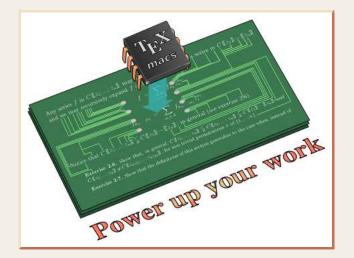
Quasi-optimal multiplication of linear differential operators

Alexandre Benoit, Alin Bostan, Joris van der Hoeven

CNRS, École polytechnique



FOCS, New Brunswick, 2012 http://www.T_EX_{MACS}.org

Classical complexity results

Definitions

$$\begin{split} \mathbb{K}: & \text{effective field of characteristic zero} \\ \mathbb{K}[x]_d = \{P \in \mathbb{K}[x]: \deg_x P < d\} \\ \mathbb{K}^{r \times r'}: & \text{ring of } r \times r' \text{ matrices with coefficients in } \mathbb{K} \end{split}$$

Fundamental complexities

- $\mathsf{M}(d) = \mathcal{O}(d \log d \log \log d) = \tilde{\mathcal{O}}(d)$: multiplication in $\mathbb{K}[x]_d$
- $\mathcal{O}(r^{\omega})$, $\omega < 2.373$: multiplication in $\mathbb{K}^{r imes r}$

Other operations

- For $\mathbb{K}[x]_d$, division in $\mathcal{O}(\mathsf{M}(d))$, gcd in $\mathcal{O}(\mathsf{M}(d)\log d)$, etc.
- For $\mathbb{K}^{r \times r}$, inversion in $\mathcal{O}(r^{\omega})$, etc.

Definitions

 $\partial = \partial / \partial x$, so that $\partial x = x \partial + 1$ when regarding x as an operator $\mathbb{K}[x, \partial]_{d,r} = \{L \in \mathbb{K}[x, \partial]: \deg_x L < d, \deg_\partial L < r\}$

Main problem

Complexity SM(d, r) of multiplication in $\mathbb{K}[x, \partial]_{d,r}$?

Applications

Recall: $\mathbb{K}(x)[\partial]$ is a skew polynomial ring

- Exact division, division with remainder, extended division
- Greatest common right divisors, least common left multiples
- Fundamental systems of (truncated) power series solutions
- Smallest annihilator of finite set of (truncated) power series

Main result

Known

 $\begin{bmatrix} \mathsf{VdH}, 2002 \end{bmatrix} \quad \frac{\mathsf{SM}(r, r) = \mathcal{O}(r^{\omega})}{[\mathsf{Bostan}, \mathsf{Chyzak}, \mathsf{LeRoux}, 2008]} \quad r^{\omega} = \mathcal{O}(\mathsf{SM}(r, r))$

New result

$$\mathsf{SM}(d,r) = \tilde{\mathcal{O}}(dr\min(d,r)^{\omega-2})$$

Generalizations

- Positive characteristic
- Other skew indeterminates $\delta = x \partial$, $\sigma: x_c \mapsto x + c$, $Q_q: x \mapsto q x$

Outline of the proof

Main ideas

• Evaluation-interpolation strategy:

KL =Interpolate(Eval(K) Eval(L)).

• $(d,r) \xleftarrow{\text{reflection}} (r,d)$ allows us to assume that $r \ge d$

Admitted (Fast Hermite evaluation-interpolation)

Given d, μ , distinct points $\alpha_0, ..., \alpha_{d-1}$ and a polynomial $P \in \mathbb{K}[x]_{\mu d}$, we can compute

$$P(\alpha_0), P'(\alpha_0), \dots, P^{(\mu-1)}(\alpha_0), \dots, P(\alpha_{d-1}), P'(\alpha_{d-1}), \dots, P^{(\mu-1)}(\alpha_{d-1})$$

in time $\mathcal{O}(\mathsf{M}(\mu d) \log d) = \tilde{\mathcal{O}}(\mathsf{M}(\mu d))$. Same complexity for inverse operation of interpolation.

Operators Arrices

Matrix of an operator

 $L\!\in\!\mathbb{K}[x,\partial]_{d,r}\text{, }k\!\in\!\mathbb{N}\text{, }L\!:\!\mathbb{K}[x]_k\!\rightarrow\!\mathbb{K}[x]_{k+d}$

$$\Phi_L^{d+r-1,r} = \begin{pmatrix} L(1)_0 & \cdots & L(x^{r-1})_0 \\ \vdots & & \vdots \\ L(1)_{k+d-1} & \cdots & L(x^{r-1})_{k+d-1} \end{pmatrix}$$

"Fourier" multiplication $(K, L \in \mathbb{K}[x, \partial]_{d,r})$

$$\Phi_{KL}^{2r+2d,2r} = \Phi_K^{2r+2d,2r+d} \Phi_L^{2r+d,2r}$$

Complexity $(L \in \mathbb{K}[x, \partial]_{r,r})$

- We can compute $\Phi_L^{2r,r}$ from L in time $\mathcal{O}(r \operatorname{\mathsf{M}}(r))$.
- We can recover L from $\Phi_L^{2r,r}$ in time $\mathcal{O}(r \operatorname{\mathsf{M}}(r))$.

Operate on exponential polynomials $(L \in \mathbb{K}[x, \partial]_{d,r})$

- L also operates on $\mathbb{K}[x,\partial] e^{lpha x}$ for every $lpha \in \mathbb{K}$
- More specifically, writing

$$L = \sum_{i} L_i(x) \partial^i$$

we have:

$$L(P e^{\alpha x}) = L_{\ltimes \alpha}(P)$$
$$L_{\ltimes \alpha} = \sum_{i} L_{i}(x) (\partial + \alpha)^{i}$$

Idea

For $p = \lceil r/d \rceil$, choose distinct $\alpha_0, ..., \alpha_{p-1}$, and let L operate on

$$\mathbb{V}_k = \mathbb{K}[x]_k e^{\alpha_0 x} \oplus \dots \oplus \mathbb{K}[x]_k e^{\alpha_{p-1} x}$$

Matrix representation (of $L: \mathbb{V}_k \to \mathbb{V}_{k+d}$)

$$\Phi_L^{[k+d,k]} = \begin{pmatrix} \Phi_{\ltimes\alpha_0}^{k+d,k} & & \\ & \ddots & \\ & & \Phi_{\ltimes\alpha_{p-1}}^{k+d,k} \end{pmatrix}$$

Complexity $(L \in \mathbb{K}[x, \partial]_{n,r}, r \ge d, p = \lceil r/d \rceil)$

- We may compute $\Phi_L^{[2d,d]}$ as a function of L in time $\mathcal{O}(d \operatorname{\mathsf{M}}(r) \log r)$.
- We may recover L from $\Phi_L^{[2d,d]}$ in time $\mathcal{O}(d \operatorname{\mathsf{M}}(r) \log r)$.

Proof

• For $r \ge d$, L operates on the same way on $\mathbb{K}[x]_d$ as its truncation

$$L^* = \sum_{i < d, j < d} L_{i,j} x^i \partial^j$$

• $L \iff (L^*_{\ltimes \alpha_0}, ..., L^*_{\ltimes \alpha_{p-1}})$: Hermite evaluation-interpolation at p points of multiplicity d

"Fourier" multiplication (of $K, L \in \mathbb{K}[x, \partial]_{d,r}, r \ge d$)

$$\Phi_{KL}^{[4d+2d,2d]} = \Phi_K^{[4d,3d]} \Phi_L^{[3d,2d]}.$$

Theorem. Let $K, L \in \mathbb{K}[x, \partial]_{d,r}$ with $r \ge d$. Then KL can be computed in time

 $\overline{\mathsf{SM}(n,r)} = \mathcal{O}(d^{\omega-1}r + d\mathsf{M}(r)\log r).$

The case when d > r

Reflection

$$\varphi \colon \mathbb{K}[x,\partial] \longrightarrow \mathbb{K}[x,\partial]$$
$$x \longmapsto \partial$$
$$\partial \longmapsto -x$$

Properties

- φ is a morphism: $\varphi(\partial) \varphi(x) \varphi(x) \varphi(\partial) = -x \partial + \partial x = 1$
- φ is a bijection between $\mathbb{K}[x,\partial]_{n,r}$ and $\mathbb{K}[\partial,x]_{r,n}$
- $\varphi \circ \varphi = -\mathrm{Id}$, so $\varphi^{\mathrm{inv}} = -\varphi$
- Thus, given $K, L \in \mathbb{K}[x, \partial]_{n,r}$ with d > r, we may compute KL using

 $KL = -\varphi(\varphi(K) \varphi(L)).$

Computing the reflection

Given

$$L = \sum_{i,j} p_{i,j} \partial^j x^i,$$

compute $q_{i,j}$ with

$$L = \sum_{i,j} q_{i,j} x^i \partial^j.$$

Theorem. Given $L \in \mathbb{K}[x, \partial]_{d,r}$, we may compute $\varphi(L)$ in time $\mathcal{O}(\min(d \mathsf{M}(r), r \mathsf{M}(d)))$.

Proof: (1) Show that

$$i! q_{i,j} = \sum_{k \ge 0} {j+k \choose k} (i+k)! p_{i+k,j+k}$$

(2) Reduce to the computation of $\mathcal{O}(d+r)$ Taylor shifts of length $\min(d, r)$.