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Abstract. Let M(n) denote the bit complexity of multiplying n-bit integers, let ω ∈ (2, 3]

be an exponent for matrix multiplication, and let lg∗n be the iterated logarithm. Assuming
that log d=O(n) and that M(n)/(n log n) is increasing, we prove that d × d matrices with
n-bit integer entries may be multiplied in

O(d2M(n) + dωn 2O(lg∗ n−lg∗ d)
M(lgd)/ lg d)

bit operations. In particular, if n is large compared to d, say d=O(logn), then the complexity
is only O(d2M(n)).
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1. Introduction

In this paper we study the complexity of multiplying d × d matrices whose entries are integers
with at most n bits. We are particularly interested in the case that n is very large compared to d,
say d=O(log n). All complexity bounds refer to deterministic bit complexity, in the sense of the
multi-tape Turing model [Pap94].

Matrices with large integer coefficients appear naturally in several areas. One first application
is to the efficient high precision evaluation of so-called holonomic functions (such as exp, log, sin,
Bessel functions, and hypergeometric functions) using a divide and conquer technique [CC90,
HP97, Hoe99, Hoe01, Hoe07]. Another application concerns recent algorithms for computing the
L-series of algebraic curves [Har14, HS14]. The practical running time in these applications is
dominated by the multiplication of matrices with large integer entries, and it is vital to have
a highly efficient implementation of this fundamental operation. Typical parameters for these
applications are n around 108 bits, and d around 10.

In this paper, we focus mainly on theoretical bounds. We write Md(n) for the cost of the
d× d matrix multiplication, and M(n) :=M1(n) for the cost of multiplying n-bit integers. We will
also write MR,d(n) for the algebraic complexity of multiplying d × d matrices whose entries are
polynomials of degrees <n over an abstract effective ring R, and MR(n) :=MR,1(n).

Schönhage and Strassen [SS71] used fast Fourier transforms (FFTs) to prove that M(n) =

O(n log n log log n) for large n. Fürer [Für09] improved this to M(n) =O
(

n log n 2O(lg∗n)
)

where
lg∗ is the iterated logarithm, i.e.,

lgn := ⌈log2n⌉,
lg∗n := min {k ∈N: lg◦kn6 1},
lg◦k := lg ◦ ···

k×
◦ lg,

and this was recently sharpened to M(n) =O(n log n 8lg
∗n) [HHL14a]. The best currently known

bound [CK91] for MR(n) is MR(n) =O(n log n log log n); if R is a ring of finite characteristic this
may be improved to MR(n) =O(n log n 8lg

∗n) [HHL14b].
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The algebraic complexity of d× d matrix multiplication is usually assumed to be of the form
O(dω), where ω is a so-called exponent of matrix multiplication [vzGG03, Ch. 12]. Classical matrix
multiplication yields ω=3, and Strassen’s algorithm [Str69] achieves ω= log 7/ log 2≈ 2.807. The
best currently known exponent ω < 2.3728639 was found by Le Gall [Gal14, CW87].

When working over the integers and taking into account the growth of coefficients, the general
bound for matrix multiplication specialises to

Md(n) = O(dωM(n+ lg d)).

Throughout this paper we will enforce the very mild restriction that log d = O(n). Under this
assumption the above bound simplifies to

Md(n) = O(dωM(n)).

The main result of this paper is the following improvement.

Theorem 1. Assume that M(n)/(n logn) is increasing. Let C > 1 be a constant. Then

Md(n) = O(d2M(n)+ dωn 2O(lg∗n−lg∗ d)
M(lg d)/ lg d), (1)

uniformly for all d> 1, n> 2 with lg d6Cn.

In particular, if n is large compared to d, say d=O(log n), then (1) simplifies to

Md(n) = O(d2M(n)). (2)

This bound is essentially optimal (up to constant factors), in the sense that we cannot expect to do
better for d=1, and the bound grows proportionally to the input and output size as a function of d.

The new algorithm has its roots in studies of analogous problems in the algebraic complexity
setting. When working over an arbitrary effective ring R, a classical technique for multiplying
polynomial matrices is to use an evaluation-interpolation scheme. There are many different eval-
uation-interpolation strategies [Hoe10, Sections 2.1–2.3] such as Karatsuba, Toom–Cook, FFT,
Schönhage–Strassen and general multi-point. The efficiency of a particular evaluation-interpolation
strategy can be expressed in terms of two quantities: the complexity ER(n) of evaluation/interpo-
lation and the number NR(n) of evaluation points. In terms of these quantities, we have

MR,d(n)=O(d2ER(n)+ dωNR(n)). (3)

If R admits many primitive 2p-th roots of unity, then the FFT provides an efficient evaluation-
interpolation strategy that achieves ER(n) =O(n log n) and NR(n) =O(n). Moreover, when using
the TFT [Hoe04], one may take N(n) = 2 n− 1, which is optimal. If R is a field of characteristic
zero, or a finite field with sufficiently many elements, then Bostan and Schost proved [BS05, Thm. 4]
that one may achieve ER(n)=O(MR(n)) and NR(n)=2 n−1 by evaluating at geometric sequences.
Thus, in this situation they obtain

MR,d(n)=O(d2MR(n) + dωn). (4)

In the setting of integer coefficients, a popular evaluation-interpolation strategy is Chinese
remaindering with respect to many small primes of bit length O(logn). Still assuming that log d=
O(n), this yields the bound (see [Sto00, Lemma 1.7], for instance)

Md(n) = O(d2M(n) log n+(n/log n)Md(lg n)),

and recursive application of this bound yields

Md(n) = O(d2M(n) logn+ dωn 2O(lg∗n−lg∗ d)
M(lg d)/ lg d).

Comparing with the algebraic bound (4), we notice an extra factor of logn in the first term. This
factor arises from the cost of computing a certain product tree (and remainder tree) in the Chinese
remaindering algorithm.
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A well-known method that attempts to avoid the spurious log n factor is to use FFTs. For
example, suppose that we are using the Schönhage–Strassen integer multiplication algorithm. This
works by cutting up the integers into into chunks of about n

√
bits, and then performs FFTs over

a ring of the form S =Z/
(

22
k

+1
)

Z where 2k∼ n
√

. We can multiply integer matrices the same
way, by cutting up each entry into chunks of about n

√
bits, performing FFTs over S, and then

multiplying the matrices of Fourier coefficients. When n is much larger than d, the latter step
takes negligible time, and the bulk of the time is spent performing FFTs. Since each matrix entry
is only transformed once, this leads to a bound of the type O(d2 M(n)), without the extraneous
log n factor. This method is very efficient in practice; both [HS14] and Mathemagix [HLM+02,
HLQ14] contain implementations based on number-theoretic transforms (i.e., FFTs modulo word-
sized prime numbers).

However, the theoretical question remains as to whether the log n overhead can be removed
unconditionally, independently of the “internal structure” of the currently fastest algorithm for
integer multiplication. Our Theorem 1 shows that this is indeed the case. More precisely, we
reduce integer matrix multiplication to the multiplication of matrix polynomials over Z/pλZ for
a suitable prime power pλ. The multiplication of such polynomials is done using FFTs. However,
instead of using a classical algorithm for computing the FFT of an individual polynomial, we
reduce this problem back to integer multiplication using Bluestein’s trick [Blu70] and Kronecker
substitution [vzGG03, Ch. 8]. This central idea of the paper will be explained in section 2. In
section 3, we prove our main complexity bound (1).

We stress that Theorem 1 is a theoretical result, and we do not recommend our algorithm for
practical computations. For any given FFT-based integer multiplication algorithm, it should always
be better, by a constant factor, to apply the same FFT scheme to the matrix entries directly, as
outlined above. See Remark 6 for further discussion about the implied big-O constant.

Remark 2. The observation that the Bluestein–Kronecker combination leads to a particularly
efficient FFT algorithm was announced previously in [HHL14a]. We mention as a historical remark
that the development of the main ideas of the present paper actually preceded [HHL14a].

2. Bluestein–Kronecker reduction

We begin with a lemma that converts a certain polynomial evaluation problem to integer multi-
plication.

Lemma 3. Assume that M(n)/n is increasing. Let p be an odd prime, let λ≥1 be an integer, and

let ζ ∈ (Z/pλZ)∗ be an element of order p−1. Given as input F ∈ (Z/pλZ)[x], with degF < p−1,
we may compute F (1), F (ζ), ..., F (ζp−2)∈Z/pλZ in time

O(M(λ p lg p)).

Proof. Let S =Z/pλ Z and let F =
∑

j=0
p−2

Fj x
j ∈ S[x]. We first use Bluestein’s trick [Blu70] to

convert the evaluation problem to a polynomial multiplication problem. Namely, from the identity
i j=

(

i

2

)

+
(

−j

2

)

−
(

i− j

2

)

we obtain

F (ζi)=
∑

j=0

p−2

Fj ζ
ij=Hi

∑

j=0

p−2

Fj
′Gi−j (5)

where

Hk= ζ
(

k

2

)

, Fk
′= ζ

(

−k

2

)

Fk, Gk= ζ
−

(

k

2

)

.

Since Hk+1= ζkHk and Gk+1= ζ−kGk, we may easily compute H0, ...,Hp−2 and G−p+2, ...,Gp−2

from ζ and ζ−1= ζp−2 using O(p) ring operations in S. Similarly we may obtain the Fk
′ from the

Fk using O(p) ring operations. The sum
∑

j=0
p−2

Fj
′Gi−j in (5) may be interpreted as the coefficient

of xi in the product of the (Laurent) polynomials

F ′=
∑

k=0

p−2

Fk
′xk and G′=

∑

k=−p+2

p−2

Gkx
k.
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Thus it suffices to compute the product F ′ · (xp−2 G′) in S[x]. To compute this product, we lift
the problem to Z[x], and use Kronecker substitution [vzGG03, Ch. 8] to convert to an integer
multiplication problem. The coefficients of F ′ and xp−2G′ are bounded by pλ, and their degrees
by 2 p − 4, so the coefficients of their product in Z[x] have at most lg (2 p2λ+1) = O(λ lg p) bits.
Therefore the integers being multiplied have at most O(λ p lg p) bits, leading to the desired
O(M(λ p lg p)) bound. The remaining work consists of O(p) ring operations in S, contributing
a further O(pM(λ lg p))=O(M(λ p lg p)) bit operations since M(n)/n is increasing. �

3. Integer matrix multiplication

Proposition 4. Assume that M(n)/(n log n) is increasing. Let C > 1 be a constant. Then

Md(n) = O
(

d2M(n)+ n

lg n+ lg d
Md(lg n+ lg d)

)

uniformly for all d> 1, n> 2 with lg d6Cn.

Proof. The input consists of matrices A=(Aij) and B=(Bij), where 1≤ i, j ≤d and Aij ,Bij∈Z,
|Aij |< 2n, |Bij |< 2n. We wish to compute the product AB.

Let b := lgn+ lg d and m := ⌈n/b⌉. Note that m=O(n/b) since we assumed that b=O(n). We
split the entries Aij into chunks of b bits, choosing Pij∈Z[x] so that Pij(2

b)=Aij with degPij<m,
and such that the coefficients of Pij are bounded in absolute value by 2b. Similarly choose Qij∈Z[x]
for Bij. Let P = (Pij) and Q = (Qij) be the corresponding d × d matrices of polynomials. The
coefficients of the entries of PQ are bounded in absolute value by 22b dm, and thus have bit size
bounded by 2 b+ lg d+ lgm= O(b). The product AB = (P Q)(2b) may be deduced from P Q in
time O(d2mb) =O(d2n). Thus we have reduced to the problem of computing PQ.

The degrees of the entries of P Q are less than 2 m. Let p be the least odd prime such that
p≥ 2m. By [BHP01] we have p=2m+O(m0.525)=O(n/b). We may find p by testing candidates
successively; the cost is o(n), since each candidate requires O((log p)O(1)) bit operations [AKS04].

To compute PQ, it suffices to compute PQ modulo pλ, where λ≥ 1 is the least positive integer
for which pλ> 2 · 22b dm. Since pλ6 2 · 22b dmp we have λ lg p6 2 b+ lg d+ lgm+ lg p+1=O(b).
Our plan is to compute P Q over S :=Z/ pλ Z by means of an evaluation-interpolation scheme, using
Lemma 3 for the evaluations. The lemma requires a precomputed element ζ ∈S∗ of order p−1. To
find ζ, we first compute a generator of (Z/pZ)∗ in (deterministic) time O(p1/4+ǫ)= o(n) [Shp96],
and then lift it to a suitable ζ ∈S∗ in time O(M(λ lg p) lg p)=O(M(b) lgn) [vzGG03, Ch. 15]. This
last bound lies in O(d2M(n)) (one may check the cases lgn6 d2 and lg n> d2 separately).

Having selected p, λ and ζ, we now apply Lemma 3 to each matrix entry to evaluate Pij(ζ
k)∈S

and Qij(ζ
k) ∈ S for 0≤ k < p− 1. This step takes time O(d2M(λ p lg p)) =O(d2M(n)). Next we

perform the pointwise multiplications (PQ)(ζk)=P (ζk)Q(ζk). These are achieved by first lifting
to integer matrix products, and then reducing the results modulo pλ. The integer products cost
O(p Md(λ lg p)) = O((n / b) Md(b)). The bit size of the entries of the products are bounded by
2 λ lg p+ lg d=O(b), so the reduction step costs O(d2 pM(b))=O(d2M(n)). Since the evaluation is
really a discrete Fourier transform over S, the interpolation step is algebraically the same, with ζ

replaced by ζ−1. Thus we may recover (PQ)ij using Lemma 3 again, with cost O(d2M(n)). There
is also a final division (scaling) by p− 1, whose cost is subsumed into the above.

In the Turing model, we must also take into account the cost of data rearrangement. Specif-
ically, in the above algorithm we switch between “matrix of vectors” and “vector of matrices”
representations of the data. Using the algorithm in the Appendix to [BGS07], this needs only
O((d2 p λ lg p) (log n)) = O(d2 n log n) = O(d2 M(n)) bit operations, since we assumed that
M(n)/(n logn) is increasing. �

Remark 5. We could replace Z/ pλ Z by a “ring” of finite-precision approximations to complex
numbers, and obtain results of the same strength. The latter approach has the disadvantage that
it introduces a tedious floating-point error analysis.

Now we may prove the main theorem announced in the introduction.
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Proof of Theorem 1. First consider the region (lg d)/C 6n6 d. Proposition 4 yields

Md(n) = O(d2M(n) +nMd(lg d)/lg d)

= O(d2M(n) + dωnM(lg d)/ lg d),

and for such n we have lg∗n= lg∗ d+O(1), so the desired bound holds in this region.
Now consider the case n > d. Let k := min {k ∈ N: lg◦k(n) 6 d} = lg∗ n − lg∗ d + O(1), and

let nj := lg◦j n for j = 0, ..., k, so that nk−1 > d and lg d 6 nk 6 d. By Proposition 4 there is a
constant K > 1 (depending only on C) such that

Md(n
′) 6 K

(

d2M(n′) +
n′

lg n′
Md(lg n′)

)

for any n′>d. Starting with n′ :=n and iterating k times yields

Md(n) 6 Kd2n

(

M(n0)

n0
+

KM(n1)

n1
+ ···+ Kk−1

M(nk−1)

nk−1

)

+
Kkn

nk

Md(nk).

By the argument in the first paragraph, we may apply Proposition 4 once more (and increase K

if necessary) to obtain

Md(n) 6 Kd2n

(

M(n0)

n0
+

KM(n1)

n1
+ ···+ Kk

M(nk)

nk

)

+ dωnKk+1
M(lg d)/lg d.

The second term lies in O
(

dω n 2O(lg∗n−lg∗ d)
M(lg d)/ lg d

)

. Since M(n)/(n logn) is increasing, the
first term is bounded by

Kd2M(n)

(

1+
K log n1+ ···+Kk log nk

logn

)

6Kd2M(n)

(

1+
kKk log lg n

log n

)

=O(d2M(n)). �

Remark 6. An important question is to determine the best possible big-O constant in Theorem 1.
For simplicity, consider the case where n is much larger than d, and define

A := limsup
d→∞

limsup
n→∞

Md(n)

d2M(n)
.

Theorem 1 shows that A<∞.
After some optimisations, it is possible to achieve A = 24. (We omit the details. The idea is

to increase the chunk size b, say from lgn to lg2n, and use the fact that Bluestein’s trick actually
produces a negacyclic convolution.)

We can do even better if we change the basic problem slightly. Define M
′(n) to be the cost

of an n-bit cyclic integer convolution, i.e., multiplication modulo 2n − 1. This kind of multiplica-
tion problem is of interest because all of the fastest known multiplication algorithms, i.e., based
on FFTs, actually compute convolutions. (In this brief sketch we ignore the difficulty that such
algorithms typically only work for n belonging to some sparse set.) Let Md

′ (n) be the cost of the
corresponding d× d matrix multiplication (convolution) problem, and let A′ be the corresponding
constant defined as above. Then by mapping the Bluestein convolution directly to integer convo-
lution, one saves a factor of two, obtaining A′= 12.

We conjecture that in fact one can achieve A = 1. This conjecture can be proved for all
integer multiplication algorithms known to the authors, and it is also consistent with measurements
of the performance of the implementation described in [HS14, HLQ14]. The point is that the
implementation transforms each matrix entry exactly once, and the time spent on the small-
coefficient matrix multiplications is negligible if n is large.

Remark 7. It is tempting to interpret the bound in Theorem 1 as an analogue of (3) in the case
of integer coefficients. However, several technical problems arise if one wants to make this more
precise. Indeed, most “evaluation-interpolation” strategies for integers (apart from Chinese remain-
dering) involve cutting the integers into several chunks, which prevents the evaluation mappings
from being algebraic homomorphisms. Moreover, due to carry management, we have to include
an additional parameter for the target precision of our evaluations. Thus, in the case of matrix
multiplication, we really should be looking for bounds of the form

Md(n) = O(d2E(n, p)+N(n, p)Md(p)),
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where p stands for the precision at our evaluation points and p> ⌈lg d⌉. In terms of E(n)=E(n, q)
and N(n)=N(n, q) for some small fixed precision q6 p, we have

E(n, p) 6 E(n)

N(n, p) ∼ N(n/p).

Reformulated in this way, our new evaluation-interpolation strategy achieves

E(n) ∼ O(M(n))

N(n) = n 2O(log∗n),

and it can be applied to several other problems, such as the multiplication of multivariate polyno-
mials or power series with large integer coefficients.
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