𝛾)

.

The above computation holds when considering 𝛼 as a root of the polynomial x2+ u in the
algebraic closure of 𝕂. Exactly the same computation can therefore be used for the other
root −𝛼 of this polynomial. The computation also holds for a generic root 𝛼𝕃 in the algebraic
extension 𝕃=𝕂[x]/(x2+u) and we obtain

⌊𝜌𝛼(𝜆)y⌋𝛼+⌊𝜌−𝛼(𝜆)y⌋−𝛼 = Tr𝕃/𝕂((((((((((((((
4𝛾 2−1

8u2(𝛾 2−𝛾))))))))))))))) = 4𝛾 2−1
4u2 (𝛾 2−𝛾)

.

7.3. Normalizing the reduction
Given the confined reduction [⋅]:𝕄→𝕄 from section 7.1, let us now give a general procedure
how to turn it into a normal confined reduction ⟦⋅⟧:𝕄→𝕄. For this purpose, we assume that
we know a 𝕂-subvector space Ω of 𝕄 with the property that for any f ∈𝕄 with f ′∈[𝕄], we
have f ∈Ω.

Remark 7.3. It can be shown that there exist integers c𝛼1, . . . ,c𝛼ℓ, and c∞ such that we can take

Ω = {𝜆y : val𝛼1 𝜌𝛼1(𝜆)⩾c𝛼1, . . . , val𝛼ℓ 𝜌𝛼ℓ(𝜆)⩾ c𝛼ℓ, deg 𝜌∞(𝜆)⩽ c∞}.

For equations (1.1) of bounded degree and size, Example 3.6 shows that c∞ can become arbi-
trarily large, whence so can the dimension of Ω. For this reason, normal confined reductions
can be computationally expensive, so it is usually preferable to rely on non-normalized reduc-
tions. One way to compute c𝛼1, . . . ,c𝛼ℓ, and c∞ was detailed in [18, sections 6 and 7], but better
approaches have been proposed since [4, 19].

Now let V≔∂Ω∩[𝕄] and let W be a supplement of V in [𝕄] so that [𝕄]=V⊕W. We
may compute bases of V and W using straightforward linear algebra. The canonical 𝕂-linear
projections 𝜋V: [𝕄]→V and 𝜋W: [𝕄]→W with 𝜋V+𝜋W=Id are also computable. We claim
that we may take ⟦ f ⟧≔𝜋W([ f ]) for every f ∈𝕄.

PROPOSITION 7.4. The mapping ⟦⋅⟧:𝕄→𝕄; f ↦𝜋W([ f ]) defines a computable normal confined
reduction on 𝕄.

Proof. The mapping ⟦⋅⟧ is clearly a computable confined reduction on 𝕄. It remains to be
shown that ⟦ f ′⟧=0 for all f ∈𝕄. Now [ f ′]− f ′∈∂𝕄, so [ f ′]∈∂𝕄 and there exists a g∈𝕄
with g′ = [ f ′]. Since g′ ∈ [𝕄], it follows that g∈Ω and g′ ∈∂Ω∩[𝕄]=V. In other words,
[ f ′]=g′∈V and ⟦ f ′⟧=𝜋W([ f ′])=0. −−

− −
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