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< Cuts in the transseries ‘

Definition: a cut of T is an open interval [ CT with e <yel=x€l

Special cuts

A

e U=T

e m={feT:dg€R, f<g}

o i={feT:Vk,expro fology <exp;x}, for each [ €Z
e Cutsin R (don't exist)

e Serial cuts f€T"?, Vg« f,geT.

Proposition. Each f € T admits a unique nested expansion of one and only one of the
following forms:

f e T;
f = £0;
Pl _1+e 17
f = 800+€0€“01+€le"¢l o (l€Z);
5 (Pl_'_ele_,.@l—ﬁrﬁl—le ) ~ .
f = poteoe (ceC\CO);
a .,.¢1—1+€l—1eg R .
f = wo+eerrtae (g serial cut);
2 otege”
f = po+eperrteae™ "



with eg, €1, ... € {—1, 1}



< Intermediate value theorem &» ‘

Theorem. (2000) Given P € T{F'} and f < g€ T with P(f) P(g) <0. Then there exists
an he T with f <h< g and P(h)=0.

1. Calculus with cuts feT.

2. Classification of cuts and behaviour of P(f) near a cut.

3. Newton polygon method for shrinking interval on which a sign change occurs and whose

end-points are cuts.

Corollary. Any P € T{F'} of odd degree admits a root in T.



< Intermediate value theorem &» ‘

Theorem. (2000) Given P € T{F'} and f < g€ T with P(f) P(g) <0. Then there exists
an heT with f <h< g and P(h)=0.

1. Calculus with cuts feT.
2. Classification of cuts and behaviour of P(f) near a cut.

3. Newton polygon method for shrinking interval on which a sign change occurs and whose
end-points are cuts.

Corollary. Any monic L € T[0]| admits a factorization with factors

0—a or

82— (2a+b) 0+ (a2+b*—a' +ab)=(0—(a—bi+b"))(0— (a+bi))



& Complex transseries

Main problem: define an ordering on T=C[I%] =C 1.

Idea: f>0<«= cy€ P, with a set
Pn={ccC|(Re(ce ) >0)V (Re(ce ') =0AIm(eyce ") >0)}

for each m € T — unique T as strong field (see also: Bouffet).



G» Closure properties il ‘

Theorem. (2001) Every asymptotic differential equation over T of Newton degree d admits

at least d solutions (when counting with multiplicities). Moreover, it suffices to add iterated
logarithms to the asymptotic scale.

Warning. T is not differentially algebraically closed

P+ =0
fP+f# 0

Rather desingularize vector fields? Cano, Panazzolo, etc.



G» Closure properties il ‘

Theorem. (2001) Every asymptotic differential equation over T of Newton degree d admits
at least d solutions (when counting with multiplicities). Moreover, it suffices to add iterated
logarithms to the asymptotic scale.

Corollary. T is Picard-Vessiot closed.
Remark. No Grigoriev & Singer type undecidability results.

Remark. Zero-test algorithm for polynomials in power series solutions to algebraic differential
equations.



< Model theory

with MATTHIAS ASCHENBRENNER & LLOU VAN DEN DRIES

Question: generalizations to H-fields and asymptotic fields?



< Model theory < ‘

Warning. Fields K with a “gap” of the form 7= xlogmlloggm — admit two Liouvillian extensions

’Cl = K[f’ﬂ, f’?%l
K. = K[f49], [9=<1

IR ST O C I S S

oz zlogx ! G z2log2 x

Notation. )= —A'

Theorem. (2003) There exists a field of well-based transseries T, such that pe T, but A¢ T.

Theorem. (2006) Np well-defined for asymptotic fields KC % p.



@ On the special status of p ‘

Statement. (Ecalle, 1992) For any P € R{F}, the first w terms of P(\) are either “similar”
to \ or to p.

Proof. Recent proof by AvdDvdH. [l

Corollary. For any P € R{F} such that P(\) = % + m + ---, we have either k=1 or
k=2.

Meta-theorem. p-free H-fields and asymptotic fields have a nice model theory.



« Real transseries — analytic germs

1: Accelero-summation

/ f
Bl Tz
Z1
J1 Aﬁ Jo — - — fp—l Aep__1> fp
z1—>z2 zp_l_)zp

2: Transserial Hardy fields

T> 7 g

e G: ring of infinitely differentiable real germs at +oc.



& Real transseries — analytic germs

1: Accelero-summation

Advantages

Disadvantages

Canonical after choosing average
Preserves composition
Classification local vector fields
Differential Galois theory

2: Transserial Hardy fields

Advantages

Requires many different tools
Not yet written down

Disadvantages

Less hypotheses on coefficients
Might generalize to other models
Written down

Not canonical
No preservation of composition



L Transserial Hardy fields ‘

A transserial Hardy field is a differential subfield 7 of T, together with a monomorphism
p: T — G of ordered differential R-algebras, such that

THL1. VfeT: suppfCT.

TH2. VfeT: fieT. f<=2m<1 fom
TH3. 3deZ: YmeZINT: logmeT +Rlogiz.

TH4. TN T is stable under taking real powers.

TH5. VfeT~: log feT= p(logf)=logp(f).

Example. 7=R{z"}}}.
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& Elementary extensions

Definitions. 7 transserial Hardy field, f €T, feg
f~f = (BeeT: f~ro~g )
f asympt. equiv. to f over T <= (VoeT: f—on~f— )
f diff. equiv. to f over T <= (VPeT{F}: P(f)=0< P(f)=0)

Lemma. Let f €T\ Tand f G\ T be such that

e [ is a serial cut over 7.
e fand f are asymptotically equivalent over T.

o fand [ are differentially equivalent over T.

Then 3! transserial Hardy field extension p: T (f) — G with p(f) = f.



& Elementary extensions

Definitions. 7 transserial Hardy field, f € T, fE g
f~f = (BeT: f~r o ~g )
f asympt. equiv. to f over T <= (VoeT: f—on~f— )

f diff. equiv. to f over T <= (VPeT{F}: P(f)=0< P(f)=0)

Lemma. Let f €T\ Tand f G\ T be such that

e [ is a serial cut over 7.

e fand f are asymptotically equivalent over T.

Then 3! transserial Hardy field extension p: T (f) — G with p(f) = f.



< Basic extension theorems @ ‘

Theorem. Let T be a transserial Hardy field. Then its real closure T*°' admits a unique
transserial Hardy field structure which extends the one of T.

Theorem. Let T be a transserial Hardy field and let ¢ € T.. be such that e¥ ¢ T. Then the set
T (eR%) carries the structure of a transserial Hardy field for the unique differential morphism

p: T (eB%) = G over T with p(e*?) =e (%) for all X € R.

Theorem. Let T be a transserial Hardy field of depth d < co. Then T ((logqx)®) carries the
structure of a transserial Hardy field for the unique differential morphism p: T ((loggx)®) — G
over T with p((loggz)) = (loggx)* for all X € R.



&> Differential equations (main ideas)

Step 1. A given algebraic differential equation
2 Lo
ff=r+ o= 0

Step 2. Put equation in integral form

Step 3. Integral transseries solution



&> Differential equations (main ideas)

Step 1. A given algebraic differential equation

fr;

2_33/6_:
f ef+x 0

Step 2. Put equation in integral form

[

Step 3. Integrate from a fixed point zg < 0o

= [ e (LS e (LD (s



& Differential equations (main ideas)

Step 1. A general algebraic differential equation

P(f)=0

Step 2. Equation in split-normal form
(0= @1) (0 —¢r) f=P(f)
Attention: ¢, ..., ¢, € T[i], even though (0 — 1) --- (0 — ) € T|0).

Step 3. Solve the split-normal equation using the fixed-point technique.



L Continuous right inverses (first order)

Lemma. The operator J = (0 — ¢)z, ! defined by

B e2(@) foa; e~ ®W f(t)dt  (repulsive case)
(Jf)(x) _ e@(m)fsc e_q)(t) f(t) dt

o (attractive case)

and

B(z) = [ 2 e(t)dt (repulsive case)
f * o(t)dt (attractive case)

is a continuous right-inverse of L =0 — ¢ on gfo[i], with

1
Re ¢||,

171, < H




L Continuous right-inverses (higher order) ‘

Lemma. Given a split-normal operator
L=(0—p1) (90— ), (1)

with a factorwise right-inverse L= = J, --- J;, the operator
# o # o
Sy oo Jn g:co[l] — gazo;r[l]

is a continuous operator . Here QfO ..|i] carries the norm

1 f o r=108 {I| f 05 -l £ 10}

Lemma. If L € T[J] and the splitting (1) (formally) preserves realness, then J, --- J;
preserves realness in the sense that it maps gjo into itself.



& Non-linear equations ‘

Theorem. Consider a split-monic equation

Lf=P(f),

Then for any sufficiently large o, there exists a
continuous factorwise right-inverse J, - Jq of L. .., such that the operator

admits a unique fixed point



QS; Preservation of asymptotics %ﬁ ‘

Theorem. Let T be a transserial Hardy field Consider a monic split-normal
quasi-linear equation

Lf=P(f), (2)

over T without solutions in T. Assume that one of the following holds:

e 7T is (1,1,1)-differentially closed in T -, and (2) is first order.

e TIli] is (1,1, 1)-differentially closed in T|i]

Then there exist solutions f € G and f € T to (2), such that f and f are asymptotically
equivalent over 7.



@ First order extensions %ﬁ ‘

Lemma. Let L=0 — o€ T[0] be a normal operator. Let f €T~ and g T= be such that

fis transcendental over T and L f=g. Then there exists an f € G with L f = g, such that
f and f are both differentially and asymptotically equivalent over T.

Theorem. Let T be a transserial Hardy field. Let T DT be the smallest differential subfield

of T, such that for any P € T®{F}* withrp<1 and f € T we have P(f)=0= feTT.
Then the transserial Hardy field structure of T can be extended to T'°.

Proof. As long as T+ T

e C(lose off under exp, log and algebraic equations.

o Choose PeT{F}7,rp=1, f€T,P(f)=0 such that P has minimal “complexity” (7p,
dp,tp) and apply the previous results. O



& Higher order extensions o ‘

Lemma. Let L=0— ¢ €TIi]|0] be a normal operator. Let feTl]~ and g€ T[i|]S be such
that Re f has order 2 over T and L f = g. Then there exists an f € GS[i] with L f = g, such
that Re f and Re f are both differentially and asymptotically equivalent over T.

Theorem. Let T be a transserial Hardy field. Let T8 D T be the smallest differential subfield
of T, such that for any P € TI8{F}7# and f € T we have P(f)=0= f T2 Then the
transserial Hardy field structure of T can be extended to T 9218,



& Applications > ‘

Corollary. There exists a transserial Hardy field T, such that forany PcT{F} and f,geT
with f < g and P(f) P(g) <0, there exists a h € T with f <h < g and P(h)=0.

Corollary. There exists a transserial Hardy field T, such that Ti] is weakly differentially
closed.

Corollary. There exists a differentially Henselian transserial Hardy field T, i.e., such that any
quasi-linear differential equation over T admits a solution in T.



i A partial inverse &

Theorem. Let T be a transserial Hardy field and H a differentially algebraic Hardy field
extension of T, such that H is differentially Henselian and stable under exponentiation. Then
there exists a transserial Hardy field structure on H which extends the structure on T.

Corollary. Let T be a transserial Hardy field and H a differentially algebraic Hardy field
extension of T, such that H is differentially Henselian. Assume that H admits no non-trivial
algebraically differential Hardy field extensions. Then H satisfies the differential intermediate
value property.

Theorem. (Boshernitzan 1987) Any solution of the equation
14 f= o’

is contained in a Hardy field. However, none of these solutions is contained in the intersection
of all maximal Hardy fields.



< Open problems

e Embeddability of Hardy fields in differentially Henselian Hardy fields.
e Do maximal Hardy fields satisfy the intermediate value property?

e Restricted analytic (instead of algebraic) differential equations.

e Preservation of composition:

o f(x—+¢), small e: expand.

o f(qx+e¢): expand, but more intricate.

o f(e(x)), ¢ > x: abstract nonsense.



