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< A missing subject?

Real algebraic geometry
Algebraic geometry — +
Valuation theory

| !

Real differential algebra
Differential algebra — +
Asymptotic differential algebra

e LNM 1888: Transseries and Real Differential Algebra

e Other work on http://www.math.u-psud.fr/~vdhoeven
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What is a transseries?

Dahn & Goéring

Ecalle

2R - REs e VIoET +oVIPEToE E +
e x T2 +e\/5+e
log x




Examples of transseries » ‘
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& Generalized power series

e (: constant field

e (MM, <): totally ordered group of monomials

o C[M]]: field of f=3"_ o fmm with well-based support.
mp<my<-- with mq,mo,...Esupp f 1is impossible

o CIMI: fieldof f=3>" _on fmum with grid-based support.

supp f C{my, ..., m;, }*n, mi,...,m,, <1



L Abstract fields of transseries

Totally ordered field T =R[IT] with a logarithm such that
T1. domlog=T".

T2. logme T, forall me ¥, i.e. supp (logm) > 1.

T3. log(1+5):5—%52+§53+---, for all e € T'<.

Example. L=R[ILD =R Iz® (logz)® (logaz)®---T with

log (20 - (logp x)**) = aglogx+ -+ axlogriix
log(f)=log(cfos(1+4d¢)) = logds+logcy+log(l+dy)



& The field of grid-based transseries in x Qgﬁ‘

| ) T=REIZT field of transseries = Texp =R [T cxpll 2 T also

Texp = ©Xp (R [0 >—)

2 2
24— 1= ... Lptlogloge
Example. ¢ 'o8® log®= € Lexp

Il') Increasing limits of fields of transseries are fields of transseries

T=LUILexpULexp,expU -



& Operations on transseries

| ) Unique strong exp-log differentiation on T with /=1

D5. f<g= f'<g/, forall f,geT with g*41.

D6. f>~1=(f>0= f'>0), forall feT.

Il ) Unique strong exp-log postcomposition § with g € T~>~ with dx =g
A5, f<1=0(f)=<1, forall feT.

A6. f>0=6(f)=0, forall feT.

IIl ) Each g € T~ admits a compositional inverse.



@ Calculus with transseries

Taylor rule.  f,5€ T with § <2 and mT§ <1 for all m € supp f. Then
fo(z+8)=f+f 6+ "%+
Translagrange (Ecalle). Notation:
S, ny= (Mo f,N)=((Mo [) g)=
Let M, N,e <1 be exponential transseries, f =x +¢ and g= f™V. Then

g, N=—JIN, M-
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P(f)=0 P(f)=0, (f=v)
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&

Newton polynomials

e PcCIMI[F]CCF]IMT
° NPZCPEC[F]



& Starting terms

e 10 <1 isa “starting monomial’ <= Np_ ¢ CFN

e ctv is a “starting term” (¢#0) <= Np__(c)=0

wa(f) = P(ef)
Pio(f) = Ple+f)



Newton degree

deg<y P
deg<y P

deg<n P

deg<o Pio
deg v Pxro

deg<o (PQ)

deg<p Pyo
p<o( f5 P)

/N

deg Np,,
val prn

deg., P, o<
deg~, P, Y=<D0
deg<ow P

deg<p P+deg<y Q

M(Ccp? NPX0¢)
deg<p Py



& Newton polygon method

l.degoy P=d>0
(P=A4, and g root modulo <v of A)

2. If d=1 then unique solution

3. Determine starting monomial to < v

4. Solve Np_ (c)=0 and set p:=ct

5.Refine f=p+ f, f<w — 0<degw P <d with ]5:P+Q0
(P=A,,:+, and g+ ¢ root modulo < of A)

6. Return to step 1
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& Newton polygon method

1.

deg., P=d>0

(P=A4, and g root modulo <v of A)

. If d=1 then unique solution
. Determine starting monomial to < v

. Solve Np_ (c)=0 and set p:=ct

If Ny (c)=d, then @ :=unique solution to ng;dl_lf(go) =0,p<b

.Refine f=o+ f, f <w — 0<deg_w P <d with P:Pﬂp

(P=A,,:, and g+ ¢ root modulo < of A)

. Return to step 1



< Differential Newton polygon method %ﬁ‘

P(f)=p(f, [, f7)=0, f=v

Starting monomials cannot directly be read of from “Newton polygon”

P=Py+- +P,



@

Upward shifting

P unique differential polynomial with

For instance:

(P1)(foe®)=P(f)oe”
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< Differential Newton polynomial

Theorem. There exists a unique Np € R{F'}, such that

Cpt = Np
for all sufficiently large | and

NPER[F] (F’)N.

Definition. m < v is a starting monomial <= Np ¢ R FY



&P Example ‘
P (F"2—FF"
F/ Q—FF/,—|—FF/
PT ( ) e2:1;
FF’ F2—FF"+FF’
PTT T ~2e® ( ) 2x n2e”
e’e e’Te
Np FF’
Consequence:
/
1<L<log,z=— P(L)~ LL

95



< Starting monomials “» ‘

Lemma. Given i < j with P;# 0, P; #+ 0, there exists a unique (i, j)-equalizer ¢ € T such
that N(p,+p,),. Is not homogeneous.



L Starting monomials

Lemma. Given i with P,#+0, we have

0

m is a starting monomial for P;( f)

!

m’ 1

m'=— is a solution to Rp,(g) =0 modulo
m ‘ xlog xlogsx ---



@ Solving asymptotic differential equations %ﬂ‘

Lemma. deg-, P=1 = P(f)=0, f <v admits at least one solution.

Warning. Problem with almost multiple solutions

f2—2f’+%+---+(mogx}_loglx)2 =0, (f=1)
fz_ze_xf/+ez%+m+(exaﬁ---ligl_lx)Q =0, (f=<1)
f2_2f/_2f+1+%+m+(a:logx---llogl_lx)Q = 0, (f=1)
fQ—2f’+%+---+(ﬂvlogx”_110gl_1$)2 =0, (f=1)

Lemma. “Unravelling process” is finite.



¥ Results &» ‘

Theorem. (1997) There exists a theoretical algorithm to find all solutions to an asymptotic
algebraic differential equation.

Theorem. (1997) Let P be purely exponential of degree d and order r. There exists a constant
C'r.q such that any solution to P(f)=0 involves at most C.. 4 levels of iterated logarithms.

Theorem. (1997) Any general transseries solution to an algebraic differential equation with
grid-based coefficients is again grid-based. Generalization of Grigoriev and Singer (1991).

Corollary. ((x) and f(x) —Lt 4 L 4 1 .. aredifferentially transcendental over RR.

xT elog2 % elog a8




& Intermediate value theorem &» ‘

Theorem. (2000) Given P € T{F'} and f < g€ T with P(f) P(g) <0. Then there exists
an h €T with f <h< g and P(h)=0.

1. Calculus with cuts feT.

2. Classification of cuts and behaviour of P( f) near a cut.

3. Newton polygon method for shrinking interval on which a sign change occurs and whose

end-points are cuts.

Corollary. Any P € T{F'} of odd degree admits a root in T.



& Intermediate value theorem &» ‘

Theorem. (2000) Given P € T{F'} and f < g€ T with P(f) P(g) <0. Then there exists
an heT with f <h< g and P(h)=0.

1. Calculus with cuts feT.
2. Classification of cuts and behaviour of P( f) near a cut.

3. Newton polygon method for shrinking interval on which a sign change occurs and whose
end-points are cuts.

Corollary. Any monic L € T[0] admits a factorization with factors

0—a or

0?—(2a+bN 0+ (a®*+bv*—a'+ab")=(0—(a—bi+b")) (0 (a+bi))



& Complex transseries

Main problem: define an ordering on T=C[%] =CIz10.

ldea: f>0<«=cy€ Py, with a set
Pn={ceC|(Re(ce ) >0)V (Re(ce ') =0AIm(eyce =) >0)}

for each m € T — unique T as strong field (see also: Bouffet).



< Closure properties %ﬁ‘

Theorem. (2001) Every asymptotic differential equation over T of Newton degree d admits

at least d solutions (when counting with multiplicities). Moreover, it suffices to add iterated
logarithms to the asymptotic scale.

Warning. T is not differentially algebraically closed

P+ +f =0
fPrf#0

Rather desingularize vector fields? Panazzolo, etc.



< Closure properties %ﬁ‘

Theorem. (2001) Every asymptotic differential equation over T of Newton degree d admits

at least d solutions (when counting with multiplicities). Moreover, it suffices to add iterated
logarithms to the asymptotic scale.

Corollary. T is Picard-Vessiot closed.
Remark. No Grigoriev & Singer type undecidability results.

Remark. Zero-test algorithm for polynomials in power series solutions to algebraic differential
equations.



< Model theory < ‘

with MATTHIAS ASCHENBRENNER & [LOU VAN DEN DRIES

Question: generalizations to H-fields and asymptotic fields?



& Model theory > ‘

Warning. Fields K with a “gap” of the form 7= xlogxllogﬂ — admit two Liouvillian extensions

Ki = K[f’ﬂv f/?>'1
Ko = K[ff?]v ff?{l

I SEPAIPS VI I SR B

 x  zlogx ! x> x2log? x

Notation. )= —Af

Theorem. (2003) There exists a field of well-based transseries T, such that pe T, but \¢ T.

Theorem. (2006) Np well-defined for asymptotic fields K % p.



< On the special status of p %@‘

Theorem 1. For any P € R{F'}, the first w terms of P(\) are either “similar” to \ or to p.
(Ecalle, 1992)

Theorem 2. For any P € R{F} such that P(\) = % + m + -+, we have either k=1
or k=2.

Theorem 3. Given P € K |Fy, ..., F}| with
P(Fo—l,Fl,...,Fr)—P(Fo,Fl—FQ,F2—3F1—|—2F0,...)EK,
we have P € K F¢ + K Fj.

Theorem 4. The identity

P(Fy—1,F, Fy,..)=P(Fo, i — Fy, Fo—3F + 2 Fp, ...

is verified for

_ -1 Vi1t i1+"'+ik+k) F; F;
P=F" y D (i1+1,...,z'k,+1 Fitl gkl

k,i1,...,7k
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Integral transseries
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Integral transseries
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