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Asymptotic differential algebra

Real algebraic geometry
Algebraic geometry −→ +

Valuation theory
←
−

←
−

Differential algebra −→ ?

• Hardy fields: Rosenlicht, Boshernitzan, Singer, etc.

• Pfaff systems: Khovanskii, Wilkie, etc.
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Asymptotic differential algebra

Real algebraic geometry
Algebraic geometry −→ +

Valuation theory
←
−

←
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Real differential algebra
Differential algebra −→ +

Asymptotic differential algebra

• LNM 1888: Transseries and Real Differential Algebra

• Upcoming book with Matthias Aschenbrenner and Lou van den Dries



Sufficiently closed models

Algebraic geometry −→
Real algebraic geometry

+

Valuation theory
←
−

←
−

Differential algebra −→
Real differential algebra

+

Asymptotic differential algebra



Sufficiently closed models

C −→
Real algebraic geometry

+

Valuation theory
←
−

←
−

Differential algebra −→
Real differential algebra

+

Asymptotic differential algebra



Sufficiently closed models

C −→
R

+

Valuation theory
←
−

←
−

Differential algebra −→
Real differential algebra

+

Asymptotic differential algebra



Sufficiently closed models

C −→
R

+

C[[zQ]]
←
−

←
−

Differential algebra −→
Real differential algebra

+

Asymptotic differential algebra



Sufficiently closed models

C −→
R

+

C[[zQ]]

←
−

←
−

Wild −→
Real differential algebra

+

Asymptotic differential algebra



Sufficiently closed models

C −→
R

+

C[[zQ]]

←
−

←
−

Wild −→
Maximal Hardy field

+

Asymptotic differential algebra



Sufficiently closed models

C −→
R

+

C[[zQ]]

←
−

←
−

Wild −→
R[[[x]]]

+

Asymptotic differential algebra



Sufficiently closed models

C −→
R

+

C[[zQ]]

←
−

←
−

Wild −→
R[[[x]]]

+

C[[[z]]]



Sufficiently closed models

(x≻ 1)

e
ex+

ex

x
+

ex

x2
+···

+
2

log x
e
ex+

ex

x
+

ex

x2
+···

+e x
√

+e log x
√

+e
log log x

√
+···

+ ···



Sufficiently closed models

(x≻ 1)

e
ex+

ex

x
+

ex

x2
+···

+
2

log x
e
ex+

ex

x
+

ex

x2
+···

+e x
√

+e log x
√

+e
log log x

√
+···

+ ···

• Dahn & Göring

• Écalle



Examples of transseries

1

1− x−1− x−e = 1+x−1+ x−2+ x−e+ x−3+x−e−1+ ···

1

1− x−1+e−x
= 1+

1

x
+
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x2 + ···+e−x+2
e−x

x
+ ···+e−2x+ ···

−ex
∫ e−x

x
=

1

x
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x6 + ···

Γ(x) =
2 p

√
ex(log x−1)

x1/2
+

2 p

√
ex(log x−1)

12x3/2
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2 p

√
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288x5/2
+ ···

ζ(x) = 1+2−x+3−x+4−x+ ···

ϕ(x) =
1

x
+ ϕ(xπ)=

1

x
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xπ2 +
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xπ3 + ···
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x
+ ψ(elog

2x)=
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x
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1

elog
2 x

+
1

elog
4 x

+
1

elog
8 x

+ ···



Mathemagix examples

Mmx] use "asymptotix"

Mmx] x == infinity (’x);

Mmx] 1 / (x + 1)

1
x
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1

x4
+O

(

1

x5
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Mmx] 1 / (exp x + x + 1)
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Mmx] lengthen (exp (x^4 / (x + 1)), 7)
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Mmx] integrate (exp (x^2), x)
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Mmx] integrate (x^x, x)
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−
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Mmx] fixed_point_transseries (f :-> 1/x + f @ (x^2) + f @ (exp x))
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Mmx] lengthen (product (x, x), 4)
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+
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Mmx] lengthen (product (log x, x), 2)
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Mmx] eval (integrate (exp (x^2), x), x, 100.0)

4.40362931632092710468e4340

Mmx]



Generalized power series

• C: constant field

• (M,4): totally ordered group of monomials

I.e. logM is a value group with m4 n⇔ v(logm)> v(log n)

• C[[M]]: Hahn field of f =
∑

m∈M
fmm with well-based support.

m1≺m2≺ ··· with m1,m2, ...∈ supp f is impossible

• C[[M]]: field of f =
∑

m∈M
fmm with grid-based support.

supp f ⊆m1
N ···mm

N
n, m1, ...,mm≺ 1

• S ⊆P(M) closed under ∪, · and power products of infinitesimal sets, with {m}∈S for
all m∈M.



Generalized power series

• C: constant ring (or set)

• (M,4): partially ordered monoid (or set) of monomials

• C[[M]]: ring of f =
∑

m∈M
fmm with well-based support.

m1≺m2≺ ··· with m1,m2, ...∈ supp f is impossible

supp f contains no infinite antichains

• C[[M]]: ring of f =
∑

m∈M
fmm with grid-based support.

supp f ⊆m1
N ···mm

N {n1, ..., nn}, m1, ...,mm≺ 1



Examples

• C[[z]] =C[[zN]] =C[[zN]]

• C((z))=C[[zZ]] =C[[zZ]]

• C[[z1, z2]] =C
[[

zN
2]]

• C[[z1]][[z2]] =C[[zN×· N]]

• C[[zQ]] Puiseux series. C[[zQ]]!C[[zQ]]



Strong summability

Strong summability

We say that (fi)i∈I ∈C[[M]]I is (strongly) summable if

1.
⋃

i∈I
supp fi is grid-based (or well-based if (fi)i∈I ∈C[[M]]I)

2. {i∈ I:m∈ supp fi} is finite for each m∈M

Then g=
∑

f ∈C[[M]] with gm=
∑

i∈I
fi,m is well-defined.

Properties

•
∑

(fσ(i))i∈I =
∑

(fi)i∈I

•
∑

F ∐G=
∑

F +
∑

G

• For F =
∐

j∈J
Gj, we have

∑

j∈J

∑

Gj=
∑

F

• More properties



Multiplication

Definition
(

∑

m∈supp f

f
m
m

)(

∑

n∈supp g

g
n
n

)

=
∑

(m,n)∈supp f×supp g

fm gnmn

• supp f , supp g well/grid-based ⇒ supp f × supp g well/grid-based

• (m, n) 7→mn is increasing

Associativity

f g h =
∑

(m,n,v)∈supp f×supp g×supph

fm gnhvmnv



Inversion

f = cf df (1− ε), ε≺ 1

f−1 = cf
−1

df
−1 1

1− ε

1

1− ε
=

∑

(m1,...,ml)∈(supp ε)∗

εm1 ··· εml
m1 ···ml

• Set of words (supp ε)∗ carries natural partial ordering

• Higman: supp ε well-based ⇒ (supp ε)∗ well/grid-based

More generally: for f ∈C[[t]] and ε≺ 1, we may define f(ε)



Strong linearity

Definition

Linear ϕ: C[[M]] −→ C[[N]] is strongly linear if, for all summable (fi)i∈I, (ϕ(fi))i∈I is
summable and

ϕ
(

∑

fi
)

=
∑

ϕ(fi)

Extension by strong linearity

If ϕ̌:M→ C[[N]] sends grid-based subsets to summable families, then ϕ̌ admits a unique
strongly linear extension

Applications

• For ε≺ 1 and f , g ∈C[[t]] with g0=0, f(g(ε))= (f ◦ g)(ε)

• (1− ε)
1

1− ε
=1



Henselian equations

f = P0+P1 f +P2 f
2+ ···, f ≺ 1

Pi ≺ 1

f =
∑

T∈Tree(supp f)

cT mT

T = m0

m1

m4 m5

m2 m3

m6

cT = P3,m0P2,m1P0,m2P1,m3P0,m4P0,m5P0,m6

mT = m0m1m2m3m4m5m6

Kruskal: Tree(supp f) carries well-based partial ordering



Abstract fields of transseries

Totally ordered field T=R[[T]] with a logarithm such that

T1. dom log=T>.

T2. logm∈T≻, for all m∈T, i.e. ∀n∈ supp (logm), n≻ 1.

T3. log (1+ ε)= ε−
1

2
ε2+

1

3
ε3+ ···, for all ε∈T≺.

Example. L=R[[L]]=R[[xR (log x)R (log2x)
R ···]] with

log (xα0 ··· (logkx)
αk) = α0 log x+ ···+αk logk+1x

log(f)= log(cf df (1+ δf)) = log df + log cf + log (1+ δf)



The field of grid-based transseries in x

Exponential extensions

T=R[[T]] field of transseries =⇒ Texp=R[[Texp]]⊇T also

Texp = exp (R[[T]]≻)

Example. e
x2+

x2

log x
+

x2

log2 x
+···+x+log log x

∈Lexp

Closure

Increasing limits of fields of grid-based transseries are fields of transseries

T=L∪Lexp∪Lexp,exp∪ ···



The field of grid-based transseries in x

Exponential extensions

T=R[[T]] field of transseries =⇒ Texp=R[[Texp]]⊇T also

Texp = exp (R[[T]]≻)

Closure fails in well-based case

f1 = x2

fα+1 = fα− efα◦log x

fλ = stat lim
α<λ

fα



The field of grid-based transseries in x

Exponential extensions

T=R[[T]] field of transseries =⇒ Texp=R[[Texp]]⊇T also

Texp = exp (R[[T]]≻)

Closure fails in well-based case

f1 = x2

f2 = x2− elog
2x

···

fω = x2− elog
2x− elog

2x−elog log2 x

− ···

fω+1 = x2− elog
2x− elog

2x−elog log2 x

− ··· − elog
2x−elog log2 x−···

···



Differentiation

There exists a unique strong exp-log differentiation on T with x′=1

AD1. f ≺ g⇒ f ′≺ g ′, for all f , g ∈T with g≍/ 1.

AD2. f ≻ 1⇒ (f > 0⇒ f ′> 0), for all f ∈T.

Logarithmic transseries

• ∂:m= xi0 ··· (loglx)
il 7→

(

i0

x
+ ···+

il

x ··· loglx

)

m is grid-based

• Hence ∂ admits a unique strongly linear extension on L

Exponential extension of strongly linear ∂ on T=C[[T]]

• ∂:m∈Texp=eϕ 7→ ϕ′m is grid-based

• Hence ∂ admits a unique strongly linear extension on Texp



Composition and inversion

Composition and inversion

Given g∈T>,≻, there exists a unique strong exp-log postcomposition δ=◦g with g such that
δx= g and

A∆1. f ≺ 1⇒ δ(f)≺ 1, for all f ∈T.

A∆2. f > 0⇒ δ(f)> 0, for all f ∈T.

Taylor rule

f , ε∈T with δ≺x and m† δ≺ 1 for all m∈ supp f . Then

f ◦ (x+ δ)= f + f ′ δ+
1

2
f ′′ δ2+ ···

Inversion

There exists a unique ginv∈T>,≻ with δ(ginv)= x

Possible to compute ginv using “Translagrange formula”



Well-based operators

Well-based operator Φ:C[[M]]→C[[M]]

Φ = Φ0+Φ1+Φ2+ ··· (strongly)

Φi(f) = Φ̌i(f , ..., f)

Φ̌i strongly i-linear

Fixed point theorem

If Φ is strictly extensive, then

f = Φ(f)

admits a unique solution in C[[M]]

• Requires additional support condition in grid-based case

• Generalizes to equations f =Φ(f , g), obtaining f =Ψ(g)



Examples

Functional equations

f =
1

x
+ f(x2)+ f

(

elog
2x+1

)

Integration

∂m = ∆m+Rm,

where ∆m= cm′ dm′. ∆ is strictly ≺-increasing on T \ {1}, whence ∆ and ∆−1 extend by
strong linearity

∫

= ∆−1−∆−1R∆−1+∆−1R∆−1R∆−1+ ···



Asymptotic algebraic equations

Algebra Asymptotic algebra
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Asymptotic algebraic equations

Algebra Asymptotic algebra

P (f)= 0 P (f)= 0, (f ≺ v)

degP deg≺vP

F F
2

F
3

F
4

F
5

z

z2

z3

1
1

3

6

7

8 −1

2

1

4



Newton polynomials

• P ∈C[[M]][F ]⊆C[F ][[M]]

• NP = cP ∈C[F ]

F F
2

F
3

F
4

F
5

z

z
2

z
3

1
1

3

6

7

8 −1

2

1

4

NP =2F 3+7F 2



Starting terms

• w≺ v is a “starting monomial” ⇐⇒ NP×w
∈/ CFN

• cw is a “starting term” (c=/ 0) ⇐⇒ NP×w
(c)= 0

P×ϕ(f) = P (ϕ f)

P+ϕ(f) = P (ϕ+ f)

F F
2

F
3

F
4

F
5

z

z
2

z3

1
1

3

6

7

8 −1

2

1

4

F F
2

F
3

F
4

F
5

z

z
2

z3

1
1

3

6 7

8
2

F 7−→ z F



Newton degree

deg4vP = degNP×v

deg≺vP = valNP×v

deg≺wP 6 deg≺vP , w≺ v

deg≺vP+ϕ = deg≺vP , ϕ≺ v

deg≺vP×w = deg≺vwP

deg≺v (PQ) = deg≺vP+deg≺vQ

deg≺ϕP+ϕ = µ(cϕ;NP×dϕ
)

µ≺v(f ;P ) = deg≺vP+f



Newton polygon method

1. deg≺vP = d> 0

(P =A+g and g root modulo ≺v of A)

2. If d=1 then unique solution

3. Determine starting monomial w≺ v

4. Solve NP×w
(c)= 0 and set ϕ := cw

5. Refine f = ϕ+ f̃ , f̃ ≺w −→ 0< deg≺w P̃ 6 d with P̃ =P+ϕ

(P̃ =A+g+ϕ and g+ ϕ root modulo ≺w of A)

6. Return to step 1
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1. deg≺vP = d> 0

(P =A+g and g root modulo ≺v of A)

2. If d=1 then unique solution

3. Determine starting monomial w≺ v

4. Solve NP×w
(c)= 0 and set ϕ := cw

(

f −
1

1− z

)2
= z10000

5. Refine f = ϕ+ f̃ , f̃ ≺w −→ 0< deg≺w P̃ 6 d with P̃ =P+ϕ

(P̃ =A+g+ϕ and g+ ϕ root modulo ≺w of A)

6. Return to step 1



Newton polygon method

1. deg≺vP = d> 0

(P =A+g and g root modulo ≺v of A)

2. If d=1 then unique solution

3. Determine starting monomial w≺ v

4. Solve NP×w
(c)= 0 and set ϕ := cw

If µNP×
(c)= d, then ϕ := unique solution to ∂d−1P

∂Fd−1(ϕ)= 0, ϕ≺ v

5. Refine f = ϕ+ f̃ , f̃ ≺w −→ 0< deg≺w P̃ 6 d with P̃ =P+ϕ

(P̃ =A+g+ϕ and g+ ϕ root modulo ≺w of A)

6. Return to step 1



Differential Newton polygon method

P (f)= p(f , f ′, ..., f (r))= 0, f ≺ v

Starting monomials cannot directly be read of from “Newton polygon”

P =P0+ ···+Pd



Upward shifting

P ↑ unique differential polynomial with

(P ↑)(f ◦ ex)=P (f) ◦ ex

For instance:

F ′↑ =
F ′

ex

F ′′↑ =
F ′′−F ′

e2x

F ′′′↑ =
F ′′′− 3F ′′+2F ′

e3x
···



Differential Newton polynomial

Theorem. There exists a unique NP ∈R{F }, such that

cP ↑l
=NP

for all sufficiently large l and

NP ∈R[F ] (F ′)N.

Definition. m≺ v is a starting monomial ⇐⇒ NP×m
∈/ RFN



Example

P = (F ′)2−FF ′′

P ↑ =
(F ′)2−FF ′′+FF ′

e2x

P ↑↑ =
FF ′

ex e2e
x +

(F ′)2−FF ′′+FF ′

e2x e2e
x

···
NP = FF ′

Consequence:

1≺L≺ logn x=⇒P (L)∼
LL′

x



Starting monomials

Lemma. Given i < j with Pi =/ 0, Pj =/ 0, there exists a unique (i, j)-equalizer e ∈ T such
that N(Pi+Pj)×e

is not homogeneous.



Starting monomials

Lemma. Given i with Pi=/ 0, we have

m is a starting monomial for Pi(f)= 0

⇐
⇒

m†=
m′

m
is a solution to RPi

(g)= 0 modulo
1

x log x log2x ···



Solving asymptotic differential equations

Lemma. deg≺vP =1 =⇒ P (f)= 0, f 4 v admits at least one solution.

Warning. Problem with almost multiple solutions

f2− 2 f ′+
1

x2
+ ···+

1

(x log x ··· loglx)2
= 0, (f ≺ 1)

f2− 2 e−x f ′+
1

e2x
+ ···+

1

(exx ··· logl−1x)2
= 0, (f ≺ 1)

f2− 2 f ′− 2 f +1+
1

x2
+ ···+

1

(x log x ··· logl−1x)2
= 0, (f ≺ 1)

f2− 2 f ′+
1

x2
+ ···+

1

(x log x ··· logl−1x)2
= 0, (f ≺ 1)

Lemma. “Unravelling process” is finite for grid-based transseries.



Results

Theorem. (1997) There exists a theoretical algorithm to find all solutions to an asymptotic
algebraic differential equation.

Theorem. (1997) Let P be purely exponential of degree d and order r. There exists a constant
Cr,d such that any solution to P (f)= 0 involves at most Cr,d levels of iterated logarithms.

Theorem. (1997) Any general transseries solution to an algebraic differential equation with
grid-based coefficients is again grid-based. Generalization of Grigoriev and Singer (1991).

Corollary. ζ(x) and f(x)=
1

x
+

1

elog
2 x

+
1

elog
4 x

+ ··· are differentially transcendental over R.


