Asymptotic differential equations

In Honor of José Manuel Aroca

Tordesillas 2006 http://www.T_EX_{MACS}.org

A missing subject?

- Hardy fields: Rosenlicht, Boshernitzan, Singer, etc.
- Pfaff systems: Khovanskii, Wilkie, Rolin™, etc.

A missing subject?

- Hardy fields: Rosenlicht, Boshernitzan, Singer, etc.
- Pfaff systems: Khovanskii, Wilkie, Rolin™, etc.

A missing subject?

- LNM 1888: Transseries and Real Differential Algebra
- Other work on http://www.math.u-psud.fr/~vdhoeven

Real algebraic geometry

Valuation theory

Differential algebra

Real differential algebra

+

Asymptotic differential algebra

 \mathbb{C}

 \longrightarrow

 $\mathbb{R} \\ + \\ \mathbb{C} \llbracket z^{\mathbb{Q}} \rrbracket$

Wild

 $\mathbb{R} \, [\![x]\!]$ + $\mathbb{C} \, [\![z]\!]$

What is a transseries?

 $(x \succ 1)$

$$e^{e^x + \frac{e^x}{x} + \frac{e^x}{x^2} + \dots} + \frac{2}{\log x} e^{e^x + \frac{e^x}{x} + \frac{e^x}{x^2} + \dots} + e^{\sqrt{x} + e^{\sqrt{\log x} + e^{\sqrt{\log \log x} + \dots}}} + \dots$$

What is a transseries?

 $(x \succ 1)$

$$e^{e^x + \frac{e^x}{x} + \frac{e^x}{x^2} + \dots} + \frac{2}{\log x} e^{e^x + \frac{e^x}{x} + \frac{e^x}{x^2} + \dots} + e^{\sqrt{x} + e^{\sqrt{\log x} + e^{\sqrt{\log \log x} + \dots}}} + \dots$$

- Dahn & Göring
- Écalle

Examples of transseries

$$\frac{1}{1-x^{-1}-x^{-e}} = 1+x^{-1}+x^{-2}+x^{-e}+x^{-3}+x^{-e-1}+\cdots$$

$$\frac{1}{1-x^{-1}+e^{-x}} = 1+\frac{1}{x}+\frac{1}{x^2}+\cdots+e^{-x}+2\frac{e^{-x}}{x}+\cdots+e^{-2x}+\cdots$$

$$-e^x \int \frac{e^{-x}}{x} = \frac{1}{x}-\frac{1}{x^2}+\frac{2}{x^3}-\frac{6}{x^4}+\frac{24}{x^5}-\frac{120}{x^6}+\cdots$$

$$\Gamma(x) = \frac{\sqrt{2\pi} e^{x(\log x-1)}}{x^{1/2}}+\frac{\sqrt{2\pi} e^{x(\log x-1)}}{12 x^{3/2}}+\frac{\sqrt{2\pi} e^{x(\log x-1)}}{288 x^{5/2}}+\cdots$$

$$\zeta(x) = 1+2^{-x}+3^{-x}+4^{-x}+\cdots$$

$$\varphi(x) = \frac{1}{x}+\varphi(x^\pi)=\frac{1}{x}+\frac{1}{x^\pi}+\frac{1}{x^{\pi^2}}+\frac{1}{x^{\pi^3}}+\cdots$$

$$\psi(x) = \frac{1}{x}+\psi(e^{\log^2 x})=\frac{1}{x}+\frac{1}{\log^2 x}+\frac{1}{\log^4 x}+\frac{1}{\log^8 x}+\cdots$$

Generalized power series

- C: constant field
- (\mathfrak{M}, \preceq) : totally ordered group of monomials
- $C[[\mathfrak{M}]]$: field of $f = \sum_{\mathfrak{m} \in \mathfrak{M}} f_{\mathfrak{m}} \mathfrak{m}$ with well-based support.

$$\mathfrak{m}_1 \prec \mathfrak{m}_2 \prec \cdots$$
 with $\mathfrak{m}_1, \mathfrak{m}_2, \ldots \in \text{supp } f$ is impossible

• $C \, \llbracket \mathfrak{M} \rrbracket$: field of $f = \sum_{\mathfrak{m} \in \mathfrak{M}} f_{\mathfrak{m}} \, \mathfrak{m}$ with grid-based support.

supp
$$f \subseteq {\{\mathfrak{m}_1, ..., \mathfrak{m}_m\}^* \mathfrak{n}}, \qquad \mathfrak{m}_1, ..., \mathfrak{m}_m \prec 1$$

Abstract fields of transseries

Totally ordered field $\mathbb{T} = \mathbb{R} \llbracket \mathfrak{T} \rrbracket$ with a logarithm such that

- **T1.** dom $\log = \mathbb{T}^{>}$
- **T2.** $\log \mathfrak{m} \in \mathbb{T}_{\succ}$, for all $\mathfrak{m} \in \mathfrak{T}$, i.e. $\operatorname{supp} (\log \mathfrak{m}) \succ 1$.
- **T3.** $\log(1+\varepsilon) = \varepsilon \frac{1}{2}\varepsilon^2 + \frac{1}{3}\varepsilon^3 + \cdots$, for all $\varepsilon \in \mathbb{T}_{\prec}$.

Example. $\mathbb{L} = \mathbb{R} \llbracket \mathfrak{L} \rrbracket = \mathbb{R} \llbracket x^{\mathbb{R}} (\log x)^{\mathbb{R}} (\log_2 x)^{\mathbb{R}} \cdots \rrbracket$ with

$$\log(x^{\alpha_0} \cdots (\log_k x)^{\alpha_k}) = \alpha_0 \log x + \cdots + \alpha_k \log_{k+1} x$$
$$\log(f) = \log(c_f \mathfrak{d}_f (1 + \delta_f)) = \log \mathfrak{d}_f + \log c_f + \log (1 + \delta_f)$$

ightharpoonup The field of grid-based transseries in x

I) $\mathbb{T} = \mathbb{R} \llbracket \mathfrak{T} \rrbracket$ field of transseries $\Longrightarrow \mathbb{T}_{\exp} = \mathbb{R} \llbracket \mathfrak{T}_{\exp} \rrbracket \supseteq \mathbb{T}$ also

$$\mathfrak{T}_{\exp} = \exp\left(\mathbb{R} \llbracket \mathfrak{T} \rrbracket_{\succ}\right)$$

Example.
$$e^{x^2 + \frac{x^2}{\log x} + \frac{x^2}{\log^2 x} + \dots + x + \log \log x} \in \mathfrak{L}_{\exp}$$

II) Increasing limits of fields of transseries are fields of transseries

$$\mathbb{T} = \mathbb{L} \cup \mathbb{L}_{\exp} \cup \mathbb{L}_{\exp,\exp} \cup \cdots$$

Operations on transseries

- I) Unique strong exp-log differentiation on \mathbb{T} with x'=1
- **D5.** $f \prec g \Rightarrow f' \prec g'$, for all $f, g \in \mathbb{T}$ with $g \not\approx 1$.
- **D6.** $f \succ 1 \Rightarrow (f > 0 \Rightarrow f' > 0)$, for all $f \in \mathbb{T}$.
- II) Unique strong exp-log postcomposition δ with $g \in \mathbb{T}^{>,\succ}$ with $\delta x = g$
- $\Delta 5. \ f \prec 1 \Rightarrow \delta(f) \prec 1$, for all $f \in \mathbb{T}$.
- $\Delta 6. \ f \geqslant 0 \Rightarrow \delta(f) \geqslant 0$, for all $f \in \mathbb{T}$.
- III) Each $g \in \mathbb{T}^{>,\succ}$ admits a compositional inverse.

Calculus with transseries

Taylor rule. $f, \delta \in \mathbb{T}$ with $\delta \prec x$ and $\mathfrak{m}^{\dagger} \delta \prec 1$ for all $\mathfrak{m} \in \text{supp } f$. Then

$$f \circ (x + \delta) = f + f' \delta + \frac{1}{2} f'' \delta^2 + \cdots$$

Translagrange (Écalle). Notation:

$$f_{[M,N]} = \langle M \circ f, N \rangle = ((M \circ f) g)_{\simeq}$$

Let $M, N, \varepsilon \prec 1$ be exponential transseries, $f = x + \varepsilon$ and $g = f^{\text{inv}}$. Then

$$g_{[M,N']} = -f_{[N,M']}.$$

Algebra	Asymptotic algebra

Algebra	Asymptotic algebra
P(f) = 0	

Algebra	Asymptotic algebra
P(f) = 0	$P(f) = 0, (f \prec \mathfrak{v})$

Algebra	Asymptotic algebra
P(f) = 0	$P(f) = 0, (f \prec \mathfrak{v})$
$\deg P$	

Algebra	Asymptotic algebra
P(f) = 0	$P(f) = 0, (f \prec \mathfrak{v})$
$\deg P$	$\deg_{\prec \mathfrak{v}} P$

Algebra	Asymptotic algebra
P(f) = 0	$P(f) = 0, (f \prec \mathfrak{v})$
$\deg P$	$\deg_{\prec \mathfrak{v}} P$

Newton polynomials

- $\bullet \quad P \in C \, \llbracket \mathfrak{M} \rrbracket \, [F] \subseteq C[F] \, \llbracket \mathfrak{M} \rrbracket$
- $\bullet \quad N_P = c_P \in C[F]$

Starting terms

- $\mathfrak{w} \prec \mathfrak{v}$ is a "starting monomial" $\iff N_{P_{\times \mathfrak{w}}} \notin CF^{\mathbb{N}}$
- $c \, \mathbf{w}$ is a "starting term" $(c \neq 0) \iff N_{P_{\times \mathbf{w}}}(c) = 0$

$$P_{\times \varphi}(f) = P(\varphi f)$$

 $P_{+\varphi}(f) = P(\varphi + f)$

Newton degree

$$\deg_{\prec \mathfrak{v}} P = \deg N_{P_{\times \mathfrak{v}}}$$
$$\deg_{\prec \mathfrak{v}} P = \operatorname{val} N_{P_{\times \mathfrak{v}}}$$

$$\deg_{\prec \mathfrak{w}} P \leqslant \deg_{\prec \mathfrak{v}} P, \qquad \mathfrak{w} \prec \mathfrak{v}$$

$$\deg_{\prec \mathfrak{v}} P_{+\varphi} = \deg_{\prec \mathfrak{v}} P, \qquad \varphi \prec \mathfrak{v}$$

$$\deg_{\prec \mathfrak{v}} P_{\times \mathfrak{w}} = \deg_{\prec \mathfrak{v}} P$$

$$\deg_{\prec \mathfrak{v}} (PQ) = \deg_{\prec \mathfrak{v}} P + \deg_{\prec \mathfrak{v}} Q$$

$$\deg_{\prec \varphi} P_{+\varphi} = \mu(c_{\varphi}; N_{P_{\times \mathfrak{d}_{\varphi}}})$$

$$\mu_{\prec \mathfrak{v}}(f; P) = \deg_{\prec \mathfrak{v}} P_{+f}$$

Newton polygon method

1. $\deg_{\prec v} P = d > 0$

$$(P = A_{+q} \text{ and } g \text{ root modulo } \prec \mathfrak{v} \text{ of } A)$$

- 2. If d=1 then unique solution
- 3. Determine starting monomial $\mathfrak{w} \prec \mathfrak{v}$
- 4. Solve $N_{P_{\times \mathfrak{w}}}(c) = 0$ and set $\varphi := c \mathfrak{w}$
- 5. Refine $f = \varphi + \tilde{f}$, $\tilde{f} \prec \mathfrak{w} \longrightarrow 0 < \deg_{\prec \mathfrak{w}} \tilde{P} \leqslant d$ with $\tilde{P} = P_{+\varphi}$ $(\tilde{P} = A_{+g+\varphi} \text{ and } g + \varphi \text{ root modulo } \prec \mathfrak{w} \text{ of } A)$
- 6. Return to step 1

Newton polygon method

1. $\deg_{\prec \mathfrak{v}} P = d > 0$

$$(P = A_{+q} \text{ and } g \text{ root modulo } \prec \mathfrak{v} \text{ of } A)$$

- 2. If d=1 then unique solution
- 3. Determine starting monomial $\mathfrak{w} \prec \mathfrak{v}$
- 4. Solve $N_{P_{\times \mathfrak{w}}}(c) = 0$ and set $\varphi := c \mathfrak{w}$

$$\left(f - \frac{1}{1-z}\right)^2 = z^{10000}$$

- 5. Refine $f = \varphi + \tilde{f}$, $\tilde{f} \prec \mathfrak{w} \longrightarrow 0 < \deg_{\prec \mathfrak{w}} \tilde{P} \leqslant d$ with $\tilde{P} = P_{+\varphi}$ $(\tilde{P} = A_{+g+\varphi} \text{ and } g + \varphi \text{ root modulo } \prec \mathfrak{w} \text{ of } A)$
- 6. Return to step 1

Newton polygon method

1. $\deg_{\prec \mathfrak{v}} P = d > 0$

$$(P = A_{+q} \text{ and } g \text{ root modulo } \prec \mathfrak{v} \text{ of } A)$$

- 2. If d=1 then unique solution
- 3. Determine starting monomial $\mathfrak{w} \prec \mathfrak{v}$
- 4. Solve $N_{P_{\times \mathfrak{w}}}(c) = 0$ and set $\varphi := c \mathfrak{w}$

If
$$\mu_{N_{P_{\times}}}(c)=d$$
, then $\varphi:=$ unique solution to $\frac{\partial^{d-1}P}{\partial F^{d-1}}(\varphi)=0, \, \varphi\prec \mathfrak{v}$

- 5. Refine $f = \varphi + \tilde{f}$, $\tilde{f} \prec \mathfrak{w} \longrightarrow 0 < \deg_{\prec \mathfrak{w}} \tilde{P} \leqslant d$ with $\tilde{P} = P_{+\varphi}$ $(\tilde{P} = A_{+g+\varphi} \text{ and } g + \varphi \text{ root modulo } \prec \mathfrak{w} \text{ of } A)$
- 6. Return to step 1

Differential Newton polygon method

$$P(f) = p(f, f', ..., f^{(r)}) = 0, \quad f \prec v$$

Starting monomials cannot directly be read of from "Newton polygon"

$$P = P_0 + \cdots + P_d$$

Upward shifting

$P\uparrow$ unique differential polynomial with

$$(P\uparrow)(f \circ e^x) = P(f) \circ e^x$$

For instance:

$$F'\uparrow = \frac{F'}{e^x}$$

$$F''\uparrow = \frac{F'' - F'}{e^{2x}}$$

$$F'''\uparrow = \frac{F''' - 3F'' + 2F'}{e^{3x}}$$

$$\vdots$$

Differential Newton polynomial

Theorem. There exists a unique $N_P \in \mathbb{R}\{F\}$, such that

$$c_{P\uparrow_l} = N_P$$

for all sufficiently large *l* and

$$N_P \in \mathbb{R}[F](F')^{\mathbb{N}}$$
.

Definition. $\mathfrak{m} \prec \mathfrak{v}$ is a starting monomial $\iff N_{P_{\times \mathfrak{m}}} \notin \mathbb{R} F^{\mathbb{N}}$

Example

$$P = (F')^{2} - FF''$$

$$P \uparrow = \frac{(F')^{2} - FF'' + FF'}{e^{2x}}$$

$$P \uparrow \uparrow = \frac{FF'}{e^{x} e^{2e^{x}}} + \frac{(F')^{2} - FF'' + FF'}{e^{2x} e^{2e^{x}}}$$

$$\vdots$$

$$N_{P} = FF'$$

Consequence:

$$1 \prec L \prec \log_n x \Longrightarrow P(L) \sim \frac{L L'}{x}$$

Starting monomials

Lemma. Given i < j with $P_i \neq 0$, $P_j \neq 0$, there exists a unique (i, j)-equalizer $\mathfrak{e} \in \mathfrak{T}$ such that $N_{(P_i + P_j)_{\times \mathfrak{e}}}$ is not homogeneous.

Starting monomials

Lemma. Given i with $P_i \neq 0$, we have

$$\mathfrak{m}$$
 is a starting monomial for $P_i(f) = 0$

$$\mathfrak{m}^{\dagger} = \frac{\mathfrak{m}'}{\mathfrak{m}}$$
 is a solution to $R_{P_i}(g) = 0$ modulo $\frac{1}{x \log x \log_2 x \cdots}$

Solving asymptotic differential equations

Lemma. $\deg_{\prec v} P = 1 \Longrightarrow P(f) = 0, f \preccurlyeq v$ admits at least one solution.

Warning. Problem with almost multiple solutions

$$f^{2} - 2f' + \frac{1}{x^{2}} + \dots + \frac{1}{(x \log x \dots \log_{l} x)^{2}} = 0, \quad (f \prec 1)$$

$$f^{2} - 2e^{-x}f' + \frac{1}{e^{2x}} + \dots + \frac{1}{(e^{x} x \dots \log_{l-1} x)^{2}} = 0, \quad (f \prec 1)$$

$$f^{2} - 2f' - 2f + 1 + \frac{1}{x^{2}} + \dots + \frac{1}{(x \log x \dots \log_{l-1} x)^{2}} = 0, \quad (f \prec 1)$$

$$f^{2} - 2f' + \frac{1}{x^{2}} + \dots + \frac{1}{(x \log x \dots \log_{l-1} x)^{2}} = 0, \quad (f \prec 1)$$

Lemma. "Unravelling process" is finite.

Results

Theorem. (1997) There exists a theoretical algorithm to find all solutions to an asymptotic algebraic differential equation.

Theorem. (1997) Let P be purely exponential of degree d and order r. There exists a constant $C_{r,d}$ such that any solution to P(f) = 0 involves at most $C_{r,d}$ levels of iterated logarithms.

Theorem. (1997) Any general transseries solution to an algebraic differential equation with grid-based coefficients is again grid-based. Generalization of Grigoriev and Singer (1991).

Corollary. $\zeta(x)$ and $f(x) = \frac{1}{x} + \frac{1}{a^{\log^2 x}} + \frac{1}{a^{\log^4 x}} + \cdots$ are differentially transcendental over \mathbb{R} .

Intermediate value theorem

Theorem. (2000) Given $P \in \mathbb{T}\{F\}$ and $f < g \in \mathbb{T}$ with P(f) P(g) < 0. Then there exists an $h \in \mathbb{T}$ with f < h < g and P(h) = 0.

- 1. Calculus with cuts $\hat{f} \in \hat{\mathbb{T}}$.
- 2. Classification of cuts and behaviour of P(f) near a cut.
- 3. Newton polygon method for shrinking interval on which a sign change occurs and whose end-points are cuts.

Corollary. Any $P \in \mathbb{T}\{F\}$ of odd degree admits a root in \mathbb{T} .

Intermediate value theorem

Theorem. (2000) Given $P \in \mathbb{T}\{F\}$ and $f < g \in \mathbb{T}$ with P(f) P(g) < 0. Then there exists an $h \in \mathbb{T}$ with f < h < g and P(h) = 0.

- 1. Calculus with cuts $\hat{f} \in \hat{\mathbb{T}}$.
- 2. Classification of cuts and behaviour of P(f) near a cut.
- 3. Newton polygon method for shrinking interval on which a sign change occurs and whose end-points are cuts.

Corollary. Any monic $L \in \mathbb{T}[\partial]$ admits a factorization with factors

$$\partial - a$$
 or

$$\partial^2 - (2 a + b^{\dagger}) \partial + (a^2 + b^2 - a' + a b^{\dagger}) = (\partial - (a - b \mathbf{i} + b^{\dagger})) (\partial - (a + b \mathbf{i}))$$

Complex transseries

Main problem: define an ordering on $\mathbb{T} = \mathbb{C} \llbracket \mathfrak{T} \rrbracket = \mathbb{C} \llbracket \mathfrak{T} \rrbracket$.

Idea: $f > 0 \iff c_f \in P_{\mathfrak{d}_f}$, with a set

$$P_{\mathfrak{m}} = \{ c \in \mathbb{C} | (\operatorname{Re} (c e^{-i\theta_{\mathfrak{m}}}) > 0) \vee (\operatorname{Re} (c e^{-i\theta_{\mathfrak{m}}}) = 0 \wedge \operatorname{Im} (\epsilon_{\mathfrak{m}} c e^{-i\theta_{\mathfrak{m}}}) > 0) \}$$

for each $\mathfrak{m} \in \mathfrak{T} \longrightarrow$ unique \mathbb{T} as strong field (see also: Bouffet).

Closure properties

Theorem. (2001) Every asymptotic differential equation over \mathbb{T} of Newton degree d admits at least d solutions (when counting with multiplicities). Moreover, it suffices to add iterated logarithms to the asymptotic scale.

Warning. T is not differentially algebraically closed

$$f^3 + (f')^2 + f = 0$$
$$f^3 + f \neq 0$$

Rather desingularize vector fields? Panazzolo, etc.

Closure properties

Theorem. (2001) Every asymptotic differential equation over \mathbb{T} of Newton degree d admits at least d solutions (when counting with multiplicities). Moreover, it suffices to add iterated logarithms to the asymptotic scale.

Corollary. T is Picard-Vessiot closed.

Remark. No Grigoriev & Singer type undecidability results.

Remark. Zero-test algorithm for polynomials in power series solutions to algebraic differential equations.

Model theory

with Matthias Aschenbrenner & Lou van den Dries

Question: generalizations to H-fields and asymptotic fields?

Model theory

Warning. Fields \mathcal{K} with a "gap" of the form $\hat{\gamma} = \frac{1}{x \log x \log_2 x \dots}$ admit two Liouvillian extensions

$$\mathcal{K}_1 = \mathcal{K}[\int \hat{\gamma}], \qquad \int \hat{\gamma} \succ 1$$

 $\mathcal{K}_2 = \mathcal{K}[\int \hat{\gamma}], \qquad \int \hat{\gamma} \prec 1$

Notation.
$$\hat{\lambda} = -\hat{\gamma}^{\dagger} = \frac{1}{x} + \frac{1}{x \log x} + \cdots$$
, $\hat{\rho} = 2 \hat{\lambda}' - \hat{\lambda}^2 = \frac{1}{x^2} + \frac{1}{x^2 \log^2 x} + \cdots$.

Theorem. (2003) There exists a field of well-based transseries \mathbb{T} , such that $\hat{\rho} \in \mathbb{T}$, but $\hat{\lambda} \notin \mathbb{T}$.

Theorem. (2006) N_P well-defined for asymptotic fields $\mathcal{K} \not\ni \hat{\rho}$.

On the special status of $\hat{\rho}$

Theorem 1. For any $P \in \mathbb{R}\{F\}$, the first ω terms of $P(\hat{\lambda})$ are either "similar" to $\hat{\lambda}$ or to $\hat{\rho}$. (Écalle, 1992)

Theorem 2. For any $P \in \mathbb{R}\{F\}$ such that $P(\hat{\lambda}) = \frac{1}{x^k} + \frac{1}{x^k \log^k x} + \cdots$, we have either k = 1 or k = 2.

Theorem 3. Given $P \in K[F_0, ..., F_r]$ with

$$P(F_0-1, F_1, ..., F_r) - P(F_0, F_1-F_0, F_2-3F_1+2F_0, ...) \in K$$

we have $P \in KF_0^2 + KF_1$.

Theorem 4. The identity

$$P(F_0-1, F_1, F_2, ...) = P(F_0, F_1-F_0, F_2-3F_1+2F_0, ...)$$

is verified for

$$P = F_0^{-1} \sum_{k,i_1,\dots,i_k} (-1)^{i_1+\dots+i_k} {i_1+\dots+i_k+k \choose i_1+1,\dots,i_k+1} \frac{F_{i_1}}{F_0^{i_1+1}} \cdots \frac{F_{i_k}}{F_0^{i_k+1}}.$$

Integral transseries

$$f' - f = \frac{1}{z} + f^2$$

$$(e^{-z}f)' = \frac{e^{-z}}{z} + e^{-z}f^2$$

$$f = e^z \int \left(\frac{e^{-z}}{z} + e^{-z} f^2 \right)$$

$$f = e^z \int \frac{e^{-z}}{z} + e^z \int e^{-z} (e^z \int \frac{e^{-z}}{z})^2 + \cdots$$

$$\frac{1}{z^{-1}e^{z^2} - 2\int e^{z^2} = \cdots$$

Integral transseries

$$f' - f = \frac{1}{z} + f^2$$

$$(e^{-z}f)' = \frac{e^{-z}}{z} + e^{-z}f^2$$

$$f = e^z \int \left(\frac{e^{-z}}{z} + e^{-z} f^2 \right)$$

$$f = e^z \int_{-\infty}^{z} \frac{e^{-z'}}{z'} dz' + e^z \int_{-\infty}^{z} e^{-z'} (e^{z'} \int_{-\infty}^{z'} \frac{e^{-z''}}{z''} dz'')^2 dz' + \cdots$$

$$\frac{1}{z^{-1}e^{z^2} - 2\int e^{z^2} = \cdots$$

HAPPY BIRTHDAY