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Abstract

Consider a class of constants built up from the rationals using the field operations and
a certain number of transcendental functions like exp. A central problem in computer
algebra is to test whether such a constant, which is represented by an expression, is
zero.

The simplest approach to the zero-test problem is to evaluate the constants up
to a certain number of decimal digits. Modulo certain precautions, we will make it
likely that this approach is actually a valid one. More precisely, one may for instance
restrict oneself to certain subsets of expressions in order to avoid “high precision
fraud”. For such subsets, we will state witness conjectures, which propose reasonable
lower bounds for non zero constants as a function of the minimal sizes of expressions
that represent them.

Unfortunately, such witness conjectures are extremely hard to prove, since they
are really far reaching generalizations of results in diophantine approximations. Nev-
ertheless, we will also discuss their counterparts for formal power series, which are
more accessible.

1 Introduction

Zero-testing an important issue in mathematics and more specifically in computer algebra.
Standard mathematical notation provides a way of representing many transcendental func-
tions. However, trivial cases apart, this notation gives rise to the following problems:

• Expressions may not be defined: consider 1/0, log(0) or log(ex+y − ex ey).

• Expressions may be ambiguous: what values should we take for log(−1) or z2
√

?

• Expressions may be redundant: we have the functional equation

sin2x+ cos2x=1,

although sin2x+ cos2x and 1 are different as expressions. Similarly,

32/55
√

− 27/55
√

3
√

=(1 + 35√ − 95√ )/ 255√
.

The first two problems can usually be solved by restricting oneself to an appropriate setting.
Remains the third and most difficult problem, which is known as the zero-test or zero-
equivalence problem, since we are usually interested in expressions that represent functions
in a ring.

As a reflex, most mathematicians tend to deal with the zero-test problem by restricting
their attention to expressions of a certain form and proving a structure theorem for such
expressions. Some successes of this approach are the following:

• Computations in algebraic extensions of a field using Groebner basis techniques.
In this case an element of the algebraic extension is represented uniquely by its
reduction modulo the Groebner basis.
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• The Risch structure theorem [Ris75] allows computations in differential field exten-
sions by exponentials, logarithms, or integrals. This technique may be adapted to
a few other cases [SSC85].

• Richardson designed a zero-test for elementary constants (i.e. constants which may
be defined implicitly using rational numbers, the field operations and exponentia-
tion), which assumes Schanuel’s conjecture [Ric94], [Ax71].

• More recently, Ecalle has proved several structure theorems for generalized poly-
logarithms and zeta functions. One may expect the design of fast algorithms for
dealing with such functions on the basis of his results.

However, it should be stressed that a structure theorem explicitly describes all relations
which hold for the class of expressions being considered. Such a theorem is much more
powerful than a zero-test algorithm, which just provides a method to test whether a
particular expression represents zero.

It is therefore recommended to treat the zero-test problem independently from the
problem of establishing a complete structure theorem. Indeed, we have just stressed that
the zero-test problem is less ambitious, so it may be solved for larger classes of expressions.
Secondly, even if a structure theorem exist, a special purpose zero-test may be more
efficient than a zero-test derived from the theorem, which may be very complicated.

Now engineers have a very simple solution to the zero-test problem for constants:
evaluate the constant with double precision and test whether the result vanishes. The
advantage of this method, which works most of the time, is that it is very fast. However,
double precision is not always sufficient to ensure the correctness of the answers. This
problem can not merely be solved by considering quadruple or higher fixed precisions.
Instead, it rises an interesting theoretical question: what is the required precision of eval-
uation as a function of the size of the input expression in the zero-test.

Now there are some well-known examples of small, but non-zero expressions, like

e
π 163/9

√

− 640320, (1)

or

eee
10

+e−e
e
10

− eee
10

− 1. (2)

Essentially, we conjecture that such examples always come down to the substitution of a
very small number in a non-zero power series with high valuation. This is clear in the second
example, but may necessitate some extra work in other cases. For other nice examples
of “high precision fraud”, we refer to [BB92].

In order to develop reliable zero-tests, we thus have to search for a setting in which high
precision fraud is impossible. In the case of exp-log constants, one possible approach is to
limit the modules of certain subexpressions. In such a setting an expression like 10100might
become invalid and need to be rewritten as 10×� × 10, which increases its size. Then it
is reasonable to expect that there exist bounds from below for the absolute values of non-
zero constants as a function of the sizes of their representing expressions. Such “witness
conjectures” were first stated in [vdH97, vdH01], and later by Richardson [Ric01], who has
also done some numerical computations which tend to confirm our expectations.

In this paper, we study several possible formulations of witness conjectures and we
consider more general transcendental functions, defined by differential equations and initial
conditions. We will also discuss some analogue conjectures for formal power series, on
which we some progress has already been made [Kho91, SvdH01].
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Witness conjectures may be interpreted as far reaching generalizations of existing con-
jectures and results in diophantine approximation [Lan71]. Indeed, this theory is concerned
with finding good rational approximations of real numbers x, which is equivalent to min-
imizing

|p x− q |
for large p, q∈Z. More generally, diophantine approximation is concerned with minimizing
|P (x)| for polynomials P ∈ Z[X]. In our case, we are interested in even more general
expressions, which involve transcendental functions defined by differential equations and
initial conditions. The theory of minimizing the absolute values of such more general
expressions might therefore be baptized as “differential diophantine approximation”.

We finally want to stress the interest of our approach for transcendental number theory.
One major problem in this area is that it is already very hard to just state something
like a generalization of the Schanuel conjecture for more general transcendental functions.
The reason of this difficulty is that this conjecture is a result of the “structure theorem”
approach. In order to state such a generalization, one thus has to anticipate the structure
theorems which hold in the more general setting. By contrast, our “witness conjecture”
approach directly applies to more general settings and it is legitimate to hope that some
of the tools developed in this context can also be applied elsewhere.

2 Witness conjectures for constants

2.1 Exp-log constants

Let Ě be the set of exp-log constant expressions, i.e. the expressions formed from {0, 1}
using + ,− ,× , /, exp and log. We will denote by E the set of real numbers which can be
represented by an expression in Ě and by x∈E the real number represented by an expression
x̌ ∈ Ě . We will denote by σ(x̌) the size of an expression x̌ ∈ Ě (i.e. the number of nodes
when interpreting the expression as a tree). Given a rational number N > 3, we denote by
ĚN the set of all expressions x̌ ∈ Ě , such that N−1 6 |y |6N for all subexpressions y̌ of x̌.
In [vdH97], we stated the first witness conjecture:

Conjecture 1. There exists a function ̟ of one of the forms

a) ̟(σ) =Kσ;

b) ̟(σ) =Kσ,

where K > 1 depends on N, such that

|x|> e−̟(σ(x̌)). (3)
for all x̌ ∈ ĚN with x� 0.

Actually, we conjectured the b-part and we remarked that the conjecture might even
hold for smaller witness functions ̟, such as in the a-part. We will call the a-part a strong
witness conjecture and the b-part a weak witness conjecture. It is also possible to consider
intermediate witness conjecture, by taking ̟(σ) = σK, for instance. In general, we call
a weakness conjecture strong, if logl ̟(expl σ) ∼ σ, for some l ∈ N, where logl and expl

denote the l-th iterates of log and exp. In what follows, we will only state strong witness
conjectures with linear witness functions, but it might turn out in the future that other
witness functions are necessary.

A slightly different setting was first considered (in a more general form) in [vdH01].
Given a rational number N > 1, let ĚN

′ be the class of all expressions x̌ in Ě , such that for
each subexpression y̌ of x̌ of the form y̌ = exp ž we have |z |6N , and such that for each
subexpression y̌ of x̌ of the form y̌ = log ž we have 1/N 6 z6N .

Witness conjectures for constants 3



Conjecture 2. There exists a witness function of the form ̟(σ) = K σ, where K > 1

depends on N, and such that for all x̌ ∈ ĚN
′ , we either have x= 0 or |x|> e−̟(σ(x̌)).

It should be noticed that this conjecture holds for all N as soon as it holds for a
particular N . Indeed, for N ′6N we may take ̟N ′ =̟N . For N ′>N we may take

̟N ′(σ)=̟N(⌈N ′/N ⌉ (σ+K)) (4)

for some constant K, since any y= exp z with N < |z |6N ′ may be rewritten as

y= exp z

⌈N ′/N ⌉
�⌈N ′/N ⌉ times

exp z

⌈N ′/N ⌉
.

In a similar way, if y= log z with 1/N ′6 z < 1/N or N <z6N ′, then we may decompose

z= rk z ′, (5)

where r, z ′∈ (1/N,N ) and k ∈Z, so that

y= k log r+ log z ′.

Moreover, by selecting r to be a fixed rational number of small size close to N , we may
bound |k | by a fixed constant, which explains (4).

Obviously, conjecture 1 is implied by conjecture 2. We do not know at present whether
the inverse is also true. Yet another variant of conjecture 2 is obtained by dropping the
requirement on the arguments to logarithms. Using (5), this variant can again be reduced
to conjecture 2, but the witness function may change in a non linear way, since |k | can no
longer be bound from above by a fixed constant, but only by O(̟(σ(ž))).

2.2 Values of differentially algebraic functions

In [vdH01], we have generalized the witness conjectures for exp-log constants to so
called “holonomic constants”. Such constants are formed from the rationals, using the
field operations and holonomic functions (i.e. functions that satisfy a linear differential
equation over Q[x]). The approach actually easily generalizes to more general constants,
which arise as values of differentially algebraic functions.

Let C ⊆C be a certain field of constants and let f be a function which is analytic in 0.
We say that f is differentially algebraic over C with initial conditions in C, if f satisfies a
differential equation

f (r) =
P (f ,� , f (r−1))

Q(f ,� , f (r−1))
,

with P , Q∈C[F ,� , F (r−1)] and where f(0),� , f (r−1)(0)∈C are such that

Q(f(0),� , f (r−1)(0))� 0.

We will consider values of such functions f in points z ∈C, such that |z | is strictly smaller
than the radius of convergence ρf of f .

We may now construct a huge class of constants as follows. We start with D0 = Q.
Assuming that Dh has been constructed, we let Dh+1 be the set of all possible values
in elements of Dh of differentially algebraic functions over Dh with initial conditions in
Dh. It can be shown that each Dh+1 is a field, which contains Dh. Finally, we take
D =D0∪D1∪� . Elements in D may be represented by expressions as follows. Let D be
the smallest set of expressions such that

• 0, 1∈D.

• ǔ+ v̌ , ǔ − v̌ , ǔ v̌ , ǔ/v̌ ∈D for all ǔ , v̌ ∈D.
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• Let f be a differentially algebraic function as above, such that f(0),� , f (r−1)(0) are
represented by č0,� , čr−1∈D and such that P and Q are represented by expressions
in D[F , � , F (r−1)]. Given ǔ ∈ D with |u| < ρf, the expression ♥(P̌ , Q̌ , č0, � , čr,

ǔ)∈D then represents f(z).

From the expressiveness point of view, it is not really necessary to have special expressions
for the field operations (if we take Q⊆D). However, we do need them in order to keep the
sizes of expressions reasonably small.

2.3 Corrected size functions

In order to state witness conjectures for constants in D, several approaches are possible.
One approach, which will be developed in the section 2.4, is to restrict ones attention to
representations by expressions in D of a special form, like we did in the case of exp-log
constants.

Another approach, which was introduced in [vdH01], is to redefine the size of an expres-
sion in such a way that expressions like e100 have a large size. In the present setting, this
comes down to defining the “size” σ∗(ž) of an expression ž ∈D as follows:

• If ž = 0 or ž =1, then σ∗(ž) = 1.

• If ž = ǔ+ v̌ , ž = ǔ − v̌ , ž = ǔ v̌ or ž = ǔ/v̌ , then σ∗(ž) =σ∗(ǔ) +σ∗(v̌)+ 1.

• If ž =♥(P̌ , Q̌ , č0,� , čr−1, ǔ), then

σ∗(ž) =σ∗(f̌ ) +σ∗(ǔ) + log
(

sup
|v |6|u|

|f(v)|+ 1
)

,

where

σ∗(f̌ ) =σ∗(P̌ )+ σ∗(Q̌) + σ∗(č0) +� + σ∗(čr−1) + 1

and

σ∗(P̌ ) =
∑

i06degF P̌

� ∑

ir−16deg
F

(r−1) P̌

σ∗(P̌i0,� ,ir−1)

and similarly for σ∗(Q̌).

For example, in the case of the exponential function, we have f ′= f and f(0)=1, so that
σ∗(exp) = 5 and σ∗(exp ǔ) = σ∗(ǔ) + 5 + log (e|u| + 1). Hence, σ∗(exp ǔ)≈ σ∗(ǔ) + 5 + |u|
for large u. Because of the corrective term |u|, an expression like e100 will therefore have
a large size.

Conjecture 3. There exists a witness function ̟(σ) =Kσ with K > 1, such that for all
ž ∈D, we either have z= 0 or |z |> e−̟(σ∗(ž)).

Remark 4. It is easy to show by structural induction that we also have the upper bound

|z |6 e̟(σ∗(ž))

for all ž ∈D, if the conjecture holds. Notice also that this bound holds independently from
the conjecture, if we disallow expressions of the form ǔ/v̌ .

2.4 Admissible expressions

The second approach in order to state witness conjectures for D is to use the usual size
function σ, which is defined recursively as the corrected size function σ∗ by omitting
the corrective term log

(

sup|v |6|u| |f(v)|+ 1
)

, but to restrict our attention to a subset of

admissible expressions of D.
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Let λ∈ (0, 1) be a rational parameter. We recursively define the subset Dλ in a similar
way as D, but each time that ž ∈Dλ is of the form ž =♥(P̌ , Q̌ , č0,� , čr−1, ǔ), we require
that |u| 6 λ, Q(f(v)) � 0 for all |v | 6 λ, and |fk| 6 1 for each Taylor coefficient fk of f .
We first claim that each constant in D may be represented by an expression in Dλ. This
follows from the following two observations:

• The Taylor coefficients of any analytic function f in 0 satisfy a bound of the form
|fk|6αβk, with α, β ∈Q (and β−1 as close to ρf as we wish). If f is also differen-
tially algebraic over C with initial conditions in C, then so is g(z) = α−1 f(β−1 z).
We may therefore assume without loss of generality that |fk| 6 1 for all k when
constructing constants in D.

• If we want to evaluate f in a point z with |z | > λ, then we may use analytic
continuation: taking

g(z ′) = f
(

λ
z

|z |
+ z ′

)

,

g satisfies a similar algebraic differential equation as f , whose initial conditions
correspond to evaluations of f and its derivatives in (λ z)/|z |. Assuming that we
chose β−1 sufficiently close to ρf in the first observation, and repeating the analytic
continuation argument, we may finally evaluate f in z.

We notice that the analytic continuation procedure in the second observation is very close
to rewriting enx = ex� ex, as we did before.

Conjecture 5. Let λ ∈ (0, 1). Then there exists a witness function ̟(σ) = K σ, where
K > 1 depends on λ, and such that for all ž ∈Dλ, we either have z=0 or |z |> e−̟(σ(ž)).

Because of the analytic continuation argument, conjecture 5 holds for all λ ∈ (0, 1) as
soon as it holds for a particular λ. It is not hard to see that conjecture 2 is also implied by
conjecture 5. Indeed, the coefficients of the Taylor series of exp in 0 are all bounded by 1 in
module, so if x̌ ∈Dλ and y̌ ∈ Ěλ

′

represent the same number x= y with |x|6λ, then ♥(F ,

1, 1, x̌)∈Dλ and exp y̌ ∈ Ěλ
′ both represent ex and we have σ(♥(F , 1, 1, x̌)) = σ(x̌) +O(1)

as well as σ(exp y̌)= σ(y̌) +O(1). Logarithms may be handled in a similar fashion.
Let us now show that conjecture 5 is implied by conjecture 3. Indeed, an analytic

function f , such that |fk |6 1 for all k, satisfies the bound

sup
|z |6λ

|f(z)|6 1
1−λ

.

Consequently, the corrective terms in the corrected sizes σ∗(ž) of expressions ž ∈ Dλ are

uniformly bounded. We conclude that σ∗(ž)=O(σ(ž)) for ž ∈Dλ, which implies our claim.
Actually, conjecture 3 seems to be slightly stronger than conjecture 5. When using

log
(

sup
|v |6λ−1|u|

|f(v)|+1
)

as a corrective term for some rational λ∈ (0, 1) instead of the usual one, both conjectures
are equivalent. Indeed, in this case we may normalize g(u′) =M−1 f(u ′ u/λ) and replace
f(u) by Mg(λ), where M is a good rational upper approximation of sup|v |6λ−1|u| |f(v)|.
Performing this trick recursively in expressions in D of corrected size σ∗, we end up with
expressions in Dλ of usual size σ=O(σ∗).
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2.5 More general constants

Witness conjectures may also be stated for more general types of constants, such as

• Constants that arise as values of solutions to partial differential equations, whose
boundary conditions recursively satisfy partial differential equations in less vari-
ables.

• Constants that arise during the process of accelero-summation [É92] of divergent
solutions to algebraic differential equations, or as limits of such solutions in singular
points, if these limits exist. This may for instance be done using the approach from
section 2.3, but where the supremum in the corrective term for σ∗(ž) is taken over
a sector instead of a disk.

• Constants that arise as values of solutions to more general functional equations. Of
course, one has to be much more careful in this setting, since it is much easier to
construct examples of high-precision fraud in this setting, by considering equations
such as

f(x)=
1
x

+ f(ex)

for x→∞.

3 Witness conjectures for power series

3.1 Exp-log series

Consider the ring of formal power series C[[z]] over a field C of characteristic zero. Let Ě
be the smallest set of expressions f̌ that represent series f ∈C[[z]], such that

• z ∈ Ě .
• c∈ Ě , for all c∈C.

• f̌ + ǧ , f̌ − ǧ and f̌ ǧ are in Ě , for all f̌ , ǧ ∈ Ě .

• 1

1+ f̌
, exp f̌ and log (1 + f̌ ) are in Ě for all f̌ ∈ Ě with f0 =0.

The set E of series represented by expressions in Ě is called the set of exp-log series in z.
We will denote by v(f) the valuation of a series f ∈C[[z]].

Conjecture 6. There exists a constant K>1, such that for all f̌ ∈Ě , we either have f =0

or v(f)6Kσ(f̌ ).

We observe that the coefficients of f ∈ E are polynomials with rational coefficients in
the constants of C which occur in a representing expression f̌ ∈ Ě of f . Consequently, it
suffices to check conjecture 6 in the case when C is the field of algebraic numbers.

Let us now show that conjecture 6 is implied by conjecture 2(a) in the case when C=Q.
Indeed, assume that there exists a counterexample f̌ ∈ Ě to conjecture 6 for each K with
f � 0 and v(f)>Kσ(f̌ ). Then for n∈N sufficiently large, we may represent f(e−n) by an
expression in Ěλ

′ whose size is bounded by Bλnσ(f̌ ). Moreover, since f̌ is a counterexample
to conjecture 6, there exists a constant M , such that f(e−n)� 0 and

|f(e−n)|<Me−nKσ(f̌ )
6Me−(K/Bλ)σ(f(e−n)).

This yields a counterexample to conjecture 2(a), for sufficiently large K.
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The above argument suggests that, in order to prove numerical witness conjectures, it
may be good to start proving their power series equivalents. Although this project seems
still to be out of reach for linear witness functions, we were able to prove the following
weak witness theorem [SvdH01]; this result is based on a careful complexity analysis of the
zero-test algorithm from [Sha89].

Theorem 7. For all f̌ ∈ Ě , we either have f =0 or v(f)6̟(σ(f̌ )), with ̟(σ)= (4σ)9
σ

.

Recently, we have been made aware of the work of Khovanskii [Kho91], which seems
to imply even better bounds of the form ̟(σ)=σO(1) 2σ2

. We are still studying this work
and trying to prove similar bounds with our techniques. Our main reason for doing this is
that the techniques from [SvdH01] are better suited for generalizations.

3.2 Differentially algebraic series

Let R be a differential subring of C[[z]]. In analogy with section 2.2, we define a series
f ∈ C[[z]] to be differentially algebraic over R, if f satisfies an algebraic differential
equation

f (r) =
P (f ,� , f (r−1))

Q(f ,� , f (r−1))
, (6)

with P , Q∈R[F ,� , F (r−1)] and where f(0),� , f (r−1)(0) are such that

Q(f(0),� , f (r−1)(0))� 0.

Starting with D04 C, we may again recursively construct Dh+1 to be the ring of differen-
tially algebraic power series over Dh, and define D4 D0∪D1∪� . Power series in D may
be represented in a similar way as in section 2.2 and we have the following power series
analogue of conjectures 3 and 5.

Conjecture 8. There exists a witness function ̟(σ) =Kσ with K > 1, such that for all
f̌ ∈D, we either have f = 0 or v(f) >̟(f̌ ).

In [SvdH01], we proved the above conjecture for̟(σ)=(4σ)9
σ

in the case of differential
equations (6) of order r= 1. We believe to have found a generalization of this theorem to
higher orders, but this still has to be worked out in detail. In the first order case, better
bounds of the form ̟(σ) =σO(1) 2σ2

seem to result from [Kho91].

3.3 Multivariate series

Actually, there is no reason to restrict ourselves to formal power series in one variable
in sections 3.1 and 3.2, so that we may very well replace C[[z]] by C [[z1, � , zk]]. In the
construction of Ě , given f̌ ∈ Ě , we then have to assume that f0,� ,0 = 0, for 1/(1 + f̌ ),

log (1 + f̌ ) or ef̌ to be in E . Similarly, the differential equation (6) should be replaced by
a system of partial differential equations

∂ri f

∂zi
r =

Pi(f ,� , ∂ri−1 f/∂zi
r−1)

Qi(f ,� , ∂ri−1 f/∂zi
r−1)

, (7)

for i= 1,� , k, such that the polynomials Pi, Qi satisfy

Qi(f(0,� , 0),� , ∂ri−1 f/∂zi
r−1(0,� , 0))� 0.
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One might also investigate other ways to present the partial differential equations (7), such
as coherent autoreduced systems.

Now given such a multivariate setting, it is interesting to study the dependence of the
witness conjectures on the parameter k. The following result has been proved in [SvdH01];
better bounds might follow from [Kho91].

Theorem 9. For all f̌ ∈Ě , we either have f=0 or v(f)6̟(σ(f̌ )), where ̟(σ)=(4kσ)9
σ

.

3.4 Finer size parameters

Technically speaking, it turns out that the exponential behavior in σ(f̌ ) in theorem 7 is
due to the “differential part” of f̌ . More precisely, if we consider a non zero power series f
in a fixed polynomial ring C[g1, � , gn] with g1, � , gn ∈ E , then there exists a polynomial
bound for v(f) in d=max {degg1 f ,� , deggn

f }. This observation seems to generalize to
higher order differential power series.

As a first step to the proofs of stronger witness conjectures for differential power series,
it may therefore be a good idea to find more subtle size parameters for expressions in Ě ,
such as n and d above. It may also be interesting to consider other interesting classes of
power series, such as rings of the form

C[z, eP1(z),� , ePn(z)],

where P1,� ,Pn∈C[z]. Can the exponential bound in n be further improved for such rings?
It might also be interesting to do some computer algebra experiments for expressions

of a simple form and small size. For instance, one might consider all expressions formed
using z, formal parameters λ1, λ2, � , additional, multiplication and exponentiation of
infinitesimals. Given a power series represented by such an expression, one may set the
first n coefficients to zero (this puts constraints on the parameters λ1, λ2,� ) and study the
number of remaining free parameters as a function of n. Doing this for all expressions up to
a certain size, one may collect concrete evidence for the witness conjectures and determine
the “worst case expressions”.

4 Differential diophantine approximation

4.1 Classical results in diophantine approximation

Now we have stated different types of witness conjectures, it is interesting to investi-
gate what is already known on this subject. Probably, the classical theory of diophantine
approximation, which is concerned with the approximation of a given real number x by
rationals, comes closest to our subject. Equivalently, one may ask how small |n x − m|
can get for large n, m ∈ Z. More generally, an interesting question is to know how small
|P (x)| can get as a function of P ∈ Z[X]\{0}. Even more generally, one may consider
complex numbers z1, � , zk and ask how small |P (z1, � , zk)| can get as a function of
P ∈Z[Z1,� , Zk]\{0}.

Let us first consider an algebraic number z, with P (z)=0 for some polynomial P ∈Z[Z]
of minimal degree n> 2 and minimal leading coefficient c∈N∗. Let

P = c (Z −α1)� (Z −αn)

Differential diophantine approximation 9



be the factorization of P with z = α1 and αi � αj for all i � j. Given p/q ∈Q close to z
(say |p/q− z |< |p/q−αi| for all i� 1), we then have

∣

∣

∣

∣

z− p

q

∣

∣

∣

∣

=

∣

∣

∣
P

(

p

q

)∣

∣

∣

c
∣

∣

∣
α2− p

q

∣

∣

∣
� ∣

∣

∣
αn − p

q

∣

∣

∣

>
1

2n−1 c |α2−α1|� |αn −α1| qn
,

since qn P (p/q)∈Z∗. This bound, which is due to Liouville, shows that |z − p/q| can be
bounded from below by an expression of the form β/qn, where β can be expressed as a
function of the polynomial P (and actually as a function of its size). This seems to give
some evidence for a strong witness conjecture for algebraic numbers.

Actually, the above bound can be sharpened in an asymptotical way. Given a real
number x, let ‖x‖ be the distance between x and the closest point in Z. The following
theorem is due to Roth [Rot55], based on previous work by Schneider [Sch36].

Theorem 10. Given an algebraic irrational number x and ε > 0, there are only a finite
number of solutions to the inequality ‖q x‖< 1/q1+ε, for q ∈N∗.

Unfortunately, asymptotic bounds are not really suited for establishing witness the-
orems, because such theorems do not accommodate exceptions, even if finite in number.
Nevertheless, they contribute to the likeliness of witness conjectures. Another, very general,
probabilistic and asymptotic result is the following [Khi61]:

Theorem 11. Let ψ be a positive function, such that
∑

q=1
∞

ψ(q) converges. Then for

almost all numbers x (for the Lebesgue measure), the equation ‖q x‖< ψ(x) admits only
a finite number of solutions.

We refer to [Lan71] for a more detailed survey on diophantine approximation and in
particular on the diophantine approximation of transcendental constants like e, logarithms
and exponentials of algebraic numbers and so on. Unfortunately, the scope of the actual
theory is very limited from our point of view, since it lacks effectiveness and no general
results exist for, say, the exp-log constants.

4.2 Differential diophantine approximation

In the light of witness conjectures, there is no good reason to restrict oneself to the approx-
imation of transcendental constants by rational or algebraic numbers. On the contrary,
we might consider the approximation by more general constants, like exp-log constants
or differentially algebraic constants. Equivalently, given complex numbers z1, � , zk and
a class of multivariate analytic functions F , one might be interested in lower bounds for
|f(z1,� , zk)| as a function of the size of an expression which represents f ∈F .

Several classical questions in diophantine approximations have natural analogues. For
instance, is there an analogue of theorem 11? We expect this to be so, since we will usually
only consider countable sets of constants. Similarly, one may search for analogues of asymp-
totic results like theorem 10. It would also be interesting to have effective analogues for
continued fraction expansions. By preference, such expansions should have more structure
than the successive approximations found by, say, the LLL-algorithm [LLL82].

Finally, it is worth it to investigate the power series counterpart of differential dio-
phantine approximation. In this context, there is a need for transfer principles back to the
numeric setting. Of course, such transfer principles would also be useful for proving witness
conjectures or designing zero-tests for constants. In the case of zero-tests, one might for
instance wonder how to represent a constant which is suspected to be zero by the value of
a function which can be proved to vanish globally.
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5 Applications that rely on witness conjectures

The main application of witness conjectures is zero-testing. However, it is not recom-
mended to directly apply the witness conjectures in all circumstances. For instance, if we
want to test whether the expression (2) from the introduction vanishes, then conjecture 1
would give a very bad bound for the number of digits that we need to evaluate. Neverthe-
less, using asymptotic expansion techniques, it is easy to detect that (2) does not vanish.

In this section, we briefly discuss two zero-test algorithms which only indirectly rely on
witness conjectures. In both cases, the witness conjectures enable us to obtain reasonable
complexity bounds for such zero-tests, something which is impossible for algorithms that
rely on structure theorems [Ric94].

We should also mention that it is not necessary to wait for proofs of the witness con-
jecture in order to base zero-test algorithms on them. Indeed, since most general purpose
zero-tests implemented so far are either based on non reliable heuristic or are limited
to relatively small classes of constants, we think that the mere statement of a precise
conjecture already forms a progress, since such a conjecture can be used as a reliable and
efficient heuristic.

5.1 Linear combinations of exponentials

In [vdH01], we considered linear combinations of the form

c1 e
z1 +� + cr e

zr, (8)

where c1,� , cr, z1,� , zr are “holonomic constants”. Such expressions naturally occur when
computing with solutions to linear differential equations near singularities. We proved a
theorem, which implies the following one for “sufficiently regular” witness functions ̟:

Theorem 12. Assume conjecture 3. Then we may test whether (8) vanishes in a time
bounded by

(σ log3σ log log σ) ◦ (Cr̟(σ))◦r

for some constant C > 0, and where c1,� , cr, z1,� , zr can be represented by expressions of
size 6σ.

The following points should be noticed about this result:

• The left composition with σ log3σ log logσ is due to the cost of the evaluation of (8)
up to (Cr̟(σ))◦r digits. If the class of holonomic constants is replaced by a larger
one, such as Dλ, then one should rather compose on the left by σ2 log2 σ log log σ.

• There is a big difference between strong and weak witness conjectures as to the
behavior of the r-th iterate of C r ̟(σ). Indeed, if C r ̟(σ) has exponentiality
zero in σ, then so has its r-th iterate (see [vdH97] for a definition of exponentiality;
examples of such functions are ̟(σ)=Kσ,̟(σ)=σK or̟(σ)=elog

K σ). Moreover,
the growth of (Cr̟(σ))◦r in r is bounded by an iterated exponential in this case.

On the other hand, as soon as ̟ has exponentiality > 0, the r-th iterate of
Cr̟(σ) has an extremely bad behavior for large r, since it is not longer bounded
by any iterated exponential. It is therefore of the greatest practical interest to prove
witness conjectures for witness functions of exponentiality 0; unfortunately, even in
the power series setting, the existing techniques do not allow us to do so.
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5.2 Exp-log constants

In [vdH95] we described the first efficient zero-test for real exp-log constants. At the time,
we were not able to give any complexity bound for our algorithm, and this was one of our
main motivation for the statement of witness conjectures.

Using the more powerful asymptotic expansion algorithms from [vdH97], which rely
on Cartesian representations, and the more powerful zero-tests for multivariate exp-log
series from [SvdH01], we also designed a more efficient zero-test for real exp-log constants
in collaboration with J. Shackell. This algorithm, which will be detailed in a forthcoming
paper, is expected to satisfy a similar complexity bound as in theorem 12 in the sense that
it again involves an iterate of the witness function ̟.
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