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Nowadays, asymptotically fast algorithms are widely used in computer algebra for
computations in towers of algebraic field extensions of small height. Yet it is still
unknown how to reach softly linear time for products and inversions in towers of arbi-
trary height. In this paper we design the first algorithm for general ground fields with
a complexity exponent that can be made arbitrarily close to one from the asymptotic
point of view. We deduce new faster algorithms for changes of tower representations,
including the computation of primitive element representations in subquadratic time.
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1. INTRODUCTION

1.1. Statement of the problem
Let 𝔸 be an effective commutative ring with unity. Here effective means that elements
of 𝔸 can be represented by concrete data structures and that we have algorithms for the
ring operations, including the zero test. Effective fields are defined in a similar way.

Given a monic polynomial 𝜇1∈𝔸[x] of degree d1, the quotient ring𝔸1≔𝔸[x]/(𝜇1(x))
is an effective ring and fast algorithms exist for the arithmetic operations in 𝔸1. More
precisely, counting in terms of operations in 𝔸0≔𝔸, additions in 𝔸1 require d1 addi-
tions in 𝔸, whereas multiplications can be done [15] in almost linear time M(d1)=
O(d1 log d1 log log d1). Here M(d1) is a standard notation for the cost of multiplying two
univariate polynomials of degree d1: see section 2.2.

Given another monic polynomial 𝜇2∈𝔸1[x], we may build the effective ring 𝔸2≔
𝔸1[x]/(𝜇2(x)) and fast arithmetic operations in 𝔸2 are available for the same reason.
Doing so inductively, we obtain a tower 𝔸0⊆𝔸1⊆𝔸2⊆⋯⊆𝔸t of extensions of 𝔸, with
𝔸i=𝔸i−1[x]/(𝜇i(x)) for i=1,…, t. Such a tower is written (𝔸i)i⩽t and we call t its height.
Throughout this paper, we write 𝛼i for the class of x in 𝔸i =𝔸i−1[x]/(𝜇i(x)), we let
di≔deg 𝜇i, and d≔d1⋯dt. The 𝜇i are called the defining polynomials of the tower and d its
degree. Elements of𝔸i are naturally represented by univariate polynomials in 𝛼i over𝔸i−1
of degrees <di. If all 𝔸i are fields, then we write 𝕂 instead of 𝔸 and 𝕂i instead of 𝔸i,
for convenience.
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Towers of this type naturally arise in several contexts of applied algebra, including
cryptography (for instance in [2, 3, 18]), error correcting codes (for instance in [26]), and
the resolution of differentially algebraic systems in the more general setting of triangular
sets (for instance in [1, 12]).

By induction over t, basic arithmetic operations in 𝔸t can be naively performed in
time O(d (K log d log log d)t), for some constant K > 1. But it is well known that, for
a sufficiently large constant C>1, these operations can actually be carried out in time
O(Ctd log d log logd) by means of Kronecker substitution (see for instance [27, Chapter 8]).
However, if many of the individual degrees di are small, then t can become as large
as log d/log 2, which leads to an overall complexity bound of the form d1+logC/log2+o(1).
The main aim of this paper is to prove the sharper bound d1+o(1) in the case when𝔸0=𝕂
is a field and the 𝜇i are irreducible and separable. The top level complexity result is
stated in Corollary 4.11.

In order to simplify the presentation of complexity bounds, we often use the soft-Oh
notation: f (n)∈Õ(g(n))means that f (n)=g(n)logO(1)(g(n)+3); see [27, Chapter 25, sec-
tion 7] for technical details. The least integer larger or equal to x is written ⌈x⌉; the largest
one smaller or equal to x is written ⌊x⌋. The 𝔸-module of polynomials of degree <d
is written 𝔸[x]<d.

1.2. Modular composition and related problems
One essential tool for our new algorithms is modular composition. Before returning to
our main problem, let us recall several useful existing results on this problem and var-
ious related topics.

Let 𝔸1=𝔸[x]/(𝜇1(x)) be as above and assume that t=1, whence d=d1. Given f ,g∈
𝔸[x]<d the computation of the remainder ( f ∘g) rem𝜇1 of the Euclidean division of f ∘g
by 𝜇1 is called the problem of modular composition. It is equivalent to the problem of
evaluating f at a point a∈𝔸1. Currently, the best known solution to this problem is due
to Brent and Kung [13, 56] and requires O(d𝜛) operations in𝔸. Here the constant𝜛, with
/3 2<𝜛<2, denotes an exponent such that a rectangular d× d� matrix can be multiplied
with a square d� × d� matrix with O(d𝜛) operations in𝔸. Huang and Pan showed in [40]
that one may take𝜛<1.667. Brent and Kung's algorithm is based on the baby-step giant-
step technique [50]; we will recall and generalize it in our section 3.

For a fixed point a∈𝔸1, the evaluation map

𝔸d → 𝔸1

( f0,…, fd−1) ↦ f0+⋯+ fd−1ad−1

is linear. The dual or transposed map is given by

𝔸1
∗ → 𝔸d

ℓ ↦ (ℓ(1), ℓ(a),…, ℓ(ad−1))

and sends an 𝔸-linear functional ℓ: 𝔸1→𝔸 to the vector (ℓ(1), ℓ(a), …, ℓ(ad−1)). The
computation of this transposed map is called the problem of modular power projection.
Using the transposition principle (see [10] and historical references therein), the cost of
power projection and modular composition are essentially the same. In particular, the
computation of the traces Tr𝔸1/𝔸(1),…,Tr𝔸1/𝔸(ad−1) corresponds to one modular power
projection.
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Given an element a∈𝔸1, the characteristic polynomial of a is the characteristic poly-
nomial of the multiplication endomorphism by a in 𝔸1. If 𝔸=𝕂 is a field, then this
polynomial can be computed in softly quadratic time by means of a resultant (see for
instance [45, Corollary 29]). Shoup has also designed a practical randomized algorithm
to compute minimal polynomials for the case when 𝕂 has sufficiently many elements,
with an expected complexity of O�M(d) d� +d2�.

The fastest known method to compute the characteristic polynomial 𝜒 of an element
a∈𝔸1 over 𝔸 proceeds as follows: first compute the traces Tr𝔸1/𝔸(ai) of the powers of a
for all i=1,…,d using modular power projection, and then recover 𝜒 by integrating the
differential equation

− �̃� ′(z)�̃�(z) =�
i=0

d−1

Tr𝔸1/𝔸(ai+1)zi+O(zd), (1.1)

where �̃�(z)=zd 𝜒(1/z) represents the reverse polynomial of 𝜒. This integration requires to
have the inverses of 2,…,d in 𝔸 at our disposal. Historically, this method goes back to
Le Verrier [43], and formula (1.1), often called the Newton–Girard formula, expresses the
relationship between symmetric and power sum polynomials. The integration step takes
softly linear time: the seminal contributions are due to Brent and Kung [13], generaliza-
tions can be found in [8], the first efficient extension to finite fields has been designed
in [9], and we refer the reader to [29, section 2] for a concise proof of it.

1.3. Previous work on fast tower arithmetic
Recall that an element 𝛽∈𝕂t is said to be primitive over 𝕂 if 𝕂t=𝕂[𝛽]. The primitive
element theorem states that such an element 𝛽 always exists: if 𝕂 contains sufficiently
many elements, then it suffices to take a sufficiently generic 𝕂-linear combination of
the 𝛼i. In this light, it may seem odd at first sight to work with towers (𝕂i)i⩽t of height
t⩾2, since an isomorphic tower of height one always exists. The problem is that both the
computation of primitive elements and conversions between representations are usually
expensive.

Concerning primitive elements, it is currently not known how to efficiently find one,
together with its minimal polynomial 𝜈 and polynomials 𝜑i∈𝕂[x]<d such that 𝛼i=𝜑i(𝛽)
for i=1,…, t. In fact, naive algorithms mostly boil down to linear algebra in dimension d,
and thus feature at least quadratic costs. One may for instance appeal to the FGLM algo-
rithm to change orderings of Gröbner bases [21, 22].

If a modular composition algorithm (technically, for the multivariate version of sec-
tion 3.2) of softly linear complexity were known over any field, then primitive element
representations of towers would be computable in softly linear expected time by a ran-
domized algorithm; conversions between towers and their primitive element represen-
tations would also become possible in softly linear time. These aspects have been studied
by Poteaux and Schost in [51, 52], where subquadratic costs are achieved for multivariate
modular composition and its transpose, as well as for computing primitive represen-
tations of towers.

Let 𝜀>0 represent a fixed positive rational value. If𝕂=𝔽q is the finite field with q ele-
ments, then a major result by Kedlaya and Umans [42] states that modular composition
and power projection are possible in time (d log q)1+𝜀. Whenever t=1, then this in partic-
ular implies that characteristic polynomials can be obtained with expected bit complexity
(d log q)1+𝜀: see [29, sections 2.3–2.5] for details. Based on these results, Poteaux and
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Schost have derived [51] fast algorithms for multiplication, division, traces and prim-
itive element representations for separable towers over finite fields. Unfortunately, very
large constant factors are hidden in the complexities of all these algorithms, which cur-
rently prevent them from being of any practical relevance.

For some other particular cases of interest, fast algorithms also exist for modular
composition and related problems. For fixed irreducible moduli h∈𝔽q[x] of sufficiently
smooth degree d1⋯dt, practically faster algorithms for modular composition have been
proposed in [39]. When 𝕂⊆ℂ, we have also shown in [38] that modular composition
can be achieved in quasi-linear time when computing with a sufficiently high numeric
precision.

More direct approaches for algebraic tower arithmetic are usually based on compu-
tations modulo so-called “triangular sets”. We may see the preimage of 𝜇i over 𝔸 as
a multivariate polynomial Ti in 𝔸[x1,…, xi] such that Ti is monic in xi, Ti has degree di
in xi, degrees<dj in xj for all j=1,…, i−1, and 𝜇i(x)=Ti(𝛼1,…,𝛼i−1,x). The sequence (Ti)i⩽t
forms a special case of a triangular set. Triangular sets and decompositions have a long
history that goes back to Ritt's contributions in differential algebra [53].

In this context of triangular sets, it was shown in [46] that two elements in 𝔸t can be
multiplied in time O(4t d log d log log d). In [44, Proposition 2], Lebreton has proved the
stronger bound O(3t d log d log log d). This result even applies if the ideal (T1,…,Tt) is
not radical, under the condition that T1,…,Tt form a regular chain (in the sense of Kalk-
brener [41], see also [1] for generalities about triangular sets). For triangular sets of
certain quite special types, we notice that even faster multiplication algorithms have
been designed in [7]. When working over finite fields, practically efficient algorithms
have also been proposed in [17], based on fast embeddings into towers of a specific type.

Another major occurrence of algebraic towers in the literature concerns “dynamic
evaluation”. This technique was introduced by Della Dora, Dicrescenzo and Duval [19,
20] as a way to compute with algebraic numbers without requiring algorithms for poly-
nomial factorization. Basically, the idea is to compute in𝔸t as if it were a field, and cases
are distinguished whenever a zero test of an element a is requested: the “current tower”
is then explicitly decomposed into a “direct product of two towers” such that the pro-
jections of a in these two towers are respectively zero and invertible. The computations
finally resume non-deterministically with each of the two new towers in the role of the
current tower. For recent complexity results on this technique we refer the reader to [16].

1.4. Our contributions
The efficient computation with polynomials modulo zero-dimensional ideals defined by
triangular sets is an important topic in applied algebra. Obtaining softly linear com-
plexity bounds when working over a general field is an open problem. The previous best
known bound due to Lebreton [44, section 3.2] is recalled in section 2.4.

Then, one first technical contribution of us concerns multivariate modular com-
position: in section 3.2 we design a new baby-step giant-step algorithm to evaluate
f (g1,…,gt) rem h with the same kind of complexity as the Brent–Kung algorithm for the
univariate case. It slightly improves upon the incremental method described in [52],
that actually relies on the bivariate case. In fact, our method applies the baby-step giant-
step paradigm over the whole representation of f . Compared to [52, Lemma 4] used
with C(𝛿)=O(𝛿𝜛), the complexity bound given in Proposition 3.3 does not have restric-
tions on the characteristic, and is asymptotically smaller by a factor of t.
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The main contribution of this paper is section 4, which is devoted to a new deter-
ministic algorithm to multiply in towers of separable field extensions (all the 𝜇i are thus
irreducible and separable). For the first time we achieve an asymptotic complexity d1+o(1)

with an exponent that becomes arbitrarily close to one. From the asymptotically com-
plexity point of view, and in the specific case of towers of separable field extensions,
this improves upon [44, 52], and also upon the randomized algorithms for finite fields
from [51]. For specific towers over finite fields, some of the algorithms from [17] remain
more efficient both in practice and in theory.

The main idea behind our algorithms is as follows: we use the primitive element
theorem to replace a general tower of height t by a new “accelerated” tower for which we
can control the height s. There is a tradeoff between the cost of tower arithmetic (more
expensive for larger t) and primitive element computations (more expensive for small s).
By making a suitable compromise, we obtain our main complexity bound.

One shortcoming of our main result is that it only applies to towers of fields. Now if
an algorithm is available for factoring polynomials in 𝕂[x] into irreducibles, then our
results generalize to towers of separable integral extensions over 𝕂, by “factoring” them
into towers of separable field extensions. This reduction and the corresponding conver-
sion algorithms (that generalize Chinese remaindering) are detailed in section 5. Some
particular cases when the cost of factorization is often affordable are discussed in sec-
tion 5.5.

Our final section 6 contains a general subquadratic Las Vegas complexity bound for
computing primitive element representations of towers of separable field extensions,
along with the related data for conversions: our algorithms directly benefit from the
fast product, and they rely on power projections as in [11, 42, 51]. Compared to [52,
Lemma 4] used with C(𝛿)=O(𝛿𝜛), section 6 gains a factor of t asymptotically, without
restrictions on the characteristic. When working over a finite field, section 6 does not
improve upon the asymptotic complexity bounds from [51]. Nevertheless, [51] relies
on the Kedlaya–Umans algorithm for modular composition, so we expect our approach
to behave better in practice.

Let us finally stress once more that we regard our contribution as a uniform way to
prove almost optimal complexity bounds for tower arithmetic in the algebraic complexity
model. It is well known that this model is reasonably close to bit complexity models when
working over finite fields. Over other fields such as ℚ, coefficient growth needs to be
taken into account, which leads us beyond the scope of this paper. From a practical per-
spective, we also recall that efficient tower arithmetic has been developed over various
specific kinds of base fields such as finite fields and subfields of ℂ: see [17, 38, 39] and
section 5.5. It is true however that actual implementations of our own algorithms have
fallen somewhat behind. We intend to address such implementation issues in the near
future.

2. BASIC TOWER ARITHMETIC

This section gathers basic prerequisites on complexity models and polynomial arith-
metic. In particular we recall Lebreton's results on multiplication in towers [44]. Then
we examine the costs of divisions.
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2.1. Complexity model
Let 𝔸 be an effective ring. Our complexity analyses concern the algebraic complexity
model [14, Chapter 4] over 𝔸, and more precisely straight-line programs and compu-
tation trees. In other words, running times of algorithms are measured in terms of the
required number of ring operations in 𝔸, and constants are thought to be freely at our
disposal.

It is convenient to introduce the notations m𝔸 and d𝔸 as abstractions for the respec-
tive costs of multiplication and division in 𝔸 (whenever defined). For simplicity we
always assume that multiplication is at least as expensive as addition, subtraction, and
zero testing.

For randomized algorithms over a finite effective ring𝔸, we assume a special instruc-
tion that uniformly generates random elements in 𝔸, with constant cost. For a given
input, the cost of a randomized algorithm is thus a random variable. The expected cost
for input size s is defined as the maximum of the averages of these random variables
over all possible inputs of size ⩽s.

Remark 2.1. For arithmetic operations in basic rings and fields, such as ℤ/rℤ or 𝔽q[x],
it is common to use Turing or RAM machines to count the total number of “bit opera-
tions”. The translation of our results in terms of bit complexity is mostly straightforward,
although some care is needed for the manipulation of multivariate polynomials on Turing
machines. We refer to [36, 37] for more technical details.

2.2. Univariate polynomial multiplication
Let 𝔸 be an effective commutative ring with unity. We denote by M𝔸(d) a cost function
for multiplying two polynomials f ,g∈𝔸[x]<d. For general 𝔸, it has been shown in [15]
that one may take

M𝔸(d)=O(m𝔸d log d log log d). (2.1)

For rings of positive characteristic, one has

M𝔸(d) = O�m𝔸d log d4log
∗d�

log∗ d = min �k∈ℕ: log∘…k× ∘ log d⩽1�,

by [30]. We make the following assumptions:

• M𝔸(d)/d is a non-decreasing function in d.

• M𝔸 is sufficiently close to linear, in the sense that

M𝔸(md)
md =O((((((((((M𝔸(d)

d )))))))))) (2.2)
holds whenever m⩽d.

These assumptions hold for M𝔸(d) as in (2.1). Notice that (2.2) is also equivalent to
M𝔸(md)=O(mM𝔸(d)). Applying equation (2.2) a finite number of times, it follows that
M𝔸(mk d)=O(mkM𝔸(d)) for any fixed positive integer k.

If 𝔹 is an effective 𝔸-algebra that is also a finite dimensional free 𝔸-module, then we
denote by M𝔹/𝔸(d) a cost function for multiplying two polynomials in 𝔹[x]<d, in terms
of the number of operations in𝔸, and we make the same assumptions as for M𝔸. Notice
that we may always take M𝔹(d)=O(m𝔸M𝔹/𝔸(d)).
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In particular, if 𝜇 is a monic polynomial in 𝔸[x] of degree d then 𝔹=𝔸[x]/(𝜇(x))
is such an 𝔸-algebra of dimension d; elements in 𝔹 are represented by polynomials in
𝔸[x]<d. In this case, we have m𝔹=O(M𝔸(d)) and M𝔹(n) =O(M𝔸(n d)) by means of
Kronecker substitution [27, Chapter 8].

2.3. Primitive towers
If 𝔹 is a finitely generated 𝔸-algebra, an element 𝛽∈𝔹 is said to be primitive if 𝔹=𝔸[𝛽].
In this case, we write 𝜈 the monic minimal polynomial of 𝛽, so the following isomor-
phism holds:

𝔸[x]/(𝜈(x)) ≅ 𝔹
x ↦ 𝛽.

Notice that such a primitive element representation does not necessarily exist: consider
𝔸=ℚ and 𝔹=𝔸[x,y]/(x2,xy,y2).

DEFINITION 2.2. A primitive tower representation of (𝔸i)i⩽t consists of the following data:
• A primitive element 𝛽i of 𝔸i over 𝔸, for i=1,…, t.
• The minimal polynomial 𝜈i∈𝔸[x] of 𝛽i over 𝔸, for i=1,…, t.
• 𝜙i, j∈𝔸[x]<d1⋯di such that 𝛼j=𝜙i, j(𝛽i), for i=1,…, t and j=1,…, i.

These data induce the following isomorphisms for i=1,…, t:

𝔸i ≅ 𝔸[x]/(𝜈i(x))
𝛼j ↦ 𝜙i, j(x), for j=1,…, i
𝛽i ↤ x.

The polynomials 𝜙i, j are called parametrizations of the 𝛼j in terms of the 𝛽i.
With the triangular set (Ti)i⩽t as defined in the introduction, an element a∈𝔸i is repre-

sented by a polynomial f (𝛼1,…,𝛼i)with f ∈𝔸[x1,…,xi] defined modulo (T1,…,Ti). So the
conversion of a into an element of 𝔸[x]/(𝜈i(x)) boils down to evaluating f(𝜙i,1,…,𝜙i,i)
modulo 𝜈i. The backward conversion consists in evaluating a univariate polynomial
f ∈𝔸[x]<d1⋯di at 𝛽i. Such conversions are the topic of section 3 below.

Remark 2.3. Special kinds of primitive tower representations have been used before;
see [18, 39], for instance. Algorithms therein use special routines for conversions between
𝔸[𝛽i][𝛼i+1] and 𝔸[𝛽i+1]. In the present paper, we only rely on conversions between
𝔸i and 𝔸[𝛽i], the natural identity isomorphism 𝔸i+1=𝔸i[𝛼i+1], and combinations of
these conversions.

2.4. Multiplication in towers
Under the assumptions of section 2.2, recall that there exists a constant C>1 such that
m𝔸i ⩽CM𝔸i/𝔸i−1(di) for i=1,…, t, and where M𝔸i/𝔸i−1(d) represents a cost function for
multiplying two polynomials in 𝔸i[x]<d, in terms of the number of operations in 𝔸i−1.
When using this bound in an iterated fashion, we obtain

m𝔸i/𝔸0=CiM𝔸1/𝔸0(d1)⋯M𝔸i/𝔸i−1(di).

By taking care of the cost of polynomial divisions in terms of multiplications, one may
prove the following sharper bounds:
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PROPOSITION 2.4. If di⩾2 for i=1,…, t, then there exists a constant 1<C⩽3 such that

m𝔸t = O(CtM𝔸(d))
M𝔸t(n) = O(CtM𝔸(nd)).

Proof. Taking C=3, Lebreton proved that m𝔸t =O(M𝔸(3t d)); see [44, section 3.2]. His
proof was done for the particular cost functionM𝔸(n)=O(n logn log logn). For complete-
ness, we briefly repeat this proof, for a general cost functionM𝔸(n) such that n↦M𝔸(n)/n
is non-decreasing. We recall that two polynomials P,Q∈𝔸[x1,…,xt] of partial degrees<di
in the xi can be multiplied in time O(M𝔸(2td)) using Kronecker substitution recursively;
see [27, Chapter 8] and [44, section 3.2].

We let T1(x1),…,Tt(x1,…, xt) represent the triangular set associated to the tower, as
defined in section 1.3. We identify elements in the tower with their canonical repre-
sentatives in 𝔸[x1,…, xt]. Let T̃i(x1,…, xi)≔ xi

di Ti(x1,…, xi−1, 1/xi) represent the reverse
polynomial of Ti in xi. Assume for now that we precomputed polynomials Si(x1,…,xi)
in 𝔸[x1,…,xi], of partial degrees <dj in the xj, such that

Si(x1,…,xi) T̃i(x1,…,xi)=1mod �T1,…,Ti−1,xi
di�.

Let R𝔸(d1, …, di) represent a cost function for reducing polynomials in 𝔸[x1, …, xi] of
degrees ⩽2(dj −1) in xj for j=1,…, i modulo (T1,…,Ti). The reduction of such a polyno-
mial P modulo (T1,…,Tt) is done recursively, as follows:

1. Let e≔degxt P. If e<dt, then we reduce P modulo (T1,…,Tt−1) and we are done.

2. Otherwise, let P̃(x1,…,xt)≔xt
e P(x1,…,xt−1, 1/xt) be the reverse of P.

a. Reduce P̃ rem xt
e−dt+1 modulo (T1,…,Tt−1), in time ⩽dtR𝔸(d1,…,dt−1).

b. Compute Q̃≔St P̃ rem xt
e−dt+1, in time O(M𝔸(2td)).

c. Reduce Q̃ modulo (T1,…,Tt−1), in time ⩽dtR𝔸(d1,…,dt−1).

3. Let Q(x1,…,xt)≔ xt
e−dt Q̃(x1,…,xt−1, 1/xt), compute R≔P − Q Tt rem xt

dt, and then
reduce R modulo (T1,…,Tt−1). It turns out that R equals P modulo (T1,…,Tt); see
for instance [27, Chapter 9, section 1].

Altogether, the cost R𝔸 of this algorithm is therefore bounded by

R𝔸(d1,…,dt)⩽2M𝔸(2t d)+ c2td+3R𝔸(d1,…,dt−1)dt

for some universal constant c>0. We deduce that R𝔸(d1,…,dt)=O(M𝔸(3t d)).
Now let A and B be the respective representatives of two elements a and b to be

multiplied in the tower. The product P≔A B takes O(M𝔸(2t d)), and P is then reduced
modulo (T1,…,Tt), whence

m𝔸t=M𝔸(2td)+R𝔸(d1,…,dt)=O(M𝔸(3td)).

For the second bound of the proposition, we may multiply two polynomials in𝔸t[y]<n as
in𝔸[x1,…,xt][y]with O(M𝔸(2tnd)) operations in𝔸, and then reduce their product coef-
ficientwise modulo (T1,…,Tt)with cost⩽2nR𝔸(d1,…,dt), whenceM𝔸t(n)=O(M𝔸(3tnd)).

It remains to observe that once S1,…,St−1 are known, the precomputation of St using
Newton's method takes O(M𝔸t−1(dt))=O(M𝔸(3td)) operations in𝔸; see [27, section 9.1],
for instance. Therefore, the complexity bounds obtained so far remain valid up to a con-
stant factor when taking the cost for obtaining the Si into account. Finally, our assumption
di⩾2 for i=1,…, t implies 3t=O(d2), so (2.2) leads to the claimed bounds. □
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Remark 2.5. The constant C does not play a critical role in the design of the forthcoming
algorithms. Of course any improvement of C remains relevant; the dependence on C will
be made apparent in Corollary 4.11.

Remark 2.6. The assumption that di⩾2 for all i is convenient for proving several com-
plexity bounds. For i with di=1, we notice that 𝛼i does not occur in the representation of
elements in 𝕂i, so extensions of degree one can be suppressed from the tower without
loss of generality. The cost of the corresponding rewritings does not intervene in the
algebraic complexity model. On a Turing or RAM machine this cost would actually
depend on the way how multivariate polynomials are represented, but it is typically
at most linear in the size of the representation.

2.5. Division in towers
In the remainder of this section, we assume that we work in a tower of fields (𝕂i)i⩽t=
(𝔸i)i⩽t over 𝕂=𝔸. Given f , g∈𝕂[x]<d such that g is monic, it is well known [27,
Chapter 9] that the quotient f quo g and the remainder f rem g of the Euclidean divi-
sion of f by g can be computed in time O(M𝕂(d)).

It is important for us that the gcd algorithm with input f1, f2∈𝕂[x]⩽d returns the
monic polynomial g=gcd ( f1, f2) along with u1,u2∈𝕂[x]<d such that g= u1 f1+ u2 f2.
In this way, if g= 1 then u1 is the inverse of f1 modulo f2 and u2 is the inverse of f2
modulo f1. It is well known [27, Chapter 11, Algorithm 11.6] that this extended gcd can
be performed in time d𝕂(d+1)+O(M𝕂(d) log d).

In fact, when replacing all polynomial divisions by pseudo-divisions in [27,
Chapter 11], we avoid all divisions in𝕂, but the computed gcd g is not necessarily monic.
Multiplying g, u1 and u2 with the inverse of the leading coefficient of g, we do obtain
a monic gcd, at the expense of a single division in 𝕂. Summarizing, this shows that
the extended monic gcd can actually be computed in time d𝕂+O(M𝕂(d) log d).

Now consider an extension 𝕃≔𝕂[x]/(𝜇(x)) of 𝕂, where 𝜇∈𝕂[x] is a monic irre-
ducible polynomial of degree d. Then the above bounds for division and gcd computa-
tions yield

d𝕃 = d𝕂+O(M𝕂(d) log d).

When using the univariate algorithm for inverting non-zero elements in𝕂i in a recursive
manner, we obtain the following complexity bound:

PROPOSITION 2.7. Let d̄≔max(d1,…,dt) and assume that di⩾2 for i=1,…, t. With the above
assumptions and notations, and with 1<C⩽3 as in Proposition 2.4, we have

d𝕂t = d𝕂+O(CtM𝕂(d) log d̄).

Proof. Let A⩾1 and B⩾1 be universal constants with M𝕂i(n)⩽AC iM𝕂(nd1⋯di) for all i
and d𝕃⩽d𝕂+BM𝕂(d) log d for all extensions 𝕃 of 𝕂 as previously considered. Then we
have

d𝕂i ⩽ d𝕂i−1+BM𝕂i−1(di) log di

⩽ d𝕂i−1+ABCi−1M𝕂(d1⋯di) log di

and we conclude by induction. □
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Let us mention that inversion modulo a general triangular set (that does not deter-
mine a prime ideal) is more subtle; see various approaches in [16, 49].

3. EVALUATING POLYNOMIALS AT POINTS IN ALGEBRAS

Throughout this section 𝔸 represents an effective ring and 𝔹 is an effective 𝔸-algebra
with a given basis b1,…,br. Given a polynomial f ∈𝔸[x1,…,xn] and a point (a1,…,an)∈𝔹n,
we study how to compute f (a1,…, an) efficiently. We first recall the well known baby-
step giant-step algorithm in the case when n=1. In section 4 below, these evaluation
algorithms will be used for conversions between triangular and primitive representa-
tions of the same algebra.

3.1. Univariate baby-step giant-step method
Given a polynomial f = f0+⋯+ fd−1xd−1∈𝔸[x]<d and a∈𝔹, how to evaluate f efficiently
at a? Horner's method uses time O(m𝔹d). For convenience of the reader, we now recall
a well known faster algorithm from [50] that relies on the baby-step giant-step technique.

Algorithm 3.1
Input: f ∈𝔸[x]<d and a∈𝔹.
Output: f (a)∈𝔹.

1. Let p≔⌊ d� ⌋ and q≔⌈d/p⌉.

2. For 0⩽ i<p do:

a. Compute and decompose ai=M1,i b1+⋯+Mr,i br.
(This yields an r×p matrix M∈𝔸r×p.)

b. For 0⩽ j<q, let Ni, j≔ fi+pj.
(This yields a p×q matrix N∈𝔸p×q.)

3. Compute the matrix product R≔MN.

4. For 0⩽ j<q, let vj≔R1, j b1+⋯+Rr, j br.

5. Return ∑0⩽ j<q vj apj.

PROPOSITION 3.1. Algorithm 3.1 is correct. If d=O(r), then it runs in time

O�m𝔹 d� +m𝔸r d𝜛−1�.

Proof. By construction, we have vj= fjp+ fjp+1a+⋯+ fjp+p−1ap−1 for j=0,…,q−1, whence
f (a)=∑0⩽ j<q vj apj. This proves the correctness of the algorithm. Step 2a requires O(p)=
O( d� ) multiplications in 𝔹, when computing the powers using ai = a ⋅ ai−1. Step 2b
takes O(d) assignments in 𝔸, which come for free in our complexity model. The matrix
multiplication in step 3 can be done in time O(m𝔸r d𝜛−1). Step 5 involves O(q)=O( d� )
multiplications and additions in 𝔹, when using Horner's method. Altogether, this leads
to the claimed running time. □

Remark 3.2. If d≫ r and if a monic annihilator 𝜒∈𝔸[x] with 𝜒(a)=0 is known, then it
is possible to compute f (a) with O(m𝔹 r√ +m𝔸r𝜛+M𝔸(d)) operations in𝔸. Indeed, we
have f (a)=( f rem 𝜒)(a), and f rem 𝜒 is computed in time O(M𝔸(d)).
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3.2. Multivariate baby-step giant-step generalization
Let us now study the evaluation of a multivariate polynomial f ∈𝔸[x1,…,xt] of partial
degree <di in each xi at a point (a1,…, at)∈𝔹t. Setting d=d1⋯dt and writing fe1,…,et for
the coefficient of the monomial x1

e1⋯ xt
et in f , we have the following generalization of

Algorithm 3.1 to multivariate polynomials.

Algorithm 3.2
Input: f ∈𝔸[x1,…,xt] and a1,…,at∈𝔹 with degxi f <di for i=1,…, t.
Output: f (a1,…,at)∈𝔹.

1. Let ℓ∈{1,…, t} be maximal with d1⋯dℓ−1< d� .

2. If d1⋯dℓ−1<
1
2 d� then let p≔⌊ d� /(d1⋯dℓ−1)⌋ else let p≔1.

Then let q≔⌈dℓ/p⌉, P≔d1⋯dℓ−1p, and Q≔qdℓ+1⋯dt.

3. For 0⩽ i1<d1,…,0⩽ iℓ−1<dℓ−1, 0⩽ iℓ<p do:

a. Let i≔ i1+d1 i2+⋯+d1⋯dℓ−1 iℓ.

b. Compute and decompose a1
i1⋯aℓ

iℓ=M1,i b1+⋯+Mr,i br.
(This yields an r×P matrix M∈𝔸r×P.)

c. For 0⩽ jℓ<q, 0⩽ jℓ+1<dℓ+1,…,0⩽ jt<dt do:

i. Let j≔ jℓ+q jℓ+1+⋯+qdℓ+1⋯dt−1 jt.

ii. Let Ni, j≔ fi1,…,iℓ−1,iℓ+pjℓ, jℓ+1,…, jt.
(This yields a P×Q matrix N∈𝔸P×Q.)

4. Compute the matrix product R≔MN.

5. For 0⩽ j<Q, let vj≔R1, j b1+⋯+Rr, j br.

6. Return �
0⩽ jℓ<q

�
0⩽ jℓ+1<dℓ+1

⋯ �
0⩽ jt<dt

vjℓ+qjℓ+1+⋯+qdℓ+1⋯dt−1 jt aℓ
pjℓ aℓ+1

jℓ+1⋯ar
jr.

PROPOSITION 3.3. Algorithm 3.2 is correct. If d=O(r) and di⩾2 for i=1,…, t, then it runs
in time

O�m𝔹 d� +m𝔸 rd𝜛−1�.

Proof. This time, for all 0⩽ jℓ<q, 0⩽ jℓ+1<dℓ+1,…,0⩽ jt<dt, we have

vjℓ+qjℓ+1+⋯+qdℓ+1⋯dt−1 jt= �
0⩽i1<d1

⋯ �
0⩽iℓ−1<dℓ−1

�
0⩽iℓ<p

fi1,…,iℓ−1,iℓ+pjℓ, jℓ+1,…, jt a1
i1⋯aℓ

iℓ.

Plugging this expression into the formula of step 6 shows that the algorithm indeed
returns the desired evaluation.

From d1⋯dℓ⩾ d� we always have dℓ+1⋯dt⩽ d� . If d1⋯dℓ−1<
1
2 d� , then we obtain

d�
d1⋯dℓ−1

−1<p⩽
d�

d1⋯dℓ−1
and then

d� −d1⋯dℓ−1<P⩽ d� .
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The lower bound on p also implies

q< dℓ

d� /(d1⋯dℓ−1)−1
+1,

whence

Q=qdℓ+1⋯dt<
d

d� −d1⋯dℓ−1
+dℓ+1⋯dt<3 d� .

Otherwise 1
2 d� ⩽d1⋯dℓ−1 straightforwardly implies P=d1⋯dℓ−1< d� and Q=dℓ⋯dt⩽

2 d� . In all cases P and Q are in O( d� ). Consequently the complexity analysis is the
same as for Algorithm 3.1. Of course, one has to carefully evaluate the power products
in step 3b and the sum in step 6, in order to use only O( d� ) multiplications in 𝔹. □

Remark 3.4. The constant /1 2 in step 2 of Algorithm 3.2 may be replaced by any other
positive value strictly less than 1.

4. SEPARABLE TOWERS OF FIELDS

Let (𝕂i)i⩽t be a tower of separable algebraic extensions of an effective base field 𝕂.
Throughout this section, we assume that the extension degrees di satisfy di⩾2 for all i
(which is usually not restrictive as explained in Remark 2.6), and that 1<C⩽3 is as
in Proposition 2.4. Our main objective is to design a fast algorithm for multiplying ele-
ments in the tower.

The basic idea is as follows. Let 𝜀 > 0 be an arbitrarily small positive constant.
If at least half of the di are “sufficiently large”, then t automatically becomes “small
enough” to ensure that C t d1+𝜀= d1+O(𝜀). Otherwise, there exist k⩾ 2 consecutive
small degrees di+1,…,di+k, and we replace the corresponding subtower of extensions
𝕂i⊆𝕂i+1⊆⋯⊆𝕂i+k by a primitive one 𝕂i⊆𝕂i+k. We keep repeating these replace-
ments until the height of the tower becomes “small enough”. Some careful balancing is
required here, since the computation of a primitive element for 𝕂i+k over𝕂i can become
expensive if di+1⋯ di+k gets “too large”. The precise tradeoff will be made explicit at
the end of the section.

In this section, given two effective rings 𝔸 and𝔹 along with a natural way to convert
elements in 𝔸 to elements in 𝔹, we denote by C(𝔸→𝔹) the cost of such conversions.
If we also have an algorithm for conversions in the opposite direction, then we write
C(𝔸↔𝔹)=max(C(𝔸→𝔹),C(𝔹→𝔸)).

4.1. Primitive tower representations
Assuming that 𝕂 contains sufficiently many elements, the aim of this subsection is to
construct a primitive element representation in the sense of Definition 2.2. We thus have
to compute primitive elements 𝛽1∈𝕂1,…,𝛽t∈𝕂t over 𝕂 such that

𝕂0 = 𝕂
𝕂1 = 𝕂0[𝛼1] ≅ 𝕂[𝛽1]
𝕂2 = 𝕂1[𝛼2] ≅ 𝕂[𝛽2]

⋮
𝕂t = 𝕂t−1[𝛼t−1] ≅ 𝕂[𝛽t],
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together with the minimal polynomials 𝜈i∈𝕂[x] of 𝛽i over𝕂 for i=1,…,t. We also show
how to convert efficiently between each of the two representations of 𝕂i.

PROPOSITION 4.1. Assume that we are given a primitive tower representation of (𝕂i)i⩽t such
that 𝛽1=𝛼1 and 𝛽i=𝛼i+𝜆i𝛽i−1 for some 𝜆i∈𝕂, for i=2,…, t. Then we have

C(𝕂t↔𝕂[𝛽t])=O(m𝕂d𝜛).

Proof. The bound on the cost of conversions from 𝕂t to 𝕂[𝛽t] is a direct consequence of
Proposition 3.3 by taking the assumption 𝜛> /3 2 into account. For i=1,…, t, the minimal
polynomial of 𝛼i over 𝕂i−1 may thus be converted into a minimal polynomial 𝜌i over
𝕂[𝛽i−1] in time O(m𝕂 (d1⋯ di−1)𝜛 di). The computation of 𝜌1, …, 𝜌t requires O(m𝕂 d𝜛)
extra operations since di⩾2 for all i.

For conversions from𝕂[𝛽t] to𝕂t, we consider a polynomial ft∈𝕂[x]<d. We evaluate
ft at 𝛼t+𝜆t𝛽t−1 in 𝕂[𝛽t−1][𝛼t] seen as 𝕂[𝛽t−1][x]/(𝜌t(x)) with cost O(m𝕂d𝜛) by Proposi-
tion 3.1. We thus obtain a polynomial ft−1∈𝕂[𝛽t−1][x]<dt such that ft(𝛽t)= ft−1(𝛼t).

We next need to convert the dt coefficients of ft−1 from 𝕂[𝛽t−1] to 𝕂t−1. Using
a straightforward induction this leads to the following cost:

C(𝕂[𝛽t]→𝕂t) = O(m𝕂d𝜛+dtm𝕂(d/dt)𝜛+⋯+d2⋯dtm𝕂(d/(d2⋯dt))𝜛)
= O(m𝕂d𝜛(1+dt

1−𝜛+⋯+(d2⋯dt)1−𝜛)) = O(m𝕂d𝜛).

Here we again use of the assumptions that 𝜛> /3 2 and di⩾2 for all i. □

Remark 4.2. In [39, Corollary 7.3], we have introduced an alternative approach to conver-
sions that is more efficient when d̄≔max(d1,…,dt) is “sufficiently small”. More precisely,
modulo suitable precomputations, we have shown that conversions between elements
of 𝕂[𝛽t] and 𝕂[𝛼1,…, 𝛼t] can be done in time O(2t d̄M𝕂(d)). In various special cases,
the factor 2t can be further reduced.

The next proposition provides us with complexity bounds for computing primitive
tower representations by induction. We denote the cardinality of 𝕂 by card𝕂.

PROPOSITION 4.3. Assume that card 𝕂> �d
2� and that a primitive tower representation of

(𝕂i)i⩽t−1 has already been computed. Then

a) We can compute 𝛽t of the form 𝛼t+𝜆t𝛽t−1 with 𝜆t∈𝕂, and 𝜈t in time

O(d𝕂d2+dM𝕂(d2) log d).

b) Given 𝛽t and 𝜈t, we can compute 𝜙t,i∈𝕂[x] with 𝛼i=𝜙t,i(𝛽t) for i=1,…, t in time

O(d𝕂d+M𝕂(d2) log d).

In addition, if card𝕂⩾2�d
2� then the computations in part a can be achieved with expected cost

O(d𝕂d+M𝕂(d2) log d) by means of a randomized Las Vegas algorithm.

Proof. Thanks to Proposition 4.1, modulo conversions of cost O(m𝕂 dt (d/dt)𝜛)=
O(m𝕂 d𝜛 dt

1−𝜛) between 𝕂[𝛽t−1] and 𝕂t−1, we rewrite 𝜇t(y) into 𝜌t(𝛽t−1, y) such that
𝜌t∈𝕂[x,y], degx 𝜌t<d/dt, degy 𝜌t=dt. We thus have

𝕂[𝛽t−1, 𝛼t]≅𝕂[x,y]/(𝜈t−1(x), 𝜌t(x,y)).
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Now let 𝜆t∈𝕂 be a parameter that will be specified later, and consider 𝛽t=𝛼t+𝜆t𝛽t−1.
The characteristic polynomial of 𝛽t over 𝕂[𝛽t−1] equals to 𝜌t(𝛽t−1, y − 𝜆t 𝛽t−1). Conse-
quently the characteristic polynomial 𝜈t of 𝛽t over 𝕂 is 𝕂-proportional to

R(𝜆t,y)≔Resx(𝜈t−1(x),𝜌t(x,y−𝜆t x)).

The polynomial 𝜌t(x, y −𝜆t x) rem 𝜈t−1(x) can be obtained as the preimage of 𝜌t(𝛽t−1,y −
𝜆t𝛽t−1) whose computation costs O(M𝕂(d) log dt) by a standard “divide and conquer”
approach; see [5, Lemma 7], for instance. Then the resultant may be computed in time
O(d𝕂d+M𝕂(d2/dt) log d) by [45, Corollary 26].

Regarding 𝜆t as an indeterminate, the polynomial R(𝜆t,y) has degree⩽d. Therefore R
may be interpolated from d+1 values of 𝜆t. The total cost to obtain R is thus

O(d𝕂d2+dM𝕂(d2/dt) log d+dM𝕂(d) log d)=O(d𝕂d2+dM𝕂(d2/dt) log d).

Geometrically speaking, the system 𝜈t−1(x)=𝜌t(x, y)= 0 admits the d pairwise distinct
solutions (x1,y1),…,(xd,yd) in (𝕂alg)2, where 𝕂alg denotes the algebraic closure of𝕂. The
polynomial 𝜈t(y) is separable if, and only if, its roots y1+𝜆t x1,…,yd+𝜆t xd are pairwise
distinct. There are at most �d

2� values of 𝜆t for which this is not the case, so we simply
need to try �d

2�+1 distinct values of 𝜆t until 𝜈t becomes separable. Testing the separa-
bility of 𝜈t for d values 𝜆t,1,…,𝜆t,d of 𝜆t is achieved as follows.

We first evaluate R(𝜆t,i,y) for i=1,…,d. Using fast multi-point evaluation, this takes
time O(dM𝕂(d) log d). We next test whether the discriminant of R(𝜆t,i,y) in y vanishes,
for i=1,…,d; this can be done in time O(dM𝕂(d) log d). Doing this for O(d) packets of d
values, the overall computation can be done in time O(d2M𝕂(d) log d). This completes
the proof of part a.

As to part b, for any root 𝜁 of 𝜈t the gcd of 𝜈t−1(x) and 𝜌t(x, 𝜁 −𝜆tx) has degree 1, so the
specialization property of subresultants ensures that the subresultant in x of degree 1 of
𝜈t−1(x) and 𝜌t(x,y−𝜆tx) has the form A(y)x+B(y) with A(y) coprime to 𝜈t(y). This sub-
resultant can be computed in time O(d𝕂d+M𝕂(d2/dt) log d) again by [45, Corollary 26].
Since A and B have degrees <d, we obtain the polynomial 𝜓t(y)=−A(y)−1B(y) modulo
𝜈t(y) in 𝕂[y]<d with additional cost O(d𝕂+M𝕂(d) log d). Then from A(𝛽t)𝛽t−1+B(𝛽t)=
0 we deduce that 𝛽t−1=𝜓t(𝛽t). For i< t, we then take 𝜙t,i=(𝜙t−1,i ∘𝜓t) rem 𝜈t. Proposi-
tion 3.1 implies that the cost of these modular compositions is bounded by m𝕂 Õ(d3/2)+
O(tm𝕂d𝜛)=O(m𝕂d𝜛 log d). This completes the proof of part b.

If card𝕂⩾2�d
2�, then we use a Las Vegas algorithm for part a: we pick 𝜆t at random in

a set of size 2�d
2� until 𝜈t is separable. Each pick is successful with probability at least /1 2,

so the expected cost is O(d𝕂d+M𝕂(d2) log d). □

COROLLARY 4.4. Assume that card𝕂>�d
2�. Then a primitive tower representation of (𝕂i)i⩽t

can be computed in time O(d𝕂d2+dM𝕂(d2) log d). Using a randomized Las Vegas algorithm,
the computation can even be done with expected cost O(d𝕂d+M𝕂(d2) log d).

Proof. This directly follows from the latter proposition, using that di⩾2 for all i. □

Remark 4.5. In a similar way as for the computation of gcds in section 2.5, it is possible
to avoid divisions during the computation of resultants and subresultants. However, the
required adaptations of the algorithms from [45] are a bit more technical than the mere
replacement of Euclidean divisions by pseudo-divisions. For this reason, we have not
further optimized the number of divisions in our complexity bounds.
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4.2. Accelerated tower arithmetic
The main problem with the complexity bounds of Proposition 2.4 is that the height t of
the tower may get as large as ⌊log2 d⌋. Now if t indeed gets large, then many of the di
are necessarily small. Furthermore, as long as a product of the form di+1⋯ dj is rea-
sonably small, the results from the previous subsection allow us to change the given
representation of 𝕂j=𝕂i[𝛼i+1, …, 𝛼j] into a more efficient primitive element represen-
tation 𝕂j≅𝕂i[𝛽j]. Repeating this operation as many times as necessary, we reduce the
height of the tower and guarantee that all defining polynomials have sufficiently large
degrees. This process is detailed in the next paragraphs.

DEFINITION 4.6. Let 𝛿⩽d be a positive integer. We define a δ-accelerated tower representa-
tion of (𝕂i)i⩽t to consist of the following data:

• A sequence of integers 0= i0< i1<⋯< is= t.

• A tower (𝕃j)j⩽s such that 𝕃j≅𝕂ij for j=0,…, s, represented by a sequence of defining
polynomials 𝜌1,…,𝜌s, where 𝕃j≔𝕃j−1[𝛽j]=𝕃j−1[x]/(𝜌i(x)) and 𝜌j∈𝕃j−1[x].

• For j=1,…,s, a primitive tower representation of 𝕂ij−1+1,…,𝕂ij seen as a tower over𝕃j−1
and ending with 𝕃j−1[𝛽j].

• Denote ej≔dij−1+1⋯dij. If j<s and ij= ij−1+1, then ejej+1⩾𝛿. If ij> ij−1+1, then ej<𝛿.

LEMMA 4.7. Let the notations be as in Definition 4.6 and assume that card𝕂>�d
2�. There exists

a 𝛿-accelerated tower representation of height s⩽3 log d
log 𝛿 +1.

Proof. The construction of the sequence 0= i0< i1<⋯< is= t is done by induction. For
j⩾1 with ij−1< t, assume that we have completed the construction up to height j−1. We
distinguish the following cases:

• If dij−1+1⩾𝛿 then we set ij≔ ij−1+1.

• Otherwise, we take k⩽ t maximal such that dij−1+1⋯ dk < 𝛿. So either k= t or
dij−1+1⋯dk+1⩾𝛿.

Whenever ej<𝛿 we must have either j= s or ej ej+1⩾𝛿. Consequently the number m of
such indices j is constrained by 𝛿m−1⩽ d2. It follows that m⩽2 log d

log 𝛿 +1. On the other
hand the number of indices j with ej⩾𝛿 is necessarily ⩽ log d

log 𝛿 . It follows that s⩽3 log d
log 𝛿 +1.

Once the indices i1,…, is are known, the existence of a 𝛿-accelerated tower representation
follows from Corollary 4.4. □

Algorithm 4.1
Input. A separable tower of fields (𝕂i)i⩽t over 𝕂 and 𝛿∈ℕ with 0<𝛿<d.
Output. A 𝛿-accelerated tower representation of (𝕂i)i⩽t.

1. Determine the integer sequence 0= i0< i1<⋯< is= t as described in the proof of
Lemma 4.7. Set i0≔0 and 𝕃0≔𝕂.

2. For j=1,…, s do:

a. Compute a primitive tower representation of 𝕂ij−1+1,…,𝕂ij over 𝕃j−1.
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b. Let 𝛽j and 𝜌j respectively represent the top level primitive element found for𝕂ij
over 𝕃j−1 and its minimal polynomial, and set 𝕃j≔𝕃j−1[𝛽j]=𝕃j−1[x]/(𝜌j(x)).

3. Return (ij)j⩽s, (𝕃j)j⩽s, together with the primitive tower representations from
step 2a.

In order to bound the execution time of Algorithm 4.1, we need to carefully analyze
the cost of conversions between 𝕃j and 𝕂ij for j=1,…, s.

LEMMA 4.8. With the notations of Algorithm 4.1, there exists a universal constant K such that
for j=0,…, s, we have

C(𝕃j↔𝕂ij) ⩽ KC jM𝕂(e1⋯ ej) 𝛿𝜛−1.

Proof. By Proposition 2.4, there exists a universal constant A with

m𝕃j ⩽ AC jM𝕂(e1⋯ ej).

By Proposition 4.1, there also exists a universal constant B such that conversions between
𝕃j−1[𝛼ij−1+1,…,𝛼ij] and 𝕃j can be performed in time

C(𝕃j↔𝕃j−1[𝛼ij−1+1,…,𝛼ij]) ⩽ Bm𝕃j−1 ej
𝜛

⩽ ABC j−1M𝕂(e1⋯ ej−1) ej
𝜛

⩽ ABC j−1M𝕂(e1⋯ ej) ej
𝜛−1,

for j=1,…,s, and where we used the assumption that M𝕂(n)/n is non-decreasing in n. If
ij= ij−1+1 then such conversions are actually for free. Otherwise we have ej<𝛿, whence

C(𝕃j↔𝕃j−1[𝛼ij−1+1,…,𝛼ij]) ⩽ ABC j−1M𝕂(e1⋯ ej) ej
𝜛−1

⩽ ABC j−1M𝕂(e1⋯ ej)𝛿𝜛−1.

Now take K⩾AB/(C −1) and let us prove the lemma by induction over j. For j=0 we
have nothing to do, so we assume that j>0. Using the induction hypothesis, conversions
between 𝕃j−1[𝛼ij−1+1,…,𝛼ij] and 𝕂ij are performed in time

C(𝕃j−1[𝛼ij−1+1,…,𝛼ij]↔𝕂ij) ⩽ C(𝕃j−1↔𝕂ij−1) ej

⩽ KC j−1M𝕂(e1⋯ ej−1) ej𝛿𝜛−1

⩽ KC j−1M𝕂(e1⋯ ej) 𝛿𝜛−1.

Consequently,

C(𝕃j↔𝕂ij) ⩽ C(𝕃j↔𝕃j−1[𝛼ij−1+1,…,𝛼ij])+C(𝕃j−1[𝛼ij−1+1,…,𝛼ij]↔𝕂ij)
⩽ (AB+K)C j−1M𝕂(e1⋯ ej) 𝛿𝜛−1

⩽ KC jM𝕂(e1⋯ ej) 𝛿𝜛−1.

The lemma follows by induction. □

PROPOSITION 4.9. Assume that card𝕂>�d
2�. Then Algorithm 4.1 is correct and runs in time

O(d𝕂𝛿 2 log d+CsM𝕂(d)𝛿 2 log d).

In addition, if card𝕂⩾2�d
2�, then a randomized Las Vegas version of Algorithm 4.1 has expected

cost O(d𝕂𝛿 log d+CsM𝕂(d) 𝛿 log d).
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Proof. The correctness of Algorithm 4.1 is ensured by Lemma 4.7. Let us analyze the cost
of step 2a for a given j∈{1,…, s}. The necessary conversions for rewriting the defining
polynomials of 𝛼ij−1+1,…,𝛼ij over 𝕃j−1 can be done in time

O(C(𝕃j−1↔𝕂ij−1) ej) = O(C j−1M𝕂(e1⋯ ej−1) ej𝛿𝜛−1)
= O(C jM𝕂(e1⋯ ej)𝛿𝜛−1),

by Lemma 4.8. If ij= ij−1+1, then there is nothing to be done since 𝛽j=𝛼ij−1+1. So assume
that ij> ij−1+1, whence ej<𝛿. Then Proposition 2.7 gives

d𝕃j−1 = d𝕂+O(C j−1M𝕂(e1⋯ ej−1) logmax(d̄, 𝛿)).

Consequently, in view of Corollary 4.4 and using assumption (2.2), the remainder of
step 2a takes time

O(d𝕃j−1 ej
2+ ejM𝕃j−1(ej

2) log ej)
= O((d𝕂+C j−1M𝕂(e1⋯ ej−1) logmax(d̄, 𝛿)) ej

2+C j−1M𝕂(e1⋯ ej) ej
2 log ej)

= O(d𝕂𝛿 2+C j−1M𝕂(e1⋯ ej)𝛿 2 logmax(d̄, 𝛿)),

which dominates the cost of conversions since𝜛<2. The total cost for all j=1,…,s is thus
O(d𝕂𝛿 2 log d+CsM𝕂(d)𝛿 2 log d).

Finally, if card𝕂>2�d
2�, then the randomized variant from Corollary 4.4 leads to the

claimed expected cost. □

THEOREM 4.10. If 1⩽𝛿⩽d and card𝕂>�d
2�, then

m𝕂t = O(d𝕂𝛿 2 log d+CsM𝕂(d) 𝛿 2 log d)
M𝕂t(n) = O(d𝕂𝛿 2 log d+CsM𝕂(d) 𝛿 2 log d+Cs (nM𝕂(d)𝛿𝜛−1+M𝕂(nd))).

In addition, if a 𝛿-accelerated tower representation of (𝕂i)i⩽t is known, then we have

m𝕂t = O(CsM𝕂(d) 𝛿𝜛−1)
M𝕂t(n) = O(Cs (nM𝕂(d)𝛿𝜛−1+M𝕂(nd))).

Proof. The cost to obtain a 𝛿-accelerated tower representation of (𝕂i)i⩽t is given in Propo-
sition 4.9, namely O(d𝕂𝛿 2 log d+CsM𝕂(d)𝛿 2 log d).

Then, in order to multiply two elements in (𝕂i)i⩽t, we convert them into the acceler-
ated representation, and multiply them with cost

m𝕃s = O(CsM𝕂(d))
M𝕃s(n) = O(CsM𝕂(nd)), for all n⩾0

by Proposition 2.4. We finally convert the product back into 𝕂t. By Lemma 4.8, each of
these conversions can be done in time O(CsM𝕂(d)𝛿𝜛−1). □

COROLLARY 4.11. If card𝕂>�d
2�, then we have

m𝕂t = O(d𝕂d2𝜖(d) log d+M𝕂(d)d4𝜖(d) log d),

where 𝜖(d)= 3 log C
2log d� . In particular, m𝕂t=O((d𝕂+m𝕂d)do(1)).
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Proof. It is important to notice that constants hidden in the “O” of Theorem 4.10 are
independent of the value for 𝛿, so we may freely set 𝛿 in terms of d. Now taking 𝛿=d𝜖(d)

balances the contributions of Cs and 𝛿 2. Indeed, since s⩽3 log d
log 𝛿 +1 by Lemma 4.7, we

have Cs−1⩽C3𝜖(d)−1=d2𝜖(d). We conclude by the latter theorem. □

Remark 4.12. For the same reasons as in Remark 4.5, we have not attempted to further
optimize the number of divisions in our complexity bounds. Again, we expect that most
divisions in 𝕂 can actually be avoided.

5. SEPARABLE TOWERS AND FACTORIZATION

Up to now we have focused on towers of field extensions. In this section, we turn our
attention to more general towers of separable integral ring extensions. Each extension
ring is still assumed to be a product of separable field extensions over a common ground
field 𝕂, which will allow us to apply the theory from the previous sections.

We start with a description of the precise types of towers of rings that we will be
able to handle. We next explain how such towers of rings can be “factored” into towers
of fields and we analyze the cost of the corresponding conversions. Finally, we give
a complexity bound for the computation of “tower factorizations”. We do not claim that
our approach is efficient in all cases. Nevertheless it is expected to be so whenever the
factorization process behaves as a pretreatment with negligible cost (or when factoring
polynomials over 𝕂 is reasonably affordable; see section 5.5). See the conclusion of this
paper for a discussion of alternative approaches.

5.1. Separable towers of rings
Throughout this section, we still assume that the ground ring 𝔸 is a field, written𝕂, and
we consider a tower (𝔸i)i⩽t of integral ring extensions of 𝕂. For i=1,…, t, we still let 𝜇i
denote the defining polynomial of 𝔸i over 𝔸i−1, define di, 𝛼i, etc. as before, and assume
that di⩾2. We say that (𝔸i)i⩽t is a tower of separable integral ring extensions, or just
separable in short, if

• 𝔸=𝔸0 is the field 𝕂.

• There exist polynomials ui and vi in𝔸i−1[x] such that ui𝜇i+vi𝜇i′=1, for all i=1,…, t,
where 𝜇i′ denotes the derivative of 𝜇i.

By induction over i, one may check that each 𝔸i is isomorphic to a direct product
𝕂i,1×⋯×𝕂i,si of separable algebraic extensions of𝕂. The projection 𝜇i, j of 𝜇i into𝕂i−1, j[x]
is separable in the usual sense, which means that 𝜇i, j and 𝜇i, j′ are coprime for all i=1,…, t
and j=1,…, si−1.

In terms of the triangular set (Ti)i⩽t defined in the introduction, a separable tower
corresponds to the situation where the ideal (T1,…,Tt) is radical over the algebraic clo-
sure 𝕂alg of 𝕂. In particular, this means that (Ti)i⩽t and therefore (𝔸i)i⩽t are uniquely
determined by the variety

V(𝔸i)i⩽t≔𝒱(T1,…,Tt)=�(𝜁1,…, 𝜁t)∈(𝕂alg)t :T1(𝜁1)=⋯=Tt(𝜁1,…, 𝜁t)=0�.

For each k⩽t, we notice that V(𝔸i)i⩽k is the projection of V(𝔸i)i⩽t onto the first k coordinates.
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𝕂

𝔸1;1

𝔸2;1,1

𝔸3;1,1,1 … 𝔸3;1,1,l1,1

… 𝔸2;1,l1

𝔸3;1,l1,1 … 𝔸3;1,l1,l1,l1

… 𝔸1;l()

𝔸2;l(),1

𝔸3;l(),1,1 … 𝔸3;l(),1,ll(),1

… 𝔸2;l(),ll()

𝔸3;l(),ll(),1 … 𝔸3;l(),ll(),ll(),ll()

Figure 5.1. Example of a representation of a tree factorization of a tower of height t=3.

From a geometric point of view, one may regard computations with elements in𝔸t as
computations with all zeros (𝛼1,…,𝛼t) in V(𝔸i)i⩽t in parallel. Alternatively, we may regard
them as computations with parameters 𝛼1,…,𝛼t subject to the polynomial constraints
T1(𝛼1)=⋯=Tt(𝛼1,…,𝛼t)=0.

5.2. Tree factorizations of towers
Consider two separable towers (𝔸i)i⩽t and (𝔹i)i⩽t of the same height t and over the same
base field𝕂. Let (𝜇i)i⩽t and (𝜈i)i⩽t denote the respective defining polynomials for (𝔸i)i⩽t
and (𝔹i)i⩽t. We say that (𝔹i)i⩽t is a factor of (𝔸i)i⩽t if V(𝔹i)i⩽t⊆V(𝔸i)i⩽t. This is the case if
and only if there exist natural projections 𝜋i:𝔸i→𝔹i (that naturally extend to projections
𝜋i:𝔸i[x]→𝔹i[x] in a coefficientwise manner) such that:

• 𝜈i divides 𝜋i−1(𝜇i) for i=1,…, t.

• 𝜋i sends an element a∈𝔸i represented by f =∑i=0
di−1 fi xi∈𝔸i−1[x]<di to 𝜋i−1( f )=

∑i=0
di−1 𝜋i−1( fi)xi mod 𝜈i, for i=1,…, t.

We say that (𝔹i)i⩽t is irreducible if the 𝔹i are all fields or, equivalently, if the 𝜈i are all
irreducible.

The notation “()” stands for the empty tuple. Let Σk be index sets of k-tuples of inte-
gers with Σ0={()} and

Σk={(𝜎1,…,𝜎k−1, i) : (𝜎1,…,𝜎k−1)∈Σk−1, i∈{1,…, l𝜎1,…,𝜎k−1}},

for suitable integers l𝜎1,…,𝜎k−1 and k=1,…, t. Consider a family ((𝔸i;𝜎)i⩽t)𝜎∈Σt of factor
towers of (𝔸i)i⩽t with the property that 𝔸k;𝜎1,…,𝜎t only depends on 𝜎1, …, 𝜎k for all
(𝜎1,…,𝜎t)∈Σt, and write 𝔸k;𝜎1,…,𝜎k ≔𝔸k;𝜎1,…,𝜎t. We say that such a family of factors
forms a tree factorization of (𝔸i)i⩽t if the variety V(𝔸i)i⩽t is partitioned into V(𝔸i)i⩽t =
∐𝜎∈Σt

V(𝔸i;𝜎)i⩽t. We say that the factorization is irreducible, if all its factor towers are
irreducible. If k>0 and 𝜎 ∈Σk, then we also write 𝜇k;𝜎∈𝔸k;𝜎1,…,𝜎k−1[x] for the defining
polynomial of 𝔸k;𝜎 over 𝔸k−1;𝜎.

It is convenient to represent such a factorization by a labeled tree (see Figure 5.1): the
nodes are identified with the index set Σ0⨿Σ1⨿⋯⨿Σt, and each node 𝜎∈Σk is labeled
with the algebraic extension 𝔸k;𝜎. The parent of the node 𝜎∈Σk with k>0 is simply the
node (𝜎1,…,𝜎k−1)∈Σk−1. Each individual factor (𝔸i;𝜎)i⩽t corresponds to a path from the
root to a leaf.

Given k⩽ t and 𝜎∈Σk, let
Σt;𝜎≔{𝜏 :(𝜎,𝜏)∈Σt}.

Projecting the equality
V(𝔸i)i⩽t= �

𝜎∈Σk

�
𝜏∈Σt;𝜎

V(𝔸i;𝜎 ,𝜏)i⩽t
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on the first k coordinates, we observe that the projection of V(𝔸i;𝜎 ,𝜏)i⩽t, for given 𝜎 ∈Σk,
is the same for all 𝜏∈Σt;𝜎, and equals V(𝔸i;𝜎1,…,𝜎i)i⩽k, whence V(𝔸i)i⩽k=∐𝜎∈Σk

V(𝔸i;𝜎1,…,𝜎i)i⩽k.
Consequently, ((𝔸i;𝜎1,…,𝜎i)i⩽k)𝜎∈Σk forms a tree factorization of the subtower (𝔸i)i⩽k.
From an algebraic point of view, this means that we have a natural isomorphism

𝔸k ≅ �
𝜎∈Σk

𝔸k;𝜎. (5.1)

For any 𝜎 ∈Σk, we denote by 𝜋k;𝜎 the natural projection of 𝔸k onto 𝔸k;𝜎. Dually, the
family ((𝔸i;𝜎,𝜏)i⩽t)𝜏∈Σt;𝜎 forms a tree factorization of the tower𝔸0⊆𝔸1;𝜎1⊆⋯⊆𝔸k;𝜎1,…,𝜎k⊆
𝔹k+1;𝜎⊆⋯⊆𝔹t;𝜎, where

𝔹m;𝜎 ≔ �
𝜏∈Σk;𝜎

𝔸m;𝜎,𝜏

for m=k+1,…, t. In particular, if m= k+1⩽ t, then this relation becomes

𝔹k+1;𝜎 ≅ 𝔸k+1;𝜎,1⊕⋯⊕𝔸k+1;𝜎,l𝜎. (5.2)

This corresponds to the factorization

𝜋k;𝜎(𝜇k+1) = 𝜇k+1;𝜎,1⋯𝜇k+1;𝜎,l𝜎, (5.3)

where we recall that 𝜇k+1;𝜎,i∈𝔸k;𝜎[x] stands for the defining polynomial of 𝔸k+1;𝜎,i for
i=1,…, l𝜎, whereas 𝜋k;𝜎(𝜇k+1)∈𝔸k;𝜎[x] is the defining polynomial of 𝔹k+1;𝜎.

5.3. Multi-modular representations
If t=1, then (5.1) reduces into the well known isomorphism

𝕂[x]/(𝜇1) ≅ 𝕂[x]/(𝜇1;1)⊕⋯⊕𝕂[x]/(𝜇1;l()) (5.4)

from the Chinese remainder theorem. We may thus view the isomorphism (5.1) as a gen-
eralized Chinese remainder theorem. The multi-modular representation of an element in𝔸t
is simply its image under this isomorphism. The aim of this section is to present efficient
algorithms for conversions between the usual and the multi-modular representations.

For the usual Chinese remainder theorem, efficient algorithms are well known for
carrying out the corresponding conversions [6, 23, 48]. These algorithms are based on the
technique of so-called remainder trees, for which recent improvements can be found in [4,
10, 35]. In particular, if t=1 then the conversions from (5.4) can be carried out in time
O(M𝕂(d) log d); see for instance [27, Chapter 10]. These fast algorithms actually work in
our context. This means that the isomorphism

Φk;𝜎 : 𝔸k;𝜎[x]/(𝜋k;𝜎(𝜇k+1)) ≅ 𝔸k;𝜎[x]/(𝜇k+1;𝜎,1)⊕⋯⊕𝔸k;𝜎[x]/(𝜇k+1;𝜎,l𝜎)

from (5.2) and (5.3) can be computed with complexity O(M𝔸k;𝜎(dk+1) log dk+1), whenever
𝜋k;𝜎(𝜇k+1′ )−1 modulo 𝜇k+1;𝜎,i are precomputed for all i=1,…, l𝜎. In fact, if ai are elements
of 𝔸k;𝜎[x]/(𝜇k+1;𝜎,i) with natural preimages fi∈𝔸k;𝜎[x] for i=1,…, l𝜎, then the natural
preimage of Φk;𝜎

−1 (a1,…,al𝜎) can be computed as

�
i=1

l𝜎
( fi𝜇k+1;𝜎,i′ 𝜋k;𝜎(𝜇k+1′ )−1mod 𝜇k+1;𝜎,i)

𝜋k;𝜎(𝜇k+1)
𝜇k+1;𝜎,i

, (5.5)

using fast “linear combination for linear moduli” [27, Algorithm 10.9].
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The idea is to combine these “isomorphisms at nodes Σk” in order to compute the
global isomorphism from (5.1). For the complexity analysis, it is convenient to introduce
the following maximal normalized cost of multiplication in any of the factors of the tree
factorization:

H ≔ max
0⩽k<t

max
𝜎∈Σk

M𝔸k;𝜎(dk+1)
dk+1dim𝕂𝔸k;𝜎

. (5.6)

For the time being, we may use Proposition 2.4 as a complexity bound for M𝔸k;𝜎(dk+1).
The conversion of elements in 𝔸t into elements in ⨁𝜎∈Σt

𝔸t;𝜎 is called multi-modular
reduction and we may use the following algorithm for this operation:

Algorithm 5.1
Input: a tree factorization ((𝔸i;𝜎)i⩽t)𝜎∈Σt of a tower (𝔸i)i⩽t, and a∈𝔸t.
Output: (𝜋t;𝜎(a))𝜎∈Σt.

1. If t=0, then return (a)𝜎∈Σ0.

2. Expand a=a0+⋯+ adt−1𝛼t
dt−1 with a0,…,adt−1∈𝔸t−1.

3. For i=0,…,dt−1−1, recursively compute (𝜋t−1;𝜎(ai))𝜎∈Σt−1.

4. For each 𝜎∈Σt−1 do:

a. Set b≔𝜋t−1;𝜎(a0)+⋯+𝜋t−1;𝜎(adt−1)xdt−1∈𝔸t−1;𝜎[x].

b. Compute bi≔b rem𝜇t;𝜎,i for i=1,…, l𝜎, so that 𝜋t;𝜎,i(a)=bi mod 𝜇t;𝜎,i.

5. Collect and return the family (𝜋t;𝜎,i(a))(𝜎,i)∈Σt.

PROPOSITION 5.1. Algorithm 5.1 is correct and runs in time O(Hd log d).

Proof. The correctness is straightforward from the definitions. We perform step 4b using
fast univariate multi-modular reduction. Let A be a universal constant such that multi-
modular reduction of a polynomial of degree n over an arbitrary effective ring 𝔸 can be
performed in time AM𝔸(n) log n.

Let us show by induction over t that the algorithm runs in time AHd log d. For t=0,
the result is obvious, so assume that t>0. By the induction hypothesis, step 3 runs in
time dt AH(d/dt) log(d/dt)=AHd log (d/dt). By the definition of A, the contribution of
step 4b to the complexity is bounded by

�
𝜎∈Σt−1

AM𝔸t−1;𝜎(dt) log dt ⩽ AHdt log dt �
𝜎∈Σt−1

dim𝕂𝔸t−1;𝜎

= AHd log dt.

Adding up, it follows that the algorithm runs in time AHd log d. □

The opposite conversion of elements in ⨁𝜎∈Σt
𝔸t;𝜎 into elements in 𝔸t is called Chi-

nese remaindering; we may use the following algorithm for this operation:

Algorithm 5.2
Input: a tree factorization ((𝔸i;𝜎)i⩽t)𝜎∈Σt of (𝔸i)i⩽t and a family (a𝜎)𝜎∈Σt with a𝜎∈𝔸t;𝜎.
Output: a∈𝔸t such that 𝜋t;𝜎(a)=a𝜎 for all 𝜎∈Σt.
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Assumption:𝜋k;𝜎(𝜇k+1′ )−1 modulo 𝜇k+1;𝜎,i are precomputed for all 𝜎∈Σk, k=0,…,t−1, and
i=1,…, l𝜎.

1. If t=0, then Σ0 is the singleton {()} made of the empty tuple, so return a().

2. For each 𝜎∈Σt−1 do:

Compute b𝜎=b𝜎;0+⋯+b𝜎;dt−1xdt−1 such that a𝜎;i=b𝜎 mod𝜇t;𝜎,i for i=1,…, l𝜎.

3. For i=0,…,dt−1 do:

Recursively compute ai∈𝔸t−1 such that 𝜋t−1;𝜎(ai)=b𝜎;i for all 𝜎∈Σt−1.

4. Return a0+⋯+ adt−1𝛼t−1
dt−1.

PROPOSITION 5.2. Algorithm 5.2 is correct and costs O(Hd log d).

Proof. The proof is very similar to the one of Proposition 5.1. The polynomials
𝜋k;𝜎(𝜇k+1′ )−1 modulo 𝜇k+1;𝜎,i are actually used in the Chinese remaindering of step 2 via
formula (5.5). □

5.4. Factorization
Factoring univariate polynomials over an arbitrary effective field 𝕂 is generally expen-
sive or even impossible [24, 25]. Still, if an algorithm for this task is given, then it is
interesting to study how to exploit it for the computation of an irreducible tree factor-
ization ((𝔸i;𝜎)i⩽t)𝜎∈Σt of a given separable tower (𝔸i)i⩽t. Once such an irreducible tree
factorization is known, arithmetic and other operations can potentially be sped up by
switching to the multi-modular representation thanks to Algorithms 5.1 and 5.2.

For the complexity analysis, the function F𝕃(n) represents the time necessary to factor
a polynomial in 𝕃[x]⩽n, and it is again convenient to introduce the following maximal
normalized cost of factoring univariate polynomials over any of the fields in the factor
towers:

� ≔ max
0⩽k<t

max
𝜎∈Σk

F𝔸k;𝜎(dk+1)
dk+1dim𝕂𝔸k;𝜎

. (5.7)

Here we notice that each of the irreducible factors (𝔸i;𝜎)i⩽t is a tower of separable fields,
so we may directly use the accelerated arithmetic from section 4 for computations over
any of the 𝔸i;𝜎.

Algorithm 5.3
Input: a separable tower (𝔸i)i⩽t.
Output: the irreducible tree factorization ((𝔸i;𝜎)i⩽t)𝜎∈Σt of (𝔸i)i⩽t.

1. If t=0, then return ((𝔸i;𝜎)i⩽t)𝜎∈Σ0.

2. Recursively compute the irreducible tree factorization ((𝔸i;𝜎)i⩽t−1)𝜎∈Σt−1

of (𝔸i)i⩽t−1.

3. Compute (𝜋t−1;𝜎(𝜇t))𝜎∈Σt−1 using Algorithm 5.1.

4. For each 𝜎∈Σt−1 do:

a. Compute the irreducible factors 𝜇t;𝜎,1,…,𝜇t;𝜎,l𝜎∈𝔸t−1;𝜎[x] of 𝜋t−1;𝜎(𝜇t).
b. Let 𝔸t;𝜎,i≔𝔸t−1;𝜎[x]/(𝜇t;𝜎,i) for i=1,…, l𝜎.

5. Return ((𝔸i;𝜎)i⩽t)𝜎∈Σt, where Σt={(𝜎, i):𝜎 ∈Σt−1, i∈{1,…, l𝜎}}.
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PROPOSITION 5.3. Algorithm 5.3 is correct and takes time at most 2�d+O(Hd log d)whenever
di⩾2 for i=1,…, t.

Proof. The cost of all factorizations in step 4a is bounded by

�
𝜎∈Σt−1

F𝔸t−1;𝜎(dt) ⩽ �dt �
𝜎∈Σt−1

dim𝕂𝔸t−1,𝜎 = �d.

Together with recursive calls, the total cost of all factorizations is bounded by
�(d1⋯dt+d1⋯dt−1+⋯+d1)⩽2�d.

Step 3 takes time O(Hd log d), by Proposition 5.1, and the same step for the recursive calls
amounts to a similar complexity. We conclude by adding up these contributions. □

We are now ready to present a major corollary of this result; in combination with
Algorithms 5.1 and 5.2, it reduces arithmetic in general separable towers to arithmetic in
accelerated towers of fields.

COROLLARY 5.4. The irreducible tree factorization of a separable tower (𝔸i)i⩽t can be computed
in time 2�d+(d𝕂+m𝕂)d1+o(1).

Proof. This follows from Proposition 5.3 combined to Corollary 4.11, which yields
H=(d𝕂+m𝕂)do(1). □

5.5. Remarks about special coefficient fields
For certain specific fields of coefficients𝕂, factorization of univariate polynomials over𝕂
can be reasonably cheap. Let us briefly study two particular such cases.
Complex numbers Let us first consider the case when 𝕂 is a subfield of ℂ. In prac-
tice, this usually means that elements of 𝕂 are represented approximately by complex
floating point numbers of fixed bit precision p. The bit complexity of the field operations
in 𝔸 is then bounded by O(I(p)), where I(p) bounds the cost of p-bit integer multiplica-
tion. It has recently been shown that I(p)=O�p log p4log

∗p�= Õ(p); see [31, 32, 33].
Even if 𝕂=ℚ or if 𝕂 is an algebraic number field, then it may be useful to tem-

porarily convert coefficients in 𝕂 into p bit complex floating point numbers and convert
the results of computations back using rational reconstruction techniques [27, Chapter 5].

A convenient framework for analyzing the “ultimate complexity” of numeric algo-
rithms was introduced in [38]. Concerning the factorization of complex polynomials of
degree d, it was shown therein that all roots could be computed at precision p in time
O(I(dp) log d) for “sufficiently large precisions” p. The actual precision from which this
bound becomes relevant highly depends on the location of the roots. As a rule of thumb,
a precision p⩾d is often required and sufficient, but we refer the reader to the seminal
works of Schönhage, Pan and others for details [47, 54].

Since ℂ is algebraically closed, towers of separable algebraic extensions can be fac-
tored into towers of degree one. From the “ultimate bit complexity” point of view
from [38], it follows that the ultimate bit complexity of the conversions in Propositions 5.1
and 5.2 becomes O(I(dp) log d) and so does the cost of factoring itself in Proposition 5.3.
Using our rule of thumb, we expect that a precision p of the order of d̄≔max(d1,…,dt)
should be sufficient in practice in order to observe these complexity bounds. Small values
of d̄ are thus expected to be favourable for this type of coefficients (notice that this was
the least favourable case for general coefficients!). A refined comparison between the
bit complexities of this approach and the building of accelerated towers would require
efforts that are beyond the scope of the present paper.
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Finite fields Let us next consider the case when 𝕂=𝔽q is a finite field of characteristic
p>0, with q=p𝜅 elements. The bit complexity of multiplying two polynomials in 𝔽q[x]
is bounded by M𝔽q(n)=O�n log q log (n log q) 4log

∗(nlog q)�, uniformly in q; see [30, 34].
Fast computations in towers of finite field extensions 𝔽q⊆𝔽qd1⊆𝔽qd1d2⊆⋯⊆𝔽qd1⋯dt were
treated quite extensively in [39]; see also [17] for alternative approaches. The case when
d̄≔max(d1,…,dt) is small is most favourable. The reason is that the defining polyno-
mial 𝜇t of 𝔽qd1⋯dt can be factored over each of the subfields 𝔽qd1⋯di efficiently. It is also
worth to mention that [39] contains various fast algorithms for the computation of prim-
itive elements in towers of finite fields. Once again, these algorithms are most efficient
whenever d̄ remains small. It would be interesting to exploit these techniques to further
accelerate arithmetic in towers of finite fields.

6. PRIMITIVE ELEMENT REPRESENTATIONS

This section revisits the computation of traces and characteristic polynomials in towers
of field extensions over a general field by using fast products. Our algorithms are rather
different from those of [52]: we compute traces faster, but for characteristic polynomials
and primitive elements the bottleneck lies in the baby-step giant-step method, so the
complexity exponents in terms of𝜛 turn out to be the same as in [52] (notice that we gain
a logarithmic factor t). Until the end of this section, (𝕂i)i⩽t is a tower of separable field
extensions of degrees di⩾2 and 1<C⩽3 is as in Proposition 2.4.

6.1. Trace computations in towers

Let us recall how to compute traces in a tower (𝕂i)i⩽t of separable field extensions. We
let �̃�i(z)=zdi𝜇i(1/z) represent the reverse polynomial of 𝜇i. Its constant coefficient is 1 and
the trace function Tr𝕂i/𝕂i−1 of 𝕂i over 𝕂i−1 may be computed as the first di terms of the
power series

− �̃�i′(z)
�̃�i(z)

=Tr𝕂i/𝕂i−1(𝛼i)+Tr𝕂i/𝕂i−1(𝛼i
2)z+⋯+Tr𝕂i/𝕂i−1�𝛼i

di�zdi−1+O(zdi).

In other words, the trace map Tr𝕂i/𝕂i−1 can be regarded as a vector in 𝕂i−1
di that can be

computed in time O(M𝕂i−1(di)): indeed this vector represents the 1×di matrix of Tr𝕂i/𝕂i−1

with respect to the basis 1, 𝛼i, 𝛼i
2,…, 𝛼i

di−1. Given such a vector representation, the indi-
vidual evaluation of Tr𝕂i/𝕂i−1 at an element in 𝕂i takes time O(m𝕂i−1di).

More generally, 𝕂i is a 𝕂j-algebra for all i> j, and the relative trace function satisfies

Tr𝕂i/𝕂j=Tr𝕂j+1/𝕂j∘Tr𝕂j+2/𝕂j+1∘⋯∘Tr𝕂i/𝕂i−1.

LEMMA 6.1. Assume that products in 𝕂i are performed by linear algorithms over 𝕂 in the sense
of [10] (and as is always the case in this paper). Then the vector representation of the trace map
Tr𝕂t/𝕂 can be computed in time

O(((((((((((((((((((�i=1
t

M𝕂i−1(di)))))))))))))))))))).

24 ACCELERATED TOWER ARITHMETIC



Proof. First we compute Tr𝕂i/𝕂i−1, as a vector in 𝕂i−1
di , for i=1,…, t. This computation

takes time O(∑i=1
t M𝕂i−1(di)). We regard each Tr𝕂i/𝕂i−1 as a 𝕂-linear map ℓi from 𝕂d1⋯di

to𝕂d1⋯di−1, whose evaluation takes time O(m𝕂i−1di). RegardingTr𝕂1/𝕂 as a vector v1∈𝕂d1,
we apply the transpose of ℓ2 to v1 in order to obtain a new vector v2∈𝕂d1d2 that rep-
resents Tr𝕂2/𝕂. This computation takes time O(m𝕂1d2) thanks to the transposition prin-
ciple (as explained in [10]). We next apply the transpose of ℓ3 to v2 and obtain a vector
v3∈𝕂d1d2d3 that represents Tr𝕂3/𝕂. Continuing this way, we obtain Tr𝕂t/𝕂 as a vector
vt∈𝕂d in time O(∑i=1

t m𝕂i−1di)=O(∑i=1
t M𝕂i−1(di)). □

6.2. Characteristic polynomials
We may take advantage of accelerated towers to compute a primitive element 𝛽∈𝕂t
over 𝕂, together with its minimal polynomial 𝜈 and the parametrizations 𝜑i∈𝕂[x]<d
with 𝛼i=𝜑i(𝛽) for i=1,…, t. We first consider the computation of characteristic polyno-
mials.

THEOREM 6.2. Assume that a 𝛿-accelerated tower (𝕃j)j⩽s for (𝕂i)i⩽t is given, with 𝛿𝜛−1=
O� d� �, and that the inverses of 2,…,d are available in 𝕂. Then the characteristic polynomial
of a∈𝕂t over 𝕂 can be computed in time O�m𝕂d𝜛+CsM𝕂(d) d� �.

Proof. Lemma 6.1 and Proposition 2.4 allow us to compute the representation of Tr𝕃s/𝕂
as a vector in 𝕂d in time

O(((((((((((((((((
((
(
(�

j=1

s

M𝕃j−1(ej))))))))))))))))))
))
)
) = O(CsM𝕂(d)).

Using Lemma 4.8, we convert a into an element b of𝕃s in time O(CsM𝕂(d)𝛿𝜛−1). By using
the transposed product in𝕃s the vector representation of the linear form ℓ:z↦Tr𝕃s/𝕂(bz)
can be computed in time O(CsM𝕂(d)). Then, as discussed in section 1.2, the compu-
tation of

ℓ(1)=Tr𝕃s/𝕂(b),…, ℓ(bd−1)=Tr𝕃s/𝕂(bd)

is achieved by transposing Algorithm 3.1, so Proposition 3.1 yields the cost

O�m𝕃s d� +m𝕂d𝜛�=O�m𝕂d𝜛+CsM𝕂(d) d� �.

We finally use the Newton–Girard identity (1.1) to recover the characteristic polynomial
of b with further cost O(M𝕂(d)); see for instance [29, section 2.4]. The conclusion fol-
lows. □

By taking 𝛿=d𝜖(d) as in Corollary 4.11, the expected cost of Theorem 6.2 simplifies to
O(m𝕂d𝜛), thanks to the assumption 𝜛> /3 2.

6.3. Primitive elements
We are now in a position to design a randomized algorithm with subquadratic expected
cost for computing a primitive element representation of 𝕂t over 𝕂.

THEOREM 6.3. Assume that card𝕂⩾2d(2d−1), that the inverses of 2,…,d are available in 𝕂,
and that a 𝛿-accelerated tower (𝕃j)j⩽s for (𝕂i)i⩽t is given, with 𝛿𝜛−1=O� d� �. Then a primitive
element representation 𝛽,𝜈,𝜑1,…,𝜑t of 𝕂t over 𝕂 can be computed by a randomized Las Vegas
algorithm with expected cost

O�d𝕂+m𝕂d𝜛 t+CsM𝕂(d) d� t�.
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Taking 𝛿=d𝜖(d) as in Corollary 4.11, this cost further simplifies into O(d𝕂+m𝕂d𝜛 t).

Proof. The characteristic polynomial 𝜈 of 𝛽=𝜆1𝛽1+⋯+𝜆s𝛽s has total degree d in 𝜆1,…,𝜆t.
So its discriminant is a polynomial in 𝕂[𝜆1, …, 𝜆t] of total degree d (2 d − 1). By the
Schwartz–Zippel lemma [55, 57], picking 𝛽 at random with the 𝜆i in a set of size 2d(2d−1)
leads to a primitive element with probability ⩾ /1 2. Computing the characteristic poly-
nomial of 𝛽 takes time O�m𝕂 d𝜛+CsM𝕂(d) d� � by Theorem 6.2. We can verify that 𝛽
is a primitive element by checking that its characteristic polynomial is separable with
further cost O(M𝕂(d) log d). Consequently the expected time to find a primitive ele-
ment is O�m𝕂d𝜛+CsM𝕂(d) d� �.

Now assume that a primitive element 𝛽 has been found, and let us consider the
computation of polynomials𝜓j∈𝕂[x]<d such that 𝛽j=𝜓j(𝛽) for j=1,…,s. We follow Kro-
necker's classical deformation technique of the primitive element; see for instance [28,
section 3.3]. For this purpose, we first introduce a new formal indeterminate 𝜏 with
𝜏2=0, so that 𝕂[𝜏]=𝕂⊕𝕂𝜏 is the ring of tangent numbers over 𝕂. We aim at com-
puting the characteristic polynomial of 𝛽+𝛽j𝜏∈𝕃s[𝜏] over 𝕂[𝜏]. Then

Tr𝕃s[𝜏]/𝕂[𝜏]((𝛽+𝛽j𝜏)k)=Tr𝕃s[𝜏]/𝕂[𝜏](𝛽k+k𝛽j𝛽k−1𝜏)=Tr𝕃s/𝕂(𝛽k)+ kTr𝕃s/𝕂(𝛽j𝛽k−1)𝜏.

Notice that Tr𝕃s/𝕂 is already available at this point. The computation of the vector rep-
resentation of the linear form b↦Tr𝕃s/𝕂(𝛽j b) can be done in time m𝕃s=O(CsM𝕂(d)) by
the transposition principle. Therefore Tr𝕃s/𝕂(𝛽j),…,Tr𝕃s/𝕂(𝛽j𝛽d−1) is obtained by trans-
posing Algorithm 3.1. In view of Proposition 3.1, this computation takes time

O�m𝕃s d� +m𝕂d𝜛�=O�m𝕂d𝜛+CsM𝕂(d) d� �.

At this point, we have computed the traces Tr𝕃s[𝜏]/𝕂[𝜏]((𝛽+𝛽j𝜏)k) for all k=1,…,d. We
deduce the characteristic polynomial 𝜈(x) + 𝜈j(x) 𝜏 of 𝛽+ 𝛽i 𝜏 using Newton–Girard's
formula (1.1), so that

𝜈(𝛽+𝛽j𝜏)+𝜈j(𝛽+𝛽j𝜏)𝜏 = 𝜈(𝛽)+(𝜈 ′(𝛽)𝛽j+𝜈j(𝛽))𝜏 = 0.

It follows that 𝛽j=−𝜈j(𝛽)/𝜈 ′(𝛽) ≔𝜓j(𝛽). The total cost to obtain all the 𝜓j for j=1,…, s is

O�d𝕂+m𝕂 s d𝜛+ sCsM𝕂(d) d� �.

Now let a be an element of 𝕂t. It can be converted into an element f (𝛽1,…,𝛽s) of 𝕃s
in time O(CsM𝕂(d) 𝛿𝜛−1) by Lemma 4.8, where f (x1,…, xs) has partial degree <ej in xj
for i=1,…, s. The expression of a in terms of 𝛽 is obtained as f (𝜓1,…,𝜓s) rem 𝜈 in time
O�m𝕂d𝜛+M𝕂(d) d� � by Proposition 3.3. By successively taking 𝛼1,…,𝛼t for a, the poly-
nomials 𝜑1,…,𝜑t can all be obtained in time

O��m𝕂d𝜛+M𝕂(d) d� +CsM𝕂(d)𝛿𝜛−1� t�.

Finally, thanks to 𝛿 = d𝜖(d), the assumption 𝜛> /3 2 implies the simplified complexity
bound. □

CONCLUSION

We have proved nearly optimal complexity bounds for basic arithmetic operations in
towers of fields of arbitrary height. Our results are based on the newly introduced con-
cept of “accelerated” towers. Two major problems remain open:

• Do there exist algorithms of quasi-linear complexity Õ(d) instead of d1+o(1)?
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It is well known that this is indeed the case for towers of bounded height t=O(1):
see Propositions 2.4 and 2.7. In section 5.5, we have singled out a few other situ-
ations when quasi-linear algorithms do exist. We refer to [7] for yet a few other
examples.

• Can one efficiently construct accelerated towers for general separable towers, without
relying on univariate polynomial factorization as in section 5?

One obvious strategy is to use the dynamic evaluation paradigm [19, 20] that we
already discussed in the introduction, while controlling complexity issues using
techniques from [16]. We do not see any serious obstacle to a positive answer, but
the technical details are beyond the scope of this paper. We intend to come back
to this problem in a future work.

Another major challenge concerns efficient implementations. Asymptotically fast algo-
rithms based on Proposition 2.4 obviously only become interesting when d is in the range
where evaluation-interpolation style algorithms are used for univariate arithmetic. For
instance, FFT-based algorithms are typically used for d⩾100.

For such sufficiently large d, we expect our acceleration techniques to be useful. For
instance, assume that d1 and d2 are both small, say d1=d2=2. Then conversions between
𝕂[𝛼1, 𝛼2] and an equivalent primitive representation 𝕂[𝛽] can be done very fast. Con-
versions between 𝕂[𝛼1,…,𝛼t] and 𝕂[𝛽,𝛼3,…,𝛼t] can be done coefficientwise, so they are
also fast. Without much cost, this allows us to diminish the height t by one and gain a
constant factor C when applying Proposition 2.4.

This discussion indicates that our techniques should be of practical interest for suf-
ficiently large d and generic base fields 𝕂. For specific base fields 𝕂 and specific types
of towers, various alternative approaches have been proposed [17, 38, 39], and it would
require a more significant implementation effort to figure out which approaches are best;
we intend to address to this issue in the near future.

Acknowledgments We thank the anonymous referees for their helpful comments.
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