Asymptotic differential equations

Lecture 1: transseries and asymptotic differential equations

Joris van der Hoeven, Segovia 2011
http://www.TEXMACS.org

Asymptotic differential algebra

- Hardy fields: Rosenlicht, Boshernitzan, Singer, etc.
- Pfaff systems: Khovanskii, Wilkie, etc.

Asymptotic differential algebra

$\begin{array}{ccc}\text { Algebraic geometry } & \longrightarrow & \begin{array}{c}\text { Real algebraic geometry } \\ + \\ \text { Valuation theory }\end{array} \\ \downarrow & \\ \text { Differential algebra } & \longrightarrow & \text { Real differential algebra } \\ + \\ & & \text { Asymptotic differential algebra }\end{array}$

- Hardy fields: Rosenlicht, Boshernitzan, Singer, etc.
- Pfaff systems: Khovanskii, Wilkie, etc.

Asymptotic differential algebra

Real algebraic geometry
Algebraic geometry

Differential algebra
Real differential algebra
Asymptotic differential algebra

- LNM 1888: Transseries and Real Differential Algebra
- Upcoming book with Matthias Aschenbrenner and Lou van den Dries

Sufficiently closed models

Algebraic geometry
Real algebraic geometry
\longrightarrow
$\stackrel{+}{\text { Valuation theory }}$

Differential algebra \qquad
Real differential algebra
Asymptotic differential algebra

Sufficiently closed models

Sufficiently closed models

Differential algebra

Real differential algebra $+$
Asymptotic differential algebra

Sufficiently closed models

Differential algebra

$$
\begin{gathered}
\begin{array}{c}
\mathbb{R} \\
+ \\
\mathbb{C} \llbracket z^{\mathbb{Q}} \rrbracket
\end{array} \\
\downarrow \\
\text { Real differential algebra } \\
+ \\
\text { Asymptotic differential algebra }
\end{gathered}
$$

Sufficiently closed models

$$
\mathbb{C}
$$

$$
\longrightarrow
$$

$$
\begin{gathered}
\mathbb{R} \\
+ \\
\mathbb{C} \llbracket z^{\mathbb{Q}} \rrbracket \\
\downarrow
\end{gathered}
$$

Wild
Real differential algebra
\longrightarrow
Asymptotic differential algebra

Sufficiently closed models

$$
\mathbb{C}
$$

Wild

$$
\begin{gathered}
\mathbb{R} \\
+ \\
\mathbb{C} \llbracket z^{\mathbb{Q}} \rrbracket \\
\downarrow \\
\text { Maximal Hardy field }
\end{gathered}
$$

Asymptotic differential algebra

Asymptotic differential algebra

$(x \succ 1)$

$$
\mathrm{e}^{\mathrm{e}^{x}+\frac{\mathrm{e}^{x}}{x}+\frac{\mathrm{e}^{x}}{x^{2}}+\cdots}+\frac{2}{\log x} \mathrm{e}^{\mathrm{e}^{x}+\frac{\mathrm{e}^{x}}{x}+\frac{\mathrm{e}^{x}}{x^{2}}+\cdots}+\mathrm{e}^{\sqrt{x}+\mathrm{e}^{\sqrt{\log x}+\mathrm{e}^{\sqrt{\log \log x}+\cdots}}+\cdots, ~}
$$

Sufficiently closed models

$(x \succ 1)$

$$
\mathrm{e}^{\mathrm{e}^{x}+\frac{\mathrm{e}^{x}}{x}+\frac{\mathrm{e}^{x}}{x^{2}}+\cdots}+\frac{2}{\log x} \mathrm{e}^{\mathrm{e}^{x}+\frac{\mathrm{e}^{x}}{x}+\frac{\mathrm{e}^{x}}{x^{2}}+\cdots}+\mathrm{e}^{\sqrt{x}+\mathrm{e}^{\sqrt{\log x}}+\mathrm{e}^{\sqrt{\log \log x}+\cdots}}+\cdots
$$

- Dahn \& Göring
- Écalle

Examples of transseries

$$
\begin{aligned}
\frac{1}{1-x^{-1}-x^{-\mathrm{e}}} & =1+x^{-1}+x^{-2}+x^{-\mathrm{e}}+x^{-3}+x^{-\mathrm{e}-1}+\cdots \\
\frac{1}{1-x^{-1}+\mathrm{e}^{-x}} & =1+\frac{1}{x}+\frac{1}{x^{2}}+\cdots+\mathrm{e}^{-x}+2 \frac{\mathrm{e}^{-x}}{x}+\cdots+\mathrm{e}^{-2 x}+\cdots \\
-\mathrm{e}^{x} \int \frac{\mathrm{e}^{-x}}{x} & =\frac{1}{x}-\frac{1}{x^{2}}+\frac{2}{x^{3}}-\frac{6}{x^{4}}+\frac{24}{x^{5}}-\frac{120}{x^{6}}+\cdots \\
\Gamma(x) & =\frac{\sqrt{2 \pi} \mathrm{e}^{x(\log x-1)}}{x^{1 / 2}}+\frac{\sqrt{2 \pi} \mathrm{e}^{x(\log x-1)}}{12 x^{3 / 2}}+\frac{\sqrt{2 \pi} \mathrm{e}^{x(\log x-1)}}{288 x^{5 / 2}}+\cdots \\
\zeta(x) & =1+2^{-x}+3^{-x}+4^{-x}+\cdots \\
\varphi(x) & =\frac{1}{x}+\varphi\left(x^{\pi}\right)=\frac{1}{x}+\frac{1}{x^{\pi}}+\frac{1}{x^{\pi^{2}}}+\frac{1}{x^{\pi^{3}}}+\cdots \\
\psi(x) & =\frac{1}{x}+\psi\left(\mathrm{e}^{\log ^{2} x}\right)=\frac{1}{x}+\frac{1}{\mathrm{e}^{\log ^{2} x}}+\frac{1}{\mathrm{e}^{\log ^{4} x}}+\frac{1}{\mathrm{e}^{\log ^{8} x}}+\cdots
\end{aligned}
$$

```
Mmx] use "asymptotix"
Mmx] x == infinity ('x);
Mmx] 1 / (x + 1)
\frac{1}{x}}-\frac{1}{\mp@subsup{x}{}{2}}+\frac{1}{\mp@subsup{x}{}{3}}-\frac{1}{\mp@subsup{x}{}{4}}+O(\frac{1}{\mp@subsup{x}{}{5}}
```


$\operatorname{Mmx}] 1(\exp \mathrm{x}+\mathrm{x}+1)$

$\frac{1}{\mathrm{e}^{x}}-\frac{x}{\mathrm{e}^{2 x}}-\frac{1}{\mathrm{e}^{2 x}}+\frac{x^{2}}{\mathrm{e}^{3 x}}+\frac{2 x}{\mathrm{e}^{3 x}}+\frac{1}{\mathrm{e}^{3 x}}-\frac{x^{3}}{\mathrm{e}^{4 x}}-\frac{3 x^{2}}{\mathrm{e}^{4 x}}-\frac{3 x}{\mathrm{e}^{4 x}}-\frac{1}{\mathrm{e}^{4 x}}+O\left(\frac{x^{4}}{\mathrm{e}^{5 x}}\right)$
Mmx] lengthen $\left(\exp \left(x^{\wedge} 4 /(x+1)\right), 7\right)$

$$
\frac{\mathrm{e}^{x^{3}-x^{2}+x}}{\mathrm{e}}+\frac{\mathrm{e}^{x^{3}-x^{2}+x}}{\mathrm{e} x}-\frac{\mathrm{e}^{x^{3}-x^{2}+x}}{2 \mathrm{e} x^{2}}+O\left(\frac{\mathrm{e}^{x^{3}-x^{2}+x}}{x^{7}}\right)
$$

Mmx] integrate $\left(\exp \left(x^{\sim} 2\right), x\right)$

$$
\frac{\mathrm{e}^{x^{2}}}{2 x}+\frac{\mathrm{e}^{x^{2}}}{4 x^{3}}+\frac{3 \mathrm{e}^{x^{2}}}{8 x^{5}}+\frac{15 \mathrm{e}^{x^{2}}}{16 x^{7}}+O\left(\frac{\mathrm{e}^{x^{2}}}{x^{9}}\right)
$$

Mmx] integrate ($\mathrm{x}^{\wedge} \mathrm{x}, \mathrm{x}$)

$$
\begin{aligned}
& \frac{\mathrm{e}^{x \log (x)}}{\log (x)}-\frac{\mathrm{e}^{x \log (x)}}{\log (x)^{2}}+\frac{\mathrm{e}^{x \log (x)}}{\log (x)^{3}}-\frac{\mathrm{e}^{x \log (x)}}{\log (x)^{4}}+O\left(\frac{\mathrm{e}^{x \log (x)}}{\log (x)^{5}}\right)+\frac{\mathrm{e}^{x \log (x)}}{x \log (x)^{3}}-\frac{3 \mathrm{e}^{x \log (x)}}{x \log (x)^{4}}+\frac{6 \mathrm{e}^{x \log (x)}}{x \log (x)^{5}}+ \\
& O\left(\frac{\mathrm{e}^{x \log (x)}}{x \log (x)^{6}}\right)+\frac{\mathrm{e}^{x \log (x)}}{x^{2} \log (x)^{4}}-\frac{\mathrm{e}^{x \log (x)}}{x^{2} \log (x)^{5}}+O\left(\frac{\mathrm{e}^{x \log (x)}}{x^{2} \log (x)^{6}}\right)+\frac{2 \mathrm{e}^{x \log (x)}}{x^{3} \log (x)^{5}}+O\left(\frac{\mathrm{e}^{x \log (x)}}{x^{4} \log (x)^{6}}\right)
\end{aligned}
$$

Mmx] fixed_point_transseries (f :-> $1 / \mathrm{x}+\mathrm{f} @\left(\mathrm{x}^{\wedge} 2\right)+\mathrm{f} @(\exp \mathrm{x})$)

$\frac{1}{x}+\frac{1}{x^{2}}+\frac{1}{x^{4}}+\frac{1}{x^{8}}+O\left(\frac{1}{x^{16}}\right)+\frac{1}{\mathrm{e}^{x}}+\frac{1}{\mathrm{e}^{2 x}}+\frac{1}{\mathrm{e}^{4 x}}+O\left(\frac{1}{\mathrm{e}^{8 x}}\right)+\frac{1}{\mathrm{e}^{x^{2}}}+\frac{1}{\mathrm{e}^{2 x^{2}}}+O\left(\frac{1}{\mathrm{e}^{4 x^{2}}}\right)+\frac{1}{\mathrm{e}^{x^{4}}}+$
$O\left(\frac{1}{\mathrm{e}^{2 x^{4}}}\right)+\frac{1}{\mathrm{e}^{\mathrm{e}^{x}}}+\frac{1}{\mathrm{e}^{2 \mathrm{e}^{x}}}+O\left(\frac{1}{\mathrm{e}^{4 \mathrm{e}^{x}}}\right)+\frac{1}{\mathrm{e}^{\mathrm{e}^{2 x}}}+O\left(\frac{1}{\mathrm{e}^{2 \mathrm{e}^{2 x}}}\right)+\frac{1}{\mathrm{e}^{\mathrm{e}^{x^{2}}}}+O\left(\frac{1}{\mathrm{e}^{2 \mathrm{e}^{x^{2}}}}\right)+\frac{1}{\mathrm{e}^{\mathrm{e}^{\mathrm{e}^{x}}}}+O\left(\frac{1}{\mathrm{e}^{2 \mathrm{e}^{\mathrm{e}^{x}}}}\right)$

Mmx] lengthen (product (x, x), 4)

$$
\frac{\mathrm{e}^{x \log (x)-x}}{\operatorname{sqrt}(x)}+\frac{\mathrm{e}^{x \log (x)-x}}{12 x^{\frac{3}{2}}}+\frac{\mathrm{e}^{x \log (x)-x}}{288 x^{\frac{5}{2}}}-\frac{139 \mathrm{e}^{x \log (x)-x}}{51840 x^{\frac{7}{2}}}+O\left(\frac{\mathrm{e}^{x \log (x)-x}}{x^{\frac{9}{2}}}\right)
$$

Mmx] lengthen (product $(\log x, x), 2)$

$$
\left.\begin{array}{l}
\frac{\mathrm{e}^{x \log (\log (x))-\frac{x}{\log (x)}-\frac{x}{\log (x)^{2}}-\frac{2 x}{\log (x)^{3}}+O\left(\frac{x}{\log (x)^{4}}\right)-\frac{\log (\log (x))}{2}}+}{\mathrm{e}^{x \log (\log (x))-\frac{x}{\log (x)}-\frac{x}{\log (x)^{2}}-\frac{2 x}{\log (x)^{3}}+O\left(\frac{x}{\log (x)^{4}}\right)-\frac{\log (\log (x))}{2}}}+12 x \log (x) \\
\frac{\mathrm{e}^{x \log (\log (x))-\frac{x}{\log (x)}-\frac{x}{\log (x)^{2}}-\frac{2 x}{\log (x)^{3}}+O\left(\frac{x}{\log (x)^{4}}\right)-\frac{\log (\log (x))}{2}}}{288 x^{2} \log (x)^{2}} \\
\frac{\mathrm{e}^{x \log (\log (x))-\frac{x}{\log (x)}-\frac{x}{\log (x)^{2}}-\frac{2 x}{\log (x)^{3}}+O\left(\frac{x}{\log (x)^{4}}\right)-\frac{\log (\log (x))}{2}}}{360 \log (x) x^{3}} \\
\frac{\mathrm{e}^{x \log (\log (x))-\frac{x}{\log (x)}-\frac{x}{\log (x)^{2}}-\frac{2 x}{\log (x)^{3}}+O\left(\frac{x}{\log (x)^{4}}\right)-\frac{\log (\log (x))}{2}}}{240 x^{3} \log (x)^{2}}
\end{array}\right)
$$

Mmx] eval (integrate (exp ($\left.\left.\left.x^{\sim} 2\right), x\right), x, 100.0\right)$

$4.40362931632092710468 e 4340$

Mmx]

Generalized power series

- C : constant field
- ($\mathfrak{M}, \preccurlyeq)$: totally ordered group of monomials
I.e. $\log \mathfrak{M}$ is a value group with $\mathfrak{m} \preccurlyeq \mathfrak{n} \Leftrightarrow v(\log \mathfrak{m}) \geqslant v(\log \mathfrak{n})$
- $C[[\mathfrak{M}]]$: Hahn field of $f=\sum_{\mathfrak{m} \in \mathfrak{M}} f_{\mathfrak{m}} \mathfrak{m}$ with well-based support.

$$
\mathfrak{m}_{1} \prec \mathfrak{m}_{2} \prec \cdots \quad \text { with } \quad \mathfrak{m}_{1}, \mathfrak{m}_{2}, \ldots \in \operatorname{supp} f \quad \text { is impossible }
$$

- $C \llbracket \mathfrak{M} \rrbracket$: field of $f=\sum_{\mathfrak{m} \in \mathfrak{M}} f_{\mathfrak{m}} \mathfrak{m}$ with grid-based support.

$$
\operatorname{supp} f \subseteq \mathfrak{m}_{1}^{\mathbb{N}} \cdots \mathfrak{m}_{m}^{\mathbb{N}} \mathfrak{n}, \quad \mathfrak{m}_{1}, \ldots, \mathfrak{m}_{m} \prec 1
$$

- $\mathscr{S} \subseteq \mathscr{P}(\mathfrak{M})$ closed under \cup, and power products of infinitesimal sets, with $\{\mathfrak{m}\} \in \mathscr{S}$ for all $\mathfrak{m} \in \mathfrak{M}$.

Generalized power series

- C : constant ring (or set)
- ($\mathfrak{M}, \preccurlyeq)$: partially ordered monoid (or set) of monomials
- $C[[\mathfrak{M}]]$: ring of $f=\sum_{\mathfrak{m} \in \mathfrak{M}} f_{\mathfrak{m}} \mathfrak{m}$ with well-based support.
$\mathfrak{m}_{1} \prec \mathfrak{m}_{2} \prec \cdots \quad$ with $\quad \mathfrak{m}_{1}, \mathfrak{m}_{2}, \ldots \in \operatorname{supp} f \quad$ is impossible supp f contains no infinite antichains
- $C \llbracket \mathfrak{M} \rrbracket$: ring of $f=\sum_{\mathfrak{m} \in \mathfrak{M}} f_{\mathfrak{m}} \mathfrak{m}$ with grid-based support.

$$
\operatorname{supp} f \subseteq \mathfrak{m}_{1}^{\mathbb{N}} \cdots \mathfrak{m}_{m}^{\mathbb{N}}\left\{\mathfrak{n}_{1}, \ldots, \mathfrak{n}_{n}\right\}, \quad \mathfrak{m}_{1}, \ldots, \mathfrak{m}_{m} \prec 1
$$

Examples

- $C[[z]]=C\left[\left[z^{\mathbb{N}}\right]\right]=C \llbracket z^{\mathbb{N}} \rrbracket$
- $C((z))=C\left[\left[z^{\mathbb{Z}}\right]\right]=C \llbracket z^{\mathbb{Z}} \rrbracket$
- $C\left[\left[z_{1}, z_{2}\right]\right]=C\left[\left[z^{\mathbb{N}^{2}}\right]\right]$
- $C\left[\left[z_{1}\right]\right]\left[\left[z_{2}\right]\right]=C\left[\left[z^{\mathbb{N} \times \mathbb{N}}\right]\right]$
- $C \llbracket z^{\mathbb{Q}} \rrbracket$ Puiseux series. $C\left[\left[z^{\mathbb{Q}}\right]\right] \nsupseteq C \llbracket z^{\mathbb{Q}} \rrbracket$

Strong summability

Strong summability

We say that $\left(f_{i}\right)_{i \in I} \in C \llbracket \mathfrak{M} \rrbracket^{I}$ is (strongly) summable if

1. $\bigcup_{i \in I} \operatorname{supp} f_{i}$ is grid-based (or well-based if $\left(f_{i}\right)_{i \in I} \in C[[\mathfrak{M}]]^{I}$)
2. $\left\{i \in I: \mathfrak{m} \in \operatorname{supp} f_{i}\right\}$ is finite for each $\mathfrak{m} \in \mathfrak{M}$

Then $g=\sum f \in C \llbracket \mathfrak{M} \rrbracket$ with $g_{\mathfrak{m}}=\sum_{i \in I} f_{i, \mathfrak{m}}$ is well-defined.
Properties

- $\sum\left(f_{\sigma(i)}\right)_{i \in I}=\sum\left(f_{i}\right)_{i \in I}$
- $\quad \sum F \amalg G=\sum F+\sum G$
- For $F=\coprod_{j \in J} G_{j}$, we have $\sum_{j \in J} \sum G_{j}=\sum F$
- More properties

Multiplication

Definition

$$
\left(\sum_{\mathfrak{m} \in \operatorname{supp} f} f_{\mathfrak{m}} \mathfrak{m}\right)\left(\sum_{\mathfrak{n} \in \operatorname{supp} g} g_{\mathfrak{n}} \mathfrak{n}\right)=\sum_{(\mathfrak{m}, \mathfrak{n}) \in \operatorname{supp} f \times \operatorname{supp} g} f_{\mathfrak{m}} g_{\mathfrak{n}} \mathfrak{m} \mathfrak{n}
$$

- $\operatorname{supp} f, \operatorname{supp} g$ well/grid-based $\Rightarrow \operatorname{supp} f \times \operatorname{supp} g$ well/grid-based
- $(\mathfrak{m}, \mathfrak{n}) \mapsto \mathfrak{m} \mathfrak{n}$ is increasing

Associativity

$$
f g h=\sum_{(\mathfrak{m}, \mathfrak{n}, \mathfrak{v}) \in \operatorname{supp}} f \times \operatorname{supp} g \times \operatorname{supp} h>f_{\mathfrak{m}} g_{\mathfrak{n}} h_{\mathfrak{v}} \mathfrak{m} \mathfrak{n v}
$$

$$
\begin{aligned}
f & =c_{f} \mathfrak{d}_{f}(1-\varepsilon), \quad \varepsilon \prec 1 \\
f^{-1} & =c_{f}^{-1} \mathfrak{d}_{f}^{-1} \frac{1}{1-\varepsilon} \\
\frac{1}{1-\varepsilon} & =\sum_{\left(\mathfrak{m}_{1}, \ldots, \mathfrak{m}_{l}\right) \in(\operatorname{supp} \varepsilon)^{*}} \varepsilon_{\mathfrak{m}_{1} \cdots \varepsilon_{\mathfrak{m}_{l}} \mathfrak{m}_{1} \cdots \mathfrak{m}_{l}}
\end{aligned}
$$

- Set of words $(\operatorname{supp} \varepsilon)^{*}$ carries natural partial ordering
- Higman: $\operatorname{supp} \varepsilon$ well-based $\Rightarrow(\operatorname{supp} \varepsilon)^{*}$ well/grid-based

More generally: for $f \in C[[t]]$ and $\varepsilon \prec 1$, we may define $f(\varepsilon)$

Strong linearity

Definition

Linear $\varphi: C \llbracket \mathfrak{M} \rrbracket \longrightarrow C \llbracket \mathfrak{N} \rrbracket$ is strongly linear if, for all summable $\left(f_{i}\right)_{i \in I},\left(\varphi\left(f_{i}\right)\right)_{i \in I}$ is summable and

$$
\varphi\left(\sum f_{i}\right)=\sum \varphi\left(f_{i}\right)
$$

Extension by strong linearity

If $\check{\varphi}: \mathfrak{M} \rightarrow C \llbracket \mathfrak{N} \rrbracket$ sends grid-based subsets to summable families, then $\check{\varphi}$ admits a unique strongly linear extension

Applications

- For $\varepsilon \prec 1$ and $f, g \in C[[t]]$ with $g_{0}=0, f(g(\varepsilon))=(f \circ g)(\varepsilon)$
- $(1-\varepsilon) \frac{1}{1-\varepsilon}=1$

Henselian equations

$$
\begin{aligned}
& f=P_{0}+P_{1} f+P_{2} f^{2}+\cdots, \quad f \prec 1 \\
& P_{i} \prec 1 \\
& f=\sum_{T \in \operatorname{Tree}(\operatorname{supp} f)} c_{T} \mathfrak{m}_{T} \\
& T= \\
& c_{T}=P_{3, \mathfrak{m}_{0}} P_{2, \mathfrak{m}_{1}} P_{0, \mathfrak{m}_{2}} P_{1, \mathfrak{m}_{3}} P_{0, \mathfrak{m}_{4}} P_{0, \mathfrak{m}_{5}} P_{0, \mathfrak{m}_{6}} \\
& \mathfrak{m}_{T}=\mathfrak{m}_{0} \mathfrak{m}_{1} \mathfrak{m}_{2} \mathfrak{m}_{3} \mathfrak{m}_{4} \mathfrak{m}_{5} \mathfrak{m}_{6}
\end{aligned}
$$

Kruskal: Tree $(\operatorname{supp} f)$ carries well-based partial ordering

Abstract fields of transseries

Totally ordered field $\mathbb{T}=\mathbb{R} \mathbb{T} \mathbb{\rrbracket}$ with a logarithm such that
T1. dom $\log =\mathbb{T}^{>}$.
T2. $\log \mathfrak{m} \in \mathbb{T}_{\succ}$, for all $\mathfrak{m} \in \mathfrak{T}$, i.e. $\forall \mathfrak{n} \in \operatorname{supp}(\log \mathfrak{m}), \mathfrak{n} \succ 1$.
T3. $\log (1+\varepsilon)=\varepsilon-\frac{1}{2} \varepsilon^{2}+\frac{1}{3} \varepsilon^{3}+\cdots$, for all $\varepsilon \in \mathbb{T}_{\prec}$.

Example. $\mathbb{L}=\mathbb{R} \mathbb{L} \mathbb{\square}=\mathbb{R} \llbracket x^{\mathbb{R}}(\log x)^{\mathbb{R}}\left(\log _{2} x\right)^{\mathbb{R}} \cdots \rrbracket$ with

$$
\begin{aligned}
\log \left(x^{\alpha_{0}} \cdots\left(\log _{k} x\right)^{\alpha_{k}}\right) & =\alpha_{0} \log x+\cdots+\alpha_{k} \log _{k+1} x \\
\log (f)=\log \left(c_{f} \mathfrak{d}_{f}\left(1+\delta_{f}\right)\right) & =\log \mathfrak{d}_{f}+\log c_{f}+\log \left(1+\delta_{f}\right)
\end{aligned}
$$

The field of grid-based transseries in x

Exponential extensions
$\mathbb{T}=\mathbb{R} \llbracket \mathfrak{T} \rrbracket$ field of transseries $\Longrightarrow \mathbb{T}_{\text {exp }}=\mathbb{R} \llbracket \mathfrak{T}_{\exp } \rrbracket \supseteq \mathbb{T}$ also

$$
\mathfrak{T}_{\exp }=\exp \left(\mathbb{R} \llbracket \mathfrak{T} \rrbracket_{\succ}\right)
$$

Example. $\mathrm{e}^{x^{2}+\frac{x^{2}}{\log x}+\frac{x^{2}}{\log ^{2} x}+\cdots+x+\log \log x} \in \mathfrak{L}_{\exp }$

Closure

Increasing limits of fields of grid-based transseries are fields of transseries

$$
\mathbb{T}=\mathbb{L} \cup \mathbb{L}_{\exp } \cup \mathbb{L}_{\exp , \exp } \cup \cdots
$$

The field of grid-based transseries in x

Exponential extensions
$\mathbb{T}=\mathbb{R} \llbracket \mathfrak{T} \rrbracket$ field of transseries $\Longrightarrow \mathbb{T}_{\text {exp }}=\mathbb{R} \llbracket \mathfrak{T}_{\exp } \rrbracket \supseteq \mathbb{T}$ also

$$
\mathfrak{T}_{\exp }=\exp \left(\mathbb{R} \llbracket \mathfrak{T} \rrbracket_{\succ}\right)
$$

Closure fails in well-based case

$$
\begin{aligned}
f_{1} & =x^{2} \\
f_{\alpha+1} & =f_{\alpha}-\mathrm{e}^{f_{\alpha} \circ \log x} \\
f_{\lambda} & =\operatorname{stat}_{\alpha<\lambda} \lim _{\alpha} f_{\alpha}
\end{aligned}
$$

The field of grid-based transseries in x

Exponential extensions

$\mathbb{T}=\mathbb{R} \llbracket \mathfrak{T} \rrbracket$ field of transseries $\Longrightarrow \mathbb{T}_{\exp }=\mathbb{R} \llbracket \mathfrak{T}_{\exp } \rrbracket \supseteq \mathbb{T}$ also

$$
\mathfrak{T}_{\exp }=\exp \left(\mathbb{R} \llbracket \mathfrak{T} \rrbracket_{\succ}\right)
$$

Closure fails in well-based case

$$
\begin{aligned}
f_{1} & =x^{2} \\
f_{2} & =x^{2}-\mathrm{e}^{\log ^{2} x} \\
& \vdots \\
f_{\omega} & =x^{2}-\mathrm{e}^{\log ^{2} x}-\mathrm{e}^{\log ^{2} x-\mathrm{e}^{\log \log ^{2} x}-\cdots} \\
f_{\omega+1} & =x^{2}-\mathrm{e}^{\log ^{2} x}-\mathrm{e}^{\log ^{2} x-\mathrm{e}^{\log \log ^{2} x}}-\cdots-\mathrm{e}^{\log ^{2} x-\mathrm{e}^{\log \log ^{2} x}-\cdots}
\end{aligned}
$$

Differentiation

There exists a unique strong exp-log differentiation on \mathbb{T} with $x^{\prime}=1$
AD1. $f \prec g \Rightarrow f^{\prime} \prec g^{\prime}$, for all $f, g \in \mathbb{T}$ with $g \nprec 1$.
AD2. $f \succ 1 \Rightarrow\left(f>0 \Rightarrow f^{\prime}>0\right)$, for all $f \in \mathbb{T}$.

Logarithmic transseries

- $\partial: \mathfrak{m}=x^{i_{0}} \cdots\left(\log _{l} x\right)^{i_{l}} \mapsto\left(\frac{i_{0}}{x}+\cdots+\frac{i_{l}}{x \cdots \log _{l} x}\right) \mathfrak{m}$ is grid-based
- Hence ∂ admits a unique strongly linear extension on \mathbb{L}

Exponential extension of strongly linear ∂ on $\mathbb{T}=C \llbracket \mathfrak{T} \rrbracket$

- $\partial: \mathfrak{m} \in \mathfrak{T}_{\exp }=\mathrm{e}^{\varphi} \mapsto \varphi^{\prime} \mathfrak{m}$ is grid-based
- Hence ∂ admits a unique strongly linear extension on $\mathfrak{T}_{\exp }$

Composition and inversion

Composition and inversion
Given $g \in \mathbb{T}^{>, \succ}$, there exists a unique strong exp-log postcomposition $\delta=\circ_{g}$ with g such that $\delta x=g$ and

A $\boldsymbol{\Delta} 1$. $f \prec 1 \Rightarrow \delta(f) \prec 1$, for all $f \in \mathbb{T}$.
A $\boldsymbol{\Delta}$ 2. $f \geqslant 0 \Rightarrow \delta(f) \geqslant 0$, for all $f \in \mathbb{T}$.
Taylor rule
$f, \varepsilon \in \mathbb{T}$ with $\delta \prec x$ and $\mathfrak{m}^{\dagger} \delta \prec 1$ for all $\mathfrak{m} \in \operatorname{supp} f$. Then

$$
f \circ(x+\delta)=f+f^{\prime} \delta+\frac{1}{2} f^{\prime \prime} \delta^{2}+\cdots
$$

Inversion
There exists a unique $g^{\mathrm{inv}} \in \mathbb{T}^{>, \succ}$ with $\delta\left(g^{\mathrm{inv}}\right)=x$
Possible to compute $g^{\text {inv }}$ using "Translagrange formula"

Well-based operators

Well-based operator $\Phi: C[[\mathfrak{M}]] \rightarrow C[[\mathfrak{M}]]$

$$
\begin{aligned}
\Phi= & \Phi_{0}+\Phi_{1}+\Phi_{2}+\cdots(\text { strongly }) \\
\Phi_{i}(f)= & \check{\Phi}_{i}(f, \ldots, f) \\
& \text { strongly } i \text {-linear }
\end{aligned}
$$

Fixed point theorem

If Φ is strictly extensive, then

$$
f=\Phi(f)
$$

admits a unique solution in $C[[\mathfrak{M}]]$

- Requires additional support condition in grid-based case
- Generalizes to equations $f=\Phi(f, g)$, obtaining $f=\Psi(g)$

Examples

Functional equations

$$
f=\frac{1}{x}+f\left(x^{2}\right)+f\left(\mathrm{e}^{\log ^{2} x}+1\right)
$$

Integration

$$
\partial \mathfrak{m}=\Delta \mathfrak{m}+R \mathfrak{m}
$$

where $\Delta \mathfrak{m}=c_{\mathfrak{m}^{\prime}} \mathfrak{d}_{\mathfrak{m}^{\prime}} . \Delta$ is strictly \prec-increasing on $\mathfrak{T} \backslash\{1\}$, whence Δ and Δ^{-1} extend by strong linearity

$$
\int=\Delta^{-1}-\Delta^{-1} R \Delta^{-1}+\Delta^{-1} R \Delta^{-1} R \Delta^{-1}+\cdots
$$

Asymptotic algebraic equations

Algebra
Asymptotic algebra

Asymptotic algebraic equations

Algebra	Asymptotic algebra
$P(f)=0$	

Asymptotic algebraic equations

Algebra	Asymptotic algebra
$P(f)=0$	$P(f)=0, \quad(f \prec \mathfrak{v})$

Asymptotic algebraic equations

Algebra	Asymptotic algebra
$P(f)=0$	$P(f)=0, \quad(f \prec \mathfrak{v})$
$\operatorname{deg} P$	

Asymptotic algebraic equations

Algebra	Asymptotic algebra
$P(f)=0$	$P(f)=0, \quad(f \prec \mathfrak{v})$
$\operatorname{deg} P$	$\operatorname{deg}_{\prec \mathfrak{v}} P$

Asymptotic algebraic equations

Algebra	Asymptotic algebra
$P(f)=0$	$P(f)=0, \quad(f \prec \mathfrak{v})$
$\operatorname{deg} P$	$\operatorname{deg}_{\prec \mathfrak{v}} P$

Newton polynomials

- $P \in C \llbracket \mathfrak{M} \mathbb{D}[F] \subseteq C[F] \llbracket \mathfrak{M} \rrbracket$
- $N_{P}=c_{P} \in C[F]$

$N_{P}=2 F^{3}+7 F^{2}$

Starting terms

- $\mathfrak{w} \prec \mathfrak{v}$ is a "starting monomial" $\Longleftrightarrow N_{P_{\times \mathfrak{w}}} \notin C F^{\mathbb{N}}$
- $c \mathfrak{w}$ is a "starting term" $(c \neq 0) \Longleftrightarrow N_{P_{\times \mathfrak{w}}}(c)=0$

$$
\begin{aligned}
& P_{\times \varphi}(f)=P(\varphi f) \\
& P_{+\varphi}(f)=P(\varphi+f)
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{deg}_{\prec \mathfrak{v}} P & =\operatorname{deg} N_{P_{\times \mathfrak{v}}} \\
\operatorname{deg}_{\prec \mathfrak{v}} P & =\operatorname{val} N_{P_{\times \mathfrak{v}}} \\
& \\
\operatorname{deg}_{\prec \mathfrak{w}} P & \leqslant \operatorname{deg}_{\prec \mathfrak{v}} P, \quad \mathfrak{w} \prec \mathfrak{v} \\
\operatorname{deg}_{\prec \mathfrak{v}} P_{+\varphi} & =\operatorname{deg}_{\prec \mathfrak{v}} P, \quad \varphi \prec \mathfrak{v} \\
\operatorname{deg}_{\prec \mathfrak{v}} P_{\times \mathfrak{w}} & =\operatorname{deg}_{\prec \mathfrak{v w}} P \\
\operatorname{deg}_{\prec \mathfrak{v}}(P Q) & =\operatorname{deg}_{\prec \mathfrak{v}} P+\operatorname{deg}_{\prec \mathfrak{v}} Q \\
& \\
\operatorname{deg}_{\prec \varphi} P_{+\varphi} & =\mu\left(c_{\varphi} ; N_{P_{\times \mathfrak{\mathfrak { l }}}}\right) \\
\mu_{\prec \mathfrak{v}}(f ; P) & =\operatorname{deg}_{\prec \mathfrak{v}} P_{+f}
\end{aligned}
$$

Newton polygon method

1. $\operatorname{deg}_{\prec \mathfrak{v}} P=d>0$
$\left(P=A_{+g}\right.$ and g root modulo $\prec \mathfrak{v}$ of A)
2. If $d=1$ then unique solution
3. Determine starting monomial $\mathfrak{w} \prec \mathfrak{v}$
4. Solve $N_{P_{\times \mathfrak{w}}}(c)=0$ and set $\varphi:=c \mathfrak{w}$
5. Refine $f=\varphi+\tilde{f}, \tilde{f} \prec \mathfrak{w} \longrightarrow 0<\operatorname{deg}_{\prec \mathfrak{w}} \tilde{P} \leqslant d$ with $\tilde{P}=P_{+\varphi}$ $\left(\tilde{P}=A_{+g+\varphi}\right.$ and $g+\varphi$ root modulo $\prec \mathfrak{w}$ of A)
6. Return to step 1

Newton polygon method

1. $\operatorname{deg}_{\prec \mathfrak{v}} P=d>0$
$\left(P=A_{+g}\right.$ and g root modulo $\prec \mathfrak{v}$ of A)
2. If $d=1$ then unique solution
3. Determine starting monomial $\mathfrak{w} \prec \mathfrak{v}$
4. Solve $N_{P_{\times \mathfrak{w}}}(c)=0$ and set $\varphi:=c \mathfrak{w}$
$\left(f-\frac{1}{1-z}\right)^{2}=z^{10000}$
5. Refine $f=\varphi+\tilde{f}, \tilde{f} \prec \mathfrak{w} \longrightarrow 0<\operatorname{deg}_{\prec \mathfrak{w}} \tilde{P} \leqslant d$ with $\tilde{P}=P_{+\varphi}$ $\left(\tilde{P}=A_{+g+\varphi}\right.$ and $g+\varphi$ root modulo $\prec \mathfrak{w}$ of $\left.A\right)$
6. Return to step 1

Newton polygon method

1. $\operatorname{deg}_{\prec \mathfrak{v}} P=d>0$
($P=A_{+g}$ and g root modulo $\prec \mathfrak{v}$ of A)
2. If $d=1$ then unique solution
3. Determine starting monomial $\mathfrak{w} \prec \mathfrak{v}$
4. Solve $N_{P_{\times \mathfrak{w}}}(c)=0$ and set $\varphi:=c \mathfrak{w}$

If $\mu_{N_{P}}(c)=d$, then $\varphi:=$ unique solution to $\frac{\partial^{d-1} P}{\partial F^{d-1}}(\varphi)=0, \varphi \prec \mathfrak{v}$
5. Refine $f=\varphi+\tilde{f}, \tilde{f} \prec \mathfrak{w} \longrightarrow 0<\operatorname{deg}_{\prec \mathfrak{w}} \tilde{P} \leqslant d$ with $\tilde{P}=P_{+\varphi}$
($\tilde{P}=A_{+g+\varphi}$ and $g+\varphi$ root modulo $\prec \mathfrak{w}$ of A)
6. Return to step 1

$$
P(f)=p\left(f, f^{\prime}, \ldots, f^{(r)}\right)=0, \quad f \prec \mathfrak{v}
$$

Starting monomials cannot directly be read of from "Newton polygon"

$$
P=P_{0}+\cdots+P_{d}
$$

Upward shifting

$P \uparrow$ unique differential polynomial with

$$
(P \uparrow)\left(f \circ \mathrm{e}^{x}\right)=P(f) \circ \mathrm{e}^{x}
$$

For instance:

$$
\begin{aligned}
F^{\prime} \uparrow & =\frac{F^{\prime}}{\mathrm{e}^{x}} \\
F^{\prime \prime} \uparrow & =\frac{F^{\prime \prime}-F^{\prime}}{\mathrm{e}^{2 x}} \\
F^{\prime \prime \prime} \uparrow & =\frac{F^{\prime \prime \prime}-3 F^{\prime \prime}+2 F^{\prime}}{\mathrm{e}^{3 x}} \\
& \vdots
\end{aligned}
$$

Theorem. There exists a unique $N_{P} \in \mathbb{R}\{F\}$, such that

$$
c_{P \uparrow_{l}}=N_{P}
$$

for all sufficiently large l and

$$
N_{P} \in \mathbb{R}[F]\left(F^{\prime}\right)^{\mathbb{N}}
$$

Definition. $\mathfrak{m} \prec \mathfrak{v}$ is a starting monomial $\Longleftrightarrow N_{P_{\times \mathfrak{m}}} \notin \mathbb{R} F^{\mathbb{N}}$

$$
\begin{aligned}
P & =\left(F^{\prime}\right)^{2}-F F^{\prime \prime} \\
P \uparrow & =\frac{\left(F^{\prime}\right)^{2}-F F^{\prime \prime}+F F^{\prime}}{\mathrm{e}^{2 x}} \\
P \uparrow \uparrow & =\frac{F F^{\prime}}{\mathrm{e}^{x} \mathrm{e}^{2 \mathrm{e}^{x}}}+\frac{\left(F^{\prime}\right)^{2}-F F^{\prime \prime}+F F^{\prime}}{\mathrm{e}^{2 x} \mathrm{e}^{2 \mathrm{e}^{x}}} \\
& \vdots \\
N_{P} & =F F^{\prime}
\end{aligned}
$$

Consequence:

$$
1 \prec L \prec \log _{n} x \Longrightarrow P(L) \sim \frac{L L^{\prime}}{x}
$$

Starting monomials

Lemma. Given $i<j$ with $P_{i} \neq 0, P_{j} \neq 0$, there exists a unique (i, j)-equalizer $\mathfrak{e} \in \mathfrak{T}$ such that $N_{\left(P_{i}+P_{j}\right)_{\times e}}$ is not homogeneous.

Starting monomials

Lemma. Given i with $P_{i} \neq 0$, we have
\mathfrak{m} is a starting monomial for $P_{i}(f)=0$
\Downarrow

$$
\mathfrak{m}^{\dagger}=\frac{\mathfrak{m}^{\prime}}{\mathfrak{m}} \text { is a solution to } R_{P_{i}}(g)=0 \operatorname{modulo} \frac{1}{x \log x \log _{2} x \cdots}
$$

Lemma. $\operatorname{deg}_{\prec \mathfrak{v}} P=1 \Longrightarrow P(f)=0, f \preccurlyeq \mathfrak{v}$ admits at least one solution.

Warning. Problem with almost multiple solutions

$$
\begin{aligned}
f^{2}-2 f^{\prime}+\frac{1}{x^{2}}+\cdots+\frac{1}{\left(x \log x \cdots \log _{l} x\right)^{2}} & =0, \\
f^{2}-2 \mathrm{e}^{-x} f^{\prime}+\frac{1}{\mathrm{e}^{2 x}}+\cdots+\frac{1}{\left(\mathrm{e}^{x} x \cdots \log _{l-1} x\right)^{2}} & =0, \\
f^{2}-2 f^{\prime}-2 f+1+\frac{1}{x^{2}}+\cdots+\frac{1}{\left(x \log x \cdots \log _{l-1} x\right)^{2}} & =0, \\
f^{2}-2 f^{\prime}+\frac{1}{x^{2}}+\cdots+\frac{1}{\left(x \log x \cdots \log _{l-1} x\right)^{2}} & =0,
\end{aligned} \quad(f \prec 1)
$$

Lemma. "Unravelling process" is finite for grid-based transseries.

Theorem. (1997) There exists a theoretical algorithm to find all solutions to an asymptotic algebraic differential equation.

Theorem. (1997) Let P be purely exponential of degree d and order r. There exists a constant $C_{r, d}$ such that any solution to $P(f)=0$ involves at most $C_{r, d}$ levels of iterated logarithms.

Theorem. (1997) Any general transseries solution to an algebraic differential equation with grid-based coefficients is again grid-based. Generalization of Grigoriev and Singer (1991).

Corollary. $\zeta(x)$ and $f(x)=\frac{1}{x}+\frac{1}{\mathrm{e}^{\log ^{2} x}}+\frac{1}{\mathrm{e}^{\log ^{4} x}}+\cdots$ are differentially transcendental over \mathbb{R}.

