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Abstract. Assuming a conjectural upper bound for the least prime in an

arithmetic progression, we show that n-bit integers may be multiplied in

O(n logn 4log
∗ n) bit operations.

1. Introduction

Let M(n) be the number of bit operations required to multiply two n-bit integers
in the deterministic multitape Turing model [14]. Almost a decade ago, Fürer [6, 7]
proved that

M(n) = O(n log nK log∗ n) (1)

for some constant K > 1. Here log∗ x denotes the iterated logarithm, that is,

log∗ x := min{j ∈ N : log◦j x 6 1} (x ∈ R),

where log◦j x := log · · · log x (iterated j times). More recently, Harvey, van der
Hoeven and Lecerf [9] gave a related algorithm that achieves (1) with the explicit
value K = 8.

There have been two proposals in the literature for algorithms that achieve the
tighter bound

M(n) = O(n log n 4log
∗ n) (2)

under plausible but unproved number-theoretic hypotheses. First, Harvey, van der
Hoeven and Lecerf gave such an algorithm [9, §9] that depends on a slight weakening
of the Lenstra–Pomerance–Wagstaff conjecture on the density of Mersenne primes,
that is, primes of the form p = 2m − 1, where m is itself prime. Although this
conjecture is backed by reasonable heuristics and some numerical evidence, it is
problematic for several reasons. At the time of writing, only 49 Mersenne primes
are known, the largest being 274,207,281 − 1 [18]. More significantly, it has not been
established that there are infinitely many Mersenne primes. Such a statement seems
to be well out of reach of contemporary number-theoretic methods.

A second conditional proof of (2) was given by Covanov and Thomé [5], this time
assuming a conjecture on the density of certain generalised Fermat primes, namely,

primes of the form r2
λ

+1. Again, although their unproved hypothesis is supported
by heuristics and some numerical evidence, it is still unknown whether there are
infinitely many primes of the desired form. It is a famous unsolved problem even to
prove that there are infinitely many primes of the form n2 + 1, of which the above
generalised Fermat primes are a special case.

As an aside, we mention that the unproved hypotheses in [9] and [5] may both be
expressed as statements about the cyclotomic polynomials φk(x) occasionally taking

prime values: for [9] we have 2m−1 = φm(2), and for [5] we have r2
λ

+1 = φ2λ+1(r).
1



2 DAVID HARVEY AND JORIS VAN DER HOEVEN

In this paper we give a new conditional proof of (2), which depends on the follow-
ing hypothesis. Let ϕ(q) denote the totient function. For relatively prime positive
integers r and q, let P (r, q) denote the least prime in the arithmetic progression
n = r (mod q), and put P (q) := maxr P (r, q).

Hypothesis P. We have P (q) = O(ϕ(q) log2 q) as q →∞.

Our main result is as follows.

Theorem 1. Assume Hypothesis P. Then there is an algorithm achieving (2).

The new algorithm is structurally quite similar to the algorithm of [9, §9]. The
main difference is that we replace the coefficient ring Fp[i], where p = 2m − 1 is
a Mersenne prime and i2 = −1, by the ring Fp, where p is a prime of the form
p = a · 2m + 1, for an appropriate choice of m and a = O(m2). Hypothesis P
guarantees that such primes exist (take q = 2m and r = 1). The basic idea of
the algorithm is to convert an integer product modulo a · 2m + 1 to a polynomial
product modulo Xk + a over a suitable coefficient ring, by splitting the integers
into chunks of m/k bits. One main point of simplification compared to [9, §9] is
that we have considerable freedom in our choice of m. By contrast, the choice of m
in [9, §9] is dictated by the rather erratic distribution of Mersenne primes, leading
to considerable technical complications in the earlier algorithm.

In software implementations of fast Fourier transforms (FFTs) over finite fields,
such as Shoup’s NTL library [16], it is quite common to work over Fp where p is a
prime of the form a ·2m+1 that fits into a single machine register. Such primes are
sometimes called FFT primes; they are popular because it is possible to perform
a radix-two FFT efficiently over Fp with a large power-of-two transform length.
Our Theorem 1 shows that such primes remain useful even in a theoretical sense
as m→∞.

Let us briefly discuss the evidence in favour of Hypothesis P. The best uncondi-
tional bound for P (q) is currently Xylouris’s refinement of Linnik’s theorem, namely
P (q) = O(q5.18) [21]. If q is a prime power (the case of interest in this paper), one
can obtain P (q) = O(q2.4+ε) [3, Cor. 11]. Assuming the Generalised Riemann Hy-
pothesis (GRH), one has P (q) = O(q2+ε) [12]. All of these bounds are far too weak
for our purposes.

The tighter bound in Hypothesis P was suggested by Heath–Brown [10, 11]. It
can be derived from the reasonable assumption that a randomly chosen integer in a
given congruence class should be no more or less ‘likely’ to be prime than a random
integer of the same size, after correcting the probabilities to take into account the
divisors of q. A detailed discussion of this argument is given by Wagstaff [20], who
also presents some supporting numerical evidence. In the other direction, Granville
and Pomerance [8] have conjectured that ϕ(q) log2 q = O(P (q)). These questions
have been revisited in a recent preprint of Li, Pratt and Shakan [13]; they give
further numerical data, and propose the more precise conjecture that

lim inf
q

P (q)

ϕ(q) log2 q
= 1, lim sup

q

P (q)

ϕ(q) log2 q
= 2.

The consensus thus seems to be that ϕ(q) log2 q is the right order of magnitude for
P (q), although a proof is apparently still elusive.

For the purposes of this paper, there are several reasons that Hypothesis P is
much more compelling than the conjectures required by [9, §9] and [5]. First, it



FASTER INTEGER MULTIPLICATION USING PLAIN VANILLA FFT PRIMES 3

is well known that there are infinitely many primes in any given congruence class,
and we even know that asymptotically the primes are equidistributed among the
congruence classes modulo q. Second, one finds that, in practice, primes of the
required type are extremely common. For example, we find that a · 21000 + 1 is
prime for

a = 13, 306, 726, 2647, 3432, 5682, 5800, 5916, 6532, 7737, 8418, 8913, 9072, . . .

and there are still plenty of opportunities to hit primes before exhausting the pos-
sible values of a up to about 106 allowed by Hypothesis P.

Third, we point out that Hypothesis P is actually much stronger than what
is needed in this paper. We could prove Theorem 1 assuming only the weaker
statement that there exists a logarithmically slow function Φ(q) (see [9, §5]) such
that P (q) < ϕ(q)Φ(q) for all large q. For example, we could replace (log q)2 in

Hypothesis P by (log q)C for any fixed C > 2, or even by (log q)(log log q)C for any
fixed C > 0. To keep the complexity arguments in this paper as simple as possible,
we will only give the proof of Theorem 1 for the simplest form of Hypothesis P, as
stated above.

2. The algorithm

Define lg x := dlog2 xe for x ≥ 1. For the rest of the paper we assume that
Hypothesis P holds, and hence we may fix an absolute constant C > 0 such that

P (q) < Cq(lg q)2

for all q ≥ 2.
An admissible size is an integer m > 217 of the form

m = k(lg k)3

for some integer k. For such m, let p0(m) denote the smallest prime p of the form

p = a · 2m + 1.

Hypothesis P implies that

1 6 a < Cm2. (3)

In the proof of Proposition 2 below, we will describe a recursive algorithm
Transform that takes as input an admissible m, the corresponding prime p =
p0(m) = a · 2m + 1, an integer L = 2` such that

(lgm)4 < ` < m, (4)

a primitive L-th root of unity ζ ∈ Fp (such a primitive root exists as ` < m and
2m | p− 1), and a polynomial

F ∈ Fp[X]/(XL − 1).

Its output is the discrete Fourier transform (DFT) of F with respect to ζ, that is,
the vector

F̂ := (F (1), F (ζ), . . . , F (ζL−1)) ∈ (Fp)L.
We denote the running time of Transform by F(m, `). For m > 217 there is always
at least one integer ` in the interval (4), so we may define the normalisation

T(m) := max
(lgm)4<`<m

F(m, `)

2``m
.
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Proposition 2. There exist absolute constants m0 > 217, C1 > 0 and C2 > 0
with the following property. For any admissible m > m0, there exists an admissible
m′ < (logm)4 such that

T(m) <

(
4 +

C1

lgm

)
T(m′) + C2. (5)

Proof. In the argument below we must often perform auxiliary arithmetic opera-
tions on ‘small’ integers. These will always be handled via the Schönhage–Strassen
algorithm [15] and Newton’s method [19, Ch. 9]; thus we may compute products,
quotients and remainders of n-bit integers in O(n lg n lg lg n) bit operations.

Assume that we are given as input an admissible m = k(lg k)3, the corresponding
prime p = p0(m) = a ·2m+1, a transform length L = 2` satisfying (4), an L-th root

of unity ζ ∈ Fp, and a polynomial F ∈ Fp[X]/(XL − 1); our goal is to compute F̂ .

For the base case m 6 m0, we may compute F̂ using any convenient algorithm. In
what follows, we assume that m > m0 and that m0 is increased whenever necessary
to accommodate statements that hold only for large m.

Step 1 — reduce to short DFTs. In this step we reduce the given ‘long’ transform
of length L = 2` to many ‘short’ transforms of length S := 2s, where

s := (lgm)2.

By (4) we have s < `, so S | L. Let

d := b`/sc, d′ := `− sd, T := L/S, ω := ζL/S .

Applying the Cooley–Tukey method [4] to the factorisation L = Sd2d
′
, the given

transform of length L may be decomposed into d layers, each consisting of T trans-
forms of length S (with respect to the S-th root of unity ω), followed by d′ layers,
each consisting of L/2 transforms of length 2. Between each of these layers, we
must perform O(L) multiplications by ‘twiddle factors’ in Fp, which are given by
certain powers of ζ. (For further details of the Cooley–Tukey decomposition, see
for example [9, §2.3].) Each multiplication in Fp costs

O(lg p lg lg p lg lg lg p) = O(m(lgm)2)

bit operations, as (3) implies that lg p = O(m). In the Turing model, we must also
account for the cost of rearranging data so that the inputs for the short DFTs are
stored sequentially on tape; using a fast matrix transpose algorithm, the cost per
layer is O(Lm lgS) = O(Lm(lgm)2) bit operations (see [9, §2.3] for further details).

Let Fshort(m, `) denote the number of bit operations required to perform T trans-
forms of length S with respect to ω. The discussion above shows that

F(m, `) < dFshort(m, `) +O((d+ d′)Lm(lgm)2).

By (4) we have d′ < s < `/(lgm)2 and d 6 `/s = `/(lgm)2, so

F(m, `) < (`/s)Fshort(m, `) +O(Lm`).

Step 2 — reduce to short convolutions. We now use Bluestein’s algorithm [2]
to convert the short transforms into convolution problems. Suppose that at some
layer of the main DFT we are given as input the short polynomials

at(X) =

S−1∑
i=0

at,iX
i ∈ Fp[X]/(XS − 1), t = 1, . . . , T.
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We wish to compute â1, . . . , âT , the DFTs with respect to ω.
Let η := ζL/2S so that η2 = ω. Define

ft(X) :=

S−1∑
i=0

ηi
2

at,iX
i, g(X) :=

S−1∑
i=0

η−i
2

Xi,

regarded as polynomials in Fp[X]/(XS − 1). We may compute the coefficients of g
and all of the ft using O(TS) = O(L) operations in Fp. Then one finds (see for

example [9, §2.5]) that (ât)i = ηi
2

ht,i, where

ht := ftg =

S−1∑
i=0

ht,iX
i ∈ Fp[X]/(XS − 1). (6)

In other words, computing the short DFTs reduces to computing the products
f1g, . . . , fT g, plus an additional O(L) operations in Fp.

Let Cshort(m, `) denote the cost of computing f1g, . . . , fT g in Fp[X]/(XS − 1).
Then we have shown that

Fshort(m, `) < Cshort(m, `) +O(Lm(lgm)2),

and hence

F(m, `) < (`/s)Cshort(m, `) +O(Lm`).

Step 3 — reduce to bivariate multiplication over Z. In this step we will transport
the problem of computing the products ht = ftg in Fp[X]/(XS − 1) to a bivariate
polynomial ring over Z. Write

ft =

S−1∑
i=0

ft,iX
i, g =

S−1∑
i=0

giX
i, ft,i, gi ∈ Fp.

Let

r := m/k = (lg k)3.

Interpreting each ft,i and gi as an integer in the interval [0, p), and decomposing
them in base 2r, we may write

ft,i =

k−1∑
j=0

ft,i,j2
(k−1−j)r, gi =

k−1∑
j=0

gi,j2
(k−1−j)r,

where ft,i,j and gi,j are integers in the interval

0 6 ft,i,j , gi,j 6 2ra. (7)

(In fact, they are less than 2r for j = 1, . . . , k − 1; the bound 2ra is only needed
for the first term j = 0.) Note that the variable j is indexed in the reverse order.
Then define polynomials

Ft :=

S−1∑
i=0

k−1∑
j=0

ft,i,jX
iY j , G :=

S−1∑
i=0

k−1∑
j=0

gi,jX
iY j ,

regarded as elements of the ring

R := Z[X,Y ]/(XS − 1, Y k + a),
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and let

Ht := FtG =

S−1∑
i=0

k−1∑
j=0

ht,i,jX
iY j ∈ R.

By definition of multiplication in R, we have

ht,i,j =
∑

i1+i2=i mod S

( ∑
j1+j2=j mod k

j1+j2<k

ft,i1,j1gi2,j2 −
∑

j1+j2=j mod k
j1+j2≥k

aft,i1,j1gi2,j2

)
.

This formula implies that

|ht,i,j | 6 (kS)(22ra3)

< 22r+(lgm)2C3m7

6 22r+(lgm)2+7 lgm+lg(C3)

< 22r+2(lgm)2−2 (8)

for large m, by (3) and (7). In particular, the bit size of each ht,i,j is O(r).
On the other hand, as 2−kr = −a (mod p), we observe that

ht,i =
∑

i1+i2=i mod S

ft,i1gi2

= 22(k−1)r
∑

i1+i2=i mod S

k−1∑
j1=0

k−1∑
j2=0

ft,i1,j1gi2,j22−(j1+j2)r

= 22(k−1)r
∑

i1+i2=i mod S

k−1∑
j=0( ∑

j1+j2=j mod k
j1+j2<k

ft,i1,j1gi2,j2 −
∑

j1+j2=j mod k
j1+j2≥k

aft,i1,j1gi2,j2

)
2−jr (mod p),

where we recall that ht,i ∈ Fp is defined by (6). We conclude that

ht,i = 2(k−1)r
k−1∑
j=0

ht,i,j2
(k−1−j)r (mod p). (9)

In other words, to compute h1, . . . , hT , we may first compute the productsHt = FtG
in R, then apply an overlap-add procedure to deduce the ht,i via (9). The total cost
of the overlap-add phase is O(TSkr) = O(Lm) bit operations, and the multiplica-
tions by 2(k−1)r modulo p cost O(TSm(lgm)2) = O(Lm(lgm)2) bit operations.

Let Cbiv(m, `) denote the cost of computing the bivariate products F1G, . . . , FTG.
The above discussion shows that

Cshort(m, `) < Cbiv(m, `) +O(Lm(lgm)2),

so we have
F(m, `) < (`/s)Cbiv(m, `) +O(Lm`).

Step 4 — reduce to bivariate multiplication over Fp′ . According to (8), for
large m the coefficients ht,i,j are bounded in absolute value by 2β−2 where

β := 2r + 2(lgm)2.
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Define

k′ :=

⌈
β

(lg β)3

(
1 +

14 lg lg β

lg β

)⌉
, m′ := k′(lg k′)3.

Let us show that m′ is close to β (assuming m is large). We have

lg k′ ≥ log2

(
β

(lg β)3

)
≥ lg β − 3 lg lg β − 1 > lg β − 4 lg lg β,

so

(lg k′)3 >

(
1− 4 lg lg β

lg β

)3

(lg β)3 >

(
1− 13 lg lg β

lg β

)
(lg β)3

and thus

m′ = k′(lg k′)3 >
β

(lg β)3

(
1 +

14 lg lg β

lg β

)(
1− 13 lg lg β

lg β

)
(lg β)3 > β.

In the other direction, since k′ < β we have (lg k′)3 6 (lg β)3 and hence

β < m′ <

(
1 +

O(lg lg β)

lg β

)
β. (10)

Since β = O((lgm)3), we also see that m′ < (logm)4 for large m. By choosing m0

large enough, we may also ensure that m′ > 217, so that m′ is admissible.
Now put

p′ := p0(m′) = a′ · 2m
′
+ 1.

Hypothesis P ensures that a′ < C(m′)2. We may locate p′ by testing each candidate

a′ = 1, . . . , C(m′)2 using a naive primality test (trial division) in time 2O(m′). By (4)
and (10) this amounts to

2O(m′) = 2O(β) = 2O((lgm)3) = 2O(`3/4) = O(L)

bit operations.
Let u1, . . . , uT , v be the images of F1, . . . , FT , G in the ring

S := Fp′ [X,Y ]/(XS − 1, Y k + a),

Since p′ > 2m
′
> 2β , the coefficients ht,i,j are completely determined by their

residues modulo p′; in particular, to compute the products Ht = FtG in R, it
suffices to compute the products wt := utv in S. Let Ctiny(m, `) denote the cost of
computing the latter products. The above discussion shows that

Cbiv(m, `) < Ctiny(m, `) +O(Lm),

where the O(Lm) term covers the linear cost of converting between R and S.
Therefore we have

F(m, `) < (`/s)Ctiny(m, `) +O(Lm`).

Step 5 — reduce to DFTs over Fp′ . Since 2m
′ | p′ − 1 and s < m′, there exists

a primitive S-th root of unity ζ ′ ∈ Fp′ . We may find one such primitive root by a

brute force search in 2O(m′) = O(L) bit operations.
We will compute the products wt = utv in S by first performing DFTs with

respect to X, and then multiplying pointwise in Fp′ [Y ]/(Y k + a). More precisely,
write

ut =

S−1∑
i=0

k−1∑
j=0

ut,i,jX
iY j , v =

S−1∑
i=0

k−1∑
j=0

vi,jX
iY j ,
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where ut,i,j , vi,j ∈ Fp′ . (These are just the images in Fp′ of the coefficients ft,i,j
and gi,j considered in Step 3.) For each j, let

Ut,j :=

S−1∑
i=0

ut,i,jX
i, Vj :=

S−1∑
i=0

vi,jX
i,

regarded as polynomials in Fp′ [X]/(XS − 1). We will call Transform recursively
to compute their transforms with respect to ζ ′. The precondition corresponding
to (4) for this recursive call is

(lgm′)4 < s < m′,

which is certainly satisfied for large m. The total cost of this step is (T+1)k F(m′, s)
bit operations. We thus obtain the polynomials

ut((ζ
′)i, Y ), v((ζ ′)i, Y ) ∈ Fp′ [Y ]/(Y k + a)

for each i = 0, . . . , S − 1 and t = 1, . . . , T . We next compute the products

wt((ζ
′)i, Y ) = ut((ζ

′)i, Y ) · v((ζ ′)i, Y )

in Fp′ [Y ]/(Y k + a) for each i and T . Using the Schönhage–Strassen algorithm, the
total cost of these products is

O(TS(k lg k lg lg k)(lg p′ lg lg p′ lg lg lg p′)) = O(L(k lgm lg lgm)(m′ lgm′ lg lgm′))

= O(Lm lgm (lg lgm)2 lg lg lgm)

= O(Lm(lgm)2)

bit operations. Finally, we perform inverse DFTs with respect to X to recover
w1, . . . , wT . It is well known that an inverse DFT may be computed by the same
algorithm as the forward DFT, with ζ ′ replaced by (ζ ′)−1, so the cost of this step
is Tk F(m′, s).

We conclude that

Ctiny(m, `) < (2T + 1)k F(m′, s) +O(Lm(lgm)2),

and therefore

F(m, `) <
(2T + 1)k`

s
F(m′, s) +O(Lm`).

Dividing by 2``m, we obtain

F(m, `)

2``m
<

(2T + 1)2sm′k

2`m
· F(m′, s)

2ssm′
+O(1)

<

(
2 +

1

T

)
m′

r
T(m′) +O(1)

<

(
2 +

1

2(lgm)4−(lgm)2

)(
2 +

O(1)

lgm

)
T(m′) +O(1)

<

(
4 +

O(1)

lgm

)
T(m′) +O(1).

Taking the maximum over all ` yields the desired bound (5). �

Corollary 3. We have T(m) = O(4log
∗m) for admissible m→∞.

The corollary could be deduced from Proposition 2 by using [9, Prop. 8]. We
give a simpler (but less general) argument here.
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Proof. Let m0, C1 and C2 be as in Proposition 2. We may assume, increasing m0

if necessary, that

(logm)1/2 < log(m1/8) and
C1

lgm
< 4− log∗(m1/8)

for all m > m0. Define

B := max
(
C2, max

m admissible
m6m0

T(m)
)
.

We will prove that

T(m) < (4log
∗(m1/8)+1 − 1)B (11)

for all admissible m.
If m 6 m0 then (11) holds by the definition of B, so we may assume that

m > m0. By Proposition 2, there exists an admissible m′ < (logm)4 such that

T(m) < (4 + 4− log∗(m1/8))T(m′) +B.

Since (m′)1/8 < (logm)1/2 < log(m1/8), we have log∗((m′)1/8) 6 log∗(m1/8) − 1.
By induction on log∗(m1/8), we obtain

T(m) < (4 + 4− log∗(m1/8))(4log
∗(m1/8) − 1)B +B

= (4log
∗(m1/8)+1 − 4− log∗(m1/8) − 2)B

< (4log
∗(m1/8)+1 − 1)B.

This establishes (11), and the corollary follows immediately. �

Finally we may prove the main result.

Proof of Theorem 1. We are given as input two positive integer u, v < 2n for some
large n; our goal is to compute uv.

Define

k :=

⌈
(5/2) lg n

(lg lg n)3

⌉
, m := k(lg k)3.

We have

lg k = lg lg n+O(lg lg lg n) = (1 + o(1)) lg lg n,

so

2 lg n < m < 3 lg n

for large n. We may assume that n is large enough so that m > 217; then m is
admissible.

Let b := bm/4c and d := dn/be. We decompose u and v in base 2b as

u =

d−1∑
i=0

ui2
bi,

d−1∑
i=0

vi2
bi, 0 6 ui, vi < 2b,

and define polynomials

U(X) :=

d−1∑
i=0

uiX
i, V (X) :=

d−1∑
i=0

viX
i ∈ Z[X].

Let W = UV ∈ Z[X]. The coefficients of W have at most 2b + lg d = O(m) bits,
so the product uv = W (2b) may be recovered from W (X) in O(n) bit operations.
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Let p := p0(m) = a ·2m+1. We may find p by testing each value of a up to Cm2

using a polynomial-time primality test [1], in mO(1) = (lg n)O(1) bit operations.
Also put ` := lg(10n/m) and L := 2`. The polynomial W is determined by its
image in Fp[X]/(XL − 1), as

d 6
n

b
+ 1 6

n

m/4− 1
+ 1 <

5n

m
6 L/2

and

2b+ lg d 6 m/2 + lg n < m

for large n.
To compute the product in Fp[X]/(XL−1), we will use Transform to perform

DFTs and inverse DFTs, and multiply pointwise in Fp. The precondition (4) cer-
tainly holds for large n. According to [17], we may find a suitable primitive root in
Fp in

p1/4+o(1) < (2m/4)1+o(1) < (2(3/4) lgn)1+o(1) = n3/4+o(1)

bit operations. By Corollary 3, we conclude that

M(n) < 3F(m, `) +O(Lm lgm lg lgm)

< 3Lm`T(m) +O(Lm lgm lg lgm)

= O(n lg n 4log
∗m) +O(n lg lg n lg lg lg n)

= O(n lg n 4log
∗ n). �
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