Asymptotic differential equations

Lecture 2: transserial Hardy fields

Joris van der Hoeven, Segovia 2011 $\label{eq:http://www.TEX_MACS.org} $$ $$ \text{http://www.TEX_MACS.org} $$$

Cuts in the transseries

Definition: a cut of \mathbb{T} is an open interval $I \subseteq \mathbb{T}$ with $x < y \in I \Rightarrow x \in I$

Special cuts

- $\bullet \quad \hat{\mathbf{U}} = \mathbf{T}$
- $\hat{\sigma} = \{ f \in \mathbb{T} : \exists g \in \mathbb{R}, f \leqslant g \}$
- $\hat{\varkappa}_l = \{ f \in \mathbb{T} : \forall k, \exp_k \circ f \circ \log_k < \exp_l x \}, \text{ for each } l \in \mathbb{Z} \}$
- Cuts in R (don't exist)
- Serial cuts $\hat{f} \in \mathbb{T}^{\text{wb}}$, $\forall g \lhd \hat{f}, g \in \mathbb{T}$.

Proposition. Each $\hat{f} \in \hat{\mathbb{T}}$ admits a unique nested expansion of one and only one of the following forms:

$$\hat{f} \in \mathbb{T};$$

$$\hat{f} = \pm \hat{\mathcal{O}};$$

$$\hat{f} = \varphi_0 + \epsilon_0 e^{\varphi_1 + \epsilon_1 e^{\cdot \cdot \cdot \varphi_{l-1} + \epsilon_{l-1} e^{\hat{x}_l}}} \qquad (l \in \mathbb{Z});$$

$$\hat{f} = \varphi_0 + \epsilon_0 e^{\varphi_1 + \epsilon_1 e^{\cdot \cdot \cdot \varphi_{l-1} + \epsilon_{l-1} e^{\hat{c}}}} \qquad (\hat{c} \in \hat{C} \setminus C);$$

$$\hat{f} = \varphi_0 + \epsilon_0 e^{\varphi_1 + \epsilon_1 e^{\cdot \cdot \cdot \varphi_{l-1} + \epsilon_{l-1} e^{\hat{g}}}} \qquad (\hat{g} \text{ serial cut});$$

$$\hat{f} = \varphi_0 + \epsilon_0 e^{\varphi_1 + \epsilon_1 e^{\varphi_2 + \epsilon_2 e^{\cdot \cdot \cdot}}},$$

with $\epsilon_0, \epsilon_1, ... \in \{-1, 1\}$.

Intermediate value theorem

Theorem. (2000) Given $P \in \mathbb{T}\{F\}$ and $f < g \in \mathbb{T}$ with P(f) P(g) < 0. Then there exists an $h \in \mathbb{T}$ with f < h < g and P(h) = 0.

- 1. Calculus with cuts $\hat{f} \in \hat{\mathbb{T}}$.
- 2. Classification of cuts and behaviour of P(f) near a cut.
- 3. Newton polygon method for shrinking interval on which a sign change occurs and whose end-points are cuts.

Corollary. Any $P \in \mathbb{T}\{F\}$ of odd degree admits a root in \mathbb{T} .

Intermediate value theorem

Theorem. (2000) Given $P \in \mathbb{T}\{F\}$ and $f < g \in \mathbb{T}$ with P(f) P(g) < 0. Then there exists an $h \in \mathbb{T}$ with f < h < g and P(h) = 0.

- 1. Calculus with cuts $\hat{f} \in \hat{\mathbb{T}}$.
- 2. Classification of cuts and behaviour of P(f) near a cut.
- 3. Newton polygon method for shrinking interval on which a sign change occurs and whose end-points are cuts.

Corollary. Any monic $L \in \mathbb{T}[\partial]$ admits a factorization with factors

$$\partial - a$$
 or

$$\partial^2 - (2 a + b^{\dagger}) \partial + (a^2 + b^2 - a' + a b^{\dagger}) = (\partial - (a - b \mathbf{i} + b^{\dagger})) (\partial - (a + b \mathbf{i}))$$

Complex transseries

Main problem: define an ordering on $\tilde{\mathbb{T}} = \mathbb{C} \llbracket \mathfrak{T} \rrbracket = \mathbb{C} \llbracket \mathfrak{T} \rrbracket$.

Idea: $f > 0 \Longleftrightarrow c_f \in P_{\mathfrak{d}_f}$, with a set

$$P_{\mathfrak{m}} = \{ c \in \mathbb{C} | (\operatorname{Re} (c e^{-i\theta_{\mathfrak{m}}}) > 0) \vee (\operatorname{Re} (c e^{-i\theta_{\mathfrak{m}}}) = 0 \wedge \operatorname{Im} (\epsilon_{\mathfrak{m}} c e^{-i\theta_{\mathfrak{m}}}) > 0) \}$$

for each $\mathfrak{m} \in \mathfrak{T} \longrightarrow$ unique $\tilde{\mathbb{T}}$ as strong field (see also: Bouffet).

Closure properties

Theorem. (2001) Every asymptotic differential equation over $\tilde{\mathbb{T}}$ of Newton degree d admits at least d solutions (when counting with multiplicities). Moreover, it suffices to add iterated logarithms to the asymptotic scale.

Warning. $\tilde{\mathbb{T}}$ is not differentially algebraically closed

$$f^3 + (f')^2 + f = 0$$
$$f^3 + f \neq 0$$

Rather desingularize vector fields? Cano, Panazzolo, etc.

Closure properties

Theorem. (2001) Every asymptotic differential equation over $\hat{\mathbb{T}}$ of Newton degree d admits at least d solutions (when counting with multiplicities). Moreover, it suffices to add iterated logarithms to the asymptotic scale.

Corollary. $\tilde{\mathbb{T}}$ is Picard-Vessiot closed.

Remark. No Grigoriev & Singer type undecidability results.

Remark. Zero-test algorithm for polynomials in power series solutions to algebraic differential equations.

Model theory

with Matthias Aschenbrenner & Lou van den Dries

Question: generalizations to H-fields and asymptotic fields?

Model theory

Warning. Fields \mathcal{K} with a "gap" of the form $\hat{\gamma} = \frac{1}{x \log x \log_2 x \dots}$ admit two Liouvillian extensions

$$\mathcal{K}_1 = \mathcal{K}[\int \hat{\gamma}], \qquad \int \hat{\gamma} \succ 1$$

 $\mathcal{K}_2 = \mathcal{K}[\int \hat{\gamma}], \qquad \int \hat{\gamma} \prec 1$

Notation.
$$\hat{\lambda} = -\hat{\gamma}^{\dagger} = \frac{1}{x} + \frac{1}{x \log x} + \cdots$$
, $\hat{\rho} = 2 \hat{\lambda}' - \hat{\lambda}^2 = \frac{1}{x^2} + \frac{1}{x^2 \log^2 x} + \cdots$.

Theorem. (2003) There exists a field of well-based transseries \mathbb{T} , such that $\hat{\rho} \in \mathbb{T}$, but $\hat{\lambda} \notin \mathbb{T}$.

Theorem. (2006) N_P well-defined for asymptotic fields $\mathcal{K} \not\ni \hat{\rho}$.

On the special status of $\hat{\rho}$

Statement. (Écalle, 1992) For any $P \in \mathbb{R}\{F\}$, the first ω terms of $P(\hat{\lambda})$ are either "similar" to $\hat{\lambda}$ or to $\hat{\rho}$.

Proof. Recent proof by AvdDvdH.

Corollary. For any $P \in \mathbb{R}\{F\}$ such that $P(\hat{\lambda}) = \frac{1}{x^k} + \frac{1}{x^k \log^k x} + \cdots$, we have either k = 1 or k = 2.

Meta-theorem. $\hat{\rho}$ -free H-fields and asymptotic fields have a nice model theory.

Real transseries → analytic germs

1: Accelero-summation

2: Transserial Hardy fields

$$\mathbb{T} \ \supseteq \ \mathcal{T} \overset{
ho}{\hookrightarrow} \ \mathcal{G}$$

• \mathcal{G} : ring of infinitely differentiable real germs at $+\infty$.

Real transseries \rightarrow analytic germs

1: Accelero-summation

Advantages	Disadvantages
Canonical after choosing average Preserves composition	Requires many different tools Not yet written down
Classification local vector fields Differential Galois theory	

2: Transserial Hardy fields

Advantages	Disadvantages
Less hypotheses on coefficients	Not canonical
Might generalize to other models	No preservation of composition
Written down	

A **transserial Hardy** field is a differential subfield \mathcal{T} of \mathbb{T} , together with a monomorphism $\rho: \mathcal{T} \to \mathcal{G}$ of ordered differential \mathbb{R} -algebras, such that

TH1.
$$\forall f \in \mathcal{T}$$
: supp $f \subseteq \mathcal{T}$.

TH2.
$$\forall f \in \mathcal{T}$$
: $f_{\prec} \in \mathcal{T}$.

$$f_{\prec} = \sum_{\mathfrak{m} \prec 1} f_{\mathfrak{m}} \mathfrak{m}$$

TH3.
$$\exists d \in \mathbb{Z}$$
: $\forall \mathfrak{m} \in \mathfrak{T} \cap \mathcal{T}$: $\log \mathfrak{m} \in \mathcal{T} + \mathbb{R} \log_d x$.

TH4.
$$\mathfrak{T} \cap \mathcal{T}$$
 is stable under taking real powers.

TH5.
$$\forall f \in \mathcal{T}^{>}$$
: $\log f \in \mathcal{T} \Rightarrow \rho(\log f) = \log \rho(f)$.

Example.
$$\mathcal{T} = \mathbb{R}\{\{x^{-\mathbb{R}}\}\}$$
.

A **transserial Hardy** field is a differential subfield \mathcal{T} of \mathbb{T} , together with a monomorphism $\rho: \mathcal{T} \to \mathcal{G}$ of ordered differential \mathbb{R} -algebras, such that

TH1.
$$\forall f \in \mathcal{T}$$
: supp $f \subseteq \mathcal{T}$.

TH2.
$$\forall f \in \mathcal{T}$$
: $f_{\prec} \in \mathcal{T}$.

$$f_{\prec} = \sum_{\mathfrak{m} \prec 1} f_{\mathfrak{m}} \mathfrak{m}$$

$$\frac{x e^{x}}{1 - x^{-1} - e^{-x}}$$

$$x e^{x} + e^{x} + x^{-1} e^{x} + \dots + x + 1 + x^{-1} + \dots + x e^{-x} + e^{-x} + x^{-1} e^{-x} + \dots$$

TH3.
$$\exists d \in \mathbb{Z}$$
: $\forall \mathfrak{m} \in \mathfrak{T} \cap \mathcal{T}$: $\log \mathfrak{m} \in \mathcal{T} + \mathbb{R} \log_d x$.

TH4. $\mathfrak{T} \cap \mathcal{T}$ is stable under taking real powers.

TH5.
$$\forall f \in \mathcal{T}^{>}$$
: $\log f \in \mathcal{T} \Rightarrow \rho(\log f) = \log \rho(f)$.

Example.
$$\mathcal{T} = \mathbb{R}\{\{x^{-\mathbb{R}}\}\}$$
.

A **transserial Hardy** field is a differential subfield \mathcal{T} of \mathbb{T} , together with a monomorphism $\rho: \mathcal{T} \to \mathcal{G}$ of ordered differential \mathbb{R} -algebras, such that

TH1.
$$\forall f \in \mathcal{T}$$
: supp $f \subseteq \mathcal{T}$.

TH2.
$$\forall f \in \mathcal{T}$$
: $f_{\prec} \in \mathcal{T}$.

$$f_{\prec} = \sum_{\mathfrak{m} \prec 1} f_{\mathfrak{m}} \mathfrak{m}$$

$$\left(\frac{x e^{x}}{1 - x^{-1} - e^{-x}}\right)_{\prec}$$

$$x e^{x} + e^{x} + x^{-1} e^{x} + \dots + x + 1 + x^{-1} + \dots + x e^{-x} + e^{-x} + x^{-1} e^{-x} + \dots$$

TH3.
$$\exists d \in \mathbb{Z}$$
: $\forall \mathfrak{m} \in \mathfrak{T} \cap \mathcal{T}$: $\log \mathfrak{m} \in \mathcal{T} + \mathbb{R} \log_d x$.

TH4. $\mathfrak{T} \cap \mathcal{T}$ is stable under taking real powers.

TH5.
$$\forall f \in \mathcal{T}^{>}$$
: $\log f \in \mathcal{T} \Rightarrow \rho(\log f) = \log \rho(f)$.

Example.
$$\mathcal{T} = \mathbb{R}\{\{x^{-\mathbb{R}}\}\}$$
.

A **transserial Hardy** field is a differential subfield \mathcal{T} of \mathbb{T} , together with a monomorphism $\rho: \mathcal{T} \to \mathcal{G}$ of ordered differential \mathbb{R} -algebras, such that

TH1.
$$\forall f \in \mathcal{T}$$
: supp $f \subseteq \mathcal{T}$.

TH2.
$$\forall f \in \mathcal{T}$$
: $f_{\prec} \in \mathcal{T}$.

$$f_{\prec} = \sum_{\mathfrak{m} \prec 1} f_{\mathfrak{m}} \mathfrak{m}$$

TH3.
$$\exists d \in \mathbb{Z}$$
: $\forall \mathfrak{m} \in \mathfrak{T} \cap \mathcal{T}$: $\log \mathfrak{m} \in \mathcal{T} + \mathbb{R} \log_d x$.

TH4.
$$\mathfrak{T} \cap \mathcal{T}$$
 is stable under taking real powers.

TH5.
$$\forall f \in \mathcal{T}^{>}$$
: $\log f \in \mathcal{T} \Rightarrow \rho(\log f) = \log \rho(f)$.

Example.
$$\mathcal{T} = \mathbb{R}\{\{x^{-\mathbb{R}}\}\}$$
.

Elementary extensions

Definitions. \mathcal{T} transserial Hardy field, $f \in \mathbb{T}$, $\hat{f} \in \mathcal{G}$

$$f \sim \hat{f} \iff (\exists \varphi \in \mathcal{T}: \ f \sim_{\mathbb{T}} \varphi \sim_{\mathcal{G}} \hat{f})$$

$$f \ asympt. \ equiv. \ \text{to} \ \hat{f} \ \text{over} \ \mathcal{T} \iff (\forall \varphi \in \mathcal{T}: \ f - \varphi \sim \hat{f} - \varphi)$$

$$f \ diff. \ equiv. \ \text{to} \ \hat{f} \ \text{over} \ \mathcal{T} \iff (\forall P \in \mathcal{T} \{F\}: \ P(f) = 0 \Leftrightarrow P(\hat{f}) = 0)$$

Lemma. Let $f \in \mathbb{T} \setminus \mathcal{T}$ and $\hat{f} \in \mathcal{G} \setminus \mathcal{T}$ be such that

- f is a serial cut over \mathcal{T} .
- f and \hat{f} are asymptotically equivalent over \mathcal{T} .
- f and \hat{f} are differentially equivalent over \mathcal{T} .

Then $\exists !$ transserial Hardy field extension $\rho : \mathcal{T}\langle f \rangle \to \mathcal{G}$ with $\rho(f) = \hat{f}$.

Elementary extensions

Definitions. \mathcal{T} transserial Hardy field, $f \in \mathbb{T}$, $\hat{f} \in \mathcal{G}$

$$f \sim \hat{f} \iff (\exists \varphi \in \mathcal{T}: \ f \sim_{\mathbb{T}} \varphi \sim_{\mathcal{G}} \hat{f})$$

$$f \ asympt. \ equiv. \ \text{to} \ \hat{f} \ \text{over} \ \mathcal{T} \iff (\forall \varphi \in \mathcal{T}: \ f - \varphi \sim \hat{f} - \varphi)$$

$$f \ diff. \ equiv. \ \text{to} \ \hat{f} \ \text{over} \ \mathcal{T} \iff (\forall P \in \mathcal{T} \{F\}: \ P(f) = 0 \Leftrightarrow P(\hat{f}) = 0)$$

Lemma. Let $f \in \mathbb{T} \setminus \mathcal{T}$ and $\hat{f} \in \mathcal{G} \setminus \mathcal{T}$ be such that

- f is a serial cut over \mathcal{T} .
- f and \hat{f} are asymptotically equivalent over \mathcal{T} .
- f and \hat{f} are differentially equivalent over \mathcal{T} .

Then $\exists !$ transserial Hardy field extension $\rho : \mathcal{T}\langle f \rangle \to \mathcal{G}$ with $\rho(f) = \hat{f}$.

Basic extension theorems

Theorem. Let \mathcal{T} be a transserial Hardy field. Then its real closure \mathcal{T}^{rcl} admits a unique transserial Hardy field structure which extends the one of \mathcal{T} .

Theorem. Let \mathcal{T} be a transserial Hardy field and let $\varphi \in \mathcal{T}_{\succ}$ be such that $e^{\varphi} \notin \mathcal{T}$. Then the set $\mathcal{T}(e^{\mathbb{R}\varphi})$ carries the structure of a transserial Hardy field for the unique differential morphism $\rho: \mathcal{T}(e^{\mathbb{R}\varphi}) \to \mathcal{G}$ over \mathcal{T} with $\rho(e^{\lambda \varphi}) = e^{\lambda \rho(\varphi)}$ for all $\lambda \in \mathbb{R}$.

Theorem. Let \mathcal{T} be a transserial Hardy field of depth $d < \infty$. Then $\mathcal{T}((\log_d x)^\mathbb{R})$ carries the structure of a transserial Hardy field for the unique differential morphism $\rho: \mathcal{T}((\log_d x)^\mathbb{R}) \to \mathcal{G}$ over \mathcal{T} with $\rho((\log_d x)^\lambda) = (\log_d x)^\lambda$ for all $\lambda \in \mathbb{R}$.

Differential equations (main ideas)

Step 1. A given algebraic differential equation

$$f^2 - f' + \frac{x}{e^x} = 0$$

Step 2. Put equation in integral form

$$f = \int \left(\frac{x}{e^x} + f^2\right)$$

Step 3. Integral transseries solution

Differential equations (main ideas)

Step 1. A given algebraic differential equation

$$f^2 - e^x f' + \frac{e^{2x}}{x} = 0$$

Step 2. Put equation in integral form

$$f = \int \left(\frac{e^x}{x} + \frac{f^2}{e^x} \right)$$

Step 3. Integrate from a fixed point $x_0 < \infty$

$$f = \int_{x_0} \frac{e^x}{x} + \int_{x_0} \frac{1}{e^x} \left(\int_{x_0} \frac{e^x}{x} \right)^2 + 2 \int_{x_0} \frac{1}{e^{2x}} \left(\int_{x_0} \frac{e^x}{x} \right) \left(\int_{x_0} \frac{1}{e^x} \left(\int_{x_0} \frac{e^x}{x} \right)^2 \right) + \cdots$$

Differential equations (main ideas)

Step 1. A general algebraic differential equation

$$P(f) = 0$$

Step 2. Equation in split-normal form

$$(\partial - \varphi_1) \cdots (\partial - \varphi_r) f = P(f)$$
 with $P(f)$ small

Attention: $\varphi_1, ..., \varphi_r \in \mathcal{T}[i]$, even though $(\partial - \varphi_1) \cdots (\partial - \varphi_r) \in \mathcal{T}[\partial]$.

Step 3. Solve the split-normal equation using the fixed-point technique.

Continuous right inverses (first order)

Lemma. The operator $J = (\partial - \varphi)_{x_0}^{-1}$, defined by

$$(Jf)(x) = \begin{cases} e^{\Phi(x)} \int_{-\infty}^{x} e^{-\Phi(t)} f(t) dt & (repulsive case) \\ e^{\Phi(x)} \int_{-x_0}^{x} e^{-\Phi(t)} f(t) dt & (attractive case) \end{cases}$$

and

$$\Phi(x) = \begin{cases} \int_{-\infty}^{x} \varphi(t) dt & (repulsive \ case) \\ \int_{x_0}^{x} \varphi(t) dt & (attractive \ case) \end{cases}$$

is a continuous right-inverse of $L = \partial - \varphi$ on $\mathcal{G}_{x_0}^{\preceq}[i]$, with

$$|||J||_{x_0} \leqslant \left\| \frac{1}{\operatorname{Re} \varphi} \right\|_{x_0}$$

Continuous right-inverses (higher order)

Lemma. Given a split-normal operator

$$L = (\partial - \varphi_1) \cdots (\partial - \varphi_r), \tag{1}$$

with a factorwise right-inverse $L^{-1} = J_r \cdots J_1$, the operator

$$\mathfrak{v}^{\scriptscriptstyle
u} J_r \cdots J_1: \mathcal{G}_{x_0}^{\preccurlyeq}[\mathrm{i}] o \mathcal{G}_{x_0;r}^{\preccurlyeq}[\mathrm{i}]$$

is a continuous operator for every $\nu > r \sigma_L$. Here $\mathcal{G}_{x_0;r}^{\preccurlyeq}[i]$ carries the norm

$$||f||_{x_0;r} = \max\{||f||_{x_0}, ..., ||f^{(r)}||_{x_0}\}.$$

Lemma. If $L \in \mathcal{T}[\partial]$ and the splitting (1) (formally) preserves realness, then $J_r \cdots J_1$ preserves realness in the sense that it maps $\mathcal{G}_{x_0}^{\prec}$ into itself.

Non-linear equations

Theorem. Consider a split-monic equation

$$Lf = P(f), \quad f \prec 1,$$

and let ν be such that r $\sigma_L < \nu < v_P$. Then for any sufficiently large x_0 , there exists a continuous factorwise right-inverse $J_{r, \ltimes v^{\nu}} \cdots J_{1, \ltimes v^{\nu}}$ of $L_{\ltimes v^{\nu}}$, such that the operator

$$\Xi: f \longmapsto (J_r \cdots J_1)(P(f))$$

admits a unique fixed point

$$f = \lim_{n \to \infty} \Xi^{(n)}(0) \in \mathcal{B}(\mathcal{G}_{x_0;r}^{\preccurlyeq}, \frac{1}{2}).$$

Preservation of asymptotics

Theorem. Let \mathcal{T} be a transserial Hardy field of span $\mathfrak{v} \succeq e^x$. Consider a monic split-normal quasi-linear equation

$$Lf = P(f), \quad f < 1, \tag{2}$$

over \mathcal{T} without solutions in \mathcal{T} . Assume that one of the following holds:

- \mathcal{T} is (1,1,1)-differentially closed in $\mathbb{T}_{\preceq v}$ and (2) is first order. i.e. \mathcal{T} is closed under the resolution of linear first order equations.
- $\mathcal{T}[i]$ is (1,1,1)-differentially closed in $\mathbb{T}[i]_{\leq \!\!\! \leq \!\!\! \upsilon}$.

Then there exist solutions $f \in \mathcal{G}$ and $\tilde{f} \in \hat{\mathcal{T}}$ to (2), such that f and \tilde{f} are asymptotically equivalent over \mathcal{T} .

First order extensions

Lemma. Let $L = \partial - \varphi \in \mathcal{T}[\partial]$ be a normal operator. Let $\tilde{f} \in \hat{\mathcal{T}}^{\preccurlyeq}$ and $g \in \mathcal{T}^{\preccurlyeq}$ be such that \tilde{f} is transcendental over \mathcal{T} and $L \tilde{f} = g$. Then there exists an $f \in \mathcal{G}^{\preccurlyeq}$ with Lf = g, such that f and \tilde{f} are both differentially and asymptotically equivalent over \mathcal{T} .

Theorem. Let \mathcal{T} be a transserial Hardy field. Let $\mathcal{T}^{\mathrm{fo}} \supseteq \mathcal{T}$ be the smallest differential subfield of \mathbb{T} , such that for any $P \in \mathcal{T}^{\mathrm{fo}}\{F\}^{\neq}$ with $r_P \leqslant 1$ and $f \in \mathbb{T}$ we have $P(f) = 0 \Rightarrow f \in \mathcal{T}^{\mathrm{fo}}$. Then the transserial Hardy field structure of \mathcal{T} can be extended to $\mathcal{T}^{\mathrm{fo}}$.

Proof. As long as $\mathcal{T}^{\text{fo}} \neq \mathcal{T}$:

- Close off under exp, log and algebraic equations.
- Choose $P \in \mathcal{T}\{F\}^{\neq}$, $r_P = 1$, $f \in \mathbb{T}$, P(f) = 0 such that P has minimal "complexity" (r_P, d_P, t_P) and apply the previous results.

Higher order extensions

Lemma. Let $L = \partial - \varphi \in \mathcal{T}[i][\partial]$ be a normal operator. Let $\tilde{f} \in \hat{\mathcal{T}}[i]^{\preccurlyeq}$ and $g \in \mathcal{T}[i]^{\preccurlyeq}$ be such that $\operatorname{Re} \tilde{f}$ has order 2 over \mathcal{T} and $L\tilde{f} = g$. Then there exists an $f \in \mathcal{G}^{\preccurlyeq}[i]$ with Lf = g, such that $\operatorname{Re} f$ and $\operatorname{Re} \tilde{f}$ are both differentially and asymptotically equivalent over \mathcal{T} .

Theorem. Let \mathcal{T} be a transserial Hardy field. Let $\mathcal{T}^{\mathrm{dalg}} \supseteq \mathcal{T}$ be the smallest differential subfield of \mathbb{T} , such that for any $P \in \mathcal{T}^{\mathrm{dalg}}\{F\}^{\neq}$ and $f \in \mathbb{T}$ we have $P(f) = 0 \Rightarrow f \in \mathcal{T}^{\mathrm{dalg}}$. Then the transserial Hardy field structure of \mathcal{T} can be extended to $\mathcal{T}^{\mathrm{dalg}}$.

Applications

Corollary. There exists a transserial Hardy field \mathcal{T} , such that for any $P \in \mathcal{T}\{F\}$ and $f, g \in \mathcal{T}$ with f < g and P(f) P(g) < 0, there exists a $h \in \mathcal{T}$ with f < h < g and P(h) = 0.

Corollary. There exists a transserial Hardy field \mathcal{T} , such that $\mathcal{T}[i]$ is weakly differentially closed.

Corollary. There exists a differentially Henselian transserial Hardy field \mathcal{T} , i.e., such that any quasi-linear differential equation over \mathcal{T} admits a solution in \mathcal{T} .

A partial inverse

Theorem. Let \mathcal{T} be a transserial Hardy field and \mathcal{H} a differentially algebraic Hardy field extension of \mathcal{T} , such that \mathcal{H} is differentially Henselian and stable under exponentiation. Then there exists a transserial Hardy field structure on \mathcal{H} which extends the structure on \mathcal{T} .

Corollary. Let \mathcal{T} be a transserial Hardy field and \mathcal{H} a differentially algebraic Hardy field extension of \mathcal{T} , such that \mathcal{H} is differentially Henselian. Assume that \mathcal{H} admits no non-trivial algebraically differential Hardy field extensions. Then \mathcal{H} satisfies the differential intermediate value property.

Theorem. (Boshernitzan 1987) Any solution of the equation

$$f'' + f = e^{x^2}$$

is contained in a Hardy field. However, none of these solutions is contained in the intersection of all maximal Hardy fields.

Open problems

- Embeddability of Hardy fields in differentially Henselian Hardy fields.
- Do maximal Hardy fields satisfy the intermediate value property?
- Restricted analytic (instead of algebraic) differential equations.
- Preservation of composition:
 - \circ $f(x+\varepsilon)$, small ε : expand.
 - $f(qx + \varepsilon)$: expand, but more intricate.
 - \circ $f(\varphi(x)), \varphi \succ x$: abstract nonsense.