On systems of mulltivariate

power series equations

∞

Par Joris van der Hoeven

Lab. : LIFL, Université de Lille I, France
: LIX, École polytechnique, France
Email: vdhoeven@lix.polytechnique.fr
Web : http://lix.polytechnique.fr: $80 / \sim$ vdhoeven/
∞

Mons, 14-12-1997

Prologue

The Newton polygon method

Problème 1

Consider the polynomial equation

$$
P(f)=P_{0}+P_{1} f+\cdots+P_{d} f^{d}=0
$$

with power series coefficients in $C[[z]]$.
We want an algorithm to compute the solutions.

Problème 2

Determine the asymptotique behaviour of $P(f)$, when $z \rightarrow 0$.

Idéa

Use the Newton polygon method.
Incorporate an idea of Smith [1875] (and [VdH 97]).

Asymptotic polynomial equations

$$
P(f)=P_{0}+P_{1} f+\cdots+P_{d} f^{d}=0(f \nless \mathrm{u}) .
$$

Refinements

Change of variables + constraint.

$$
f=\varphi+\tilde{f}(\tilde{f} \nless \tilde{\mathrm{u}}), \text { où } \tilde{\mathrm{u}} \nless \mathrm{ч} .
$$

Admissible refinement \longleftrightarrow one step of the Newton polygon method.

Exemple: $\quad z^{2}-2 z f+f^{2}-2 f^{3}+\left(1+z^{3}\right) f^{4}-\left(z^{2}+z^{5}\right) f^{6}=0$, où $z \nless 1$.

Quasi-lineair equations

Equation of Newton degree one.
Unique solution: implicit function theorem.

Équation quasi-linéaire:

$$
z+z^{3}+f-7 z^{2} f^{2}+5 f^{3}+z f^{4}-z^{3} f^{6}(f \nless 1) .
$$

Smith's approch + improvement

$$
f^{2}-\frac{2}{1-z} f+\frac{1}{(1-z)^{2}}=z^{10000} .
$$

5000 steps necessary before root separation.
Idea: solve the "derived" equation

$$
2 \varphi-\frac{2}{1-z}=0,
$$

and refine $f=\varphi+\tilde{f}(\tilde{f} \nless 1)$; one obtains $\tilde{f}^{2}=z^{10000}$.

Asymptotic behaviour of $P(f)$

Déterminer the dominant term of $P(f)$.
Example, if $P(f)=f^{2}-z^{3}$, the dominant term is

$$
\left\{\begin{array}{l}
f^{2}, \text { if } f \nsucc z^{3 / 2} ; \\
z^{3}, \text { if } f \nless z^{3 / 2} ; \\
\left(c^{2}-1\right) z^{3}, \text { if } f=z^{3 / 2}(c+\tilde{f}), \text { with } c^{2} \neq 1 \text { and } \tilde{f} \nless 1 ; \\
2 c \tilde{f} z^{3 / 2}, \text { if } f=z^{3 / 2}(c+\tilde{f}), \text { with } c^{2}=1 \text { and } \tilde{f} \nless 1 ; \\
0, \text { if } f=z^{3 / 2} .
\end{array}\right.
$$

Algorithm

Newton polygon method + (improved) Smith's trick.
Algorithm is non deterministic.

Multivariate series

Notations

C : constant field.
\breve{C} : dynamic extension of C by finite \# of parameters satisfying polynomial constraints.
$X=\left\{x_{1}, \cdots, x_{p}\right\}$.
S_{X} : set of monomials $x_{1}^{\alpha_{1}} \cdots x_{p}^{\alpha_{p}}$.
$f \in \breve{C}\left[\left[S_{X}\right]\right]$ formal power series (generalized exponents).
Σ : set of constraints of the form

$$
\left\{\begin{array}{l}
x_{1}^{\alpha_{1}} \cdots x_{p}^{\alpha_{p}} \nless 1 \quad \text { ou } \\
x_{1}^{\alpha_{1}} \cdots x_{p}^{\alpha_{p}} \asymp 1 .
\end{array}\right.
$$

R : region of C^{p} determined by Σ.

Problem

Determine the possible asymptotic behaviours of f modulo a subdivision

$$
R=R_{1} \amalg \cdots \amalg R_{r}
$$

of R into a finite number of regions, determined by sets of contraints $\Sigma_{1}, \cdots, \Sigma_{p}$ as above, and a series of refinements.

Idea

Introduce an elimination ordering

$$
x_{1}>^{e l i m} \ldots>^{e l i m} x_{p}
$$

Use the Newton polygon method in a lexicographical way. We will only consider refinements of the form

$$
\left\{\begin{array}{l}
x_{q}=ц\left(\varphi+x_{q}^{\prime}\right)\left(x_{q}^{\prime} \nless 1\right) ; \\
x_{q}=ц \varphi,
\end{array}\right.
$$

where ц $\in S_{x_{q+1}, \cdots, x_{p}}$ et $\varphi \asymp 1$ is a regular series in x_{q+1}, \cdots, x_{p}. In the last case, the variable x_{q} is eliminated from X.

Imposition of a constraint ц $\asymp щ$

Either add цщ ${ }^{-1} \asymp 1$ to Σ,
or apply the following algorithm constraint:
Introduce a new parameter $0 \neq \lambda \in \breve{C}$.
Write цщ ${ }^{-1}=x_{q}^{\alpha_{q}} \cdots x_{p}^{\alpha_{p}}$ and set $\mathrm{ч}=\sqrt[\alpha_{q}]{x_{q+1}^{\alpha_{q-1}} \cdots x_{p}^{\alpha_{p}}}$.
Separate two cases and refine

$$
\left\{\begin{array}{l}
x_{q}=ц\left(\lambda+x_{q}^{\prime}\right)\left(x_{q}^{\prime} \nless 1\right) ; \\
x_{q}=\lambda_{ц} .
\end{array}\right.
$$

One step of the Newton polygon method in x_{q} ч: a monomial in x_{1}, \cdots, x_{q-1}.
$[\mathrm{u}] f$ is Newton prepared if

- $[\mathrm{u}] f$ is a formal power series in x_{q}.
- There exist щ, ц so that the dominant monomials of $[\mathrm{u}] f$ are of the form щ $\left(x_{q} / \text { ц }\right)^{\alpha}$.

Newton polynomial

$$
P(\lambda)=\sum_{\alpha \in \mathbb{N}}\left(\left[\text { Чщ }\left(x_{q} / \text { ц }\right)^{\alpha}\right] f\right) \lambda^{\alpha} .
$$

Newton degree: degree of P.

Algorithme Newton_step

Input: $[\mathrm{u}] f$ Newton prepared.
Action: refinement $x_{q}=ц\left(\varphi+x_{q}^{\prime}\right)\left(x_{q}^{\prime} \nless 1\right)$ or elimination $x_{q}=$ $ц \varphi$, where цц is a first approximation of the solution to $[\mathrm{\varphi}] f=0$ in x_{q}.

Case when P has several roots

$\lambda \neq 0$ new parameter in \breve{C} with $P(\lambda)=0$.
Separate two cases and refine

$$
\left\{\begin{array}{l}
x_{q}=ц\left(\lambda+x_{q}^{\prime}\right)\left(x_{q}^{\prime} \nless 1\right) ; \\
x_{q}=\lambda ц .
\end{array}\right.
$$

Case when P has a unique root

Compute unique infinitesimal root ци of

$$
\frac{\partial^{\operatorname{deg} P-1}([\mathrm{u}] f)}{\partial x_{q}^{\operatorname{deg} P-1}}=0
$$

in x_{q}, separate two cases and refine

$$
\left\{\begin{array}{l}
x_{q}=ц\left(\varphi+x_{q}^{\prime}\right)\left(x_{q}^{\prime} \nless 1\right) ; \\
x_{q}=ц \varphi .
\end{array}\right.
$$

Computation of the dominant monomial

While f is not regular, impose a face $F \subseteq S_{X}$ (finite) as being the face of dominant monomials and execute dom_sub $(f, 1, F)$.

The algorithm dom_sub $(f$, ч, F)
Input: f, monomial ч in x_{1}, \cdots, x_{q-1} and F with $F_{\mathrm{u}}=[\mathrm{u}] F \neq \phi$. Output: either the dominant monomial m of $[\mathrm{u}] f$, or the exception "recommence".

Case 1: \exists unique α with $F_{\mathrm{Y} x_{q}^{\alpha}} \neq \phi$.
Return dom_sub $\left(f, \mathrm{\varphi}_{q}^{\alpha}, F\right) x_{q}^{\alpha}$.
Case 2: f is not a formal power series in x_{q}.
Choose ц $\in F$ and execute constraint(ц \asymp щ) for each other щ $\in F_{\mathrm{u}}$.

Otherwise, separate cases 3 and 4 :
Case 3: non singular case.
Choose ц arbitrary in F.
Execute constraint(ц \asymp щ) for each other $щ \in F$.
Let m be the unique element of F_{u} after rewriting.
Return m.
Case 4: singular case.
(Idea: one step of Newton polygon method)
For each α with $F_{\mathrm{u} x_{q}^{\alpha}} \neq \phi$, execute $\operatorname{dom_ sub}\left(f, \mathrm{\varphi} x_{q}^{\alpha}, F\right)$.
Let n be the \# of times dom_sub does not return "recommence".
If $n=0$, return "recommence".
If $n=1$, kill the process.
Otherwise, choose ц $=ч x_{q}^{\alpha}$ щ and $\mu^{\prime}=ч x_{q}^{\alpha^{\prime}}$ щ $^{\prime} \in F_{\mathrm{ч}}$ with $\alpha^{\prime} \neq \alpha$.
Execute constraint (щ m $^{\alpha^{\prime \prime}-\alpha^{\prime}} \boldsymbol{m}^{\prime \alpha-\alpha^{\prime \prime}}$ щ $^{\prime \prime \alpha^{\prime}-\alpha} \asymp 1$) for each $\boldsymbol{\mu}^{\prime \prime}=$ $ч x_{q}^{\alpha^{\prime \prime}}$ щ" $^{\prime \prime} \in F_{\mathbf{ч}}$.
Execute Newton_step $([\mathrm{u}] f)$ and return "recommence".

