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Real differential algebra
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e LNM 1888: Transseries and Real Differential Algebra

e Upcoming book with Matthias Aschenbrenner and Lou van den Dries
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MATHEMAGIX examples

Mmx] use "asymptotix"
Mmx] x == infinity (’x)
Mmx] 1/ (x + 1)

1 1 1 1 1
Lok -dvo( 5

x x2 x3 x4 xd

.
b

)



Mmx] 1 / (exp x + x + 1)

1 T 1 x2 2x 1 x3 3z2 3z 1 n (jii)

e _-e2x _-e2w eSw eSw eSx _-e4x-_ e4w _-e4x _-e4x

Mmx] lengthen (exp (x74 / (x + 1)), 7)

ex3—ﬁr1+x +_ex3—ﬁr1+x __ex3—ﬁr1+x %C)<:ex3—-x2+a:)

e ex 2ex?

Mmx] integrate (exp (x72), x)
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2x 4x3  8xd 1627

Mmx] integrate (x"x, Xx)
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x log(x)6 +_x210g(x)4-_-x2log(x)5_+ x2log(z)® +_x3log(x)5_% x*log(x)®

Mmx] fixed_point_transseries (f :-> 1/x + £ @ (x72) + £ @ (exp x))

zlog(z)3  xlog(x)? * x log(x)®
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Mmx] lengthen (product (x, x), 4)

+

zlog(z)—=x zlog(x)—=x zlog(z)—= zlog(x)—= zlog(x)—=
e : +e i e i ~ 139e i _+O<e )
sart(z) 1222 288 22 5184023
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Mmx] lengthen (product (log x, x), 2)

emlogaog(x)) o bgiﬂQ_ﬁo;Zﬁf+C)(mgzn4)_'bga?dwn-+
eazlog(log(m)) log(a;) logf(”wﬁ _ 10;(:;)3 +0 10;9@)4 ) . log(lt;g(ac))
12 x log(x) T
eazlog(log(m)) log(a;) logf(”wﬁ _ 10;(:;)3 —|—O( 10;9@)4 ) . log(lt;g(ac))
288 12 log(x)? N
eazlog(log(m)) log(a;) logf(”wﬁ _ 10;(:;)3 —|—O( 10;9@)4 ) . log(lt;g(ac))
360 log(z) x3 B
emlog(log(m)) log(a;) logz«‘m)2 _ 10;(::)3 +O( log?m)4 ) - 1og(lo2g(m))
2401310g(x)2 T
emlog(log(m)) log(m) log(mm)Q _ 10;(::)3 —I—O( 10g:(l:m)4 ) - log(l(;g(m))
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Mmx] eval (integrate (exp (x~2), x), x, 100.0)

4.40362931632092710468e4340
Mmx]



& Generalized power series & ‘

C': constant field

(M, <): totally ordered group of monomials

l.e. log 9 is a value group with mxn< v(logm) > v(logn)
C[[9n]]: Hahn field of f=3%" . fmm with well-based support.

mp<mo<-- with my,my,...Esupp f is impossible

CIOMD: field of f=>" o fmm with grid-based support.

supp f CmY - m> n, my,...,m,, <1

S C P (M) closed under U, - and power products of infinitesimal sets, with {m} € .7 for
all me M.



& Generalized power series

e (: constant ring (or set)
e (M, <): partially ordered monoid (or set) of monomials

o C[M]]: ring of f=3%" _on fmm with well-based support.

mp<mo<-- with my,my,...Esupp f is impossible

supp f contains no infinite antichains

o COMI:ringof f=5 o fmm with grid-based support.

supp f Cml - mX {ny,....,n,}, my,...,m,, <1



L Examples

[2]] = C[[N]] = C [2N]
C((2)) =Cl2%)] = C [T
Cllz1, 22]] = C[[N°]]

Cllzalll[z2]] = C[[2N*M]

C [2R] Puiseux series. C[[2R]] 2 C L[2R]



L Strong summability

Strong summability
We say that (f;)ic; € CIOMT ! is (strongly) summable if
1. U, supp /i is grid-based

2. {i e I:mesupp f;} is finite for each m €M

Then g=>_ fe CIMI with gn=7>_,_; fi,m is well-defined.

Properties

o > (fow)ier=2_ (fi)ier

o Y FIIG=) F+> G

o For F=][, ;G  wehave ) ., > G;j=> F

e More properties



& Multiplication

Definition

meéesupp f nesupp g (m,n)Esupp f Xsupp g

( > fmm>< > gnn>= >, frm gnmn

e supp f,supp g well/grid-based = supp f x supp g well/grid-based

e (m,n)—mn is increasing

Associativity

Jgh = Z fomgnhymno

(m,n,v)Esupp f Xsupp g Xsupp h



< Inversion

1 >
— gm ...gm ml cee
1_5 1 l

(my,...,my) €(suppe)*

e Set of words (suppe)* carries natural partial orderin
pp P g

e Higman: supp e well-based = (suppe)* well/grid-based

More generally: for f € C|[t]] and £ <1, we may define f(e)

nmy



<« Strong linearity ‘

Definition

Linear : C'[NT — C'IN] is strongly linear if, for all summable (fi)icr, (©(fi))ier is
summable and

o)) =D wlf)

Extension by strong linearity

If @: 01— C' [ sends grid-based subsets to summable families, then ¢ admits a unique
strongly linear extension

Applications
e Fore<land f,geCl[t] with go=0, f(g(e))=(fog)(e)

° (1—5)%_6:1



& Henselian equations

f = P+Pf+Pf*+-, f=<1
P, <1

J = Z Crmr

T €Tree(supp f)

T = mp
my mo ms
my M5 Mg
Cr = PB,mO P2,m1 PO,m2 Pl,m3 PO,m4 PO,m5 PO,m6
m7 = Mpim Mo M3 M4 My Mg

Kruskal: Tree(supp f) carries well-based partial ordering



< Abstract fields of transseries

Totally ordered field T =R [IT] with a logarithm such that
T1. domlog=T".

T2. logme Ty, forall me ¥, i.e. Vnesupp (logm), n > 1.
T3. log(1+5):5—%52+%53+---, for all e € T ..

Example. L=RILT =R Iz® (logz)® (logox)® -1 with

log (20 - (log x)**) = aglogx+ -+ aglogriix
log(f)=log(cfos(14+0f)) = logds+logecs+log(l+dy)



< The field of grid-based transseries in x

®

Exponential extensions

T =RIZT field of transseries = Texp =R [ Texpll 2 T also

‘Zexp = €Xp (]R [T >)

:U2—|——+1—2—|—---—|—sc—|—log log x
og4 x

log
Example. e & & Losap

Closure

Increasing limits of fields of grid-based transseries are fields of transseries

T=LU ILexp U ]Lexp,exp U--



L The field of grid-based transseries in x ‘

Exponential extensions

T =RIZT field of transseries = Texp =R [ Texpll 2 T also
‘Zexp = €exXp (IR [T >)

Closure fails in well-based case

flzﬂ?2

fa41 = fo—efeclos®

fn = statlim f,
a<<



L The field of grid-based transseries in x ‘

Exponential extensions

T =RIZT field of transseries = Texp =R [ Texpll 2 T also
‘Zexp = €exXp (IR [T >)

Closure fails in well-based case

fi = i
2
f2 — CU2_elog x
2 2 .. loglog2m
fw — 332—610g x_elog 7= .

2 2
2 elogzx . elong—elogIOg T elong_eloglog T _ ...

fw—l—l = X



L Differentiation

There exists a unique strong exp-log differentiation on T with 2’ =1
AD1. f<g= f'<¢g/, forall f,geT with g 1.
AD2. f>1=(f>0= f'>0), forall feT.

Logarithmic transseries

o O:m=uzx"-. (log;x)" (%O—F e — )m is grid-based

x---log;x

e Hence 0 admits a unique strongly linear extension on L

Exponential extension of strongly linear 9 on T =C[%]
o O:meE Ty, =e%— @' mis grid-based

e Hence O admits a unique strongly linear extension on Ty,



& Composition and inversion ‘

Composition and inversion

Given g € T~ 7, there exists a unique strong exp-log postcomposition § =o, with g such that
dx = g and

AAl. f<1=06(f)=<1, forall feT.
AA2. f>20=46(f) =0, forall feT.

Taylor rule

f,eeT with 6§ <z and mT§ <1 for all m esupp f. Then

fole+8)=F+f6+5 "8+

Inversion
There exists a unique ¢g™v & T>>~ with §(¢™V) ==

Possible to compute ¢ using “Translagrange formula”



L Well-based operators

Well-based operator ®: C[[M]] — C[[]]

d = Pyg+ D1+ Py+ - (strongly)

; strongly i-linear

®;(f
)

Fixed point theorem

If O is strictly extensive, then

f= )

admits a unique solution in C[[9]]
e Requires additional support condition in grid-based case

e Generalizes to equations f=®(f, g), obtaining f =¥ (g)



L Examples ‘

Functional equations
f =+ f@)+ f(eF*+1)
Integration
om = Am+ Rm,

where Am = ¢/ 0. A is strictly <-increasing on T \ {1}, whence A and A~! extend by
strong linearity

[ = AT1—-A'RA14 A-1RA-TRA-14..
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< Asymptotic algebraic equations

d

Algebra Asymptotic algebra
P(f)=0 P(f)=0, (f=v)
deg P deg -, P
4




& Newton polynomials ‘

e PcCIMI[F|CC[F|IMI
® NPZCPEC[F]

Np=2F3+7F?



U Starting terms

e 10 <1 isa “starting monomial’ <= Np ¢ CF~

e ctvis a “starting term” (¢#£0) <= Np__(c)=0

Pxo(f) = Plef)
Pio(f) = Ple+f)




Newton degree

deg<o P
deg<y P

deg<w P

deg<v Py
deg<v Pxyo

deg~, (PQ)

deg<p Py o
p<o( f5 P)

/N

deg Np, ,
val prn

deg_, P, o <0
deg_, P, Y=<
deg<ow PP

deg~y P+deg<y Q

/'L(CSO; pro(p)
deg<v Py



L Newton polygon method

l.degoy P=d>0
(P=A4, and g root modulo <v of A)

2. If d=1 then unique solution

3. Determine starting monomial 1o < v

4. Solve Np_ _(c)=0 and set p:=ct

5. Refine f=¢+ f, f <10 — 0<deg.w, P<dwith P=P,,
(P=A,,:, and g+ ¢ root modulo <t of A)

6. Return to step 1
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l.degoy P=d>0

(P=A4, and g root modulo <v of A)
2. If d=1 then unique solution
3. Determine starting monomial o < v

4. Solve Np_ _(c)=0 and set p:=ct

1 2
(f— ) _ 10000
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L Newton polygon method

1.degsy P=d >0
(P=A4, and g root modulo <v of A)
2. If d=1 then unique solution
3. Determine starting monomial o < v
4. Solve Np_ _(c)=0 and set p:=ct

If unp (c)=d, then @:=unique solution to g;;dl_lf(cp) =0, <01

5. Refine f=w+ f, f<w — 0<deg_w P < d with ﬁ:PJﬂp
(P=A,,:, and g+ ¢ root modulo < of A)

6. Return to step 1



& Differential Newton polygon method

P(f)=p(f,f'ss f7)=0, f=v

Starting monomials cannot directly be read of from “Newton polygon”

P=F+ . -+PF



< Upward shifting

P7 unique differential polynomial with

(P1)(foe®)=P(f)oe”

For instance:

F’
't = —
/]\ eZC// /
F'"—F
F//T - e2x
Fl'y = F"—3F"4+2F

eBsc



L Differential Newton polynomial

Theorem. There exists a unique Np € R{F'}, such that

cpp=Np
for all sufficiently large | and

NPER[F] (F/)N.

Definition. m < v is a starting monomial <= Np,_ ¢ R F™Y



Example

Consequence:

P = (F')>—~FF"
(F')2— FF"+ FF'

Pt =

e2:13
FF’ FNY2—FF"+ FF'
Pt = T ~207 ) 2% 26
e’ e e<Te
Np = FF'

LL’
a5

1< L<log,z=— P(L)~



< Starting monomials ‘

Lemma. Given i < j with P;#+0, P; #+ 0, there exists a unique (i, j)-equalizer ¢ € T such
that N(p,+p,),. Is not homogeneous.




< Starting monomials ‘

Lemma. Given i with P;+0, we have

m is a starting monomial for P;(f)=0

!

/
mf =" is a solution to Rp.(g) =0 modulo !
m ‘ xlogzxlogsx -




< Solving asymptotic differential equations ‘

Lemma. deg., P=1=— P(f)=0, f < v admits at least one solution.

Warning. Problem with almost multiple solutions

f2—2f’+%+---+(wlogx'l__loglx)2 =0, (f=1)
f2_2€_xf/+ezix+m+(el’x---ligl_lx)Q =0, (f=<1)
f2—2f’—2f+1+%+---+(mlogx.”110gl_1$)2 = 0, (f=1)
f2—2f’+%+---+(gvlogx”_110gl_1x)2 =0, (f=1)

Lemma. “Unravelling process” is finite for grid-based transseries.



s Results @ ‘

Theorem. (1997) There exists a theoretical algorithm to find all solutions to an asymptotic
algebraic differential equation.

Theorem. (1997) Let P be purely exponential of degree d and order r. There exists a constant
C'r.q such that any solution to P(f)=0 involves at most C,. ; levels of iterated logarithms.

Theorem. (1997) Any general transseries solution to an algebraic differential equation with
grid-based coefficients is again grid-based. Generalization of Grigoriev and Singer (1991).

Corollary. ((x) and f(x) :%+ L+ L+ ... are differentially transcendental over RR.

2
elog a8 elog a8




