
Notes on the Truncated Fourier Transform

Joris van der Hoeven

Dépt. de Mathématiques (Bât. 425)
CNRS, Université Paris-Sud

91405 Orsay Cedex
France

Email: joris@texmacs.org

Februari 1, 2005

Errata: December 9, 2008; November 12, 2012

In a previous paper [vdH04], we introduced a truncated version of the classical Fast
Fourier Transform. When applied to polynomial multiplication, this algorithm has the
nice property of eliminating the “jumps” in the complexity at powers of two. When
applied to the multiplication of multivariate polynomials or truncated multivariate
power series, a non-trivial asymptotic factor was gained with respect to the best
previously known algorithms.

In the present note, we correct two errors which slipped into the previous paper
and we give a new application to the multiplication of polynomials with real coeffi-
cients. We also give some further hints on how to implement the TFT in practice.

Keywords: Fast Fourier Transform, jump phenomenon, truncated multiplication,
FFT-multiplication, multivariate polynomials, multivariate power series.

A.M.S. subject classification: 42-04, 68W25, 42B99, 30B10, 68W30.

1. Introduction

Let R ∋ 1/2 be an effective ring of constants (i.e. the usual arithmetic operations +, −
and × can be carried out by algorithm). If R has a primitive n-th root of unity with n=2p,
then the product of two polynomials P , Q ∈R[X] with deg PQ < n can be computed in
time O(n logn) using the Fast Fourier Transform or FFT [CT65]. If R does not admit a
primitive n-th root of unity, then one needs an additional overhead of O(log logn) in order
to carry out the multiplication, by artificially adding new root of unity [SS71, CK91].

Besides the fact that the asymptotic complexity of the FFT involves a large constant
factor, another classical drawback is that the complexity function admits important jumps
at each power of two. These jumps can be reduced by using (k 2p)-th roots of unity for
small k. They can also be smoothened by decomposing (n+ δ)× (n+ δ)-multiplications
as n × n-, n × δ- and (n + δ) × δ-multiplications. However, these tricks are not very
elegant, cumbersome to implement, and they do not allow to completely eliminate the jump
problem. The jump phenomenon becomes even more important for d-dimensional FFTs,
since the complexity is multiplied by 2d whenever the degree traverses a power of two.

In [vdH04], the author introduced a new kind of “Truncated Fourier Transform” (TFT),
which allows for the fast evaluation of a polynomial P ∈ R[X] in any number n of well-
chosen roots of unity. This algorithm coincides with the usual FFT if n is a power of two,
but it behaves smoothly for intermediate values. Moreover, the inverse TFT can be carried
out with the same complexity and the approach generalizes to higher dimensions.

1

http://www.ams.org/mathscinet/search/mscbrowse.html?sk=default&sk=42-04&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=default&sk=68W25&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=default&sk=42B99&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=default&sk=30B10&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=default&sk=68W30.&submit=Search

Unfortunately, two errors slipped into the final version of [vdH04]: in the multivariate
TFT, we forgot certain crossings. As a consequence, the complexity bounds for multi-
plying polynomials (and power series) in d variables of total degree < n only holds when
d = o(log log n). Moreover, the inverse TFT does not generalize to arbitrary “unions of
intervals”.

The present note has several purposes: correcting the above mistakes in [vdH04], pro-
viding further details on how to implement the FFT and TFT in a sufficiently generic
way (and suitable for univariate as well as multivariate computation) and a new exten-
sion to the case of TFTs with real coefficients. Furthermore, a generic implementation of
the FFT and TFT is in progress as part of the standard C++ library Mmxlib of Math-

emagix [vdHea05]. We will present a few experimental results, together with suggestions
for future improvements. More details will be provided in a forthcoming paper and we refer
to [vdH04] for further references.

2. The Fast Fourier Transform

Let R be an effective ring of constants, n=2p with p∈N and ω∈R a primitive n-th root
of unity (i.e. ωn/2=−1). The discrete Fast Fourier Transform (FFT) of an n-tuple (a0,	 ,

an−1)∈Rn (with respect to ω) is the n-tuple (â0,	 , ân−1)=FFTω(a)∈Rn with

âi=
∑

j=0

n−1

ajω
ij.

In other words, âi=A(ωi), where A ∈R[X] denotes the polynomial A= a0+ a1X +
 +

an−1X
n−1. We also say that (â0,	 , ân−1) is the FFT Â of A.

The F.F.T can be computed efficiently using binary splitting: writing

(a0,	 , an−1)= (b0, c0,	 , bn/2−1, cn/2−1),

we recursively compute the Fourier transforms of (b0,	 , bn/2−1) and (c0,	 , cn/2−1)

FFTω2(b0,	 , bn/2−1) = (b̂0,	 , b̂n/2−1) ;

FFTω2(c0,	 , cn/2−1) = (ĉ0,	 , ĉn/2−1).

Then we have

FFTω(a0,	 , an−1) = (b̂0+ ĉ0,	 , b̂n/2−1+ ĉn/2−1ω
n/2−1

b̂0− ĉ0,	 , b̂n/2−1− ĉn/2−1ω
n/2−1).

This algorithm requires n p=n log2n multiplications with powers of ω and 2n p additions
(or subtractions).

In practice, it is most efficient to implement an in-place variant of the above algorithm.
We will denote by [i]p the bitwise mirror of i at length p (for instance, [3]5 = 24 and
[11]5= 26). At step 0, we start with the vector

x0=(x0,0,	 , x0,n−1)= (a0,	 , an−1).

At step s∈{1,	 , p}, we set

(

xs,ims+j

xs,(i+1)ms+j

)

=

(

1 ω[i]sms

1 −ω[i]sms

)(

xs−1,ims+j

xs−1,(i+1)ms+j

)

. (1)

2 Notes on the Truncated Fourier Transform

for all i ∈ {0, 2, 	 , n/ms − 2} and j ∈ {0, 	 , ms − 1}, where ms = 2p−s. Using induction
over s, it can easily be seen that

xs,ims+j=(FFTωms(aj, ams+j ,	 , an−ms+j))[i]s,

for all i∈{0,	 , n/ms− 1} and j ∈{0,	 ,ms− 1}. In particular,

xp,i = â[i]p
âi = xp,[i]p

for all i∈ {0,	 , n− 1}. This algorithm of “repeated crossings” is illustrated in figure 1.

Figure 1. Schematic representation of a Fast Fourier Transform for n = 16. The black dots
correspond to the xs,i, the upper row being (x0,0,	 ,x0,15)=(a0,	 , a15) and the lower row (x4,0,	 ,

x4,15)= (â0, â8, â4, â12,	 , â15).

A classical application of the FFT is the multiplication of polynomials A= a0 +
 +
an−1X

n−1 and B= b0+
 + bn−1X
n−1. Assuming that degAB <n, we first evaluate A

and B in 1, ω,	 , ωn−1 using the FFT:

(A(1),	 , A(ωn−1)) = FFTω(a0,	 , an−1)

(B(1),	 , B(ωn−1)) = FFTω(b0,	 , bn−1)

We next compute the evaluations (A(1)B(1),	 ,A(ωn−1)B(ωn−1))) of AB at 1,	 , ωn−1.
We finally have to recover AB from these values using the inverse FFT. But the inverse
FFT with respect to ω is nothing else as 1/n times the direct FFT with respect to ω−1.
Indeed, for all (a0,	 , an−1)∈Rn and all i∈{0,	 , n− 1}, we have

FFTω−1(FFTω(a))i=
∑

k=0

n−1
∑

j=0

n−1

aiω
(i−k)j=nai, (2)

since
∑

j=0

n−1

ω(i−k)j=0

whenever i � k. This yields a multiplication algorithm of time complexity O(n log n) in
R[X], when assuming that R admits enough primitive 2p-th roots of unity. In the case
that R does not, then new roots of unity can be added artificially [SS71, CK91, vdH02] so
as to yield an algorithm of time complexity O(n logn log logn).

3. The multivariate FFT

Given a multivariate polynomial A∈K[X1,	 ,Xd] with degXi
A<ni=2pi for all i, we may

also consider its FFT with respect to each of its variables:

Âi1,	 ,id=A(ωn1

i1 ,	 , ωnd

id),

Joris van der Hoeven 3

where ωni
is an ni-th root of unity for each i. Usually the ωni

are chosen such that ω2
2=ω1,

ω4
2=ω2, ω8

2=ω3, etc. The multivariate FFT is simply computed by taking the univariate
FFT with respect to each variable.

Instead of using multi-indices (i1, 	 , id) for multivariate FFTs, it is more efficient to

encode A and Â using a single array of size n=n1
 nd=2p. This can be done in several
ways. Assume that we have ordered n1>
 >nd. The lexicographical encoding of the multi-
index (i1,	 , id) is given by

lexn1,	 ,nd
(i1,	 , id)= i1+ i2n1+ i3n1n2+
 + idn1
 nd−1.

The simultaneous encoding of (i1,	 , id) is recursively defined by

simn1,	 ,nd
(i1,	 , id)=hi(id) 2

p−1+
 + hi(i1) 2
p−d+ simn1/2,	 ,nd′/2

(lo(i1),	 , lo(id′)),

where hi(ij) = ij div 2
pj−1, lo(ij) = ij mod 2pj−1 and d′ is maximal with nd′ > 4. For each

i < p1, we denote by di the maximal number with ndi> 2i.

Using one of these encodings, one may use the above in-place algorithm for the com-
putation of the multivariate FFT, when replacing the crossing relation by

(

xs,ims+j

xs,(i+1)ms+j

)

=

(

1 sω[i]sms

1 −sω[i]sms

)(

xs−1,ims+j

xs−1,(i+1)ms+j

)

. (3)

Here

(0ω,	 ,p−1ω)= (ω2,	 , ωnd
, ω2,	 , ωnd−1, 	 , ω2,	 , ωn1)

in case of the lexicographical encoding and

(0ω,	 ,p−1ω)= (ω2, 	d0×, ω2, ω4, 	d1×, ω4, 	 , ωn1, 	dp1−1×, ωn1)

in case of the simultaneous encoding. Translated back into terms of monomials, crossings
at stage s involve monomials M and MYs, where

(Y0,	 , Yp−1)= (Xd
nd/2,	 , Xd, Xd−1

nd−1/2,	 , Xd−1, 	 ,X1
n1/2,	 , X1)

in case of the lexicographical encoding and

(Y0,	 , Yp−1)= (Xd0

nd0
/2
,	 , X1

n1/2, Xd1

nd1
/4
,	 ,X1

nd1
/4
, 	 , Xdp1−1,	 , X1)

in case of the simultaneous encoding.

4. Implementing the FFT

A challenge for concrete implementations of the FFT in computer algebra systems is to
achieve both optimal speed and genericity. Also, we would like to allow for univariate
as well as multivariate FFTs. A first attempt in this direction is now part of Mmxlib,
the standard C++ library of Mathemagix [vdHea05]. The genericity is obtained using
templates. Let us comment some aspects of our implementation.

Roots of unity. There exist at least three important models for the computation with
roots of unity during the FFT (see also the explanations and discussion at the end of this
section):

1. The Schönhage-Strassen model.

4 Notes on the Truncated Fourier Transform

2. The nice prime number model.

3. The floating-point model.

In our implementation, we have created a special template class fft_root<C> for roots of
unity in C, which may be specialized to any of the above models. The class fft_root<C>
essentially implements methods for multiplication and multiplication with elements of C.

The FFT-profile. All necessary data for an FFT of length n = 2p are stored in a
class fft_transformer<C>. This comprises the roots of unity 0ω, 	 ,p−1 ω for the cross

relations (3) and precomputations of 1, ω, 	 , ωn′−1, where n′ = 2p
′

is the highest order

among one of the iω. These data will be called the FFT-profile.

Of course, the precomputation of 1, ω,	 , ωn′−1 requires some additional space. Never-
theless, this does not harm if n′ is significantly smaller than n (say n′6n/4) or when the
encoding of roots of unity requires significantly less space than storing elements of C (for
instance, in the Schönhage-Strassen model, it suffices to store the shifts). In the remaining

case, some space may be saved by precomputing only 1, ω4, 	 , ωn′−4 and by computing
the remaining values only on demand during the two last steps.

It should also be noticed that we really precompute the array

ω[0]n′, ω
−[0]p′, ω

[2]p′, ω
[2]p′, ω

[4]p′, ω
[4]p′,	 , ω

[n′−2]p′, ω
−[n′−2]p′ (4)

There are several reasons for doing so. First of all, we really need the binary mirrored

power ω[i]s in the cross relation (3). Secondly, ω[2i+1]n′ = −ω[2i]n′ is easily deduced

from ω[2i]n′. Finally, precomputation of the ω−[2i]n′ is useful for the inverse transform.

Partial FFT steps. The core of the FFT is an efficient implementation of one FFT
step, i.e. carrying out the cross relations (3) for ims+ j ∈{0,	 , n− 1} and fixed s. More
generally, for the purpose of preservation of locality (see below) and the TFT (see next
sections), it is interesting to allow for ranges ims+ j ∈ {a 2r,	 , (a+1) 2r− 1} with r < p

and a∈{0,	 , 2p−r−1}. This key step should be massively inlined and loop-unrolled. For
special types C and fft_root<C>, the operations in C and fft_root<C> may be written in

assembler. Notice that the sω[i]sms involved in the cross-relations correspond to a subarray
of (4).

Preservation of locality. For very large n, the cross relations (3) typically involve data
which are stored at locations which differ by a multiple of the cache size. Consequently,
the FFT may give rise to a lot of cache misses and swapping. One remedy to this problem
is to divide the FFT in two (or more) parts. The first part regroups the first P = ⌊p/2⌋

steps. For each i∈{0,	 , n− 1}, we collect the data ai, aN+i,	 , an−N+i with N =2P in an
array stored in contiguous, and perform the FFT on this array. After putting the results
back at the original places, we proceed as usual for the remaining ⌈p/2⌉ steps.

At present, this strategy has not yet been implemented in Mmxlib, since we noticed
no substantial slow-down due to cache misses on our computer. However, when memory
fills up, we did observe significant swapping, so the above trick might be used in order
to obtain a good performance even in critical cases. Also, we currently only tested our
implementation with coefficients modulo 3 ·230+1. It may be that the cost of cache misses
is negligible w.r.t. the cost of multiplications and divisions modulo this number.

Joris van der Hoeven 5

Choosing the appropriate FFT-model. In the Schönhage-Strassen model, we recall
that multiplications with roots of unity simply correspond to shiftings, which leads to
almost optimal speed. However, the inner FFT multiplication step usually becomes expen-
sive in this model. Indeed, in order to obtain a large number of roots of unity, one has
to allow for large constants in C. Nevertheless, given a number 2b − 1 which fits into
a machine word, it should be noticed that Schönhage-Strassen’s method still provides
b-th roots of unity. Therefore, the inner multiplication step is efficient for certain higher
dimensional FFTs. Moreover, in this case, one may exploit the fact that multiplications
modulo 2b− 1 are fast.

On the other hand, the nice prime number and floating-point models admit many roots
of unity, but genuine multiplications (and divisions) have to be carried out during the
FFT step. In the nice prime number model, one computes modulo a prime number like
p=3 ·230+1, which has many 2i-th roots of unity, yet still fits into a single machine word.
One may also use several such prime numbers, in combination with Chinese remaindering.
In the floating-point model, one uses floating point approximations of complex numbers.
This is particularly useful if fast floating point arithmetic is available, but one always has
to carefully deal with rounding errors.

In practice, it follows that the choice of an optimal model for the FFT depends very
much on the application. When using the FFT for multiplication, a general rule of the
dumb is to balance the costs of the FFT-step and the inner multiplication step. If the inner
multiplication step is carried out just once, then Schönhage-Strassen’s model is usually
optimal. This is for instance the case when multiplying two large integers. If one FFT cor-
responds to several inner multiplications, as in the case of matrix multiplication with large
integer coefficients, one should opt for the nice prime or floating-point model, depending
on the efficiency of division, floating-point operations and the available amount of space.

In between, it may sometimes be useful to use Schönhage-Strassen’s method with cube
roots (instead of square roots) of the number of digits (or degree) [vdH02, Section 6.1.3].
Similarly, one may force an extra iteration (i.e. immediately use fourth roots, but loose
an additional factor 2). Finally, in the case of multivariate FFTs (we consider that large
integer coefficients account for an additional dimension), one may artificially generate
additional roots of unity. For instance, if R has a 2p-th root of unity ω, then one may
multiply bivariate polynomials in R[x, y]/(x2

p

− 1, y2
p+1

− 1), by using x as a 2p-th root
of ω during the FFT w.r.t. y.

5. The Truncated Fourier Transform

Let n=2p, l∈{n/2+1,	 ,n} and let ω∈R be a primitive n-th root of unity. The Truncated
Fourier Transform (TFT) from [vdH04, Section 3] takes a tuple (a0,	 , al−1) on input and
produces (ã0, 	 , ãl−1) with ãi = â[i]p for all i. More generally, if S is a subset of {0, 	 ,

n− 1} and a:S→R, then we define ã=TFTS ,ω(a) by

ã:S � R

i � ãi= â[i]p=
∑

j∈S

ajω
j [i]p

Even more generally, one may select a target subset T of {0,	 , n− 1} which is different
from S , and define ã=TFTS→T ,ω(a) by

ã:T � R

i � ãi= â[i]p=
∑

j∈S

ajω
j [i]p

6 Notes on the Truncated Fourier Transform

In order to compute the TFT, we simply consider the computation graph of a com-
plete FFT and throw out all computations which do not contribute to the result ã (see
figures 2, 3 and 4). If the set S is “sufficiently connected”, then the cost of the com-
putation of ã isO((|S |+|T |) p). For instance, for S={0,	 , l−1}, we have proved [vdH04]:

Theorem 1. Let n=2p, l6n and let ω ∈R be a primitive n-th root of unity in R. Then
the TFT of an l-tuple (a0,	 , al−1) w.r.t. ω can be computed using at most l p+n additions
(or subtractions) and ⌈(l p+n)/2⌉ multiplications with powers of ω.

Figure 2. Schematic representation of a TFT for n= 16 and l= 11.

Figure 3. Schematic representation of a TFT for n= 16 and S = {2, 3, 4, 5, 8, 9, 10}.

Figure 4. Schematic representation of an asymmetric TFT for n= 16 with S={2,3,4,5,8,9,10}
and T = {7, 8, 9, 12, 13, 14}.

6. Inverting the Truncated Fourier Transform

In order to use the TFT for the multiplication of numbers, polynomials or power series,
we also need an algorithm to compute the inverse transform. In this section, we give
such an algorithm in the case when T = S and when S is an initial segment for the
(partial) “bit ordering 4” on {0,	 , n− 1}: given numbers i= i0+ i1 2+
 + ip−1 2p−1 and

j= j0+ j1 2+
 + jp−1 2
p−1 (with ik, jk∈{0, 1}), we set i4 j if ik6 jk for all k. We recall

that an initial segment of {0,	 , n− 1} is a set S with a∈S ∧ b4 a⇒ b∈S .

Joris van der Hoeven 7

The inverse TFT is based on the key observation that the cross relation can also be
applied to compute “one diagonal from the other diagonal”. More precisely, given a relation

(

c

d

)

=

(

1 α

1 −α

)(

a

b

)

, (5)

where α=ωi for some i, we may clearly compute (c, d) as a function of (a, b) and vice versa

(

a

b

)

= 2−1

(

1 1

α−1 −α−1

)

(

c

d

)

, (6)

but we also have
(

d

a

)

=

(

1 −2α
1 −α

)(

c

b

)

(7)

(

c

b

)

=

(

−1 2

−α−1 α−1

)

(

d

a

)

(8)

Moreover, these relations only involve shifting (multiplication and division by 2), additions,
subtractions and multiplications by roots of unity.

In order to state our in-place algorithm for computing the inverse TFT, we will need
some more notations. At the very start, we have ã:S→R and b:S →R on input, where S
is the complement of S in N = {0,	 , n− 1} and b is the zero function. Roughly speaking,

the algorithm will replace ã by its inverse TFT a and b by its direct TFT b̃ . In the actual
algorithm, the array b will be stored in a special way (see the next section) and only a part
of the computation of b̃ will really be carried out.

Our algorithm proceeds by recursion. In the recursive step, N is replaced by a subset
of {0,	 , n− 1} of the form {i 2n−s,	 , (i+ 1) 2n−s− 1}, where s is the current step and
i ∈ {0, 	 , 2s − 1}. The sets S and S will again be subsets of N with N = S ∐ S , and

S − i 2n−s is recursively assumed to be an initial segment for the bit ordering. Given a

subset A of S, we will denote A↓=A∩N ↓ and A↑=A∩N ↓, where

N ↓ = {2 i 2n−s−1,	 , (2 i+1) 2n−s−1− 1}

N ↑ = {(2 i+1) 2n−s−1,	 , (2 i+2) 2n−s−1− 1}.

Similarly, given u:A→R, we will denote by u↓ and u↑ the restrictions of u to A↓ resp. A↑.
We now have the following recursive in-place algorithm for computing the inverse TFT
(see figure 5 for an illustration of the different steps).

Algorithm ITFT(ã:S→R, b:S →R, s)

If s= p or S =∅ then return

If S =∅ then apply the partial inverse FFT on ã and return

For i∈S ↓, cross bi with bi+ms
using (5)

ITFT(ã↓, b↓, s+1)

For i∈S↓∩ (S ↑−ms), cross ãi with bi+ms
using (7)

ITFT(ã↑, b↑, s+1)

For i∈S↓∩ (S↑−ms), cross ãi with ãi+ms
using (6)

8 Notes on the Truncated Fourier Transform

Figure 5. Schematic representation of the recursive computation of the inverse TFT for n= 16
and S={0, 1, 2,3,4,5,8, 9,10}. The different images show the progression of the known values xi,j

(the black dots) during the different computations at stage s= 0. Between the second and third
image, we recursively apply the algorithm, as well as between the fourth and fifth image.

Applying the algorithm for S = {0,	 , l− 1} with n/26 l < n, we have

Theorem 2. Let n=2p, l6n and let ω ∈R be a primitive n-th root of unity in R. Then
the l-tuple (a0,	 , al−1) can be recovered from its TFT w.r.t. ω using at most l p+n shifted
additions (or subtractions) and ⌈(l p+n)/2⌉ multiplications with powers of ω.

Remark 3. Even though it seems that the linear transformation TFTS ,ω: a � ã has a
non-zero determinant for any S, an algorithm of the above kind does not always work.
The simplest example when our method fails is for n=4 and S = {1, 2}. Nevertheless, the
condition that S is an initial segment for the bit ordering on {0,	 ,n−1} is not a necessary
condition. For instance, a slight modification of the algorithm also works for final segments
and certain more general sets like S={0,1, 3,4, 5,7} for n=8. We will observe in the next
section that the bit ordering condition on S is naturally satisfied when we take multivariate

TFTs on initial segments of Nd.

7. The multivariate TFT

Let n1 = 2p1 >
 > nd = 2pd and let ωni
∈R be a primitive ni-th root of unity for each i.

Given subsets S , T of N = {0,	 , n1− 1} ×
 × {0,	 , nd − 1} and a mapping a: S →R,
the multivariate TFT of a is a mapping ã=TFTS→T ,ωn1,	 ,ωnd

(a): T →R defined by

ã: T � R

(i1,	 , id) � ãi1,	 ,id=
∑

(j1,	 ,jd)∈S

aj1,	 ,jdωn1

j1[i1]p1
 ωnd

jd[id]pd

See figure 6 for an example with T = S in dimension d = 2. The multivariate TFT and
its inverse are computed in a similar way as in the univariate case, using one of the
encodings from see section 3 of tuples in N by integers in {0, 	 , n1
 nd − 1} and using

the corresponding FFT-profile determined by 0ω,	 ,p−1ω instead of ωn/2, ωn/4,	 , ω.

Joris van der Hoeven 9

We generalize the bit-ordering4 on sets of the form {0,	 ,2p−1} to setsN of indices by

(i1,	 , id)4 (j1,	 , jd)⇔ i14 j1∧
 ∧ id4 jd.

If φ is one of the encodings lexn1,	 ,nd
or simn1,	 ,nd

from section 3, then it can be checked
that

(i1,	 , id)4 (j1,	 , jd)⇔ φ(i1,	 , id)4 φ(j1,	 , jd)

If T =S is an initial segment for the bit ordering, this ensures that the inverse TFT also
generalizes to the multivariate case.

f0,5

f0,4 f1,4

f0,3 f1,3 f2,3

f0,2 f1,2 f2,2 f3,2

f0,1 f1,1 f2,1 f3,1 f4,1

f0,0 f1,0 f2,0 f3,0 f4,0 f5,0

�
f(1, ω3)

f(1, ω5) f(ω4,ω5)

f(1, ω6) f(ω4,ω6) f(ω2,ω6)

f(1, ω2) f(ω4,ω2) f(ω2,ω2) f(ω6,ω2)

f(1, ω4) f(ω4,ω4) f(ω2,ω4) f(ω6,ω4) f(ω5,ω4)

f(1, 1) f(ω4, 1) f(ω2, 1) f(ω6, 1) f(ω5, 1) f(ω3, 1)

Figure 6. Illustration of a TFT in two variables (ω=ω8).

From the complexity analysis point of view, two special cases are particularly inter-
esting. The first block case is when S={0,	 , l1−1}×
 ×{0,	 , ld−1} with ni/2<li6ni

for all i. Then using the lexicographical encoding, the multivariate TFT can be seen as a
succession of d univariate TFTs whose coefficients are mappings c:Si→R, with

Si= {0,	 , l1− 1}×
 ×{0,	 , li−1− 1}× {0,	 , li+1− 1}×
 ×{0,	 , ld− 1}.

Setting n=n1
 nd, l= l1
 ld and p= p1
 pd, theorems 1 and 2 therefore generalize to:

Theorem 4. With the above notations, the direct and inverse TFT of a mapping a:S→R
can be computed using at most σ = l (p+

n1

l1
+
 +

nd

ld
) shifted additions (or subtractions)

and ⌈σ/2⌉ multiplications with powers of the ωi.

Remark 5. The power series analogue of the block case, i.e. the problem of multiplication

in the ring A=R[z1,	 , zd]/(z1
l1,	 , zd

ld) is also an interesting. The easiest instance of this
problem is when l1 =
 = ld = l = 2p for some p. In that case, we may introduce a new

variable t and compute in R[z1,	 , zd]/(z1
l − t,	 , zd

l − t, tk− 1) instead of A, where k is the
smallest power of two with k>d+1. This gives rise to yet another FFT-profile of the form

(ωkl,	 , ω2l, ωl,	 , ω,	 , ωl,	 , ω) and a complexity in O(d ld log ld). The trick generalizes
to the case when the li are all powers of two, but the general case seems to require non-
binary FFT steps.

10 Notes on the Truncated Fourier Transform

The other important simplicial case is when n1 =
 = nd and S = {(i1, 	 , id):
i1 +
 + id < l} for some fixed l with n1/2 < l 6 n1 (and more generally, one may
consider weighted degrees). In this case, we choose the simultaneous encoding for the
multivariate TFT (see figure 7 for an example). Now the size of S is sl,d =

(

l+ d− 1
d

)

. At

stages d (i − 1), 	 , d i − 1, we notice that the number of “active nodes” for the TFT is

bounded by Bi=
(

d+2i− 1
d

)

min (sl,d, (n1/2
i)d). When d= o(log log l), we have

B1+
 +Bp1=O(sl,d log sl,d),

which proves:

Theorem 6. With the above notations, and assuming that d= o(log log l), the direct and
inverse TFT of a mapping a:S→R can be computed using O(sl,d log sl,d) shifted additions
(or subtractions) and multiplications with powers of ωn1.

Remark 7. The complexity analysis of the simplicial case in [vdH04, Section 5] contained
a mistake. Indeed, for the multivariate TFT described there, the computed transformed
coefficient ãl−1,0,	 ,0 does not depend on a0,	 ,0,l−1, which is incorrect.

Remark 8. Theorem 6 may be used to multiply formal power series in a similar way as
in [vdH04]. This multiplication algorithm requires an additional logarithmic overhead.
Contrary to what was stated in [vdH04], we again need the assumption that d=o(log log l).

Figure 7. Illustration of the different stages of a bivariate simplicial TFT for n1=n2= l=8. The
black dots correspond to the active nodes at each stage. The arrows indicate two nodes which will
be crossed between the current and the next stage.

8. Implementing the TFT

In order to implement the TFT and its inverse, one first has to decide how to represent the
sets S and T , and mappings a:S→R. A convenient approach is to represent S, T and a

(for the direct TFT) or S , ã and b (for the inverse TFT) by a single binary “TFT-tree”.
Such a binary tree corresponds to what happens on a subset I ⊆{0,	 , n− 1} of the form
I = {a 2r,	 , (a+1) 2r− 1} with a, r∈N. The binary tree is of one of the following forms:

Leafs. When the tree is reduced to a leaf, then it explicitly contains a map u: I→R,
which is represented by an array of length 2r in memory. By convention, if u is
reduced to a null-pointer, then u represents the zero map. Moreover, the node

Joris van der Hoeven 11

contains a flag in order to indicate whether I ⊆S or I ⊆T (for leafs, it is assumed
that we either have I ⊆S or I ∩S =∅ and similarly for T).

Binary nodes. When the tree consists of a binary node with subtrees t0 and t1, then t0
encodes what happens on the interval I↓, whereas t1 encodes what happens on

the interval I↑. For convenience, the tree still contains a flag to indicate whether
I ∩S � ∅ or I ∩ T � ∅.

Notice that the bounds of the interval I need not to be explicitly present in the represen-
tation of the tree; when needed, they can be passed as parameters for recursive functions
on the trees.

Only the direct TFT has currently been implemented inMmxlib. This implementation
roughly follows the above ideas and can be used in combination with arbitrary FFT-pro-
files. However, the basic arithmetic with “TFT-trees” has not been very well optimized yet.

In tables 1–4, we have given a few benchmarks on a 2.4GHz AMD architecture with
512Mb of memory. We use Z/(3 · 230 + 1) Z as our coefficient ring and we tested the
simplicial multivariate TFT for total degree <n and dimension d. Our table both shows
the size of the input s= |S |, the real and average running times ttot and tav= ttot/s, the
theoretical number of crossings to be computed ctot, its average cav= ctot/s and the ratio
tav/cav= ttot/ctot. The number ρ correspond to the running time divided by the running
time of the univariate TFT for the same input size. The tables both show the most
favourable cases when n is a power of two and the worst cases when n is a power of two
plus one.

d n s ttot in ms tav in µs ctot cav tav/cav ρ

1 16 16 0.01090 0.681 32 2 0.341 1
1 17 17 0.01899 1.117 63 3.71 0.301 1
1 256 256 0.1452 0.567 1024 4 0.142 1
1 257 257 0.2314 0.901 1535 5.97 0.151 1
1 4096 4096 3.206 0.783 24576 6 0.131 1
1 4097 4097 4.413 1.077 32767 8.00 0.135 1
1 65536 65536 68.33 1.043 524288 8 0.130 1
1 65537 65537 88.67 1.353 655359 10.00 0.135 1
1 1048576 1048576 1371 1.307 10485760 10 0.131 1
1 1048577 1048577 1710 1.631 12582911 12 0.136 1

Table 1. Timings for the direct univariate TFT of degree <n.

d n s ttot in ms tav in µs ctot cav tav/cav ρ

2 4 10 0.0153 1.531 27 2.70 0.567 1.25
2 5 15 0.0434 2.891 101 6.73 0.430 3.30
2 16 136 0.1671 1.229 724 5.32 0.231 1.43
2 17 153 0.4566 2.984 1758 11.49 0.260 3.83
2 64 2080 2.393 1.150 15824 7.61 0.151 1.15
2 65 2145 5.857 2.731 31498 14.68 0.186 2.74
2 256 32896 44.8 1.362 319296 9.71 0.140 1.05
2 257 33153 90.67 2.735 566330 17.08 0.160 2.14
2 1024 524800 851 1.622 6159616 11.74 0.138 1.03
2 1025 525825 1578 3.001 10096890 19.20 0.156 1.91

Table 2. Timings for the direct bivariate TFT of total degree <n.

12 Notes on the Truncated Fourier Transform

d n s ttot in ms tav in µs ctot cav tav/cav ρ

3 4 20 0.0941 4.704 109 5.45 0.863 5.18
3 5 35 0.2797 7.992 509 14.54 0.550 8.50
3 16 816 2.2222 2.723 9324 11.43 0.238 3.68
3 17 969 9.4546 9.757 25807 26.63 0.366 13.90
3 64 45760 143 3.125 729008 15.93 0.196 2.76
3 65 47905 478 9.978 1640523 34.25 0.291 8.85
3 256 2829056 9005 3.183 55049920 19.46 0.164 2.05
3 257 2862209 234173 81.816 111116603 38.82 2.108 52.97

Table 3. Timings for the direct three-dimensional TFT of total degree < n. The last colored
rectangles correspond to an input for which the computer started heavy swapping.

d n s ttot in ms tav in µs ctot cav tav/cav ρ

4 2 5 0.0175809 3.51617 20 4 0.879 1.90
4 3 15 0.155039 10.3359 206 13.73 0.753 11.88
4 8 330 2.09375 6.3447 5346 16.2 0.392 8.10
4 9 495 13.4 27.0707 20327 41.06 0.659 41.21
4 32 52360 508 9.70206 1436052 27.43 0.354 8.61
4 33 58905 2262 38.4008 3820448 64.86 0.592 24.59
5 32 376992 9541 25.3082 19603488 52.00 0.487 19.04
6 16 54264 3941 72.6264 3962120 73.02 0.995 65.96
7 8 3432 325 94.697 254493 74.15 1.277 112.13
8 8 6435 2051 318.726 730912 113.58 2.806 345.22

Table 4. Assorted timings for higher dimensional simplicial TFTs.

9. Improving the implementation of the TFT

A few conclusions can be drawn from tables 1–4. First of all, in the univariate case,
the TFT behaves more or less as theoretically predicted. The non-trivial ratios tav/cav in
higher dimensions indicate that the set S is quite disconnected. Hence, optimizations in
the implementation of TFT-trees may cause non-trivial gains. The differences between
the running times for the best and worse cases in higher dimensions show that the multi-
variate TFT is still quite sensible to the jump phenomenon (even though less than a full
FFT). Finally, in the best case, the ratio ρ be comes reasonably small. Indeed, ρ should
theoretically tend to 1 and should be bounded by d! in order to gain something w.r.t. a
full FFT. However, ρ can become quite large in the worse case. The various observations
suggest the following future improvements.

Avoiding expression swell. In the case of simplicial TFTs, the number of active nodes
swells quite dramatically at the first stages of the TFT (the size may roughly be multiplied

by a factor 2d). In this special case, it may therefore be good to compress the first d steps
into a single step. Moreover, one benefits from the fact that this compression can be done
in a particularly efficient way. Indeed, let ái1,	 ,id be the transform of ai1,	 ,id after d steps.
We have

ái1,	 ,id= ai1,	 ,id+ ai1+n/2,	 ,id+
 + ai1,	 ,id+n/2

for all (i1,	 , id)∈S ∩{0,	 , n/2− 1}d and

ái1,	 ,ij−1,ij+n/2,ij+1,	 ,id= ái1,	 ,id− 2 ai1,	 ,ij−1,ij+n/2,ij+1,	 ,id

Joris van der Hoeven 13

for each j∈{1, 	 , d}. It can be hoped that this acceleration approximately reduces the
current running times for the worst case to the current running times for the best case. For
high dimensions, it may be useful to apply the trick a second time for the next d stages
d+1,	 ,2 d; however, the corresponding formulas become more complicated. We hope that
further study will enable the replacement of the condition d= o(log log l) in theorem 6 by
a better condition, like d=O(log l).

Avoiding small leafs. At the other back-end, the overhead in the manipulation of TFT-
trees may be reduced by allowing only for leafs whose corresponding arrays have a minimal
size of 2, 4, 8, or more. Also, if the intersection of S with the interval I of a TFT-tree has
a high density (say >1/2), then we may replace the TFT-tree by a leaf.

Reducing the jump phenomenon. When the TFT is used for polynomial or power
series multiplication, and n is slightly above a power of two 2p, then classical techniques
may be used for reducing the jump phenomenon. For instance, the polynomials A and B

may be decomposedA=A↓+A↑ andB=B↓+B↑, whereA↓ is the part of total degree<2p,

A↑=A−A↓ and similarly for B. Then A↓B↓ is computed using the TFT at order 2p and

the remainder A↑B↓+A↓B↑+A↑B↑ by a more naive method.

10. The TFT for real coefficients

Assume now that R is a ring such that R[i] has many 2p-th roots of unity. Typically, this
is the case when R is the “field” of floating point numbers. A disadvantage of the standard
FFT or TFT in this context is that the size of the input is doubled in order to represent
numbers in R[i]. This doubling of the size actually corresponds to the fact that the FFT or
TFT contains redundant information in this case. Indeed, given A= a0+
 + an−1X

n−1

with n=2p, we have A(ω−1)=A(ω) for any n-th root of unity ω. This suggests to evaluate

A either in ω or ω−1.

With the notations from section 5, let S ⊆ {0,	 , n− 1} be an initial segment for the
bit ordering 4. As our target set T , we take

T =S ∩ {0, 1, 2, 4, 5, 8, 9,	 , 12,	 , n/2,	 , 3n/4− 1},

The “real TFT” now consists of applying the usual TFT with source S and target T . It can
be checked that crossings of “real nodes” introduce “complex nodes” precisely then when
one of the two nodes disappears at the next stage (see figure 8). It can also be checked that
the inverse TFT naturally adapts so as to compute the inverse real TFT. For “sufficiently
connected” sets S , like S = {0, 	 , l − 1}, the real TFT is asymptotically twice as fast as
the complex TFT.

Figure 8. Schematic representation of a real FFT. The white nodes correspond to real numbers
and the black nodes to complex numbers.

14 Notes on the Truncated Fourier Transform

Bibliography

[CK91] D.G. Cantor and E. Kaltofen. On fast multiplication of polynomials over arbitrary algebras.
Acta Informatica, 28:693–701, 1991.

[CT65] J.W. Cooley and J.W. Tukey. An algorithm for the machine calculation of complex Fourier
series. Math. Computat., 19:297–301, 1965.

[SS71] A. Schönhage and V. Strassen. Schnelle Multiplikation grosser Zahlen. Computing 7, 7:281–292,
1971.

[vdH02] J. van der Hoeven. Relax, but don’t be too lazy. JSC, 34:479–542, 2002.

[vdH04] J. van der Hoeven. The truncated Fourier transform and applications. In J. Gutierrez, editor,
Proc. ISSAC 2004, pages 290–296, Univ. of Cantabria, Santander, Spain, July 4–7 2004.

[vdHea05] J. van der Hoeven et al. Mmxlib: the standard library for Mathemagix, 2002–2005.
ftp://ftp.mathemagix.org/pub/mathemagix/targz.

Joris van der Hoeven 15

