On a conjecture of Hardy

By Joris van der Hoeven

Addr.: Dépt. de Math., Université d'Orsay, France

: LIX, École polytechnique, France

Email: Joris.Vanderhoeven@math.u-psud.fr

: vdhoeven@lix.polytechnique.fr

Web: http://lix.polytechnique.fr:80/~vdhoeven/

Berlin, 24-8-1998

The conjecture

L-functions

- An L-function is a function constructed from \mathbb{R} and x by $+, -, \times, /, \exp$, log and algebraic functions. Example:

$$\frac{\exp e^{e^x \log^{24} x + x}}{\log^8 \log x + e^x} + e^{x^x \log^{1998} x}$$

- Hardy: germs of L-functions at ∞ form a totally ordered field.
- Many functions can be expanded w.r.t. scale of L-functions.
- Hardy: solutions to $E(x+1) = e^{E(x)}$ grow faster than every iterated exponential.

Question

- Is there an L-function, asymptotic to $(\log x \log \log x)^{inv}$?
- Liouville: $(\log x \log \log x)^{inv}$ is not equal to an L-function.

Grid-based series

Asymptotic scales

- S: ordered group (by \prec) of positive germs at infinity, stable under exponentiation by reals.
- S finitely generated by $B = \{b_1, \ldots, b_n\}$, if

$$S = \{b_1^{\alpha_1} \cdots b_n^{\alpha_n} | \alpha_1, \dots, \alpha_n \in \mathbb{R}\},\$$

- -B base, if $1 \ll b_1 \ll \cdots \ll b_n$ and $\log b_1 \ll \cdots \ll \log b_n$.
- Example: $S = \{x^{\alpha} e^{x\beta} | \alpha, \beta \in \mathbb{R}\}.$

Grid-based series over field C

 $- C[S] = C[b_1; \cdots; b_n]$ field of series

$$f = \sigma_0 \varphi(\sigma_1, \dots, \sigma_k),$$

where $\varphi \in C[[\sigma_1, \dots, \sigma_k]], \sigma_0, \dots, \sigma_k \in S$ and $\sigma_i \ll 1$ for $1 \leqslant i \leqslant k$.

- Example: $e^x(1-x^{-1}-x^{-x})^{-1} \in \mathbb{R}[x; e^x; x^x].$
- $-\mathbb{R}[S]^{conv}$: subfield of convergent series (i.e. φ convergent).

Lexicographical expansions

Lexicographical expansion of $f \in \mathbb{R}[b_1; \dots; b_n]$

$$f = \sum_{\alpha_n \in \mathbb{R}} f_{\alpha_n} b_n^{\alpha_n}$$

:

$$f_{\alpha_n,\ldots,\alpha_2} = \sum_{\alpha_1 \in \mathbb{R}} f_{\alpha_n,\ldots,\alpha_1} b_1^{\alpha_1}.$$

 $f_{\alpha_n,\ldots,\alpha_{i+1}}$ both in $\mathbb{R}[b_1;\cdots;b_i]$ and $\mathbb{R}[b_1;\cdots;b_{i-1}][b_i]$.

$$\frac{1}{(1-x^{-1})(1-e^{-x})} = 1+x^{-1}+x^{-2}+x^{-3}+\cdots + e^{-x}+x^{-1}e^{-x}+x^{-2}e^{-x}+x^{-3}e^{-x}+\cdots$$

$$\vdots$$

Canonical decomposition

$$f = f^{\uparrow} + f^c + f^{\downarrow} = \sum_{\sigma \gg 1} f_s + f_1 + \sum_{\sigma \ll 1} f_s.$$

Lexicographically,

$$f^{\uparrow} = \sum_{\alpha_{n}>0} f_{\alpha_{n}} b_{n}^{\alpha_{n}} + \dots + \sum_{\alpha_{1}>0} f_{0,\dots,0,\alpha_{1}} b_{0}^{\alpha_{1}};$$

$$f^{c} = f_{0,\dots,0}$$

$$f^{\downarrow} = \sum_{\alpha_{n}<0} f_{\alpha_{n}} b_{n}^{\alpha_{n}} + \dots + \sum_{\alpha_{1}<0} f_{0,\dots,0,\alpha_{1}} b_{0}^{\alpha_{1}}.$$

Example:

$$\left[\frac{x^{100}e^x}{(1-x^{-1})(1-e^{-x})}\right]^{\uparrow} = \frac{x^{100}e^x}{1-x^{-1}} + x^{100} + x^{99} + \dots + x.$$

Canonical bases

L-series

- $\mathbb{R}[S]^L$: series constructed from \mathbb{R} , monomials $b_i^{\alpha_i}$, the field operations and left composition of infinitesimal L-series by $\exp z$, $\log(1+z)$ or algebraic series.
- L-series are both expressions and convergent series in $\mathbb{R}[S]^{conv}$.
- Straightforward expansion algorithm for L-series.
- Iterated coefficients of L-series again L-series.
- If f is an L-series, then so are $f^{\uparrow}, f^c, f^{\downarrow}$.

B canonical base if

B1. $b_1 = \log_l x$ is an l-th iterated logarithm.

B2.
$$\log b_i \in \mathbb{R}[b_1; \dots; b_{i-1}]^L$$
 et $(\log b_i)^{\uparrow} = \log b_i$, for all $i > 1$.

Example:

$$B = \{\log x, x, \exp\left[\frac{x}{\log x - 1}\right]\},\$$

but not

$$\{x, e^{e^x}\}$$
 nor $\{x, e^{x+x^{-1}}, e^{x^2}\}.$

B: dynamic canonical base containing x.

ALGORITHM expand

INPUT: An L-function f.

OUTPUT: f rewritten as an L-series in $\mathbb{R}[S]^L$.

case $f \in \mathbb{R}$ or f = x. Return f.

case $f = g \square h$, $\square \in \{+, -, \times, /\}$. Return expand $(g) \square$ expand(h).

case $f = \log(g)$.

Set g := expand(g).

Rewrite $g = cb_1^{\alpha_1} \cdots b_n^{\alpha_n} (1 + \varepsilon)$, where $c \in \mathbb{R}^*$ and $\varepsilon \ll 1$.

If $\alpha_1 \neq 0$, add $\log b_1$ to B.

Return $\log c + \alpha_1 \log b_1 + \cdots + \alpha_n b_n + \log(1 + \varepsilon)$.

case $f = \exp(g)$.

Set q := expand(q).

If $l = \lim g \in \mathbb{R}$, return $e^l e^{g-l}$.

Test whether $g \approx \log b_i$ for some $2 \leqslant i \leqslant n$.

Yes \longrightarrow return $b_i^l \operatorname{expand}(e^{g-l \log b_i})$, where $l = \lim g/(\log b_i)$.

 $\mathbf{No} \longrightarrow \mathrm{add}\ e^{|g^{\uparrow}|} \ \mathrm{to}\ B \ \mathrm{and}\ \mathrm{return}\ (e^{|g^{\uparrow}|})^{\mathrm{sign}(g)} e^{g_0} e^{g^{\downarrow}}.$

case $f = \varphi(g)$, with φ algebraic. Set $g := \operatorname{expand}(g)$ and $l := \lim g$. If $|l| = \infty$, return $\operatorname{expand}(\psi(g^{-1}))$, where $\psi(z) \stackrel{\text{def}}{=} \varphi(z^{-1})$. If $l \neq 0$, return $\operatorname{expand}(\psi(g - l))$, où $\psi(z) \stackrel{\text{def}}{=} \varphi(z + l)$. Rewrite $\varphi(z) = z^{\alpha}\psi(z^{\beta})$, with $\alpha \in \mathbb{Q}, \beta \in \mathbb{Q}_{+}^{*}$ et $\psi \in \mathbb{R}[[z]]$. If $\psi \neq 1$, return $\operatorname{expand}(g^{\alpha})\psi(\operatorname{expand}(g^{\beta}))$. Rewrite $g = c\sigma(1 + \varepsilon)$, with $c \in \mathbb{R}^{*}, \sigma \in S$ et $\varepsilon \ll 1$. Return $c^{\alpha}\sigma^{\alpha}[(1 + z)^{\alpha} \circ \varepsilon]$.

Theorem. Let f be an L-function and B_0 a canonical base containing x. Then there exists a canonical base $B = \{b_1, \ldots, b_n\} \supseteq B_0$, such that f can be rewritten as an L-series in $\mathbb{R}[S]^L$.

Proof of the conjecture

Assume $g = (\log x \log \log x)^{inv} \times f$ for an L-function f. There exists $B \supseteq \{\log \log x, \log x, x\}$, such that $\log f \in \mathbb{R}[S]^L$. Moreover, $(\log f)^{\uparrow}$ is an L-function.

Classical convergent expansion for $\log \log g = (xe^x)^{inv}$:

$$\log \log g = \log x - \log \log x + \frac{\log \log x}{\log x} + \dots = \log x + \sum_{n=0}^{\infty} \frac{g_n}{\log^n x},$$

with coefficients $g_n \in \mathbb{R}[\log \log x]$. Hence

$$\log \log g \in \mathbb{R} \llbracket \log \log x; \log x \rrbracket^{conv}$$

and

$$\log g = \frac{x}{\log x} \exp g^{\downarrow} \in \frac{x}{\log x} \mathbb{R} \llbracket \log \log x; \log x \rrbracket^{conv}$$

is such that

$$(\log g)^{\uparrow} = \log g.$$

Thus $\log f$ and $\log g$ are both in $\mathbb{R}[S]^{conv}$ and

$$e^{\varphi} \simeq e^{\psi} \Leftrightarrow \varphi^{\uparrow} = \psi^{\uparrow},$$

for $\varphi, \psi \in \mathbb{R}[S]^{conv}$. Hence

$$f \simeq g \Rightarrow (\log f)^{\uparrow} = (\log g)^{\uparrow} = \log g,$$

whence $(\log f)^{\uparrow} = \log g$ and $g = \exp(\log g)$ are L-functions. Contradiction with Liouville's result.