Using plugins to insert technical figures

Nicolas Ratier

1. \textsc{TeXmacs} plugins
2. \textsc{DraTeX}/\textsc{AlDraTeX}
3. \textsc{Gnuplot}
4. \textsc{Graphviz}
5. \textsc{Xy-pic}
1. \texttt{TEXMACS} plugins
• **Computer Algebra system**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>axiom</td>
<td></td>
</tr>
<tr>
<td>giac</td>
<td></td>
</tr>
<tr>
<td>gtybalt</td>
<td></td>
</tr>
<tr>
<td>macaulat 2</td>
<td>Algebraic geometry and commutative algebra</td>
</tr>
<tr>
<td>maple</td>
<td></td>
</tr>
<tr>
<td>mathemagix</td>
<td></td>
</tr>
<tr>
<td>maxima</td>
<td></td>
</tr>
<tr>
<td>mupad</td>
<td></td>
</tr>
<tr>
<td>mycas</td>
<td></td>
</tr>
<tr>
<td>pari</td>
<td>Number theory</td>
</tr>
<tr>
<td>reduce</td>
<td></td>
</tr>
<tr>
<td>yacas</td>
<td></td>
</tr>
</tbody>
</table>

• **Numerical Computations Software**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>lush</td>
<td></td>
</tr>
<tr>
<td>matlab</td>
<td></td>
</tr>
<tr>
<td>octave</td>
<td></td>
</tr>
<tr>
<td>qcl</td>
<td>Simulation of quantum algorithms</td>
</tr>
<tr>
<td>r</td>
<td>Statistical computing</td>
</tr>
<tr>
<td>scilab</td>
<td></td>
</tr>
</tbody>
</table>
- **Drawing Programs**

<table>
<thead>
<tr>
<th>Program</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dratex</td>
<td>Drawing different types of charts and diagrams</td>
</tr>
<tr>
<td>gnuplot</td>
<td>Data and function plotting</td>
</tr>
<tr>
<td>graphviz</td>
<td>Automatic graph visualization</td>
</tr>
<tr>
<td>xypic</td>
<td>Commutative diagrams</td>
</tr>
</tbody>
</table>
2. \texttt{DraTeX}/\texttt{AlDraTeX}

- \texttt{DraTeX} provides commands for drawing basic shapes like lines, rectangles, and Bezier curves, and for defining utilities that produce more complex outcomes.

- \texttt{AlDraTeX} provides templates for drawing different types of charts and diagrams.

\texttt{TeXmacs interface to (Al)DraTex (High Level Drawing Facilities)}

\begin{verbatim}
DraTex] \Draw
 \Tree()
 2,atom //
 0,electrons & 2,nucleus //
 0,protons & 0,neutrons //)
\EndDraw

atom
\hspace{1cm}
\begin{tikzpicture}
 \node {atom} [grow=up, anchor=north, align=center]
 child {node {electrons}}
 child {node {nucleus}
 child {node {protons}}
 child {node {neutrons}}
 };
\end{tikzpicture}
\end{verbatim}

DraTex]
\Draw
\TreeAlign(H,0,0)(0,0,0)
\TreeSpace(S,5,15)
\Tree()
2,European //
3,Latin & 2,Celtic //
0,French & 0,Italian & 0,Spanish & 0,Irish & 0,Welsh //
\EndDraw

\Tree
 European
 Latin
 French
 Italian
 Spanish
 Celtic
 Irish
 Welsh

DraTex]
3. Gnuplot

- Gnuplot is a portable command-line driven interactive data and function plotting utility. Gnuplot supports many types of plots in either 2D and 3D. It can draw using lines, points, boxes, contours, vector fields, surfaces, and various associated text. It also supports various specialized plot types.

This is a TeXmacs interface for GNUplot.

GNUplot] plot [-3.14:3.14] sin(x)
4. Graphviz

- Graph visualization is a way of representing structural information as diagrams of abstract graphs and networks.

- Graphviz is an automatic graph visualization software. The Graphviz layout programs take descriptions of graphs in a simple text language, and make diagrams in several useful formats such as Postscript for inclusion in \TeX\textsc{macs}.

Welcome to a simple \TeX\textsc{macs} interface to Graphviz/dot
(C) 2002 Jorik Blaas and Joris van der Hoeven

Graphviz 1] digraph G {
 main -> parse -> execute;
 main -> init;
 main -> cleanup;
 execute -> make_string;
 execute -> printf;
 init -> make_string;
 main -> printf;
 execute -> compare;
}
Graphviz 2]
digraph g {
 node [shape = record, height = 0.1];
 node0[label = "<f0> | <f1> G | <f2> "];
 node1[label = "<f0> | <f1> E | <f2> "];
 node2[label = "<f0> | <f1> B | <f2> "];
 node3[label = "<f0> | <f1> F | <f2> "];
 node4[label = "<f0> | <f1> R | <f2> "];
 node5[label = "<f0> | <f1> H | <f2> "];
 node6[label = "<f0> | <f1> Y | <f2> "];
 node7[label = "<f0> | <f1> A | <f2> "];
 node8[label = "<f0> | <f1> C | <f2> "];
 "node0":f2 -> "node4":f1;
 "node0":f0 -> "node1":f1;
 "node1":f0 -> "node2":f1;
 "node1":f2 -> "node3":f1;
 "node2":f2 -> "node8":f1;
 "node2":f0 -> "node7":f1;
 "node4":f2 -> "node6":f1;
 "node4":f0 -> "node5":f1;
}
Graphviz 4]
5. Xy-pic

- xypic is a package for typesetting “matrix like” diagrams, such as commutative diagrams. In category theory, “commutative diagrams” are the categorists ways to illustrate equations and universal properties.

TeXmacs interface to XYpic (high level 2-dimensional graphics)

```
xymatrix{ 
  U \ar@/_/[ddr]_y \ar@/^/[drr]^x \ar@{>}[dr]|-{(x,y)} \ar@{.>}[dr]|- \ar@{=} \ar@{-}[dr]|- \\
  & X \ar[r]_d \times \ar[r]_q \ar[r]_p & X \ar[d]_f & & \\
  & Y \ar[r]_q & X \ar[r]_g & Z 
}
```
\[X_{\theta_1(\theta)} \xrightarrow{\gamma} X_{\theta_2(\theta)}\]

\[\prod_{\theta \in \mathcal{C}_1} X_{\theta_1, \theta} \approx \mathcal{C}_1 \times_{\mathcal{C}_0} X \xrightarrow{\gamma} X\]

\[\text{pr}_1 = d_1^*\]

\[C_1 \xrightarrow{d_0} C_0\]